Tasks
Experimental
Tasks are an experimental feature tracking the draft MCP specification. The API may change without notice.
Tasks enable asynchronous request handling in MCP. Instead of blocking until an operation completes, the receiver creates a task, returns immediately, and the requestor polls for the result.
When to Use Tasks
Tasks are designed for operations that:
- Take significant time (seconds to minutes)
- Need progress updates during execution
- Require user input mid-execution (elicitation, sampling)
- Should run without blocking the requestor
Common use cases:
- Long-running data processing
- Multi-step workflows with user confirmation
- LLM-powered operations requiring sampling
- OAuth flows requiring user browser interaction
Task Lifecycle
┌─────────────┐
│ working │
└──────┬──────┘
│
┌────────────┼────────────┐
│ │ │
▼ ▼ ▼
┌────────────┐ ┌───────────┐ ┌───────────┐
│ completed │ │ failed │ │ cancelled │
└────────────┘ └───────────┘ └───────────┘
▲
│
┌────────┴────────┐
│ input_required │◄──────┐
└────────┬────────┘ │
│ │
└────────────────┘
| Status | Description |
|---|---|
working |
Task is being processed |
input_required |
Receiver needs input from requestor (elicitation/sampling) |
completed |
Task finished successfully |
failed |
Task encountered an error |
cancelled |
Task was cancelled by requestor |
Terminal states (completed, failed, cancelled) are final—tasks cannot transition out of them.
Bidirectional Flow
Tasks work in both directions:
Client → Server (most common):
Client Server
│ │
│── tools/call (task) ──────────────>│ Creates task
│<── CreateTaskResult ───────────────│
│ │
│── tasks/get ──────────────────────>│
│<── status: working ────────────────│
│ │ ... work continues ...
│── tasks/get ──────────────────────>│
│<── status: completed ──────────────│
│ │
│── tasks/result ───────────────────>│
│<── CallToolResult ─────────────────│
Server → Client (for elicitation/sampling):
Server Client
│ │
│── elicitation/create (task) ──────>│ Creates task
│<── CreateTaskResult ───────────────│
│ │
│── tasks/get ──────────────────────>│
│<── status: working ────────────────│
│ │ ... user interaction ...
│── tasks/get ──────────────────────>│
│<── status: completed ──────────────│
│ │
│── tasks/result ───────────────────>│
│<── ElicitResult ───────────────────│
Key Concepts
Task Metadata
When augmenting a request with task execution, include TaskMetadata:
from mcp.types import TaskMetadata
task = TaskMetadata(ttl=60000) # TTL in milliseconds
The ttl (time-to-live) specifies how long the task and result are retained after completion.
Task Store
Servers persist task state in a TaskStore. The SDK provides InMemoryTaskStore for development:
from mcp.shared.experimental.tasks import InMemoryTaskStore
store = InMemoryTaskStore()
For production, implement TaskStore with a database or distributed cache.
Capabilities
Both servers and clients declare task support through capabilities:
Server capabilities:
tasks.requests.tools.call- Server accepts task-augmented tool calls
Client capabilities:
tasks.requests.sampling.createMessage- Client accepts task-augmented samplingtasks.requests.elicitation.create- Client accepts task-augmented elicitation
The SDK manages these automatically when you enable task support.
Quick Example
Server (simplified API):
from mcp.server import Server
from mcp.server.experimental.task_context import ServerTaskContext
from mcp.types import CallToolResult, TextContent, TASK_REQUIRED
server = Server("my-server")
server.experimental.enable_tasks() # One-line setup
@server.call_tool()
async def handle_tool(name: str, arguments: dict):
ctx = server.request_context
ctx.experimental.validate_task_mode(TASK_REQUIRED)
async def work(task: ServerTaskContext):
await task.update_status("Processing...")
# ... do work ...
return CallToolResult(content=[TextContent(type="text", text="Done!")])
return await ctx.experimental.run_task(work)
Client:
from mcp.client.session import ClientSession
from mcp.types import CallToolResult
async with ClientSession(read, write) as session:
await session.initialize()
# Call tool as task
result = await session.experimental.call_tool_as_task("my_tool", {"arg": "value"})
task_id = result.task.taskId
# Poll until done
async for status in session.experimental.poll_task(task_id):
print(f"Status: {status.status}")
# Get result
final = await session.experimental.get_task_result(task_id, CallToolResult)
Next Steps
- Server Implementation - Build task-supporting servers
- Client Usage - Call and poll tasks from clients