
Python für alle

Python für alle
Einführung in die Datenanalyse mit Python 3

Charles R. Severance

Deutsche Ausgabe

Fabian Eberts
Heiner Giefers

Originaltitel: Python for Everybody. Exploring Data Using Python 3.

Übersetzung und Bearbeitung: Fabian Eberts, Heiner Giefers
Redaktionelle Unterstützung: Elliott Hauser, Sue Blumenberg
Covergestaltung: Aimee Andrion

ISBN 979-8-42547-509-1

1. Auflage 2022

Autorisierte deutsche Übersetzung und Bearbeitung der englischen Ausgabe von
Python for Everybody. Exploring Data Using Python 3.

Copyright 2009–2026 Dr. Charles R. Severance

Dieses Werk ist unter einer Creative Commons Attribution-NonCommercial-Sha-
reAlike 3.0 Unported License lizenziert. Diese Lizenz ist verfügbar unter:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Weitere Details zur kommerziellen und nicht-kommerziellen Nutzung dieses Materi-
als sowie zu den Lizenzausnahmen sind im Anhang unter „Hinweise zum Urheber-
recht“ zu finden.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. You can see what the author considers commercial
and non-commercial uses of this material as well as license exemptions in the
Appendix.

v

Vorwort

Vorwort zur deutschen Ausgabe

Die Deutsche Nationalbibliothek listet über 500 Titel zum Thema Programmierung
mit Python, digitale Medien eingeschlossen sind es sogar über 1000. Man kann
sich also die Frage stellen, ob das 1001. Buch über Python wirklich notwendig ist.
Wir finden ja, denn der Ansatz dieses Buches unterscheidet sich von den meisten
anderen zum Thema. Python für alle ist Teil eines offenen Curriculums zu Python,
das bereits in verschiedene Sprachen übersetzt wurde und in diversen Hochschulen
sowie in Onlinekursen Anwendung findet.

Mein großer Dank gilt Charles Severance, der diese Materialsammlung aufgebaut
hat und weltweit Menschen dabei unterstützt, seine Inhalte zu verwenden und
weiterzuentwickeln. Genau wie der Autor stand auch ich vor der Entscheidung, für
einen Kurs zur Einführung in die Programmierung mit Python Lehrmaterialien
selbst zu entwickeln oder ein bestehendes Lehrbuch zu verwenden. Viele der vielen
Lehrbücher zu Python waren prinzipiell geeignet, aber keines passte genau auf
die Anforderungen der Veranstaltung. Der pragmatische Ansatz von Python for
Everybody eignet sich sehr für Programmieranfänger. Es gibt keinen Anspruch
auf Vollständigkeit; vielmehr zielt das Buch darauf ab, die Programmierung mit
Python in logisch aufeinander aufbauenden Kapiteln von Grund auf zu vermitteln.
Dies und die Möglichkeit, das Buch inhaltlich zu erweitern, haben schließlich zum
Entschluss geführt, Python for Everybody ins Deutsche zu übersetzen.

Die vorliegende Übersetzung orientiert sich weitgehend am englischsprachigen Origi-
nal. Die Einleitung des Themas in Kapitel 1 wurde etwas verkürzt, in den Kapiteln
2–16 wurden einige Abschnitte aktualisiert und ergänzt, allerdings ohne dabei
den Grundaufbau zu verändern. Bei den Programmbeispielen sind die Ausgaben
größtenteils ins Deutsche übersetzt worden, Eingabedaten und Bezeichner wurden
überwiegend wie in der Originalausgabe belassen.

Neben Charles Severance und allen anderen, die an der Entwicklung der Inhalte
dieses Buches beteiligt waren, möchte ich mich auch bei denjenigen bedanken, die
so tatkräftig bei der Übersetzung des Buches mitgewirkt haben. Hier sind vor allem
Fabian Eberts, Julia Warnke und Sebastian Schmidt zu nennen. Ohne ihren Einsatz
hätte sich das Buch nicht in nur wenigen Wochen übersetzen lassen.

Heiner Giefers

Neubearbeitung eines Open-Books

Es ist ganz normal, dass Akademiker, die ständig „publish or perish“ hören, ihre
Arbeiten immer von Grund auf neu schaffen wollen. Dieses Buch dagegen versucht,
eben nicht bei null anzufangen, sondern stattdessen das Buch Think Python: How
to Think Like a Computer Scientist von Allen B. Downey, Jeff Elkner und anderen
neu zu bearbeiten.

Im Dezember 2009 war ich gerade dabei, mich darauf vorzubereiten, das fünf-
te Semester in Folge Networked Programming an der University of Michigan zu

vi

unterrichten, und beschloss, dass es an der Zeit war, ein Python-Lehrbuch zu schrei-
ben, das sich auf die Analyse von Daten konzentriert, anstatt auf das Vermitteln
von Algorithmen und Abstraktionen. Mein Ziel in Networked Programming ist es,
den Lesern Fähigkeiten im Umgang mit Daten mittels mit Python zu vermitteln.
Nur wenige meiner Studenten hatten vor, professionelle Computerprogrammierer
zu werden. Stattdessen wollten sie Bibliothekare, Manager, Anwälte, Biologen,
Wirtschaftswissenschaftler usw. werden, die in ihrem jeweiligen Fachgebiet die
Technologie geschickt einsetzen wollten.

Ich konnte nie das perfekte datenorientierte Python-Buch für meinen Kurs finden,
also habe ich mich daran gemacht, ein solches Buch zu schreiben. Glücklicherweise
zeigte mir Dr. Atul Prakash bei einer Fakultätssitzung drei Wochen bevor ich
in den Ferien mit meinem neuen Buch beginnen wollte das Buch Think Python,
das er in diesem Semester für seinen Python-Kurs verwendet hatte. Es ist ein
gut geschriebenes Informatikbuch mit dem Schwerpunkt auf kurzen, direkten
Erklärungen und leichter Erlernbarkeit.

Die Gesamtstruktur des Buches wurde geändert, um so schnell wie möglich zu
den Problemen der Datenanalyse zu gelangen und von Anfang an eine Reihe von
Beispielen und Übungen zur Datenanalyse anzubieten.

Die Kapitel 2–10 ähneln dem Buch Think Python, aber es gibt wichtige Änderungen.
Zahlenorientierte Beispiele und Übungen sind durch datenorientierte Übungen
ersetzt worden. Die Themen werden in der Reihenfolge präsentiert, die für die
Erstellung von zunehmend anspruchsvolleren Datenanalyselösungen erforderlich ist.
Einige Themen wie try und except werden vorgezogen und als Teil des Kapitels
über Kontrollstrukturen vorgestellt. Funktionen werden nur sehr oberflächlich
behandelt, bis sie zur Bewältigung der Programmkomplexität benötigt werden,
aber nicht als frühe Lektion in Abstraktion eingeführt. Fast alle benutzerdefinierten
Funktionen wurden aus dem Beispielcode und den Übungen außerhalb von Kapitel
4 entfernt. Das Wort Rekursion1 kommt in dem Buch überhaupt nicht vor.

In den Kapiteln 1 und 11–16 ist das gesamte Material brandneu und konzentriert
sich auf reale Anwendungen und einfache Beispiele von Python für die Datenanalyse
einschließlich regulärer Ausdrücke für die Suche und das Parsing, die Automatisie-
rung von Aufgaben auf Ihrem Computer, das Abrufen von Daten über das Netzwerk,
das Scraping von Webseiten nach Daten, objektorientierte Programmierung, die
Verwendung von Webdiensten, das Parsing von XML- und JSON-Daten, die Erstel-
lung und Verwendung von Datenbanken mit der Structured Query Language und
die Visualisierung von Daten.

Das ultimative Ziel all dieser Änderungen ist es, den Schwerpunkt von der Infor-
matik auf die Datenverarbeitung und -analyse zu verlagern und nur noch Themen
aufzunehmen, die auch dann nützlich sein können, wenn man sich entscheidet, kein
professioneller Programmierer zu werden.

Studierende, die dieses Buch interessant finden und weiter vertiefen wollen, sollten
sich das Buch Think Python von Allen B. Downey ansehen. Da es viele Über-
schneidungen zwischen den beiden Büchern gibt, werden die Studierenden schnell
Fähigkeiten in den zusätzlichen Bereichen der technischen Programmierung und des
algorithmischen Denkens erwerben, die in Think Python behandelt werden. Und da

1außer natürlich in dieser Zeile!

vii

die Bücher einen ähnlichen Schreibstil haben, sollten sie in der Lage sein, Think
Python mit einem Minimum an Aufwand schnell durchzuarbeiten.

Als Inhaber des Copyrights von Think Python hat mir Allen B. Downey die Erlaubnis
erteilt, die Lizenz für das Material aus seinem Buch, das in diesem Buch enthalten
ist, von der GNU Free Documentation License auf die neuere Creative Commons
Attribution-Share Alike Lizenz zu ändern. Dies folgt dem aktuellen Trend der
Verschiebung der Lizenzen für offene Dokumentation von der GFDL zur CC-BY-SA
(z. B. Wikipedia). Durch die Verwendung der CC-BY-SA-Lizenz wird die starke
Copyleft-Tradition des Buches beibehalten, während es für neue Autoren noch
einfacher wird, dieses Material nach eigenem Ermessen weiterzuverwenden.

Ich bin der Meinung, dass dieses Buch ein Beispiel dafür ist, warum offene Materia-
lien so wichtig für die Zukunft der Bildung sind, und ich möchte Allen B. Downey
und Cambridge University Press für ihre zukunftsweisende Entscheidung danken,
das Buch unter einem offenen Copyright zur Verfügung zu stellen. Ich hoffe, dass
sie mit dem Ergebnis meiner Bemühungen zufrieden sind und ich hoffe, dass Sie,
die Leser, mit unseren gemeinsamen Bemühungen zufrieden sind.

Ich möchte Allen B. Downey und Lauren Cowles für ihre Hilfe, Geduld und Beratung
bei der Klärung von Urheberrechtsfragen im Zusammenhang mit diesem Buch
danken.

Charles Severance
www.dr-chuck.com
Ann Arbor, MI, USA
September 9, 2013

Charles Severance ist Professor an der University of Michigan School of Information.

Inhaltsverzeichnis

1 Warum sollte man Programmieren lernen? 1
1.1 Kreativität und Motivation . 2
1.2 Der Aufbau eines Computers . 2
1.3 Programmierung verstehen . 4
1.4 Wörter und Sätze . 5
1.5 Konversation mit Python . 6
1.6 Interpreter und Compiler . 8
1.7 Ein Programm schreiben . 10
1.8 Was ist ein Programm? . 11
1.9 Die Bausteine von Programmen 12
1.10 Was kann schon schief gehen? . 13
1.11 Debugging . 14
1.12 Der Lernprozess . 16
1.13 Glossar . 16
1.14 Übungen . 17

2 Bezeichner, Ausdrücke und Anweisungen 19
2.1 Werte und Datentypen . 19
2.2 Werte benennen . 21
2.3 Bezeichner und Schlüsselwörter 21
2.4 Anweisungen . 22
2.5 Operatoren und Operanden . 23
2.6 Ausdrücke . 25
2.7 Reihenfolge der Auswertung . 25
2.8 Division mit Rest . 26
2.9 Operationen mit Zeichenketten 27
2.10 Zuweisungen . 27
2.11 Typen . 28
2.12 Benutzereingaben . 28
2.13 Kommentare . 30
2.14 Wählen sprechender Variablennamen 30

x Inhaltsverzeichnis

2.15 Debugging . 32
2.16 Glossar . 33
2.17 Übungen . 34

3 Bedingte Ausführung 37
3.1 Boolesche Ausdrücke . 37
3.2 Logische Operatoren . 38
3.3 Bedingte Ausführung . 39
3.4 Alternative Ausführung . 41
3.5 Verkettete Bedingungen . 41
3.6 Verschachtelte Bedingungen . 42
3.7 Abfangen von Ausnahmen mit try und except 43
3.8 Verkürzte Auswertung logischer Ausdrücke 45
3.9 Debugging . 47
3.10 Glossar . 47
3.11 Übungen . 48

4 Funktionen 51
4.1 Funktionsaufrufe . 51
4.2 Built-in-Funktionen . 52
4.3 Funktionen zur Typumwandlung 53
4.4 Die Standardbibliothek . 54
4.5 Mathematische Funktionen . 55
4.6 Zufallszahlen . 56
4.7 Definition neuer Funktionen . 57
4.8 Definitionen und deren Verwendung 59
4.9 Programmablauf . 60
4.10 Parameter und Argumente . 61
4.11 Funktionen mit und ohne Rückgabewert 62
4.12 Wozu Funktionen? . 63
4.13 Debugging . 64
4.14 Glossar . 64
4.15 Übungen . 65

5 Iteration 67
5.1 Aktualisieren von Variablen . 67
5.2 Die while-Schleife . 68
5.3 Abbrechen einer Iteration mit continue 70
5.4 for-Schleifen . 71
5.5 Typische Anwendungen von Schleifen 72

5.5.1 Zählen und Summieren 72

Inhaltsverzeichnis xi

5.5.2 Maximum und Minimum ermitteln 73
5.6 Debugging . 75
5.7 Glossar . 75
5.8 Übungen . 76

6 Zeichenketten 77
6.1 Was ist eine Zeichenkette? . 77
6.2 Länge einer Zeichenkette . 79
6.3 Traversieren einer Zeichenkette 79
6.4 Der slice-Operator . 80
6.5 Zeichenketten sind unveränderlich 81
6.6 Zählen mit Schleifen . 82
6.7 Der in-Operator . 82
6.8 Vergleich von Zeichenketten . 82
6.9 Funktionen von Zeichenketten . 83
6.10 Parsen von Zeichenketten . 85
6.11 Formatierte Zeichenketten . 86
6.12 Debugging . 88
6.13 Glossar . 89
6.14 Übungen . 89

7 Dateien 91
7.1 Öffnen von Dateien . 92
7.2 Textdateien . 93
7.3 Lesen von Dateien . 94
7.4 Suchen in Dateien . 95
7.5 Wahl des Dateinamens durch den Benutzer 98
7.6 Verwendung von try, except und open 98
7.7 Schreiben von Dateien . 100
7.8 Debugging . 101
7.9 Glossar . 101
7.10 Übungen . 102

8 Listen 105
8.1 Listen sind Folgen von Werten . 105
8.2 Listen sind veränderbar . 106
8.3 Traversieren einer Liste . 107
8.4 Listen-Operationen . 108
8.5 Listen-Slicing . 109
8.6 Listenmethoden . 109
8.7 Löschen von Elementen . 110
8.8 Listen und Funktionen . 111

xii Inhaltsverzeichnis

8.9 Listen und Zeichenketten . 113
8.10 Parsen von Zeilen . 114
8.11 Objekte und Werte . 115
8.12 Aliase . 116
8.13 Listen als Funktionsargumente 117
8.14 Debugging . 118
8.15 Glossar . 122
8.16 Übungen . 122

9 Dictionarys 125
9.1 Was ist ein Dictionary . 125
9.2 Ein Dictionary zum Zählen verwenden 127
9.3 Dictionarys und Dateien . 129
9.4 Schleifen und Dictionarys . 131
9.5 Fortgeschrittene Textanalyse . 132
9.6 Debugging . 134
9.7 Glossar . 134
9.8 Übungen . 135

10 Tupel 137
10.1 Tupel sind unveränderbar . 137
10.2 Vergleichen von Tupeln . 139
10.3 Tupel-Zuweisung . 140
10.4 Dictionarys und Tupel . 142
10.5 Mehrfachzuweisung mit Dictionarys 143
10.6 Worthäufigkeit zählen . 144
10.7 Tupel als Schlüssel in Dictionarys 145
10.8 Zeichenketten, Listen und Tupel 145
10.9 Debugging . 146
10.10 Glossar . 146
10.11 Übungen . 147

11 Reguläre Ausdrücke 149
11.1 Wildcards . 150
11.2 Extrahieren von Daten . 151
11.3 Kombination von Suchen und Extrahieren 154
11.4 Escapezeichen . 158
11.5 Zusammenfassung . 158
11.6 Bonuskapitel für Unix/Linux-Benutzer 159
11.7 Debugging . 160
11.8 Glossar . 161
11.9 Übungen . 161

Inhaltsverzeichnis xiii

12 Vernetzen von Programmen 163
12.1 Hypertext Transfer Protocol – HTTP 163
12.2 Der einfachste Webbrowser der Welt 164
12.3 Abrufen eines Bildes über HTTP 166
12.4 Abrufen von Webseiten mit urllib 168
12.5 Lesen von Binärdateien mit urllib 169
12.6 Parsen von HTML und Erkunden des Webs 171
12.7 Parsen von HTML mit regulären Ausdrücken 171
12.8 Parsen von HTML mit BeautifulSoup 173

12.9 Bonuskapitel für Unix-/Linux-User 176

12.10 Glossar . 176
12.11 Übungen . 177

13 Web-Services 179
13.1 eXtensible Markup Language – XML 179
13.2 Parsen von XML . 180
13.3 Iterieren durch Knoten . 181
13.4 JavaScript Object Notation – JSON 182
13.5 Parsen von JSON . 183
13.6 Application Programming Interfaces – API 185
13.7 Sicherheit und API-Nutzung . 185
13.8 Glossar . 186
13.9 Anwendungsbeispiel 1: Google Geocoding Web Service 187
13.10 Anwendungsbeispiel 2: Twitter 191

14 Objektorientierte Programmierung 197
14.1 Verwaltung größerer Programme 197
14.2 Schon gehts los . 198
14.3 Handhabung von Objekten . 198
14.4 Betrachtung von außen . 199
14.5 Unterteilen eines Problems . 201
14.6 Unser erstes Python-Objekt . 202
14.7 Klassen als Datentypen . 205
14.8 Lebenszyklus von Objekten . 206
14.9 Mehrere Instanzen . 207
14.10 Vererbung . 208
14.11 Zusammenfassung . 209
14.12 Glossar . 210

xiv Inhaltsverzeichnis

15 Datenbanken und SQL 211
15.1 Was ist eine Datenbank? . 211
15.2 Datenbankkonzepte . 212
15.3 Datenbankbrowser für SQLite . 212
15.4 Erstellen einer Datenbanktabelle 213
15.5 Zusammenfassung von SQL . 216
15.6 Auslesen von Twitter-Daten mithilfe einer Datenbank 218
15.7 Grundlagen der Datenmodellierung 224
15.8 Arbeiten mit mehreren Tabellen 225

15.8.1 Constraints in Datenbanktabellen 229
15.8.2 Abrufen und Einfügen eines Datensatzes 229
15.8.3 Speichern der Freundschaftsbeziehung 230

15.9 Drei Arten von Schlüsseln . 232
15.10 Abrufen von Daten mit JOIN . 232
15.11 Zusammenfassung . 235
15.12 Debugging . 235
15.13 Glossar . 236

16 Visualisierung von Daten 237
16.1 Erstellen einer OpenStreetMap aus Geodaten 237
16.2 Visualisierung von Netzwerken 240
16.3 Visualisierung von Maildaten . 243

A Mitwirkende 249
A.1 Mitwirkende an „Python for Everybody“ 249
A.2 Mitwirkende an „Python for Informatics“ 249
A.3 Vorwort von „Think Python“ . 249

A.3.1 Die seltsame Geschichte von „Think Python“ 249
A.3.2 Danksagungen für „Think Python“ 251

A.4 Mitwirkende an „Think Python“ 251

B Hinweise zum Urheberrecht 253

Index 255

Kapitel 1

Warum sollte man
Programmieren lernen?

Das Schreiben von Programmen (oder Programmieren) ist eine sehr kreative und
lohnende Tätigkeit. Wir können Programme aus vielen Gründen schreiben, an-
gefangen mit dem Ziel, damit den Lebensunterhalt zu verdienen, ein schwieriges
Datenanalyseproblem zu lösen, Spaß zu haben oder um jemand anderem bei der
Lösung eines Problems zu helfen. Dieses Buch geht davon aus, dass jeder wissen
sollte, wie man programmiert, und dass man, sobald man die Programmierung
beherrscht, herausfindet, was man mit den neugewonnenen Fähigkeiten machen
kann.

Wir sind in unserem täglichen Leben von Computern umgeben, von Laptops bis
hin zu Handys. Wir nehmen diese Computer als unsere „persönlichen Assistenten“
war, die viele Dinge für uns erledigen können. Die Hardware in unseren heutigen
Computern ist im Wesentlichen so gebaut, dass sie uns ständig die Frage stellt:
„Was soll ich als Nächstes tun?“

Programmierer fügen der Hardware ein Betriebssystem und eine Reihe von Anwen-
dungen hinzu, und schon haben wir einen persönlichen digitalen Assistenten, der
uns bei vielen Problemen des Alltags nützlich sein kann. Unsere Computer sind
schnell und haben riesige Mengen an Speicher und könnten uns sehr hilfreich sein,
wenn wir nur die Sprache beherrschen würden, um dem Computer zu erklären, was
er als Nächstes tun soll. Wenn wir diese Sprache kennen, könnten wir dem Computer
sagen, dass er in unserem Namen Aufgaben erledigen soll, die sich wiederholen.
Interessanterweise sind die Dinge, die Computer am besten können oft die Dinge,
die wir Menschen langweilig und stumpfsinnig finden.

Schauen wir uns zum Beispiel die ersten drei Absätze dieses Kapitels an und finden
heraus, welches Wort am häufigsten verwendet wird und wie oft es vorkommt.
Während wir in der Lage waren, die Wörter in wenigen Sekunden zu lesen und zu
verstehen, ist das Zählen der Wörter fast schmerzhaft, weil es nicht die Art von
Problem ist, die der menschliche Verstand einfach lösen kann. Für einen Computer
ist das Gegenteil der Fall: Das Lesen und Verstehen von Text auf einem Blatt
Papier ist für einen Computer schwer, aber die Wörter zu zählen und Ihnen zu

2 Kapitel 1. Warum sollte man Programmieren lernen?

sagen, wie oft das am häufigsten verwendete Wort verwendet wurde, ist für den
Computer sehr einfach.

python words.py
Enter file:words.txt
Das Wort "die" kommt 9-mal vor

Unser Programm sagt uns schnell, dass das Wort „die“ 9 mal im oberen Teil dieses
Kapitels verwendet wurde. Genau diese Tatsache, dass Computer Dinge gut können,
die Menschen eher nicht gut bzw. schnell können, ist der Grund, warum man die
Programmiersprachen beherrschen sollten. Sobald man eine Programmiersprache
gelernt hat, kann man viele alltägliche Aufgaben durch den Computer erledigen
lassen. So bleibt einem mehr Zeit für die diejenigen Aufgaben, für die wir Menschen
einzigartig geeignet sind, nämlich Kreativität, Intuition und Ideenreichtum.

1.1 Kreativität und Motivation

Wenn wir gerade mit dem Programmieren beginnen, werden wir noch einige Erfah-
rungen sammeln müssen, um professionelle Programme (auch Software genannt)
entwickeln zu können. Professionelles Programmieren ist allerdings sowohl finanziell
als auch persönlich eine sehr lohnende Aufgabe. Nützliche, elegante und clevere
Programme zu erstellen, ist eine sehr kreative Aktivität, die durchaus Spaß machen
kann. Lukrativ ist die Programmierung vor allem dann, wenn unseren Kunden,
bzw. den Nutzern das Programm gefällt und uns einen Nutzen bringt. Dabei stehen
wir in Konkurrenz zu anderen Entwicklern. Man sollte also versuchen, dass das
eigene Programm besser funktioniert, einen höheren Funktionsumfang hat, sich
besser bedienen lässt oder einfach schöner aussieht.

Im Moment besteht unsere Hauptmotivation nicht darin, Geld zu verdienen oder
den Endnutzern zu gefallen. Wir möchten unsere eigenen Arbeitsabläufe automa-
tisieren und produktiver mit den Daten und Informationen umgehen, die uns in
unserem Leben begegnen. Bei unseren Programmieranfängen sind wir sowohl der
Programmierer als auch der Endnutzer unserer Programme. Je mehr Erfahrung
wir sammeln und je umfangreicher unsere Programme werden, desto mehr werden
wir befähigt, auch Programme für andere zu entwickeln.

1.2 Der Aufbau eines Computers

Bevor wir anfangen, die Sprachen zu lernen, mit der wir Computer programmieren
können, sollten wir uns ein wenig damit beschäftigen, wie Computer aufgebaut sind.
Wenn wir unseren Computer oder unser Handy auseinandernehmen und tief ins
Innere schauen würden, würden wir die folgenden Teile finden:

Die wichtigsten Definitionen dieser Teile lauten wie folgt:

• Die Central Processing Unit (oder CPU) ist der Teil des Computers, der so
gebaut ist, dass er von der Frage „Was kommt als Nächstes?“ besessen ist.

1.2. Der Aufbau eines Computers 3

Ein-/Ausgabe

Geräte

Prozessor

(CPU)

Arbeitsspeicher

Netzwerk

Festspeicher

Software
Nächste

Anweisung?

Abbildung 1.1: Aufbau eines Computers

Wenn der Computer auf 3,0 Gigahertz eingestellt ist, bedeutet das, dass die
CPU drei Milliarden Mal pro Sekunde fragt: „Was kommt als Nächstes?“.
Wir müssten lernen, schnell zu sprechen, um mit der CPU Schritt halten zu
können.

• Der Hauptspeicher wird zum Speichern von Informationen verwendet, die
die CPU schnell benötigt. Der Hauptspeicher ist fast so schnell wie die CPU.
Aber die im Hauptspeicher gespeicherten Informationen verschwinden, wenn
der Computer ausgeschaltet wird.

• Der Sekundärspeicher (oder auch Festspeicher) wird ebenfalls zum Speichern
von Informationen verwendet, ist aber viel langsamer als der Hauptspei-
cher. Der Vorteil des Sekundärspeichers ist, dass er Informationen auch dann
speichern kann, wenn der Computer nicht mit Strom versorgt wird. Bei-
spiele für Sekundärspeicher sind Festplattenlaufwerke oder Flash-Speicher
(typischerweise in USB-Sticks und tragbaren Musikplayern zu finden).

• Die Eingabe- und Ausgabegeräte sind unser Bildschirm, unsere Tastatur, Maus,
Mikrofon, Lautsprecher oder Touchpad und dienen der Interaktion mit dem
Computer.

• Heutzutage haben die meisten Computer auch eine Netzwerkverbindung, um
Informationen über ein Netzwerk abzurufen. Wir können uns das Netzwerk
als einen sehr langsamen Ort vorstellen, an dem Daten gespeichert und
abgerufen werden, die nicht immer „verfügbar“ sind. In gewissem Sinne ist
das Netzwerk also eine langsamere und manchmal unzuverlässige Form des
Sekundärspeichers.

Die meisten Details über die Funktionsweise dieser Komponenten überlässt man am
besten den Computerbauern, aber es ist hilfreich, eine Terminologie zu haben, damit
wir beim Schreiben unserer Programme über diese verschiedenen Teile sprechen
können.

Als Programmierer ist es unsere Aufgabe, jede dieser Ressourcen zu nutzen und
zu koordinieren, um das Problem zu lösen, das wir lösen müssen, und die Daten
zu analysieren, die wir aus der Lösung erhalten. Als Programmierer werden wir
hauptsächlich mit der CPU „reden“ und ihr sagen, was sie als Nächstes tun soll.

4 Kapitel 1. Warum sollte man Programmieren lernen?

Manchmal werden wir der CPU sagen, dass sie den Hauptspeicher, den sekundären
Speicher, das Netzwerk oder die Eingabe-/Ausgabegeräte verwenden soll.

Wir müssen jeweils die Person sein, die der CPU die Frage „Was nun?“ beantwortet.
Allerdings wäre es sehr ineffizient, wenn wir den Dialog mit der CPU Live führen
würden. Die CPU kann drei Milliarden Mal pro Sekunde einen Befehl ausführen,
wir wären aber lange nicht in der Lage, mit diesem Tempo mitzuhalten. Stattdes-
sen müssen wir unsere Anweisungen im Voraus aufschreiben. Wir nennen diese
gespeicherten Anweisungen ein Programm und den Akt des Aufschreibens dieser
Anweisungen und die korrekte Ausführung der Anweisungen Programmierung.

1.3 Programmierung verstehen

Im weiteren Verlauf dieses Buches werden wir versuchen, aus uns Personen zu
machen, die die Kunst des Programmierens beherrschen. Am Ende werden wir echte
Programmierer sein – vielleicht keine professionellen Programmierer, aber zumindest
werden wir die Fähigkeit besitzen, ein Daten-/Informationsanalyseproblem zu
betrachten und ein Programm zur Lösung des Problems zu entwickeln.

In gewissem Sinne braucht man zwei Fähigkeiten, um ein Programmierer zu sein:

• Erstens müssen wir die Programmiersprache (Python) kennen – wir müssen
das Vokabular und die Grammatik kennen. Wir müssen in der Lage sein, die
Wörter in dieser neuen Sprache richtig zu schreiben und wissen, wie man
wohlgeformte „Sätze“ in dieser neuen Sprache konstruiert.

• Zweitens müssen wir „eine Geschichte erzählen“ können. Beim Schreiben
einer Geschichte kombinieren wir Wörter und Sätze, um dem Leser eine Idee
zu vermitteln. Es ist eine Kunst, eine Geschichte zu konstruieren, und die
Fähigkeit, eine Geschichte zu schreiben, wird verbessert, indem man etwas
schreibt und Feedback erhält. Beim Programmieren ist unser Programm die
„Geschichte“ und das Problem, das wir zu lösen versuchen, ist die „Idee“.

Wenn man einmal eine Programmiersprache wie Python gelernt hat, wird es einem
viel leichter fallen, eine zweite Programmiersprache wie JavaScript oder C++ zu
lernen. Die neue Programmiersprache hat einen ganz anderen Wortschatz und eine
andere Grammatik, aber die Problemlösungsfähigkeiten sind in allen Programmier-
sprachen gleich.

Wir werden das „Vokabular“ und die „Sätze“ von Python ziemlich schnell lernen.
Es wird länger dauern, bis man in der Lage ist, ein zusammenhängendes Programm
zu schreiben, um ein brandneues Problem zu lösen. Wir lehren das Programmie-
ren ähnlich wie das Schreiben. Wir beginnen damit, Programme zu lesen und
zu erklären. Dann schreiben wir einfache Programme und mit der Zeit immer
komplexere Programme. Durch das wiederholte Schreiben von Programmen schleift
sich eine Routine ein und man beginnt bei neuen Problemstellungen geeignete
Lösungsmuster von selbst zu erkennen. Wenn man diesen Punkt erreicht hat, wird
das Programmieren zu einem sehr angenehmen und kreativen Prozess.

Wenn Sie nun mit dem Erlernen des Vokabulars und der Struktur von (Python-)
Programmen beginnen, seien Sie geduldig und bleiben Sie motiviert, auch einfache

1.4. Wörter und Sätze 5

Beispiele nachzuvollziehen und zu variieren. Denken Sie vielleicht daran wie es war,
Lesen und Schreiben zu lernen. Auch dies ist am Anfang mühsam gewesen, hat Ihnen
aber schlussendlich das Tor geöffnet, um Wissen zu erlangen und weiterzuentwickeln.

1.4 Wörter und Sätze

Im Gegensatz zu menschlichen Sprachen ist der Wortschatz von Python ziemlich
klein. Wir nennen diesen „Wortschatz“ die „reservierten Wörter“. Das sind Wörter,
die für Python eine ganz besondere Bedeutung haben. Wenn Python diese Wörter
in einem Python-Programm sieht, haben sie eine (und nur eine) Bedeutung für
Python. Später, wenn wir Programme schreiben, werden wir unsere eigenen Wörter
erfinden, die für uns eine Bedeutung haben und Bezeichner genannt werden. Bei
der Wahl der Namen für unsere Bezeichner haben wir einen großen Spielraum, aber
wir können keines der reservierten Wörter von Python als Namen für eigene Zwecke
verwenden.

Zu den reservierten Wörtern in der Sprache Python gehören die folgenden:

and as assert break class continue def
del elif else except False finally for
from global if import in is lambda
None nonlocal not or pass raise return
True try while with yield

Wir werden diese reservierten Wörter und ihre Verwendung zu gegebener Zeit
lernen, aber jetzt konzentrieren wir uns erst einmal darauf, wie wir unser Python-
Programm mit uns sprechen lassen können. Da Programme üblicherweise nicht in
Form von gesprochener Sprache, sondern eher durch das Anzeigen von Texten und
Bildern „reden“, heißt das Kommando print also Drucke:

print('Hello world!')

Damit haben wir unseren ersten syntaktisch korrekten Python-Satz geschrieben.
Der Satz beginnt mit der Funktion print, gefolgt von einer Zeichenfolge unserer
Wahl, die in einfachen Anführungszeichen steht. Die Zeichenketten in den print-
Anweisungen sind in Anführungszeichen eingeschlossen. Einfache Anführungszeichen
und doppelte Anführungszeichen haben die gleiche Funktion; die meisten Leute
verwenden einfache Anführungszeichen, außer in den Fällen, wo ein einfaches
Anführungszeichen (ein Apostroph) in der Zeichenkette selbst erscheint.

Wie Sie der Tabelle oben entnehmen können, ist print kein reserviertes Wort,
sondern ein Bezeichner. In diesem Fall haben aber nicht wir den Bezeichner (also
den Namen) eingeführt, sondern es gibt ihn bereits in Python. Bezeichner, auf denen
im Programm direkt eine öffnende Klammer folgt bezeichnen i. d. R. Funktionen,
also soetwas wie Unterprogramme, die eine bestimmte Teilaufgabe erledigen. Python
bietet eine Vielzahl von solchen Funktionen, die Ihnen das Leben als Programmierer
sehr erleichtern. Wir werden im Verlauf des Buches noch viele dieser Funktionen
kennen lernen.

6 Kapitel 1. Warum sollte man Programmieren lernen?

1.5 Konversation mit Python

Nachdem wir nun ein Wort und einen einfachen Satz in Python kennen, müssen wir
wissen, wie wir eine Unterhaltung mit Python beginnen können, um unsere neuen
Sprachkenntnisse zu testen.

Bevor wir uns mit Python unterhalten können, müssen wir zunächst die Python-
Software auf unserem Computer installieren und lernen, wie man Python auf diesem
startet. Sie fragen sich nun vielleicht, warum Sie für das Ausführen Ihrer Python-
Programme ein anderes Programm auf Ihrem Computer installieren müssen. Das
liegt daran, dass Ihre CPU die Sprache Python nicht direkt versteht. Ihr Python-
Programm muss also vor – oder besser gesagt bei der Ausführung – von der Sprache
Python in die Sprache der CPU übersetzt werden. Passiert dieses Übersetzten vor
dem Starten des Programms (und damit in der Regel einmalig), nennt man den
Vorgang Kompilieren. Werden Programme unmittelbar bei der Ausführung, und
damit jedes Mal erneut übersetzt, so nennt man das Interpretieren.

Letzteres ist bei Python der Fall und daher müssen wir einen Python-Interpreter
auf unserem PC oder Notebook installieren. Leider gibt es hierzu nicht „die eine
Anleitung“. Python ist eine offene Programmiersprache. Das bedeutet, dass die Re-
geln, wie Python-Programme geschrieben werden müssen und wie die Anweisungen
der Sprache funktionieren, auf einem gemeinschaftsbasiertes Entwicklungsmodell
beruht und vollkommen offengelegt ist. Jeder kann also, nach den vorgegebenen
Regeln, einen Python-Interpreter entwickeln und anbieten. Es gibt allerdings eine
Standardversion, die man über die Homepage von Python (www.python.org) her-
unterladen kann. Hier gibt es auch verschiedene Versionen für Windows, MacOS
und Linux.

Im Gegensatz zu vielen anderen Programmiersprachen kann man in Python nicht
nur ganze Programme starten, sondern man kann auch interaktiv arbeiten und
dem Computer einem Befehl nach dem anderen geben. Um dies zu tun, müssen wir
auf unserem Computer ein Kommandozeilenfenster öffnen und python eingeben.
Ist Python korrekt installiert, wird durch diesen Aufruf der Python-Interpreter im
interaktiven Modus gestartet. Das Fenster sollte dann in etwa so aussehen:

Python 3.5.1 (v3.5.1:37a07cee5969, Dec 6 2015, 01:54:25)
[MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more
information.
>>>

Die Eingabeaufforderung >>> ist die Art und Weise, wie der Python-Interpreter
fragt: „Was soll ich als Nächstes tun?“ Python ist bereit, ein Gespräch mit uns zu
führen. Alles, was wir wissen müssen, ist, wie man die Sprache Python spricht.

Nehmen wir an, wir kennen nicht einmal die einfachsten Wörter oder Sätze in
Python. Wir könnten den Standardsatz verwenden, den Astronauten verwenden,
wenn sie auf einem fernen Planeten landen und versuchen, mit den Bewohnern des
Planeten zu sprechen:

>>> I come in peace, please take me to your leader
File "<stdin>", line 1

https://www.python.org/downloads

1.5. Konversation mit Python 7

I come in peace, please take me to your leader
ˆ

SyntaxError: invalid syntax
>>>

Das läuft nicht so gut. Wenn uns nicht schnell etwas einfällt, werden die Bewohner
des Planeten uns wahrscheinlich nicht sonderlich ernst nehmen. Probieren wir doch
lieber mal einen Python-Satz, von dem wir bereits wissen, dass er korrekt ist:

>>> print('Hello world!')
Hello world!

Das sieht schon viel besser aus, also versuchen wir, noch etwas mehr zu kommuni-
zieren:

>>> print('You must be the legendary god that comes from the sky')
You must be the legendary god that comes from the sky
>>> print('We have been waiting for you for a long time')
We have been waiting for you for a long time
>>> print('Our legend says you will be very tasty with mustard')
Our legend says you will be very tasty with mustard
>>> print 'We will have a feast tonight unless you say
File "<stdin>", line 1

print 'We will have a feast tonight unless you say
ˆ

SyntaxError: Missing parentheses in call to 'print'
>>>

Das Gespräch lief eine Zeit lang sehr gut, und dann haben wir den kleinsten Fehler
bei der Verwendung der Sprache Python gemacht, und Python hält uns diesen
Fehler gnadenlos vor. An diesem Punkt kann man bereits erkennen, dass Python
erstaunlich komplex und mächtig ist und dabei sehr wählerisch ist, was die Syntax
angeht, die wir zur Programmierung verwenden. Gleichwohl ist Python aber nicht
intelligent. Auch wenn es für uns klar ist, was die Anweisung tun soll, wird Python
nicht arbeiten können, solange es einen Fehler bei der Syntax gibt.

Bevor wir nun unser erstes Gespräch mit dem Python-Interpreter beenden, sollten
wir noch wissen, wie man sich korrekt von Python „verabschiedet“:

>>> good-bye
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'good' is not defined
>>> if you don't mind, I need to leave
File "<stdin>", line 1

if you don't mind, I need to leave
ˆ

SyntaxError: invalid syntax
>>> quit()

8 Kapitel 1. Warum sollte man Programmieren lernen?

Man kann feststellen, dass der Fehler bei den ersten beiden Fehlversuchen anders
ist. Der zweite Fehler ist anders, weil if ein reserviertes Wort ist und Python das
reservierte Wort sah und dachte, wir wollten etwas sagen, aber die Syntax des
Satzes war falsch.

Der richtige Weg, sich von Python zu verabschieden, ist die Eingabe von quit() am
interaktiven >>>-Prompt. Wir hätten wahrscheinlich eine ganze Weile gebraucht,
um das zu erraten, also wird es sich als hilfreich erweisen, ein Buch zur Hand zu
haben.

1.6 Interpreter und Compiler

Python ist eine Hochsprache, die für Menschen relativ einfach zu lesen und zu
schreiben und für Computer zu lesen und zu verarbeiten ist. Andere Hochsprachen
sind Java, C++, PHP, Ruby, Basic, Perl, JavaScript und viele mehr. Die eigentliche
Hardware in der Central Processing Unit (CPU) versteht keine dieser Hochsprachen.

Die CPU versteht eine Sprache, die wir Maschinensprache nennen. Maschinenspra-
che ist sehr einfach und ehrlich gesagt sehr mühsam zu schreiben, weil sie nur aus
Nullen und Einsen besteht:

001010001110100100101010000001111
11100110000011101010010101101101
...

Die Maschinensprache scheint auf den ersten Blick recht einfach zu sein, da es
nur Nullen und Einsen gibt, aber ihre Syntax ist noch komplexer und weitaus
komplizierter als Python. Daher schreiben nur sehr wenige Programmierer jemals
Maschinensprache. Stattdessen entwickeln wir verschiedene Übersetzer, die es Pro-
grammierern ermöglichen, Hochsprachen wie Python oder JavaScript zu schreiben,
und diese Übersetzer wandeln die Programme in Maschinensprache um, die dann
von der CPU ausgeführt wird.

Da die Maschinensprache an die Computerhardware gebunden ist, ist die Maschi-
nensprache nicht portabel über verschiedene Arten von Hardware. In Hochsprachen
geschriebene Programme können zwischen verschiedenen Computern übertragen
werden, indem ein anderer Interpreter auf dem neuen Computer verwendet wird
oder der Code neu kompiliert wird, um eine Maschinensprachversion des Programms
für die neue Maschine zu erhalten.

Wie schon im oberen Teil dieses Kapitels angedeutet, lassen sich Programmier-
sprachenübersetzer in zwei allgemeine Kategorien einteilen: (1) Interpreter und (2)
Compiler.

Ein Interpreter liest den Quellcode des Programms, wie er vom Programmierer
geschrieben wurde, analysiert den Quellcode und interpretiert die Befehle im
laufenden Betrieb. Python ist ein Interpreter, und wenn wir Python interaktiv
ausführen, können wir eine Zeile (einen Satz) in Python eingeben und Python
verarbeitet sie sofort und ist bereit für die Eingabe einer weiteren Python-Zeile.

Bei den Anweisungen in Programmiersprachen kommt es häufig vor, dass wir uns
einen Wert für eine spätere Aufgabe merken wollen. In Python können wir das ganz

1.6. Interpreter und Compiler 9

einfach erledigen, indem wir uns einen Namen ausdenken und den Wert mittels
eines Gleichheitszeichens dem Namen zuweisen.

Wir kennen das Prinzip aus der Mathematik, wo man spätestens in der 5. oder
6. Schulklasse das Rechnen mit Variablen erlernt. Höhere Mathematik ohne die
Verwendung von Variablen ist praktisch nicht möglich, denn sie sind das zentrale
Mittel, um Regeln oder Aussagen zu verallgemeinern. Auch in der Programmierung
nennt man einen Platzhalter für Werte i. d. R. Variable. Dass Python eigentlich
keine Variablen verwendet, sondern ausschließlich Namen ist ein technisches Detail.
Weil der Begriff der Variablen aber so verbreitet ist – in den allermeisten Python
Büchern wird von Variablen gesprochen – verwenden wir ihn auch in diesem Buch.

>>> x = 6
>>> print(x)
6
>>> y = x * 7
>>> print(y)
42
>>>

In diesem Beispiel bitten wir Python, sich den Wert 6 zu merken und dafür den
Namen x zu verwenden. Wir überprüfen, ob Python sich den Wert tatsächlich
gemerkt hat, indem wir print verwenden. Dann bitten wir Python, den Wert x
abzurufen, mit sieben zu multiplizieren und den neu berechneten Wert unter dem
Namen y zu speichern. Dann möchten wir uns den Wert anzeigen lassen, der sich
gerade hinter dem Namen y befindet.

Auch wenn wir diese Befehle Zeile für Zeile in Python eingeben, behandelt Python
sie als eine geordnete Folge von Anweisungen, wobei spätere Anweisungen Daten
abrufen können, die in früheren Anweisungen erstellt wurden. Wir schreiben unseren
ersten einfachen Absatz mit vier Sätzen in einer logischen und sinnvollen Reihenfolge.

Es liegt in der Natur eines Interpreters, dass er in der Lage ist ein interaktives
Gespräch zu führen, wie oben gezeigt. Ein Compiler muss das gesamte Programm
in einer oder mehreren Dateien erhalten. Dann führt er einen Prozess aus, um
den High-Level-Quellcode in Maschinensprache zu übersetzen. Danach stellt der
Compiler die resultierende Maschinensprache in einer Datei zur späteren Ausführung
zur Verfügung.

Wenn wir ein Windows-System haben, haben diese ausführbaren Maschinensprache-
Programme die Endungen .exe oder .dll, welche für „ausführbar“ bzw. „dynamisch
gelinkte Bibliothek“ stehen. Unter Linux und Macintosh gibt es kein Suffix, das
eine Datei eindeutig als ausführbar kennzeichnet.

Wenn wir eine ausführbare Datei in einem Texteditor öffnen würden, sähe sie völlig
verrückt aus und wäre unlesbar:

^?ELF^A^A^A^@^@^@^@^@^@^@^@^@^B^@^C^@^A^@^@^@\xa0\x82
^D^H4^@^@^@\x90^]^@^@^@^@^@^@4^@ ^@^G^@(^@$^@!^@^F^@
^@^@4^@^@^@4\x80^D^H4\x80^D^H\xe0^@^@^@\xe0^@^@^@^E
^@^@^@^D^@^@^@^C^@^@^@^T^A^@^@^T\x81^D^H^T\x81^D^H^S
^@^@^@^S^@^@^@^D^@^@^@^A^@^@^@^A\^D^HQVhT\x83^D^H\xe8
....

10 Kapitel 1. Warum sollte man Programmieren lernen?

Es ist nicht einfach, Maschinensprache zu lesen oder zu schreiben, daher ist es gut,
dass wir Interpreter und Compiler haben, die es uns ermöglichen, in Hochsprachen
wie Python oder C zu schreiben.

An diesem Punkt in unserer Diskussion über Compiler und Interpreter, sollte man
sich ein wenig über den Python-Interpreter selbst Gedanken machen. In welcher
Sprache ist er geschrieben? Ist er in einer kompilierten Sprache geschrieben? Wenn
wir python eintippen, was genau passiert dann?

Der (Standard-) Python-Interpreter ist in einer Hochsprache namens „C“ geschrie-
ben. Wir können uns den eigentlichen Quellcode des Python-Interpreters ansehen,
indem wir www.python.org aufrufen und uns zum Quellcode durcharbeiten. Python
ist also selbst ein Programm und wird in Maschinencode kompiliert. Als wir Python
auf unserem Computer installiert haben, haben wir eine Maschinencode-Kopie des
übersetzten Python-Programms auf unser System geladen. Unter Windows befindet
sich der ausführbare Maschinencode für Python wahrscheinlich in einer Datei mit
einem Namen wie:

C:\Python35\python.exe

Das ist mehr, als man wissen muss, um ein Python-Programmierer zu werden,
aber manchmal lohnt es sich, diese kleinen, nervigen Fragen gleich zu Beginn zu
beantworten.

1.7 Ein Programm schreiben

Das Eingeben von Befehlen in den Python-Interpreter ist ein guter Weg, um mit
den Funktionen von Python zu experimentieren, jedoch ist es nicht empfehlenswert
für die Lösung komplexer Probleme.

Wenn wir ein Programm schreiben wollen, verwenden wir einen Texteditor, um
die Python-Anweisungen in eine Datei zu schreiben, die Skript genannt wird.
Konventionell haben Python-Skripte die Endung .py.

Um das Skript auszuführen, müssen wir dem Python-Interpreter den Namen der
Datei mitteilen. In einem Befehlsfenster würden wir python hallo.py wie folgt
eingeben:

$ cat hello.py
print('Hello world!')
$ python hello.py
Hello world!

Das \$ ist die Eingabeaufforderung des Betriebssystems, und das cat hello.py
zeigt zeigt uns, dass die Datei hello.py ein einzeiliges Python-Programm enthält,
das eine Zeichenkette druckt.

Wir rufen den Python-Interpreter auf und sagen ihm, dass er den Quellcode aus
der Datei hello.py lesen soll, anstatt uns interaktiv nach Python-Codezeilen zu
fragen.

http://www.python.org

1.8. Was ist ein Programm? 11

Man kann feststellen, dass es am Ende des Python-Programms keine Notwendigkeit
für quit() gibt. Wenn Python den Quellcode aus einer Datei liest, weiß es, dass es
aufhören muss, wenn das Ende der Datei erreicht wurde.

1.8 Was ist ein Programm?

Die Definition eines Programms ist im Grunde genommen eine Abfolge von Python-
Anweisungen, die so gestaltet sind, dass sie etwas tun. Selbst unser einfaches Skript
hello.py ist ein Programm. Es ist ein einzeiliges Programm, das nicht besonders
nützlich ist, aber nach der strengsten Definition ist es ein Python-Programm.

Es ist vielleicht am einfachsten zu verstehen, was ein Programm ist, wenn man an
ein Problem denkt, für dessen Lösung ein Programm erstellt werden könnte, und
dann ein Programm betrachtet, dass dieses Problem lösen würde.

Nehmen wir an, wir forschen im Bereich Social-Computing über Facebook-Posts
und interessieren uns für das am häufigsten verwendete Wort in einer Reihe von
Beiträgen. Wir könnten den Datenstrom der Facebook-Posts ausgeben und den Text
nach dem häufigsten Wort durchsuchen, aber das würde sehr viel Zeit in Anspruch
nehmen und wäre sehr fehleranfällig. Es wäre klug, ein Python-Programm zu
schreiben, dass diese Aufgabe schnell und genau erledigt, damit wir das Wochenende
mit etwas schönerem verbringen können.

Betrachten wir zum Beispiel den folgenden Text über einen Clown und ein Auto.
Sehen wir uns den Text an und finden heraus, welches Wort am häufigsten vorkommt
und wie oft es vorkommt.

the clown ran after the car and the car ran into the tent
and the tent fell down on the clown and the car

Dann stellen wir uns vor, dass wir diese Aufgabe erledigen, indem wir uns Millionen
von Zeilen von Text anschauen. Offen gesagt wäre es schneller, Python zu lernen
und ein Python-Programm zu schreiben, um die Wörter zu zählen, als sie manuell
durchzusehen.

Die gute Nachricht ist, dass bereits ein einfaches Programm entwickelt wurde, um
das häufigste Wort in einer Textdatei zu finden. Es wurde schon geschrieben und
getestet, damit wir etwas Zeit sparen können.

name = input('Welche Datei?:')
handle = open(name, 'r')
counts = dict()

for line in handle:
words = line.split()
for word in words:

counts[word] = counts.get(word, 0) + 1

bigcount = None
bigword = None

12 Kapitel 1. Warum sollte man Programmieren lernen?

for word, count in list(counts.items()):
if bigcount is None or count > bigcount:

bigword = word
bigcount = count

print(f'Das Wort "{bigword}" kommt {bigcount}-mal vor')

Code: https://tiny.one/py4de/code3/words.py

Wir müssen nicht einmal Python beherrschen können, um dieses Programm zu
nutzen. Als Endanwender benutzen wir einfach das Programm und freuen uns
darüber, wie viel manuelle Arbeit wir gespart haben.

Dies ist ein gutes Beispiel dafür, wie Python und die Python-Sprache als Vermittler
zwischen uns (dem Endbenutzer) und den Programmierern fungieren. Python
bietet uns die Möglichkeit, nützliche Befehlssequenzen bzw. Programme in einer
gemeinsamen Sprache auszutauschen, die von jedem verwendet werden kann, der
Python auf seinem Computer installiert. Keiner von uns spricht also mit Python,
sondern wir kommunizieren miteinander durch Python.

1.9 Die Bausteine von Programmen

In den nächsten Kapiteln, werden wir mehr über das Vokabular, die Satzstruktur,
Absatzstruktur und Erzählstruktur von Python lernen. Uns werden die mächtigen
Fähigkeiten von Python näher gebracht werden und wir werden uns aneignen, wie
man diese Fähigkeiten zusammensetzen kann, um nützliche Programme zu erstellen.

Es gibt einige konzeptionelle Muster auf niedriger Ebene, die wir zum Erstellen von
Programmen benutzen. Diese Konstrukte sind nicht nur für Python-Programme
geeignet, sie sind Teil jeder Programmiersprache, von der Maschinensprache bis hin
zu den Hochsprachen. Das obige Wortzählprogramm verwendet alle bis auf eines
dieser Muster.

Eingabe Abrufen von Daten aus der „Außenwelt“. Dies kann das Lesen von Daten
aus einer Datei sein oder sogar aus Sensoren wie einem Mikrofon oder GPS.
In unseren ersten Programmen wird die Eingabe durch den Benutzer erfolgen,
der Daten über die Tastatur eingibt.

Ausgabe Anzeigen der Ergebnisse des Programms auf einem Bildschirm oder
Speichern in einer Datei.

Sequentielle Ausführung Die Ausführung von Anweisungen nacheinander in
der Reihenfolge wie sie im Skript vorkommen.

Bedingte Ausführung Prüfung auf bestimmte Bedingungen und anschließende
Ausführung oder Überspringen einer Folge von Anweisungen.

Wiederholte Ausführung Wiederholtes Ausführen einer Reihe von Anweisun-
gen, normalerweise mit einer gewissen Variation.

Wiederverwenden Reihe von Anweisungen einmal schreiben und ihnen einen
Namen geben. Danach verwenden wir dann diese Anweisungen je nach Bedarf
in unserem Programm wieder.

1.10. Was kann schon schief gehen? 13

Dass alle Programme fast ausschließlich aus diesen Mustern bestehen, klingt fast
zu einfach, um wahr zu sein. Und natürlich ist es nicht ganz so einfach, ein neues
Programm zu schreiben. Um einen Vergleich anzustellen, könnte man sagen, dass
Gehen einfach „einen Fuß vor den anderen setzen“ bedeutet; und trotzdem braucht
ein Kleinkind sehr viel Übung um richtig Laufen zu können. Beim Programmieren
ist das Erlernen der Grundmuster recht einfach. Die „Kunst“ ein Programm zu
schreiben besteht aber darin, diese Grundelemente immer wieder neu zusammenzu-
setzen und zu verweben, um eine nützliche Lösung für ein gegebenes Problem zu
schaffen.

1.10 Was kann schon schief gehen?

Wie wir in unseren ersten „Gesprächen“ mit Python gesehen haben, müssen wir
sehr genau sein, wenn wir Python-Code schreiben. Die kleinste Abweichung oder
der kleinste Fehler führen dazu, dass Python unser Programm nicht ausführen
kann.

C:\Python> python.exe
Python 3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit
(AMD64)]
Type "help", "copyright", "credits" or "license" for more
information.
>>> primt 'Hello World'

File "<stdin>", line 1
primt 'Hello World'

ˆ
SyntaxError: invalid syntax
>>> primt('Hello World')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'primt' is not defined
>>> Come on, Python

File "<stdin>", line 1
Come on, Python

ˆ
SyntaxError: invalid syntax
>>>

Es ist aussichtslos, mit Python zu verhandeln, doch bitte den Code zu verstehen.
Der Interpreter kann nur gültige Python Anweisungen ausführen. Beim kleinsten
Fehler wird er abbrechen und ausgeben, an welcher Stelle er beim „Verstehen“ nicht
weiter gekommen ist. Wenn Python SyntaxError: invalid syntax sagt, bedeutet
das: „Ich verstehe einfach nicht was du gemeint hast, aber bitte rede weiter mit
mir (>>>).“ Ein NameError bedeutet, „du scheinst etwas verwenden zu möchten,
was ich nicht kenne.“

Wenn die Programme immer anspruchsvoller werden, wird man auf drei allgemeine
Arten von Fehlern stoßen:

14 Kapitel 1. Warum sollte man Programmieren lernen?

Syntaxfehler Dies sind die ersten Fehler, die man machen wird, und die am
einfachsten zu beheben sind. Ein Syntaxfehler bedeutet, dass wir die „Gram-
matikregeln“ von Python verletzt haben. Python tut sein Bestes, um genau
auf die Zeile und das Zeichen zu zeigen wo es bemerkt hat, dass es verwirrt
war. Das einzig tückische an Syntaxfehlern ist, dass der Fehler, der behoben
werden muss, manchmal eigentlich früher im Programm liegt als an der Stelle,
an der Python verwirrt war. Also die Zeile und das Zeichen die Python bei
einem Syntaxfehler anzeigt, sind zunächst nur ein Ausgangspunkt für unsere
Untersuchungen.

Semantische Fehler Ein semantischer Fehler liegt vor, wenn die Syntax, also
die Grammatik des Quellcodes eigentlich korrekt ist, das Programm so aber
nicht funktioniert. Der NameError oben ist ein Beispiel dafür: Es könnte eine
Funktion namens primt existieren und wenn es sie gäbe, wäre das Programm
vermutlich korrekt. Es gibt diese Funktion aber im vorliegenden Programm
nicht und daher tritt hier bei der Ausführung der Anweisung ein Fehler auf.

Logikfehler Logikfehler sind besonders tückisch, denn sie können von Python so
gut wie gar nicht erkannt werden. Es handelt sich um Fehler in der Logik des
Programms. Das Programm ist vollkommen korrekt, aber es tut nicht, was
wir beabsichtigt haben. Ein einfaches Beispiel wäre, wenn wir einer Person
den Weg zu einem Restaurant erklären und bei der Wegbeschreibung einmal
Links und Rechts verwechseln. Die Person kann daraufhin die Beschreibung
nachvollziehen, biegt aber an einer Kreuzung in die völlig falsche Richtung
ab und kommt höchstwahrscheinlich niemals an dem Restaurant an.

Bei allen drei Arten von Fehlern versucht Python lediglich genau das zu tun,
was wir verlangt haben. Dass Python die Ausführung abbricht, sobald es einen
Fehler erkennt, und nicht einfach versucht zu verstehen, was wir mit der fehlerhaften
Anweisung gemeint haben, wird sich noch als sehr nützlich herausstellen. Sie werden
mit jedem Fehler lernen, wie man korrekten Quellcode schreibt. Gleichzeitig können
Sie immer davon ausgehen, dass Python genau das tut, was Sie programmiert
haben. Es gibt keinen Interpretationsspielraum beim Abarbeiten der Anweisungen;
wenn das Programm nicht funktioniert liegt das immer am Programm selbst und
nicht daran, dass Python etwas falsch verstanden hat.

1.11 Debugging

Wenn Python einen Fehler ausspuckt oder sogar ein Ergebnis liefert, dass sich von
dem unterscheidet, was wir beabsichtigt hatten, dann beginnt die Suche nach der
Fehlerursache. Beim Debugging geht es darum, die Ursache des Fehlers in unserem
Code zu finden. Bei der Fehlersuche in einem Programm, insbesondere wenn wir
an einem schwerwiegenden Fehler arbeiten, gibt es vier Dinge, die wir versuchen
sollten:

Lesen Nochmal den Code durch erneutes Lesen prüfen. Haben wir alles so gesagt,
wie wir es sagen wollten?

Ausführen Man sollte einfach nochmal experimentieren, indem man nachverfolg-
bare Änderungen vornimmt und verschiedene Versionen ausführt. Häufig wir
das Problem offensichtlich, wenn wir es an der richtigen Stelle im Programm

1.11. Debugging 15

anzeigen lassen. Manchmal muss man etwas Zeit aufwenden, um ein gutes
Gerüst zu bauen.

Nachdenken Man sollte sich Zeit zum Nachdenken nehmen. Was für ein Fehler
ist es? Handelt es sich um einen Syntaxfehler, einen Laufzeitfehler oder einen
semantischen Fehler? Welche Informationen können wir aus den Fehlermel-
dungen bzw. der Ausgabe des Programms entnehmen? Welche Art von Fehler
könnte die Ursache sein für das Problem, das man sehen kann? Was haben
wir zuletzt geändert, bevor das Problem auftrat?

Rückzug Irgendwann ist es am besten sich zurückzuziehen und die letzten Än-
derungen rückgängig zu machen, bis man wieder ein Programm hat, das
funktioniert und das man verstehen kann. Dann kann man mit dem Neuauf-
bau beginnen.

Programmieranfänger bleiben manchmal bei einer dieser Aktivitäten stecken und
vergessen die anderen. Um einen Fehler zu finden, muss man lesen, experimentieren,
grübeln und sich manchmal zurückziehen. Wenn man bei einer dieser Aktivitäten
nicht weiter kommt, versucht man die anderen. Jede Aktivität hat ihren eigenen
Fehlermodus.

Das Lesen des Codes kann zum Beispiel helfen, wenn das Problem ein Tippfehler
ist, aber nicht, wenn es sich um ein konzeptionelles Missverständnis handelt. Wenn
man nicht versteht, was das Programm tut, kann man es 100 Mal lesen, ohne den
Fehler zu sehen.

Experimentieren kann hilfreich sein, vor allem, wenn man kleine, einfache Tests
durchführt. Wenn man jedoch Experimente durchführt, ohne dabei nachzudenken
oder den Code genau zu lesen, könnte man in ein Muster verfallen, dass man
als „Zufallsprogrammierung“ bezeichnen könnte. Dabei handelt es sich um einen
Prozess, bei dem zufällige Änderungen vorgenommen werden, bis das Programm
(vielleicht) irgendwann das Richtige tut. Es ist unnötig zu erwähnen, dass diese Art
der Programmierung sehr lange dauern kann.

Man muss sich Zeit zum Nachdenken nehmen. Fehlersuche ist wie eine experimentelle
Wissenschaft. Man sollte mindestens eine Hypothese darüber haben, was das
Problem ist. Wenn es zwei oder mehr Möglichkeiten gibt, versucht man, einen Test
zu finden, der eine von ihnen ausschließt.

Eine Pause hilft beim Nachdenken. Das gilt auch für das Reden. Wenn man das
Problem einer anderen Person (oder sogar sich selbst) erklärt, findet man manchmal
die Antwort, bevor man die Frage zu Ende gestellt hat.

Aber selbst die besten Debugging-Techniken versagen, wenn es zu viele Fehler gibt,
oder wenn der Code, den wir zu beheben versuchen, zu groß und kompliziert ist.
Manchmal ist es am besten, sich zurückzuziehen und das Programm zu vereinfachen,
bis man zu einem Ergebnis gelangt, welches funktioniert und man versteht.

Programmieranfänger zögern oft, sich zurückzuziehen, weil sie es nicht ertragen
können eine Codezeile zu löschen (selbst wenn sie falsch ist). Wenn man sich dadurch
besser fühlt, sollte man einfach das Programm in eine andere Datei sichern, bevor
man es zerlegt. Dann kann man die Teile nach und nach wieder Stück für Stück
einfügen.

Dass Sie größere Teile Ihres Programms löschen müssen, können Sie meist auch ganz
gut verhindern, indem Sie Ihren Lösungsweg für die gesamte Aufgabe in kleinere

16 Kapitel 1. Warum sollte man Programmieren lernen?

Teilaufgaben einteilen. Überlegen Sie sich bevor Sie mit dem Schreiben des Codes
anfangen, welche logischen Teilfunktionen in Ihrer Aufgabe stecken. Und dann
beginnen Sie, die erste Teilaufgabe zu lösen und – ganz wichtig – zu testen. Wenn
Sie sich einigermaßen sicher sind, dass die erste Teilaufgabe gelöst ist, nehmen Sie
sich die zweite vor, usw. Diese Vorgehensweise hilft sehr, mögliche Fehlerursachen
einzukreisen. Wenn Sie stattdessen zu viel „auf einen Schlag“ programmieren,
können mehr Fehler auftreten und die Fehlersuche sowie die Beseitigung dauern
viel länger.

1.12 Der Lernprozess

Im weiteren Verlauf des Buches sollte man keine Angst haben, wenn die Konzepte
beim ersten Mal nicht gut zusammenzupassen scheinen. Als wir sprechen gelernt
haben, war es in den ersten Jahren kein Problem, dass man nur niedliche Gluckge-
räusche gemacht hat. Es war in Ordnung, wenn es sechs Monate dauerte, um von
einfachen Vokabeln zu einfachen Sätzen zu kommen, und 5–6 Jahre brauchte, um
von Sätzen zu Absätzen zu kommen, und noch ein paar Jahre, um in der Lage zu
sein, selbständig eine interessante, vollständige Kurzgeschichte zu schreiben.

Wir wollen, dass wir Python viel schneller lernen, deshalb lernen wir in den nächsten
Kapiteln alles gleichzeitig. Aber es ist wie beim Erlernen einer neuen Sprache, die
man sich erst aneignen und verstehen muss, bevor sie sich natürlich anfühlt. Das
führt zu einiger Verwirrung, wenn wir Themen lernen und wieder aufgreifen, um
das große Ganze zu sehen, während wir die winzigen Fragmente definieren, die
dieses große Bild ausmachen. Das Buch ist zwar linear geschrieben und wenn man
einen Kurs belegt, wird er auch linear verlaufen. Man sollte jedoch nicht zögern,
sich dem Stoff sehr unlinear zu nähern. Egal ob vorwärts und rückwärts oder
quer gelesen. Durch Überfliegen von fortgeschrittenem Material, ohne die Details
vollständig zu verstehen, erhält man ein besseres Verständnis für das „Warum?“ der
Programmierung. Durch Wiederholung früherer Inhalte und sogar Wiederholung
früherer Übungen werden wir feststellen, dass wir tatsächlich viel gelernt haben,
auch wenn das Material, welches wir gerade anstarren, ein wenig undurchdringlich
erscheint.

Wenn wir unsere erste Programmiersprache lernen, gibt es normalerweise ein paar
wunderbare „Aha!“-Momente. Dinge, für die Sie vorher Stunden oder Tage benötigt
hätten, können automatisiert in Bruchteilen von Sekunden ausgeführt werden.
Dazu gehört aber auch, dass man manchmal beim Lernen der Programmiersprache
Aufgaben zu lösen hat, die nicht wirklich ein Problem für einen selbst darstellen.
Nehmen Sie solche Aufgaben als „Fingerübungen“ hin, die Ihnen helfen, Routine
beim Programmieren zu entwickeln.

1.13 Glossar

Bug Ein Fehler im Programmcode.
Central Processing Unit Das Herz eines jeden Computers. Auf ihm läuft die

Software, die wir schreiben; es wird auch CPU oder Prozessor genannt.

1.14. Übungen 17

Kompilieren Übersetzung eines in einer Hochsprache geschriebenen Programms
in eine niedrigere Sprache, um es später ausführen zu können.

Hochsprache Eine Programmiersprache wie Python, die so konzipiert wurde, dass
sie für Menschen leicht zu lesen und zu schreiben ist.

Interaktiver Modus Eine Methode zur Verwendung des Python-Interpreters
durch Eingabe von Befehlen und Ausdrücken in der Eingabeaufforderung.

Interpretieren Ausführen eines Programms in einer Hochsprache durch zeilen-
weises Übersetzen.

Low-Level-Sprache Eine Programmiersprache, die so konzipiert ist, dass sie von
einem Computer leicht ausgeführt werden kann. Auch Maschinencode oder
Assemblersprache genannt.

Maschinencode Die niedrigste Sprache für Software, also die Sprache, die direkt
von der zentralen Recheneinheit (CPU) ausgeführt wird.

Hauptspeicher Speichert Programme und Daten. Der Hauptspeicher verliert
seine Informationen, wenn der Strom ausgeschaltet wird.

Parsen Ein Programm untersuchen und die syntaktische Struktur analysieren.
Portabilität Eine Eigenschaft eines Programms, das auf mehr als einer Art von

Endgerät laufen kann.
Print-Funktion Eine Anweisung, die den Python-Interpreter veranlasst, einen

Wert auf dem Bildschirm anzuzeigen.
Problemlösungsprozess Der Prozess ein Problem zu formulieren, eine Lösung

zu finden und die Lösung umzusetzen.
Programm Ein Satz von Anweisungen, der eine Berechnung vorgibt.
Eingabeaufforderung Wenn ein Programm eine Meldung anzeigt und eine Pause

macht, damit der Benutzer eine Eingabe im Programm machen kann.
Sekundärspeicher Speichert Programme und Daten und behält die Informa-

tionen auch dann bei, wenn der Strom abgeschaltet wird. Im Allgemeinen
langsamer als der Hauptspeicher. Beispiele für Sekundärspeicher sind z. B.
Festplattenlaufwerke und Flash-Speicher in USB-Sticks.

Semantik Die Bedeutung eines Programms.
Semantischer Fehler Ein Fehler in einem Programm, der dazu führt, dass es

etwas anderes tut, als der Programmierer beabsichtigt hat.
Quellcode Der Programmcode eines in einer Hochsprache geschriebenen Pro-

gramms.

1.14 Übungen

Übung 1: Welche Funktion hat der Sekundärspeicher in einem Computer?

a) Alle Berechnungen und die Logik des Programms ausführen
b) Abruf von Webseiten über das Internet
c) Informationen langfristig zu speichern, auch über einen Stromausfall hinaus
d) Eingaben des Benutzers entgegennehmen

Übung 2: Was ist ein Programm?

Übung 3: Was ist der Unterschied zwischen einem Compiler und einem Interpreter?

Übung 4: Was enthält Maschinencode?

18 Kapitel 1. Warum sollte man Programmieren lernen?

a) Der Python-Interpreter
b) Eine Python-Quelldatei
c) Ein Textdokument

Übung 5: Was ist falsch an folgendem Code?

>>> primt 'Hello world!'
File "<stdin>", line 1

primt 'Hello world!'
ˆ

SyntaxError: invalid syntax
>>>

Übung 6: Wo im Computer wird eine Variable wie x gespeichert, nachdem die
folgende Python-Zeile beendet ist?

x = 123

a) CPU
b) Hauptspeicher
c) Sekundärspeicher
d) Eingabegeräte
e) Ausgabegeräte

Übung 7: Was wird das folgende Programm ausgeben:

x = 43
x = x + 1
print(x)

a) 43
b) 44
c) x + 1
d) Fehler, denn x = x + 1 ist mathematisch nicht möglich

Übung 8: Erläutern Sie die folgenden Punkte anhand eines Beispiels für eine
menschliche Fähigkeit: (1) CPU, (2) Hauptspeicher, (3) Sekundärspeicher, (4) Ein-
gabegerät und (5) Ausgabegerät. Zum Beispiel: „Was ist das menschliche Äquivalent
zu einer CPU?“

Übung 9: Wie behebt man einen Syntaxfehler?

Kapitel 2

Bezeichner, Ausdrücke und
Anweisungen

In diesem Kapitel schauen wir uns an, wie man Werte im Programm verwenden
kann. Wir werden sehen, dass alles, was wir in Python zu einem Wert auswerten
können, ein Ausdruck ist. Dazu zählen fest im Programm angegebene Werte, die
sogenannten Konstanten, aber auch komplexere Ausdrücke, bei denen mehrere Teile
durch Operatoren verknüpft sind. Wir werden sehen, dass wir mit einer Zuweisung
einzelnen Werten einen Namen geben können und diese Werte im Programm dann
über Ihren Bezeichner verwenden können.

2.1 Werte und Datentypen

Ein Wert ist eines der grundlegenden Elemente, mit denen ein Programm arbeitet,
wie ein Buchstabe oder eine Zahl. Die Werte, die wir bis jetzt gesehen haben, sind
1, 2 und 'Hallo Welt!'.

Diese Werte gehören zu unterschiedlichen Datentypen: 2 ist eine Ganzzahl, und
'Hallo Welt!' ist eine Zeichenkette (englisch String), so genannt, weil sie ei-
ne „Kette“ von Buchstaben enthält. Wir (und der Python-Interpreter) können
Zeichenketten erkennen, weil sie in Anführungszeichen eingeschlossen sind.

Die Anweisung print funktioniert auch für Ganzzahlen. Wir verwenden den Befehl
python, um den Interpreter zu starten.

python
>>> print(4)
4

Wenn man nicht sicher sind, welchen Typ ein Wert hat, kann der Interpreter es
einem sagen.

20 Kapitel 2. Bezeichner, Ausdrücke und Anweisungen

>>> type('Hello, World!')
<class 'str'>
>>> type(17)
<class 'int'>

Es überrascht nicht, dass Zeichenketten zum Typ str und Ganzzahlen zum Typ
int gehören. Weniger offensichtlich gehören Zahlen mit einem Dezimalpunkt zu
einem Typ namens float, da diese Zahlen in einem Format namens Fließkomma
(oder Gleitkommazahl, englisch floating point number) dargestellt werden.
Beim Fließkomma müssen Sie beachten, einen Dezimalpunkt zu verwenden. Python
orientiert sich hier wie die meisten Programmiersprachen an dem Dezimaltrennzei-
chen, das in den meisten englischsprachigen Ländern verwendet wird; und das ist
eben der Punkt und nicht das Komma, so wie wir es in Deutschland verwenden.

>>> type(3.2)
<class 'float'>

Was ist mit Werten wie 17 und 3.2? Sie sehen aus wie Zahlen, stehen aber in
Anführungszeichen wie Zeichenketten.

>>> type('17')
<class 'str'>
>>> type('3.2')
<class 'str'>

Es sind Zeichenketten.
Wenn man eine große Ganzzahl eingibt, könnte man versucht sein, Tausender-
Trennzeichen zu verwenden. In Ländern, die den Dezimalpunkt verwenden, werden
zum Abgrenzen der Tausenderstellen Kommata benutzt. Wenn wir dies in Python
tun, also etwa eine Million als 1,000,000 schreiben ist das keine gültige Ganzzahl
mehr. Allerdings ist 1,000,000 ein gültiger Python-Ausdruck, wie wir in folgendem
Beispiel sehen:

>>> print(1,000,000)
1 0 0

Nun, das ist überhaupt nicht das, was wir erwartet haben! Python interpretiert
1,000,000 als eine durch Kommata getrennte Folge von ganzen Zahlen, die es mit
Leerzeichen dazwischen ausgibt.
Dies ist ein Beispiel für einen semantischen Fehler : Der Code wird ohne eine
Fehlermeldung zu erzeugen ausgeführt, aber er tut nicht das „Richtige“. Wenn wir
die 1,000,000 als eine Zahl verwenden würden, würde der Interpreter auch einen
Fehler erzeugen, da wir hier keine einzelne, sondern eine Folge von Zahlen haben.
Leider, oder glücklicherweise – das liegt ganz im Auge des Betrachters – ist Python
sehr „großzügig“ bei der Interpretation Ihres Codes. Wenn Sie 1,000,000 hinschrei-
ben, wird Python annehmen, dass Sie genau eine solche Folge meinen. Wenn Sie
a = 1,000,000 hinschreiben, wird Python dieser Folge den Namen a geben. Dass
das möglicherweise nicht das ist, was Sie meinten, kann Python nicht ahnen. Ein
weiteres Beispiel dafür, dass Sie beim Programmieren genau sein müssen.

2.2. Werte benennen 21

2.2 Werte benennen

Die zentrale Eigenschaft einer Programmiersprache ist die Fähigkeit, Daten zu
manipulieren. In Python sind alle Daten als sogenannte Objekte abgespeichert.
Übrigens sind auch die einzelnen Funktionen Objekte und Objekte selbst sind
Objekte, weswegen der Leitsatz gilt: Alles in Python ist ein Objekt. Zu verwirrend?
Ich kann Sie gut verstehen, wir werden uns dieses Thema später noch einmal
vornehmen, dann wird sicher klarer, was hier mit Objekt gemeint ist.

Unsere Objekte, also z. B. Ganzzahlen oder Zeichenketten sind im Hauptspeicher
abgelegt. Um Sie sinnvoll verwenden zu können, geben wir Ihnen Namen. Ein
solches Paar, also einen Wert (bzw. ein Objekt) und einen dazugehörigen Namen
nennt man auch Variable. Wir werden im Folgenden den Begriff Variable synonym
für den Namen verwenden. Lassen Sie sich davon nicht verwirren. Wenn wir von
„Variable“ sprechen, ist immer der Name eines Wert-Objekts gemeint.

Die Bindung eines Namens an einen Wert erfolgt durch eine Zuweisung. Existiert
der Name vorher noch nicht, wird er im Zuge der Zuweisung neu erzeugt:

>>> message = 'And now for something completely different'
>>> n = 17
>>> pi = 3.1415926535897931

In diesem Beispiel werden drei Zuweisungen vorgenommen. Die erste weist eine
Zeichenkette einer neuen Variablen namens message zu; die zweite weist die ganze
Zahl 17 der Variablen n zu; die dritte weist den (ungefähren) Wert von π pi zu.

Um den Wert einer Variablen anzuzeigen, können Sie eine print-Anweisung ver-
wenden:

>>> print(n)
17
>>> print(pi)
3.141592653589793

Der Typ einer Variablen ist der Typ des Wertes, auf den sie sich bezieht.

>>> type(message)
<class 'str'>
>>> type(n)
<class 'int'>
>>> type(pi)
<class 'float'>

2.3 Bezeichner und Schlüsselwörter

Programmierer wählen für ihre Variablen in der Regel Namen, die aussagekräftig
sind und dokumentieren, wofür die Variable verwendet wird.

22 Kapitel 2. Bezeichner, Ausdrücke und Anweisungen

Variablennamen können beliebig lang sein. Sie können sowohl Buchstaben als auch
Zahlen enthalten, aber sie dürfen nicht mit einer Zahl beginnen. Es ist erlaubt,
Großbuchstaben zu verwenden, aber es ist eine gute Idee, Variablennamen mit
einem Kleinbuchstaben zu beginnen (Wir werden später sehen, warum).

Der Unterstrich (_) kann in einem Variablennamen vorkommen. Er wird häufig in
Variablen mit mehreren Wörtern verwendet, z. B. my_name oder speed_of_light.
Variablennamen können mit einem Unterstrich beginnen, aber wir vermeiden dies
im Allgemeinen. Variablen die mit einem oder mit zwei Unterstrichen beginnen,
haben eine spezielle Bedeutung. Wenn wir also „normale“ Variablen mit einem
Unterstrich beginnen lassen, würde dies Personen verwirren, die unseren Code lesen
und nachvollziehen wollen.

Wenn wir einer Variablen einen unzulässigen Namen geben, erhalten wir einen
Syntaxfehler:

>>> 76trombones = 'big parade'
SyntaxError: invalid syntax
>>> more@ = 1000000
SyntaxError: invalid syntax
>>> class = 'Advanced Theoretical Zymurgy'
SyntaxError: invalid syntax

Der Variablenname 76trombones ist unzulässig, weil er mit einer Zahl beginnt.
more@ ist unzulässig, weil es ein unerlaubtes Zeichen (@) enthält. Aber was ist falsch
an class?

Es stellt sich heraus, dass class eines von Pythons Schlüsselwörtern (englisch
Keyword) ist. Der Interpreter verwendet Schlüsselwörter, um die Struktur des
Programms zu erkennen, und sie können nicht als Variablennamen verwendet
werden.

Python reserviert 35 Schlüsselwörter:

and as assert async await break
class continue def del elif else
except False finally for from global
if import in is lambda None
nonlocal not or pass raise return
True try while with yield

Man sollte diese Liste griffbereit halten. Wenn sich der Interpreter über einen der
Variablennamen beschwert und wir nicht wissen, warum, sehen wir nach, ob er auf
dieser Liste steht.

2.4 Anweisungen

Eine Anweisung ist eine Einheit von Code, die der Python-Interpreter ausführen
kann. Wir haben zwei Arten von Anweisungen gesehen: Ausdrücke wie print(n)
und Zuweisungen wie n = 17.

2.5. Operatoren und Operanden 23

Wenn wir eine Anweisung im interaktiven Modus eingeben, führt der Interpreter
sie aus und zeigt das Ergebnis an, falls es eines gibt.

Ein Skript enthält normalerweise eine Folge von Anweisungen. Wenn es mehr als eine
Anweisung gibt, erscheinen die Ergebnisse nacheinander, während die Anweisungen
ausgeführt werden.

Zum Beispiel erzeugt das Skript

print(1)
x = 2
print(x)

folgende Ausgabe:

1
2

Die Zuweisung erzeugt keine Ausgabe.

2.5 Operatoren und Operanden

Operatoren sind spezielle Symbole, die Berechnungen wie Addition und Multiplikati-
on darstellen. Die Werte, auf die der Operator angewendet wird, werden Operanden
genannt.

Die Operatoren +, -, *, / und ** führen Addition, Subtraktion, Multiplikation,
Division und Potenzierung aus, wie in den folgenden Beispielen:

20+32
hour-1
hour*60+minute
minute/60
5**2
(5+9)*(15-7)

Später werden wir sehen, dass diese Operatoren noch zu ganz anderen Zwecken
verwendet werden können. Solange man die mathematischen Operatoren allerdings
auf Ganz- oder Fließkommazahlen (bzw. Variablen, die auf solche Werte verweisen)
anwendet, werden auch die normalen mathematischen Operationen berechnet.

Im Normalfall kommt bei einer mathematischen Operation auf Ganz- oder Fließ-
kommazahlen wieder der gleiche Typ heraus. Die Summe zweier Ganzzahlen ist
wieder eine ganze Zahl, die Multiplikation zweier Fließkommazahlen ist wieder eine
Fließkommazahl, usw. Eine Ausnahme bildet hier die Division. Teilt man eine ganze
Zahl durch eine weitere ganze Zahl, kann natürlich ein Bruch herauskommen, den
wir im Computer als Fließkommazahl speichern. Es ändert sich also der Typ des
Ergebnisses.

24 Kapitel 2. Bezeichner, Ausdrücke und Anweisungen

Wir können die Division aber auch als ganzzahlig betrachten, also nur den ganzzah-
ligen Teil des Ergebnisses übernehmen. Auch diese Operation braucht man beim
Schreiben von Programme recht häufig. Wenn es aber zwei verschiedenen Arten
zu dividieren gibt, stellt sich die Frage, was nun der Divisionsoperator / eigentlich
bewirkt:

>>> minute = 59
>>> minute/60
0.9833333333333333

Sie können sich einfach merken, dass der normale Divisionsoperator / eine Fließ-
kommazahl, also das genaue Ergebnis liefert. Allerdings ist dies nur die „halbe
Wahrheit“ und an dieser Stelle wird es etwas hakelig: Python gibt es nämlich in
verschiedenen Versionen. Momentan ist die Version 3.9 aktuell und wenn Sie heute
mit dem Python-Programmieren beginnen, werden Sie sicher mit Python 3 (also
einer Version 3.x) arbeiten. In der vorherigen Version Python 2 (also mit einer
Versionsnummer 2.x) war der Großteil der Sprache identisch. Mit dem Sprung von
2 auf 3 hat man aber einige Eigenschaften und Regeln geändert, hauptsächlich
um die Sprache klarer zu machen und Ungereimtheiten zu beseitigen. Eine dieser
Änderungen betrifft den Divisionsoperator.

Die obige Aussage, dass die Division mit / eine Fließkommazahl liefert, ist also
erst seit Python 3.0 korrekt. Der Divisionsoperator in Python 2.0 würde zwei
Ganzzahlen dividieren und als Ergebnis den Anteil vor dem Komma verwenden:

>>> minute = 59
>>> minute/60
0

Um das gleiche Ergebnis in Python 3.0 zu erhalten, verwenden wir die ganzzahlige
Division (// Ganzzahl).

>>> minute = 59
>>> minute//60
0

In Python 3.0 funktioniert die ganzzahlige Division also eher so, wie wir es erwarten
würden, wenn wir den Ausdruck in einen Taschenrechner eingeben würden.

Es gibt noch einige weitere Unterschiede zwischen Python 2.0 und 3.0. Wenn man
mit dem Programmieren beginnt, ist es allerdings müßig, sich gleich zu Beginn diese
Unterschiede im Detail anzusehen. Nehmen Sie also aus den vorherigen Beispielen
mit, dass sich eine Programmiersprache von Version zu Version weiterentwickeln
kann und sich dabei auch die Bedeutung von bestimmten Anweisungen oder
Ausdrücken ändern kann. Alles, was Sie in diesem Buch lernen, bezieht sich auf die
Version 3 von Python. Nachdem Sie Python 3 gelernt haben, werden Sie aber auch
Programme, die in Python 2 geschrieben wurden, ohne weiteres verstehen können.
Die Unterschiede sind wirklich marginal.

2.6. Ausdrücke 25

2.6 Ausdrücke

Ein Ausdruck ist eine Kombination aus Werten, Variablen und Operatoren, die
wiederum zu einem Wert abgeleitet werden kann. Ein Wert allein wird als Ausdruck
betrachtet, ebenso wie eine Variable, sodass die folgenden Ausdrücke alle zulässig
sind (unter der Annahme, dass der Variablen x ein Wert zugewiesen wurde):

17
x
x + 17

Wenn wir einen Ausdruck im interaktiven Modus eingeben, wird er vom Interpreter
ausgewertet und das Ergebnis angezeigt:

>>> 1 + 1
2

Aber in einem Skript bewirkt ein Ausdruck für sich allein gar nichts! Dies ist eine
häufige Ursache für Verwirrung bei Programmieranfängern.

Übung 1: Geben Sie die folgenden Anweisungen in den Python-Interpreter ein,
um zu sehen, was sie bewirken:

5
x = 5
x + 1

2.7 Reihenfolge der Auswertung

Wenn mehr als ein Operator in einem Ausdruck vorkommt, hängt die Reihenfolge
der Auswertung von den Vorrangregeln ab. Für mathematische Operatoren folgt
Python der mathematischen Konvention:

• Klammern haben den höchsten Vorrang und können verwendet werden, um
die Auswertung eines Ausdrucks in der gewünschten Reihenfolge zu erzwingen.
Da Ausdrücke in Klammern zuerst ausgewertet werden, ist 2 * (3-1) gleich
4 und (1+1)**(5-2) gleich 8. Wir können Klammern auch verwenden, um
einen Ausdruck leichter lesbar zu machen, wie in (Minute * 100) / 60, auch
wenn dies das Ergebnis nicht ändert.

• Potenzrechnung hat die nächsthöhere Priorität, also ist 2**1+1 gleich 3,
nicht 4, und 3*1**3 ist 3, nicht 27.

• Multiplikation und Division haben den gleichen Vorrang, der höher ist
als der von Addition und Subtraktion, die ebenfalls den gleichen Vorrang
haben. Also ist 2*3-1 gleich 5, nicht 4, und 6+4/2 ist 8, nicht 5.

26 Kapitel 2. Bezeichner, Ausdrücke und Anweisungen

• Operatoren mit der gleichen Rangfolge werden normalerweise von links
nach rechts ausgewertet. Der Ausdruck 5-3-1 ist also 1, nicht 3, weil zuerst
5-3 ausgeführt wird und dann 1 von 2 subtrahiert wird. Eine Ausnahme
ist die Potenzrechnung. Der Ausdruck 432 ist in Python übersetzt 4**3**2
und ergibt 262144 (und nicht 4096). Der Potenz-Operator ** wird also von
rechts nach links ausgewertet.

Wenn man sich nicht sicher ist, in welcher Reihenfolge ein Ausdruck ausgewertet
wird, ist es sehr empfehlenswert, Klammern zu setzen. Überflüssige Klammern
verfälschen den Wert des Ausdrucks nicht, helfen Ihnen aber dabei, genau die
Berechnungsreihenfolge festzulegen, die Sie anwenden möchten.

2.8 Division mit Rest

Wir haben oben gesehen, dass man in Python eine ganzzahlige Division mit dem
Operator // durchführen kann. Häufig ist man aber bei einer ganzzahligen Division
gar nicht an dem eigentlichen Wert interessiert, sondern eher an dem Rest, der sich
bei einer solchen Division ergibt. Auch hierfür gibt es einen Operator in Python.

Der Modulo-Operator arbeitet mit ganzen Zahlen und liefert den Rest, wenn der
erste Operand durch den zweiten geteilt wird. In Python ist der Modulo-Operator
ein Prozentzeichen (%). Die Syntax ist die gleiche wie bei den anderen Operatoren:

>>> quotient = 7 // 3
>>> print(quotient)
2
>>> remainder = 7 % 3
>>> print(remainder)
1

Also 7 geteilt durch 3 ist 2 und der Rest 1 bleibt.

Der Modulo-Operator erweist sich als erstaunlich nützlich. Man kann zum Beispiel
prüfen, ob eine Zahl durch eine andere teilbar ist: Wenn x % y Null ist, dann ist x
durch y teilbar.

Man kann die Modulo-Operation auch verwenden, um auf die einzelnen Ziffern einer
Zahl zuzugreifen. Nehmen wir an, in unserem Programm gibt es eine (größere) Zahl
x. Die Berechnung x % 10 liefert uns die äußerste rechte Ziffer von x. In gleicher
Weise ergibt x % 100 die letzten beiden Ziffern.

>>> 4**3**2
262144
>>> x = 1234
>>> x % 10
4
>>> x = x // 10
>>> x % 10
3

2.9. Operationen mit Zeichenketten 27

2.9 Operationen mit Zeichenketten

Bisher haben wir alle Operatoren lediglich auf Zahlen angewendet oder auf Variablen,
unter denen wir Zahlen abgelegt haben. Erstaunlicherweise lassen sich viele dieser
Operatoren aber auch auf Objekte anderer Datentypen anwenden. Der Operator
+ zum Beispiel hat auch eine Bedeutung für Zeichenketten, aber natürlich ist es
dann keine Addition im mathematischen Sinne mehr. Stattdessen führt er eine
Konkatenation (Verkettung) durch, d. h. er verbindet die Zeichenketten, indem er
sie Ende an Ende verknüpft. Zum Beispiel:

>>> first = 10
>>> second = 15
>>> print(first+second)
25
>>> first = '100'
>>> second = '150'
>>> print(first + second)
100150
>>> print('Hallo' + 'Welt')
HalloWelt

Sogar der Operator * arbeitet mit Zeichenketten. Mit ihm kann der Inhalt einer
Zeichenkette mithilfe einer ganzen Zahl vervielfältigt werden. Zum Beispiel:

>>> first = 'Test '
>>> second = 3
>>> print(first * second)
Test Test Test

2.10 Zuweisungen

Zuweisungen an Namen haben wir ja bereits oben kennengelernt. Dabei haben wir
aber meist nur einen konkreten Wert (eine sogenannte Konstante) an den Namen
gebunden. Häufig verwendet man aber auf der rechten Seite des Gleichheitszeichens
(auf der linken steht ja der Name, den wir verwenden möchten) ein zusammen-
gesetzter Ausdruck. Man kann sich einfach merken, dass dieser Ausdruck auf der
rechten Seite vor der Zuweisung an den Namen komplett ausgewertet wird. Warum
ist es wichtig, das zu wissen? Schauen wir uns folgendes Beispiel an:

>>> x = 42
>>> x = x + 1
>>> x
43

Wir sehen, dass auf der rechten und linken Seite des Gleichheitszeichens hier ein x
steht. Da Python zuerst die rechte Seite betrachtet, wird aus dem x + 1 ein 42 +
1, was im Folgenden zu 43 ausgewertet wird. Dieser Wert wird dann an den Namen
x gebunden. Nach dieser Zuweisung bezeichnet x also den Wert 43.

28 Kapitel 2. Bezeichner, Ausdrücke und Anweisungen

2.11 Typen

Wir haben bis hierher schon mehrfach erwähnt, dass Werte – bzw. allgemeiner
gesehen Objekte – verschiedene Datentypen besitzen können. Eine 42 ist eine
Ganzzahl (Typ int für Integer), 3.1415 ist eine Fließkommazahl (Typ float) und
Hallo ist eine Zeichenkette (Typ str für String).

Bisher haben wir Werte dieser Datentypen verwendet, ohne jemals genau festzulegen,
dass unsere Werte diese Typen besitzen sollen. Python hat die Typen der Werte
immer selbst erkannt; dieses Prinzip nennt man auch Typinferenz (englisch Type
Inference). Nicht alle Programmiersprachen machen das so. In C oder Java (vor
Version 10) muss der Datentyp einer neuen Variablen immer explizit angegeben
werden.

Wenn man in Python einen Namen an einen Wert bindet, analysiert der Python-
Interpreter den Wert des Ausdrucks. Im folgenden Beispiel addieren wir eine ganze
Zahl und eine Fließkommazahl. Python muss nun einen Typ für das Ergebnis
festlegen und entscheidet sich in diesem Fall für float. Das ist auch sicher eine
gute Wahl, denn damit wird das Ergebnis genau erfasst.

>>> a = 42
>>> b = 3.1415
>>> c = a + b
>>> type(c)
<class 'float'>

2.12 Benutzereingaben

Manchmal möchten wir den Wert für eine Variable über eine Tastatureingabe
einlesen. Python bietet eine eingebaute Funktion namens input, die Eingaben
von der Tastatur entgegennimmt. Wenn diese Funktion aufgerufen wird, hält das
Programm an und wartet darauf, dass der Benutzer etwas eingibt. Wenn der
Benutzer die Enter-Taste drückt, wird das Programm fortgesetzt und input gibt
zurück, was der Benutzer als Zeichenkette getippt hat.

>>> inp = input()
Was willst du von mir?
>>> print(inp)
Was willst du von mir?

Bevor man eine Eingabe vom Benutzer erhält, ist es eine gute Idee, eine Eingabe-
aufforderung (Prompt) auszugeben, die dem Benutzer mitteilt, was er eingeben
soll. Man kann eine Zeichenkette an input übergeben, die dem Benutzer angezeigt
wird, bevor er zur Eingabe aufgefordert wird:

>>> name = input('Wie heisst du?\n')
Wie heisst du?
Heiner

2.12. Benutzereingaben 29

>>> print(name)
Heiner

Die Sequenz \n am Ende des Prompt stellt ein Newline dar, ein Sonderzeichen,
das einen Zeilenumbruch bewirkt. Deshalb erscheint die Eingabe des Benutzers
unterhalb des Prompts. Ohne dieses Sonderzeichen würde die Benutzereingabe
direkt nach dem ? beginnen.

Wir sehen, dass input(...) ein Ausdruck ist, der ausgewertet wird und demnach
auch einen Wert zurückliefert. Da die Eingabe von der Tastatur des Benutzers
kommt, wird sie immer als Zeichenkette aufgefasst. Nun stellt sich die Frage, was
passiert, wenn wir eine Zahl eingeben. Wie im ersten Kapitel erwähnt, wird Python
niemals raten, was wir bei der Eingabe meinen. Die Zeichenfolge 123 bleibt eine
Zeichenfolge, auch wenn man sie als Zahl interpretieren könnte.

Als Programmierer wissen wir aber meistens, welche Art von Eingabe wir erwar-
ten. Wenn wir also den Benutzer bitten, eine Zahl einzugeben, können wir die
resultierende Zeichenkette als ganze Zahl interpretieren. Das geht mit der Typum-
wandlungsfunktion int(), welche die Zeichenkette in einen int umwandelt:

>>> prompt = 'Was ist die Fluggeschwindigkeit einer Schwalbe?\n'
>>> speed = input(prompt)
Was ist die Fluggeschwindigkeit einer Schwalbe?
17
>>> int(speed)
17

Wenn der Benutzer jedoch etwas anderes als eine Ziffernfolge eingibt, erhalten wir
einen Fehler:

>>> speed = input(prompt)
Was ist die Fluggeschwindigkeit einer Schwalbe?
Meinst du eine europäische oder eine afrikanische Schwalbe?
>>> int(speed)
ValueError: invalid literal for int() with base 10: ...

Auch wenn das Beispiel hier ein wenig schräg erscheint, sind fehlerhafte Benut-
zereingaben keine Seltenheit. Eingaben von der Tastatur, aus Dateien oder auch aus
dem Internet sind häufig nicht genau so, wie Ihr Programm es vielleicht erwartet.
Und in solchen Fällen bricht Python, ohne dass Sie den Fehler vorhersehen und
in irgendeiner Form behandeln, die Abarbeitung des Programms ab. Wir werden
später sehen, wie diese Art von Fehlerbehandlung zu realisieren ist.

Übrigens: Einige der im Buch verwendeten Beispiele, so wie das mit der Schwalbe
oben, sind an Dialoge oder Szenen aus Filmen und Sketchen der Komikergruppe
Monty Python angelehnt. Der Erfinder von Python, Guido Van Rossum, ist ein Fan
dieser Gruppe und hat sich bei der Namensfindung für seine Programmiersprache
von ihnen inspirieren lassen. Python hat also nichts mit Schlangen zu tun.

30 Kapitel 2. Bezeichner, Ausdrücke und Anweisungen

2.13 Kommentare

Je größer und komplizierter Programme werden, desto schwieriger werden sie zu
lesen. Formale Sprachen sind komplex, und es ist oft schwierig, einen Teil des
Codes zu betrachten und herauszufinden, was er tut oder warum. Selbst bei den
kleinen Programmbeispielen in diesem Kapitel wäre es praktisch gewesen, wenn
wir Erklärungen für einzelne Zeilen des Quellcodes direkt an Ort und Stelle in den
Code geschrieben hätten. Ohne Weiteres hätte das aber nicht funktioniert, denn
Erklärungen, also „normaler Text“, sind kein gültiger Python Code. Der Interpreter
hätte sich also über unseren Text beschwert.

Um dennoch die Möglichkeit zu haben, Notizen zu unseren Programmen hinzuzu-
fügen, um in natürlicher Sprache zu erklären, was das Programm tut, verwenden
wir Kommentare. In Python werden Kommentare mit dem Symbol # eingelei-
tet. Alles, was nach dem #-Zeichen (und bis zum Zeilenende) steht, wird vom
Python-Interpreter einfach ignoriert und kann folglich auch nicht zu einem Fehler
führen.

Berechne die in dieser Stunde abgelaufene Zeit in Prozent
percentage = (minute * 100) / 60

In diesem Fall erscheint der Kommentar in einer eigenen Zeile. Wir können Kom-
mentare auch als Zeilenendkommentar an das Ende einer Zeile setzen:

percentage = (minute * 100) / 60 # Abgelaufene Minuten in Prozent

Kommentare sind am nützlichsten, wenn sie nicht offensichtliche Merkmale des
Codes dokumentieren. Es ist vernünftig anzunehmen, dass der Leser herausfinden
kann, was der Code tut; es ist viel nützlicher, zu erklären warum.

Dieser Kommentar ist im Zusammenhang mit dem Code redundant und nutzlos:

v = 5 # Weise v den Wert 5 zu

Dieser Kommentar dagegen enthält nützliche Informationen, die nicht im Code
enthalten sind:

v = 5 # Geschwindigkeit in m/s.

Gute Variablennamen können die Notwendigkeit von Kommentaren reduzieren,
aber zu lange Namen können komplexe Ausdrücke schwer lesbar machen. Daher
sollten geeignete Variablennamen gewählt werden.

2.14 Wählen sprechender Variablennamen

Solange wir die einfachen Regeln für die Benennung von Variablen befolgen und
reservierte Wörter vermeiden, haben wir bei der Benennung unserer Variablen einen

2.14. Wählen sprechender Variablennamen 31

großen Spielraum. Am Anfang kann diese Auswahl verwirrend sein, sowohl wenn
wir ein Programm lesen, als auch wenn wir unsere eigenen Programme schreiben.
Die folgenden drei Programme sind zum Beispiel identisch in Bezug auf das, was sie
leisten, aber sehr unterschiedlich, wenn wir sie lesen und versuchen, sie zu verstehen.

a = 35.0
b = 12.50
c = a * b
print(c)

stunden = 35.0
rate = 12.50
kosten = stunden * rate
print(kosten)

x1q3z9ahd = 35.0
x1q3z9afd = 12.50
x1q3p9afd = x1q3z9ahd * x1q3z9afd
print(x1q3p9afd)

Der Python-Interpreter interpretiert alle drei Programme als gleichwertig, aber
Menschen sehen und verstehen diese Programme ganz anders. Menschen werden die
Intention des zweiten Programms am schnellsten verstehen, weil der Programmierer
Variablennamen gewählt hat, die seine Absicht bezüglich der Daten, die in jeder
Variablen gespeichert werden, widerspiegeln. Wir nennen diese sinnvoll gewählten
Variablennamen „sprechende“ Variablennamen.

Obwohl das alles toll klingt und es eine sehr gute Idee ist, sprechende Variablenna-
men zu verwenden, können sprechende Variablennamen den Programmieranfänger
bei der Analyse von Code verwirren. Das liegt daran, dass sich Programmieranfänger
die reservierten Schlüsselwörter noch nicht eingeprägt haben (es gibt nur 35 da-
von). So kann es vorkommen, das ein Anfänger einen sprechenden Variablennamen
fälschlicherweise als Teil der Programmiersprache auffasst.

Werfen wir einen kurzen Blick auf den folgenden Python-Beispielcode, der mithilfe
einer Schleife durch einen Datensatz iteriert. Wir werden Schleifen bald behandeln,
aber versuchen wir jetzt erst einmal, uns vorzustellen, was hier passiert:

for word in words:
print(word)

Was ist hier los? Welche der Token (for, word, in, etc.) sind reservierte Wörter
und welche sind nur Variablennamen? Versteht Python auf einer fundamentalen
Ebene den Begriff der Wörter? Programmieranfänger haben Schwierigkeiten zu
unterscheiden, welche Teile des Codes so sein müssen wie sie es sind und welche
Teile des Codes freie Entscheidungen des Programmierers sind.

Der folgende Code ist äquivalent zum obigen Code:

for slice in pizza:
print(slice)

32 Kapitel 2. Bezeichner, Ausdrücke und Anweisungen

Für den Programmieranfänger ist es einfacher, sich diesen Code anzusehen und
zu wissen, welche Teile reservierte Wörter sind, die von Python definiert wurden,
und welche Teile einfach vom Programmierer gewählte Variablennamen sind. Es
ist ziemlich klar, dass Python kein grundlegendes Verständnis von Pizza und
Pizzastücken hat und der Tatsache, dass eine Pizza aus einer Menge von einer oder
mehreren Pizzastücken besteht.

Aber wenn es in unserem Programm wirklich darum geht, Daten zu lesen und
nach Wörtern in den Daten zu suchen, sind pizza und slice wenig sprechende
Variablennamen. Sie als Variablennamen zu wählen, lenkt vom Sinn des Programms
ab.

Nach recht kurzer Zeit wird man die häufigsten reservierten Wörter kennen, und
man wird anfangen, die reservierten Wörter zu sehen, die einem entgegenspringen:

Die Teile des Codes, die von Python definiert sind (for, in, print und :), sind fett
gedruckt, die vom Programmierer gewählten Variablen (word und words) sind nicht
fett gedruckt. Viele Texteditoren sind sich der Python-Syntax bewusst und färben
reservierte Wörter anders ein, um Hinweise zu geben, die Variablen und reservierten
Wörter getrennt zu halten. Nach einer Weile wird man anfangen, Python zu lesen
und schnell feststellen, was eine Variable und was ein reserviertes Wort ist.

2.15 Debugging

An dieser Stelle ist der Syntaxfehler, den wir am ehesten machen, ein illegaler
Variablenname, wie class und yield, die Schlüsselwörter sind, oder odd~job und
US$, die unzulässige Zeichen enthalten.

Wenn wir ein Leerzeichen in einen Variablennamen setzen, denkt Python, dass es
sich um zwei Operanden ohne einen Operator handelt:

>>> bad name = 5
SyntaxError: invalid syntax

>>> month = 09
File "<stdin>", line 1

month = 09
ˆ

SyntaxError: invalid token

Bei Syntaxfehlern sind die Fehlermeldungen nicht sehr hilfreich. Die häufigsten Mel-
dungen sind SyntaxError: invalid syntax und SyntaxError: invalid token,
die beide nicht sehr informativ sind.

Im Beispiel oben besteht übrigens das Problem, dass Zahlen nicht mit führenden
Nullen beginnen dürfen. 09 ist also kein gültiges Wort in Python. Wenn Sie das
Buch bisher sorgfältig gelesen haben, sollten Sie nun stutzig werden. Wir hatten ja
ein Beispiel, in dem der Code 1,000,000 als Folge der Zahlen 1 und 0 gedeutet
wurde. Dabei gibt es doch auch führende Nullen, oder? Nicht ganz! Folgen von
beliebig vielen Nullen interpretiert Python als 0. Dies ist eines von vielen kleinen

2.16. Glossar 33

Details, die manchmals sonderbar erscheinen und die man nicht unbedingt verstehen
muss.

Ein Laufzeitfehler, den man am Anfang gelegentlich verursacht, ist ein „use before
definition“, d. h. der Versuch, eine Variable zu verwenden, bevor man ihr einen
Wert zugewiesen hat. Dies kann z. B. passieren, wenn man einen Variablennamen
falsch schreibt:

>>> kapital = 327.68
>>> zinsen = kapitel * zinssatz
NameError: name 'kapitel' is not defined

Bei Variablennamen wird zwischen Groß- und Kleinschreibung unterschieden (eng-
lisch case-sensitivity), daher ist LaTeX nicht dasselbe wie latex.

An diesem Punkt ist die wahrscheinlichste Ursache für einen logischen Fehler die
Reihenfolge der Operationen. Um z. B. 1

2π auszuwerten, könnte man versucht sein,
zu schreiben

>>> 1.0 / 2.0 * pi

aber die Division geschieht zuerst, also würden wir π/2 erhalten, was nicht dasselbe
ist! Es gibt keine Möglichkeit für Python zu wissen, was wir eigentlich schreiben
wollten, also bekommen wir in diesem Fall keine Fehlermeldung; Wir bekommen
einfach die falsche Antwort.

2.16 Glossar

Zuweisung Eine Anweisung, die einer Variablen einen Wert zuweist.
konkatenieren Verkettung zweier Operanden.
Kommentar Informationen in einem Programm, die für andere Programmierer

(oder jeden, der den Quellcode liest) bestimmt sind und keinen Einfluss auf
die Ausführung des Programms haben.

auswerten Einen Ausdruck vereinfachen, indem die Operationen so ausgeführt
werden, dass ein einziger Wert entsteht.

Ausdruck Eine Kombination aus Variablen, Operatoren und Werten, die einen
einzelnen Ergebniswert darstellt.

Gleitkommazahl Ein Datentyp, der Zahlen mit Nachkommastellen darstellt.
Ganzzahl Ein Datentyp, der ganze Zahlen darstellt.
Schlüsselwort Ein reserviertes Wort, das vom Compiler verwendet wird, um ein

Programm zu analysieren; man kann Schlüsselwörter wie if, def und while
nicht als Variablennamen verwenden.

Modulo-Operator Ein Operator, der mit einem Prozentzeichen (%) gekennzeich-
net ist, der mit ganzen Zahlen arbeitet und den Rest ergibt, wenn eine Zahl
durch eine andere dividiert wird.

Operand Einer der Werte, mit dem ein Operator arbeitet.
Operator Ein spezielles Symbol, das eine einfache Berechnung wie Addition,

Multiplikation oder String-Verkettung darstellt.

34 Kapitel 2. Bezeichner, Ausdrücke und Anweisungen

Vorrangregeln Die Reihenfolge, in der Ausdrücke mit mehreren Operatoren und
Operanden ausgewertet werden.

Anweisung Ein Abschnitt des Codes, der einen Befehl oder eine Aktion dar-
stellt. Die Anweisungen, die wir bisher gesehen haben, sind Zuweisungen und
Ausgabe-Anweisungen.

Zeichenkette Ein Datentyp, der Zeichenfolgen (englisch string) repräsentiert.
Datentyp Eine Kategorie von Werten. Die Typen, die wir bisher gesehen haben,

sind Ganzzahlen (Typ int), Gleitkommazahlen (Typ float) und Zeichenket-
ten (Typ str).

Wert Eine der grundlegenden Dateneinheiten, wie z. B. eine Zahl oder eine Zei-
chenkette, die von einem Programm manipuliert wird.

Variable Ein Bezeichner, der sich auf einen Wert bezieht.

2.17 Übungen

Übung 2: Schreiben Sie ein Programm, das mit input einen Benutzer zur Eingabe
seines Namens auffordert und ihn dann begrüßt.

Gib deinen Namen ein: Heiner
Hallo Heiner

Übung 3: Schreiben Sie ein Programm, das den Benutzer nach Arbeitsstunden
und Stundensatz fragt, um den Bruttolohn zu berechnen.

Gib die Arbeitsstunden an: 35
Gib den Stundensatz an: 2.75
Zahlung: 96.25

Wir werden uns erst einmal nicht darum kümmern, dass unsere Auszahlung genau
zwei Stellen nach dem Komma hat. Wenn Sie möchten, können Sie mit der einge-
bauten Python-Funktion round experimentieren, um den resultierenden Lohn auf
zwei Dezimalstellen zu runden.

Übung 4: Angenommen, wir führen die folgenden Zuweisungen aus:

breite = 17
hoehe = 12.0

Schreiben Sie für jeden der folgenden Ausdrücke den Wert des Ausdrucks und den
Datentyp (des Wertes des Ausdrucks).

1. breite//2

2. breite/2.0

3. hoehe/3

4. 1 + 2 * 5

2.17. Übungen 35

Verwenden Sie den Python-Interpreter, um Ihre Antworten zu überprüfen.

Übung 5: Schreiben Sie ein Programm, das den Benutzer zur Eingabe einer
Celsius-Temperatur auffordert, die Temperatur in Fahrenheit konvertiert und die
konvertierte Temperatur ausgibt.

Die Umrechnung von Celsius zu Fahrenheit lautet: °F = °C * 1,8 + 32

Gib die Temperatur in Celsius ein: 37
Fahrenheit in 98.6

Kapitel 3

Bedingte Ausführung

In den vorherigen Kapiteln haben wir den Python-Interpreter eher wie einen Ta-
schenrechner benutzt. Wir haben Werte definiert oder eingegeben, den Werten
Namen gegeben und Berechnungen mit diesen Werten angestellt. Vieles, was Com-
puterprogramme ausmacht, kann man damit nicht erreichen.

Ein wichtiges Konzept, das uns fehlt, ist der sogenannte Kontrollfluss. Dabei handelt
es sich, grob gesagt, um das Steuern von Abläufen im Programm. Nehmen wir an,
wir fragen den Benutzer nach der Eingabe eines Zeichens und nur wenn das Zeichen
kein q (für quit) ist, soll das Programm weiter laufen.

Wie wir die Eingabe erledigen, haben wir bereits kennengelernt, nicht aber wie wir
feststellen können, ob das gelesene Zeichen ein q ist. Außerdem wissen wir noch
nicht, wie man die Ausführung bestimmter Anweisungen von dem Ergebnis einer
solchen Überprüfung abhängig macht. Glücklicherweise brauchen wir dazu nicht
viel Neues und nach dem Lesen der folgenden Seiten wird uns klar sein, wie man
solche Aufgaben mit Python erledigt.

3.1 Boolesche Ausdrücke

Um eine bedingte Ausführung programmieren zu können, müssen wir zunächst
Bedingungen überprüfen. Dazu benötigen wir eine spezielle Form von Ausdrücken,
die sich nicht, wie bisher gesehen, zu einem allgemeinen Wert (Zahl, Zeichenkette,
etc.) ableiten lassen, sondern zu einem Wahrheitswert.

Einen solchen Ausdruck, der im Ergebnis entweder wahr oder falsch ist, nennt man
booleschen Ausdruck. Die folgenden Beispiele verwenden den Operator ==, der zwei
Werte (die sogenannten Operanden) vergleicht und True erzeugt, wenn sie gleich
sind, und sonst False:

>>> 5 == 5
True
>>> 5 == 6
False

38 Kapitel 3. Bedingte Ausführung

True und False sind spezielle Werte, die zur Klasse bool gehören; sie sind keine
Zeichenketten, sondern die beiden logischen Werte wahr und falsch:

>>> type(True)
<class 'bool'>
>>> type(False)
<class 'bool'>

Der Operator == ist ein Vergleichsoperator. Wenn man mit einem solchen Operator
zwei Operanden vergleicht, erhält man einen Wahrheitswert zurück. Neben dem
Vergleich auf Gleichheit gibt es noch einige weitere Vergleichsoperatoren. Diese sind:

x != y # x ist ungleich y
x > y # x ist groesser als y
x < y # x ist kleiner als y
x >= y # x ist groesser oder gleich y
x <= y # x ist kleiner oder gleich y
x is y # x bezeichnet das selbe Objekt wie y
x is not y # x bezeichnet nicht das selbe Objekt wie y

Obwohl Ihnen diese Operationen wahrscheinlich bekannt sind, unterscheiden sich
die Python-Symbole von den mathematischen Symbolen für dieselben Operationen.
Ein häufiger Fehler ist die Verwendung eines einfachen Gleichheitszeichens (=)
anstelle eines doppelten Gleichheitszeichens (==). Wir müssen daran denken, dass
= ein Zuweisungsoperator und == ein Vergleichsoperator ist. So etwas wie =< oder
=> gibt es nicht.

Etwas unklar mag Ihnen zum jetzigen Zeitpunkt der Unterschied zwischen == und
is erscheinen. Um das zu erklären, muss man etwas mehr über die Funktionsweise
der Programmiersprache selbst verstehen. Kurz gesagt, vergleicht == Werte und
is Objekte. Was bedeutet das? Nun, unterschiedliche Objekte, also z. B. Daten im
Speicher können gleiche Werte haben. Ganzzahl Objekte mit einem bestimmten
Wert, sagen wir 1234, kann es beispielsweise mehrfach unter verschiedenen Namen
im Programm geben. Wenn einer dieser Werte als a, der andere als b benannt ist,
wäre a is b falsch, denn wir haben es mit unterschiedlichen Objekten zu tun. a
== b ist hingegen wahr, schließlich tragen a und b den gleichen Wert.

Zu Beginn werden wir häufiger ==, aber fast nie is verwenden. Der Vergleich auf
Objektidentität ist eher nur für einige „Spezialfälle“ wichtig. In den meisten Fällen
wollen wir Werte vergleichen.

3.2 Logische Operatoren

Es gibt drei logische Operatoren: and, or, und not. Die Semantik (Bedeutung)
dieser Operatoren ist ähnlich wie ihre Bedeutung im Englischen. Zum Beispiel,

x > 0 and x < 10

ist nur wahr, wenn x größer als 0 und kleiner als 10 ist.

3.3. Bedingte Ausführung 39

x > 0

print('x ist positiv')

True

Abbildung 3.1: Ablaufdiagramm einer If-Anweisung

n%2 == 0 or n%3 == 0 ist wahr, wenn eine der beiden Bedingungen wahr ist, d. h.
wenn die Zahl durch 2 oder 3 teilbar ist.

Schließlich negiert der Operator not einen booleschen Ausdruck, sodass not (x >
y) wahr ist, wenn x > y falsch ist; das heißt, wenn x kleiner oder gleich y ist.

Streng genommen sollten die Operanden der logischen Operatoren boolesche Aus-
drücke sein, aber Python ist nicht sehr streng. Jede Zahl ungleich Null wird als
„wahr“ interpretiert.

>>> 17 and True
True

Diese Flexibilität kann nützlich sein, aber es gibt einige Feinheiten, die verwirrend
sein können. Wir sollten sie vielleicht vermeiden, bis wir sicher sind, dass wir wissen,
was wir tun.

3.3 Bedingte Ausführung

Um sinnvolle Programme zu schreiben, brauchen wir fast immer die Möglichkeit,
Bedingungen zu prüfen und das Verhalten des Programms entsprechend zu ändern.
Bedingte Anweisungen geben uns diese Fähigkeit. Die einfachste Form ist die
if-Anweisung:

if x > 0:
print('x is positive')

Der boolesche Ausdruck nach der if-Anweisung wird als Bedingung bezeichnet.
Wir beenden die if-Anweisung mit einem Doppelpunkt (:) und die Zeile(n) nach
der if-Anweisung werden eingerückt.

Wenn die logische Bedingung wahr ist, dann wird die eingerückte Anweisung
ausgeführt. Wenn die logische Bedingung falsch ist, wird die eingerückte Anweisung
übersprungen. Die Einrückung erfüllt hier zwei wesentliche Aufgaben im Programm.
Erstens: Sie macht das Programm besser lesbar. Man erkennt sofort, dass die
Anweisung print „unterhalb“ der Überprüfung mit if steht. Sie stehet also nicht

40 Kapitel 3. Bedingte Ausführung

auf gleicher Ebene wie das if selbst, sondern gehört sichtbar nur zu dem „Wahr-
Teil“ der Überprüfung. Zweitens: Statt der einen print-Anweisung könnten an
der gleichen Stelle mehrere Anweisungen, und sogar wieder neue if-Anweisungen
stehen. Alle Anweisungen mit der gleichen Einrückungstiefe gehören zur gleichen
Ebene des Programms.

Die Verwendung von Einrückungen führt schnell zu Syntaxfehlern. Wenn Sie
einmal nicht genau aufpassen und ein Leerzeichen zu viel oder zu wenig, oder
auch ein Tab-Zeichen, statt mehrerer Leerzeichen verwenden, wird Python sich
beschweren. Allerdings lassen sich diese Fehler sehr schnell finden. Außerdem helfen
Ihnen die Editoren und Werkzeuge, die Sie zum Programmieren verwenden, die
Einrückungstiefe beizubehalten.

Viele andere Programmiersprachen verwenden Klammern, um Blöcke von Anwei-
sungen zusammenzufassen. Dies erscheint auf den ersten Blick logischer, als mit
Leerzeichen und Zeilen zu arbeiten. Klammern haben aber zwei große Nachteile.
Zum einen benötigt man zusätzliche Zeichen, die den Programmcode verlängern und
unübersichtlicher machen. Zum anderen ist man, wenn man Klammern verwendet,
nicht dazu gezwungen, eine gute optische Aufteilung des Codes in Ebenen einzuhal-
ten. Gerade Programmieranfänger halten sich oft nicht an Formatierungsregeln und
leider führt das oft zu logischen Fehlern, die nur sehr schwierig aufzuspüren sind.

Der Aufbau von if-Anweisungen ähnelt dem von Funktionsdefinitionen oder for-
Schleifen1. Die Anweisung besteht aus einer Kopfzeile, die mit einem Doppelpunkt
(:) endet, gefolgt von einem eingerückten Block. Anweisungen wie diese werden
zusammengesetzte Anweisungen genannt, weil sie sich über mehr als eine Zeile
erstrecken.

Es gibt keine Begrenzung für die Anzahl der Anweisungen, die im Rumpf erscheinen
können, aber es muss mindestens eine geben. Gelegentlich ist es nützlich, einen
Block ohne Anweisungen zu haben (normalerweise als Platzhalter für Code, den
wir noch nicht geschrieben haben). In diesem Fall können wir die Anweisung pass
verwenden, die nichts tut.

if x < 0:
pass # need to handle negative values!

Wenn wir im Python-Interpreter eine if-Anweisung eingeben, ändert sich die
Eingabeaufforderung von drei Größer-Zeichen zu drei Punkten, um anzuzeigen,
dass wir uns in der Mitte eines Anweisungsblocks befinden, wie unten gezeigt:

>>> x = 3
>>> if x < 10:
... print('x ist klein')
...
x ist klein
>>>

Wenn wir den Python-Interpreter verwenden, müssen wir am Ende eines Blocks
eine Leerzeile stehen lassen, sonst gibt Python einen Fehler zurück:

1Funktionen werden wir in Kapitel 4 und Schleifen in Kapitel 5 kennenlernen.

3.4. Alternative Ausführung 41

x%2 == 0

print('x ist gerade')

True

print('x ist ungerade')

False

Abbildung 3.2: Ablaufdiagramm einer If-Else-Anweisung

>>> x = 3
>>> if x < 10:
... print('x ist klein')
... print('Fertig')

File "<stdin>", line 3
print('Fertig')

ˆ
SyntaxError: invalid syntax

Eine Leerzeile am Ende eines Anweisungsblocks ist beim Schreiben und Ausführen
eines Scripts nicht notwendig, kann aber die Lesbarkeit unseres Codes verbessern.

3.4 Alternative Ausführung

Eine zweite Form der if-Anweisung ist die alternative Ausführung, bei der es zwei
Möglichkeiten gibt und die Bedingung bestimmt, welche davon ausgeführt wird.
Die Syntax sieht wie folgt aus:

if x%2 == 0:
print('x ist gerade')

else:
print('x ist ungerade')

Wenn der Rest bei der Division von x durch 2 gleich 0 ist, dann wissen wir, dass
x gerade ist, und das Programm gibt eine entsprechende Meldung aus. Wenn die
Bedingung falsch ist, wird der zweite Block von Anweisungen ausgeführt.

Da die Bedingung entweder wahr oder falsch sein muss, wird genau eine der
Alternativen ausgeführt. Die Alternativen werden Verzweigungen genannt, weil sie
Verzweigungen im Ablauf der Ausführung sind.

3.5 Verkettete Bedingungen

Manchmal gibt es mehr als zwei Möglichkeiten und wir brauchen mehr als zwei
Verzweigungen. Eine Art, dies zu erreichen, sind verkettete Bedingungen:

42 Kapitel 3. Bedingte Ausführung

x < y print(‘less’)
Yes

x > y print (‘greater’)
Yes

print(‘equal’)

Abbildung 3.3: If-Then-ElseIf-Logik

if x < y:
print('x ist kleiner als y')

elif x > y:
print('x ist groesser als y')

else:
print('x und y sind gleich')

elif ist eine Abkürzung für „else if“. Auch hier wird genau eine Verzweigung
ausgeführt.

Es gibt keine Begrenzung für die Anzahl der elif-Anweisungen. Wenn es eine
else-Klausel gibt, muss sie am Ende stehen, aber es muss nicht unbedingt eine
geben.

if choice == 'a':
print('Nicht richtig!')

elif choice == 'b':
print('Richtig!')

elif choice == 'c':
print('Fast, aber nicht richtig!')

Jede Bedingung wird der Reihe nach geprüft. Wenn die erste falsch ist, wird die
nächste geprüft, und so weiter. Wenn eine von ihnen wahr ist, wird der entsprechende
Zweig ausgeführt und die Anweisung endet. Auch wenn mehr als eine Bedingung
wahr ist, wird nur der erste wahre Zweig ausgeführt.

3.6 Verschachtelte Bedingungen

Eine Bedingung kann auch in eine andere verschachtelt werden. Wir hätten das
Beispiel mit den drei Verzweigungen auch so schreiben können:

if x == y:
print('x und y sind gleich')

3.7. Abfangen von Ausnahmen mit try und except 43

x == y
No

print(‘equal’)

Yes

x < y

print’‘greater’)

No

print(‘less’)

Yes

Abbildung 3.4: Verschachtelte If-Anweisungen

else:
if x < y:

print('x it kleiner als y')
else:

print('x ist groesser als y')

Die äußere Bedingung enthält zwei Verzweigungen. Der erste Zweig enthält eine
einfache Anweisung. Der zweite Zweig enthält eine weitere if-Anweisung, die
ihrerseits zwei Zweige hat. Diese beiden Zweige sind beide einfache Anweisungen,
obwohl sie auch bedingte Anweisungen hätten sein können.

Obwohl die Einrückung der Anweisungen die Struktur deutlich macht, werden
verschachtelte Bedingungen sehr schnell unübersichtlich. Im Allgemeinen ist es eine
gute Idee, sie wenn möglich zu vermeiden.

Logische Operatoren bieten oft eine Möglichkeit, verschachtelte bedingte Anwei-
sungen zu vereinfachen. Zum Beispiel können wir den folgenden Code mit einer
einzigen Bedingung umschreiben:

if 0 < x:
if x < 10:

print('x is a positive single-digit number.')

Die print-Anweisung wird nur ausgeführt, wenn wir es an beiden Bedingungen
vorbeischaffen, also können wir den gleichen Effekt mit dem and-Operator erzielen:

if 0 < x and x < 10:
print('x is a positive single-digit number.')

3.7 Abfangen von Ausnahmen mit try und except

Im vorherigen Kapitel haben wir ein Codesegment gesehen, in dem wir die Funktio-
nen input und int verwendet haben, um eine vom Benutzer eingegebene Ganzzahl
zu lesen und zu analysieren. Wir haben auch gesehen, wie tückisch dies sein kann:

44 Kapitel 3. Bedingte Ausführung

>>> speed = input(prompt)
Was ist die Fluggeschwindigkeit einer unbeladenen Schwalbe?
Meinst du eine europäische oder eine afrikanische Schwalbe?
>>> int(speed)
ValueError: invalid literal for int() with base 10:

Wenn wir diese Anweisungen im Python-Interpreter ausführen, erhalten wir eine
neue Eingabeaufforderung vom Interpreter, denken „ups“ und machen mit der
nächsten Anweisung weiter.

Wenn wir diesen Code jedoch in ein Python-Skript einfügen und dieser Fehler
auftritt, bleibt unser Skript sofort mit einem Traceback stehen. Es führt die folgende
Anweisung nicht aus.

Hier ist ein Beispielprogramm zur Umrechnung einer Fahrenheit-Temperatur in
eine Celsius-Temperatur:

inp = input('Gib die Temperatur in Fahrenheit ein: ')
fahr = float(inp)
cel = (fahr - 32.0) * 5.0 / 9.0
print(cel)

Code: https://tiny.one/py4de/code3/fahren.py

Probieren wir diesen Code einmal mit einer korrekten Eingabe, z. B. mit 99 °F:

python fahren.py
Gib die Temperatur in Fahrenheit ein: 99
37.22222222222222

Das sieht korrekt aus. Wenn wir aber nun diesen Code erneut ausführen und ihm eine
ungültige Eingabe geben, bricht er einfach mit einer unfreundlichen Fehlermeldung
ab:

python fahren.py
Enter Fahrenheit Temperature:fred
Traceback (most recent call last):

File "fahren.py", line 2, in <module>
fahr = float(inp)

ValueError: could not convert string to float: 'fred'

Es gibt eine in Python eingebaute Struktur für die bedingte Ausführung, um diese
Arten von erwarteten und unerwarteten Fehlern zu behandeln, die „try/except“
genannt wird. Die Idee von try und except ist, dass wir wissen, dass eine Folge
von Anweisungen ein Problem haben könnte und wir einige Anweisungen hinzufü-
gen möchten, die ausgeführt werden, wenn ein Fehler auftritt. Diese zusätzlichen
Anweisungen (der except-Block) werden ignoriert, wenn kein Fehler auftritt.

Man kann sich die try- und except-Funktion in Python als eine „Versicherungspo-
lice“ für eine Folge von Anweisungen vorstellen.

Wir können unseren Temperaturwandler wie folgt umschreiben:

3.8. Verkürzte Auswertung logischer Ausdrücke 45

inp = input('Gib die Temperatur in Fahrenheit ein: ')
try:

fahr = float(inp)
cel = (fahr - 32.0) * 5.0 / 9.0
print(cel)

except:
print('Bitte gib eine Zahl ein!')

Code: https://tiny.one/py4de/code3/fahren2.py

Python beginnt mit der Ausführung der Anweisungsfolge im try-Block. Wenn alles
gut geht, überspringt es den except-Block und fährt fort. Wenn im try-Block eine
Ausnahme (englisch Exception) auftritt, springt Python aus dem try-Block heraus
und führt die Folge von Anweisungen im except-Block aus.

python fahren2.py
Gib die Temperatur in Fahrenheit ein: 99
37.22222222222222

python fahren2.py
Gib die Temperatur in Fahrenheit ein: fred
Bitte gib eine Zahl ein!

Die Behandlung einer Ausnahme mit einer try-Anweisung wird als Fangen einer
Ausnahme bezeichnet. In diesem Beispiel gibt die except-Klausel eine Fehlermel-
dung aus. Im Allgemeinen gibt Ihnen das Abfangen einer Ausnahme die Möglichkeit,
das Problem zu beheben, es erneut zu versuchen oder zumindest das Programm
ordnungsgemäß zu beenden.

3.8 Verkürzte Auswertung logischer Ausdrücke

Wenn Python einen logischen Ausdruck wie x >= 2 and (x/y) > 2 verarbeitet,
wertet es den Ausdruck von links nach rechts aus. Aufgrund der Definition von and
ist, wenn x kleiner als 2 ist, der Ausdruck x >= 2 logisch falsch (also False) und
somit ist der gesamte Ausdruck False, unabhängig davon, ob (x/y) > 2 als True
oder False ausgewertet wird.

Wenn Python feststellt, dass durch die Auswertung des restlichen Teils eines lo-
gischen Ausdrucks sich am Endergebnis nichts mehr ändern wird, bricht es die
Auswertung ab und führt die Berechnungen im restlichen Teil des logischen Aus-
drucks nicht aus. Wenn die Auswertung eines logischen Ausdrucks stoppt, weil der
Gesamtwert bereits bekannt ist, bezeichnet man dies als verkürzte Auswertung (auch
Kurzschlussauswertung oder bedingte Auswertung, englisch short-circuit evaluation).

Auch wenn dies wie eine Kleinigkeit erscheinen mag, führt die abgekürzte Auswer-
tung zu einer cleveren Technik, die als Wächter-Muster (englisch guardian pattern)
bezeichnet wird. Betrachten wir die folgende Codesequenz im Python-Interpreter:

46 Kapitel 3. Bedingte Ausführung

>>> x = 6
>>> y = 2
>>> x >= 2 and (x/y) > 2
True
>>> x = 1
>>> y = 0
>>> x >= 2 and (x/y) > 2
False
>>> x = 6
>>> y = 0
>>> x >= 2 and (x/y) > 2
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>>

Die dritte Berechnung schlug fehl, weil Python (x/y) auswertete und y null war,
was einen Laufzeitfehler (division by zero) verursacht. Eine Division durch
null ist mathematisch nicht definiert, Python kann die Berechnung also nicht
durchführen (und Sie wissen ja, dass Python nicht „rät“). Allerdings schlug das
zweite Beispiel nicht fehl, obwohl hier auch (x/y) > 2 stand und y zu dem Zeitpunkt
den Wert 0 hatte. Dass es zu keinem Fehler kam, liegt daran, dass der erste Teil
dieses Ausdrucks x >= 2 zu False ausgewertet wurde, sodass (x/y) aufgrund der
verkürzten Auswertung nie ausgeführt wurde und es damit keinen Fehler gab.

Wir können den logischen Ausdruck so konstruieren, dass wir strategisch eine Schutz-
Auswertung direkt vor der Auswertung platzieren, die einen Fehler verursachen
könnte, wie folgt:

>>> x = 1
>>> y = 0
>>> x >= 2 and y != 0 and (x/y) > 2
False
>>> x = 6
>>> y = 0
>>> x >= 2 and y != 0 and (x/y) > 2
False
>>>

Im ersten logischen Ausdruck ist x >= 2 False, also stoppt die Auswertung am
ersten and. Im zweiten logischen Ausdruck ist x >= 2 True, aber y != 0 ist False,
also erreichen wir nie (x/y). Die Bedingung y != 0 dient hier also als Schutz, um
sicherzustellen, dass wir (x/y) nur ausführen, wenn y ungleich Null ist.

Unbedingt beachten müssen wir allerdings die Auswertung von links nach rechts.
Im folgenden Beispiel folgt der Schutz-Klausel y != 0 nach der (x/y) Berechnung,
sodass der Ausdruck mit einem Fehler fehlschlägt.

>>> x = 6
>>> y = 0

3.9. Debugging 47

>>> x >= 2 and (x/y) > 2 and y != 0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>>

3.9 Debugging

Der Traceback, den Python beim Auftreten eines Fehlers anzeigt, enthält eine Menge
Informationen, die aber überwältigend sein können. Die nützlichsten Teile sind
normalerweise:

• welche Art von Fehler es war, und

• wo er aufgetreten ist.

Syntaxfehler sind in der Regel leicht zu finden, aber es gibt ein paar Tücken.
Whitespace-Fehler können schwierig sein, weil Leerzeichen und Tabulatoren un-
sichtbar sind und wir gewohnt sind, sie zu ignorieren.

>>> x = 5
>>> y = 6

File "<stdin>", line 1
y = 6
ˆ

IndentationError: unexpected indent

In diesem Beispiel besteht das Problem darin, dass die zweite Zeile um ein Leerzei-
chen eingerückt ist. Aber die Fehlermeldung zeigt auf y, was irreführend ist. Im
Allgemeinen zeigen Fehlermeldungen an, wo das Problem entdeckt wurde, aber der
tatsächliche Fehler kann früher im Code liegen, manchmal in einer vorhergehenden
Zeile.

Im Allgemeinen wird in den Fehlermeldungen angegeben, wo das Problem entdeckt
wurde, aber das ist oft nicht die Ursache des Problems.

3.10 Glossar

Block Die Folge von Anweisungen innerhalb einer zusammengesetzten Anweisung.

boolescher Ausdruck Ein Ausdruck, dessen Wert entweder True oder False ist.

Verzweigung Eine der alternativen Anweisungsfolgen in einer bedingten Anwei-
sung.

verkettete Bedingungen Eine bedingte Anweisung mit einer Reihe von alterna-
tiven Verzweigungen.

48 Kapitel 3. Bedingte Ausführung

Vergleichsoperator Einer der Operatoren, der seine Operanden vergleicht: ==,
!=, >, <, >= und <=.

bedingte Anweisung Eine Anweisung, die den Ablauf der Ausführung in Abhän-
gigkeit von einer Bedingung steuert.

Bedingung Der boolesche Ausdruck in einer bedingten Anweisung, der bestimmt,
welcher Zweig ausgeführt wird.

zusammengesetzte Anweisung Eine Anweisung, die aus einer Kopfzeile und
einem Rumpf besteht. Die Kopfzeile endet mit einem Doppelpunkt (:). Der
Rumpf wird relativ zur Kopfzeile eingerückt.

logischer Operator Einer der Operatoren, der boolesche Ausdrücke kombiniert:
and, or, und not.

verschachtelte Bedingung Eine bedingte Anweisung, die in einem der Zweige
einer anderen bedingten Anweisung erscheint.

Traceback Eine Auflistung aller ausgeführten Funktionen, die beim Auftreten
einer Ausnahme ausgegeben wird.

abgekürzte Auswertung Wenn Python die Auswertung eines logischen Aus-
drucks teilweise durchläuft und die Auswertung anhält, weil Python den
Endwert für den Ausdruck kennt, ohne den Rest des Ausdrucks auswerten zu
müssen.

3.11 Übungen

Übung 1: Schreiben Sie Ihr Programm zur Lohnberechnung so um, dass ein
Mitarbeiter das 1,5-fache des Stundensatzes für Arbeitsstunden über 40 Stunden
erhält.

Anzahl Arbeitsstunden: 45
Stundenlohn: 10
Monatsgehalt: 475.0

Übung 2: Schreiben Sie Ihr Programm zur Lohnberechnung unter Verwendung
von try und except so um, dass es nichtnumerische Eingaben elegant behandelt,
indem es eine Meldung ausgibt und das Programm beendet. Im Folgenden sehen
Sie zwei beispielhafte Ausführungen des Programms:

Anzahl Arbeitsstunden: 20
Stundenlohn: neun
Fehler, bitte gib eine Zahl ein

Anzahl Arbeitsstunden: vierzig
Fehler, bitte gib eine Zahl ein

Übung 3: Schreiben Sie ein Programm, das nach einem Wert zwischen 0,0 und
1,0 fragt. Wenn die Punktzahl außerhalb des Bereichs liegt, geben Sie eine Fehler-
meldung aus. Wenn die Punktzahl zwischen 0,0 und 1,0 liegt, geben Sie eine Note
anhand der folgenden Tabelle aus:

3.11. Übungen 49

Punkte Note
>= 0.9 1
>= 0.8 2
>= 0.7 3
>= 0.6 4
< 0.6 5

Führen Sie das Programm wiederholt wie nachfolgend gezeigt aus, um die verschie-
denen Werte für die Eingabe zu testen.

Punkte eingeben: 0.95
1

Punkte eingeben: perfekt
Falsche Punktanzahl

Punkte eingeben: 10.0
Falsche Punktanzahl

Punkte eingeben: 0.75
3

Punkte eingeben: 0.5
5

Kapitel 4

Funktionen

Eine Kernidee der Programmierung ist es, die unterschiedlichen Teilaufgaben, die
in einem Programm verwendet werden, in einzelne logische Einheiten aufzuteilen.
Der große Vorteil dieses Vorgehens ist, dass unsere Programme besser strukturiert
sind und die einzelnen Teile im gleichen oder auch in anderen Programmen wie-
derverwendet werden können. Jedes Python-Programm verwendet, selbst wenn Sie
das nicht einmal sehen, Funktionen und auch wir haben schon einige eingebaute
Funktionen von Python kennengelernt, darunter print und input. Funktionen
kann man aber nicht nur verwenden, sondern auch selbst definieren. Dies und vieles
Weitere zu Funktionen lernen Sie in diesem Kapitel kennen.

4.1 Funktionsaufrufe

Im Zusammenhang mit der Programmierung ist eine Funktion eine benannte
Folge von Anweisungen, die eine Berechnung durchführt. Wenn wir eine Funktion
definieren, geben wir den Namen und die Abfolge der Anweisungen an. Später
können wir die Funktion mit dem Namen „aufrufen“. Wir haben bereits ein Beispiel
für einen Funktionsaufruf gesehen:

>>> type(32)
<class 'int'>

Der Name der Funktion ist type. Der Ausdruck in Klammern wird das Argument
der Funktion genannt. Das Argument ist ein Wert oder eine Variable, die wir in die
Funktion als Eingabe für die Funktion übergeben. Das Ergebnis ist der Datentyp
des Arguments.

Es ist üblich zu sagen, dass eine Funktion ein Argument „nimmt“ oder „akzeptiert“
und ein Ergebnis „zurückgibt“. Das Ergebnis wird als Rückgabewert bezeichnet.

52 Kapitel 4. Funktionen

4.2 Built-in-Funktionen

Python bietet eine Reihe von wichtigen eingebauten Funktionen1 (sogenannte Built-
in-Funktionen), die wir verwenden können, ohne die Funktionsdefinition angeben
zu müssen. Die Schöpfer von Python haben eine Reihe von Funktionen geschrieben,
um häufige Probleme zu lösen, und sie in Python integriert, damit wir sie verwenden
können.

>>> abs(-42)
42
>>> float(21)
21.0
>>>

Funktionen können dabei nicht nur ein Argument haben, sondern auch mehrere. Die
Built-in-Funktionen max und min beispielsweise, geben den größten bzw. kleinsten
Wert aus einer Folge von Attributen zurück:

>>> max(2,-1.2,5.7,4)
5.7
>>> min(2.2,-1,5.7,4)
-1
>>>

Die Funktion max liefert uns den „größten Wert“ der Argumente, die Funktion min
den kleinsten Wert. Viele Funktionen sind dabei sehr flexibel programmiert, d. h.
man kann sie mit unterschiedlichen Argumenten aufrufen.

>>> max('Hello world')
'w'
>>> min('Hello world')
' '
>>>

Im obigen Beispiel sehen wir die Funktionen max und min erneut, aber diesmal
aufgerufen mit der Zeichenkette 'Hello world'. Nun gibt uns die Funktion max das
„größte“ Zeichen in der Zeichenkette (was sich als der Buchstabe 'w' herausstellt)
zurück und die Funktion min liefert uns das „kleinste“ Zeichen (was sich als ein
Leerzeichen herausstellt).

Eine weitere sehr gebräuchliche eingebaute Funktion ist die Funktion len, die uns
sagt, wie viele Elemente in unserem Argument enthalten sind. Wenn das Argument
von len eine Zeichenkette ist, gibt sie die Anzahl der Zeichen in der Zeichenkette
zurück.

>>> len('Hello world')
11
>>>

1https://docs.python.org/3/library/functions.html#built-in-functions

https://docs.python.org/3/library/functions.html#built-in-functions

4.3. Funktionen zur Typumwandlung 53

Wie viele weitere Funktionen, die uns Python bereitstellt, ist auch len nicht auf die
Verarbeitung genau eines Datentyps (wie z. B. hier von Zeichenketten) beschränkt.
Wir können mit jeder Menge von Werten arbeiten, wie wir in späteren Kapiteln
sehen werden.

4.3 Funktionen zur Typumwandlung

Python bietet auch eingebaute Funktionen, die Werte von einem Typ in einen an-
deren konvertieren. Die Funktion int nimmt einen beliebigen Wert und konvertiert
ihn in eine Ganzzahl, wenn sie es kann, oder beschwert sich andernfalls:

>>> int('32')
32
>>> int('Hello')
ValueError: invalid literal for int() with base 10: 'Hello'

int kann Fließkommawerte in Ganzzahlen umwandeln, rundet aber nicht ab,
sondern schneidet den Nachkommateil ab:

>>> int(3.99999)
3
>>> int(-2.3)
-2

float konvertiert Ganzzahlen und Zeichenketten in Fließkommazahlen:

>>> float(32)
32.0
>>> float('3.14159')
3.14159

Schließlich wandelt str das Argument in eine Zeichenkette um:

>>> str(32)
'32'
>>> str(3.14159)
'3.14159'

Übrigens sollten Sie die Namen der eingebauten Funktionen wie reservierte Wörter
behandeln. Anders als bei den Schlüsselwörtern sind die Namen von eingebauten
Funktionen bzw. von Funktionen ganz allgemein nicht vom Interpreter geschützt.
Python verhindert es also nicht, wenn wir max als Namen für eine eigene Variable
oder Funktion verwenden. Wenn man dies tut, führt das manchmal zu kuriosen,
meist aber zu ärgerlichen und schwer zu findenden Fehlern.

54 Kapitel 4. Funktionen

4.4 Die Standardbibliothek

Neben den Built-in-Funktionen werden wir noch viele weitere verwenden, die uns Py-
thon bereitstellt. Python verfolgt eine Batteries Included Philosophie, was bedeutet,
dass viele Funktionen (und Datenstrukturen), die zum produktiven Programmieren
nützlich sind, bereits in der Sprache enthalten sind. Dieser Aspekt hat wesentlich
zur Verbreitung von Python beigetragen, denn es erlaubt ein Programmieren auf
„höherer Ebene“.
Sehr viele Funktionen stellt Python über die sogenannte Standardbibliothek bereit,
einige Teile der Standardbibliothek werden wir uns in den kommenden Abschnitten
genauer ansehen. In der Programmierung bezeichnet der Begriff „Bibliothek“ eine
Sammlung von wiederverwendbaren Funktionen und Datenstrukturen. Es gibt
Bibliotheken für den Zugriff auf Internetseiten, zum Verarbeiten von großen Daten-
mengen, für spezielle mathematische Aufgaben, für Audio- oder Bildverarbeitung
und für viele weitere Anwendungsgebiete.
Wenn wir für unsere Problemstellung eine geeignete Bibliothek zur Verfügung
haben, müssen wir nicht „das Rad neu erfinden“, sondern können die bestehenden
Funktionen nutzen, um unsere konkrete Aufgabenstellung damit zu lösen. Wie bei
einem gut gefüllten Werkzeugkasten geht es dann auch bei der Programmierung
darum, das „passende“ Werkzeug zu finden und es richtig anzuwenden. Gelingt
uns das, können wir unser Projekt in deutlich kürzerer Zeit und meist auch mit
besserem Ergebnis abschließen.
Wenn Sie selbst Programme schreiben, werden Sie bei Ihren Recherchen in der
Python Dokumentation, in anderen Lehrbüchern oder im Internet immer wieder
auf Module oder komplette Bibliotheken stoßen, die Ihnen für die Lösung Ihres
Problems nützlich sein können. Als erfolgreicher Entwickler sollten Sie lernen, be-
stehende Lösungen (die Sie lizenzrechtlich verwenden dürfen) einzusetzen. Beim
Lernen der Sprache werden wir zwar – zu Trainingszwecken – auch solche Aufgaben
„per Hand“ lösen, für die es eigentlich schon vorgefertigte Lösungen. Im Berufs-
alltag kommt es aber in aller Regel auf Produktivität an und dabei helfen Ihnen
die Standardbibliothek oder auch Programmpakete, die andere bereits vor Ihnen
entwickelt und frei zur Verfügung gestellt haben.
Da eine Bibliothek sehr umfangreich sein kann, ist es ratsam, die einzelnen Funk-
tionalitäten noch weiter aufzuteilen. Wir werden in diesem Zusammenhang noch
öfter von Paket oder auch Modul sprechen. Bei diesen Begriffen kann man folgende
Unterscheidung vornehmen:

• Ein Modul ist eine Datei mit der Endung .py, die ausführbaren Python Code
enthält, darunter in der Regel verschiedene Funktionen und Variablen.

• Ein Paket ist eine Sammlung von Modulen, die unter einem gemeinsamen
Namensraum zusammengefasst sind und die für einen speziellen Anwendungs-
bereich entwickelt wurden. Unter den Modulen muss eine Datei namens
__init__.py sein, damit der Python-Interpreter sie als Paket erkennt. Die
__init__.py kann eine leere Datei sein, es ist nur wichtig, dass sie im Ordner
mit den Modulen existiert.

• Bibliothek ist eher ein Oberbegriff, der in der Programmierung ganz allge-
mein eine Sammlung von Programmfunktionen beschreibt. Eine Bibliothek

4.5. Mathematische Funktionen 55

kann hunderte von Modulen oder auch Paketen enthalten, so wie die Python
Standardbibliothek. Im Unterschied zu einem Paket können in einer Bibliothek
Funktionalitäten für ganz unterschiedliche Problembereiche zusammengefasst
sein. Auch dies ist bei der Standardbibliothek von Python der Fall.

4.5 Mathematische Funktionen

Ein häufig verwendetes Modul aus der Standardbibliothek ist math. Darin werden
die am häufigsten verwendeten mathematischen Funktionen bereitstellt. Bevor wir
das Modul verwenden können, müssen wir es importieren:

>>> import math

Diese Anweisung erzeugt ein Modulobjekt namens math. Wenn wir das Modulobjekt
ausgeben, erhalten wir einige Informationen über das Objekt:

>>> print(math)
<module 'math' (built-in)>

Das Modulobjekt enthält die im Modul definierten Funktionen und Variablen. Um
auf eine der Funktionen zuzugreifen, müssen wir den Namen des Moduls und den
Namen der Funktion angeben, getrennt durch einen Punkt. Dieses Format wird als
Punktnotation (englisch dot notation) bezeichnet.

>>> snr = signal / rauschen
>>> dezibel = 10 * math.log10(snr)

>>> rad = 0.7
>>> hoehe = math.sin(rad)

Im ersten Beispiel wird der Logarithmus zur Basis 10 des Signal-Rausch-
Verhältnisses (englisch Signal to Noise Ratio, SNR) berechnet. Das Mathema-
tikmodul bietet auch eine Funktion namens log, die Logarithmen zur Basis e
berechnet.

Das zweite Beispiel ermittelt den Sinus von rad. Der Name der Variablen ist ein
Hinweis darauf, dass sin und die anderen trigonometrischen Funktionen (cos, tan,
etc.) Argumente im Bogenmaß (englisch radian) annehmen. Um von Grad in
Bogenmaß umzurechnen, dividieren wir durch 360 und multiplizieren mit 2π:

>>> alpha = 45
>>> rad = alpha / 360.0 * 2 * math.pi
>>> math.sin(rad)
0.7071067811865476

56 Kapitel 4. Funktionen

Der Ausdruck math.pi holt die Variable pi aus dem Mathematikmodul. Der Wert
dieser Variablen ist eine Näherung von π, die auf etwa 15 Stellen genau ist.
Wenn man sich in Trigonometrie auskennt, kann man das vorherige Ergebnis
überprüfen, indem man es mit der Quadratwurzel aus zwei geteilt durch zwei
vergleicht:

>>> math.sqrt(2) / 2.0
0.7071067811865476

Bevor wir mit anderen Modulen der Standardbibliothek weiter machen, sollten
wir nochmal einen kurzen Blick auf die import Anweisung richten, die wir zum
Einbinden eines Moduls benötigen. Wenn Sie gerade mit der Programmierung
beginnen, werden Sie sich vielleicht wundern, warum man, nachdem ein Modul
importiert wurde, die Funktionen nicht „einfach so“ aufrufen kann, sondern immer
den Modulnamen (bzw. das Modulobjekt) voranstellen muss? Was hier umständlich
aussieht, hat einen guten Grund: Es kann gut sein, dass Sie in Ihrem Programm
viele unterschiedliche Pakete und Module verwenden. Da diese Module normaler-
weise unabhängig voneinander entwickelt wurden, können verschiedene Module die
gleichen Bezeichner verwenden. In diesem Fall würde es Namenskonflikte geben, bei
einem Aufruf könnte es schlicht dazu kommen, dass Python nicht erkennen kann,
welche Funktion Sie meinen. Daher Arbeiten Module mit Namensräumen. Beim
Importieren definieren Sie das Modulobjekt, über dessen Namen Sie das Modul
eindeutig erreichen. Wenn wir später objektorientiert programmieren, fällt das
explizite Angeben des Modulobjekts meistens weg. Wir können dann Funktionen
auf Objekten aufrufen und, da Objekte „ihre“ Funktionen kennen, wird Python die
passende Funktion auswählen. Aber dazu später mehr.

4.6 Zufallszahlen

Bei gleichen Eingaben erzeugen die meisten Computerprogramme jedes Mal die glei-
chen Ausgaben, weshalb sie als deterministisch bezeichnet werden. Determinismus
ist normalerweise eine gute Sache, da wir erwarten, dass die gleiche Berechnung
das gleiche Ergebnis liefert. Für einige Anwendungen wollen wir jedoch, dass der
Computer unvorhersehbar ist. Spiele sind ein offensichtliches Beispiel, aber es gibt
noch mehr.
Ein Programm wirklich nicht-deterministisch zu machen, erweist sich als nicht so
einfach, aber es gibt Möglichkeiten, es zumindest nicht-deterministisch erscheinen zu
lassen. Eine davon ist, Algorithmen zu verwenden, die Pseudozufallszahlen erzeugen.
Pseudozufallszahlen sind nicht wirklich zufällig, da sie durch eine deterministische
Berechnung erzeugt werden, aber allein durch das Betrachten der Zahlen ist es
nahezu unmöglich, sie von Zufallszahlen zu unterscheiden.
Das Modul random stellt Funktionen zur Verfügung, die Pseudozufallszahlen erzeu-
gen (die von hier an einfach als „zufällig“ bezeichnet werde).
Die Funktion random liefert eine zufällige Fließkommazahl zwischen 0,0 und 1,0
(einschließlich 0,0, aber ausschließlich 1,0). Jedes Mal, wenn wir random aufrufen,
erhalten wir die nächste Zahl langen Zufallszahlenfolge. Um ein Beispiel zu sehen,
führen wir diese Schleife aus:

4.7. Definition neuer Funktionen 57

import random

for i in range(10):
x = random.random()
print(x)

Dieses Programm erzeugt die folgende Liste von 10 Zufallszahlen zwischen 0,0 und
bis zu, aber nicht einschließlich 1,0.

0.11132867921152356
0.5950949227890241
0.04820265884996877
0.841003109276478
0.997914947094958
0.04842330803368111
0.7416295948208405
0.510535245390327
0.27447040171978143
0.028511805472785867

Übung 1: Führen Sie das Programm auf Ihrem System aus und schauen Sie, welche
Zahlen Sie erhalten. Führen Sie das Programm mehr als einmal aus und sehen Sie,
welche Zahlen Sie erhalten.

Die Funktion random ist nur eine von vielen Funktionen, die mit Zufallszahlen
umgehen. Die Funktion randint nimmt die Parameter low und high und gibt eine
ganze Zahl zwischen low und high (einschließlich) zurück.

>>> random.randint(5, 10)
5
>>> random.randint(5, 10)
9

Um ein Element aus einer Sequenz zufällig auszuwählen, können Sie choice ver-
wenden:

>>> t = [1, 2, 3]
>>> random.choice(t)
2
>>> random.choice(t)
3

Das Modul random bietet auch Funktionen zur Erzeugung von Zufallswerten aus
kontinuierlichen Verteilungen wie Gauß, exponentiell, Gamma und ein paar mehr.

4.7 Definition neuer Funktionen

Bisher haben wir nur die Funktionen verwendet, die mit Python geliefert werden,
aber es ist auch möglich, neue Funktionen hinzuzufügen. Eine Funktionsdefinition

58 Kapitel 4. Funktionen

gibt den Namen einer neuen Funktion und die Reihenfolge der Anweisungen an, die
ausgeführt werden, wenn die Funktion aufgerufen wird. Sobald wir eine Funktion
definiert haben, können wir die Funktion immer wieder in unserem Programm
verwenden. Hier ein einfaches Beispiel:

def print_lyrics():
print("I'm a lumberjack, and I'm okay.")
print('I sleep all night and I work all day.')

def ist ein Schlüsselwort, das anzeigt, dass es sich um eine Funktionsdefinition
handelt. Der Name der Funktion ist print_lyrics. Die Regeln für Funktionsnamen
sind die gleichen wie für Variablennamen: Buchstaben, Zahlen und der Unterstrich
sind zulässig, aber das erste Zeichen darf keine Zahl sein. Wir können kein Schlüssel-
wort als Funktionsnamen verwenden, und wir sollten vermeiden, dass eine Variable
und eine Funktion denselben Namen haben.

Die leeren Klammern hinter dem Namen zeigen an, dass diese Funktion keine
Argumente annimmt. Später werden wir Funktionen bauen, die Argumente als
Eingaben entgegennehmen.

Die erste Zeile der Funktionsdefinition wird Funktionskopf (englisch Header) ge-
nannt; der Rest wird Funktionsrumpf (englisch Body) genannt. Der Funktionskopf
muss mit einem Doppelpunkt enden und der Funktionsrumpf muss eingerückt sein.
Die Konvention besagt, dass die Einrückung immer vier Leerzeichen beträgt. Der
Funktionsrumpf kann eine beliebige Anzahl von Anweisungen enthalten.

Wenn wir eine Funktionsdefinition im interaktiven Modus eingeben, gibt der Inter-
preter eine Ellipse ... (Auslassungspunkte) aus, um uns darauf hinzuweisen, dass
die Definition nicht vollständig ist:

>>> def print_lyrics():
... print("I'm a lumberjack, and I'm okay.")
... print('I sleep all night and I work all day.')
...

Um die Funktion zu beenden, müssen wir im interaktiven Modus eine Leerzeile
eingeben. Wenn Sie ein Python Skript (also Programmcode in eine .py-Datei)
schreiben, ist die Leerzeile zwar nicht notwendig, führt aber zu übersichtlicherem
Code und sollte daher auch gesetzt werden.

Wie bei einer Variablen ist in Python auch der Bezeichner einer Funktion einfach nur
ein Name. Nur, dass über diesen Namen kein Wert-Objekt (wie bei einer Variablen)
erreicht wird, sondern ein Funktionsobjekt.

>>> print(print_lyrics)
<function print_lyrics at 0xb7e99e9c>
>>> print(type(print_lyrics))
<class 'function'>

Der Wert von print_lyrics ist ein Funktionsobjekt, das den Typ function hat.
Sie könnten der Funktion im Nachhinein auch andere Namen geben. Solange diese

4.8. Definitionen und deren Verwendung 59

dasselbe Funktionsobjekt benennen, kann die Funktion mit allen diesen Namen
verwendet werden.

Die Syntax für den Aufruf der neuen Funktion ist die gleiche wie für die von Python
bereitgestellten Funktionen, die wir bereits verwendet haben:

>>> print_lyrics()
I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.

Sobald wir eine Funktion definiert haben, können wir sie innerhalb einer anderen
Funktion verwenden. Um zum Beispiel den vorherigen Refrain zu wiederholen,
könnten wir eine Funktion namens repeat_lyrics schreiben:

def repeat_lyrics():
print_lyrics()
print_lyrics()

Und dann rufen wir repeat_lyrics auf:

>>> repeat_lyrics()
I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.
I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.

Aber so geht der Song nicht wirklich.

4.8 Definitionen und deren Verwendung

Wenn wir die Codefragmente aus dem vorherigen Abschnitt zusammenfassen, sieht
das gesamte Programm wie folgt aus:

def print_lyrics():
print("I'm a lumberjack, and I'm okay.")
print('I sleep all night and I work all day.')

def repeat_lyrics():
print_lyrics()
print_lyrics()

repeat_lyrics()

Code: https://tiny.one/py4de/code3/lyrics.py

60 Kapitel 4. Funktionen

Dieses Programm enthält zwei Funktionsdefinitionen: print_lyrics und
repeat_lyrics. Funktionsdefinitionen werden genau wie andere Anweisungen
ausgeführt, aber der Effekt ist, dass Funktionsobjekte erstellt werden. Die
Anweisungen innerhalb der Funktion werden erst ausgeführt, wenn die Funktion
aufgerufen wird. Die Funktionsdefinition selbst erzeugt also keine Ausgabe.

Wie man sich vielleicht schon denken kann, muss man eine Funktion erst definieren,
bevor man sie ausführen kann. Mit anderen Worten: Die Funktionsdefinition muss
vor dem ersten Aufruf erfolgen.

Übung 2: Versetzen Sie die letzte Zeile dieses Programms an den Anfang, sodass
der Funktionsaufruf vor den Definitionen erscheint. Führen Sie das Programm aus
und beobachten Sie, welche Fehlermeldung Sie erhalten.

Übung 3: Verschieben Sie den Funktionsaufruf wieder nach unten und verschieben
Sie die Definition von print_lyrics hinter die Definition von repeat_lyrics. Was
passiert, wenn Sie dieses Programm ausführen?

4.9 Programmablauf

Um sicherzustellen, dass eine Funktion vor ihrer ersten Verwendung definiert ist,
müssen wir die Reihenfolge kennen, in der Anweisungen ausgeführt werden, was
als Programmablauf bezeichnet wird. Die Ausführung beginnt immer mit der
ersten Anweisung des Programms. Die Anweisungen werden nacheinander in der
Reihenfolge von oben nach unten ausgeführt. Funktionsdefinitionen verändern
den Ablauf des Programms nicht, aber behalten wir im Kopf, dass Anweisungen
innerhalb der Funktion erst ausgeführt werden, wenn die Funktion aufgerufen wird.

Ein Funktionsaufruf ist wie ein Umweg im Programmablauf. Anstatt zur nächsten
Anweisung zu gehen, springt die Ausführung zum Rumpf der Funktion, führt alle
Anweisungen dort aus und kommt dann zurück, um dort weiterzumachen, wo sie
aufgehört hat. Das erscheint solange simpel, bis man sich daran erinnert, dass eine
Funktion eine andere aufrufen kann. Während sich das Programm mitten in einer
Funktion befindet, muss es möglicherweise die Anweisungen einer anderen Funktion
ausführen. Aber während diese neue Funktion ausgeführt wird, muss das Programm
möglicherweise noch eine andere Funktion ausführen!

Glücklicherweise ist Python gut darin, den Überblick zu behalten, wo es sich
befindet. Jedes Mal, wenn eine Funktion abgeschlossen ist, macht das Programm
dort weiter, wo es in der Funktion, die es aufgerufen hat, aufgehört hat.

So springt der Programmablauf von Funktion zu Funktion und erst, wenn bei
diesem Ablauf die letzte Anweisung im (Haupt-) Programm beendet ist, sind wir
schließlich am Ende angekommen und das Programm terminiert. Was ist die Moral
der Geschichte? Wenn wir ein Programm lesen, sollten wir nicht immer von oben
nach unten lesen. Manchmal macht es mehr Sinn, wenn man dem Programmablauf
folgt.

4.10. Parameter und Argumente 61

4.10 Parameter und Argumente

Einige der eingebauten Funktionen, die wir gesehen haben, benötigen Argumente.
Wenn wir zum Beispiel math.sin aufrufen, übergeben wir eine Zahl als Argument.
Einige Funktionen benötigen mehr als ein Argument: math.pow benötigt zwei, die
Basis und den Exponenten.

Innerhalb der Funktion werden die Argumente Variablen zugewiesen, die Parameter
genannt werden. Hier ist ein Beispiel für eine benutzerdefinierte Funktion, die ein
Argument annimmt:

def print_twice(bruce):
print(bruce)
print(bruce)

Diese Funktion weist das Argument einem Parameter namens bruce zu. Wenn die
Funktion aufgerufen wird, gibt sie den Wert des Parameters (welcher auch immer
das ist) zweimal aus.

Diese Funktion funktioniert mit jedem Wert, der mit der print-Funktion ausgegeben
werden kann.

>>> print_twice('Spam')
Spam
Spam
>>> print_twice(17)
17
17
>>> import math
>>> print_twice(math.pi)
3.141592653589793
3.141592653589793

Die gleichen Kompositionsregeln, die für integrierte Funktionen gelten, gelten auch
für benutzerdefinierte Funktionen, sodass wir jede Art von Ausdruck als Argument
für print_twice verwenden können:

>>> print_twice('Spam '*4)
Spam Spam Spam Spam
Spam Spam Spam Spam
>>> print_twice(math.cos(math.pi))
-1.0
-1.0

Das Argument wird ausgewertet, bevor die Funktion aufgerufen wird, sodass in
den Beispielen die Ausdrücke 'Spam '*4 und math.cos(math.pi) nur einmal
ausgewertet werden.

Wir können auch eine Variable als Argument verwenden:

62 Kapitel 4. Funktionen

>>> michael = 'Eric, the half a bee.'
>>> print_twice(michael)
Eric, the half a bee.
Eric, the half a bee.

Der Name der Variablen, die wir als Argument übergeben (michael), hat nichts
mit dem Namen des Parameters (bruce) zu tun. Es spielt keine Rolle, wie der
Wert in der aufrufenden Umgebung genannt wurde; hier in print_twice heißt der
Parameter immer bruce.

4.11 Funktionen mit und ohne Rückgabewert

Einige der Funktionen, die wir verwenden, wie z. B. die mathematischen Funktionen,
liefern Ergebnisse; daher nennen wir sie Funktionen mit Rückgabewert. Andere
Funktionen, wie print_twice, führen eine Aktion aus, geben aber keinen Wert
zurück. Sie werden auch void-Funktionen genannt.

Wenn wir eine Funktion mit Rückgabewert aufrufen, wollen wir fast immer etwas
mit dem Ergebnis machen; zum Beispiel können wir es einer Variablen zuweisen
oder als Teil eines Ausdrucks verwenden:

x = math.cos(rad)
phi = (math.sqrt(5) + 1) / 2

Wenn wir eine Funktion im interaktiven Modus aufrufen, zeigt Python das Ergebnis
an:

>>> math.sqrt(5)
2.23606797749979

Aber wenn wir in einem Skript eine Funktion mit Rückgabewert aufrufen und das
Ergebnis der Funktion nicht in einer Variablen speichern, ist der Rückgabewert
verloren!

math.sqrt(5)

Dieses Skript berechnet die Quadratwurzel aus 5, aber da es das Ergebnis nicht in
einer Variablen speichert oder das Ergebnis anzeigt, ist es nicht sehr nützlich.

Void-Funktionen können etwas auf dem Bildschirm anzeigen oder einen anderen
Effekt haben, aber sie haben keinen Rückgabewert. Wenn wir versuchen, das
Ergebnis einer Variablen zuzuweisen, erhalten wir einen speziellen Wert namens
None.

>>> result = print_twice('Bing')
Bing
Bing
>>> print(result)
None

4.12. Wozu Funktionen? 63

Der Wert None ist nicht dasselbe wie die Zeichenkette 'None'. Er ist ein spezieller
Wert, der einen eigenen Typ hat:

>>> print(type(None))
<class 'NoneType'>

Es mag Ihnen seltsam erscheinen, dass Python einen eignen Typ besitzt, der nur
einen Wert None, also nur das Nichts kennt. Tatsächlich ist das aber sehr praktisch
und wird von vielen Programmiersprachen so oder in ähnlicher Form verwendet.
Wir können damit nämlich an verschiedensten Stellen ausdrücken, dass etwas nicht
oder noch nicht existiert. Z. B. können wir einen Variablennamen anlegen, der aber
noch keinen Wert hat. Und wir können in einem booleschen Ausdruck überprüfen,
ob ein Wert existiert oder nicht.

Um ein Ergebnis aus einer Funktion heraus zurückzugeben, verwenden wir die
Anweisung return. Wir könnten zum Beispiel eine sehr einfache Funktion namens
addtwo erstellen, die zwei Zahlen addiert und ein Ergebnis zurückgibt.

def addtwo(a, b):
added = a + b
return added

x = addtwo(3, 5)
print(x)

Code: https://tiny.one/py4de/code3/addtwo.py

Wenn dieses Skript ausgeführt wird, wird 8 ausgeben, weil die Funktion addtwo
mit 3 und 5 als Argumente aufgerufen wurde. Innerhalb der Funktion waren die
Parameter a und b jeweils 3 und 5. Die Funktion berechnete die Summe der beiden
Zahlen und legte sie in der lokalen Funktionsvariablen namens added ab. Dann
gab sie den berechneten Wert mit der Anweisung return als Funktionsergebnis an
die aufrufende Umgebung zurück, die der Variablen x zugewiesen und ausgegeben
wurde.

4.12 Wozu Funktionen?

Es ist vielleicht nicht sofort klar, warum es die Mühe wert ist, ein Programm in
Funktionen zu unterteilen. Aber dafür gibt es mehrere Gründe:

• Das Erstellen einer neuen Funktion gibt einem die Möglichkeit, eine Gruppe
von Anweisungen zu benennen, wodurch ein Programm leichter zu lesen, zu
verstehen und zu debuggen ist.

• Funktionen können ein Programm kleiner machen, indem sie sich wiederho-
lenden Code eliminieren. Wenn wir später eine Änderung vornehmen, müssen
wir diese nur an einer Stelle vornehmen.

64 Kapitel 4. Funktionen

• Wenn wir ein langes Programm in Funktionen aufteilen, können wir die
Teile einzeln debuggen und sie dann zu einem funktionierenden Ganzen
zusammensetzen.

• Gut durchdachte Funktionen sind oft für viele Programme nützlich. Wenn wir
einmal eine geschrieben und debuggt haben, können wir sie wiederverwenden.

Im weiteren Verlauf des Buchs werden wir oft eine Funktionsdefinition verwenden,
um ein Konzept zu erklären. Ein Teil der Fertigkeit beim Erstellen und Verwenden
von Funktionen besteht darin, dass eine Funktion eine Idee wie „finde den kleinsten
Wert in einer Liste von Werten“ richtig erfasst. Wir werden uns überlegen, welche
Daten wir der Funktion übergeben müssen, wie das Problem von der Funktion
gelöst werden kann und in welcher Form sie mögliche Ergebnisse zurückgeben soll.

4.13 Debugging

Wenn wir einen Texteditor zum Schreiben unserer Skripte verwenden, kann es zu
Problemen mit Leerzeichen und Tabulatoren kommen. Der beste Weg, diese Proble-
me zu vermeiden, ist, ausschließlich Leerzeichen zu verwenden (keine Tabulatoren).
Die meisten Texteditoren, die sich mit Python auskennen, tun dies standardmäßig,
manche aber auch nicht.

Tabulatoren und Leerzeichen sind normalerweise unsichtbar, was die Fehlersuche
erschwert. Man sollte daher versuchen, einen Editor zu finden, der die Einrückung
für einen automatisch vornimmt.

Man sollte auch nicht vergessen, das Programm zu speichern, bevor man es ausführt.
Manche Entwicklungsumgebungen tun dies automatisch, manche aber auch nicht.
In diesem Fall ist das Programm, das man sich im Texteditor ansieht, nicht dasselbe
wie das Programm, dass man ausführt. Die Fehlersuche kann sehr lange dauern,
wenn man das gleiche fehlerhafte Programm immer und immer wieder ausführt!
Man sollte sich vergewissern, dass der Code, den man sich ansieht, auch der Code
ist, den man ausführt. Wenn man sich nicht sicher sind, fügt man etwas wie
print("hello") an den Anfang des Programms und führt es erneut aus. Wenn
man kein hello sehen kann, führt man nicht das richtige Programm aus!

4.14 Glossar

Algorithmus Ein allgemeines Verfahren zum Lösen einer Kategorie von Problemen.

Argument Ein Wert, der einer Funktion zur Verfügung gestellt wird, wenn die
Funktion aufgerufen wird. Dieser Wert wird dem entsprechenden Parameter
in der Funktion zugewiesen.

Funktionsrumpf Die Folge von Anweisungen innerhalb einer Funktionsdefinition.

deterministisch Bezieht sich auf ein Programm, das bei jedem Durchlauf das
Gleiche tut, wenn es die gleichen Eingaben hat.

4.15. Übungen 65

Punktnotation Die Syntax für den Aufruf einer Funktion in einem anderen
Modul durch Angabe des Modulnamens, gefolgt von einem Punkt und dem
Funktionsnamen.

Programmablauf Die Reihenfolge, in der Anweisungen während eines Programm-
laufs ausgeführt werden.

Funktion Eine benannte Folge von Anweisungen, die eine nützliche Operation
ausführt. Funktionen können Argumente annehmen oder nicht und können
ein Ergebnis erzeugen oder nicht.

Funktionsaufruf Eine Anweisung, die eine Funktion ausführt. Sie besteht aus
dem Funktionsnamen, gefolgt von einer Argumentliste.

Funktionsdefinition Eine Anweisung, die eine neue Funktion erstellt und ihren
Namen, ihre Parameter und die Anweisungen, die sie ausführt, angibt.

Funktionsobjekt Ein Wert, der durch eine Funktionsdefinition erzeugt wird. Der
Name der Funktion ist eine Variable, die auf ein Funktionsobjekt verweist.

Funktionskopf Die erste Zeile einer Funktionsdefinition.
Importanweisung Eine Anweisung, die eine Moduldatei liest und ein Modulobjekt

erstellt.
Modulobjekt Ein durch eine import-Anweisung erzeugter Wert, der den Zugriff

auf die in einem Modul definierten Daten und den Code ermöglicht.
Parameter Ein Name, der innerhalb einer Funktion verwendet wird, um auf den

als Argument übergebenen Wert zu verweisen.
pseudozufällig Bezieht sich auf eine Folge von Zahlen, die nur scheinbar zufällig

sind, aber von einem deterministischen Programm erzeugt werden.
Rückgabewert Das Ergebnis einer Funktion. Wenn ein Funktionsaufruf als Aus-

druck verwendet wird, ist der Rückgabewert der Wert des Ausdrucks.
void, Funktion ohne Rückgabewert Eine Funktion, die keinen Wert zurück-

gibt.

4.15 Übungen

Übung 4: Was ist der Zweck des Schlüsselworts def in Python?

a) Es ist Slang und bedeutet „der folgende Code ist wirklich cool“
b) Es zeigt den Beginn einer Funktion an
c) Es zeigt an, dass der folgende eingerückte Codeabschnitt für später gespeichert
werden soll
d) b und c sind beide wahr
e) Keiner der oben genannten Punkte

Übung 5: Was wird das folgende Python-Programm ausgeben?

def fred():
print("Zap")

def jane():
print("ABC")

jane()

66 Kapitel 4. Funktionen

fred()
jane()

a) Zap ABC jane fred jane
b) Zap ABC Zap
c) ABC Zap jane
d) ABC Zap ABC
e) Zap Zap Zap

Übung 6: Schreiben Sie ihr Programm zur Lohnberechnung (mit 1,4-fachem
Stundenlohn bei Überstunden) um. Ergänzen Sie eine Funktion lohnberechnung,
welche die beiden Parameter arbeitsstunden und stundenlohn entgegennimmt.

Anzahl Arbeitsstunden: 45
Stundenlohn: 10
Monatsgehalt: 475.0

Übung 7: Schreiben Sie das Benotungsprogramm aus dem vorigen Kapitel neu,
indem Sie eine Funktion namens notenberechnung verwenden, die eine Punktzahl
als Parameter annimmt und eine Note zurückgibt.

Punkte Note
>= 0.9 1
>= 0.8 2
>= 0.7 3
>= 0.6 4
< 0.6 5

Führen Sie das Programm wiederholt aus, um die verschiedenen Werte für die
Eingabe zu testen:

Punkte eingeben: 0.95
1

Punkte eingeben: perfekt
Falsche Punktanzahl

Punkte eingeben: 10.0
Falsche Punktanzahl

Punkte eingeben: 0.75
3

Punkte eingeben: 0.5
5

Kapitel 5

Iteration

Immer und immer wieder die gleichen Arbeitsschritte zu tun, ist für uns Men-
schen eine missliebige Vorstellung. Computer hingegen sind wahre Meister der
Wiederholung. Ein Großteil Ihrer Laufzeit verbringen Programme damit, bestimm-
te Aufgabenschritte zu wiederholen. In diesem Kapitel geht es genau um solche
Programmschleifen, mit denen man Python anweist, bestimmte Anweisungen zu
wiederholen. Wir werden zwei unterschiedliche Arten solcher Schleifen kennenlernen.
Die eine Wiederholt einen Anweisungsblock, solange eine vom Programmierer ange-
gebene Bedingung erfüllt ist. Das ist ein wenig wie beim Zähneputzen; solange die
drei Minuten noch nicht um sind, putzen Sie weiter. Die andere Art von Schleifen
ist dazu da, Folgen von Elementen abzuarbeiten. Ein möglicher Vergleich hier ist
eine Einkaufsliste, die Sie von oben nach unten Abarbeiten; wenn Sie den letzten
Artikel auf der Liste in den Einkaufswagen gelegt haben, sind Sie fertig.

5.1 Aktualisieren von Variablen

Wenn wir bestimmte Dinge wiederholen wollen, müssen wir meist mitzählen. Auch
in Programmen wird häufig gezählt, und zwar mithilfe von Variablen. Wenn wir
mit einer Variable zählen wollen, müssen wir ihren Wert aktualisieren, wobei der
neue Wert vom alten abhängt.

x = x + 1

Das bedeutet: „Ermittle den aktuellen Wert von x, addiere 1 und aktualisiere dann
x mit diesem neuen Wert.“ Bereits in Kapitel 2 haben wir gesehen, dass es kein
Problem ist, wenn hier x auf beiden Seiten des Gleichheitszeichens auftritt. Wir
werten zuerst die rechte Seite aus, erhalten so einen Wert und weisen diesen dann
auf den Namen x zu.

Wenn man versucht, eine Variable zu aktualisieren, die nicht existiert, erhält man
einen Fehler, da Python versucht, die rechte Seite des Ausdrucks auszuwerten bevor
x überhaupt einen Wert hat:

68 Kapitel 5. Iteration

>>> x = x + 1
NameError: name 'x' is not defined

Bevor man eine Variable aktualisieren kann, muss man sie also initialisieren,
normalerweise mit einer einfachen Zuweisung:

>>> x = 0
>>> x = x + 1

Das Aktualisieren einer Variablen durch Addieren von 1 wird als Inkrementieren
bezeichnet; das Subtrahieren von 1 wird als Dekrementieren bezeichnet.

5.2 Die while-Schleife

Computer werden oft eingesetzt, um sich wiederholende Aufgaben zu automatisieren.
Gleiche oder ähnliche Aufgaben fehlerfrei zu wiederholen, ist etwas, das Computer
gut und Menschen schlecht können. Weil Iteration so häufig vorkommt, bietet
Python mehrere Sprachfunktionen, um sie zu erleichtern.

Eine Form der Iteration in Python ist die while-Schleife. Hier ist ein einfaches
Programm, das von fünf herunterzählt und dann 'Blastoff!' sagt.

n = 5
while n > 0:

print(n)
n = n - 1

print('Blastoff!')

Wir können die while-Schleife fast wörtlich lesen. Sie bedeutet: „Solange n größer
als 0 ist, zeige den Wert von n an und dekrementiere dann den Wert von n um 1.
Wenn du zu 0 kommst, verlasse die while-Schleife und gebe 'Blastoff!' aus.“

Formaler ausgedrückt, ist das hier der Ablauf der Ausführung einer while-Schleife:

1. Werte die Bedingung aus und liefere True oder False.

2. Wenn die Bedingung falsch ist, wird die while-Schleife verlassen und die
Ausführung bei der nächsten Anweisung fortgesetzt.

3. Wenn die Bedingung wahr ist, führe den Schleifenrumpf aus und gehen dann
zurück zu Schritt 1.

Diese Art von Ablauf wird als Schleife bezeichnet, weil der dritte Schritt eine Schleife
zurück zum Anfang bildet. Jedes Mal, wenn der Schleifenrumpf ausgeführt wird,
nennen wir das eine Iteration. Für die obige Schleife würden wir sagen: „Sie hatte
fünf Iterationen“, was bedeutet, dass der Rumpf der Schleife fünfmal ausgeführt
wurde.

5.2. Die while-Schleife 69

Der Schleifenrumpf soll den Wert einer oder mehrerer Variablen so verändern, dass
die Bedingung schließlich falsch wird und die Schleife beendet wird. Wir nennen
die Variable, die sich bei jeder Ausführung der Schleife ändert und steuert, wann
die Schleife beendet ist, die Iterationsvariable beziehungsweise den Schleifenzähler.
Wenn es keinen Schleifenzähler gibt, wird die Schleife gegebenenfalls ewig wiederholt,
was zu einer Endlosschleife führt.

Im Fall von n können wir beweisen, dass die Schleife endet, weil wir wissen, dass der
Wert von n endlich ist, und wir können sehen, dass der Wert von n jedes Mal, wenn
wir die Schleife durchlaufen, kleiner wird, sodass wir schließlich bei 0 ankommen
müssen. In vielen anderen Fällen ist eine Schleife häufig unendlich, zum Beispiel
weil sie überhaupt keinem Schleifenzähler hat.

Manchmal möchte man erreichen, dass eine Schleife mitten im Schleifenrumpf
abgebrochen wird. In diesem Fall können wir absichtlich eine Endlosschleife schreiben
(zum Beispiel mittels True als einziger Schleifenbedingung) und dann die Anweisung
break verwenden, um sofort aus der Schleife herauszuspringen.

Diese Schleife ist offensichtlich eine Endlosschleife, weil der logische Ausdruck der
while-Schleife die Konstante True ist:

n = 10
while True:

print(n, end=' ')
n = n - 1

print('Done!')

Wenn wir den Fehler machen und diesen Code ausführen, werden wir schnell
lernen, wie wir einen durchgebrannten Python-Prozess auf unserem System stoppen
oder herausfinden können, wo der Ausschaltknopf unseres Computers ist. Dieses
Programm wird ewig laufen oder bis die Batterie leer ist, weil der logische Ausdruck
am Anfang der Schleife immer wahr ist, weil der Ausdruck der konstante Wert True
ist.

Obwohl es sich hierbei um eine dysfunktionale Endlosschleife handelt, können wir
dieses Muster dennoch verwenden, um nützliche Schleifen zu konstruieren, solange
wir sorgfältig Code in den Körper der Schleife einfügen, um die Schleife explizit
mit break zu verlassen, wenn wir die Abbruchbedingung erreicht haben.

Nehmen wir zum Beispiel an, dass wir Eingaben des Benutzers entgegennehmen
wollen, bis man done eingibt. Wir könnten schreiben:

while True:
line = input('> ')
if line == 'done':

break
print(line)

print('Done!')

Code: https://tiny.one/py4de/code3/copytildone1.py

70 Kapitel 5. Iteration

Die Schleifenbedingung ist True, was immer wahr ist, sodass die Schleife wiederholt
durchlaufen wird, bis sie auf die break-Anweisung trifft.

Bei jedem Durchlauf fordert das Programm den Benutzer mit einer spitzen Klam-
mer zur Eingabe auf. Wenn der Benutzer done eingibt, wird die Schleife mit der
Anweisung break verlassen. Andernfalls gibt das Programm aus, was auch immer
der Benutzer zuvor eingegeben hat, und kehrt an den Anfang der Schleife zurück:

> hello there
hello there
> finished
finished
> done
Done!

Diese Art, while-Schleifen zu schreiben, ist üblich, weil wir die Bedingung an jeder
Stelle der Schleife überprüfen können (nicht nur am Anfang) und weil wir die
Abbruchbedingung aktiv („stoppe, wenn dies passiert“) statt passiv („mache weiter,
bis jenes passiert.“) ausdrücken können.

5.3 Abbrechen einer Iteration mit continue

Manchmal befinden wir uns in einer Iteration einer Schleife und möchten die
aktuelle Iteration beenden und sofort zur nächsten Iteration springen. In diesem
Fall können wir die Anweisung continue verwenden, um zur nächsten Iteration zu
springen, ohne den Rest des Schleifenrumpfes in der aktuellen Iteration durchlaufen
zu müssen.

Hier ist ein Beispiel für eine Schleife, die eine Benutzereingabe sofort wieder ausgibt,
bis der Benutzer done eingibt. Zeilen, die mit einer Raute beginnen, werden jedoch
ignoriert.

while True:
line = input('> ')
if line[0] == '#':

continue
if line == 'done':

break
print(line)

print('Done!')

Code: https://tiny.one/py4de/code3/copytildone2.py

Hier ist ein Beispiellauf dieses neuen Programms mit hinzugefügtem continue.

> hello there
hello there
> # don't print this
> print this!

5.4. for-Schleifen 71

print this!
> done
Done!

Alle Zeilen werden ausgegeben, außer diejenigen, die mit dem Rautezeichen beginnt,
denn wenn die Anweisung continue ausgeführt wird, bricht die aktuelle Iteration
ab und die Programmausführung springt zurück zur Anweisung while, um die
nächste Iteration zu starten, und überspringt damit die Anweisung print.

5.4 for-Schleifen

Manchmal wollen wir eine Folge von Dingen in einer Schleife durchlaufen, z. B. eine
Liste von Wörtern, die Zeilen in einer Datei oder eine Liste von Zahlen. Wenn
wir eine Liste von Dingen haben, die in einer Schleife durchlaufen werden sollen,
können wir eine bereichsbasierte Schleife nutzen. Die for-Schleife durchläuft eine
bekannte Folge von Elementen mit so vielen Iterationen, wie es Elemente in der
Folge gibt.

Die Syntax einer for-Schleife ähnelt der while-Schleife insofern, als es eine for-
Anweisung und einen Schleifenrumpf gibt:

friends = ['Anna', 'Ben', 'Carla']
for friend in friends:

print('Happy New Year:', friend)
print('Done!')

In Python ausgedrückt, ist die Variable friends eine Liste1 von drei Zeichenketten
und die for-Schleife durchläuft die Liste und führt den Rumpf einmal für jede der
drei Zeichenketten in der Liste aus, was zu dieser Ausgabe führt:

Happy New Year: Anna
Happy New Year: Ben
Happy New Year: Carla
Done!

Die Übersetzung dieser for-Schleife in unsere Sprache ist nicht so direkt wie die
der while-Schleife, aber wenn man sich friends als eine Folge oder als eine Menge
vorstellt, könnte es etwa so lauten: „Führe die Anweisungen im Rumpf der Schleife
einmal für jeden Freund aus der Folge aller Freunde aus."

Wenn man sich die for-Schleife ansieht, sind for und in reservierte Python-
Schlüsselwörter, und friend und friends sind Variablen.

for friend in friends:
print('Happy New Year:', friend)

1Wir werden Listen in einem späteren Kapitel genauer untersuchen.

72 Kapitel 5. Iteration

Insbesondere ist friend die Iterationsvariable für die for-Schleife. Die Variable
friend ändert sich bei jeder Iteration der Schleife und steuert, wann die for-Schleife
beendet ist. Die Iterationsvariable geht nacheinander durch die drei Zeichenketten,
die in der Variablen friends gespeichert sind.

Die Unterscheidung, ob es sich um eine Folge oder um eine Menge handelt, macht
beim Durchlaufen der Daten einen Unterschied. Bei einer Folge sind die einzelnen
Elemente geordnet und die Reihenfolge der Elemente in der Folge wird beim
Durchlaufen beibehalten. In einer Menge sind die Elemente nicht geordnet. Die
for-Schleife betrachtet also jedes Element der Menge genau einmal, in welcher
Reihenfolge die Elemente ausgewählt werden, ist dabei nicht genau festgelegt.

5.5 Typische Anwendungen von Schleifen

Oft verwenden wir eine for- oder while-Schleife, um eine Liste von Elementen
oder den Inhalt einer Datei zu durchlaufen, und wir suchen nach etwas wie dem
größten oder kleinsten Wert einer Liste, die wir durchlaufen.

Diese Schleifen werden in der Regel so konstruiert:

• Initialisierung einer oder mehrerer Variablen vor Beginn der Schleife

• Durchführen von Berechnungen an jedem Element, wobei möglicherweise die
Variablen im Schleifenkörper geändert werden

• Betrachten der resultierenden Variablen, wenn die Schleife beendet ist

Wir werden eine Liste von Zahlen verwenden, um die typischen Anwendungen von
Schleifen zu demonstrieren.

5.5.1 Zählen und Summieren

Um zum Beispiel die Anzahl der Elemente in einer Liste zu zählen, würden wir die
folgende for-Schleife schreiben:

count = 0
for itervar in [3, 41, 12, 9, 74, 15]:

count = count + 1
print('Count: ', count)

Wir setzen die Variable count auf 0, bevor die Schleife beginnt, dann schreiben wir
eine for-Schleife, die die Liste der Zahlen durchläuft. Unsere Iterations-Variable
heißt itervar und obwohl wir itervar nicht in der Schleife verwenden, steuert sie
die Schleife und bewirkt, dass der Schleifenkörper für jeden der Werte in der Liste
einmal ausgeführt wird.

Im Schleifenkörper addieren wir für jeden der Werte in der Liste 1 zum aktuellen
Wert von count. Während die Schleife ausgeführt wird, entspricht der Wert von
count der Anzahl der Werte, die wir bisher gesehen haben.

5.5. Typische Anwendungen von Schleifen 73

Sobald die Schleife abgeschlossen ist, ist der Wert von count die Gesamtzahl der
Elemente. Die Gesamtzahl fällt uns am Ende der Schleife „in den Schoß“. Wir
konstruieren die Schleife so, dass wir das haben, was wir wollen, wenn die Schleife
beendet ist.
Eine weitere ähnliche Schleife, die die Summe einer Menge von Zahlen berechnet,
sieht wie folgt aus:

total = 0
for itervar in [3, 41, 12, 9, 74, 15]:

total = total + itervar
print('Summe: ', total)

In dieser Schleife benutzen wir die Iterationsvariable tatsächlich. Anstatt wie in
der vorherigen Schleife einfach eine 1 zu count zu addieren, fügen wir bei jeder
Schleifeniteration die aktuelle Zahl (3, 41, 12, usw.) zur laufenden Summe hinzu.
Wenn wir uns die Variable total vorstellen, enthält sie die laufende Summe der
bisherigen Werte. Bevor die Schleife beginnt, ist total also 0, weil wir noch keine
Werte gesehen haben, während der Schleife ist total die laufende Summe, und am
Ende der Schleife ist total die Gesamtsumme aller Werte in der Liste.
Während die Schleife ausgeführt wird, akkumuliert total die Summe der Elemente;
eine Variable, die auf diese Weise verwendet wird, nennt man manchmal einen
Akkumulator.
Weder die Zählschleife noch die Summierschleife sind in der Praxis besonders
nützlich, da es eingebaute Funktionen len() und sum() gibt, die die Anzahl der
Elemente in einer Liste bzw. die Summe der Elemente in der Liste berechnen.

5.5.2 Maximum und Minimum ermitteln

Um den größten Wert in einer Liste oder Folge zu finden, konstruieren wir die
folgende Schleife:

largest = None
print('Maximum zu Beginn:', largest)
for itervar in [3, 41, 12, 9, 74, 15]:

if largest is None or itervar > largest:
largest = itervar

print('Betrachte Wert:', itervar, 'Aktuelles Maximum:', largest)
print('Das Maximum ist:', largest)

Wenn das Programm ausgeführt wird, sieht die Ausgabe wie folgt aus:

Maximum zu Beginn: None
Betrachte Wert: 3 Aktuelles Maximum: 3
Betrachte Wert: 41 Aktuelles Maximum: 41
Betrachte Wert: 12 Aktuelles Maximum: 41
Betrachte Wert: 9 Aktuelles Maximum: 41
Betrachte Wert: 74 Aktuelles Maximum: 74
Betrachte Wert: 15 Aktuelles Maximum: 74
Das Maximum ist: 74

74 Kapitel 5. Iteration

Die Variable largest kann man sich am besten als den „größten Wert, den wir
bisher gesehen haben“ vorstellen. Vor der Schleife setzen wir largest auf die
Konstante None. Die Konstante None ist ein spezieller konstanter Wert, den wir in
einer Variablen speichern können, um die Variable als „leer“ zu markieren.

Bevor die Schleife beginnt, ist der größte Wert, den wir bisher gesehen haben,
None, da wir noch keine Werte gesehen haben. Wenn während der Ausführung der
Schleife largest None ist, nehmen wir den ersten Wert, den wir sehen, als den
bisher größten. Man kann sehen, dass in der ersten Iteration, wenn der Wert von
itervar 3 ist, wir sofort largest auf 3 setzen (weil largest None ist).

Nach der ersten Iteration ist largest nicht mehr None, sodass der zweite Teil
des zusammengesetzten logischen Ausdrucks, der itervar > largest prüft, nur
ausgelöst wird, wenn wir einen Wert sehen, der größer als der „bisher größte“ ist.
Wenn wir einen neuen „noch größeren“ Wert sehen, weisen wir diesen neuen Wert
largest zu. Man kann in der Programmausgabe sehen, dass largest von 3 über
41 bis 74 fortschreitet.

Am Ende der Schleife haben wir alle Werte überprüft und die Variable largest
enthält nun den größten Wert in der Liste.

Um die kleinste Zahl zu berechnen, ist der Code sehr ähnlich, mit einer kleinen
Änderung:

smallest = None
print('Before:', smallest)
for itervar in [3, 41, 12, 9, 74, 15]:

if smallest is None or itervar < smallest:
smallest = itervar

print('Loop:', itervar, smallest)
print('Smallest:', smallest)

Auch hier ist smallest der „bisher kleinste“ Wert vor, während und nach der
Ausführung der Schleife. Wenn die Schleife beendet ist, enthält smallest den
kleinsten Wert in der Liste.

Wiederum wie beim Zählen und Summieren machen die eingebauten Funktionen
max() und min() das Schreiben dieser exakten Schleifen überflüssig.

Das Folgende Codefragment ist eine einfache Version der in Python eingebauten
Funktion min():

def min(values):
smallest = None
for value in values:

if smallest is None or value < smallest:
smallest = value

return smallest

In dieser Funktion haben wir alle print-Anweisungen entfernt, damit sie äquivalent
zur Funktion min ist, die bereits in Python eingebaut ist.

5.6. Debugging 75

5.6 Debugging

Wenn wir anfangen, größere Programme zu schreiben, werden wir möglicherweise
mehr Zeit mit der Fehlersuche verbringen. Mehr Code bedeutet mehr Möglichkeiten,
einen Fehler zu machen und mehr Stellen, an denen sich Bugs verstecken können.

Eine Möglichkeit, die Debugging-Zeit zu verkürzen, ist das „Debugging durch
Bisektion“ (Halbierung). Wenn das Programm z. B. 100 Zeilen enthält und man
diese nacheinander überprüft, würde dies 100 Schritte erfordern.

Versuchen wir stattdessen, das Problem in zwei Hälften zu teilen. Suchen wir in
der Mitte des Programms oder in dessen Nähe nach einem Zwischenwert, den Sie
überprüfen können. Wir fügen eine print-Anweisung (oder etwas anderes, das eine
überprüfbare Wirkung hat) hinzu und führen das Programm aus.

Wenn die Überprüfung an dieser Stelle falsch ist, muss das Problem in der ersten
Hälfte des Programms liegen. Wenn sie korrekt ist, liegt das Problem in der zweiten
Hälfte.

Jedes Mal, wenn wir eine solche Prüfung durchführen, halbieren wir die Anzahl der
Zeilen, die wir durchsuchen müssen. Nach sechs Schritten (was viel weniger als 100
ist), wären wir auf eine oder zwei Codezeilen runter, zumindest theoretisch.

In der Praxis ist es nicht immer klar, was die „Mitte des Programms“ ist und
nicht immer möglich, dies zu überprüfen. Es macht keinen Sinn, Zeilen zu zählen
und die genaue Mitte zu finden. Überlegen wir stattdessen, an welchen Stellen
im Programm es Fehler geben könnte und an welchen Stellen es einfach ist, eine
Prüfung durchzuführen. Wir wählen dann eine Stelle, bei der wir denken, dass die
Chancen etwa gleich groß sind, dass der Fehler vor oder nach der Prüfung liegt.

5.7 Glossar

Akkumulator Eine Variable, die in einer Schleife zum Aufaddieren oder Akku-
mulieren eines Ergebnisses verwendet wird.

Schleifenzähler Eine Variable, die in einer Schleife verwendet wird, um die Anzahl
der Male zu zählen, die etwas passiert ist. Wir initialisieren einen Zähler auf
Null und inkrementieren den Zähler dann jedes Mal, wenn wir etwas „zählen“
wollen.

Dekrementieren Eine Aktualisierung, die den Wert einer Variablen verringert.
Initialisierung Eine Zuweisung, die einer Variablen einen Anfangswert zuweist

(Anfangswertzuweisung).
Inkrementieren Eine Aktualisierung, die den Wert einer Variablen erhöht (häufig

um eins).
Endlosschleife Eine Schleife, in der die Abbruchbedingung nie erfüllt ist oder für

die es keine Abbruchbedingung gibt.
Iteration Wiederholte Ausführung einer Reihe von Anweisungen unter Verwen-

dung einer Funktion, die sich selbst aufruft, oder einer Schleife.

76 Kapitel 5. Iteration

5.8 Übungen

Übung 1: Schreiben Sie ein Programm, das wiederholt Zahlen einliest, bis der
Benutzer den Befehl done eingibt. Sobald done eingegeben wurde, geben Sie die
Summe, die Anzahl und den Durchschnitt der Zahlen aus. Wenn der Benutzer
etwas anderes als eine Zahl eingibt, erkennen Sie seinen Fehler mit try und except
und geben eine Fehlermeldung aus und springen zur nächsten Zahl.

Bitte eine Zahl eingeben: 4
Bitte eine Zahl eingeben: 5
Bitte eine Zahl eingeben: sechs
Ungueltige Eingabe
Bitte eine Zahl eingeben: 7
Bitte eine Zahl eingeben: done
16 3 5.333333333333333

Übung 2: Schreiben Sie ein weiteres Programm, das eine Liste von Zahlen wie
oben abfragt und am Ende sowohl das Maximum als auch das Minimum der Zahlen
anstelle des Durchschnitts ausgibt.

Kapitel 6

Zeichenketten

Bei typischen Informatik-Begriffen wie „Datenverarbeitung“ oder auch „Rechner“
denkt man womöglich als Erstes an das Rechnen mit Zahlen. Tatsächlich machen
aber, quantitativ gesehen, numerische Daten nur einen kleinen Teil der Daten aus,
die wir mit Computern verarbeiten können. Viele Informationen liegen in Form
von geschrieben Texten vor, die von unseren Programmen ausgewertet werden. In
diesem Kapitel geht es um Text-Daten, die sogenannten Zeichenketten. Wir werden
sehen, wie man in Python Zeichenketten anlegt und vor allem, wie man mit ihnen
umgehen kann.

Noch einen kleinen Tipp vorab: vieles von dem, was man mit Zeichenketten machen
kann, funktioniert genau so mit Folgen von völlig andren Elementen. Wenn Sie in
diesem Kapitel genau hinsehen, kommt Ihnen das also in den folgenden umso mehr
zugute.

6.1 Was ist eine Zeichenkette?

Eine Zeichenkette (englisch String) ist eine Folge einzelner Zeichen (englisch Charac-
ter). Wir können die Folge von Zeichen einfach „wie Text“ im Programm angeben.
Wichtig ist nur, dass sie in Anführungszeichen gesetzt wird, denn sonst würde
Python die Zeichen als Bezeichner (also z. B. als Variable) deuten.

Python lässt übrigens sowohl einfache ('...'), als auch die im Deutschen verwen-
deten doppelten ("...") Anführungszeichen zu. Es macht also keinen Unterschied,
ob Sie die Zeichenkette als 'Hallo Welt' oder als "Hallo Welt" angeben.

Auf den ersten Blick erscheint es überflüssig zu sein, zwei Schreibweisen für den
gleichen Zweck zu haben. Es gibt aber mindestens ein gutes Gegenargument: Stellen
Sie sich vor, sie möchten ein Anführungszeichen (egal ob doppelt oder einfach) in
einer Zeichenkette verwenden. Python erlaubt es nun, dass Sie dasjenige Anfüh-
rungszeichen zum Einfassen der Zeichen verwenden, dass Sie in der Zeichenkette
nicht benötigen.

>>> text1 = 'Sie rief ihnen "Hallo" zu.'

78 Kapitel 6. Zeichenketten

>>> text2 = "Hello it's me"
>>> text3 = 'What\'s up?'

text1 verwendet einfache Anführungszeichen, um im Satz die wörtliche Rede „Hallo“
in doppelten Anführungszeichen darstellen zu können. In text2 verwenden wir
doppelten Anführungszeichen, da wir im Text ein Apostroph setzen wollen. text3
verwendet nur einfach Anführungszeichen, obwohl im Text ein Apostroph vorkommt.
Wir müssen dieses Apostrophzeichen mit einem sogenannten Maskierungszeichen
versehen. Python verwendet hier, wie die meisten Programmiersprachen den Backs-
lash \. Dieses Sonderzeichen verhindert, dass das nachfolgende Zeichen vom ausfüh-
renden Programm als Funktionszeichen gesehen wird. Der Apostroph soll hier also
nicht den String schließen, sondern als wirklicher Apostroph in der Zeichenkette
erscheinen.
Es steht Ihnen also frei, einfache oder doppelten Anführungszeichen zu verwenden.
Die Konvention, die sich bei vielen Python-Programmierern eingebürgert hat, ist
einfache Anführungszeichen für einzelne Worte oder Begriffe zu verwenden und
doppelte Anführungszeichen für ganze Sätze.
Da eine Zeichenkette eine Folge (einzelner) Zeichen ist, können wir auch auf die
einzelnen Elemente dieser Folge zugreifen. Dies funktioniert mit dem indexbasierten
Zugriffsoperator (auch Klammeroperator genannt):

>>> frucht = 'Banane'
>>> zeichen = frucht[1]

Die zweite Anweisung extrahiert das Zeichen an Indexposition 1 aus der Variablen
frucht und weist es der Variablen zeichen zu.
Der Ausdruck in eckigen Klammern wird als Index bezeichnet. Der Index gibt an,
auf welches Zeichen in der Sequenz zugegriffen werden soll. Aber wir bekommen
vielleicht nicht das, was wir erwarten:

>>> print(zeichen)
a

Für die meisten Menschen ist der erste Buchstabe von „Banane“ eigentlich ein „B“,
aber nicht „a“. Aber in Python ist der Index ein Offset vom Anfang der Zeichenkette,
und der Offset des ersten Buchstabens ist 0.

>>> zeichen = frucht[0]
>>> print(zeichen)
B

So ist „B“ der nullte Buchstabe von „Banane“, „a“ der erste und „n“ der zweite
Buchstabe.
Man kann einen beliebigen Ausdruck, einschließlich Variablen und Operatoren, als
Index verwenden, aber der Wert des Index muss eine ganze Zahl sein. Sonst erhält
man:

>>> zeichen = frucht[1.5]
TypeError: string indices must be integers

6.2. Länge einer Zeichenkette 79

B a n a n e

[0] [1] [2] [3] [4] [5]

Abbildung 6.1: Indizes im String

6.2 Länge einer Zeichenkette

len ist eine eingebaute Funktion, die die Anzahl der Zeichen in einer Zeichenkette
zurückgibt:

>>> frucht = 'Banane'
>>> len(frucht)
6

Um den letzten Buchstaben einer Zeichenkette zu erhalten, könnte man versucht
sein, etwas wie das hier zu tun:

>>> length = len(frucht)
>>> last = frucht[length]
IndexError: string index out of range

Der Grund für den IndexError ist, dass es keinen Buchstaben in „Banane“ mit
dem Index 6 gibt. Da wir bei null angefangen haben zu zählen, sind die sechs
Buchstaben von 0 bis 5 nummeriert. Um das letzte Zeichen zu erhalten, müssen
wir 1 von length subtrahieren:

>>> last = frucht[length-1]
>>> print(last)
e

Alternativ können wir auch negative Indizes verwenden, die vom Ende der Zeichen-
kette rückwärts zählen. Der Ausdruck frucht[-1] ergibt den letzten Buchstaben,
frucht[-2] den vorletzten und so weiter.

6.3 Traversieren einer Zeichenkette

Bei vielen Berechnungen wird eine Zeichenkette Zeichen für Zeichen verarbeitet. Oft
beginnen sie am Anfang, wählen jedes Zeichen der Reihe nach aus, machen etwas
damit und fahren bis zum Ende fort. Dieses Verarbeitungsmuster wird als Traver-
sierung bezeichnet. Eine Möglichkeit, eine solche Traversierung zu implementieren,
ist eine while-Schleife:

80 Kapitel 6. Zeichenketten

index = 0
while index < len(frucht):

zeichen = frucht[index]
print(zeichen)
index = index + 1

Diese Schleife durchläuft die Zeichenkette und zeigt jeden Buchstaben einzeln
in einer Zeile an. Die Schleifenbedingung ist index < len(frucht), wenn also
index gleich der Länge der Zeichenkette ist, ist die Bedingung falsch und der
Schleifenrumpf wird nicht mehr ausgeführt. Das letzte Zeichen, auf das zugegriffen
wird, ist dasjenige mit dem Index len(frucht)-1, also das letzte Zeichen in der
Zeichenkette.

Übung 1: Schreiben Sie eine while-Schleife, die beim letzten Zeichen in der
Zeichenkette beginnt und sich rückwärts bis zum ersten Zeichen in der Zeichenkette
vorarbeitet, wobei jeder Buchstabe in einer eigenen Zeile ausgegeben wird, natürlich
rückwärts.

Eine andere Möglichkeit, einen Traversierung zu schreiben, ist mit einer for-Schleife:

for char in frucht:
print(char)

Jedes Mal, wenn die Schleife durchlaufen wird, wird das nächste Zeichen in der
Zeichenkette der Variablen char zugewiesen. Die Schleife wird fortgesetzt, bis keine
Zeichen mehr übrig sind.

6.4 Der slice-Operator

Ein Segment einer Zeichenkette wird im Englischen als Slice oder Substring (deutsch
Teilzeichenkette) bezeichnet. Die Auswahl einer Teilzeichenkette funktioniert ähnlich
wie die Auswahl eines Zeichens:

>>> s = 'Monty Python'
>>> print(s[0:5])
Monty
>>> print(s[6:12])
Python

Der Operator gibt den Teil der Zeichenkette vom n-ten Zeichen bis zum m-ten
Zeichen zurück, einschließlich des ersten, aber ausschließlich des letzten Zeichens.
Die erste print-Anweisung im obigen Beispiel druckt also die Zeichen 0 bis 4 des
Strings, das zweite print druckt die Zeichen 6 bis 11.

Wenn man den ersten Index (vor dem Doppelpunkt) weglässt, beginnt die Teil-
zeichenkette am Anfang der Zeichenkette. Wenn man den zweiten Index ebenfalls
weglässt, geht die Teilzeichenkette bis zum Ende der Zeichenkette:

6.5. Zeichenketten sind unveränderlich 81

>>> frucht = 'Banane'
>>> frucht[:3]
'Ban'
>>> frucht[3:]
'ane'

Wenn der erste Index größer oder gleich dem zweiten ist, ist das Ergebnis eine leere
Zeichenkette, dargestellt durch zwei Anführungszeichen:

>>> frucht = 'Banane'
>>> frucht[3:3]
''

Eine leere Zeichenkette enthält keine Zeichen und hat die Länge 0, aber ansonsten
verhält sie sich genauso wie jede andere Zeichenkette.

Übung 2: Wenn frucht eine Zeichenkette ist, was bewirkt dann frucht[:]?

6.5 Zeichenketten sind unveränderlich

Es ist verlockend, den Operator auf der linken Seite einer Zuweisung zu verwenden,
mit der Absicht, ein Zeichen in einer Zeichenkette zu ändern. Zum Beispiel:

>>> greeting = 'Hello, world!'
>>> greeting[0] = 'J'
TypeError: 'str' object does not support item assignment

Das „Objekt“ ist in diesem Fall die Zeichenkette und das „Element“ ist das Zeichen,
das wir versucht haben zuzuweisen. Im Moment ist ein Objekt dasselbe wie ein
Wert, aber wir werden diese Definition später verfeinern. Ein Element ist einer der
Werte in einer Sequenz.

Der Grund für den Fehler ist, dass Zeichenketten unveränderlich sind. Dies bedeutet,
dass wir eine vorhandene Zeichenkette nicht ändern können. Das Beste, was wir tun
können, ist, eine neue Zeichenfolge zu erstellen, die eine Variation der ursprünglichen
Zeichenfolge ist:

>>> greeting = "Hello, world!"
>>> new_greeting = 'J' + greeting[1:]
>>> print(new_greeting)
Jello, world!

In diesem Beispiel wird ein neuer Anfangsbuchstabe an ein Stück von greeting
angehängt. Es hat keine Auswirkung auf die ursprüngliche Zeichenfolge.

82 Kapitel 6. Zeichenketten

6.6 Zählen mit Schleifen

Das folgende Programm zählt, wie oft der Buchstabe „a“ in einer Zeichenkette
vorkommt:

word = 'Banane'
count = 0
for zeichen in word:

if zeichen == 'a':
count = count + 1

print(count)

Dieses Programm demonstriert ein Vorgehen, das man als Zähler bezeichnet könnte.
Die Variable count wird mit 0 initialisiert und dann jedes Mal inkrementiert, wenn
ein 'a' gefunden wird. Wenn die Schleife beendet wird, enthält count das Ergebnis:
die Gesamtzahl der „a“.

Übung 3: Lagern Sie diesen Code in eine Funktion namens count aus, und
verallgemeinern Sie diese so, dass sie die Zeichenkette und den Buchstaben als
Argumente akzeptiert.

6.7 Der in-Operator

Das Schlüsselwort in ist ein boolescher Operator, der zwei Zeichenketten annimmt
und True zurückgibt, wenn die erste Zeichenkette als Teilzeichenkette in der zweiten
erscheint:

>>> 'an' in 'Banane'
True
>>> 'anna' in 'Banane'
False

6.8 Vergleich von Zeichenketten

Die Vergleichsoperatoren arbeiten mit Zeichenketten. Um zu sehen, ob zwei Zei-
chenketten gleich sind:

if word == 'Banane':
print('Genau, Banane!')

Andere Vergleichsoperationen sind nützlich, um Wörter in alphabetische Reihenfolge
zu bringen:

if word < 'banane':
print('Dein Wort,' + word + ', kommt vor banane.')

6.9. Funktionen von Zeichenketten 83

elif word > 'Banane':
print('Dein Wort,' + word + ', kommt nach banane.')

else:
print('Genau, banane!')

Python geht mit Groß- und Kleinbuchstaben nicht so um, wie es Menschen tun.
Alle Großbuchstaben kommen vor allen Kleinbuchstaben, also:

Dein Wort,Traube, kommt vor banane.

Eine gängige Methode, dieses Problem zu beheben, besteht darin, Zeichenketten in
ein Standardformat zu konvertieren, z. B. in Kleinbuchstaben, bevor der Vergleich
durchgeführt wird.

6.9 Funktionen von Zeichenketten

Zeichenketten sind ein Beispiel für Objekte in Python. Ein Objekt enthält sowohl
Daten (in diesem Beispiel die eigentliche Zeichenkette selbst) als auch sogenannte
Methoden, also Funktionen, die in das Objekt eingebaut sind und jeder Instanz des
Objekts zur Verfügung stehen.

Python hat eine Funktion namens dir, die die verfügbaren Methoden für ein Objekt
auflistet. Die Funktion type zeigt den Typ eines Objekts und die Funktion dir
seine Methoden.

>>> stuff = 'Hello world'
>>> type(stuff)
<class 'str'>
>>> dir(stuff)
['capitalize', 'casefold', 'center', 'count', 'encode',
'endswith', 'expandtabs', 'find', 'format', 'format_map',
'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit',
'isidentifier', 'islower', 'isnumeric', 'isprintable',
'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower',
'lstrip', 'maketrans', 'partition', 'replace', 'rfind',
'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip',
'split', 'splitlines', 'startswith', 'strip', 'swapcase',
'title', 'translate', 'upper', 'zfill']

Im Gegensatz zur Funktion dir, die lediglich eine grobe Auflistung der Methoden
anzeigt, liefert die Funktion help eine vollständige Hilfe. Besonders im interaktiven
Modus ist help eine schnelle und gute Möglichkeit, um Informationen zu einer be-
stimmten Funktion zu erhalten. Noch übersichtlicher als help ist die Dokumentation
der Standardbibliothek im Internet unter docs.python.org.

>>> help(str.capitalize)
Help on method_descriptor:

https://docs.python.org/library/stdtypes.html#string-methods

84 Kapitel 6. Zeichenketten

capitalize(...)
S.capitalize() -> str

Return a capitalized version of S, i.e. make the first character
have upper case and the rest lower case.

>>>

Der Aufruf einer Methode ist ähnlich wie der Aufruf einer Funktion (sie nimmt
Argumente entgegen und gibt einen Wert zurück), aber die Syntax ist anders. Wir
rufen eine Methode auf, indem wir den Methodennamen an den Variablennamen
anhängen und den Punkt als Begrenzer verwenden.

Zum Beispiel nimmt die Methode upper eine Zeichenkette entgegen und gibt eine
neue Zeichenkette zurück, die nur aus Großbuchstaben besteht:

Anstelle der Funktionssyntax upper(word) wird die Methodensyntax
word.upper() verwendet.

>>> word = 'Banane'
>>> new_word = word.upper()
>>> print(new_word)
BANANE

Diese Form der Punktschreibweise gibt den Namen der Methode (upper) und den
Namen der Zeichenkette (word), auf die die Methode angewendet werden soll an.
Die leeren Klammern zeigen an, dass diese Methode kein Argument benötigt.

Ein Methodenaufruf wird als Aufruf bezeichnet; in diesem Fall würden wir sagen,
dass wir upper auf word aufrufen. Die Aufrufkonvention mit der Punktnotation
ist typisch für die objektorientierte Programmierung. Die Zeichenkette word ist in
diesem Fall unser Objekt, und der Aufruf der Methode upper auf dem Objekt
bewirkt, dass etwas mit dem Objekt passiert.

Es gibt weitere Zeichenketten-Methoden, beispielsweise die Methode find, die nach
der Position einer Zeichenkette innerhalb einer anderen sucht:

>>> word = 'Banane'
>>> index = word.find('a')
>>> print(index)
1

In diesem Beispiel rufen wir find auf word auf und übergeben den gesuchten
Buchstaben als Parameter.

Die Methode find kann sowohl Teilzeichenketten als auch Zeichen finden:

>>> word.find('na')
2

Sie kann als zweites Argument den Index annehmen, bei dem sie beginnen soll:

6.10. Parsen von Zeichenketten 85

>>> word.find('a', 2)
3

Eine häufige Aufgabe ist das Entfernen von Whitespaces (Leerzeichen, Tabulatoren
oder Zeilenumbrüche) am Anfang und Ende einer Zeichenkette mit der Methode
strip:

>>> line = ' Here we go '
>>> line.strip()
'Here we go'

Einige Methoden wie startswith geben boolesche Werte zurück.

>>> line = 'Have a nice day'
>>> line.startswith('Have')
True
>>> line.startswith('h')
False

Man kann feststellen, dass startswith Groß- und Kleinschreibung unterscheidet,
daher nehmen wir manchmal eine Zeile und wandeln mit lower alles in Kleinbuch-
staben um, bevor wir eine Überprüfung mit der Methode startswith durchführen.

>>> line = 'Have a nice day'
>>> line.startswith('h')
False
>>> line.lower()
'have a nice day'
>>> line.lower().startswith('h')
True

Im letzten Beispiel wird die Methode lower aufgerufen und dann wird mit
startswith geprüft, ob die resultierende klein geschriebene Zeichenkette mit dem
Buchstaben „h“ beginnt. Solange wir mit der Reihenfolge vorsichtig sind, können
wir mehrere Methodenaufrufe in einem einzigen Ausdruck machen.

Übung 4: Es gibt eine String-Methode namens count, die der Funktion in der
vorherigen Übung ähnlich ist. Lesen Sie die Dokumentation zu dieser Methode
unter:

https://docs.python.org/library/stdtypes.html#string-methods

Schreiben Sie ein Programm, das die Anzahl der Vorkommen des Buchstabens „a“
in „Banane“ mithilfe der count-Methode zählt.

6.10 Parsen von Zeichenketten

Oft wollen wir in eine Zeichenkette schauen und eine Teilzeichenkette finden. Wenn
wir zum Beispiel eine Liste von Zeilen erhalten, die wie folgt formatiert sind:

https://docs.python.org/library/stdtypes.html#string-methods

86 Kapitel 6. Zeichenketten

From giefers.heiner@fh-swf.de Mon, 30 Aug 2021 16:20:09

Wollten wir nur die Domäne der e-Mail Adresse (d. h. fh-swf.de) aus jeder Zeile
extrahieren, können wir dies mit der Methode find und String-Slicing erreichen.

Zuerst wird die Position des at-Zeichens in der Zeichenkette ermittelt. Dann werden
wir die Position des ersten Leerzeichens nach dem at-Zeichen finden. Und dann
verwenden wir String-Slicing, um den Teil der Zeichenkette zu extrahieren, den wir
suchen.

>>> data = 'From giefers.heiner@fh-swf.de Mon, 30 Aug 2021 16:20:09'
>>> atpos = data.find('@')
>>> print(atpos)
19
>>> sppos = data.find(' ',atpos)
>>> print(sppos)
29
>>> host = data[atpos+1:sppos]
>>> print(host)
fh-swf.de
>>>

Wir verwenden eine Version der Methode find, die es uns erlaubt, eine Position
in der Zeichenkette anzugeben, an der find mit der Suche beginnen soll. Dann
extrahieren wir die Teilzeichenkette beginnen nach dem at-Zeichen bis hin (aber
nicht einschließlich) zum Leerzeichen.

Die Dokumentation für die Methode find ist verfügbar unter

https://docs.python.org/library/stdtypes.html#string-methods.

6.11 Formatierte Zeichenketten

Wir haben nun schon mehrfach print-Anweisungen verwendet, bei denen wir sowohl
Zeichenketten als auch die Werte bestimmter Variablen ausgegeben haben. Also
z. B. so:

>>> count = 2
>>> zeichen = 'a'
>>> print('Buchstabe:', zeichen, 'Anzahl:', count)
Buchstabe: a Anzahl: 2

Das funktioniert, weil die print-Funktion eine Liste von Argumenten akzeptiert.
Die Schreibweise mit den Kommas ist aber nicht gerade praktisch und auch nicht
sehr übersichtlich.

Eine Abhilfe schaffen hier formatierte Zeichenketten, in Python auch Format Strings
(oder f-Strings) genannt. Eine „normale“ Zeichenkette wird zu einem f-String, indem
wir Ihr ein f direkt vor dem öffnenden Anführungszeichen voranstellen. In einem
f-String können wir dann Werte einbetten, indem wir die Variablennamen in
geschweifte Klammern direkt in den String schreiben.

https://docs.python.org/library/stdtypes.html#string-methods

6.11. Formatierte Zeichenketten 87

>>> count = 2
>>> zeichen = 'a'
>>> print(f'Buchstabe: {zeichen} Anzahl: {count}')
Buchstabe: a Anzahl: 2

In Format Strings erkennt man die eingebetteten Variablen sehr schnell durch die
geschweiften Klammern. Gleichzeitig benötigt man keine zusätzlichen Kommas oder
schließenden und öffnenden Anführungszeichen.

Ein weiterer Vorteil von Format Strings ist, dass man die Darstellungsweise der
Variablen beeinflussen kann. Das ist z. B. nützlich, wenn man Fließkommazahlen
ausgeben möchte. Im folgenden Beispiel berechnen wir 10/3 was in einen Wert mit
unendlich vielen Nachkommastellen resultiert1.

>>> anteil = 10/3
>>> print("Ihr Anteil ist", anteil)
Ihr Anteil ist 3.3333333333333335
>>> print(f"Ihr Anteil ist {anteil:.2f}")
Ihr Anteil ist 3.33

Bei der Ausgabe wirkt die Darstellung so vieler Nachkommastellen häufig störend.
Daher verwenden wir in der zweiten print-Anweisung des Beispiels einen f-String.
Wir betten die Variable anteil ein, fügen aber direkt hinter dem Variablennamen
noch ein Doppelpunkt ein. Danach steht ein Formatierungscode, in diesem Fall .2f.
Das bedeutet, „stelle den Wert als Fließkommazahl mit zwei Nachkommastellen
dar“.

Es gibt noch weitere Codes, mit denen die Ausgabe von Werten beeinflusst werden
kann.Mit dem Formatierungszeichen d gibt man an, dass ein wert als Dezimalzahl
(also „ganz normal“) formatiert werden soll. Ein o (o steht für „octal“) bewirkt eine
Formatierung im Okatalsystem (also zur Basis 8), ein x (x steht für „hexadecimal“)
stellte einen Wert im Hexadedezimalsystem (also zur Basis 16) dar.

>>> wert = 42
>>> print(f"Der Wert {wert:d} zur Basis 8: {wert:o} \

und zur Basis 16: {wert:x}")
Der Wert 42 zur Basis 8: 52 und zur Basis 16: 2a

Die Möglichkeiten, Darstellungsweisen mit Formatierungcodes zu verändern, sind
sehr vielfältig und etwas kompliziert. Es ist also ratsam, sich eine Hilfe-Seite zur
Hand zu nehmen, wenn man eine bestimmte Ausgabe erreichen möchte. Weiters zu
dem Thema finden sie unter

https://docs.python.org/3/reference/lexical_analysis.html#f-strings
1Natürlich kann kein Computer dieser Welt reelle Zahlen genau abspeichern. Intern werden

reelle Werte mit einer bestimmten Genauigkeit gespeichert, die auch in Berechnungen immer wieder
zu Rundungsfehlern führen. Mit diesen Fragestellungen beschäftigt sich die Computer-Arithmetik,
wir werden das Thema hier nicht genauer beleuchten. Allerdings sieht man die Auswirkungen
auch im täglichen Umgang mit Python. Achten Sie mal auf die letzte Ziffer bei der Darstellung
von 10/3 als Kommazahl.

https://docs.python.org/3/reference/lexical_analysis.html#f-strings

88 Kapitel 6. Zeichenketten

6.12 Debugging

Eine Fähigkeit, die man beim Programmieren kultivieren sollte, ist, sich immer zu
fragen: „Was könnte hier schiefgehen?“ oder alternativ: „Welche verrückte Sache
könnte unser Benutzer tun, um unser (scheinbar) perfektes Programm zum Absturz
zu bringen?“.

Schauen wir uns zum Beispiel das Programm an, das wir zur Demonstration der
while-Schleife im Kapitel über Iteration verwendet haben:

while True:
line = input('> ')
if line[0] == '#':

continue
if line == 'done':

break
print(line)

print('Done!')

Code: https://tiny.one/py4de/code3/copytildone2.py

Beobachten wir, was passiert, wenn der Benutzer eine leere Eingabezeile eingibt:

> hello there
hello there
> # don't print this
> print this!
print this!
>
Traceback (most recent call last):

File "copytildone.py", line 3, in <module>
if line[0] == '#':

IndexError: string index out of range

Der Programm funktioniert gut, bis ihm eine leere Zeile präsentiert wird. Dann gibt
es kein Zeichen an der nullten Indexposition, also erhalten wir einen Traceback. Es
gibt zwei Lösungen, um Zeile drei „sicher“ zu machen, auch wenn die Zeichenkette
leer ist.

Eine Möglichkeit ist, einfach die Methode startswith zu verwenden, die False
zurückgibt, wenn die Zeichenkette leer ist.

if line.startswith('#'):

Eine andere Möglichkeit ist, die if-Anweisung mit einem „Wächter“ abzusichern
und sicherzustellen, dass der zweite logische Ausdruck nur ausgewertet wird, wenn
mindestens ein Zeichen in der Zeichenkette vorhanden ist:

if len(line) > 0 and line[0] == '#':

6.13. Glossar 89

6.13 Glossar

Schleifenzähler Eine Variable, die zum Zählen von etwas verwendet wird und
normalerweise mit 0 initialisiert ist und dann inkrementiert wird.

leere Zeichenkette Eine Zeichenkette ohne Zeichen und mit der Länge 0, darge-
stellt durch zwei Anführungszeichen.

Formatierungsoperator Der Operator %, der einen Format-String und ein Tupel
entgegennimmt und eine Zeichenkette erzeugt, die die Elemente des Tupels
enthält, die gemäß des Format-Strings formatiert sind.

Formatierungszeichen Ein Zeichen in einem Format-String, z. B. %d, das angibt,
wie ein Wert formatiert werden soll.

Format-String Eine Zeichenkette, die mit dem Formatierungsoperator verwendet
wird und Formatierungszeichen enthält.

Flag Eine boolesche Variable, die anzeigt, ob eine Bedingung wahr oder falsch ist.
Aufruf einer Methode Eine Anweisung, die eine Methode aufruft.
Unveränderlichkeit Die Eigenschaft einer Sequenz, deren Elemente nicht verän-

dert werden können.
Index Ein ganzzahliger Wert, der verwendet wird, um ein Element in einer Sequenz

auszuwählen, z. B. ein Zeichen in einer Zeichenkette.
Element Einer der Werte in einer Sequenz.
Methode Eine Funktion, die mit einem Objekt verknüpft ist und in Punktschreib-

weise aufgerufen wird.
Objekt Etwas, auf das sich eine Variable beziehen kann. Im Moment können wir

„Objekt“ und „Wert“ noch austauschbar verwenden.
Suche Ein Muster, das beim Traversieren durch eine Zeichenkette dafür sorgt,

dass die Suche beendet wird, sobald die gesuchte Teilzeichenkette gefunden
wurde.

Folge Eine geordnete Menge, d. h. eine Menge von Werten, bei der jeder Wert
durch einen ganzzahligen Index gekennzeichnet ist.

Teilzeichenkette Ein Teil einer Zeichenkette, der durch einen Bereich von Indizes
angegeben wird.

Traversieren Durch die Elemente einer Sequenz iterieren und für jedes Element
eine ähnliche Operation ausführen.

6.14 Übungen

Übung 5: Nehmen Sie den folgenden Python-Code, der eine Zeichenkette speichert:

str = 'X-DSPAM-Confidence: 0.8475'

Verwenden Sie find und String-Slicing, um den Teil der Zeichenkette nach dem
Doppelpunkt zu extrahieren, und verwenden Sie dann die Funktion float, um die
extrahierte Teilzeichenkette in eine Fließkommazahl zu konvertieren.

Übung 6: Lesen Sie die Dokumentation der String-Methoden unter

https://docs.python.org/library/stdtypes.html#string-methods

Vielleicht möchten Sie mit einigen von ihnen experimentieren, um sicherzustel-
len, dass Sie verstehen, wie sie funktionieren. strip und replace sind besonders
nützlich.

https://docs.python.org/library/stdtypes.html#string-methods

90 Kapitel 6. Zeichenketten

Die Dokumentation verwendet eine Syntax, die verwirrend sein kann. Zum Beispiel
in find(sub[, start[, end]]) zeigen die Klammern optionale Argumente an.
Also ist sub erforderlich, aber start ist optional, und wenn Sie start verwenden,
dann ist end wiederum optional.

Kapitel 7

Dateien

Bisher haben wir gelernt, wie man Programme schreibt und der CPU unsere Absich-
ten mit Hilfe von bedingter Ausführung, Funktionen und Iterationen mitteilt. Wir
haben gelernt, wie wir Datenstrukturen im Hauptspeicher erstellen und verwenden.
Die CPU und der Speicher sind der Ort, an dem unsere Software arbeitet und läuft.
Hier findet das gesamte „Denken“ statt.

Aber wenn wir uns an unsere Diskussionen über die Hardware-Architektur erinnert,
stellen wir fest, dass alles, was in der CPU oder im Hauptspeicher gespeichert
ist, verloren geht, sobald der Strom abgeschaltet wird. Bis jetzt waren unsere
Programme also nur flüchtige Spaßübungen, um Python zu lernen.

In diesem Kapitel beginnen wir mit dem Sekundär- oder auch Festspeicher (also den
Dateien) zu arbeiten. Der Sekundärspeicher wird nicht gelöscht, wenn der Strom
abgeschaltet wird. Oder im Fall eines USB-Sticks können die Daten, die wir von
unseren Programmen schreiben, aus dem System entfernt und zu einem anderen
System transportiert werden.

Wir werden uns in erster Linie auf das Lesen und Schreiben von Textdateien
konzentrieren, wie wir sie in einem Texteditor erstellen. Später werden wir sehen,
wie man mit Datenbankdateien arbeitet, bei denen es sich um Binärdateien handelt,

Ein-/Ausgabe

Geräte

Prozessor

(CPU)

Arbeitsspeicher

Netzwerk

Festspeicher

Software
Nächste

Anweisung?

Abbildung 7.1: Arbeitsspeicher und Sekundärspeicher (Festspeicher)

92 Kapitel 7. Dateien

Fromstephen.marqu…

Return-Path: <post…

Date: Sat, 5 Jan 2008…

To:source@collab.sakai…

From: stephen.marqu…

Subject: [sakai] svn…

H

A

N

D

L

E

R

open

close

read

write

Programm

Abbildung 7.2: Ein Dateihandler

die speziell für das Lesen und Schreiben durch Datenbanksoftware entwickelt
wurden.

7.1 Öffnen von Dateien

Wenn wir eine Datei (z. B. auf unserer Festplatte) lesen oder schreiben wollen,
müssen wir die Datei zuerst öffnen. Die open-Funktion kommuniziert mit unserem
Betriebssystem, das weiß, wo die Daten für jede Datei gespeichert sind. Wenn wir
eine Datei öffnen, bitten wir das Betriebssystem, die Datei anhand ihres Namens
zu suchen und sicherzustellen, dass sie existiert. In diesem Beispiel öffnen wir die
Datei mbox.txt, die in demselben Verzeichnis gespeichert sein sollte, in dem wir
uns befinden, wenn wir Python starten. Man kann diese Datei hier herunterladen:
tiny.one/py4de/code3/mbox.txt

>>> fhand = open('mbox.txt')
>>> print(fhand)
<_io.TextIOWrapper name='mbox.txt' mode='r' encoding='cp1252'>

Wenn das open erfolgreich ist, gibt uns das Betriebssystem ein Dateihandle zurück.
Dieses Handle beeinhaltet nicht die eigentlichen Daten der Datei, sondern er sagt
dem Python-Programm, wo das Betriebssystem die Datei abgelegt hat. Über
dieses Handle können dann alle weiteren Operation für die Datei (mithilfe des
Betriebssystems) ausgeführt werden.

Wir erhalten ein Handle nur, wenn die angeforderte Datei existiert und wir die
richtigen Berechtigungen zum Lesen oder schreiben der Datei haben. Wenn die
Datei nicht existiert, schlägt open mit einem Traceback fehl und wir erhalten keinen
Handle, um auf den Inhalt der Datei zuzugreifen:

>>> fhand = open('stuff.txt')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
FileNotFoundError: [Errno 2] No such file or directory: 'stuff.txt'

https://tiny.one/py4de/code3/mbox.txt

7.2. Textdateien 93

Später werden wir try und except verwenden, um eleganter mit der Situation
umzugehen, in der wir versuchen, eine Datei zu öffnen, die nicht existiert.

7.2 Textdateien

Eine Textdatei kann als eine Folge von Zeilen betrachtet werden, ähnlich wie eine
Python-Zeichenkette als eine Folge von Zeichen betrachtet werden kann. Dies ist
ein Beispiel für eine Textdatei, die die E-Mail-Aktivitäten verschiedener Personen
in einem Open-Source-Projektentwicklungsteam aufzeichnet:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
Return-Path: <postmaster@collab.sakaiproject.org>
Date: Sat, 5 Jan 2008 09:12:18 -0500
To: source@collab.sakaiproject.org
From: stephen.marquard@uct.ac.za
Subject: [sakai] svn commit: r39772 - content/branches/
Details: http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772
...

Die gesamte Datei der Mail-Interaktionen ist verfügbar unter:

tiny.one/py4de/code3/mbox.txt

Eine gekürzte Version der Datei ist hier zu finden:

tiny.one/py4de/code3/mbox-short.txt

Diese Dateien haben ein Standardformat für eine Datei, die mehrere E-Mail-
Nachrichten enthält. Die Zeilen, die mit From beginnen, trennen die einzelnen
Nachrichten voneinander. Die Zeilen, die mit From: beginnen, sind dagegen Teil
der Nachrichten. Weitere Informationen über das mbox-Format findet man unter
https://en.wikipedia.org/wiki/Mbox.

Um die Datei in Zeilen zu unterteilen, gibt es ein spezielles Zeichen, das das
Zeilenende darstellt, das Newline-Zeichen.

In Python stellen wir das Zeichen Newline (\n) als Rückstrich gefolgt von einem „n“
in Zeichenketten dar. Auch wenn dies wie zwei Zeichen aussieht, ist es tatsächlich
ein einzelnes Zeichen. Wenn wir uns die Variable ansehen, indem wir stuff in den
Interpreter eingeben, zeigt er uns das \n in der Zeichenkette, aber wenn wir print
verwenden, um die Zeichenkette anzuzeigen, sehen wir die Zeichenkette durch das
Newline-Zeichen in zwei Zeilen unterbrochen.

>>> stuff = 'Hello\nWorld!'
>>> stuff
'Hello \nWorld!'
>>> print(stuff)
Hello
World!
>>> stuff = 'X\nY'
>>> print(stuff)

https://tiny.one/py4de/code3/mbox.txt
https://tiny.one/py4de/code3/mbox-short.txt
https://en.wikipedia.org/wiki/Mbox

94 Kapitel 7. Dateien

X
Y
>>> len(stuff)
3

Man kann zusätzlich sehen, dass die Länge der Zeichenkette X\nY drei Zeichen
beträgt, da das Zeilenumbruchzeichen ein einzelnes Zeichen ist.

Wenn wir also die Zeilen in einer Datei betrachten, müssen wir uns vorstellen, dass
es ein spezielles unsichtbares Zeichen namens Newline am Ende jeder Zeile gibt,
das das Ende der Zeile markiert. Das Newline-Zeichen trennt also die Zeichen in
der Datei in Zeilen.

7.3 Lesen von Dateien

Auch wenn der Dateihandler nicht die Daten für die Datei enthält, ist es recht einfach,
eine ‘for’-Schleife zu konstruieren, um jede der Zeilen in einer Datei durchzuarbeiten
und zu zählen:

fhand = open('mbox-short.txt')
count = 0
for line in fhand:

count = count + 1
print('Line Count:', count)

Code: https://tiny.one/py4de/code3/open.py

Wir können den Dateihandler als Teil unserer Schleifenkonstruktion verwenden.
Unsere for-Schleife zählt einfach die Anzahl der Zeilen in der Datei und gibt sie
aus. Die grobe Übersetzung der for-Schleife ins Deutsche lautet: „Für jede Zeile in
der Datei, die durch den Dateihandler repräsentiert wird, füge der Variablen count
1 hinzu.“.

Der Grund dafür, dass die Funktion open nicht die gesamte Datei liest, ist, dass
die Datei mit vielen Gigabytes an Daten recht groß sein kann. Die Anweisung open
benötigt unabhängig von der Größe der Datei die gleiche Zeit. Die for-Schleife
bewirkt, dass die Daten tatsächlich aus der Datei gelesen werden.

Wenn die Datei mit einer for-Schleife auf diese Weise gelesen wird, kümmert sich
Python um die Aufteilung der Daten in der Datei in einzelne Zeilen mit Hilfe des
Newline-Zeichens. Python liest jede Zeile durch den Zeilenumbruch und nimmt
den Zeilenumbruch als letztes Zeichen in die Variable line für jede Iteration der
Schleife auf.

Da die Schleife die Daten zeilenweise liest, kann sie effizient die Zeilen in sehr großen
Dateien lesen und zählen, ohne dass der Hauptspeicher zum Speichern der Daten
aufgebraucht wird. Das obige Programm kann die Zeilen in Dateien beliebiger
Größe mit sehr wenig Speicherplatz zählen, da jede Zeile gelesen, gezählt und dann
verworfen wird.

7.4. Suchen in Dateien 95

Wenn man weiß, dass die Datei im Vergleich zur Größe des Hauptspeichers relativ
klein ist, kann man die gesamte Datei mit der Methode read des Dateihandlers in
einen String einlesen.

>>> fhand = open('mbox-short.txt')
>>> inp = fhand.read()
>>> print(len(inp))
94626
>>> print(inp[:20])
From stephen.marquar

In diesem Beispiel wird der gesamte Inhalt (alle 94,626 Zeichen) der Datei
mbox-short.txt direkt in die Variable inp gelesen. Wir verwenden String-Slicing,
um die ersten 20 Zeichen der in inp gespeicherten Zeichen auszugeben.

Wenn die Datei auf diese Weise gelesen wird, sind alle Zeichen einschließlich aller
Zeilen und Zeilenumbruchzeichen eine große Zeichenkette in der Variablen inp. Es
ist eine gute Idee, die Ausgabe von read als Variable zu speichern, da jeder Aufruf
von read mit einem gewissen Aufwand verbunden ist:

>>> fhand = open('mbox-short.txt')
>>> print(len(fhand.read()))
94626
>>> print(len(fhand.read()))
0

Wir müssen daran denken, dass diese Form der open-Funktion nur verwendet werden
sollte, wenn die Dateidaten bequem in den Hauptspeicher unseres Computers passen.
Wenn die Datei zu groß ist, um in den Hauptspeicher zu passen, sollten wir unser
Programm so schreiben, dass es die Datei mit Hilfe einer for- oder while-Schleife
in Stücken liest.

7.4 Suchen in Dateien

Beim Durchsuchen von Daten in einer Datei ist es ein sehr gängiges Vorgehen,
eine Datei durchzulesen, dabei die meisten Zeilen zu ignorieren und nur Zeilen
zu verarbeiten, die eine bestimmte Bedingung erfüllen. Wir können das Muster
zum Lesen einer Datei mit Zeichenkettenmethoden kombinieren, um einfache
Suchmechanismen aufzubauen.

Wenn wir z. B. eine Datei lesen und nur Zeilen ausgeben wollen, die mit dem Präfix
From: beginnen, könnten wir mit der String-Methode startswith nur die Zeilen
mit dem gewünschten Präfix auswählen:

fhand = open('mbox-short.txt')
count = 0
for line in fhand:

if line.startswith('From:'):

96 Kapitel 7. Dateien

print(line)

Code: https://tiny.one/py4de/code3/search1.py

Wenn dieses Programm läuft, erhalten wir die folgende Ausgabe:

From: stephen.marquard@uct.ac.za

From: louis@media.berkeley.edu

From: zqian@umich.edu

From: rjlowe@iupui.edu
...

Die Ausgabe sieht gut aus, da die einzigen Zeilen, die wir sehen, die sind, die mit
From: beginnen, aber warum sehen wir die zusätzlichen Leerzeilen? Das liegt an
dem unsichtbaren Zeichen Newline. Jede der Zeilen endet mit einem Zeilenumbruch,
sodass die Anweisung print die Zeichenkette in der Variablen line ausgibt, die
einen Zeilenumbruch enthält, und dann fügt print einen weiteren Zeilenumbruch
hinzu, was zu der überschüssigen Leerzeile führt, den wir sehen.

Wir könnten Zeilen-Slicing verwenden, um alle Zeichen bis auf das letzte auszugeben,
aber ein besserer Ansatz ist die Verwendung der rstrip-Methode, die Leerzeichen
auf der rechten Seite einer Zeichenkette wie folgt entfernt:

fhand = open('mbox-short.txt')
for line in fhand:

line = line.rstrip()
if line.startswith('From:'):

print(line)

Code: https://tiny.one/py4de/code3/search2.py

Wenn dieses Programm läuft, erhalten wir die folgende Ausgabe:

From: stephen.marquard@uct.ac.za
From: louis@media.berkeley.edu
From: zqian@umich.edu
From: rjlowe@iupui.edu
From: zqian@umich.edu
From: rjlowe@iupui.edu
From: cwen@iupui.edu
...

Wenn die Dateiverarbeitungsprogramme komplizierter werden, möchte man viel-
leicht die Suchschleifen mit continue strukturieren. Die Grundidee der Suchschleife
ist, dass man nach „interessanten“ Zeilen sucht und „uninteressante“ Zeilen effektiv
überspringt. Und wenn wir dann eine interessante Zeile finden, machen wir etwas
mit dieser Zeile.

7.4. Suchen in Dateien 97

Wir können die Schleife wie folgt strukturieren, um uninteressante Zeilen zu über-
springen:

fhand = open('mbox-short.txt')
for line in fhand:

line = line.rstrip()
Skip 'uninteresting lines'
if not line.startswith('From:'):

continue
Process our 'interesting' line
print(line)

Code: https://tiny.one/py4de/code3/search3.py

Die Ausgabe des Programms ist die gleiche. Die uninteressanten Zeilen sind diejeni-
gen, die nicht mit From: beginnen, die wir also mit continue überspringen. Für
die „interessanten“ Zeilen (d. h. diejenigen, die mit From: beginnen) führen wir die
Verarbeitung auf diesen Zeilen durch.

Wir können die String-Methode find verwenden, um eine Texteditor-Suche zu
simulieren, die Zeilen findet, in denen die gesuchte Zeichenkette irgendwo in der Zeile
steht. Da find nach einem Vorkommen einer Zeichenkette innerhalb einer anderen
Zeichenkette sucht und entweder die Position der Zeichenkette oder -1 zurückgibt,
wenn die Zeichenkette nicht gefunden wurde, können wir die folgende Schleife
schreiben, um Zeilen anzuzeigen, die die Zeichenkette @uct.ac.za (University of
Cape Town in South Africa) enthalten:

fhand = open('mbox-short.txt')
for line in fhand:

line = line.rstrip()
if line.find('@uct.ac.za') == -1: continue
print(line)

Code: https://tiny.one/py4de/code3/search4.py

Das erzeugt die folgende Ausgabe:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
X-Authentication-Warning: set sender to stephen.marquard@uct.ac.za using -f
From: stephen.marquard@uct.ac.za
Author: stephen.marquard@uct.ac.za
From david.horwitz@uct.ac.za Fri Jan 4 07:02:32 2008
X-Authentication-Warning: set sender to david.horwitz@uct.ac.za using -f
From: david.horwitz@uct.ac.za
Author: david.horwitz@uct.ac.za
...

Auch hier verwenden wir verkürzte Form der if-Anweisung, bei der wir das
continue in dieselbe Zeile wie das if setzen. Diese verkürzte Form der if-
Anweisung funktioniert genauso, als ob das continue in der nächsten Zeile und
eingerückt wäre.

98 Kapitel 7. Dateien

7.5 Wahl des Dateinamens durch den Benutzer

Wir wollen nicht jedes Mal unseren Python-Code bearbeiten müssen, wenn wir eine
andere Datei verarbeiten wollen. Es wäre sinnvoller, den Benutzer aufzufordern,
die Zeichenkette für den Dateinamen jedes Mal einzugeben, wenn das Programm
ausgeführt wird, damit er unser Programm für verschiedene Dateien verwenden
kann, ohne den Python-Code zu ändern.

Dies ist recht einfach zu bewerkstelligen, indem der Dateiname vom Benutzer
mittels input wie folgt gelesen wird:

fname = input('Gib eine Datei an: ')
fhand = open(fname)
count = 0
for line in fhand:

if line.startswith('Subject:'):
count = count + 1

print(f'Es gibt {count} Betreffzeilen in {fname}')

Code: https://tiny.one/py4de/code3/search6.py

Wir lesen den Dateinamen vom Benutzer und legen ihn in eine Variable namens
fname und öffnen diese Datei. Jetzt können wir das Programm wiederholt zur
Verarbeitung verschiedener Dateien ausführen.

python search6.py
Gib eine Datei an: mbox.txt
Es gibt 1797 Betreffzeilen in mbox.txt

python search6.py
Gib eine Datei an: mbox-short.txt
Es gibt 27 Betreffzeilen in mbox-short.txt

Bevor wir uns den nächsten Abschnitt ansehen, werfen wir einen Blick auf das
obige Programm und fragen uns: „Was könnte hier möglicherweise schiefgehen?“
oder „Was könnte unser freundlicher Benutzer tun, das dazu führen würde, dass
unser nettes kleines Programm unschön mit einem Traceback beendet wird und
uns in den Augen unserer Benutzer nicht so cool aussehen lässt?“.

7.6 Verwendung von try, except und open

Aber was passiert, wenn unser Benutzer etwas eingibt, das kein Dateiname ist?

python search6.py
Gib eine Datei an: nichtda.txt
Traceback (most recent call last):

File "search6.py", line 2, in <module>
fhand = open(fname)

7.6. Verwendung von try, except und open 99

FileNotFoundError: [Errno 2] No such file or directory: 'nichtda.txt'

python search6.py
Gib eine Datei an: ha ha ha
Traceback (most recent call last):

File "search6.py", line 2, in <module>
fhand = open(fname)

FileNotFoundError: [Errno 2] No such file or directory: 'ha ha ha'

Benutzer werden letztendlich alles Mögliche tun, um unsere Programme zum
Absturz zu bringen, entweder aus Spaß oder sogar mit dem Ziel, Sicherheitslücken
auszunutzen. Tatsächlich ist ein wichtiger Teil jedes Software-Entwicklungsteams
eine Person oder Gruppe, die Qualitätssicherung (kurz QS) genannt wird, deren
einzige Aufgabe es ist, die „verrücktesten“ Dinge zu tun, um Fehler in einer Software
aufzudecken

Das QS-Team ist dafür verantwortlich, die Fehler in Programmen zu finden, bevor
wir das Programm an die Endbenutzer ausliefern, die die Software vielleicht kaufen
oder unser Gehalt für das Schreiben der Software bezahlen. Das QS-Team ist also
der beste Freund des Programmierers.

Da wir nun den Fehler im Programm sehen, können wir ihn elegant mit der
try/except-Struktur beheben. Wir müssen annehmen, dass der open-Aufruf fehl-
schlagen könnte und fügen Wiederherstellungscode hinzu, wenn das open wie folgt
fehlschlägt:

fname = input('Gib eine Datei an: ')
try:

fhand = open(fname)
except:

print(f'Datei {fname} konnte nicht geoeffnet werden')
exit()

count = 0
for line in fhand:

if line.startswith('Subject:'):
count = count + 1

print(f'Es gibt {count} Betreffzeilen in {fname}')

Code: https://tiny.one/py4de/code3/search7.py

Die Funktion exit terminiert das Programm. Es ist eine Funktion, die wir aufrufen
und die niemals zurückkehrt. Wenn unser Benutzer (oder das QS-Team) nun
Dummheiten oder falsche Dateinamen eintippt, „fangen“ wir sie ab und reagieren
entsprechend:

python search7.py
Gib eine Datei an: nichtda.txt
Datei nichtda.txt konnte nicht geoeffnet werden

python search7.py
Gib eine Datei an: ha ha ha
Datei ha ha ha konnte nicht geoeffnet werden

100 Kapitel 7. Dateien

Der Schutz des open-Aufrufs ist ein gutes Beispiel für die richtige Verwendung von
try und except in einem Python-Programm.

Sobald man mehr Erfahrung mit Python hat, kann man sich mit anderen Python-
Programmierern darüber streiten, welche von zwei gleichwertigen Lösungen für ein
Problem eleganter ist. Das Ziel, elegante Lösungen zu implementieren, spiegelt den
Gedanken wider, dass Programmieren zum Teil Technik und zum Teil Kunst ist.
Wir sind nicht immer nur daran interessiert, etwas zum Laufen zu bringen, wir
wollen auch, dass unsere Lösung elegant ist und von unseren Kollegen als elegant
geschätzt wird.

7.7 Schreiben von Dateien

Um eine Datei zu schreiben, müssen wir sie im Modus w (für write, schreiben) als
zweitem Parameter öffnen:

>>> fout = open('output.txt', 'w')
>>> print(fout)
<_io.TextIOWrapper name='output.txt' mode='w' encoding='cp1252'>

Wenn die Datei bereits existiert, werden beim Öffnen im Schreibmodus die alten
Daten gelöscht und es wird neu begonnen, also Vorsicht! Wenn die Datei nicht
existiert, wird eine neue Datei erstellt.

Die Methode write des Dateihandler-Objekts schreibt Daten in die Datei und gibt
die Anzahl der geschriebenen Zeichen zurück. Der Standard-Schreibmodus für das
Schreiben (und Lesen) von Zeichenketten ist der Text-Modus.

>>> line1 = "This here's the wattle,\n"
>>> fout.write(line1)
24

Auch hier merkt sich das Dateiobjekt, wo es sich befindet. Wenn Sie also write
erneut aufrufen, fügt es die neuen Daten am Ende hinzu.

Wir müssen sicherstellen, dass wir die Zeilenenden beim Schreiben in die Datei
berücksichtigen, indem wir explizit das Newline-Zeichen einfügen, wenn wir eine
Zeile beenden wollen. Die Anweisung print fügt automatisch einen Zeilenumbruch
ein, aber die Methode write dagegen fügt den Zeilenumbruch nicht automatisch
hinzu.

>>> line2 = 'the emblem of our land.\n'
>>> fout.write(line2)
24

Wenn wir mit dem Schreiben fertig sind, müssen wir die Datei schließen, um
sicherzustellen, dass das letzte Bit der Daten physisch auf die Festplatte geschrieben
wird, damit es nicht verloren geht, wenn der Strom ausfällt.

7.8. Debugging 101

>>> fout.close()

Wir könnten die Dateien, die wir zum Lesen öffnen, auch schließen, aber wir dürfen
ein wenig nachlässig sein, wenn wir nur ein paar Dateien öffnen, da Python dafür
sorgt, dass alle offenen Dateien geschlossen werden, wenn das Programm endet.
Wenn wir Dateien schreiben, wollen wir die Dateien explizit schließen, um nichts
dem Zufall zu überlassen.

7.8 Debugging

Beim Lesen und Schreiben von Dateien kann man auf Probleme mit Leerzeichen
stoßen. Diese Fehler können schwer zu beheben sein, da Leerzeichen, Tabulatoren
und Zeilenumbrüche normalerweise unsichtbar sind:

>>> s = '1 2\t 3\n 4'
>>> print(s)
1 2 3
4

Die eingebaute Funktion repr kann helfen. Sie nimmt ein beliebiges Objekt als Ar-
gument und gibt eine String-Repräsentation des Objekts zurück. Bei Zeichenketten
stellt sie Leerzeichen mit Backslash-Sequenzen dar:

>>> print(repr(s))
'1 2\t 3\n 4'

Dies kann bei der Fehlersuche hilfreich sein.

Ein weiteres Problem, auf das wir stoßen könnten, ist, dass verschiedene Systeme
unterschiedliche Zeichen verwenden, um das Ende einer Zeile anzuzeigen. Einige
Systeme verwenden einen Zeilenumbruch, dargestellt als \n. Andere verwenden ein
Return-Zeichen, dargestellt als \r. Einige verwenden beides. Wenn wir Dateien zwi-
schen verschiedenen Systemen verschieben, können diese Inkonsistenzen Probleme
verursachen.

Für die meisten Systeme gibt es Anwendungen, um von einem Format in ein
anderes zu konvertieren. Man findet sie (und lesen mehr über dieses Thema)
unter www.wikipedia.org/wiki/Newline. Oder man kann natürlich auch selbst eines
schreiben.

7.9 Glossar

Auffangen einer Ausnahme Um zu verhindern, dass eine Ausnahme ein Pro-
gramm terminiert, verwenden Sie die Anweisungen try und except.

Newline Ein Sonderzeichen, das in Dateien und Zeichenketten verwendet wird,
um das Ende einer Zeile anzuzeigen.

https://wikipedia.org/wiki/Newline

102 Kapitel 7. Dateien

Qualitätssicherung Eine Person oder ein Team, das sich auf die Sicherstellung
der Gesamtqualität eines Softwareprodukts konzentriert. QS ist oft an der
Prüfung eines Produkts und der Identifizierung von Problemen beteiligt, bevor
das Produkt freigegeben wird.

Textdatei Eine Folge von Zeichen, die in einem permanenten Speicher wie einer
Festplatte gespeichert wird.

7.10 Übungen

Übung 1: Schreiben Sie ein Programm, das eine Datei einliest und den Inhalt der
Datei (Zeile für Zeile) in Großbuchstaben ausgibt. Das Ausführen des Programms
sieht wie folgt aus:

python shout.py
Enter a file name: mbox-short.txt
FROM STEPHEN.MARQUARD@UCT.AC.ZA SAT JAN 5 09:14:16 2008
RETURN-PATH: <POSTMASTER@COLLAB.SAKAIPROJECT.ORG>
RECEIVED: FROM MURDER (MAIL.UMICH.EDU [141.211.14.90])

BY FRANKENSTEIN.MAIL.UMICH.EDU (CYRUS V2.3.8) WITH LMTPA;
SAT, 05 JAN 2008 09:14:16 -0500

Sie können die Datei herunterladen von tiny.one/py4de/code3/mbox-short.txt

Übung 2: Schreiben Sie ein Programm, das nach einem Dateinamen fragt, und
iterieren Sie dann durch die Datei und sucht nach Zeilen der Form:

X-DSPAM-Confidence: 0.8475

Wenn Sie auf eine Zeile stoßen, die mit X-DSPAM-Confidence: beginnt, trennen
Sie die Zeile auf, um die Fließkommazahl in der Zeile zu extrahieren. Zählen Sie
diese Zeilen und berechnen Sie dann die Summe der Werte aus diesen Zeilen. Wenn
Sie das Ende der Datei erreichen, geben Sie den Durchschnittswert aus.

Gib eine Datei an: mbox.txt
Wahrscheinlichkeit fuer Kein-Spam: 0.894128046745

Gib eine Datei an: mbox-short.txt
Wahrscheinlichkeit fuer Kein-Spam: 0.750718518519

Testen Sie Ihre Datei an den Dateien mbox.txt und mbox-short.txt.

Übung 3: Manchmal, wenn Programmierern langweilig ist oder sie ein bisschen
Spaß haben wollen, fügen sie ein harmloses Easter-Egg in ihr Programm ein. Ändern
Sie das Programm, das den Benutzer zur Eingabe des Dateinamens auffordert, so,
dass es eine lustige Meldung ausgibt, wenn der Benutzer den genauen Dateinamen
„blafabel“ eingibt. Für alle anderen existierenden und nicht existierenden Dateien
sollte sich das Programm normal verhalten. Hier ist ein Beispiel für die Ausführung
des Programms:

https://tiny.one/py4de/code3/mbox-short.txt

7.10. Übungen 103

python egg.py
Gib eine Datei an: mbox.txt
Es gibt 1797 Betreffzeilen mbox.txt

python egg.py
Gib eine Datei an: missing.tyxt
Datei missing.tyxt konnte nicht geoeffnet werden

python egg.py
Gib eine Datei an: blafabel
Du laberst mich an?

Wir möchten Sie natürlich nicht dazu verführen, ständig Easter-Eggs in Ihre
Programme einzubauen; dies ist nur eine Übung!

Kapitel 8

Listen

Python ist eine ideale Sprache um Daten zu verarbeiten und Daten stehen meist
nicht allein, als einzelner Wert, sondern sie liegen als „Ansammlung“ vor. Entwe-
der ungeordnet, geordnet (d. h. mit einer Reihenfolge) oder, wie in einer Kartei,
unter einem Suchbegriff abgelegt. All diese Arten von „Datensammlungen“ gibt
es in Python und dazu noch eine große Menge von Funktionen, um die Daten zu
verarbeiten.

In den nächsten drei Kapiteln werden wir die wichtigsten zusammengesetzten
Datentypen (englisch Composite Data Types) in Python behandel. Den Anfang
macht der Typ List, den man sehr vielfältig verwenden kann.

8.1 Listen sind Folgen von Werten

Wie eine Zeichenkette ist auch eine Liste eine Folge von Werten. In einer Zeichenkette
sind die Werte Zeichen; in einer Liste können sie von beliebigem Typ sein. Die
Werte in einer Liste werden Elemente oder manchmal Token genannt.

Es gibt mehrere Möglichkeiten, eine neue Liste zu erstellen; die einfachste ist, die
Elemente in eckige Klammern zu setzen ([und]):

[10, 20, 30, 40]
['Banane', 'Apfel', 'Kiwi']

Das erste Beispiel ist eine Liste mit vier Ganzzahlen. Das zweite ist eine Liste mit
drei Zeichenketten. Die Elemente einer Liste müssen nicht vom gleichen Typ sein.
Die folgende Liste enthält eine Zeichenkette, eine Gleitkommazahl, eine Ganzzahl
und selbst eine weitere (!) Liste:

['spam', 2.0, 5, [10, 20]]

Eine Liste innerhalb einer anderen Liste ist verschachtelt.

106 Kapitel 8. Listen

Eine Liste, die keine Elemente enthält, wird als leere Liste bezeichnet; wir können
eine solche mit leeren Klammern [] erstellen.

Man kann auch Variablen Listenwerte zuweisen:

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> numbers = [17, 123]
>>> empty = []
>>> listoflists = [cheeses, numbers, empty]
>>> print(listoflists)
[['Cheddar', 'Edam', 'Gouda'], [17, 123], []]

8.2 Listen sind veränderbar

Die Syntax für den Zugriff auf die Elemente einer Liste ist die gleiche wie für den
Zugriff auf die Zeichen einer Zeichenkette: der indexbasierte Zugriffsoperator oder
auch Klammeroperator. Der Ausdruck innerhalb der Klammern gibt den Index an.
Wir müssen daran denken, dass die Indizes bei 0 beginnen:

>>> print(cheeses[0])
Cheddar

Im Gegensatz zu Strings sind Listen veränderbar, da wir die Reihenfolge der
Elemente in einer Liste ändern oder einem Element in einer Liste einen neuen Wert
zuweisen können. Wenn der Klammeroperator auf der linken Seite einer Zuweisung
erscheint, identifiziert er das Element der Liste, dem ein neuer Wert zugewiesen
werden soll.

>>> numbers = [17, 123]
>>> numbers[1] = 5
>>> print(numbers)
[17, 5]

Das Element an der Indexposition 1 von numbers, welches zuvor 123 war, ist nun
5.

Man kann sich eine Liste als eine Beziehung zwischen Indizes und Elementen
vorstellen. Diese Beziehung wird als Mapping oder Abbildung bezeichnet; jeder
Index wird auf eines der Elemente „abgebildet“.

Listenindizes funktionieren auf die gleiche Weise wie Zeichenketten-Indizes:

• Jeder ganzzahlige Ausdruck kann als Index verwendet werden.

• Wenn wir versuchen, ein Element zu lesen oder zu schreiben, das nicht
vorhanden ist, erhalten wir einen IndexError.

8.3. Traversieren einer Liste 107

• Wenn ein Index einen negativen Wert hat, zählt er vom Ende der Liste
rückwärts.

Der in-Operator funktioniert auch bei Listen.

>>> cheeses = ['Cheddar', 'Edam', 'Gouda']
>>> 'Edam' in cheeses
True
>>> 'Brie' in cheeses
False

8.3 Traversieren einer Liste

Die gebräuchlichste Art, die Elemente einer Liste zu durchlaufen, ist mit einer
for-Schleife. Die Syntax ist die gleiche wie bei Zeichenketten:

for cheese in cheeses:
print(cheese)

Das funktioniert gut, wenn wir die Elemente der Liste nur lesen müssen. Aber wenn
wir die Elemente schreiben oder aktualisieren wollen, brauchen wir die Indizes. Ein
üblicher Weg, das zu tun, ist die Kombination der Funktionen range und len:

for i in range(len(numbers)):
numbers[i] = numbers[i] * 2

Diese Schleife durchläuft die Liste und aktualisiert jedes Element. len gibt die
Anzahl der Elemente in der Liste zurück. range gibt eine Liste von Indizes von 0 bis
n−1 zurück, wobei n die Länge der Liste ist. Jedes Mal, wenn die Schleife durchlaufen
wird, erhält i den Index des nächsten Elements. Die Zuweisungsanweisung im
Rumpf verwendet i, um den alten Wert des Elements zu lesen und den neuen Wert
zuzuweisen.

Die Built-in Funktion range ist sehr nützlich und kann immer dann verwendet
werden, wenn wir Sequenzen von ganzen Zahlen benötigen. Wenn man range nicht
nur eines, sondern mehrere Argumente mitgibt, kann man die Sequenz von Werten
weiter beeinflussen. Im folgenden Beispiel erzeugen wir eine Sequenz von -10 bis 20
(ausschließlich), bei der wir in Dreierschritten vorgehen:

>>> x=list(range(-10,20,3))
>>> print(x)
[-10, -7, -4, -1, 2, 5, 8, 11, 14, 17]

Um eine Liste zu durchlaufen und gleichzeitig die Indizes der Listenelemente zu
erhalten, gibt es noch eine (im Vergleich zu range) etwas schönere Lösung. Die

108 Kapitel 8. Listen

Funktion enumerate liefert uns zwei Werte1 zurück: Als ersten den Index des
Elements und als zweiten den Wert des Elements. Das folgende Beispiel tut also
genau dasselbe, wie die for-Schleife mit dem range(len(...)) oben.

for i, wert in enumerate(numbers):
numbers[i] = wert * 2

Eine for-Schleife über eine leere Liste ist übrigens kein Fehler, sie führt nur einfach
den Rumpf nie aus:

for x in empty:
print('This never happens.')

Obwohl eine Liste eine weitere Liste enthalten kann, zählt die verschachtelte Liste
immer noch als ein einzelnes Element. Die Länge dieser Liste ist vier:

['spam', 1, ['Brie', 'Roquefort', 'Pol le Veq'], [1, 2, 3]]

8.4 Listen-Operationen

Der Operator + verkettet Listen. Das bedeutet, die beiden listen links und rechts
des +-Operators werden, in dieser Reihenfolge, hintereinander gehängt:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> c = a + b
>>> print(c)
[1, 2, 3, 4, 5, 6]

In ähnlicher Weise wiederholt der Operator * eine Liste eine bestimmte Anzahl von
Malen:

>>> [0] * 4
[0, 0, 0, 0]
>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

Das erste Beispiel wiederholt sich viermal. Im zweiten Beispiel wird die Liste dreimal
wiederholt.

1Eigentlich liefert die Funktion ein 2-Tupel zurück, also ein Element, das aus zwei Werten
besteht. Da wir bei der Zuweisung zwei Variablennamen hinschreiben, wird das Tupel „ausgepackt“,
d. h. die Werte werden aus dem Tupel entnommen und den einzelnen Variablen. Dies nennt man
auch unpacking. Um Tupel und ihre verwendung geht es in Kapitel 10.

8.5. Listen-Slicing 109

8.5 Listen-Slicing

Der Slice-Operator, den wir bereits von den Zeichenketten kennen, funktioniert
auch bei Listen:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>> t[1:3]
['b', 'c']
>>> t[:4]
['a', 'b', 'c', 'd']
>>> t[3:]
['d', 'e', 'f']

Wenn wir den ersten Index weglassen, beginnt das Slice am Anfang. Wenn Sie den
zweiten weglassen, geht das Slice bis zum Ende. Wenn wir also beide weglassen, ist
das Slice eine Kopie der gesamten Liste.

>>> t[:]
['a', 'b', 'c', 'd', 'e', 'f']

Da Listen veränderbar sind, ist es oft sinnvoll, eine Kopie zu erstellen, bevor wir
Operationen durchführen mit ihnen durchführen.

Ein Slice-Operator auf der linken Seite einer Zuweisung kann mehrere Elemente
aktualisieren:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>> t[1:3] = ['x', 'y']
>>> print(t)
['a', 'x', 'y', 'd', 'e', 'f']

8.6 Listenmethoden

Python bietet Methoden, die auf Listen operieren. Zum Beispiel fügt append ein
neues Element an das Ende einer Liste an:

>>> t = ['a', 'b', 'c']
>>> t.append('d')
>>> print(t)
['a', 'b', 'c', 'd']

extend nimmt eine Liste als Argument und fügt alle Elemente an:

>>> t1 = ['a', 'b', 'c']
>>> t2 = ['d', 'e']
>>> t1.extend(t2)
>>> print(t1)
['a', 'b', 'c', 'd', 'e']

110 Kapitel 8. Listen

In diesem Beispiel wird t2 nicht verändert, wohl aber t1.

sort ordnet die Elemente der Liste aufsteigend an. Beachten Sie bei der sort-
Funktion, dass diese in-place arbeitet, d. h. sie verändert die Reihenfolge der Ele-
mente in der Liste.

>>> t = ['d', 'c', 'e', 'b', 'a']
>>> t.sort()
>>> print(t)
['a', 'b', 'c', 'd', 'e']

Um eine sortierte Kopie der Liste zu erhalten, können Sie die eingebaute Funktion
sorted verwenden. Diese lässt sich auf alle Python Datenstrukturen anwenden, die
iterierbar sind.

>>> t = ['d', 'c', 'e', 'b', 'a']
>>> l = sorted(t)
>>> print(t)
['d', 'c', 'e', 'b', 'a']
>>> print(l)
['a', 'b', 'c', 'd', 'e']
>>> sorted("Hallo Welt!")
[' ', '!', 'H', 'W', 'a', 'e', 'l', 'l', 'l', 'o', 't']

Die meisten Listenmethoden (also solche die Sie mit der Punktnotation auf einer
Liste aufrufen können) arbeiten in-place, haben also keinen Rückgabewert; sie
verändern die Liste und geben None zurück. Wenn wir versehentlich t = t.sort()
schreiben, werden wir von dem Ergebnis enttäuscht sein.

8.7 Löschen von Elementen

Es gibt mehrere Möglichkeiten, Elemente aus einer Liste zu löschen. Wenn wir den
Index des gewünschten Elements kennen, können wir pop verwenden:

>>> t = ['a', 'b', 'c']
>>> x = t.pop(1)
>>> print(t)
['a', 'c']
>>> print(x)
b

pop ändert die Liste und gibt das Element zurück, das entfernt wurde. Wenn wir
keinen Index angeben, löscht es das letzte Element und gibt es zurück.

Wenn wir den entfernten Wert nicht benötigen, können wir den Operator del
verwenden:

8.8. Listen und Funktionen 111

>>> t = ['a', 'b', 'c']
>>> del t[1]
>>> print(t)
['a', 'c']

Wenn man das Element kennt, das man entfernen möchten (aber nicht den Index),
kann man remove verwenden. remove entfern dabei nur das erste Vorkommen des
Wertes in der Liste. Ist der gesuchte Wert mehrfach enthalten, bleiben die weiteren
Vorkommen bestehen.

>>> t = ['a', 'b', 'c', 'a']
>>> t.remove('a')
>>> print(t)
['b', 'c', 'a']

Der Rückgabewert von remove ist None.

Um einen Bereich aus mehreren benachbarten Elementen zu entfernen, können wir
del mit einem Slice-Index verwenden:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']
>>> del t[1:5]
>>> print(t)
['a', 'f']

Wie üblich wählt die Slice-Operation alle Elemente bis zu (aber nicht einschließlich)
dem zweiten Index.

8.8 Listen und Funktionen

Es gibt eine Reihe von eingebauten Funktionen, die auf Listen angewendet werden
können, mit denen wir schnell eine Liste durchsehen können, ohne eigene Schleifen
zu schreiben:

>>> nums = [3, 41, 12, 9, 74, 15]
>>> print(len(nums))
6
>>> print(max(nums))
74
>>> print(min(nums))
3
>>> print(sum(nums))
154
>>> print(sum(nums)/len(nums))
25

112 Kapitel 8. Listen

Die Funktion sum() funktioniert nur, wenn die Listenelemente Zahlen sind. Die
anderen Funktionen (max(), len(), usw.) arbeiten mit Listen von Zeichenketten,
aber auch anderen Datentypen, deren Werte miteinander verglichen werden können.

Wir könnten ein früheres Programm umschreiben, das den Durchschnitt einer Liste
von Zahlen berechnet, die vom Benutzer eingegeben wurden.

Zunächst das Programm zur Berechnung eines Durchschnitts ohne Liste:

total = 0
count = 0
while (True):

inp = input('Gib eine Zahl ein: ')
if inp == 'done': break
value = float(inp)
total = total + value
count = count + 1

average = total / count
print('Mittelwert:', average)

Code: https://tiny.one/py4de/code3/avenum.py

In diesem Programm haben wir die Variablen count und total, um die Anzahl
und die laufende Summe der Zahlen des Benutzers festzuhalten, während wir den
Benutzer wiederholt nach einer Zahl fragen.

Wir könnten uns einfach jede Zahl merken, so wie der Benutzer sie eingegeben hat,
und eingebaute Funktionen verwenden, um die Summe und die Anzahl am Ende
zu berechnen.

numlist = list()
while (True):

inp = input('Gib eine Zal ein: ')
if inp == 'done': break
value = float(inp)
numlist.append(value)

average = sum(numlist) / len(numlist)
print('Mittelwert:', average)

Code: https://tiny.one/py4de/code3/avelist.py

Wir erstellen eine leere Liste, bevor die Schleife beginnt, und fügen dann jedes Mal,
wenn wir eine neue Zahl bekommen, diese an die Liste an. Am Ende des Programms
berechnen wir einfach die Summe der Zahlen in der Liste und teilen sie durch die
Anzahl der Zahlen in der Liste, um den Durchschnitt zu ermitteln.

8.9. Listen und Zeichenketten 113

8.9 Listen und Zeichenketten

Eine Zeichenkette ist eine Folge von Zeichen und eine Liste ist eine Folge von
Werten, aber eine Liste von Zeichen ist nicht dasselbe wie eine Zeichenkette. Um
von einer Zeichenkette in eine Liste von Zeichen zu konvertieren, können wir list
verwenden:

>>> s = 'spam'
>>> t = list(s)
>>> print(t)
['s', 'p', 'a', 'm']

Da list der Name einer eingebauten Funktion ist, sollte man es vermeiden, ihn als
Variablennamen zu verwenden. Auch der Buchstabe l sollte vermieden werden, weil
er zu sehr wie die Zahl 1 aussieht. Deshalb kann man beispielsweise t verwenden.

Was passiert, wenn wir zufällig einen Namen einer eingebauten Funktion für eigene
Zwecke wiederverwenden, zeigt folgendes Beispiel:

>>> def list(*args):
... return ['Ha', 'ha', 'ha']
...
>>> buchstaben = list("Hallo")
>>> print(buchstaben)
['Ha', 'ha', 'ha']
>>> del list
>>> buchstaben = list("Hallo")
>>> print(buchstaben)
['H', 'a', 'l', 'l', 'o']

Hier definieren wir eine eigene Funktion list; Python lässt das ohne weiteres zu.
Wenn wir die Funktion list später verwenden, ohne uns daran zu erinnern, dass wir
sie „umdefiniert“ haben, können wir ein schwer zu erklärendes Fehlverhalten haben.
Um die Sache rückgängig zu machen, löchen wir mit del die aktuelle Bedeutung
des Names list. So kommt die ursprüngliche Bedeutung wieder zum Vorschein
und wir können die Funktion wie gewünscht verwenden.

Die Funktion list zerlegt eine Zeichenkette in einzelne Buchstaben. Wenn wir eine
Zeichenkette in Wörter zerlegen wollen, können wir die Methode split verwenden:

>>> s = 'pining for the fjords'
>>> t = s.split()
>>> print(t)
['pining', 'for', 'the', 'fjords']
>>> print(t[2])
the

Nachdem wir die Zeichenkette mit split in eine Liste von Wörtern zerlegt haben,
können wir den Indexoperator (eckige Klammer) verwenden, um ein bestimmtes
Wort in der Liste zu betrachten.

114 Kapitel 8. Listen

Man kann split mit einem optionalen Argument (Delimiter genannt) aufrufen,
das angibt, welche Zeichen als Wortgrenzen verwendet werden sollen. Das folgende
Beispiel verwendet einen Bindestrich als Begrenzungszeichen:

>>> s = 'rama-lama-ding-dong'
>>> delimiter = '-'
>>> s.split(delimiter)
['rama', 'lama', 'ding', 'dong']

join ist die Umkehrung von split. Es nimmt eine Liste von Strings und verkettet
die Elemente. Da join eine String-Methode ist, müssen wir sie auf dem Delimiter
aufrufen und die Liste als Parameter übergeben:

>>> t = ['pining', 'for', 'the', 'fjords']
>>> delimiter = ' '
>>> delimiter.join(t)
'pining for the fjords'

In diesem Fall ist das Begrenzungszeichen ein Leerzeichen, also setzt join ein
Leerzeichen zwischen die Wörter. Um Zeichenketten ohne Leerzeichen zu verketten,
können wir die leere Zeichenkette als Begrenzungszeichen verwenden.

8.10 Parsen von Zeilen

Wenn wir eine Datei lesen, wollen wir normalerweise etwas anderes mit den Zeilen
machen, als nur die ganze Zeile auszugeben. Oft wollen wir die „interessanten Zeilen“
finden und dann die Zeile parsen, um einen interessanten Teil der Zeile zu finden.
Was wäre, wenn wir den Wochentag aus den Zeilen ausgeben wollten, die mit From
beginnen?

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Die Methode split ist bei dieser Art von Problem sehr hilfreich. Wir können ein
kleines Programm schreiben, das nach Zeilen sucht, in denen die Zeile mit From
beginnt, diese Zeilen mit split zerlegen, und dann das dritte Wort in der Zeile
ausgibt:

fhand = open('mbox-short.txt')
for line in fhand:

line = line.rstrip()
if not line.startswith('From '): continue
words = line.split()
print(words[2])

Code: https://tiny.one/py4de/code3/search5.py

Das Programm erzeugt die folgende Ausgabe:

8.11. Objekte und Werte 115

a

b

'Banane' a

b

'Banane'

'Banane'

Abbildung 8.1: Variablen und Objekte

Sat
Fri
Fri
Fri
...

Später werden wir immer ausgefeiltere Techniken erlernen, wie wir die zu bearbei-
tenden Zeilen auswählen und wie wir diese Zeilen zerlegen, um genau die gesuchte
Information zu finden.

8.11 Objekte und Werte

Wenn wir diese Zuweisungsanweisungen ausführen:

a = 'Banane'
b = 'Banane'

wissen wir, dass a und b sich beide auf eine Zeichenkette beziehen, aber die Frage
ist, ob sie sich auf dieselbe Zeichenkette beziehen. Es gibt zwei denkbare Szenarien:

In einem Fall beziehen sich a und b auf zwei verschiedene Objekte, die den gleichen
Wert haben. Im zweiten Fall beziehen sie sich auf das gleiche Objekt.

Um zu prüfen, ob zwei Variablen auf das selbe Objekt verweisen, können wir den
Operator is verwenden.

>>> a = 'Banane'
>>> b = 'Banane'
>>> a is b
True

In diesem Beispiel war Python „schlau genug“, nur ein String-Objekt zu erzeugen;
sowohl a als auch b beziehen sich darauf. Es kann aber durchaus sein, dass ein
gleichlautender String mehrfach als Objekt angelegt wird. Dann kann es dazu
kommen, das die Werte von a und b gleich sind, es sich aber um unterschiedliche
Objekte handelt:

>>> a = 'Banane'
>>> b = 'B' + a[1:]
>>> print(a,b)
Banane Banane
>>> a is b
False

116 Kapitel 8. Listen

Auch, wenn wir zwei Listen mit gleichem Inhalt erstellen, erhalten wir zwei Objekte:

>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> a is b
False

In diesem Fall würden wir sagen, dass die beiden Listen äquivalent sind, weil sie
die gleichen Elemente haben, aber nicht identisch, weil sie nicht das selbe Objekt
sind. Wenn zwei Objekte identisch sind, sind sie auch äquivalent, aber wenn sie
äquivalent sind, sind sie nicht unbedingt identisch.

Bis jetzt haben wir „Objekt“ und „Wert“ austauschbar verwendet, aber es ist präziser
zu sagen, dass ein Objekt einen Wert hat. Wenn wir a = [1,2,3] ausführen, bezieht
sich a auf ein Listenobjekt, dessen Wert eine bestimmte Folge von Elementen ist.
Wenn eine andere Liste die gleichen Elemente hat, würden wir sagen, sie hat den
gleichen Wert.

8.12 Aliase

Wenn sich a auf ein Objekt bezieht und wir b = a zuweisen, dann beziehen sich
beide Variablen auf das selbe Objekt:

>>> a = [1, 2, 3]
>>> b = a
>>> b is a
True

Die Assoziation einer Variablen mit einem Objekt wird als Referenz bezeichnet. In
diesem Beispiel gibt es zwei Referenzen auf das selbe Objekt.

Ein Objekt mit mehr als einem Verweis hat mehr als einen Namen. Diese Namen
bezeichnen wir als Aliase (Plural für Alias).

Wenn das referenzierte Objekt veränderbar ist, wirken sich Änderungen, die mit
einem Alias vorgenommen werden, auch auf die anderen Aliase aus:

>>> b[0] = 17
>>> print(a)
[17, 2, 3]

Dieses Verhalten kann zwar nützlich sein, ist aber fehleranfällig. Im Allgemeinen ist
es sicherer, Aliasing zu vermeiden, wenn wir mit veränderlichen Objekten arbeiten.

Bei unveränderlichen Objekten wie Zeichenketten ist das Aliasing nicht so proble-
matisch. In dem folgenden Beispiel macht es fast nie einen Unterschied, ob sich a
und b auf dieselbe Zeichenkette beziehen oder nicht.

a = 'Banane'
b = 'Banane'

8.13. Listen als Funktionsargumente 117

8.13 Listen als Funktionsargumente

Wenn wir eine Liste an eine Funktion übergeben, erhält die Funktion eine Referenz
auf die Liste. Wenn die Funktion einen Listenparameter modifiziert, ist diese
Änderung auch in der aufrufenden Umgebung sichtbar. Zum Beispiel entfernt
delete_head das erste Element aus einer Liste:

def delete_head(t):
del t[0]

Die Funktion wird folgendermaßen verwendet:

>>> letters = ['a', 'b', 'c']
>>> delete_head(letters)
>>> print(letters)
['b', 'c']

Der Parameter t und die Variable letters sind Aliasnamen für das selbe Objekt.

Übung 1: Schreiben Sie eine Funktion namens remove_all, die eine Liste und
einen Wert entgegennimmt und alle Vorkommen des Wertes aus der Liste entfernt.
Die Funktion soll die Liste in-place verändern und als Ergebnis None zurückgeben.

Es ist wichtig, zwischen Operationen zu unterscheiden, die Listen verändern, und
Operationen, die neue Listen erzeugen. Zum Beispiel verändert die Methode append
eine Liste, aber der Operator + erzeugt eine neue Liste:

>>> t1 = [1, 2]
>>> t2 = t1.append(3)
>>> print(t1)
[1, 2, 3]
>>> print(t2)
None

>>> t3 = t1 + [3]
>>> print(t3)
[1, 2, 3]
>>> t2 is t3
False

Dieser Unterschied ist wichtig, wenn wir Funktionen schreiben, die Listen verändern
sollen. Zum Beispiel löscht diese Funktion nicht den Kopf einer Liste:

def bad_delete_head(t):
t = t[1:] # FALSCH!

Der Slice-Operator erzeugt eine neue Liste und die Zuweisung macht t zu einem
Verweis auf diese Liste, aber nichts davon hat irgendeinen Effekt auf die Liste, die
als Argument übergeben wurde.

118 Kapitel 8. Listen

Eine Alternative ist, eine Funktion zu schreiben, die eine neue Liste erzeugt und
zurückgibt. Zum Beispiel gibt tail alle Elemente einer Liste bis auf das erste
zurück:

def tail(t):
return t[1:]

Diese Funktion lässt die ursprüngliche Liste unangetastet. So wird sie verwendet:

>>> letters = ['a', 'b', 'c']
>>> rest = tail(letters)
>>> print(rest)
['b', 'c']

Übung 2: Schreiben Sie eine Funktion namens chop, die eine Liste entgegennimmt
und sie modifiziert, indem sie das erste und letzte Element entfernt und None zu-
rückgibt. Schreiben Sie dann eine Funktion namens middle, die eine Liste annimmt
und eine neue Liste zurückgibt, die alle Elemente außer dem ersten und letzten
enthält.

8.14 Debugging

Der unvorsichtige Umgang mit Listen (und anderen veränderbaren Objekten)
kann zu stundenlanger Fehlersuche führen. Hier sind einige häufige Fallstricke und
Möglichkeiten, sie zu vermeiden:

1. Vergessen wir nicht, dass die meisten Listenmethoden das Argument modifi-
zieren und None zurückgeben. Dies ist das Gegenteil der String-Methoden,
die eine neue Zeichenkette zurückgeben und das Original unberührt lassen.
Wenn man es gewohnt ist, String-Code wie diesen zu schreiben:

word = word.strip()

dann ist es vermutlich verlockend, auch Listencode wie diesen zu schreiben:

t = t.sort() # FALSCH!

Da sort None zurückgibt, wird die nächste Operation, die wir mit t durch-
führen, wahrscheinlich fehlschlagen.
Bevor man die Methoden und Operatoren von Listen verwendet, sollten
man die Dokumentation sorgfältig lesen und sie dann im interaktiven Modus
testen. Die Methoden und Operatoren, die Listen mit anderen Sequenzen
(z. B. Zeichenketten) gemeinsam haben, sind dokumentiert unter:
docs.python.org/library/stdtypes.html#common-sequence-operations
Die Methoden und Operatoren, die nur für veränderbare Sequenzen gelten,
sind hier dokumentiert:
docs.python.org/library/stdtypes.html#mutable-sequence-types

https://docs.python.org/library/stdtypes.html#common-sequence-operations
https://docs.python.org/library/stdtypes.html#mutable-sequence-types

8.14. Debugging 119

2. Gewöhnen Sie sich einen Stil an.
Ein Teil des Problems mit Listen ist, dass es zu viele Möglichkeiten gibt,
Dinge zu tun. Um zum Beispiel ein Element aus einer Liste zu entfernen,
können Sie pop, remove, del oder sogar eine Slice-Zuweisung verwenden.
Um ein Element hinzuzufügen, kann man die Methode append oder den
Operator + verwenden. Aber nicht vergessen, dass das hier korrekt ist:

t.append(x)
t = t + [x]
t += [x]

Alle drei Anweisungen hängen das Element an die Liste t an. Die erste
Anweisung verändert das bestehende Listenobjekt t. Die zweite Anweiung
erzeugt mit t + [x] eine neue Liste, die sich durch die Verkettung von t
und einer Liste mit nur einem Elemnt x entsteht. Dieser neuen Liste wird der
Namen t zugewiesen. und damit das „alte“ t verworfen.
Die dritte Anweisung ist eine Kurzschreibweise des +-Operators. Im Allgemei-
nen (also vor allem bei Zahlen) entspricht a += b der Schreibweise a = a +
b. Auf Listen angewendet, hat dies den Effekt, dass die Liste selbst, also wie
bei append verändert wird. Wir behalten damit also das alte Listenobjekt.
Oft ist es unerheblich, ob man mit einem neuen Objekt oder dem bestehenden
weiterarbeitet. Wenn es aber zu einem unerwarteten Programmverhalten
kommt, können darin die Ursachen bestehen. Wenn Sie genau wissen wollen,
ob sich ein Objekt geändert hat, können Sie die eingebaute Funktion id()
verwenden. id zeigt Ihnen zu jedem Objekt die zugehörige, eindeutige ID an.
Wenn Sie diese vor und nach einer Zuweisung aufrufen, wissen Sie, ob ein
neues Objekt angelegt wurde.
Neben den richtigen Anweisungen, um eine Liste zu erweitern, gibt es noch
viele, die recht ähnlich aussehen, aber leider nicht das gewünschte Ergebnis
liefer. Hier einige Beispiele:

t.append([x]) # FALSCH!
t = t.append(x) # FALSCH!
t + [x] # FALSCH!
t = t + x # FALSCH!

Probieren Sie einmal jedes dieser Beispiele im interaktiven Modus aus, um
nachzuvollziehen, was die Anweisungen tun. Man sollte beachten, dass nur
das letzte Beispiel einen Laufzeitfehler verursacht; die anderen drei sind legal,
aber sie tun das Falsche.

3. Kopien erstellen, um die Nutzung von Aliasen zu vermeiden.
Wenn wir eine Methode wie sort verwenden wollen, die das Argument ver-
ändert, wir aber die ursprüngliche Liste ebenfalls behalten möchten, müssen
wir eine Kopie erstellen.

orig = t[:]
t.sort()

120 Kapitel 8. Listen

In diesem Beispiel könnten wir auch die eingebaute Funktion sorted verwen-
den, die eine neue, sortierte Liste zurückgibt und das Original in Ruhe lässt.
Aber in diesem Fall sollte man es vermeiden, sorted als Variablennamen zu
verwenden!

4. Listen, split und Dateien
Beim Lesen und Parsen von Dateien gibt es viele Gelegenheiten, auf Eingaben
zu stoßen, die unser Programm zum Absturz bringen können. Deshalb ist es
eine gute Idee, wie bereits in vorherigen Kapiteln mit „Wächtern“ zu arbeiten,
wenn es darum geht, Programme zu schreiben, die eine Datei durchlaufen
und nach der „Nadel im Heuhaufen“ suchen.
Schauen wir uns noch einmal unser Programm an, das in den From-Zeilen
unserer Datei nach dem Wochentag sucht:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Da wir diese Zeile in Wörter aufteilen, könnten wir auf die Verwendung von
startswith verzichten und einfach auf das erste Wort der Zeile schauen, um
festzustellen, ob wir überhaupt an der Zeile interessiert sind. Wir können
continue verwenden, um Zeilen, die nicht From als erstes Wort haben, wie
folgt zu überspringen:

fhand = open('mbox-short.txt')
for line in fhand:

words = line.split()
if words[0] != 'From': continue
print(words[2])

Das sieht viel einfacher aus und wir müssen nicht einmal rstrip verwenden,
um den Zeilenumbruch am Ende der Datei zu entfernen. Aber ist das wirklich
besser?

python search8.py
Sat
Traceback (most recent call last):

File "search8.py", line 5, in <module>
if words[0] != 'From': continue

IndexError: list index out of range

Es funktioniert zwar irgendwie und wir sehen den Tag aus der ersten Zeile
(Sat), aber dann schlägt das Programm mit einem Traceback-Fehler fehl. Was
ist schief gelaufen? Welche verpfuschten Daten haben dazu geführt, dass unser
elegantes und cleveres Programm fehlschlägt?
Man könnte lange darauf starren und rätseln oder jemanden um Hilfe bitten,
aber der schnellere und klügere Ansatz ist, eine print-Anweisung hinzuzufü-
gen. Die beste Stelle, um die print-Anweisung hinzuzufügen, ist direkt vor
der Zeile, in der das Programm fehlgeschlagen ist, und die Daten auszugeben,
die den Fehler zu verursachen scheinen.
Nun mag dieser Ansatz eine Menge Zeilen an Ausgabe erzeugen, aber zu-
mindest haben wir sofort einen Anhaltspunkt für das vorliegende Problem.

8.14. Debugging 121

Wir fügen also einen Ausgabe der Variablen words direkt vor Zeile 5 ein.
Wir fügen der Zeile sogar ein Präfix Debug: hinzu, damit wir unsere reguläre
Ausgabe von der Debug-Ausgabe getrennt halten können.

for line in fhand:
words = line.split()
print('Debug:', words)
if words[0] != 'From': continue
print(words[2])

Wenn wir das Programm ausführen, läuft eine Menge Ausgabe über den Bild-
schirm, aber am Ende sehen wir unsere Debug-Ausgabe und den Traceback,
sodass wir wissen, was kurz vor dem Traceback passiert ist.

Debug: ['X-DSPAM-Confidence:', '0.8475']
Debug: ['X-DSPAM-Probability:', '0.0000']
Debug: []
Traceback (most recent call last):

File "search9.py", line 6, in <module>
if words[0] != 'From': continue

IndexError: list index out of range

Jede Debug-Zeile gibt die Liste der Wörter aus, die wir erhalten, wenn wir
die Zeile mit split in Wörter zerlegen. Wenn das Programm fehlschlägt, ist
die Liste der Wörter leer []. Wenn wir die Datei in einem Texteditor öffnen
und uns die Datei ansehen, sieht sie zu diesem Zeitpunkt wie folgt aus:

X-DSPAM-Result: Innocent
X-DSPAM-Processed: Sat Jan 5 09:14:16 2008
X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000

Details: http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772

Der Fehler tritt auf, wenn unser Programm auf eine Leerzeile stößt! Natürlich
stehen in einer Leerzeile 0 Wörter. Warum haben wir nicht daran gedacht,
als wir den Code geschrieben haben? Wenn der Code nach dem ersten Wort
(word[0]) sucht, um zu prüfen, ob es mit From übereinstimmt, erhalten wir
einen index out of range-Fehler.
Dies ist natürlich der perfekte Ort, um einen „Wächter“ einzufügen, der
verhindert, dass das erste Wort geprüft wird, wenn das erste Wort nicht
vorhanden ist. Es gibt viele Möglichkeiten, diesen Code zu schützen; wir
werden uns dafür entscheiden, die Anzahl der vorhandenen Wörter zu prüfen,
bevor wir uns das erste Wort ansehen:

fhand = open('mbox-short.txt')
for line in fhand:

words = line.split()
print('Debug:', words)
if len(words) == 0: continue
if words[0] != 'From': continue
print(words[2])

122 Kapitel 8. Listen

Zuerst haben wir die Debug-Print-Anweisung auskommentiert, anstatt sie
zu entfernen, für den Fall, dass unsere Änderung fehlschlägt und wir erneut
debuggen müssen. Dann haben wir eine Wächter-Anweisung hinzugefügt, die
prüft, ob wir 0 Wörter haben, und wenn ja, verwenden wir continue, um zur
nächsten Zeile in der Datei zu springen.
Wir können uns die beiden continue-Anweisungen so vorstellen, dass sie uns
helfen, die Menge der Zeilen zu reduzieren, die für uns potenziell „interessant“
sind und die wir weiter verarbeiten wollen. Eine Zeile, die keine Wörter enthält,
ist für uns „uninteressant“, also springen wir zur nächsten Zeile. Eine Zeile,
deren erstes Wort nicht From ist, ist für uns uninteressant, also überspringen
wir sie.
Das Programm in der geänderten Form läuft erfolgreich, also ist es vielleicht
richtig. Unsere Wächter-Anweisung stellt zwar sicher, dass die Worte[0]
niemals fehlschlagen werden, aber vielleicht ist das nicht genug. Wenn wir
programmieren, müssen wir immer daran denken: „Was könnte schiefgehen?“.

Übung 3: Finden Sie heraus, welche Zeile des obigen Programms noch nicht richtig
geschützt ist. Versuchen Sie, eine Textdatei zu konstruieren, die das Programm
zum Scheitern bringt. Ändern Sie dann das Programm so, dass die Zeile richtig
geschützt ist, und testen Sie, ob es Ihre neue Textdatei verarbeitet.

Übung 4: Schreiben Sie den Wächter-Code im obigen Beispiel ohne zwei if-
Anweisungen um. Verwenden Sie stattdessen einen zusammengesetzten logischen
Ausdruck mit dem logischen Operator or und einer einzigen if-Anweisung.

8.15 Glossar

Alias Ein Umstand, bei dem zwei oder mehr Variablen auf das gleiche Objekt
verweisen.

Delimiter Ein Zeichen oder eine Zeichenkette, das bzw. die angibt, wo eine Zei-
chenkette aufgeteilt werden soll.

Element Einer der Werte in einer Liste (oder einer anderen Sequenz); auch Item
genannt.

äquivalent Den gleichen Wert haben.
Index Ein ganzzahliger Wert, der ein Element in einer Liste indiziert.
identisch Dasselbe Objekt sein (was Äquivalenz impliziert).
Liste Eine Folge von Werten.
Traversieren einer Liste Der sequentielle Zugriff auf jedes Element in einer Liste.

verschachtelte Liste Eine Liste, die ein Element einer anderen Liste ist.
Objekt Etwas, auf das sich eine Variable beziehen kann. Ein Objekt hat einen

Typ und einen Wert.
Referenz Der Assoziation zwischen einer Variablen und ihrem Wert.

8.16 Übungen

Übung 5: Alle einzigartigen Wörter in einer Datei finden

8.16. Übungen 123

Shakespeare hat über 20,000 verschiedene Wörter in seinen Werken verwendet. Aber
wie könnte man das feststellen? Wie könnte man eine Liste aller Wörter erstellen,
die Shakespeare verwendet hat? Würde man sein gesamtes Werk herunterladen, es
lesen und alle einzigartigen Wörter von Hand nachverfolgen?

Lassen Sie uns stattdessen Python verwenden, um das zu erreichen. Listen Sie alle
eindeutigen Wörter auf, sortiert in alphabetischer Reihenfolge, die in der Datei
romeo.txt gespeichert sind, welche eine Teilmenge von Shakespeares Werk enthält.

Um loszulegen, laden Sie eine Kopie der Datei herunter:

tiny.one/py4de/code3/romeo.txt

Erstellen Sie eine Liste mit eindeutigen Wörtern. Schreiben Sie dazu ein Programm,
um die Datei romeo.txt zu öffnen und Zeile für Zeile zu lesen. Teilen Sie jede Zeile
mit der Funktion split in eine Liste von Wörtern auf. Prüfen Sie für jedes Wort,
ob das Wort bereits in der Liste der eindeutigen Wörter enthalten ist. Wenn das
Wort nicht in der Liste der eindeutigen Wörter enthalten ist, fügen Sie es der Liste
hinzu. Wenn das Programm mit dem Lesen der Datei fertig, sortieren Sie die Liste
der eindeutigen Wörter in alphabetischer Reihenfolge und geben Sie sie aus.

Enter file: romeo.txt
['Arise', 'But', 'It', 'Juliet', 'Who', 'already',
'and', 'breaks', 'east', 'envious', 'fair', 'grief',
'is', 'kill', 'light', 'moon', 'pale', 'sick', 'soft',
'sun', 'the', 'through', 'what', 'window',
'with', 'yonder']

Übung 6: Ein minimalistischer E-Mail-Client.

MBOX (Mailbox) ist ein beliebtes Dateiformat zum Speichern und Freigeben einer
Sammlung von E-Mails. Dies wurde von frühen E-Mail-Servern und Desktop-Apps
verwendet. Ohne zu sehr ins Detail zu gehen, ist MBOX eine Textdatei, die E-
Mails fortlaufend speichert. E-Mails werden durch eine spezielle Zeile voneinander
getrennt, die mit From beginnt (beachten Sie das angehängte Leerzeichen). Wichtig
ist, dass Zeilen, die mit From: beginnen (beachten Sie den Doppelpunkt), die
E-Mail selbst beschreiben und nicht als Trennzeichen fungieren. Stellen Sie sich vor,
Sie schreiben eine minimalistische E-Mail-App, die die E-Mails der Absender im
Posteingang des Benutzers auflistet und die Anzahl der E-Mails zählt.

Schreiben Sie ein Programm, das die Daten der Mailbox durchläuft, und wenn Sie
eine Zeile finden, die mit From beginnt, teilen Sie die Zeile mit der Funktion split
in Wörter auf. Wir sind daran interessiert, wer die Nachricht gesendet hat, also
was das zweite Wort in der From-Zeile ist.

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Sie parsen die From-Zeile und geben das zweite Wort für jede From-Zeile aus, dann
zählen Sie auch die Anzahl der From-Zeilen (nicht From:) und geben am Ende die
Anzahl aus. Dies ist eine Beispielausgabe, bei der ein paar Zeilen entfernt wurden:

python fromcount.py

https://tiny.one/py4de/code3/romeo.txt

124 Kapitel 8. Listen

Gib eine Datei an: mbox-short.txt
stephen.marquard@uct.ac.za
louis@media.berkeley.edu
zqian@umich.edu

[...some output removed...]

ray@media.berkeley.edu
cwen@iupui.edu
cwen@iupui.edu
cwen@iupui.edu
Es gibt 27 Zeilen mit 'From' als erstem Wort.

Übung 7: Schreiben Sie das Programm um, das den Benutzer zur Eingabe einer
Liste von Zahlen auffordert und am Ende das Maximum und Minimum der Zahlen
ausgibt, wenn der Benutzer „done“ eingibt. Schreiben Sie das Programm so, dass
es die Zahlen, die der Benutzer eingibt, in einer Liste speichert und die Funktionen
max() und min() verwendet, um die größte und kleinste Zahl nach Abschluss der
Schleife zu ermitteln.

Bitte eine Zahl eingeben: 6
Bitte eine Zahl eingeben: 2
Bitte eine Zahl eingeben: 9
Bitte eine Zahl eingeben: 3
Bitte eine Zahl eingeben: 5
Bitte eine Zahl eingeben: done
Maximum: 9.0
Minimum: 2.0

Kapitel 9

Dictionarys

Listen sind sehr gut geeignet, um alles Mögliche zu speichern, was eine Reihenfolge
hat. Sie können bei einer Liste über den Index das entsprechende Element finden,
also z. B. das erste, das fünfte oder auch das letzte Element. Oftmals ist beim
Abspeichern der Daten die Reihenfolge allerdings unerheblich, es kommt eher
darauf an, Datensätze schnell „wiederzufinden“.

Stellen Sie sich die Mitarbeiterkartei einer Personalabteilung vor. Als Liste abgelegt
würde es bedeuten, dass wir alle Akten übereinander stapeln. Wir könnten zwar
schnell eine beliebige Akte herausziehen, um eine bestimmte Akte zu finden, müssten
wir aber im Stapel suchen und im Zweifelsfall jede öffnen, um herauszufinden, zu
welcher Person sie gehört. Daher legt man Akten unter einem geeigneten Stichwort
ab, in diesem Fall z. B. dem Namen der Person. In diesem Kapitel geht es um
Dictionarys, einem zusammengesetzten Datentyp in Python, mit dem genau solche
Ablage- und Zugriffsmöglichkeiten für beliebige Daten möglich sind.

9.1 Was ist ein Dictionary

Ein Dictionary (zu Deutsch Wörterbuch) ist wie eine Liste, aber allgemeiner. In
einer Liste müssen die Indexpositionen ganze Zahlen sein; in einem Dictionary
können die Indizes (fast) jeden Typs sein.

Man kann sich ein Dictionary als eine Abbildung zwischen einem Satz von Indizes,
die Schlüssel (englisch Key) genannt werden, und einem Satz von Werten (englisch
Value) vorstellen. Jeder Schlüssel wird auf einen Wert abgebildet. Die Verbindung
zwischen einem Schlüssel und einem Wert wird als Schlüssel-Wert-Paar (englisch
Key-Value-Pair) bezeichnet.

Als Beispiel erstellen wir ein Dictionary, das englische und deutsche Wörter abbildet,
sodass die Schlüssel und die Werte allesamt Zeichenketten sind.

Die Funktion dict erzeugt ein neues Dictionary ohne Elemente. Da dict der Name
einer eingebauten Funktion ist, sollte man es vermeiden, ihn als Variablennamen
zu verwenden.

126 Kapitel 9. Dictionarys

>>> eng2de = dict()
>>> print(eng2de)
{}

Die geschweiften Klammern {} stehen für ein leeres Dictionary. Um Elemente zum
Dictionary hinzuzufügen, können wir eckige Klammern verwenden:

>>> eng2de['one'] = 'eins'

Diese Zeile erzeugt ein Element, das vom Schlüssel 'one' auf den Wert 'eins'
abbildet. Wenn wir das Dictionary erneut ausgeben, sehen wir ein Schlüssel-Wert-
Paar mit einem Doppelpunkt zwischen dem Schlüssel und dem Wert:

>>> print(eng2de)
{'one': 'eins'}

Dieses Ausgabeformat ist auch ein Eingabeformat. Wir können zum Beispiel ein
neues Dictionary mit drei Einträgen erstellen. Aber wenn man eng2de ausgeben
möchte, wird man vielleicht überrascht sein:

>>> eng2de = {'one': 'eins', 'two': 'zwei', 'three': 'drei'}
>>> print(eng2de)
{'one': 'eins', 'three': 'drei', 'two': 'zwei'}

Die Reihenfolge der Schlüssel-Wert-Paare ist nicht die gleiche. Wenn wir das gleiche
Beispiel auf unserem Computer eingeben, erhalten wir möglicherweise ein anderes
Ergebnis. Im Allgemeinen ist die Reihenfolge der Elemente in einem Dictionary
unvorhersehbar.

Das ist aber kein Problem, weil die Elemente eines Dictionarys nie mit ganz-
zahligen Indizes indiziert sind. Stattdessen verwenden wir die Schlüssel, um die
entsprechenden Werte nachzuschlagen:

>>> print(eng2de['two'])
'zwei'

Der Schlüssel 'two' bildet immer auf den Wert 'zwei' ab, sodass die Reihenfolge
der Elemente keine Rolle spielt.

Wenn der Schlüssel nicht im Dictionary enthalten ist, erhalten wir eine Ausnahme:

>>> print(eng2de['four'])
KeyError: 'four'

Die Funktion len arbeitet mit Dictionarys; sie gibt die Anzahl der Schlüssel-Wert-
Paare zurück:

9.2. Ein Dictionary zum Zählen verwenden 127

>>> len(eng2de)
3

Der in-Operator arbeitet mit Dictionarys; er sagt Ihnen, ob etwas als Schlüssel im
Dictionary vorkommt (als Wert zu erscheinen ist nicht gut genug).

>>> 'one' in eng2de
True
>>> 'eins' in eng2de
False

Um zu sehen, ob etwas als Wert in einem Dictionary vorkommt, können wir die
Methode values verwenden, die die Werte als einen Typ zurückgibt, der in eine
Liste konvertiert werden kann. Dann verwenden wir den Operator in:

>>> vals = list(eng2de.values())
>>> 'eins' in vals
True

Der Operator in verwendet unterschiedliche Algorithmen für Listen und Dictionarys.
Für Listen verwendet er einen linearen Suchalgorithmus. Je länger die Liste wird,
desto länger wird die Suchzeit im direkten Verhältnis zur Länge der Liste. Für
Dictionarys verwendet Python einen Algorithmus, der eine Hashtabelle verwendet
und eine bemerkenswerte Eigenschaft hat: Der in-Operator benötigt jedes Mal
ungefähr die gleiche konstante Zeit, egal wie viele Elemente in einem Dictionary
vorhanden sind. Ich werde nicht erklären, warum Hash-Funktionen so schnell sind,
aber man kann mehr darüber unter de.wikipedia.org/wiki/Hashtabelle lesen.

Übung 1: Laden Sie diese Datei herunter: tiny.one/py4de/code3/words.txt

Schreiben Sie ein Programm, das die Wörter in words.txt liest und sie als Schlüssel
in einem Dictionary speichert. Es spielt keine Rolle, wie die Werte lauten. Dann
können Sie den in-Operator als schnelle Möglichkeit verwenden, um zu prüfen, ob
eine Zeichenfolge im Dictionary enthalten ist.

9.2 Ein Dictionary zum Zählen verwenden

Angenommen, wir verfügen über eine Zeichenkette und möchten zählen, wie oft
jeder Buchstabe vorkommt. Es gibt mehrere Möglichkeiten, wie wir das tun können:

1. Wir könnten 26 Variablen erstellen, eine für jeden Buchstaben des Alphabets.
Dann könnten wir die Zeichenfolge durchlaufen und für jedes Zeichen den
entsprechenden Zähler inkrementieren, wahrscheinlich unter Verwendung einer
verketteten Bedingung.

2. Wir könnten eine Liste mit 26 Elementen erstellen. Dann könnten wir je-
des Zeichen in eine Zahl umwandeln (mit der eingebauten Funktion ord),
die Zahl als Index in der Liste verwenden und den entsprechenden Zähler
inkrementieren.

https://de.wikipedia.org/wiki/Hashtabelle
https://tiny.one/py4de/code3/words.txt

128 Kapitel 9. Dictionarys

3. Wir könnten ein Dictionary mit Zeichen als Schlüssel und Zählern als den
entsprechenden Werten erstellen. Das erste Mal, wenn wir ein Zeichen sehen,
würden wir dem Dictionary ein Element hinzufügen. Danach würden wir den
Wert eines vorhandenen Elements inkrementieren.

Jede dieser Optionen führt dieselbe Berechnung durch, aber jede von ihnen imple-
mentiert diese Berechnung auf eine andere Weise.

Eine Implementierung ist eine Art und Weise, eine Berechnung durchzuführen;
einige Implementierungen sind besser als andere. Ein Vorteil der Dictionaryim-
plementierung ist zum Beispiel, dass wir nicht im Voraus wissen müssen, welche
Buchstaben in der Zeichenkette vorkommen, und wir müssen nur Platz für die
Buchstaben schaffen, die tatsächlich vorkommen.

So könnte der Code aussehen:

word = 'brontosaurus'
d = dict()
for c in word:

if c not in d:
d[c] = 1

else:
d[c] = d[c] + 1

print(d)

Wir berechnen effektiv ein Histogramm, was ein statistischer Begriff für einen Satz
von Zählern (oder Häufigkeiten) ist.

Die for-Schleife durchläuft die Zeichenkette. Jedes Mal, wenn die Schleife durchlau-
fen wird und das Zeichen, das an c zugewiesen wird, nicht im Dictionary enthalten
ist, wird ein neues Element mit dem Schlüssel c und dem Anfangswert 1 angelegt (da
wir diesen Buchstaben schon einmal gesehen haben). Wenn c bereits im Dictionary
ist, inkrementieren wir d[c].

Hier ist die Ausgabe des Programms:

{'a': 1, 'b': 1, 'o': 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't': 1}

Das Histogramm zeigt an, dass die Buchstaben „a“ und „b“ einmal vorkommen;
„o“ erscheint zweimal, und so weiter.

Dictionarys haben eine Methode namens get, die einen Schlüssel und einen Stan-
dardwert annimmt. Wenn der Schlüssel im Dictionary vorkommt, gibt get den
entsprechenden Wert zurück; andernfalls wird der Standardwert zurückgegeben.
Zum Beispiel:

>>> counts = { 'chuck': 1 , 'annie': 42, 'jan': 100}
>>> print(counts.get('jan', 0))
100
>>> print(counts.get('tim', 0))
0

9.3. Dictionarys und Dateien 129

Wir können get verwenden, um unsere Histogramm-Schleife übersichtlicher zu
schreiben. Da die Methode get automatisch den Fall behandelt, dass ein Schlüssel
nicht in einem Dictionary enthalten ist, können wir vier Zeilen auf eine reduzieren
und die if-Anweisung eliminieren.

word = 'brontosaurus'
d = dict()
for c in word:

d[c] = d.get(c,0) + 1
print(d)

Die Verwendung der get-Methode zur Vereinfachung dieser Zählschleife ist schließ-
lich ein sehr häufig verwendetes Idiom in Python und wir werden es im weiteren
Verlauf des Buches noch oft verwenden. Wir sollten uns also einen Moment Zeit
nehmen und die Schleife mit der if-Anweisung und dem in-Operator mit der
Schleife mit der get-Methode vergleichen. Wir tun genau das Gleiche, aber die eine
ist wesentlich übersichtlicher.

9.3 Dictionarys und Dateien

Eine der häufigsten Verwendungen eines Dictionarys ist das Zählen des Vorkommens
von Wörtern in einer Datei mit einem geschriebenen Text. Beginnen wir mit einer
sehr einfachen Datei mit Wörtern aus dem Text von Romeo and Juliet.

Für die erste Reihe von Beispielen werden wir eine verkürzte und vereinfachte
Version des Textes ohne Interpunktion verwenden. Später werden wir mit dem Text
der Szene mit enthaltener Zeichensetzung arbeiten.

But soft what light through yonder window breaks
It is the east and Juliet is the sun
Arise fair sun and kill the envious moon
Who is already sick and pale with grief

Wir werden ein Python-Programm schreiben, das die Zeilen der Datei liest, jede
Zeile in eine Liste von Wörtern zerlegt und dann in einer Schleife jedes der Wörter
in der Zeile durchläuft und jedes Wort mithilfe eines Dictionarys zählt.

Wir werden erkennen, dass wir zwei for-Schleifen haben. Die äußere Schleife liest
die Zeilen der Datei und die innere Schleife iteriert durch jedes der Wörter in dieser
bestimmten Zeile. Dies ist ein Beispiel für ein Muster, das geschachtelte Schleifen
genannt wird, weil eine der Schleifen die äußere Schleife und die andere Schleife die
innere Schleife ist.

Da die innere Schleife alle ihre Iterationen jedes Mal ausführt, wenn die äuße-
re Schleife eine einzelne Iteration macht, können wir uns die innere Schleife als
„schneller“ und die äußere Schleife als „langsamer“ iterierend vorstellen.

Die Kombination der beiden verschachtelten Schleifen stellt sicher, dass wir jedes
Wort in jeder Zeile der Eingabedatei zählen.

130 Kapitel 9. Dictionarys

fname = input('Enter the file name: ')
try:

fhand = open(fname)
except:

print('File cannot be opened:', fname)
exit()

counts = dict()
for line in fhand:

words = line.split()
for word in words:

if word not in counts:
counts[word] = 1

else:
counts[word] += 1

print(counts)

Code: https://tiny.one/py4de/code3/count1.py

In unserer else-Anweisung verwenden wir die kompaktere Alternative zur Inkre-
mentierung einer Variablen. counts[word] += 1 ist äquivalent zu counts[word]
= counts[word] + 1. Beide Methoden können verwendet werden, um den Wert
einer Variablen um einen beliebigen Betrag zu ändern. Ähnliche Kurzschreibweisen
gibt es auch für andere Operatoren:

• a -= b für a = a - b
• a *= b für a = a * b
• a /= b für a = a / b

Wenn wir das Programm ausführen, sehen wir einen Dump mit allen Zählun-
gen in unsortierter Hash-Reihenfolge. (die Datei romeo.txt ist verfügbar unter
tiny.one/py4de/code3/romeo.txt)

python count1.py
Enter the file name: romeo.txt
{'and': 3, 'envious': 1, 'already': 1, 'fair': 1,
'is': 3, 'through': 1, 'pale': 1, 'yonder': 1,
'what': 1, 'sun': 2, 'Who': 1, 'But': 1, 'moon': 1,
'window': 1, 'sick': 1, 'east': 1, 'breaks': 1,
'grief': 1, 'with': 1, 'light': 1, 'It': 1, 'Arise': 1,
'kill': 1, 'the': 3, 'soft': 1, 'Juliet': 1}

Es ist etwas umständlich, das Dictionary zu durchforsten, um die häufigsten Wörter
und ihre Anzahl zu finden, also müssen wir noch etwas Python-Code hinzufügen,
um die Ausgabe zu erhalten, die nützlicher für uns sein wird.

https://tiny.one/py4de/code3/romeo.txt

9.4. Schleifen und Dictionarys 131

9.4 Schleifen und Dictionarys

Wenn man ein Dictionary als Sequenz in einer for-Anweisung verwendet, durchläuft
diese die Schlüssel des Dictionarys. Diese Schleife gibt jeden Schlüssel und den
entsprechenden Wert aus:

counts = { 'chuck': 1 , 'annie': 42, 'jan': 100}
for key in counts:

print(key, counts[key])

So sieht die Ausgabe aus:

jan 100
chuck 1
annie 42

Auch hier sind die Schlüssel in keiner bestimmten Reihenfolge.

Wir können dieses Muster verwenden, um die verschiedenen Schleifen-Idiome zu
implementieren, die wir zuvor beschrieben haben. Wenn wir zum Beispiel alle
Einträge in einem Dictionary mit einem Wert über zehn finden wollen, könnten wir
folgenden Code schreiben:

counts = { 'chuck': 1 , 'annie': 42, 'jan': 100}
for key in counts:

if counts[key] > 10:
print(key, counts[key])

Die for-Schleife iteriert über die Schlüssel des Dictionarys, also müssen wir den In-
dexoperator verwenden, um den entsprechenden Wert für jeden Schlüssel abzurufen.
So sieht die Ausgabe aus:

jan 100
annie 42

Wir sehen nur die Einträge mit einem Wert über 10.

Wenn wir die Schlüssel in alphabetischer Reihenfolge ausgeben möchten, erstellen
wir zunächst eine Liste der Schlüssel des Dictionarys mit der in Dictionaryobjekten
verfügbaren Methode keys. Dann sortieren diese Liste und iterieren anschließend
durch sie, wobei wir jeden Schlüssel nachschlagen und die Schlüssel-Wert-Paare wie
folgt ausgeben:

counts = { 'chuck': 1 , 'annie': 42, 'jan': 100}
lst = list(counts.keys())
print(lst)
lst.sort()
for key in lst:

print(key, counts[key])

132 Kapitel 9. Dictionarys

So sieht die Ausgabe aus:

['jan', 'chuck', 'annie']
annie 42
chuck 1
jan 100

Zuerst sehen wir die Liste der Schlüssel in unsortierter Reihenfolge, die wir von der
Methode keys erhalten. Dann sehen wir die Schlüssel-Wert-Paare in der Reihenfolge
aus der for-Schleife.

9.5 Fortgeschrittene Textanalyse

Im obigen Beispiel mit der Datei romeo.txt haben wir die Datei so einfach wie mög-
lich gemacht, indem wir alle Satzzeichen von Hand entfernt haben. Der ursprüngliche
Text enthält viele Satzzeichen, wie unten gezeigt.

But, soft! what light through yonder window breaks?
It is the east, and Juliet is the sun.
Arise, fair sun, and kill the envious moon,
Who is already sick and pale with grief,

Da die Python-Funktion split nach Leerzeichen sucht und Wörter als durch
Leerzeichen getrennte Token behandelt, würden wir die Wörter „soft!“ und „soft“
als unterschiedliche Wörter behandeln und für jedes Wort einen eigenen Dictionary-
Eintrag erstellen.

Da die Datei außerdem Groß- und Kleinschreibung aufweist, würden wir „who“ und
„Who“ als unterschiedliche Wörter mit unterschiedlicher Zählung behandeln.

Wir können diese beiden Probleme mit den String-Methoden lower, punctuation,
translate und maketrans lösen.

Die Funktion maketrans() wird verwendet, um eine Ersetzungstabelle zu erstellen.
Darin werden die Zeichen angegeben, die in der gesamten Zeichenfolge ersetzt bzw.
gelöscht werden sollen. Der folgende Aufruf erzeugt eine Ersetzungstabelle ttable,
bei der die Zeichen in fromstr durch die jeweils an der gleichen Position stehenden
Zeichen in tostr ersetzt werden. Die in der Liste deletestr stehenden Zeichen
werden gelöscht. fromstr und tostr können leere Strings sein und der Parameter
deletestr kann weggelassen werden.

ttable = str.maketrans(fromstr, tostr, deletestr)

Mit der Methode translate kann die Ersetzungstabelle dann auf eine Zeichenkette
angewndet werden:

line.translate(ttable)

Für unseren Zweck werden wir den Parameter tostr nicht angeben, aber wir werden
den Parameter deletestr verwenden, um alle Satzzeichen zu löschen. Wir lassen
uns sogar von Python die Liste der Zeichen mitteilen, die es als „Interpunktion“
betrachtet:

9.5. Fortgeschrittene Textanalyse 133

>>> import string
>>> string.punctuation
'!"#$%& \'()*+,-./:;<=>?@[\\]ˆ_`{|}~'

Wir nehmen die folgenden Änderungen an unserem Programm vor:

import string

fname = input('Enter the file name: ')
try:

fhand = open(fname)
except:

print('File cannot be opened:', fname)
exit()

counts = dict()
for line in fhand:

line = line.rstrip()
line = line.translate(

line.maketrans('', '', string.punctuation))
line = line.lower()
words = line.split()
for word in words:

if word not in counts:
counts[word] = 1

else:
counts[word] += 1

print(counts)

Code: https://tiny.one/py4de/code3/count2.py

Ein Teil des Erlernens der „Kunst von Python“ ist die Erkenntnis, dass Python oft
eingebaute Fähigkeiten für viele gängige Datenanalyseprobleme hat. Mit der Zeit
werden wir genug Beispielcode gesehen haben und genug von der Dokumentation
gelesen haben, um zu wissen, wo man nachschauen muss. Vielleicht hat jemand
bereits etwas geschrieben, das unsere Arbeit viel einfacher macht.

Im Folgenden finden wir eine gekürzte Version der Ausgabe:

Gib einen Dateinamen ein: romeo-full.txt
{'swearst': 1, 'all': 6, 'afeard': 1, 'leave': 2, 'these': 2,
'kinsmen': 2, 'what': 11, 'thinkst': 1, 'love': 24, 'cloak': 1,
a': 24, 'orchard': 2, 'light': 5, 'lovers': 2, 'romeo': 40,
'maiden': 1, 'whiteupturned': 1, 'juliet': 32, 'gentleman': 1,
'it': 22, 'leans': 1, 'canst': 1, 'having': 1, ...}

Das Durchsehen dieser Ausgabe ist immer noch unhandlich, aber wir können Python
verwenden, um uns genau das ausgeben zu lassen, wonach wir suchen. Aber dazu
müssen wir zunächst Tupel kennenlernen. Wir werden dieses Beispiel aufgreifen,
sobald wir etwas über Tupel gelernt haben.

134 Kapitel 9. Dictionarys

9.6 Debugging

Wenn wir mit größeren Datensätzen arbeiten, kann das Debuggen durch Ausgeben
und Prüfen der Daten von Hand umständlich werden. Hier sind einige Vorschläge
für die Fehlersuche in großen Datensätzen:

Reduzieren der Datenmenge Reduzieren wir, wenn möglich, die Größe des
Datensatzes. Wenn das Programm z. B. eine Textdatei liest, beginnen wir
nur mit den ersten 10 Zeilen, oder mit dem kleinsten Beispiel, das wir finden
können. Wir können entweder die Dateien selbst bearbeiten, oder (besser)
das Programm so modifizieren, dass es nur die ersten n Zeilen liest.
Wenn ein Fehler vorliegt, können wir n auf den kleinsten Wert reduzieren,
der den Fehler manifestiert, und ihn dann schrittweise erhöhen, während wir
Fehler finden und korrigieren.

Informationen extrahieren und Datentypen prüfen Anstatt den gesamten
Datensatz auszugeben und zu prüfen, sollten wir in Erwägung ziehen, nur
bestimmte Informationen auszugeben: z. B. die Anzahl der Elemente in einem
Dictionary oder die Gesamtsumme einer Liste von Zahlen.
Eine häufige Ursache für Laufzeitfehler ist ein Wert, der nicht den richtigen
Typ hat. Zur Fehlersuche bei dieser Art von Fehlern reicht es oft aus, den
Typ eines Wertes auszugeben.

Plausibilitätsprüfungen Manchmal können wir Code schreiben, um automatisch
auf Fehler zu prüfen. Wenn wir beispielsweise den Durchschnitt einer Liste
von Zahlen berechnen, könnten wir prüfen, dass das Ergebnis nicht größer als
das größte Element in der Liste oder kleiner als das kleinste ist. Dies wird als
„Plausibilitätsprüfungen“ bezeichnet, weil es Ergebnisse erkennt, die „völlig
unlogisch“ sind.
Eine andere Art der Prüfung vergleicht die Ergebnisse von zwei verschie-
denen Berechnungen, um zu sehen, ob sie konsistent sind. Dies wird als
„Konsistenzprüfung“ bezeichnet.

Formatierung der Debugging-Ausgabe Eine Formatierung der Debugging-
Ausgabe kann es erleichtern, einen Fehler zu erkennen.

Auch hier kann die Zeit, die wir mit dem Aufbau eines stabilen „Gerüsts“ verbringen,
die Zeit reduzieren, die wir für die Fehlersuche aufwenden müssen.

9.7 Glossar

Dictionary Eine Abbildung von einer Menge von Schlüsseln auf ihre entsprechen-
den Werte.

Hash-Tabelle Der Algorithmus, der zur Implementierung von Python-Dictionarys
verwendet wird.

Hashfunktion Eine Funktion, die von einer Hashtabelle verwendet wird, um den
Speicherort für einen Schlüssel zu berechnen.

9.8. Übungen 135

Histogramm Ein Menge von Zählern.
Implementierung Eine Art, eine Berechnung durchzuführen.
Schlüssel Ein Objekt, das in einem Dictionary als erster Teil eines Schlüssel-Wert-

Paares erscheint.
Schlüssel-Wert-Paar Die Darstellung des Mappings von einem Schlüssel auf

einen Wert.
Lookup Eine Dictionaryoperation, die einen Schlüssel nimmt und den entspre-

chenden Wert findet (Lookup = Nachschlagen im Dictionary).
verschachtelte Schleifen Wenn es eine oder mehrere Schleifen innerhalb einer

anderen Schleife gibt. Die innere Schleife läuft jedes Mal zu Ende, wenn die
äußere Schleife einmal läuft.

Wert Ein Objekt, das in einem Dictionary als zweiter Teil eines Schlüssel-Wert-
Paares erscheint. Dies ist spezifischer als unsere bisherige Verwendung des
Begriffs Wert.

9.8 Übungen

Übung 2: Schreiben Sie ein Programm, das jede E-Mail-Nachricht danach katego-
risiert, an welchem Wochentag sie versendet wurde. Suchen Sie dazu nach Zeilen,
die mit „From“ beginnen, suchen Sie dann nach dem dritten Wort und führen Sie
eine laufende Zählung der einzelnen Wochentage durch. Am Ende des Programms
geben Sie den Inhalt Ihres Dictionarys aus (die Reihenfolge spielt keine Rolle).

Beispiel:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Beispiel:

python dow.py
Gib eine Datei an: mbox-short.txt
{'Fri': 20, 'Thu': 6, 'Sat': 1}

Übung 3: Schreiben Sie ein Programm, um ein E-Mail-Protokoll zu lesen. Erzeugen
Sie ein Histogramm mithilfe eines Dictionarys, um zu zählen, wie viele Nachrichten
von den einzelnen E-Mail-Adressen gekommen sind. Geben Sie das Dictionary dann
aus.

Gib eine Datei an: mbox-short.txt
{'gopal.ramasammycook@gmail.com': 1, 'louis@media.berkeley.edu': 3,
'cwen@iupui.edu': 5, 'antranig@caret.cam.ac.uk': 1,
'rjlowe@iupui.edu': 2, 'gsilver@umich.edu': 3,
'david.horwitz@uct.ac.za': 4, 'wagnermr@iupui.edu': 1,
'zqian@umich.edu': 4, 'stephen.marquard@uct.ac.za': 2,
'ray@media.berkeley.edu': 1}

Übung 4: Fügen Sie folgendes dem obigen Programmcode hinzu, um herauszufin-
den, wer die meisten Nachrichten in der Datei erhalten hat. Nachdem alle Daten

136 Kapitel 9. Dictionarys

gelesen und das Dictionary erstellt wurde, durchsuchen Sie das Dictionary mithilfe
einer Schleife nach dem Maximum (siehe Kapitel 5: Maximum und Minimum er-
mitteln), um herauszufinden, wer die meisten Nachrichten hat, und geben Sie aus,
wie viele Nachrichten die Person bekommen hat.

Gib eine Datei an: mbox-short.txt
cwen@iupui.edu 5

Gib eine Datei an: mbox.txt
zqian@umich.edu 195

Übung 5: Dieses Programm zeichnet nur den Domänennamen (anstelle der Adresse)
auf, von dem die Nachricht gesendet wurde, also nicht, von welchem konkreten
Absender die E-Mail kam (das wäre die gesamte E-Mail-Adresse). Geben Sie am
Ende des Programms den Inhalt Ihres Dictionarys aus.

python schoolcount.py
Gib eine Datei an: mbox-short.txt
{'media.berkeley.edu': 4, 'uct.ac.za': 6, 'umich.edu': 7,
'gmail.com': 1, 'caret.cam.ac.uk': 1, 'iupui.edu': 8}

Kapitel 10

Tupel

Den Begriff Tupel sollten Sie aus der Mathematik kennen. Dort bezeichnet er
eine (endlich lange) Liste von nicht notwendigerweise voneinander verschiedenen
Objekten. Da wir bereits Listen in Python haben, benötigen wir keine Tupel, richtig?
Falsch! Denn im Gegensatz zu Listen können bei einem Tupel die einzelnen Werte
zur Laufzeit des Programms nicht verändert werden. Und diese Eigenschaft macht
tatsächlich einen großen Unterschied.

10.1 Tupel sind unveränderbar

Ein Tupel ist eine Folge von Werten. Die in einem Tupel gespeicherten Werte können
von beliebigem Typ sein und sie werden durch Ganzzahlen indiziert. Alles genau
wie bei Listen, nur eben mit dem wichtigen Unterschied, dass Tupel unveränderlich
sind. Tupel sind außerdem vergleichbar und können gehasht werden, sodass wir
Listen von ihnen sortieren und Tupel als Schlüsselwerte in Python-Dictionarys
verwenden können.

Syntaktisch ist ein Tupel eine durch Kommata getrennte Liste von Werten:

>>> t = 'a', 'b', 'c', 'd', 'e'

Obwohl es nicht notwendig ist, ist es üblich, Tupel in Klammern einzuschließen,
damit wir Tupel schnell identifizieren können, wenn wir uns Python-Code ansehen:

>>> t = ('a', 'b', 'c', 'd', 'e')

Um ein Tupel mit einem einzelnen Element zu erstellen, müssen wir das abschlie-
ßende Komma einfügen:

>>> t1 = (1,)
>>> type(t1)
<type 'tuple'>

138 Kapitel 10. Tupel

Ohne das Komma würde die (1) für den Python-Interpreter wie eine geklammerte
Ganzzahl aussehen und damit wie ein ganz normaler Ausdruck. Erst das Komma
vor der Klammer macht deutlich, dass hier etwas anderes, nämlich ein Eintupel
gemeint ist.

Eine weitere Möglichkeit, ein Tupel zu konstruieren, ist die eingebaute Funktion
tuple. Ohne Argument erzeugt sie ein leeres Tupel:

>>> t = tuple()
>>> print(t)
()

Wenn das Argument eine Sequenz (String, Liste oder Tupel) ist, ist das Ergebnis
des Aufrufs von tuple ein Tupel mit den Elementen der Sequenz:

>>> t = tuple('lupins')
>>> print(t)
('l', 'u', 'p', 'i', 'n', 's')

Da tuple der Name eines Konstruktors ist, sollten wir es vermeiden, ihn als
Variablennamen zu verwenden.

Die meisten Listenoperatoren funktionieren auch auf Tupeln. Der Indexoperator
indiziert ein Element:

>>> t = ('a', 'b', 'c', 'd', 'e')
>>> print(t[0])
'a'

Und der Slice-Operator selektiert einen Bereich von Elementen.

>>> print(t[1:3])
('b', 'c')

Wenn wir jedoch versuchen, eines der Elemente des Tupels zu ändern, erhalten wir
einen Fehler:

>>> t[0] = 'A'
TypeError: object doesn't support item assignment

Wir können die Elemente eines Tupels nicht ändern, aber wir können ein Tupel
durch ein anderes ersetzen:

>>> t = ('A',) + t[1:]
>>> print(t)
('A', 'b', 'c', 'd', 'e')

10.2. Vergleichen von Tupeln 139

10.2 Vergleichen von Tupeln

Die Vergleichsoperatoren funktionieren mit Tupeln und anderen Sequenzen. Python
beginnt mit dem Vergleich des jeweils ersten Elements aus jeder Sequenz. Wenn
beide gleich sind, geht es weiter zum nächsten Element und so weiter, bis zwei
Elemente gefunden wurden, die sich unterscheiden. Diese werden entsprechend dem
verwendeten Operator verglichen. Damit endet der Vergleich der Tupel. Alle danach
kommenden Elemente werden also nicht mehr berücksichtigt.

>>> (0, 1, 2) < (0, 3, 4)
True
>>> (0, 1, 2000000) < (0, 3, 4)
True

Die Funktion sort arbeitet auf die gleiche Weise. Sie sortiert primär nach dem
ersten Element, aber im Falle eines Gleichstandes nach dem zweiten Element und
so weiter.

Diese Funktion eignet sich für ein Muster namens DSU :

Decorate „Dekorieren“ einer Sequenz, indem eine Liste von Tupeln mit einem oder
mehreren Sortierschlüsseln den Elementen der Sequenz vorangestellt werden.

Sort Sortieren der Liste der Tupel mit dem in Python eingebauten sort.
Undecorate Extrahieren der sortierten Elemente der Sequenz.

Angenommen, wir haben eine Liste von Wörtern und möchten diese nach den
Wortlängen absteigend sortieren:

txt = 'Es war die Nachtigall und nicht die Lerche'
words = txt.split()
t = list()
for word in words:

t.append((len(word), word))

t.sort(reverse=True)

res = list()
for length, word in t:

res.append(word)

print(res)

Code: https://tiny.one/py4de/code3/soft.py

Die erste Schleife baut eine Liste von Tupeln auf, wobei jedes Tupel ein Wort ist,
dem seine Länge vorangestellt ist.

sort vergleicht das erste Element (die Länge) zuerst und berücksichtigt nur das zwei-
te Element, um Gleichstände aufzulösen. Das Schlüsselwortargument reverse=True
sagt sort, dass es in absteigender Reihenfolge vorgehen soll.

140 Kapitel 10. Tupel

Die zweite Schleife durchläuft die Liste aller Tupel und baut eine Liste der Wör-
ter nach absteigender Wortlänge auf. Gleichlange Wörter werden in umgekehrter
alphabetischer Reihenfolge sortiert, sodass „war“ in der folgenden Liste vor „und“
erscheint.

Die Ausgabe des Programms ist wie folgt:

['Nachtigall', 'Lerche', 'nicht', 'war', 'und', 'die', 'die', 'Es']

Natürlich verliert die Zeile viel von ihrer poetischen Wirkung, wenn man sie in eine
Python-Liste verwandelt und in absteigender Reihenfolge der Wortlänge sortiert.

10.3 Tupel-Zuweisung

Eine der einzigartigen syntaktischen Eigenschaften der Sprache Python ist die
Fähigkeit, ein Tupel auf der linken Seite einer Zuweisung haben zu können. Dadurch
können wir mehr als eine Variable auf einmal zuweisen, wenn die linke Seite eine
Sequenz ist.

In diesem Beispiel haben wir eine zweielementige Liste (die eine Sequenz ist) und
weisen das erste und zweite Element der Sequenz den Variablen x und y in einer
einzigen Anweisung zu.

>>> m = ['have', 'fun']
>>> x, y = m
>>> x
'have'
>>> y
'fun'
>>>

Es ist keine Magie, Python übersetzt die Tupel-Zuweisungssyntax in etwa so, dass
sie wie folgt aussieht:1

>>> m = ['have', 'fun']
>>> x = m[0]
>>> y = m[1]
>>> x
'have'
>>> y
'fun'
>>>

Stilistisch gesehen lassen wir die Klammern weg, wenn wir ein Tupel auf der linken
Seite der Zuweisungsanweisung verwenden, aber das Folgende ist eine ebenso gültige
Schreibweise:

1Python übersetzt die Syntax nicht wörtlich. Wenn wir dies zum Beispiel mit einem Dictionary
versuchen, wird es nicht so funktionieren, wie wir es vielleicht erwarten.

10.3. Tupel-Zuweisung 141

>>> m = ['have', 'fun']
>>> (x, y) = m
>>> x
'have'
>>> y
'fun'
>>>

Eine besonders clevere Anwendung der Tupel-Zuweisung erlaubt es uns, die Werte
zweier Variablen in einer einzigen Anweisung zu tauschen:

>>> a, b = b, a

Beide Seiten dieser Anweisung sind Tupel, aber die linke Seite ist ein Tupel von
Variablen; die rechte Seite ist ein Tupel von Ausdrücken. Jeder Wert auf der rechten
Seite wird der entsprechenden Variablen auf der linken Seite zugewiesen. Alle
Ausdrücke auf der rechten Seite werden vor ihrer Zuweisungen ausgewertet.

Die Anzahl der Variablen auf der linken Seite und die Anzahl der Werte auf der
rechten Seite müssen zueinander passen:

>>> a, b = 1, 2, 3
ValueError: too many values to unpack

Wir sollten noch ein wenig näher darauf eingehen, was „zueinander passen“ hier
bedeutet. a und b sind in der obigen Zuweisung einfach nur Namen. Python, als
dynamisch typisierte Programmiersprache, wird zur Laufzeit entscheiden, welche
Werte a und b bekommen sollen. Nun könnte einer der beiden Namen für eine Liste
stehen, in der mehrere Werte untergebracht sind. Dann würde die Zuweisung oben
wieder „passen“. Nur kann Python hier nicht wissen, ob a oder b diese Liste sein
soll.

Um das Beispiel oben doch funktionstüchtig zu machen, müssen wir die Information
hinzufügen, welcher Name für eine Sequenz von Werten stehen soll. Das tun wir
mit einem vorangestellten Sternchen * (englisch Asterisk):

>>> a, *b = (1,2,3)
>>> b
[2, 3]

Es gibt noch weitere Stellen in Python, an denen man mit einem vorangestellten
Asterisk ausdrückt, dass mehrere einzelne Werte zusammengefasst oder aber eine
Sequenz zu einzelnen Werten entpackt wird. Dieses Konzept nennt man dementspre-
chend Packing bzw. Unpacking. Funktionen verwenden es z. B., um eine beliebig
lange Liste von Parametern zuzulassen.

Beachten Sie übrigens, dass im Beispiel oben das Resultat in b eine Liste ist,
obwohl auf der linken Seite der Zuweisung ein Tupel steht. Beim Packing werden
die einzelenen Elemente immer in eine Liste gepackt, ganz gleich aus welcher
Datenstruktur sie entnommen werden.

142 Kapitel 10. Tupel

(Un)packing lässt sich nicht nur auf numerische Werte anwenden, sondern auch
auf andere Typen wie etwa Zeichenketten. Um z. B. eine E-Mail-Adresse in einen
Benutzernamen und eine Domäne aufzuteilen, könnten wir schreiben:

>>> addr = 'monty@python.org'
>>> uname, domain = addr.split('@')

Der Rückgabewert von split ist eine Liste mit zwei Elementen; das erste Element
wird uname zugewiesen, das zweite domain.

>>> print(uname)
monty
>>> print(domain)
python.org

10.4 Dictionarys und Tupel

Dictionarys haben eine Methode namens items, die eine Liste von Tupeln zurück-
gibt, wobei jedes Tupel ein Schlüssel-Wert-Paar ist:

>>> d = {'b':1, 'a':13, 'c':7}
>>> t = list(d.items())
>>> print(t)
[('b', 1), ('a', 13), ('c', 7)]

Wie wir es vermutlich von einem Dictionary erwarten, sind die Begriffe in keiner
bestimmten Reihenfolge angeordnet.

Da die Liste der Tupel jedoch eine Liste ist und Tupel vergleichbar sind, können
wir nun die Liste der Tupel sortieren. Das Konvertieren eines Dictionarys in eine
Liste von Tupeln ist eine Möglichkeit, den Inhalt eines Dictionarys nach Schlüssel
sortiert auszugeben:

>>> d = {'b':1, 'a':13, 'c':7}
>>> t = list(d.items())
>>> t
[('b', 1), ('a', 13), ('c', 7)]
>>> t.sort()
>>> t
[('a', 13), ('b', 1), ('c', 7)]

Die neue Liste wird in aufsteigender alphabetischer Reihenfolge nach dem Schlüs-
selwert sortiert.

10.5. Mehrfachzuweisung mit Dictionarys 143

10.5 Mehrfachzuweisung mit Dictionarys

Durch die Kombination von items, Tupel-Zuweisung und for können wir ein
schönes Codeschema für das Durchlaufen der Schlüssel und Werte eines Dictionarys
in einer einzigen Schleife sehen:

d = {'b':1, 'a':13, 'c':7}
for key, val in list(d.items()):

print(val, key)

Diese Schleife hat zwei Iterationsvariablen, weil items eine Liste von Tupeln zurück-
gibt und key, val eine Tupel- bzw. Unpacking-Zuweisung ist, die nacheinander
durch jedes der Schlüssel-Wert-Paare im Dictionary iteriert.

Bei jeder Iteration durch die Schleife werden sowohl key als auch val zum nächsten
Schlüssel-Wert-Paar im Dictionary vorgerückt (immer noch in Hash-Reihenfolge).

Der Ausgang dieser Schleife ist:

1 b
13 a
7 c

Auch hier gilt wieder die Reihenfolge der Hash-Schlüssel (d. h. letztendlich keine
bestimmte Reihenfolge).

Wenn wir diese beiden Techniken kombinieren, können wir den Inhalt eines Dic-
tionarys sortiert nach dem Wert, der in jedem Schlüssel-Wert-Paar gespeichert ist,
ausgeben.

Um dies zu tun, erstellen wir zunächst eine Liste von Tupeln, wobei jedes Tupel
(value, key) ist. Die Methode items würde uns eine Liste von (key, value)-
Tupeln liefern, aber dieses Mal wollen wir nach Wert und nicht nach Schlüssel
sortieren. Sobald wir die Liste mit den Wert-Schlüssel-Tupeln aufgebaut haben, ist
es eine einfache Sache, die Liste in umgekehrter Reihenfolge zu sortieren und die
neue, sortierte Liste auszugeben.

>>> d = {'b':1, 'a':13, 'c':7}
>>> l = list()
>>> for key, val in d.items():
... l.append((val, key))
...
>>> l
[(1, 'b'), (13, 'a'), (7, 'c')]
>>> l.sort(reverse=True)
>>> l
[(13, 'a'), (7, 'c'), (1, 'b')]
>>>

Indem wir die Liste der Tupel sorgfältig so konstruieren, dass der Wert das erste
Element jedes Tupels ist, können wir die Liste der Tupel sortieren und erhalten
den Inhalt unseres Dictionarys nach dem Wert sortiert.

144 Kapitel 10. Tupel

10.6 Worthäufigkeit zählen

Wenn wir zu unserem laufenden Beispiel des Textes aus Romeo und Juliet Akt 2,
Szene 2 zurückkehren, können wir unser Programm erweitern, um diese Technik zu
verwenden und die zehn häufigsten Wörter im Text wie folgt auszugeben:

import string
fhand = open('romeo-full.txt')
counts = dict()
for line in fhand:

line = line.translate(str.maketrans('', '', string.punctuation))
line = line.lower()
words = line.split()
for word in words:

if word not in counts:
counts[word] = 1

else:
counts[word] += 1

Sort the dictionary by value
lst = list()
for key, val in list(counts.items()):

lst.append((val, key))

lst.sort(reverse=True)

for key, val in lst[:10]:
print(key, val)

Code: https://tiny.one/py4de/code3/count3.py

Der erste Teil des Programms, der die Datei liest und das Dictionary erstellt,
welches jedes Wort auf die Anzahl der Wörter im Dokument abbildet, bleibt
unverändert. Aber anstatt einfach counts auszugeben und das Programm zu
beenden, konstruieren wir eine Liste von (val, key)-Tupeln und sortieren die
Liste dann in umgekehrter Reihenfolge.

Da der Wert an erster Stelle steht, wird er für die Vergleiche verwendet. Wenn
es mehr als ein Tupel mit demselben Wert gibt, wird das zweite Element (der
Schlüssel) betrachtet, sodass Tupel, bei denen der Wert gleich ist, weiter nach der
alphabetischen Reihenfolge des Schlüssels sortiert werden.

Am Ende schreiben wir eine for-Schleife, die in jeder Iteration eine Mehrfachzuwei-
sung durchführt und die zehn häufigsten Wörter ausgibt, indem sie durch einen
Ausschnitt der Liste (lst[:10]) iteriert.

Jetzt sieht die Ausgabe endlich so aus, wie wir es uns für unsere Worthäufigkeits-
analyse wünschen.

61 i

10.7. Tupel als Schlüssel in Dictionarys 145

42 and
40 romeo
34 to
34 the
32 thou
32 juliet
30 that
29 my
24 thee

Die Tatsache, dass dieses komplexe Parsen und Analysieren von Daten mit einem
leicht verständlichen 19-zeiligen Python-Programm durchgeführt werden kann, ist
ein Grund, warum Python eine gute Wahl als Sprache für die Erforschung von
Informationen ist.

10.7 Tupel als Schlüssel in Dictionarys

Da Tupel gehasht werden können und Listen nicht, müssen wir ein Tupel als
Schlüssel verwenden, wenn wir einen zusammengesetzten Schlüssel zur Verwendung
in einem Dictionary erstellen wollen.

Wir würden auf einen zusammengesetzten Schlüssel stoßen, wenn wir ein Telefon-
verzeichnis erstellen wollten, das von Nachnamen-Vornamen-Paaren auf Telefon-
nummern abbildet. Unter der Annahme, dass wir die Variablen last, first und
number definiert haben, könnten wir eine Dictionaryzuweisung wie folgt schreiben:

directory[last,first] = number

Der Ausdruck in Klammern ist ein Tupel. Wir könnten die Tupel-Zuweisung in
einer for-Schleife verwenden, um dieses Dictionary zu durchlaufen.

for last, first in directory:
print(first, last, directory[last,first])

Diese Schleife durchläuft die Schlüssel in directory, bei denen es sich um Tupel
handelt. Sie ordnet die Elemente jedes Tupels last und first zu und gibt dann
den Namen und die entsprechende Telefonnummer aus.

10.8 Zeichenketten, Listen und Tupel

Ich habe mich hierbei auf Listen von Tupeln konzentriert, aber fast alle Beispiele
in diesem Kapitel arbeiten auch mit Listen von Listen, Tupeln von Tupeln und
Tupeln von Listen. Um die Aufzählung der möglichen Kombinationen zu vermeiden,
ist es manchmal einfacher, von „Sequenzen von Sequenzen“ zu sprechen.

In vielen Kontexten können die verschiedenen Arten von Sequenzen (Strings, Listen
und Tupel) austauschbar verwendet werden. Wie und warum wählen wir also eine
der beiden Arten aus?

146 Kapitel 10. Tupel

Um mit dem Offensichtlichen zu beginnen: Zeichenketten sind begrenzter als andere
Sequenzen, da die Elemente Zeichen sein müssen. Außerdem sind sie unveränderlich.
Wenn wir die Möglichkeit benötigen, die Zeichen in einer Zeichenfolge zu ändern
(im Gegensatz zur Erstellung einer neuen Zeichenfolge), sollten wir stattdessen eine
Liste von Zeichen verwenden.

Listen sind üblicher als Tupel, hauptsächlich weil sie veränderbar sind. Aber es gibt
ein paar Fälle, in denen wir Tupel bevorzugen könnten:

1. In manchen Kontexten, wie z. B. einer return-Anweisung, ist es syntaktisch
einfacher, ein Tupel zu erstellen als eine Liste. In anderen Kontexten bevorzu-
gen wir vielleicht eine Liste.

2. Wenn wir eine Sequenz als Dictionaryschlüssel verwenden möchten, müssen
wir einen unveränderlichen Typ wie ein Tupel oder einen String verwenden.

3. Wenn wir eine Sequenz als Argument an eine Funktion übergeben, verringert
die Verwendung von Tupeln das Potenzial für unerwartetes Verhalten aufgrund
von Aliasbildung.

Da Tupel unveränderlich sind, bieten sie keine Methoden wie sort und reverse,
die bestehende Listen verändern. Python bietet jedoch die eingebauten Funktionen
sorted und reversed, die eine beliebige Sequenz als Parameter nehmen und eine
neue Sequenz mit denselben Elementen in einer anderen Reihenfolge zurückgeben.

10.9 Debugging

Listen, Dictionarys und Tupel sind allgemein als Datenstrukturen bekannt; in diesem
Kapitel beginnen wir, zusammengesetzte Datenstrukturen zu nutzen, wie Listen
von Tupeln und Dictionarys, die Tupel als Schlüssel und Listen als Werte enthalten.
Zusammengesetzte Datenstrukturen sind nützlich, aber sie sind anfällig für das,
was man als Formatfehler bezeichnen könnte; das heißt, Fehler, die entstehen,
wenn eine Datenstruktur den falschen Typ, die falsche Größe oder die falsche
Zusammensetzung hat, oder wenn wir vielleicht etwas Code schreiben und das
Format der Daten vergessen und einen Fehler einführen. Wenn wir zum Beispiel eine
Liste mit einer Ganzzahl erwarten und ich dem Programm eine einfache Ganzzahl
(nicht in einer Liste) gebe, wird es nicht funktionieren.

10.10 Glossar

vergleichbar Ein Datentyp, bei dem ein Wert daraufhin überprüft werden kann,
ob er größer, kleiner oder gleich einem anderen Wert desselben Typs ist.
Typen, die vergleichbar sind, können in eine Liste eingefügt und sortiert
werden.

Datenstruktur Eine Sammlung zusammengehöriger Werte, oft organisiert in
Listen, Dictionarys, Tupeln usw.

DSU Abkürzung für „Decorate-Sort-Undecorate“, ein Muster, bei dem eine Liste
von Tupeln erstellt, sortiert und ein Teil des Ergebnisses extrahiert wird.

10.11. Übungen 147

hashbar Ein Datentyp, der eine Hash-Funktion hat. Unveränderliche Typen wie
Ganzzahlen, Fließkommazahlen und Zeichenketten sind hashfähig; verän-
derliche Typen wie Listen und Dictionarys können nicht gehasht werden.

Singleton Eine Liste (oder andere Sequenz) mit einem einzelnen Element.
Tupel Eine unveränderliche Folge von Elementen.
Tupelzuweisung Eine Zuweisung mit einer Sequenz auf der rechten Seite und

einem Tupel von Variablen auf der linken Seite. Die rechte Seite wird aus-
gewertet und dann werden ihre Elemente den Variablen auf der linken Seite
zugewiesen.

10.11 Übungen

Übung 1: Das vorherige Programm soll auf folgende Weise überarbeitet werden:
Die From-Zeilen sollen gelesen und geparst werden, um daraus die Adressen zu
extrahieren. Dabei soll mit Hilfe eines Dictionarys die Anzahl der Nachrichten von
jeder Person gezählt werden.

Nachdem alle Daten gelesen wurden, soll die Person mit den meisten Nachrichten
ausgegeben werden, indem eine Liste von (count, email)-Tupel aus dem Dictio-
nary erstellt wird. Dann muss die Liste in umgekehrter Reihenfolge sortiert und
schließlich die Person mit den meisten Nachrichten ausgegeben werden.

Gib eine Datei an: mbox-short.txt
cwen@iupui.edu 5

Gib eine Datei an: mbox.txt
zqian@umich.edu 195

Übung 2: Schreiben Sie ein Programm, welches die Häufigkeit von Nachrichten
pro Tageszeit (ganze Stunden) ermittelt. Die Stunden sollen aus der From-Zeile
extrahiert werden, indem die Uhrzeit gefunden und diese Zeichenfolge dann anhand
des Doppelpunkts in Teile zergliedert wird. Sobald die Nachrichtenhäufigkeit für
jede Stunde gesammelt wurde, sollen diese wie weiter unten gezeigt ausgegeben
werden (eine pro Zeile, sortiert nach Stunde).

python timeofday.py
Gib eine Datei an: mbox-short.txt
04 3
06 1
07 1
09 2
10 3
11 6
14 1
15 2
16 4
17 2
18 1
19 1

148 Kapitel 10. Tupel

Übung 3: Schreiben Sie ein Programm, das eine Datei liest und die Buchstaben
in absteigender Reihenfolge der Häufigkeit ausgibt. Das Programm sollte alle
Eingaben in Kleinbuchstaben umwandeln und nur die Buchstaben a-z zählen. Es
soll keine Leerzeichen, Ziffern, Interpunktionszeichen oder irgendetwas anderes als
die Buchstaben a-z zählen. Dann sollen Textbeispiele in verschiedenen Sprachen
als Eingabe dienen, um zu analysieren, wie die Buchstabenhäufigkeit zwischen
verschiedenen Sprachen variiert. Vergleichen Sie ihre Ergebnisse mit den Tabellen
auf https://wikipedia.org/wiki/Letter_frequencies

https://wikipedia.org/wiki/Letter_frequencies

Kapitel 11

Reguläre Ausdrücke

Bisher haben wir uns durch Dateien gelesen, nach Mustern gesucht und verschiedene
Teile von Zeilen extrahiert, die wir interessant finden. Wir haben String-Methoden
wie split und find benutzt sowie Listen- und String-Slicing verwendet, um Teile
von Texten zu extrahieren.

Diese Aufgabe des Suchens und Extrahierens begegnet einem so häufig, dass Python
eine sehr mächtige Bibliothek für reguläre Ausdrücke hat, die viele dieser Aufgaben
recht elegant erledigt. Der Grund, warum wir reguläre Ausdrücke nicht früher im
Buch eingeführt haben, ist, dass sie zwar sehr mächtig, aber auch etwas kompliziert
sind und ihre Syntax etwas gewöhnungsbedürftig ist.

Reguläre Ausdrücke (englisch regular Expressions oder kurz regex) sind fast eine
eigene kleine Programmiersprache zum Suchen und Parsen von Zeichenketten. Tat-
sächlich sind ganze Bücher über das Thema reguläre Ausdrücke geschrieben worden
und auch der Python-Interpreter verwendet, immer wenn er unsere Programme
„verstehen“ möchte, reguläre Ausdrücke an.

In diesem Kapitel werden wir nur die Grundlagen der regulären Ausdrücke behan-
deln. Weitere Details zu regulären Ausdrücken finden sich unter:

https://de.wikipedia.org/wiki/Regul%C3%A4rer_Ausdruck

https://docs.python.org/library/re.html

Die Bibliothek für reguläre Ausdrücke re muss in das Programm importiert werden,
bevor sie verwendet werden kann. Die einfachste Verwendung der Bibliothek für
reguläre Ausdrücke ist die Funktion search(). Das folgende Programm demonstriert
eine triviale Verwendung der Suchfunktion.

Finde Zeilen, die ein 'From' beinhalten
import re
hand = open('mbox-short.txt')
for line in hand:

line = line.rstrip()
if re.search('From:', line):

print(line)

https://de.wikipedia.org/wiki/Regul%C3%A4rer_Ausdruck
https://docs.python.org/library/re.html

150 Kapitel 11. Reguläre Ausdrücke

Code: https://tiny.one/py4de/code3/re01.py

Wir öffnen die Datei, durchlaufen jede Zeile in einer Schleife und verwenden
search(), um nur Zeilen auszugeben, die die Zeichenkette From: enthalten. Dieses
Programm nutzt nicht die wirkliche Macht der regulären Ausdrücke, da wir genauso
gut line.find() hätten verwenden können, um das gleiche Ergebnis zu erzielen.

Die Stärke der regulären Ausdrücke kommt zum Tragen, wenn wir dem Suchstring
Sonderzeichen hinzufügen, mit denen wir genauer steuern können, welche Zeilen auf
den String passen. Durch das Hinzufügen dieser Sonderzeichen zu unserem regulären
Ausdruck können wir anspruchsvolle Abgleiche und Extraktionen durchführen und
dabei sehr wenig Code schreiben.

Der Zirkumflex (ˆ) wird zum Beispiel in regulären Ausdrücken verwendet, um den
Anfang einer Zeile zu finden. Wir könnten unser Programm so ändern, dass es nur
mit Zeilen übereinstimmt, in denen From: am Anfang der Zeile steht:

Finde Zeilen, die mit 'From' beginnen
import re
hand = open('mbox-short.txt')
for line in hand:

line = line.rstrip()
if re.search('ˆFrom:', line):

print(line)

Code: https://tiny.one/py4de/code3/re02.py

Jetzt werden wir nur Zeilen abgleichen, die mit der Zeichenkette From: beginnen.
Dies ist immer noch ein sehr einfaches Beispiel, das wir äquivalent mit der Methode
startswith() aus der String-Bibliothek hätten erledigen können. Aber es dient
dazu, die Vorstellung einzuführen, dass reguläre Ausdrücke spezielle Zeichen ent-
halten, die uns mehr Kontrolle darüber geben, was mit dem regulären Ausdruck
übereinstimmen wird.

11.1 Wildcards

Es gibt eine Reihe weiterer Sonderzeichen, mit denen sich noch mächtigere reguläre
Ausdrücke erstellen lassen. Das am häufigsten verwendete Sonderzeichen ist der
Punkt, der auf jedes beliebige Zeichen passt.

Im folgenden Beispiel würde der reguläre Ausdruck F..m: auf jede der Zeichenketten
„From:“, „Fxxm:“, „F12m:“ oder „F!@m:“ passen, da die Punkte im regulären
Ausdruck auf jedes Zeichen reagieren. Daher spricht man von Wildcards, was mit
Platzhalter übersetzt werden kann.

Finde Zeilen die mit einem 'F' beginnen, gefolgt
von 2 beliebigen Zeichen, gefolgt von einem 'm:'
import re

11.2. Extrahieren von Daten 151

hand = open('mbox-short.txt')
for line in hand:

line = line.rstrip()
if re.search('ˆF..m:', line):

print(line)

Code: https://tiny.one/py4de/code3/re03.py

Dies ist besonders effektiv in Kombination mit der Möglichkeit, anzugeben, dass
ein Zeichen beliebig oft wiederholt werden kann, indem Sie die Zeichen * oder +
in Ihrem regulären Ausdruck verwenden. Diese Sonderzeichen bedeuten, dass sie
nicht auf ein einzelnes Zeichen in der Suchzeichenfolge passen, sondern auf null
oder mehr Zeichen (im Fall des Sterns) oder auf ein oder mehr der Zeichen (im Fall
des Pluszeichens).

Wir können die übereinstimmenden Zeilen weiter eingrenzen, indem wir im folgenden
Beispiel ein wiederholtes Wildcard-Zeichen verwenden:

Finde Zeilen, die mit 'From' beginnen
und ein at-Zeichen beinhalten
import re
hand = open('mbox-short.txt')
for line in hand:

line = line.rstrip()
if re.search('ˆFrom:.+@', line):

print(line)

Code: https://tiny.one/py4de/code3/re04.py

Die Suchzeichenfolge ˆFrom:.+@ passt auf Zeilen, die mit From: beginnen, gefolgt
von einem oder mehreren beliebigen Zeichen (.+), gefolgt von einem at-Zeichen.
Dies wird also auf die folgende Zeile passen:

From: stephen.marquard@uct.ac.za

Wir können uns den Platzhalter .+ so vorstellen, dass er auf alle Zeichen zwischen
dem Doppelpunkt und dem at-Zeichen passt.

11.2 Extrahieren von Daten

Wenn wir in Python Daten aus einer Zeichenkette extrahieren wollen, können wir
die Methode findall() verwenden, um alle Teilstrings zu extrahieren, die einem
regulären Ausdruck entsprechen. Nehmen wir als Beispiel, dass wir alles, was wie
eine E-Mail-Adresse aussieht, aus jeder Zeile extrahieren wollen, unabhängig vom
Format. Zum Beispiel wollen wir die E-Mail-Adressen aus jeder der folgenden Zeilen
extrahieren:

152 Kapitel 11. Reguläre Ausdrücke

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008
Return-Path: <postmaster@collab.sakaiproject.org>

for <source@collab.sakaiproject.org>;
Received: (from apache@localhost)
Author: stephen.marquard@uct.ac.za

Wir wollen nicht für jeden der Zeilentypen separaten Code schreiben. Das folgende
Programm verwendet findall(), um die Zeilen mit E-Mail-Adressen darin zu
finden und eine oder mehrere Adressen aus jeder dieser Zeilen zu extrahieren.

import re
s = 'A message from csev@umich.edu to cwen@iupui.edu about meeting @2PM'
lst = re.findall('\S+@\S+', s)
print(lst)

Code: https://tiny.one/py4de/code3/re05.py

Die Methode findall() durchsucht die Zeichenkette im zweiten Argument und
gibt eine Liste aller Zeichenketten zurück, die wie E-Mail-Adressen aussehen. Wir
verwenden eine zweistellige Zeichenfolge, die auf ein Zeichen ohne Leerzeichen (\S)
passt.

Die Ausgabe des Programms würde lauten:

['csev@umich.edu', 'cwen@iupui.edu']

Der reguläre Ausdruck sucht nach Teilzeichenfolgen, die mindestens ein Nicht-
Leerzeichen enthalten, gefolgt von einem at-Zeichen, gefolgt von mindestens einem
weiteren Nicht-Leerzeichen. Das \S+ passt auf so viele Nicht-Leerzeichen wie mög-
lich.

Der reguläre Ausdruck würde zweimal passen (auf csev@umich.edu und auf
cwen@iupui.edu), aber er würde nicht auf die Zeichenkette „@2PM“ passen, weil
es keine Nicht-Leerzeichen vor dem at-Zeichen gibt. Wir können diesen regulären
Ausdruck in einem Programm verwenden, um alle Zeilen in einer Datei zu lesen
und alles auszugeben, was wie eine E-Mail-Adresse aussieht:

Finde Zeilen, die ein at-Zeichen zwischen zwei Zeichen haben:
import re
hand = open('mbox-short.txt')
for line in hand:

line = line.rstrip()
x = re.findall('\S+@\S+', line)
if len(x) > 0:

print(x)

Code: https://tiny.one/py4de/code3/re06.py

Wir lesen jede Zeile und extrahieren dann alle Teilzeichenfolgen, die unserem
regulären Ausdruck entsprechen. Da findall() eine Liste zurückgibt, prüfen wir

11.2. Extrahieren von Daten 153

einfach, ob die Anzahl der Elemente in unserer zurückgegebenen Liste größer als
0 ist, um nur Zeilen auszugeben, in denen wir mindestens eine Teilzeichenkette
gefunden haben, die wie eine E-Mail-Adresse aussieht.

Wenn wir das Programm auf mbox.txt anwenden, erhalten wir die folgende Ausga-
be:

['wagnermr@iupui.edu']
['cwen@iupui.edu']
['<postmaster@collab.sakaiproject.org>']
['<200801032122.m03LMFo4005148@nakamura.uits.iupui.edu>']
['<source@collab.sakaiproject.org>;']
['<source@collab.sakaiproject.org>;']
['<source@collab.sakaiproject.org>;']
['apache@localhost)']
['source@collab.sakaiproject.org;']

Einige unserer E-Mail-Adressen haben falsche Zeichen wie < oder ; am Anfang
oder Ende. Lassen wir uns definieren, dass wir nur an dem Teil der Zeichenkette
interessiert sind, der mit einem Buchstaben oder einer Zahl beginnt und endet.

Dazu verwenden wir eine weitere Funktion regulärer Ausdrücke. Eckige Klammern
werden verwendet, um eine Menge von mehreren akzeptablen Zeichen anzugeben,
die wir als übereinstimmend betrachten. In gewissem Sinne bittet das \S darum, auf
die Menge der „Nicht-Leerzeichen“ zu passen. Jetzt werden wir ein wenig expliziter
in Bezug auf die Zeichen, die wir abgleichen werden.

Hier ist unser neuer regulärer Ausdruck:

[a-zA-Z0-9]\S*@\S*[a-zA-Z]

Das wird jetzt etwas kompliziert und wir sehen, warum reguläre Ausdrücke eine
eigene kleine Sprache für sich sind. Dieser regulärer Ausdruck sucht nach Teilzeichen-
ketten, die mit einem einzigen Kleinbuchstaben, Großbuchstaben oder einer Zahl
[a-zA-Z0-9] beginnen, gefolgt von keinem oder mehr Nicht-Leerzeichen (\S*), von
einem at-Zeichen, von keinem oder mehr Nicht-Leerzeichen (\S*) und schließlich
von einem Groß- oder Kleinbuchstaben. Es ist zu beachten, dass wir von + zu * ge-
wechselt haben, um kein oder mehr Nicht-Leerzeichen anzuzeigen, da [a-zA-Z0-9]
bereits ein Nicht-Leerzeichen ist. Außerdem ist zu beachten, dass das * oder + auf
das einzelne Zeichen unmittelbar links vom Plus oder Sternchen zutrifft.

Wenn wir diesen Ausdruck in unserem Programm verwenden, sind unsere Daten
viel sauberer:

Finde Zeilen, mit einem at-Zeichen zwischen zwei Zeichen. Die
Zeichenfolge vor dem at muss mit einem Buchstaben oder einer
Ziffer beginnen; die Zeichenfolge nach dem at muss mit einem
Buchstaben enden.
import re
hand = open('mbox-short.txt')
for line in hand:

154 Kapitel 11. Reguläre Ausdrücke

line = line.rstrip()
x = re.findall('[a-zA-Z0-9]\S*@\S*[a-zA-Z]', line)
if len(x) > 0:

print(x)

Code: https://tiny.one/py4de/code3/re07.py

...
['wagnermr@iupui.edu']
['cwen@iupui.edu']
['postmaster@collab.sakaiproject.org']
['200801032122.m03LMFo4005148@nakamura.uits.iupui.edu']
['source@collab.sakaiproject.org']
['source@collab.sakaiproject.org']
['source@collab.sakaiproject.org']
['apache@localhost']

Es ist wichtig zu beachten, dass unser regulärer Ausdruck in den Zeilen mit
source@collab.sakaiproject.org die zwei Buchstaben >; am Ende der Zei-
chenfolge entfernt hat. Das liegt daran, dass wir, wenn wir [a-zA-Z] an das Ende
unseres regulären Ausdrucks anhängen, verlangen, dass jede Zeichenfolge, die der
Parser des regulären Ausdrucks findet, mit einem Buchstaben enden muss. Wenn
er also das > am Ende von sakaiproject.org>; sieht, bleibt er einfach bei dem
letzten „passenden“ Buchstaben stehen, den er gefunden hat (d. h. das „g“ war die
letzte Übereinstimmung).

Zuletzt muss beachtet werden, dass die Ausgabe des Programms eine Python-Liste
ist, die eine Zeichenkette als einziges Element in der Liste hat.

11.3 Kombination von Suchen und Extrahieren

Wenn wir Zahlen in Zeilen finden wollen, die mit der Zeichenkette X- beginnen, wie
z. B.

X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000

dann suchen wir nicht einfach beliebige Fließkommazahlen aus beliebigen Zeilen,
sondern wir möchten nur Zahlen aus Zeilen extrahieren, die die obige Syntax
aufweisen.

Wir können den folgenden regulären Ausdruck verwenden, um diese Zeilen auszu-
wählen:

^X-.*: [0-9.]+

Übersetzt bedeutet dieser Ausdruck: Wir wollen Zeilen, die mit X- beginnen, gefolgt
von keinem oder beliebig vielen Zeichen (.*), gefolgt von einem Doppelpunkt (:)
und dann einem Leerzeichen. Nach dem Leerzeichen suchen wir nach einem oder

11.3. Kombination von Suchen und Extrahieren 155

mehreren Zeichen, die entweder eine Ziffer (0-9) oder ein Punkt [0-9.]+ sind. Der
Punkt innerhalb der eckigen Klammern stimmt mit einem tatsächlichen Punkt
überein (d. h. es handelt sich nicht um einen Platzhalter)!

Dies ist ein sehr genau definierter Ausdruck, der wirklich nur die Zeilen trifft, an
denen wir interessiert sind:

Finde Zeilen, die mit 'X' beginnen, gefolgt von beliebig vielen
(nicht-Leer-)Zeichen, gefolgt von einem ':' und einem
Leerzeichen. Danach kann eine Zahl mit einer oder mehreren
Ziffern und Dezimalpunkten folgen.
import re
hand = open('mbox-short.txt')
for line in hand:

line = line.rstrip()
if re.search('ˆX\S*: [0-9.]+', line):

print(line)

Code: https://tiny.one/py4de/code3/re10.py

Wenn wir das Programm ausführen, sehen wir nur die Zeilen, nach denen wir
tatsächlich suchen.

X-DSPAM-Confidence: 0.8475
X-DSPAM-Probability: 0.0000
X-DSPAM-Confidence: 0.6178
X-DSPAM-Probability: 0.0000

Aber jetzt müssen wir das Problem des Extrahierens der Zahlen lösen. Während
es einfach genug wäre, split zu verwenden, können wir eine andere Funktion von
regulären Ausdrücken nutzen, um die Zeile gleichzeitig zu suchen und zu analysieren.

Klammern sind ein weiteres Sonderzeichen in regulären Ausdrücken. Wenn wir
einem regulären Ausdruck Klammern hinzufügen, werden diese beim Abgleich
der Zeichenkette ignoriert. Wenn wir jedoch findall() verwenden, zeigen die
Klammern an, dass wir zwar wollen, dass der gesamte Ausdruck übereinstimmt,
dass wir aber nur daran interessiert sind, einen Teil der Zeichenkette zu extrahieren,
der mit dem regulären Ausdruck übereinstimmt.

Wir nehmen also folgende Änderung an unserem Programm vor:

Finde Zeilen, die mit 'X' beginnen, gefolgt von beliebig vielen
(nicht-Leer-)Zeichen, gefolgt von einem ':' und einem
Leerzeichen. Danach kann eine Zahl mit einer oder mehreren
Ziffern und Dezimalpunkten folgen. Diese Zahl ist dann der Match.
import re
hand = open('mbox-short.txt')
for line in hand:

line = line.rstrip()
x = re.findall('ˆX\S*: ([0-9.]+)', line)

156 Kapitel 11. Reguläre Ausdrücke

if len(x) > 0:
print(x)

Code: https://tiny.one/py4de/code3/re11.py

Anstatt search() aufzurufen, fügen wir Klammern um den Teil des regulären Aus-
drucks hinzu, der die Fließkommazahl repräsentiert, um anzugeben, dass findall()
uns nur den Fließkommazahlenanteil der passenden Zeichenkette zurückgeben soll.

Die Ausgabe dieses Programms ist wie folgt:

['0.8475']
['0.0000']
['0.6178']
['0.0000']
['0.6961']
['0.0000']
..

Die Zahlen sind immer noch in einer Liste und müssen von Zeichenketten in
Fließkommazahlen umgewandelt werden. Aber wir haben gelernt, wie man reguläre
Ausdrücke nutzt, um sowohl zu suchen als auch Informationen zu extrahieren, die
wir interessant finden.

Als weiteres Beispiel für diese Technik, gibt es eine Reihe von Zeilen der Form:

Details: http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772

Wenn wir alle Revisionsnummern (die ganzzahlige Zahl am Ende dieser Zeilen)
mit der gleichen Technik wie oben extrahieren wollten, könnten wir das folgende
Programm schreiben:

Finde Zeilen, die mit 'Details:' beginnen und auf 'rev=' enden
gefolgt von einer Zahl. Diese Zahl ist dann der Match.
import re
hand = open('mbox-short.txt')
for line in hand:

line = line.rstrip()
x = re.findall('ˆDetails:.*rev=([0-9]+)', line)
if len(x) > 0:

print(x)

Code: https://tiny.one/py4de/code3/re12.py

Bei der Übersetzung unseres regulären Ausdrucks suchen wir nach Zeilen, die mit
Details: beginnen, gefolgt von einer beliebigen Anzahl von Zeichen (.*), gefolgt
von rev=, und dann von einer oder mehreren Ziffern. Wir wollen Zeilen finden, die
mit dem gesamten Ausdruck übereinstimmen, aber wir wollen nur die ganzzahlige
Zahl am Ende der Zeile extrahieren, also umgeben wir [0-9]+ mit Klammern.

Wenn wir das Programm ausführen, erhalten wir die folgende Ausgabe:

11.3. Kombination von Suchen und Extrahieren 157

['39772']
['39771']
['39770']
['39769']
...

Wir müssen bedenken, dass das [0-9]+ „gierig“ ist und versucht, eine möglichst
große Ziffernfolge zu bilden, bevor es diese Ziffern extrahiert. Dieses „gierige“
Verhalten ist der Grund, warum wir alle fünf Ziffern für jede Zahl erhalten. Der
reguläre Ausdruck expandiert in beide Richtungen, bis er auf eine Nicht-Ziffer oder
den Anfang oder das Ende einer Zeile stößt.

Jetzt können wir reguläre Ausdrücke verwenden, um eine Übung von früher im Buch
zu wiederholen, bei der wir uns für die Tageszeit jeder Mail-Nachricht interessierten.
Wir haben nach Zeilen dieser Form gesucht:

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

Ziel war es, aus jeder Zeile die volle Stunde der Uhrzeit zu extrahieren. Das haben
wir mit zwei Aufrufen von split bewerkstelligt. Zunächst haben wir die Zeile
in Worte zerlegt und dann das sechste Wort entnommen (hier 09:14:16). Dieses
haben wir an den Doppelpunkten erneut zerlegt, um dann so die ersten beiden
Ziffern zu erlangen.

Das hat zwar funktioniert, führt aber zu einem ziemlich unhandlichen Code, der
davon ausgeht, dass die Zeilen schön formatiert sind. Wenn wir genug Fehlerprü-
fung (oder einen großen try/except-Block) hinzufügen würden, um sicherzustellen,
dass Ihr Programm niemals fehlschlägt, wenn es mit falsch formatierten Zeilen
konfrontiert wird, würde der Code auf 10 bis 15 Zeilen Code anwachsen.

Wir können dies auf eine viel einfachere Weise mit dem folgenden regulären Ausdruck
lösen:

^From .* [0-9][0-9]:

Die Übersetzung dieses regulären Ausdrucks würde lauten: Wir suchen nach Zeilen,
die mit From beginnen (das angehängte Leerzeichen beachten), gefolgt von einer
beliebigen Anzahl von Zeichen (.*), von einem Leerzeichen, von zwei Ziffern
[0-9][0-9] und schließlich von einem Doppelpunkt. Dies ist die Definition der
Arten von Zeilen, nach denen wir suchen.

Um mit findall() nur die Stunde herauszuholen, fügen wir Klammern um die
beiden Ziffern wie folgt hinzu:

^From .* ([0-9][0-9]):

Daraus ergibt sich das folgende Programm:

Finde Zeilen, die mit 'From ' beginnen und dann irgendwann eine
Zahl mit genau zwei Ziffern folgt. Vor der zweistellingen Zahl

158 Kapitel 11. Reguläre Ausdrücke

muss ein Leerzeichen stehen, danach ein ':'
import re
hand = open('mbox-short.txt')
for line in hand:

line = line.rstrip()
x = re.findall('ˆFrom .* ([0-9][0-9]):', line)
if len(x) > 0: print(x)

Code: https://tiny.one/py4de/code3/re13.py

Wenn das Programm läuft, erzeugt es die folgende Ausgabe:

['09']
['18']
['16']
['15']
...

11.4 Escapezeichen

Wir verwenden spezielle Zeichen in regulären Ausdrücken, um den Anfang (ˆ) oder
das Ende ($) einer Zeile abzugleichen oder um Platzhalter (.) anzugeben. Aber
was machen wir, wenn wir tatsächlich nach einem dieser Zeichen suchen möchten?
Wir benötigen also eine Möglichkeit, solche Symbole in regulären Ausdrücken
auszeichnen zu können.

Genau das erreichen wir, indem wir diesem Zeichen einen Rückstrich voranstellen.
Zum Beispiel können wir Dollarbeträge mit dem folgenden regulären Ausdruck
finden.

import re
x = 'We just received $10.00 for cookies.'
y = re.findall('\$[0-9.]+',x)

Da wir dem Dollarzeichen einen Rückstrich voranstellen, passt er tatsächlich auf das
Dollarzeichen in der Eingabezeichenkette, statt auf das Zeilenende, und der Rest
des regulären Ausdrucks passt auf eine oder mehrere Ziffern oder das Punktzeichen.
Hinweis: Innerhalb eckiger Klammern sind die Zeichen nicht „speziell“. Wenn wir
also [0-9.] sagen, bedeutet das in Wirklichkeit Ziffern oder einen Punkt. Außerhalb
von eckigen Klammern ist der Punkt ein Platzhalter und passt zu jedem Zeichen.
Innerhalb eckiger Klammern ist der Punkt ein Punkt.

11.5 Zusammenfassung

Obwohl dies nur an der Oberfläche der regulären Ausdrücke gekratzt hat, haben
wir ein wenig über die Sprache der regulären Ausdrücke gelernt. Es handelt sich um

11.6. Bonuskapitel für Unix/Linux-Benutzer 159

Suchzeichenfolgen mit Sonderzeichen, die dem System mitteilen, was als „überein-
stimmend“ definiert und was aus den übereinstimmenden Zeichenfolgen extrahiert
wird. Hier sind einige dieser Sonderzeichen und Zeichenfolgen:
ˆ Zeilenanfang
$ Zeilenende
. genau ein beliebiges Zeichen (Platzhalter/Wildcard)
\s genau ein Leerzeichen
\S genau ein Nicht-Leerzeichen (Gegenteil von \s).
* kein bis beliebig viele Zeichen
+ ein bis beliebig viele Zeichen
? kein oder genau ein Zeichen
*? kein bis beliebig viele Zeichen (im non-greedy-Modus)
+? ein bis beliebig viele Zeichen (im non-greedy-Modus)
?? kein oder genau ein Zeichen (im non-greedy-Modus)
Die Fragezeichen in *?, +? und ?? fordern, dass der Abgleich im sogenannten non-
greedy-Modus durchgeführt werden soll. Bei einem non-greedy-Match wird versucht,
die kleinstmögliche übereinstimmende Zeichenfolge zu finden. Im normalen Modus
(greedy) dagegen wird versucht, die größtmögliche übereinstimmende Zeichenfolge
zu finden.
[aeiou] Stimmt mit einem einzelnen Zeichen überein, sofern dieses Zeichen in der
angegebenen Menge enthalten ist. In diesem Beispiel würde es auf „a“, „e“, „i“, „o“
oder „u“ passen, aber nicht auf andere Zeichen.
[a-z0-9] Wir können Zeichenbereiche mit dem Minuszeichen angeben. Dieses
Beispiel ist ein einzelnes Zeichen, das ein Kleinbuchstabe oder eine Ziffer sein muss.
[ˆA-Za-z] Wenn das erste Zeichen in der Mengenschreibweise ein Zirkumflex ist,
wird die Logik invertiert. Dieses Beispiel passt auf ein einzelnes Zeichen, das etwas
anderes als ein Groß- oder Kleinbuchstabe ist.
() Wenn Klammern zu einem regulären Ausdruck hinzugefügt werden, werden sie
während des Abgleichs ignoriert, ermöglichen es aber, eine bestimmte Teilzeichen-
folge zu extrahieren, wenn wir findall() verwenden.
\b leere Zeichenkette (aber nur am Anfang oder Ende eines Wortes)
\B leere Zeichenkette (aber nicht am Anfang oder Ende eines Wortes)
\d Dezimalziffer; entspricht der Menge [0-9]

\D jedes Zeichen, das keine Ziffer ist; entspricht der Menge [ˆ0-9]

11.6 Bonuskapitel für Unix/Linux-Benutzer

Die Unterstützung für das Durchsuchen von Dateien mit regulären Ausdrücken
wurde seit den 1960er Jahren in das Unix-Betriebssystem eingebaut und ist heute
in fast allen Programmiersprachen in der einen oder anderen Form vorhanden.

160 Kapitel 11. Reguläre Ausdrücke

Tatsächlich gibt es ein in Unix eingebautes Kommandozeilenprogramm namens
grep (Generalized Regular Expression Parser), das so ziemlich dasselbe tut wie die
search()-Beispiele in diesem Kapitel. Wer also ein Macintosh- oder Linux-System
hat, kann die folgenden Befehle im Kommandozeilenfenster ausprobieren.

$ grep 'ˆFrom:' mbox-short.txt
From: stephen.marquard@uct.ac.za
From: louis@media.berkeley.edu
From: zqian@umich.edu
From: rjlowe@iupui.edu

Damit wird grep angewiesen, Zeilen anzuzeigen, die mit der Zeichenkette From:
in der Datei mbox-short.txt beginnen. Wenn wir ein wenig mit dem Befehl
grep experimentieren und die Dokumentation zu grep lesen, werden wir einige
subtile Unterschiede zwischen der Unterstützung regulärer Ausdrücke in Python
und der Unterstützung regulärer Ausdrücke in grep feststellen. Zum Beispiel
unterstützt grep nicht das Nicht-Leerzeichen \S, sodass die etwas komplexere
Mengenschreibweise [ˆ] verwendet werden muss.

11.7 Debugging

Python hat eine einfache und rudimentäre eingebaute Dokumentation, die sehr
hilfreich sein kann, wenn wir eine schnelle Auffrischung benötigen, um sich an den
genauen Namen einer bestimmten Methode zu erinnern. Diese Dokumentation kann
im Python-Interpreter im interaktiven Modus eingesehen werden.

Mit help() können wir ein interaktives Hilfesystem aufrufen.

>>> help()

help> modules

Wenn wir wissen, welches Modul wir verwenden möchten, können wir den Befehl
dir() verwenden, um die Methoden im Modul wie folgt zu finden:

>>> import re
>>> dir(re)
[.. 'compile', 'copy_reg', 'error', 'escape', 'findall',
'finditer', 'match', 'purge', 'search', 'split', 'sre_compile',
'sre_parse', 'sub', 'subn', 'sys', 'template']

Wir können auch mit dem help-Befehl einen kleinen Teil der Dokumentation zu
einer bestimmten Methode abrufen.

>>> help(re.search)
Help on function search in module re:

11.8. Glossar 161

search(pattern, string, flags=0)
Scan through string looking for a match to the pattern,
returning a match object, or None if no match was found.

>>>

Die integrierte Dokumentation ist nicht sehr umfangreich, kann aber hilfreich
sein, wenn wir in Eile sind oder keinen Zugriff auf einen Webbrowser oder eine
Suchmaschine haben.

11.8 Glossar

greedy Matching Bei einem non-greedy-Match wird versucht, die kleinstmögliche
übereinstimmende Zeichenfolge zu finden. Im normalen Modus (greedy) wird
dagegen versucht, die größtmögliche übereinstimmende Zeichenfolge zu finden.

grep Ein in den meisten Unix-Systemen verfügbarer Befehl, der Texte nach Zeilen
durchsucht, die regulären Ausdrücken entsprechen. Der Name des Befehls
steht für „Generalized Regular Expression Parser“.

regulärer Ausdruck (Regex) Eine Sprache zum Definieren komplexerer Such-
zeichenfolgen.

Wildcard Ein Platzhalter, der auf ein beliebiges Zeichen passt. In regulären
Ausdrücken ist das Platzhalterzeichen der Punkt.

11.9 Übungen

Übung 1: Es soll ein einfaches Programm geschrieben werden, das die Funktions-
weise des Befehls grep unter Unix simuliert. Der Benutzer soll aufgefordert werden,
einen regulären Ausdruck einzugeben, mit dem dann die Anzahl der Zeilen gezählt
werden, die mit dem regulären Ausdruck übereinstimmen:

$ python grep.py
Gib eine RegEx an: ^Author
mbox.txt hat 1798 Zeilen die auf den Ausdruck "^Author" passen

$ python grep.py
Gib eine RegEx an: ^X-
mbox.txt hat 14368 Zeilen die auf den Ausdruck "^X-" passen

$ python grep.py
Gib eine RegEx an: java$
mbox.txt hat 4175 Zeilen die auf den Ausdruck "java" passen

Übung 2: Es soll ein Programm geschrieben werden, das nach Zeilen der folgenden
Form sucht:

New Revision: 39772

162 Kapitel 11. Reguläre Ausdrücke

Die Zahl soll aus jeder der Zeilen mit einem regulären Ausdruck und der Methode
findall() extrahiert werden. Es soll dann der Durchschnitt der Zahlen berechnet
und als Ganzzahl ausgegeben werden.

Gib eine Datei an: mbox.txt
38549

Gib eine Datei an: mbox-short.txt
39756

Kapitel 12

Vernetzen von Programmen

In den vorangegangenen Beispielen dieses Buches haben wir Daten vor allem
aus Dateien gelesen, die bei uns im Sekundärspeicher (also in der Regel auf der
Festplatte) abgespeichert waren. Betrachtet man allerdings die Tatsache, dass
Computer heutzutage nahezu immer online sind, wird klar, dass das Internet eine
wichtige Datenquelle für Programme ist.

In diesem Kapitel werden wir Programme schreiben, die wie Webbrowser auf
Internetseiten zugreifen und Daten über das Hypertext Transfer Protocol (HTTP)
abrufen. Wir werden die Daten der Webseite einlesen und parsen, um bestimmte
Informationen von diesen Seiten zu extrahieren.

12.1 Hypertext Transfer Protocol – HTTP

Das Netzwerkprotokoll, das das Web antreibt, ist eigentlich recht einfach und es
gibt eine eingebaute Unterstützung in Python namens socket, die es sehr einfach
macht, Netzwerkverbindungen herzustellen und Daten über diese Sockets in einem
Python-Programm abzurufen.

Ein Socket ist ähnlich wie eine Datei, mit dem Unterschied, dass ein einzelner
Socket eine bidirektionale Verbindung zwischen zwei Programmen ermöglicht. Wir
können sowohl von einem Socket lesen als auch auf einen Socket schreiben. Wenn
wir etwas in einen Socket schreiben, wird es an die Anwendung am anderen Ende
des Sockets gesendet. Wenn wir aus dem Socket lesen, erhalten wir die Daten, die
die andere Anwendung gesendet hat.

Falls wir aber versuchen, einen Socket zu lesen, wenn das Programm am anderen
Ende des Sockets noch keine Daten gesendet hat, sitzen wir nur da und warten.
Wenn die Programme an beiden Enden des Sockets nur auf Daten warten, ohne
etwas zu senden, werden sie sehr lange warten. Daher ist es für Programme, die
über das Internet kommunizieren, wichtig, über eine Art Protokoll zu verfügen. Ein
Protokoll ist ein Satz präziser Regeln, die festlegen, wer zuerst sendet, was er zu
tun hat, was die Antworten auf diese Nachricht sind, wer als nächstes sendet und
so weiter. Es gibt viele Dokumente, die diese Netzwerkprotokolle beschreiben. Das
Hypertext Transfer Protocol wird in dem folgenden Dokument beschrieben:

164 Kapitel 12. Vernetzen von Programmen

https://www.w3.org/Protocols/rfc2616/rfc2616.txt

Dies ist ein langes und komplexes 176-seitiges Dokument mit vielen Details. Wer
es interessant findet, kann es gerne ganz lesen, notwendig ist das aber nicht, um
HTTP zu verwenden. Auf Seite 36 von RFC2616 finden wir die Syntax für den
GET-Request. Um ein Dokument von einem Webserver anzufordern, stellen wir
eine Verbindung zum www.pr4e.org-Server auf Port 80 her und senden dann eine
Zeile der Form

GET http://data.pr4e.org/romeo.txt HTTP/1.0

wobei der zweite Parameter die von uns angeforderte Webseite ist. Außerdem senden
wir auch eine Leerzeile. Der Webserver antwortet mit einigen Header-Informationen
über das Dokument und einer Leerzeile, gefolgt von dem Dokumentinhalt.

12.2 Der einfachste Webbrowser der Welt

Der vielleicht einfachste Weg zu zeigen, wie das HTTP-Protokoll funktioniert, ist,
ein sehr einfaches Python-Programm zu schreiben, das eine Verbindung zu einem
Webserver herstellt und den Regeln des HTTP-Protokolls folgt, um ein Dokument
anzufordern und anzuzeigen, welches der Server zurückschickt.

import socket

mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
mysock.connect(('data.pr4e.org', 80))
cmd = 'GET http://data.pr4e.org/romeo.txt HTTP/1.0\r\n\r\n'.encode()
mysock.send(cmd)

while True:
data = mysock.recv(512)
if len(data) < 1:

break
print(data.decode(),end='')

mysock.close()

Code: https://tiny.one/py4de/code3/socket1.py

Zunächst stellt das Programm eine Verbindung zu Port 80 auf dem Server
www.py4e.com her. Da unser Programm die Rolle des Webbrowsers spielt, sagt
das HTTP-Protokoll, dass wir den GET-Befehl gefolgt von einer Leerzeile senden
müssen. \r\n bedeutet ein EOL (End-of-Line), also steht \r\n\r\n für „nichts“
zwischen zwei EOL-Sequenzen. Das ist das Äquivalent zu einer Leerzeile.

Sobald wir diese Leerzeile gesendet haben, schreiben wir eine Schleife, die Daten
in 512-Zeichen-Blöcken vom Socket empfängt und die Daten ausgibt, bis es keine
weiteren Daten mehr zu lesen gibt (d. h., bis recv() eine leere Zeichenkette liefert).

Das Programm erzeugt die folgende Ausgabe:

https://www.w3.org/Protocols/rfc2616/rfc2616.txt
http://www.py4e.com

12.2. Der einfachste Webbrowser der Welt 165

Your
Program

S
O
C
K
E
T

socket

connect

send

recv

www.py4e.com

Web Pages
.
.
.

Port 80

Abbildung 12.1: Eine Socketverbindung

HTTP/1.1 200 OK
Date: Wed, 11 Apr 2018 18:52:55 GMT
Server: Apache/2.4.7 (Ubuntu)
Last-Modified: Sat, 13 May 2017 11:22:22 GMT
ETag: "a7-54f6609245537"
Accept-Ranges: bytes
Content-Length: 167
Cache-Control: max-age=0, no-cache, no-store, must-revalidate
Pragma: no-cache
Expires: Wed, 11 Jan 1984 05:00:00 GMT
Connection: close
Content-Type: text/plain

But soft what light through yonder window breaks
It is the east and Juliet is the sun
Arise fair sun and kill the envious moon
Who is already sick and pale with grief

Die Ausgabe beginnt mit Headern, die der Webserver sendet, um das Dokument zu
beschreiben. Der Header Content-Type zeigt zum Beispiel an, dass es sich um ein
reines Textdokument (text/plain) handelt.

Nachdem der Server uns die Kopfzeilen gesendet hat, fügt er eine Leerzeile ein, um
das Ende der Kopfzeilen anzuzeigen, und sendet dann die eigentlichen Daten der
Datei romeo.txt.

Dieses Beispiel zeigt, wie wir eine Low-Level-Netzwerkverbindung mit Sockets
herstellen. Sockets können für die Kommunikation mit einem Webserver oder
mit einem Mailserver oder vielen anderen Arten von Servern verwendet werden.
Man muss nur das Dokument finden, das das Protokoll beschreibt, und dann den
entsprechenden Code verwenden, um die Daten gemäß dem Protokoll zu senden
und zu empfangen.

Da das von uns am häufigsten verwendete Protokoll jedoch das HTTP-Webprotokoll
ist, verfügt Python über eine spezielle Bibliothek zur Unterstützung des HTTP-
Protokolls für den Abruf von Dokumenten und Daten über das Web.

166 Kapitel 12. Vernetzen von Programmen

Eine der Voraussetzungen für die Verwendung des HTTP-Protokolls ist die Notwen-
digkeit, Daten als Byte-Objekte anstelle von Strings zu senden und zu empfangen.
Im vorangegangenen Beispiel wandeln die Methoden encode() und decode()
Strings in Byte-Objekte und wieder zurück.

Das nächste Beispiel verwendet die Notation b'', um anzugeben, dass eine Variable
als Byte-Objekt gespeichert werden soll. encode() und b'' sind gleichwertig.

>>> b'Hello world'
b'Hello world'
>>> 'Hello world'.encode()
b'Hello world'

12.3 Abrufen eines Bildes über HTTP

Im obigen Beispiel haben wir eine reine Textdatei abgerufen, die Zeilenumbrüche
in der Datei hatte, und wir haben die Daten einfach auf den Bildschirm kopiert,
während das Programm lief. Wir können ein ähnliches Programm verwenden, um ein
Bild über HTTP abzurufen. Anstatt die Daten bei der Ausführung des Programms
auf den Bildschirm zu kopieren, sammeln wir die Daten in einer Zeichenkette,
schneiden die Kopfzeilen ab und speichern die Bilddaten dann wie folgt in einer
Datei:

import socket
import time

HOST = 'data.pr4e.org'
PORT = 80
mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
mysock.connect((HOST, PORT))
mysock.sendall(

b'GET http://data.pr4e.org/cover3.jpg HTTP/1.0\r\n\r\n')
count = 0
picture = b""

while True:
data = mysock.recv(5120)
if len(data) < 1: break
#time.sleep(0.25)
count = count + len(data)
print(len(data), count)
picture = picture + data

mysock.close()

Look for the end of the header (2 CRLF)
pos = picture.find(b"\r\n\r\n")
print('Header length', pos)
print(picture[:pos].decode())

12.3. Abrufen eines Bildes über HTTP 167

Skip past the header and save the picture data
picture = picture[pos+4:]
fhand = open("stuff.jpg", "wb")
fhand.write(picture)
fhand.close()

Code: https://tiny.one/py4de/code3/urljpeg.py

Wenn das Programm läuft, erzeugt es die folgende Ausgabe:

$ python urljpeg.py
5120 5120
5120 10240
4240 14480
5120 19600
...
5120 214000
3200 217200
5120 222320
5120 227440
3167 230607
Header length 393
HTTP/1.1 200 OK
Date: Wed, 11 Apr 2018 18:54:09 GMT
Server: Apache/2.4.7 (Ubuntu)
Last-Modified: Mon, 15 May 2017 12:27:40 GMT
ETag: "38342-54f8f2e5b6277"
Accept-Ranges: bytes
Content-Length: 230210
Vary: Accept-Encoding
Cache-Control: max-age=0, no-cache, no-store, must-revalidate
Pragma: no-cache
Expires: Wed, 11 Jan 1984 05:00:00 GMT
Connection: close
Content-Type: image/jpeg

Wir können sehen, dass bei dieser URL der Content-Type-Header anzeigt, dass der
Rumpf des Dokuments ein Bild ist (image/jpeg). Sobald das Programm beendet
ist, können wir die Bilddaten anzeigen, indem wir die Datei stuff.jpg in einem
Bildbetrachter öffnen.

Während das Programm läuft, können wir sehen, dass wir nicht jedes Mal 5120
Zeichen erhalten, wenn wir die Methode recv() aufrufen. Wir erhalten nur so viele
Zeichen wie vom Webserver bis zu dem jeweiligen Aufruf von recv() tatsächlich
über das Netzwerk zu uns übertragen wurden.

Unsere Ergebnisse können je nach der Netzwerkgeschwindigkeit unterschiedlich sein.
Beachten wir auch, dass wir beim letzten Aufruf von recv() 3167 Bytes erhalten,
was das Ende des Streams ist, und dass wir beim nächsten Aufruf von recv() eine
Zeichenkette der Länge 0 erhalten, die uns mitteilt, dass der Server an seinem Ende
des Sockets close() aufgerufen hat und keine weiteren Daten mehr anstehen.

168 Kapitel 12. Vernetzen von Programmen

Wir können unsere aufeinanderfolgenden recv()-Aufrufe verlangsamen, indem wir
den Aufruf von time.sleep() wieder einbinden. Auf diese Weise warten wir nach
jedem Aufruf eine Viertelsekunde, damit der Server uns „zuvorkommen“ und weitere
Daten an uns senden kann, bevor wir recv() erneut aufrufen. Mit der Verzögerung
an Ort und Stelle wird das Programm wie folgt ausgeführt:

$ python urljpeg.py
5120 5120
5120 10240
5120 15360
...
5120 225280
5120 230400
207 230607
Header length 393
HTTP/1.1 200 OK
Date: Wed, 11 Apr 2018 21:42:08 GMT
Server: Apache/2.4.7 (Ubuntu)
Last-Modified: Mon, 15 May 2017 12:27:40 GMT
ETag: "38342-54f8f2e5b6277"
Accept-Ranges: bytes
Content-Length: 230210
Vary: Accept-Encoding
Cache-Control: max-age=0, no-cache, no-store, must-revalidate
Pragma: no-cache
Expires: Wed, 11 Jan 1984 05:00:00 GMT
Connection: close
Content-Type: image/jpeg

Abgesehen vom letzten Aufruf von recv() erhalten wir jetzt jedes Mal 5120 Zeichen,
wenn wir neue Daten anfordern.

Es gibt einen Puffer zwischen dem Server, der send()-Requests stellt, und unserer
Anwendung, die recv()-Requests stellt. Wenn wir das Programm mit der Verzöge-
rung laufen lassen, kann es sein, dass der Server irgendwann den Puffer im Socket
füllt und gezwungen ist, eine Pause einzulegen, bis unser Programm beginnt, den
Puffer zu leeren. Das Anhalten entweder der sendenden oder der empfangenden
Anwendung wird Flusskontrolle (englisch flow control) genannt.

12.4 Abrufen von Webseiten mit urllib

Während wir mit der Socket-Bibliothek manuell Daten über HTTP senden und
empfangen können, gibt es einen viel einfacheren Weg, diese Aufgabe in Python zu
erledigen, indem wir die urllib-Bibliothek verwenden.

Mit urllib können wir eine Web-Seite ähnlich wie eine Datei behandeln. Wir geben
einfach an, welche Webseite wir abrufen möchten, und urllib kümmert sich um
alle Details des HTTP-Protokolls und der Header.

Der äquivalente Code zum Lesen der Datei romeo.txt aus dem Web mit urllib
sieht wie folgt aus:

12.5. Lesen von Binärdateien mit urllib 169

import urllib.request

fhand = urllib.request.urlopen('http://data.pr4e.org/romeo.txt')
for line in fhand:

print(line.decode().strip())

Code: https://tiny.one/py4de/code3/urllib1.py

Sobald die Webseite mit urllib.urlopen geöffnet wurde, können wir sie wie eine
Datei behandeln und mit einer for-Schleife durchlaufen.

Wenn das Programm läuft, sehen wir nur die Ausgabe des Inhalts der Datei.
Die Kopfzeilen werden immer noch gesendet, aber der urllib-Code entfernt die
Kopfzeilen und gibt nur die Daten an uns zurück.

But soft what light through yonder window breaks
It is the east and Juliet is the sun
Arise fair sun and kill the envious moon
Who is already sick and pale with grief

Als Beispiel können wir ein Programm schreiben, um die Daten für romeo.txt ab-
zurufen und die Häufigkeit jedes Wortes in der Datei folgendermaßen zu berechnen:

import urllib.request, urllib.parse, urllib.error

fhand = urllib.request.urlopen('http://data.pr4e.org/romeo.txt')

counts = dict()
for line in fhand:

words = line.decode().split()
for word in words:

counts[word] = counts.get(word, 0) + 1
print(counts)

Code: https://tiny.one/py4de/code3/urlwords.py

Auch hier können wir, nachdem wir die Webseite geöffnet haben, sie wie eine lokale
Datei lesen.

12.5 Lesen von Binärdateien mit urllib

Manchmal möchten wir eine Binärdatei abrufen, wie z. B. eine Bild- oder Videodatei.
Die Daten in diesen Dateien sind in der Regel nicht zum Ausgeben geeignet, aber
wir können mit urllib leicht eine Datei von einer URL auf unsere Festplatte
kopieren.

Das Vorgehen besteht darin, die URL zu öffnen und mit read den gesamten
Inhalt des Dokuments in eine String-Variable (img) herunterzuladen und diese
Informationen dann wie folgt in eine lokale Datei zu schreiben:

170 Kapitel 12. Vernetzen von Programmen

import urllib.request, urllib.parse, urllib.error

img = urllib.request.urlopen(
'http://data.pr4e.org/cover3.jpg').read()

fhand = open('cover3.jpg', 'wb')
fhand.write(img)
fhand.close()

Code: https://tiny.one/py4de/code3/curl1.py

Dieses Programm liest alle Daten auf einmal über das Netzwerk ein und speichert sie
in der Variablen img im Hauptspeicher des Computers, erstellt und öffnet dann die
neue Datei cover.jpg im Schreibmodus und schreibt die Daten auf die Festplatte.
Das Argument wb für open() öffnet eine Binärdatei nur zum Schreiben. Dieses
Programm funktioniert, solange die Größe der Datei kleiner ist als die Größe des
Speichers unseres Computers.

Wenn es sich jedoch um eine große Audio- oder Videodatei handelt, kann dieses
Programm abstürzen oder zumindest extrem langsam laufen, wenn der Speicher
unseres Computers erschöpft ist. Um ein Überschreiten der Speicherkapazität zu
vermeiden, werden die Daten in Blöcken (oder Puffern) abgerufen und dann jeder
Block auf die Festplatte geschrieben, bevor der nächste Block abgerufen wird. Auf
diese Weise kann das Programm Dateien beliebiger Größe lesen, ohne den gesamten
Speicher des Computers zu verbrauchen.

import urllib.request, urllib.parse, urllib.error

img = urllib.request.urlopen('http://data.pr4e.org/cover3.jpg')
fhand = open('cover3.jpg', 'wb')
size = 0
while True:

info = img.read(100000)
if len(info) < 1: break
size = size + len(info)
fhand.write(info)

print(size, 'characters copied.')
fhand.close()

Code: https://tiny.one/py4de/code3/curl2.py

In diesem Beispiel werden jeweils nur 100.000 Zeichen gelesen und dann in die
Datei cover.jpg geschrieben, bevor die nächsten 100.000 Zeichen an Daten aus
dem Web abgerufen werden.

Dieses Programm läuft so ab:

python curl2.py
230210 characters copied.

12.6. Parsen von HTML und Erkunden des Webs 171

12.6 Parsen von HTML und Erkunden des Webs

Eine der häufigsten Verwendungen der urllib in Python ist das Scraping des Webs.
Beim Web-Scraping schreiben wir ein Programm, das vorgibt, ein Web-Browser zu
sein, Seiten abruft und dann die Daten auf diesen Seiten auf Muster untersucht.

Ein Beispiel: Eine Suchmaschine wie Google schaut sich die Quelle einer Webseite
an, extrahiert die Links zu anderen Seiten und ruft diese Seiten auf, indem sie die
Links extrahiert. Dies wird dann einfach wiederholt. Mit dieser Technik erkundet
Google seinen Weg durch fast alle Seiten im Web.

Google verwendet auch die Häufigkeit der Links von Seiten, die es zu einer be-
stimmten Seite findet, als ein Maß dafür, wie „wichtig“ eine Seite ist und wie weit
oben die Seite in den Suchergebnissen erscheinen soll.

12.7 Parsen von HTML mit regulären Ausdrücken

Eine einfache Möglichkeit, HTML zu parsen, ist die Verwendung regulärer Aus-
drücke, um wiederholt nach Teilzeichenketten zu suchen und diejenigen zu extra-
hieren, die einem bestimmten Muster entsprechen.

Hier ist eine einfache Web-Seite:

<h1>The First Page</h1>
<p>
If you like, you can switch to the

Second Page.
</p>

Wir können einen wohlgeformten regulären Ausdruck konstruieren, um die Links
aus dem obigen Text folgendermaßen zu extrahieren:

href="http[s]?://.+?"

Unser regulärer Ausdruck sucht nach Zeichenfolgen, die mit href="http:// oder
href="https:// beginnen, gefolgt von einem oder mehreren Zeichen (.+?) und
einem weiteren doppelten Anführungszeichen. Das Fragezeichen hinter dem [s]
zeigt an, dass nach der Zeichenkette http nach keinem oder einem s gesucht werden
soll. Das Fragezeichen hinter dem .+ gibt an, dass der Abgleich im non-greedy-
Modus (also nicht „greedy“) durchgeführt werden soll. Bei einem non-greedy-Match
wird versucht, die kleinstmögliche übereinstimmende Zeichenfolge zu finden. Bei
einem greedy-Match hingegen wird versucht, die größtmögliche übereinstimmende
Zeichenfolge zu finden.

Wir fügen unserem regulären Ausdruck Klammern hinzu, um anzugeben, welchen
Teil der übereinstimmenden Zeichenfolge wir extrahieren möchten:

172 Kapitel 12. Vernetzen von Programmen

Search for link values within URL input
import urllib.request, urllib.parse, urllib.error
import re
import ssl

Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')
html = urllib.request.urlopen(url, context=ctx).read()
links = re.findall(b'href="(http[s]?://.*?)"', html)
for link in links:

print(link.decode())

Code: https://tiny.one/py4de/code3/urlregex.py

Die ssl-Bibliothek ermöglicht diesem Programm den Zugriff auf Websites, die
HTTPS strikt erzwingen. Die Methode read gibt den HTML-Quellcode als Byte-
Objekt zurück, anstatt ein HTTP-Response-Objekt zu liefern. Die Methode findall
für reguläre Ausdrücke liefert uns eine Liste aller Zeichenketten, die mit unserem
regulären Ausdruck übereinstimmen, und gibt nur den Linktext zwischen den
Anführungszeichen zurück.

Wenn wir das Programm ausführen und eine URL eingeben, erhalten wir diese
Ausgabe:

Enter - https://docs.python.org
https://docs.python.org/3/index.html
https://www.python.org/
https://docs.python.org/3.8/
https://docs.python.org/3.7/
https://docs.python.org/3.5/
https://docs.python.org/2.7/
https://www.python.org/doc/versions/
https://www.python.org/dev/peps/
https://wiki.python.org/moin/BeginnersGuide
https://wiki.python.org/moin/PythonBooks
https://www.python.org/doc/av/
https://www.python.org/
https://www.python.org/psf/donations/
http://sphinx.pocoo.org/

Reguläre Ausdrücke funktionieren sehr gut, wenn das HTML gut formatiert und
vorhersehbar ist. Da es aber eine ganze Menge „defekter“ HTML-Seiten gibt,
könnte eine Lösung, die ausschließlich reguläre Ausdrücke verwendet, entweder
einige gültige Links übersehen oder unbrauchbare Daten liefern.

Dies kann durch die Verwendung einer robusten HTML-Parsing-Bibliothek gelöst
werden.

12.8. Parsen von HTML mit BeautifulSoup 173

12.8 Parsen von HTML mit BeautifulSoup

Auch wenn HTML wie XML aussieht1 und einige Seiten sorgfältig so konstruiert sind,
dass sie XML-konform sind, ist das meiste HTML in der Regel so fehlerhaft, dass
ein XML-Parser die gesamte HTML-Seite als nicht korrekt formatiert zurückweist.

Es gibt eine Reihe von Python-Bibliotheken, die helfen können, HTML zu parsen
und Daten aus den Seiten zu extrahieren. Jede der Bibliotheken hat ihre Stärken
und Schwächen und wir müssen eine entsprechend unseren Bedürfnissen auswählen.

Als Beispiel werden wir einfach einige HTML-Eingaben parsen und Links mit
Hilfe der BeautifulSoup-Bibliothek extrahieren. BeautifulSoup toleriert hochgradig
fehlerhaftes HTML und lässt uns trotzdem einfach die benötigten Daten extrahieren.
Auf der folgenden Seite können wir den BeautifulSoup-Code herunterladen und
installieren:

https://pypi.python.org/pypi/beautifulsoup4

Informationen zur Installation von BeautifulSoup mit dem Python Package Index
Tool pip finden sich unter:

https://packaging.python.org/tutorials/installing-packages/

Wir werden urllib benutzen, um die Seite zu lesen und dann BeautifulSoup
benutzen, um die href-Attribute aus den Anker-Tags (a) zu extrahieren.

To run this, download the BeautifulSoup zip file
http://www.py4e.com/code3/bs4.zip
and unzip it in the same directory as this file

import urllib.request, urllib.parse, urllib.error
from bs4 import BeautifulSoup
import ssl

Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')
html = urllib.request.urlopen(url, context=ctx).read()
soup = BeautifulSoup(html, 'html.parser')

Retrieve all of the anchor tags
tags = soup('a')
for tag in tags:

print(tag.get('href', None))

Code: https://tiny.one/py4de/code3/urllinks.py

1Das XML-Format wird im nächsten Kapitel beschrieben.

https://pypi.python.org/pypi/beautifulsoup4
https://packaging.python.org/tutorials/installing-packages/

174 Kapitel 12. Vernetzen von Programmen

Das Programm fragt nach einer Webadresse, öffnet dann die Webseite, liest die
Daten ein und übergibt die Daten an den BeautifulSoup-Parser, der dann alle
Anker-Tags abruft und das href-Attribut für jedes Tag ausgibt.

Wenn das Programm läuft, erzeugt es die folgende Ausgabe:

Enter - https://docs.python.org
genindex.html
py-modindex.html
https://www.python.org/
#
whatsnew/3.6.html
whatsnew/index.html
tutorial/index.html
library/index.html
reference/index.html
using/index.html
howto/index.html
installing/index.html
distributing/index.html
extending/index.html
c-api/index.html
faq/index.html
py-modindex.html
genindex.html
glossary.html
search.html
contents.html
bugs.html
about.html
license.html
copyright.html
download.html
https://docs.python.org/3.8/
https://docs.python.org/3.7/
https://docs.python.org/3.5/
https://docs.python.org/2.7/
https://www.python.org/doc/versions/
https://www.python.org/dev/peps/
https://wiki.python.org/moin/BeginnersGuide
https://wiki.python.org/moin/PythonBooks
https://www.python.org/doc/av/
genindex.html
py-modindex.html
https://www.python.org/
#
copyright.html
https://www.python.org/psf/donations/
bugs.html
http://sphinx.pocoo.org/

Diese Liste ist viel länger, weil einige HTML-Anker-Tags relative Pfade (z. B.
tutorial/index.html) oder seiteninterne Verweise (z. B. #) sind, die nicht http://

12.8. Parsen von HTML mit BeautifulSoup 175

oder https:// enthalten, was in unserem regulären Ausdruck noch eine Vorausset-
zung war.

Wir können auch BeautifulSoup verwenden, um verschiedene Teile der einzelnen
Tags zu extrahieren:

To run this, download the BeautifulSoup zip file
http://www.py4e.com/code3/bs4.zip
and unzip it in the same directory as this file

from urllib.request import urlopen
from bs4 import BeautifulSoup
import ssl

Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')
html = urlopen(url, context=ctx).read()
soup = BeautifulSoup(html, "html.parser")

Retrieve all of the anchor tags
tags = soup('a')
for tag in tags:

Look at the parts of a tag
print('TAG:', tag)
print('URL:', tag.get('href', None))
print('Contents:', tag.contents[0])
print('Attrs:', tag.attrs)

Code: https://tiny.one/py4de/code3/urllink2.py

python urllink2.py
Enter - http://www.dr-chuck.com/page1.htm
TAG:
Second Page
URL: http://www.dr-chuck.com/page2.htm
Content: ['\nSecond Page']
Attrs: [('href', 'http://www.dr-chuck.com/page2.htm')]

html.parser ist der HTML-Parser, der in der Standardbibliothek von Python 3
enthalten ist. Informationen zu anderen HTML-Parsern finden sich unter:

http://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser

Diese Beispiele zeigen nur ansatzweise die Möglichkeiten von BeautifulSoup, wenn
es um das Parsen von HTML geht.

http://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser

176 Kapitel 12. Vernetzen von Programmen

12.9 Bonuskapitel für Unix-/Linux-User

Wenn wir einen Linux-, Unix- oder Macintosh-Computer haben, haben wir wahr-
scheinlich Befehle in das Betriebssystem eingebaut, die sowohl Klartext- als auch
Binärdateien über die Protokolle HTTP oder File Transfer (FTP) abrufen. Einer
dieser Befehle ist curl:

$ curl -O http://www.py4e.com/cover.jpg

Der Befehl curl ist die Abkürzung für „Client for URLs“ und so heißen die bei-
den zuvor aufgeführten Beispiele zum Abrufen von Binärdateien mit urllib auf
www.py4e.com/code3 schlauerweise curl1.py und curl2.py, da sie eine ähnliche
Funktionalität wie der Befehl curl implementieren. Es gibt auch ein Beispielpro-
gramm curl3.py, das diese Aufgabe etwas effektiver erledigt (für den Fall, dass
jemand dies tatsächlich in einem Programm verwenden möchte).

Ein zweiter Befehl, der sehr ähnlich funktioniert, ist wget:

$ wget http://www.py4e.com/cover.jpg

Diese beiden Befehle machen das Abrufen von Webseiten und Dateien zu einer
einfachen Aufgabe.

12.10 Glossar

BeautifulSoup Eine Python-Bibliothek zum Parsen von HTML-Dokumenten
und zum Extrahieren von Daten aus HTML-Dokumenten, die die meisten
erwartbaren Unzulänglichkeiten im HTML-Code kompensiert, die auch von
Browsern im Allgemeinen ignoriert werden. Der BeautifulSoup-Code kann
auf der folgenden Seite heruntergeladen werden: www.crummy.com.

Port Eine Nummer, die im Allgemeinen angibt, mit welcher Anwendung wir Kon-
takt aufnehmen, wenn wir eine Socket-Verbindung zu einem Server herstellen.
Ein Beispiel: Der Webverkehr verwendet normalerweise Port 80, während der
E-Mail-Verkehr Port 25 verwendet.

Web-Scraping Wenn ein Programm vorgibt, ein Webbrowser zu sein, und eine
Webseite abruft, dann schaut es sich den Inhalt der Webseite an. Oft folgen
Programme den Links auf einer Seite, um die nächste Seite zu finden, sodass
sie ein Netzwerk von Seiten oder ein soziales Netzwerk durchqueren können.

Socket Eine Netzwerkverbindung zwischen zwei Anwendungen, bei der die An-
wendungen Daten in beide Richtungen senden und empfangen können.

Spider Der Vorgang, bei dem eine Web-Suchmaschine eine Seite abruft und dann
alle verlinkten Seiten auf dieser ebenfalls aufruft, bis sie fast alle Seiten im
Internet besucht hat. Diese können dann zum Aufbau eines Suchindexes
verwendet werden.

http://www.py4e.com/code3
http://www.crummy.com

12.11. Übungen 177

12.11 Übungen

Übung 1: Das Socket-Programm socket1.py soll so geändert werden, dass es
den Benutzer nach der URL fragt und jede Webseite lesen kann. Hierbei kann
split('/') verwendet werden, um die URL in ihre Bestandteile zu zerlegen, damit
wir den Hostnamen für den Socket-Aufruf connect extrahieren können. Dabei soll
eine Fehlerprüfung mit try und except hinzugefügt werden für den Fall, dass der
Benutzer eine falsch formatierte oder nicht existierende URL eingibt.

Übung 2: Das Socket-Programm soll so geändert werden, dass es die Anzahl
der empfangenen Zeichen zählt und keinen Text mehr anzeigt, nachdem es 3000
Zeichen ausgegeben hat. Das Programm soll das gesamte Dokument abrufen und
die Gesamtzahl der Zeichen zählen und diese am Ende des Dokuments anzeigen.

Übung 3: Es soll urllib verwendet werden, um die vorherige Übung zu wie-
derholen: (1) Abrufen des Dokuments von einer URL, (2) Anzeigen von bis zu
3000 Zeichen und (3) Zählen der Gesamtanzahl der Zeichen im Dokument. Da-
bei sollen diesmal die Header ignoriert und lediglich die ersten 3000 Zeichen des
Dokumentinhalts angezeigt werden.

Übung 4: Das Programm urllinks.py soll so geändert werden, dass es Paragraph-
Tags (p) aus dem abgerufenen HTML-Dokument extrahiert und zählt sowie die
Anzahl der Absätze als Ausgabe des Programms anzeigt. Der Text soll nicht
angezeigt werden. Das Programm sollte auf mehreren kleinen sowie einigen größeren
Webseiten getestet werden.

Übung 5: (Erweiterung) Das Socket-Programm soll so geändert werden, dass es
erst Daten anzeigt, nachdem die Header und eine Leerzeile empfangen wurden.
Dabei muss bedacht werden, dass recv Zeichen empfängt, nicht aber ganze Zeilen.

Kapitel 13

Web-Services

Wir haben gesehen, wie einfach es ist, Dokumente über HTTP abzurufen und zu
parsen. Anschließend haben wir gelernt, wie wir selbst Dokumente erzeugen, welche
dann von anderen Programmen verarbeitet werden können.
Es gibt zwei gängige Formate, die wir beim Austausch von Daten über das Web
verwenden. eXtensible Markup Language (XML) wird schon sehr lange verwendet
und eignet sich am besten für den Austausch von dokumentenähnlichen Daten. Wenn
Programme nur Dictionarys, Listen oder andere interne Informationen miteinander
austauschen wollen, verwenden wir dagegen die JavaScript Object Notation (JSON)
(siehe www.json.org). Wir werden uns beide Formate ansehen.

13.1 eXtensible Markup Language – XML

XML sieht HTML zwar sehr ähnlich, ist aber strenger strukturiert. Hier ist ein
Beispiel für ein XML-Dokument:

<person>
<name>Chuck</name>
<phone type="intl">

+1 734 303 4456
</phone>
<email hide="yes" />

</person>

Jedes Paar von öffnenden (z. B. <person>) und schließenden Tags (</person>)
repräsentiert ein Element oder einen Knoten mit dem gleichen Namen wie das Tag
(hier person). Jedes Element kann Text, Attribute (wie bspw. hide) und andere
verschachtelte Elemente enthalten. Wenn ein XML-Element leer ist (also keinen
Inhalt hat), kann es durch ein selbstschließendes Tag dargestellt werden (<email
/>).
Oft ist es hilfreich, sich ein XML-Dokument als Baumstruktur vorzustellen, in der
es ein oberstes Element (hier person) gibt und andere Tags wie phone als Kinder
ihrer Eltern-Elemente dargestellt werden.

http://www.json.org

180 Kapitel 13. Web-Services

name

person

Chuck

phone

+1 734
303 4456

type=intl
email

hide=yes

Abbildung 13.1: Eine Baumdarstellung von XML

13.2 Parsen von XML

Hier ist eine einfache Anwendung, die ein XML-Dokument parst und einige Daten-
elemente daraus extrahiert:

import xml.etree.ElementTree as ET

data = '''
<person>

<name>Chuck</name>
<phone type="intl">

+1 734 303 4456
</phone>
<email hide="yes" />

</person>'''

tree = ET.fromstring(data)
print('Name:', tree.find('name').text)
print('Attr:', tree.find('email').get('hide'))

Code: https://tiny.one/py4de/code3/xml1.py

Das dreifache einfache Anführungszeichen (''') sowie das dreifache doppelte An-
führungszeichen (""") ermöglichen die Erstellung von Zeichenketten, die sich über
mehrere Zeilen erstrecken.

Der Aufruf von fromstring konvertiert die String-Darstellung des XML in einen
Baum von XML-Elementen. Wenn das XML in einem Baum vorliegt, haben wir
eine Reihe von Methoden, die wir aufrufen können, um Teile der Daten aus dem
XML-String zu extrahieren. Die Funktion find durchsucht den XML-Baum und
ruft das Element ab, das mit dem angegebenen Tag übereinstimmt.

Name: Chuck
Attr: yes

13.3. Iterieren durch Knoten 181

Die Verwendung eines XML-Parsers wie ElementTree hat den Vorteil, dass es –
obwohl das XML in diesem Beispiel recht einfach ist – viele verbindliche Regeln für
gültiges XML gibt. Die Verwendung von ElementTree ermöglicht es uns, Daten zu
extrahieren, ohne uns um die Regeln der XML-Syntax kümmern zu müssen.

13.3 Iterieren durch Knoten

Oft hat das XML mehrere Knoten und wir benötigen eine Schleife, um alle Knoten
zu verarbeiten. Im folgenden Programm durchlaufen wir in einer Schleife alle
user-Knoten:

import xml.etree.ElementTree as ET

input = '''
<stuff>

<users>
<user x="2">

<id>001</id>
<name>Chuck</name>

</user>
<user x="7">

<id>009</id>
<name>Brent</name>

</user>
</users>

</stuff>'''

stuff = ET.fromstring(input)
lst = stuff.findall('users/user')
print('User count:', len(lst))

for item in lst:
print('Name', item.find('name').text)
print('Id', item.find('id').text)
print('Attribute', item.get('x'))

Code: https://tiny.one/py4de/code3/xml2.py

Die Methode findall ruft eine Python-Liste von Teilbäumen ab, die die user-
Strukturen im XML-Baum darstellen. Dann können wir eine for-Schleife schreiben,
die jeden der user-Knoten betrachtet und die Textelemente name und id sowie das
Attribut x des user-Knotens ausgibt.

User count: 2
Name Chuck
Id 001
Attribute 2
Name Brent

182 Kapitel 13. Web-Services

Id 009
Attribute 7

Es ist wichtig, alle Tags der direkt übergeordneten Ebene (also users/user) in die
findall-Anweisung aufzunehmen. Andernfalls wird Python die gewünschten Kno-
ten nicht finden. Das Top-Level-Tag (stuff) muss in unserem Fall nicht angegeben
werden.

import xml.etree.ElementTree as ET

input = '''
<stuff>

<users>
<user x="2">

<id>001</id>
<name>Chuck</name>

</user>
<user x="7">

<id>009</id>
<name>Brent</name>

</user>
</users>

</stuff>'''

stuff = ET.fromstring(input)

lst = stuff.findall('users/user')
print('User count:', len(lst))

lst2 = stuff.findall('user')
print('User count:', len(lst2))

Zum besseren Verständnis: lst speichert alle user-Elemente, die in ihrem users-
Elternteil verschachtelt sind. lst2 sucht nach user-Elementen, die nicht innerhalb
des übergeordneten stuff-Elements verschachtelt sind. Von diesen gibt es allerdings
keine.

User count: 2
User count: 0

13.4 JavaScript Object Notation – JSON

Das JSON-Format wurde durch das in der Sprache JavaScript verwendete Objekt-
und Array-Format inspiriert. Da Python jedoch vor JavaScript erfunden wurde,
hat die Syntax von Python für Dictionarys und Listen die Syntax von JSON
beeinflusst. Das Format von JSON ist also fast identisch mit einer Kombination
aus Python-Listen und Python-Dictionarys.

13.5. Parsen von JSON 183

Hier ist eine JSON-Kodierung, die in etwa dem einfachen XML-Dokument von
oben entspricht:

{
"name": "Chuck",
"phone": {

"type": "intl",
"number": "+1 734 303 4456"

},
"email": {

"hide": "yes"
}

}

Man stellt sofort einige Unterschiede fest. Erstens können wir in XML Attribute
wie intl dem phone-Tag hinzufügen. In JSON verwenden wir dafür Schlüssel-Wert-
Paare. Auch das XML-Tag person ist verschwunden und wurde durch eine Reihe
von geschweiften Klammern ersetzt.

Im Allgemeinen sind JSON-Strukturen einfacher als XML, weil JSON weniger
Möglichkeiten bietet als XML. Aber JSON hat den Vorteil, dass es direkt auf
eine Kombination von Dictionarys und Listen abgebildet werden kann. Da fast
alle Programmiersprachen Elemente haben, die den Dictionarys und Listen von
Python entsprechen, ist JSON ein sehr naheliegendes Format, um zwischen zwei
zusammenwirkenden Programmen Daten auszutauschen.

JSON hat sich aufgrund seiner relativen Einfachheit im Vergleich zu XML schnell
zum Format der Wahl für fast jeden Datenaustausch zwischen Programmen entwi-
ckelt.

13.5 Parsen von JSON

Wir konstruieren unser JSON, indem wir Dictionarys und Listen nach Bedarf
verschachteln. In diesem Beispiel stellen wir eine Liste von Benutzern dar, wobei
jeder Benutzer ein Satz von Schlüssel-Wert-Paaren ist (also ein Dictionary). Somit
erhalten wir also eine Liste von Dictionarys.

Im folgenden Programm verwenden wir die eingebaute json-Bibliothek, um JSON zu
parsen und die Daten einzulesen. Das wollen wir nun genau mit den entsprechenden
XML-Daten und dem Code von oben vergleichen. Das JSON hat weniger Details,
daher müssen wir im Voraus wissen, dass wir eine Liste erhalten und dass die Liste
aus Benutzern besteht und jeder Benutzer ein Satz von Schlüssel-Wert-Paaren ist.
Das JSON ist prägnanter (ein Vorteil), aber auch weniger selbstbeschreibend (ein
Nachteil).

import json

data = '''
[

184 Kapitel 13. Web-Services

{ "id" : "001",
"x" : "2",
"name" : "Chuck"

} ,
{ "id" : "009",

"x" : "7",
"name" : "Brent"

}
]'''

info = json.loads(data)
print('User count:', len(info))

for item in info:
print('Name', item['name'])
print('Id', item['id'])
print('Attribute', item['x'])

Code: https://tiny.one/py4de/code3/json2.py

Wenn wir den Code zum Extrahieren von Daten aus dem geparsten JSON und
XML vergleichen, sehen wir, dass das, was wir durch json.loads() erhalten, eine
Python-Liste ist, die wir mit einer for-Schleife durchlaufen. Jedes Element innerhalb
dieser Liste ist ein Python-Dictionary. Sobald das JSON geparst wurde, können
wir den Python-Indexoperator verwenden, um die verschiedenen Daten für jeden
Benutzer zu extrahieren. Wir müssen nicht die JSON-Bibliothek verwenden, um
uns durch das geparste JSON zu wühlen, da die zurückgegebenen Daten bereits
native Python-Strukturen sind!

Die Ausgabe dieses Programms ist genau die gleiche wie die der obigen XML-Version.

User count: 2
Name Chuck
Id 001
Attribute 2
Name Brent
Id 009
Attribute 7

Im Allgemeinen gibt es bei Webservices in der IT-Branche einen Trend weg von XML
und hin zu JSON. Da JSON einfacher ist und direkter auf native Datenstrukturen
abgebildet wird, die in verschiedenen Programmiersprachen bereits vorhanden sind,
ist der Code für das Parsen und die Datenextraktion bei der Verwendung von
JSON normalerweise einfacher. XML ist jedoch selbstbeschreibender als JSON und
daher gibt es einige Anwendungen, in denen XML weiterhin einen Vorteil bietet.
So speichern die meisten Textverarbeitungsprogramme Dokumente intern in XML
und nicht in JSON.

13.6. Application Programming Interfaces – API 185

13.6 Application Programming Interfaces – API

Wir haben inzwischen die Fähigkeit erlernt, Daten zwischen Anwendungen über
das HyperText Transport Protocol (HTTP) auszutauschen und wir haben eine
Möglichkeit kennengelernt, komplexe Daten, die wir zwischen diesen Anwendungen
hin- und herschicken möchten, mittels eXtensible Markup Language (XML) oder
JavaScript Object Notation (JSON) darzustellen.

Der nächste Schritt besteht darin, Schnittstellen zwischen Anwendungen zu defi-
nieren und zu dokumentieren. Der allgemeine Name für eine Schnittstelle lautet
Application Program Interface (kurz API). Bei der Bereitstellung einer API stellt
ein Programm eine Reihe von Diensten für die Nutzung durch andere Anwendungen
zur Verfügung. Um auf diese Dienste zugreifen zu können, müssen die anderen
Programme die Regeln der entsprechenden API befolgen. Daher werden die Regeln
und die Dokumentation der API normalerweise veröffentlicht.

Wenn wir beginnen, unsere Programme so aufzubauen, dass die Funktionalität un-
seres Programms den Zugriff auf Dienste beinhaltet, die von anderen Programmen
bereitgestellt werden, bezeichnen wir diesen Ansatz als Service orientierte Architek-
tur (SOA). Ein SOA-Ansatz ist ein solcher, bei dem unsere Gesamtanwendung auf
die Dienste anderer Anwendungen zurückgreift. Ein Nicht-SOA-Ansatz ist einer, bei
dem die Anwendung eine einzelne, eigenständige Anwendung ist, die den gesamten
für die Implementierung der Anwendung erforderlichen Code enthält.

Wir sehen viele Beispiele für SOA, wenn wir das Web nutzen. Wir können auf
eine einzige Website gehen und Flugreisen, Hotels und Autos buchen – alles von
einer einzigen Seite aus. Die Daten für Hotels werden nicht auf den Computern
der Fluggesellschaft gespeichert. Stattdessen kontaktieren die Computer der Flug-
gesellschaften die Dienste auf den Hotelservern und rufen die Hoteldaten ab und
präsentieren sie dem Kunden. Wenn der Kunde zustimmt, eine Hotelreservierung
über die Website der Fluggesellschaft vorzunehmen, verwendet die Website der
Fluggesellschaft wieder einen anderen Webservice des Hotelsystemens, um die Re-
servierung tatsächlich vorzunehmen. Und wenn es an der Zeit ist, die Kreditkarte
für die gesamte Transaktion zu belasten, werden noch weitere Computer in den
Prozess einbezogen.

Eine serviceorientierte Architektur hat viele Vorteile, darunter: (1) Wir halten
immer nur eine Kopie der Daten vor (dies ist besonders wichtig für Dinge wie
Hotelreservierungen, bei denen wir nicht zu viele Verpflichtungen eingehen wollen)
und (2) die Eigentümer der Daten können die Regeln für die Verwendung ihrer
Daten festlegen. Mit diesen Vorteilen muss ein SOA-System sorgfältig entworfen
werden, um leistungsstark zu sein und die Bedürfnisse der Benutzer zu erfüllen.

Wenn eine Anwendung einen Satz von Diensten in ihrer API über das Web verfügbar
macht, nennen wir diese Dienste Webdienste.

13.7 Sicherheit und API-Nutzung

Es ist durchaus üblich, dass wir einen API-Schlüssel benötigen, um die API eines
Anbieters nutzen zu können. Der Grund dafür ist, dass der Anbieter wissen möchte,

186 Kapitel 13. Web-Services

Auto
Rental
Service

Hotel
Reservation

Service

Airline
Reservation

Service

Travel
Application

API

API API

Abbildung 13.2: Serviceorientierte Architektur

wer seine Dienste nutzt und wie viel Endbenutzer auf sie zugreifen. Häufig gibt
es eine kostenlose und eine kostenpflichtige Version der Dienste oder es gibt eine
Richtlinie, die die Anzahl der Anfragen begrenzt, die eine einzelne Person während
eines bestimmten Zeitraums stellen kann. Den API-Schlüssel fügen wir als Teil der
POST-Daten oder auch als Parameter in der URL beim Aufruf der API ein. Das
kann je nach Dienst variieren.

In anderen Fällen möchte der Anbieter eine erhöhte Sicherheit bezüglich der Quelle
der Anfragen erzielen und erwartet daher, dass wir kryptografisch signierte Nachrich-
ten mit gemeinsamen Keys und Secrets senden. Eine sehr verbreitete Technologie,
die zum Signieren von Anfragen über das Internet verwendet wird, heißt OAuth.
Mehr über das OAuth-Protokoll kann man unter www.oauth.net erfahren.

Glücklicherweise gibt es eine Reihe von praktischen und kostenlosen OAuth-
Bibliotheken, sodass es nicht nötig ist, eine OAuth-Anbindung von Grund auf
zu implementieren. Dafür müssen wir uns in die Spezifikation der Bibliothek einar-
beiten. Diese Bibliotheken sind von unterschiedlicher Komplexität und haben einen
unterschiedlichen Funktionsumfang. Auf der OAuth-Website finden sich Informatio-
nen über verschiedene OAuth-Bibliotheken.

13.8 Glossar

API Application Program Interface – Eine Schnittstelle zwischen Anwendungen,
welche die Interaktion zwischen zwei Anwendungskomponenten definiert.

ElementTree Eine integrierte Python-Bibliothek, die zum Parsen von XML-Daten
verwendet wird.

JSON JavaScript Object Notation – Ein Format, das die Auszeichnung (Markup)

http://www.oauth.net

13.9. Anwendungsbeispiel 1: Google Geocoding Web Service 187

von strukturierten Daten basierend auf der Syntax von JavaScript-Objekten
ermöglicht.

SOA Service-Oriented Architecture – Komponenten von Anwendungen, die über
ein Netzwerk verbunden sind.

XML eXtensible Markup Language – Ein Format, das die Auszeichnung von
strukturierten Daten ermöglicht.

13.9 Anwendungsbeispiel 1: Google Geocoding
Web Service

Google hat einen ausgezeichneten Webdienst, der es uns ermöglicht, seine große
Datenbank mit geografischen Informationen zu nutzen. Wir können einen geogra-
fischen Suchstring wie „Iserlohn, Sauerland“ an die Geocoding-API übermitteln
und Google gibt eine Vermutung darüber zurück, wo auf der Karte wir diesen Ort
finden könnten, und informiert uns über die Sehenswürdigkeiten in der Nähe.

Der Geocoding-Dienst ist zwar kostenlos, die Nutzungsfrequenz der API ist jedoch
begrenzt, sodass wir die API nicht uneingeschränkt in einer kommerziellen Anwen-
dung nutzen können. Aber wenn wir eine Suchanfrage nach einem Ort haben, die ein
Endbenutzer in ein Freitextfeld eingegeben hat, können wir diese API verwenden,
um die Daten recht gut zu bereinigen und nach diesem Ort zu suchen.

Hinweis zur Nutzung freier Webdienste: Wenn wir eine kostenlose API wie die
Geocoding-API von Google verwenden, müssen wir bei der Nutzung dieser Ressour-
cen gewissenhaft vorgehen. Wenn zu viele Leute den Dienst missbrauchen, könnte
Google seinen kostenlosen Dienst einstellen oder erheblich einschränken.

Die Dokumentation für diesen Dienst ist online verfügbar. Wir können den Dienst
sogar im Browser testen, indem wir die folgende URL eingeben:

http://maps.googleapis.com/maps/api/geocode/json?address=Iserlohn+
Sauerland

Der Dienst antwortet dann mit der Fehlermeldung, dass ein API-Key benötigt wird.

Im Folgenden sehen wir eine einfache Anwendung, die den Benutzer zur Eingabe
eines Suchstrings auffordert, die Google Geocoding-API aufruft und Informationen
aus dem zurückgegebenen JSON extrahiert.

import urllib.request, urllib.parse
import json
import ssl

api_key = False
If you have a Google Places API key, enter it here
api_key = 'AIzaSy___IDByT70'
https://developers.google.com/maps/documentation/geocoding/intro

if api_key is False:
api_key = 42

http://maps.googleapis.com/maps/api/geocode/json?address=Iserlohn+Sauerland
http://maps.googleapis.com/maps/api/geocode/json?address=Iserlohn+Sauerland

188 Kapitel 13. Web-Services

serviceurl = 'http://py4e-data.dr-chuck.net/json?'
else:

serviceurl = 'https://maps.googleapis.com/maps/api/geocode/json?'

Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

while True:
address = input('Enter location: ')
if len(address) < 1: break

parms = dict()
parms['address'] = address
if api_key is not False: parms['key'] = api_key
url = serviceurl + urllib.parse.urlencode(parms)

print('Retrieving', url)
uh = urllib.request.urlopen(url, context=ctx)
data = uh.read().decode()
print('Retrieved', len(data), 'characters')

try:
js = json.loads(data)

except:
js = None

if not js or 'status' not in js or js['status'] != 'OK':
print('==== Failure To Retrieve ====')
print(data)
continue

print(json.dumps(js, indent=4))

lat = js['results'][0]['geometry']['location']['lat']
lng = js['results'][0]['geometry']['location']['lng']
print('lat', lat, 'lng', lng)
location = js['results'][0]['formatted_address']
print(location)

Code: https://tiny.one/py4de/code3/geojson.py

Das Programm nimmt den Suchstring und konstruiert eine URL mit dem Suchstring
als korrekt kodierten Parameter und verwendet dann urllib, um den Text von der
Google Geocoding-API abzurufen. Im Gegensatz zu einer festen Webseite hängen
die Daten, die wir erhalten, von den Parametern ab, die wir senden, und von den
geografischen Daten, die auf den Servern von Google gespeichert sind.

Sobald wir die JSON-Daten abgerufen haben, parsen wir sie mit der json-Bibliothek

13.9. Anwendungsbeispiel 1: Google Geocoding Web Service 189

und führen ein paar Prüfungen durch, um sicherzustellen, dass wir korrekte Daten
erhalten haben. Dann extrahieren wir die Informationen, nach denen wir suchen.

Die Ausgabe des Programms sieht wie folgt aus (ein Teil des zurückgegebenen
JSON wurde für eine bessere Übersichtlichkeit entfernt):

$ python3 geojson.py
Enter location: Ann Arbor, MI
Retrieving http://py4e-data.dr-chuck.net/json?address=Ann+Arbor%2C+MI&key=42
Retrieved 1736 characters

{
"results": [

{
"address_components": [

{
"long_name": "Ann Arbor",
"short_name": "Ann Arbor",
"types": [

"locality",
"political"

]
},
{

"long_name": "Washtenaw County",
"short_name": "Washtenaw County",
"types": [

"administrative_area_level_2",
"political"

]
},
{

"long_name": "Michigan",
"short_name": "MI",
"types": [

"administrative_area_level_1",
"political"

]
},
{

"long_name": "United States",
"short_name": "US",
"types": [

"country",
"political"

]
}

],
"formatted_address": "Ann Arbor, MI, USA",
"geometry": {

190 Kapitel 13. Web-Services

"bounds": {
"northeast": {

"lat": 42.3239728,
"lng": -83.6758069

},
"southwest": {

"lat": 42.222668,
"lng": -83.799572

}
},
"location": {

"lat": 42.2808256,
"lng": -83.7430378

},
"location_type": "APPROXIMATE",
"viewport": {

"northeast": {
"lat": 42.3239728,
"lng": -83.6758069

},
"southwest": {

"lat": 42.222668,
"lng": -83.799572

}
}

},
"place_id": "ChIJMx9D1A2wPIgR4rXIhkb5Cds",
"types": [

"locality",
"political"

]
}

],
"status": "OK"

}
lat 42.2808256 lng -83.7430378
Ann Arbor, MI, USA

Enter location:

Wir können www.py4e.com/code3/geoxml.py herunterladen, um die XML-Variante
der Google Geocoding-API zu erkunden.

Übung 1: Es soll py4e.com/code3/geojson.py oder py4e.com/code3/geoxml.py
abgeändert werden, um den zweistelligen Ländercode aus den abgerufenen Daten
auszugeben. Es muss eine Fehlerprüfung hinzugefügt werden, damit das Programm
keinen Traceback auslöst, wenn der Ländercode nicht vorhanden ist. Sobald es zum
Laufen gebracht wurde, soll nach dem „Atlantic Ocean“ gesucht und sichergestellt
werden, dass es auch mit Orten umgehen kann, die in keinem Land liegen.

http://www.py4e.com/code3/geoxml.py
http://www.py4e.com/code3/geojson.py
http://www.py4e.com/code3/geoxml.py

13.10. Anwendungsbeispiel 2: Twitter 191

13.10 Anwendungsbeispiel 2: Twitter

Als die Twitter-API immer mehr an Bedeutung gewann, ging Twitter von einer
offenen und öffentlichen API zu einer API über, die die Verwendung von OAuth-
Signaturen bei jeder API-Anfrage erfordert.

Für das nächste Beispielprogramm laden wir die Dateien twurl.py, hidden.py,
oauth.py und twitter1.py von www.py4e.com/code herunter und legen alle in
einem Ordner auf dem Computer ab.

Um diese Programme nutzen zu können, müssen wir ein Twitter-Konto haben und
unseren Python-Code als Anwendung autorisieren. Es muss dabei ein Key, Secret,
Token und Token Secret eingerichtet werden. Dann muss die Datei hidden.py
bearbeitet und diese vier Zeichenfolgen in die entsprechenden Variablen in der
Datei eingefügt werden:

Keep this file separate

https://apps.twitter.com/
Create new App and get the four strings

def oauth():
return {"consumer_key": "h7Lu...Ng",

"consumer_secret": "dNKenAC3New...mmn7Q",
"token_key": "10185562-eibxCp9n2...P4GEQQOSGI",
"token_secret": "H0ycCFemmC4wyf1...qoIpBo"}

Code: https://tiny.one/py4de/code3/hidden.py

Der Zugriff auf den Twitter-Webdienst erfolgt über eine URL wie diese:

https://api.twitter.com/1.1/statuses/user_timeline.json

Sobald jedoch alle Sicherheitsinformationen hinzugefügt wurden, sieht die URL
eher so aus:

https://api.twitter.com/1.1/statuses/user_timeline.json?count=2
&oauth_version=1.0&oauth_token=101...SGI&screen_name=drchuck
&oauth_nonce=09239679&oauth_timestamp=1380395644
&oauth_signature=rLK...BoD&oauth_consumer_key=h7Lu...GNg
&oauth_signature_method=HMAC-SHA1

Wir können die OAuth-Spezifikation lesen, wenn wir mehr über die Bedeutung
der verschiedenen Parameter erfahren möchten, die hinzugefügt werden, um die
Sicherheitsanforderungen von OAuth zu erfüllen.

Für die Programme, die wir mit Twitter ausführen, verstecken wir die ganze
Komplexität in den Dateien oauth.py und twurl.py. Wir setzen einfach die
Secrets in hidden.py und senden dann die gewünschte URL an die Funktion
twurl.augment() und der Bibliothekscode fügt alle notwendigen Parameter für
uns an die URL an.

http://www.py4e.com/code3
https://api.twitter.com/1.1/statuses/user_timeline.json

192 Kapitel 13. Web-Services

Dieses Programm ruft die Timeline für einen bestimmten Twitter-Benutzer ab und
gibt sie im JSON-Format in einer Zeichenkette an uns zurück. Wir geben dann
einfach die ersten 250 Zeichen des Strings aus:

import urllib.request, urllib.parse, urllib.error
import twurl
import ssl

https://apps.twitter.com/
Create App and get the four strings, put them in hidden.py

TWITTER_URL = 'https://api.twitter.com/1.1/statuses/user_timeline.json'

Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

while True:
print('')
acct = input('Enter Twitter Account:')
if (len(acct) < 1): break
url = twurl.augment(TWITTER_URL,

{'screen_name': acct, 'count': '2'})
print('Retrieving', url)
connection = urllib.request.urlopen(url, context=ctx)
data = connection.read().decode()
print(data[:250])
headers = dict(connection.getheaders())
print headers
print('Remaining', headers['x-rate-limit-remaining'])

Code: https://tiny.one/py4de/code3/twitter1.py

Wenn das Programm läuft, erzeugt es die folgende Ausgabe:

Enter Twitter Account:drchuck
Retrieving https://api.twitter.com/1.1/ ...
[{"created_at":"Sat Sep 28 17:30:25 +0000 2013","
id":384007200990982144,"id_str":"384007200990982144",
"text":"RT @fixpert: See how the Dutch handle traffic
intersections: http:\/\/t.co\/tIiVWtEhj4\n#brilliant",
"source":"web","truncated":false,"in_rep
Remaining 178

Enter Twitter Account:fixpert
Retrieving https://api.twitter.com/1.1/ ...
[{"created_at":"Sat Sep 28 18:03:56 +0000 2013",
"id":384015634108919808,"id_str":"384015634108919808",
"text":"3 months after my freak bocce ball accident,

13.10. Anwendungsbeispiel 2: Twitter 193

my wedding ring fits again! :)\n\nhttps:\/\/t.co\/2XmHPx7kgX",
"source":"web","truncated":false,
Remaining 177

Enter Twitter Account:

Zusammen mit den zurückgegebenen Timeline-Daten gibt Twitter auch Metadaten
über die Anfrage in den HTTP-Antwort-Headern zurück. Ein Header im Besonderen,
x-rate-limit-remaining, informiert uns darüber, wie viele Anfragen wir noch
stellen können, bevor wir für eine kurze Zeitspanne gesperrt werden. Wir können
sehen, dass unsere verbleibenden Abrufe bei jeder Anfrage an die API um eins
sinken.

Im folgenden Beispiel rufen wir die Twitter-Freunde eines Benutzers ab, parsen das
zurückgegebene JSON und extrahieren einige der Informationen über diese Freunde.
Außerdem geben wir das JSON nach dem Parsen aus und drucken es mit einem
Einzug von vier Zeichen aus, damit wir die Daten durchforsten können, wenn wir
weitere Felder extrahieren möchten.

import urllib.request, urllib.parse, urllib.error
import twurl
import json
import ssl

https://apps.twitter.com/
Create App and get the four strings, put them in hidden.py

TWITTER_URL = 'https://api.twitter.com/1.1/friends/list.json'

Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

while True:
print('')
acct = input('Enter Twitter Account:')
if (len(acct) < 1): break
url = twurl.augment(TWITTER_URL,

{'screen_name': acct, 'count': '5'})
print('Retrieving', url)
connection = urllib.request.urlopen(url, context=ctx)
data = connection.read().decode()

js = json.loads(data)
print(json.dumps(js, indent=2))

headers = dict(connection.getheaders())
print('Remaining', headers['x-rate-limit-remaining'])

194 Kapitel 13. Web-Services

for u in js['users']:
print(u['screen_name'])
if 'status' not in u:

print(' * No status found')
continue

s = u['status']['text']
print(' ', s[:50])

Code: https://tiny.one/py4de/code3/twitter2.py

Da das JSON zu einer Reihe von verschachtelten Python-Listen und -Dictionarys
wird, können wir eine Kombination aus Indexzugriff und for-Schleifen verwen-
den, um die zurückgegebenen Datenstrukturen mit sehr wenig Pythoncode zu
durchwandern.
Die Ausgabe des Programms sieht so aus (einige der Daten sind gekürzt, damit sie
auf die Seite passen):

Enter Twitter Account:drchuck
Retrieving https://api.twitter.com/1.1/friends ...
Remaining 14

{
"next_cursor": 1444171224491980205,
"users": [

{
"id": 662433,
"followers_count": 28725,
"status": {

"text": "@jazzychad I just bought one .__.",
"created_at": "Fri Sep 20 08:36:34 +0000 2013",
"retweeted": false,

},
"location": "San Francisco, California",
"screen_name": "leahculver",
"name": "Leah Culver",

},
{

"id": 40426722,
"followers_count": 2635,
"status": {

"text": "RT @WSJ: Big employers like Google ...",
"created_at": "Sat Sep 28 19:36:37 +0000 2013",

},
"location": "Victoria Canada",
"screen_name": "_valeriei",
"name": "Valerie Irvine",

}
],

"next_cursor_str": "1444171224491980205"
}

13.10. Anwendungsbeispiel 2: Twitter 195

leahculver
@jazzychad I just bought one .__.

_valeriei
RT @WSJ: Big employers like Google, AT&T are h

ericbollens
RT @lukew: sneak peek: my LONG take on the good &a

halherzog
Learning Objects is 10. We had a cake with the LO,

scweeker
@DeviceLabDC love it! Now where so I get that "etc

Enter Twitter Account:

Im letzten Teil der Ausgabe sehen wir, wie die for-Schleife die fünf neuesten Freunde
des Twitter-Kontos @drchuck ausliest und den neuesten Status für jeden Freund
ausgibt. In dem zurückgegebenen JSON sind noch viel mehr Daten vorhanden.
Wenn wir in die Ausgabe des Programms schauen, können wir auch sehen, dass das
Finden der Freunde eines bestimmten Kontos eine andere Zugriffsratenbeschränkung
hat als die Anzahl der Timeline-Abfragen, die wir pro Zeitspanne ausführen dürfen.

Durch die individuellen API-Schlüssel hat Twitter die Kontrolle darüber, wer
ihre API und ihre Daten nutzt und in welchem Umfang. Die Beschränkung der
Zugriffsraten erlaubt uns einfache persönliche Datenabrufe, aber er gestattet es uns
nicht, eine Software zu entwickeln, die Millionen von Daten pro Tag aus der API
abruft.

Kapitel 14

Objektorientierte
Programmierung

14.1 Verwaltung größerer Programme

Zu Beginn dieses Buches haben wir vier grundlegende Programmiermuster betrach-
tet, die wir zur Konstruktion von Programmen verwenden:

• Sequentieller Code (Folge von Anweisungen)
• Bedingter Code (if-Anweisungen)
• Wiederholter Code (Schleifen)
• Wiederverwendung von Code (Funktionen)

In den ersten Kapiteln haben wir vorwiegend elementare Datentypen wie ganze
Zahlen oder Fließkommazahlen verwendet und in den späteren Kapiteln dann
zusammengesetzte Datentypen wie Listen, Tupeln und Dictionarys eingeführt.

Wenn wir Programme erstellen, verwenden wir Datentypen, um eigene Datenstruk-
turen zu entwerfen, und schreiben Code, um diese Datenstrukturen zu manipulieren.
Es gibt viele Möglichkeiten, Programme zu schreiben, und inzwischen haben wir
wahrscheinlich einige Programme geschrieben, die „nicht so elegant“ sind, wie
sie sein könnten, und andere, die uns vielleicht etwas „eleganter“ geraten sind.
Auch wenn unsere bisherigen Programme eher überschaubar sind, fängt man an
zu begreifen, dass ein gewisses Gespür für das Schreiben von gut lesbarem und
übersichtlichem Code hilfreich ist.

Wenn Programme Millionen von Zeilen lang werden, wird es immer wichtiger, Code
zu schreiben, der leicht zu verstehen ist. Wenn wir an einem millionen Zeilen langen
Programm arbeiten, können wir nie einen Überblick über das gesamte Programm
gleichzeitig im Kopf behalten. Wir brauchen also Möglichkeiten, große Programme
in mehrere kleinere Teile zu zerlegen, damit wir weniger zu beachten haben, wenn wir
ein Problem lösen, einen Fehler beheben oder eine neue Funktionalität hinzufügen.

In gewisser Weise ist die objektorientierte Programmierung eine Möglichkeit, Code so
anzuordnen, dass wir in 50 Zeilen des Codes hineinzoomen und ihn verstehen können,

198 Kapitel 14. Objektorientierte Programmierung

während wir die anderen 999.950 Zeilen des Codes für den Moment ignorieren
können.

14.2 Schon gehts los

Wie bei vielen Aspekten der Programmierung ist es notwendig, die Konzepte der
objektorientierten Programmierung zu erlernen, bevor wir sie effektiv einsetzen
können. Dieses Kapitel gehen wir so an, dass wir zunächst einige Begriffe und
Konzepte kennenlernen und dann ein paar einfache Beispiele durcharbeiten, um
eine Grundlage für das weitere Lernen zu schaffen.

Das wichtigste Ergebnis dieses Kapitels ist, ein grundlegendes Verständnis dafür
zu erlangen, wie Objekte aufgebaut sind und wie sie funktionieren und vor allem,
wie wir die Funktionen von Objekten nutzen, die uns von Python und den Python-
Bibliotheken zur Verfügung gestellt werden.

14.3 Handhabung von Objekten

Wie sich herausstellt, haben wir in diesem Buch die ganze Zeit über Objekte
verwendet. Python stellt uns viele eingebaute Objekte zur Verfügung. Hier ist ein
einfaches Beispiel, bei dem man die ersten paar Zeilen recht intuitiv nachvollziehen
kann.

stuff = list()
stuff.append('python')
stuff.append('chuck')
stuff.sort()
print (stuff[0])
print (stuff.__getitem__(0))
print (list.__getitem__(stuff,0))

Code: https://tiny.one/py4de/code3/party1.py

Wir wollen uns in den nächsten Abschnitten ansehen, was hier aus der Sicht der
objektorientierten Programmierung tatsächlich passiert. Dabei ist es nicht schlimm,
wenn wir nicht alle Details sofort verstehen. Am Ende des Kapitels oder spätestens
nach einem zweiten Lesedurchgang werden wir über ein gutes Verständnis der
Objektorientierung verfügen.

Die erste Zeile konstruiert ein Objekt vom Typ list, die zweite und dritte Zeile
ruft die append()-Methode auf, die vierte Zeile ruft die sort()-Methode auf, und
die fünfte Zeile liefert das Element an Position 0.

Die sechste Zeile ruft die Methode __getitem__() in der Liste stuff mit einem
Parameter 0 auf.

print (stuff.__getitem__(0))

14.4. Betrachtung von außen 199

Die siebte Zeile ist ein noch ausführlicherer Weg, um das nullte Element in der
Liste abzurufen.

print (list.__getitem__(stuff,0))

In diesem Code rufen wir die Methode __getitem__ der Klasse list auf und
übergeben die Liste und das Element, das wir aus der Liste abrufen wollen, als
Parameter.

Die letzten drei Zeilen des Programms sind gleichwertig, aber es ist bequemer,
einfach die Syntax der eckigen Klammern zu verwenden, um ein Element an einer
bestimmten Position in einer Liste nachzuschlagen.

Wir können einen Blick auf die Fähigkeiten eines Objekts werfen, indem wir uns
die Ausgabe der Funktion dir() ansehen:

>>> stuff = list()
>>> dir(stuff)
['__add__', '__class__', '__contains__', '__delattr__',
'__delitem__', '__dir__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__getitem__',
'__gt__', '__hash__', '__iadd__', '__imul__', '__init__',
'__iter__', '__le__', '__len__', '__lt__', '__mul__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__reversed__', '__rmul__', '__setattr__',
'__setitem__', '__sizeof__', '__str__', '__subclasshook__',
'append', 'clear', 'copy', 'count', 'extend', 'index',
'insert', 'pop', 'remove', 'reverse', 'sort']
>>>

Im weiteren Verlauf dieses Kapitels werden alle oben genannten Begriffe definiert.
Nach dem Durcharbeiten dieses Kapitels sollten wir die obigen Abschnitte erneut
lesen, um unser Verständnis zu überprüfen.

14.4 Betrachtung von außen

Ein Programm in seiner einfachsten Form nimmt Eingaben entgegen, führt Verar-
beitungen durch und erzeugt Ausgaben. Das folgende Programm zum Konvertieren
einer Etagennummer demonstriert ein sehr kurzes, aber vollständiges Programm,
das alle drei dieser Schritte zeigt.

usf = input('Enter the US Floor Number: ')
wf = int(usf) - 1
print('Non-US Floor Number is',wf)

Code: https://tiny.one/py4de/code3/elev.py

Wenn wir ein bisschen mehr über dieses Programm nachdenken, gibt es die „Au-
ßenwelt“ und das Programm. Die Eingabe- und Ausgabeaspekte sind die Stellen,

200 Kapitel 14. Objektorientierte Programmierung

Program

OutputInput

Abbildung 14.1: Ein Programm

an denen das Programm mit der Außenwelt interagiert. Innerhalb des Programms
haben wir Code und Daten, um die Aufgabe zu erfüllen, die das Programm lösen
soll.

Eine Möglichkeit, objektorientierte Programmierung zu verstehen, besteht in der
Vorstellung, dass sie unser Programm in mehrere „Zonen“ aufteilt. Jede Zone enthält
etwas Code und Daten (wie ein Programm) und hat gut definierte Interaktionen
mit der Außenwelt und den anderen Zonen innerhalb des Programms.

Wenn wir auf das Programm zur Link-Extraktion zurückblicken, bei der wir die
BeautifulSoup-Bibliothek verwendet haben, können wir ein Programm sehen, das
durch das Verbinden verschiedener Objekte konstruiert wird, um eine Aufgabe zu
erfüllen:

To run this, download the BeautifulSoup zip file
http://www.py4e.com/code3/bs4.zip
and unzip it in the same directory as this file

import urllib.request, urllib.parse, urllib.error
from bs4 import BeautifulSoup
import ssl

Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')
html = urllib.request.urlopen(url, context=ctx).read()
soup = BeautifulSoup(html, 'html.parser')

Retrieve all of the anchor tags
tags = soup('a')
for tag in tags:

print(tag.get('href', None))

Code: https://tiny.one/py4de/code3/urllinks.py

Wir lesen die URL in einen String und übergeben diesen dann an urllib, um
die Daten aus dem Web abzurufen. Die urllib-Bibliothek verwendet die socket-

14.5. Unterteilen eines Problems 201

String
Object OutputInput

Dictionary
Object

BeautifulSoup
Object

String
Object

Socket
Object

Urllib Object

html.parser
Object

Abbildung 14.2: Ein Programm als Netzwerk von Objekten

Bibliothek, um die eigentliche Netzwerkverbindung zum Abrufen der Daten her-
zustellen. Wir nehmen die Zeichenkette, die urllib zurückgibt und übergeben sie
an BeautifulSoup zum Parsen. BeautifulSoup verwendet das Objekt html.parser1

und gibt wiederum ein Objekt zurück. Wir rufen die Funktion tags() für das
zurückgegebene Objekt auf, die ein Dictionary mit Tag-Objekten zurückgibt. Wir
laufen in einer Schleife durch die Tags und rufen die Funktion get() für jedes Tag
auf, um das Attribut href auszugeben.

Wir können uns so ein Bild von diesem Programm machen und davon, wie die
Objekte zusammenarbeiten.

Das Ziel ist hier nicht, perfekt zu verstehen, wie dieses Programm funktioniert,
sondern zu sehen, wie wir ein Netzwerk aus interagierenden Objekten aufbauen und
die Bewegung von Informationen zwischen den Objekten steuern, um ein Programm
zu erstellen. Es ist auch wichtig zu bemerken, dass das Programm in den vorherigen
Kapiteln vollständig verstanden werden konnte, ohne überhaupt zu erkennen, dass
das Programm die Bewegung von Informationen zwischen den Objekten steuert.
Es waren einfach nur Codezeilen, die die Aufgabe erledigt haben.

14.5 Unterteilen eines Problems

Einer der Vorteile des objektorientierten Ansatzes ist, dass er Komplexität ver-
bergen kann. Zum Beispiel müssen wir zwar wissen, wie man den urllib- und
BeautifulSoup-Code verwendet, aber wir müssen nicht wissen, wie diese Biblio-
theken intern funktionieren. Das erlaubt es uns, uns auf den Teil des Problems
zu konzentrieren, den wir lösen müssen, und die anderen Teile des Programms zu
ignorieren.

Diese Fähigkeit, sich ausschließlich auf den Teil eines Programms zu fokussieren,
der uns interessiert, und den Rest zu ignorieren, ist auch für die Programmierer
der Objekte hilfreich. Zum Beispiel müssen die Programmierer, die BeautifulSoup
entwickeln, nicht wissen oder sich darum kümmern, wie wir unsere HTML-Seite
abrufen, welche Teile wir lesen wollen oder was wir mit den Daten vorhaben, die
wir aus der Webseite extrahieren.

1https://docs.python.org/3/library/html.parser.html

https://docs.python.org/3/library/html.parser.html

202 Kapitel 14. Objektorientierte Programmierung

BeautifulSoup
Object

String
Object OutputInput

Dictionary
Object

String
Object

Socket
Object

Urllib Object

html.parser
Object

Abbildung 14.3: Ignorieren von Details bei der Verwendung eines Objekts

String
Object OutputInput

Dictionary
Object

String
Object

Socket
Object

Urllib Object

html.parser
Object

BeautifulSoup
Object

Abbildung 14.4: Ignorieren von Details beim Entwickeln eines Objekts

14.6 Unser erstes Python-Objekt

Auf einer grundlegenden Ebene ist ein Objekt einfach etwas Code plus Datenstruk-
turen, die kleiner sind als ein ganzes Programm. Das Definieren einer Funktion
ermöglicht es uns, ein Stück Code zu speichern und ihm einen Namen zu geben
und diesen Code dann später mit dem Namen der Funktion aufzurufen.

Ein Objekt kann eine Reihe von Funktionen (die wir Methoden nennen) sowie Daten
enthalten, die von diesen Methoden verwendet werden. Wir nennen Datenelemente,
die Teil des Objekts sind, Attribute.

Wir verwenden das Schlüsselwort class, um die Daten und den Code zu definieren,
aus denen jedes der Objekte bestehen wird. Das Schlüsselwort class wird gefolgt
vom Namen der Klasse und beginnt einen eingerückten Codeblock, in den die
Attribute (Daten) und Methoden (Code) aufgenommen werden.

class PartyAnimal:

def party(self):
try:

self.x = self.x + 1
except AttributeError:

self.x = 1
print("Partys bisher:", self.x)

an = PartyAnimal()

14.6. Unser erstes Python-Objekt 203

Abbildung 14.5: Eine Klasse und zwei Objekte2

an.party()
an.party()
an.party()
PartyAnimal.party(an)

Code: https://tiny.one/py4de/code3/party2.py

Jede Methode sieht aus wie eine Funktion, die mit dem Schlüsselwort def beginnt
und aus einem eingerückten Codeblock besteht. Dieses Objekt hat nur eine Methode
(party). Die Methoden haben einen speziellen ersten Parameter, den wir per
Konvention self nennen.

Genauso wie das Schlüsselwort def nicht die Ausführung von Funktionscode bewirkt,
wird mit dem Schlüsselwort class kein Objekt erzeugt. Stattdessen definiert das
Schlüsselwort class eine Art Vorlage, die angibt, welche Daten und welcher Code
in jedem Objekt des Typs PartyAnimal enthalten sein werden. Die Klasse ist wie
eine Ausstechform und die mit der Klasse erzeugten Objekte sind die Kekse. Wir
kleben keinen Zuckerguss auf die Ausstechform, wir kleben Zuckerguss stattdessen
auf die Kekse, und wir können auf jeden Keks einen anderen Zuckerguss kleben.

Wenn wir uns das Beispielprogramm nun weiter ansehen, sehen wir die erste
ausführbare Codezeile:

an = PartyAnimal()

Hier weisen wir Python an, ein Objekt oder eine Instanz der Klasse PartyAnimal zu
konstruieren (d. h. zu erzeugen). Python konstruiert das Objekt mit den richtigen
Daten und Methoden und gibt das Objekt zurück, das dann der Variablen an
zugewiesen wird. In gewisser Weise ähnelt dies der folgenden Zeile, die wir schon
die ganze Zeit verwendet haben:

counts = dict()
2Bildquelle: Didriks. snowman cookie cutter. URL: https://www.flickr.com/photos/

dinnerseries/23570475099. Lizenz: Creative Commons Attribution 2.0 Generic (CC BY 2.0)
https://creativecommons.org/licenses/by/2.0/legalcode

https://www.flickr.com/photos/dinnerseries/23570475099
https://www.flickr.com/photos/dinnerseries/23570475099
https://creativecommons.org/licenses/by/2.0/legalcode

204 Kapitel 14. Objektorientierte Programmierung

Hier weisen wir Python an, ein Objekt unter Verwendung der Vorlage dict (in Py-
thon bereits vorhanden) zu konstruieren, die Instanz des Dictionarys zurückzugeben
und sie der Variablen counts zuzuweisen.

Wenn die Klasse PartyAnimal verwendet wird, um ein Objekt zu erstellen, wird
die Variable an verwendet, um auf dieses Objekt zu zeigen. Wir verwenden an, um
auf den Code und die Daten für diese bestimmte Instanz der Klasse PartyAnimal
zuzugreifen.

Jedes Partyanimal-Objekt/jede Partyanimal-Instanz enthält in sich eine Methode
namens party. Wir rufen die Methode party in dieser Zeile auf:

an.party()

Möglicherweise erscheint uns der Aufruf von party() nicht ganz vollständig. In
der Implementierung haben wir ja gesagt, dass die Methode einen Parameter
namens self besitzt, dieser Parameter wird anscheinend beim obigen Aufruf nicht
angegeben. Dieser Anschein trügt allerdings, denn wir rufen die Methode schließlich
auf einem PartyAnimal-Objekt, nämlich auf dem Objekt an auf. Dieses Objekt
wird an den ersten Parameter einer Methode (den wir per Konvention self nennen)
übergeben. Natürlich kann eine Methode neben der Selbstreferenz weitere Parameter
besitzen, die bei einem Aufruf dann innerhalb der Klammern angegeben werden.

Eine Methode kann nicht nur über ein Objekt aufgerufen werden, sondern auch über
seine Klasse. Statt an.party() könnte man also auch folgenden gleichbedeutenden
Aufruf verwenden:

PartyAnimal.party(an)

Hier sagen wir, welche party() Methode wir meinen (die aus der Klasse
PartyAnimal) und welches Objekt wir der Methode übergeben wollen (nämlich
das Objekt an). Dies ist quasi die Langform eines Methodenaufrufs, die in der
Praxis eher seltener verwendet wird.

Wenn wir nun in die Implementierung der Methode party gehen, sehen wir die
folgenden Zeilen:

try:
self.x = self.x + 1

except AttributeError:
self.x = 1

Wir versuchen hier, ein Datenattribut x, das zu unserem PartyAnimal-Objekt
gehört, um den Wert 1 zu erhöhen. Beim ersten Aufruf der Methode hat unser
Objekt noch kein solches Attribut. Daher wird der Ausdruck self.x + 1 einen
AttributeError erzeugen, den wir behandeln, indem wir ein solches Attribut mit
self.x = 1 erzeugen und ihm den Wert 1 zuweisen.

Wenn das Programm ausgeführt wird, erzeugt es die folgende Ausgabe:

14.7. Klassen als Datentypen 205

Partys bisher: 1
Partys bisher: 2
Partys bisher: 3
Partys bisher: 4

Das Objekt wird konstruiert und die Methode party wird viermal aufgerufen, wobei
der Wert für x innerhalb des Objekts an sowohl inkrementiert als auch ausgegeben
wird.

14.7 Klassen als Datentypen

Wie wir gesehen haben, haben in Python alle Variablen einen Typ. Wir können
die eingebaute Funktion dir verwenden, um die Fähigkeiten einer Variablen zu
untersuchen. Wir können type und dir auch mit Klassen verwenden, die wir
erstellen.

class PartyAnimal:

def party(self):
try:

self.x = self.x + 1
except AttributeError:

self.x = 1
print("Partys bisher:", self.x)

an = PartyAnimal()
print ("Type", type(an))
print ("Dir ", dir(an))
print ("Type", type(an.party))

Code: https://tiny.one/py4de/code3/party3.py

Bei der Ausführung erzeugt das Programm folgende Ausgabe:

Type <class '__main__.PartyAnimal'>
Dir ['__class__', '__delattr__', ...
'__sizeof__', '__str__', '__subclasshook__',
'__weakref__', 'party']
Type <class 'int'>
Type <class 'method'>

Wir können sehen, dass wir mit dem Schlüsselwort class einen neuen Typ erstellt
haben. Anhand der dir-Ausgabe können wir sehen, dass die Methode party im
Objekt verfügbar ist.

206 Kapitel 14. Objektorientierte Programmierung

14.8 Lebenszyklus von Objekten

In den vorherigen Beispielen definieren wir eine Klasse, verwenden diese Klasse,
um eine Instanz dieser Klasse (ein Objekt) zu erstellen, und verwenden dann
diese Instanz. Wenn das Programm beendet ist, werden alle Variablen verworfen.
Normalerweise denken wir nicht viel über das Erzeugen und Zerstören von Objekten
nach. Dies wird allerdings von Bedeutung, wenn wir eigene Klassen definieren.
Dann müssen wir einige Aktionen innerhalb des Objekts durchführen, um Dinge
einzurichten, während das Objekt konstruiert wird, und möglicherweise Dinge
aufzuräumen, wenn das Objekt verworfen wird.
Selbst bei unserem einfachen PartyAnimal-Beispiel sollten wir etwas tun, wenn wir
ein neues Objekt erzeugen. Statt bei einem ersten Aufruf von party() das Attribut
x zu erzeugen, sollten wir es beim Erstellen des Objekts anlegen. Gleichermaßen
können wir auch „Aufräumarbeiten“ leisten, die immer dann ausgeführt werden,
wenn ein Objekt verworfen wird.
Um bestimmte Aktionen beim Erstellen oder Löschen eines Objekts durchzuführen,
fügen wir zu unserer Klasse speziell benannte Methoden hinzu:

class PartyAnimal:

def __init__(self):
self.x = 0
print("PartyAnimal wird erstellt")

def party(self) :
self.x = self.x + 1
print("Partys bisher:", self.x)

def __del__(self):
print("Zerstört nach", self.x, "Partys")

an = PartyAnimal()
an.party()
an.party()
an = 42
print("an speichert nun", an)

Code: https://tiny.one/py4de/code3/party4.py

Das Programm erzeugt nachfolgende Ausgabe:

PartyAnimal wird erstellt
Partys bisher: 1
Partys bisher: 2
Zerstört nach 2 Partys
an speichert nun 42

Während Python unser Objekt konstruiert, ruft es unsere Methode __init__ auf,
um uns die Möglichkeit zu geben, einige Standard- oder Anfangswerte für das
Objekt einzurichten. Wenn Python auf die Zeile stößt

14.9. Mehrere Instanzen 207

an = 42

wird unser Objekt tatsächlich „zerstört“, damit es die Variable an wiederverwenden
kann, um den Wert 42 zu speichern. Genau in dem Moment, in dem unser an-Objekt
zerstört wird, wird unser Destruktor-Code (__del__) aufgerufen. Wir können nicht
verhindern, dass unsere Variable zerstört wird, aber wir können alle notwendigen
Aufräumarbeiten durchführen, kurz bevor unser Objekt nicht mehr existiert.

Bei der Entwicklung von Objekten ist es üblich, einen Konstruktor zu einer Klasse
anzugeben, um Anfangswerte für Objekte einzurichten. Es ist hingegen relativ
selten, dass man einen Destruktor für ein Objekt benötigt.

14.9 Mehrere Instanzen

Bisher haben wir eine Klasse definiert, daraus ein einzelnes Objekt konstruiert,
dieses Objekt verwendet und dann das Objekt verworfen. Der eigentliche Vorteil
in der objektorientierten Programmierung liegt jedoch darin, mehrere Instanzen
unserer Klasse konstruieren zu können.

Wenn wir mehrere Objekte aus unserer Klasse konstruieren, möchten wir vielleicht
unterschiedliche Anfangswerte für jedes der Objekte einrichten. Wir können Daten
an die Konstruktoren übergeben, um jedem Objekt einen anderen Anfangswert zu
geben:

class PartyAnimal:

def __init__(self, nam):
self.x = 0
self.name = nam
print(self.name," wird erstellt")

def party(self) :
self.x = self.x + 1
print(self.name, "hat", self.x, "Party(s) besucht")

s = PartyAnimal('Sally')
j = PartyAnimal('Jim')

s.party()
j.party()
s.party()

Code: https://tiny.one/py4de/code3/party5.py

Der Konstruktor hat sowohl einen self-Parameter, der auf die Objektinstanz zeigt,
als auch zusätzliche Parameter, die beim Aufbau des Objekts an den Konstruktor
übergeben werden:

s = PartyAnimal('Sally')

208 Kapitel 14. Objektorientierte Programmierung

Innerhalb des Konstruktors weist die zweite Anweisung den Parameter nam dem
Attribut name innerhalb der Objektinstanz zu.

self.name = nam

Die Ausgabe des Programms zeigt, dass jedes der Objekte (s und j) seine eigenen
unabhängigen Kopien von x und nam enthält:

Sally wird erstellt
Jim wird erstellt
Sally hat 1 Party(s) besucht
Jim hat 1 Party(s) besucht
Sally hat 2 Party(s) besucht

14.10 Vererbung

Eine weitere mächtige Eigenschaft der objektorientierten Programmierung ist die
Möglichkeit, eine neue Klasse durch die Erweiterung einer bestehenden Klasse zu
erstellen. Bei der Erweiterung einer Klasse nennen wir die ursprüngliche Klasse die
Basisklasse und die neue Klasse die abgeleitete Klasse.

Für dieses Beispiel verschieben wir unsere Klasse PartyAnimal in eine eigene Datei.
Dann können wir die Klasse PartyAnimal in eine neue Datei importieren und sie
wie folgt erweitern:

from party import PartyAnimal

class CricketFan(PartyAnimal):

def __init__(self, nam):
super().__init__(nam)
self.points = 0

def six(self):
self.points = self.points + 6
self.party()
print(self.name, "hat", self.points, "Punkte")

s = PartyAnimal("Sally")
s.party()
j = CricketFan("Jim")
j.party()
j.six()

Code: https://tiny.one/py4de/code3/party6.py

Wenn wir die Klasse CricketFan definieren, geben wir an, dass wir die Klas-
se PartyAnimal erweitern. Das bedeutet, dass alle Variablen (x) und Methoden

14.11. Zusammenfassung 209

(party) der Klasse PartyAnimal von der Klasse CricketFan geerbt werden. Zum
Beispiel rufen wir innerhalb der Methode six in der Klasse CricketFan die Methode
party aus der Basisklasse PartyAnimal auf.

In unserem Konstruktor __init__ rufen wir den Konstruktor der Basisklasse über
die Funktion super() auf. Damit tun wir für unser CricketFan-Objekt alles, was
wir auch beim Erzeugen eines PartyAnimal-Objektes tun würden. Zusätzlich fügen
wir dem Objekt noch ein Attribut points hinzu.

Während das Programm ausgeführt wird, erzeugen wir s und j als unabhängi-
ge Instanzen von PartyAnimal und CricketFan. Das j-Objekt hat zusätzliche
Fähigkeiten, welche über die des s-Objektes hinausgehen.

Sally wird erstellt
Sally hat 1 Party(s) besucht
Jim wird erstellt
Jim hat 1 Party(s) besucht
Jim hat 2 Party(s) besucht
Jim hat 6 Punkte

14.11 Zusammenfassung

Dies war eine sehr schnelle Einführung in die objektorientierte Programmierung,
die sich hauptsächlich auf die Terminologie und die Syntax der Definition und
Verwendung von Objekten konzentriert. Der Code am Anfang dieses Kapitels sollte
nun jedoch besser verständlich sein:

stuff = list()
stuff.append('python')
stuff.append('chuck')
stuff.sort()
print (stuff[0])
print (stuff.__getitem__(0))
print (list.__getitem__(stuff,0))

Code: https://tiny.one/py4de/code3/party1.py

Die erste Zeile konstruiert ein list-Objekt. Wenn Python das Objekt list erzeugt,
ruft es den Konstruktor (namens __init__) auf, um die internen Datenattribute
zu initialisieren, die zum Speichern der Listendaten verwendet werden. Wir haben
keine Parameter an den Konstruktor übergeben. Wenn der Konstruktor seine Arbeit
beendet, verwenden wir die Variable stuff, um auf die zurückgegebene Instanz der
Klasse list zu zeigen.

Die zweite und dritte Zeile rufen die Methode append mit einem Parameter auf, um
ein neues Element am Ende der Liste hinzuzufügen, indem die Attribute innerhalb
von stuff aktualisiert werden. Dann, in der vierten Zeile, rufen wir die Methode
sort ohne Parameter auf, um die Daten innerhalb des stuff-Objekts zu sortieren.

Wir geben dann den ersten Eintrag in der Liste aus, indem wir die eckigen Klammern
verwenden, die eine Abkürzung für den Aufruf der Methode __getitem__ innerhalb

210 Kapitel 14. Objektorientierte Programmierung

von stuff sind. Dies ist äquivalent zum Aufruf der Methode __getitem__ in der
Klasse list und der Übergabe des Objekts stuff als ersten Parameter und der
gesuchten Position als zweiten Parameter.

Am Ende des Programms wird das stuff-Objekt verworfen, aber nicht bevor der
Destruktor (namens __del__) automatisch aufgerufen wurde, damit das Objekt
bei Bedarf Aufräumarbeiten durchführen kann.

Das sind die Grundlagen der objektorientierten Programmierung. Es gibt viele
zusätzliche Details, wie man objektorientierte Ansätze bei der Entwicklung großer
Anwendungen und Bibliotheken am besten einsetzt, die den Rahmen dieses Kapitels
aber sprengen würden.3

14.12 Glossar

Klasse Eine Art Vorlage, die zum Konstruieren eines Objekts verwendet werden
kann. Sie definiert die Attribute und Methoden, aus denen das Objekt bestehen
wird.

Attribut Eine Variable, die Teil einer Klasse ist.
Methode Eine Funktion, die in einer Klasse und den Objekten, die aus der Klasse

konstruiert werden, enthalten ist.
Konstruktor Eine optionale, speziell benannte Methode (__init__), die in dem

Moment aufgerufen wird, in dem eine Klasse verwendet wird, um ein Objekt
zu konstruieren. Normalerweise wird dies verwendet, um Anfangswerte für
das Objekt einzurichten.

Destruktor Eine optionale, speziell benannte Methode (__del__), die in dem
Moment aufgerufen wird, kurz bevor ein Objekt zerstört wird.

Objekt Eine Instanz einer Klasse. Ein Objekt enthält alle Attribute und Methoden,
die von der Klasse definiert wurden. Häufig werden die Begriffe „Instanz“ und
„Objekt“ austauschbar verwendet.

Vererbung Wenn wir eine neue abgeleitete Klasse erstellen, indem wir eine vor-
handene Klasse (Basisklasse) erweitern. Die untergeordnete Klasse hat alle
Attribute und Methoden der übergeordneten Klasse plus zusätzliche Attribute
und Methoden, die von der untergeordneten Klasse neu definiert werden.

abgeleitete Klasse Eine neue Klasse, die man erstellt, indem man eine überge-
ordnete Klasse (Basisklasse) erweitert. Die untergeordnete Klasse erbt alle
Attribute und Methoden der übergeordneten Klasse.

Basisklasse Die Klasse, die erweitert wird, um eine neue abgeleitete Klasse zu
erstellen. Die übergeordnete Klasse bringt alle ihre Methoden und Attribute
in die neue untergeordnete Klasse ein.

3Wenn Sie neugierig sind, wo die Klasse list definiert ist, werfen Sie einen Blick auf https:
//github.com/python/cpython/blob/master/Objects/listobject.c. Die Klasse list ist in einer
Sprache namens „C“ geschrieben.

https://github.com/python/cpython/blob/master/Objects/listobject.c
https://github.com/python/cpython/blob/master/Objects/listobject.c

Kapitel 15

Datenbanken und SQL

15.1 Was ist eine Datenbank?

Eine Datenbank ist eine Datei, die zum Speichern von Daten verwendet wird. Die
meisten Datenbanken sind wie ein Dictionary in dem Sinne organisiert, dass sie
von Schlüsseln auf Werte abbilden. Der größte Unterschied besteht darin, dass
sich die Datenbank auf der Festplatte (oder einem anderen permanenten Speicher)
befindet, sodass sie auch nach Beendigung des Programms bestehen bleibt. Da eine
Datenbank auf einem permanenten Speicher gespeichert ist, kann sie viel mehr
Daten speichern als ein Dictionary, das auf die Größe des Hauptspeichers beschränkt
ist.

Ähnlich wie ein Dictionary ist Datenbanksoftware darauf ausgelegt, das Einfügen
und den Zugriff auf Daten sehr schnell zu halten, auch bei großen Datenmengen.
Datenbanksoftware hält ihre Leistung aufrecht, indem sie Indizes aufbaut, wenn
Daten in die Datenbank eingefügt werden, damit der Computer schnell zu einem
bestimmten Eintrag springen kann.

Es gibt viele verschiedene Datenbanksysteme, die für die unterschiedlichsten Zwecke
eingesetzt werden, darunter: Oracle, MySQL, Microsoft SQL Server, PostgreSQL
und SQLite. Wir konzentrieren uns in diesem Buch auf SQLite, weil es eine sehr
verbreitete Datenbank ist, die bereits in Python integriert ist. SQLite ist dafür aus-
gelegt, in andere Anwendungen eingebettet zu werden, um Datenbankunterstützung
innerhalb der Anwendung zu bieten. Zum Beispiel verwendet der Firefox-Browser
wie viele andere Produkte auch intern die SQLite-Datenbank.

http://sqlite.org/

SQLite eignet sich gut für einige der Datenverarbeitungsprobleme, die uns in der
Informatik begegnen, wie z. B. die Twitter-Spider-Anwendung, die wir in diesem
Kapitel beschreiben.

http://sqlite.org/

212 Kapitel 15. Datenbanken und SQL

2.3

Table

row

column

2.3

Relation

tuple

attribute

Abbildung 15.1: Relationale Datenbanken

15.2 Datenbankkonzepte

Auf den ersten Blick sieht eine Datenbank aus wie eine Tabellenkalkulation mit
mehreren Sheets. Die primären Datenstrukturen in einer Datenbank sind: Tabellen,
Zeilen und Spalten.

In technischen Beschreibungen von relationalen Datenbanken werden die Konzepte
Tabelle, Zeile und Spalte formaler als Relation, Tupel und Attribut bezeichnet. Wir
werden in diesem Kapitel die weniger formalen Begriffe verwenden.

15.3 Datenbankbrowser für SQLite

Während sich dieses Kapitel auf die Verwendung von Python für die Arbeit mit
Daten in SQLite-Datenbankdateien konzentriert, können viele Operationen beque-
mer mit einer Software namens Database Browser for SQLite durchgeführt werden,
die frei erhältlich ist:

http://sqlitebrowser.org/

Mit dem Browser können wir ganz einfach Tabellen erstellen, Daten einfügen, Daten
bearbeiten oder einfache SQL-Abfragen zu den Daten in der Datenbank ausführen.

In gewisser Weise ähnelt der Datenbankbrowser einem Texteditor beim Arbeiten
mit Textdateien. Wenn wir eine oder sehr wenige Operationen an einer Textdatei
durchführen möchten, können wir sie einfach in einem Texteditor öffnen und
die gewünschten Änderungen vornehmen. Wenn wir viele Änderungen an einer
Textdatei vornehmen müssen, werden wir oft ein einfaches Python-Programm
schreiben. Das gleiche Vorgehen werden wir bei der Arbeit mit Datenbanken
finden. Wir werden einfache Operationen im Datenbankmanager durchführen und
komplexere Operationen werden am bequemsten in Python erledigt.

http://sqlitebrowser.org/

15.4. Erstellen einer Datenbanktabelle 213

15.4 Erstellen einer Datenbanktabelle

Datenbanken erfordern eine strenger definierte Struktur als Python-Listen oder
Python-Dictionarys1.

Wenn wir eine Datenbanktabelle erstellen, müssen wir der Datenbank im Voraus die
Namen der einzelnen Spalten in der Tabelle und die Art der Daten mitteilen, die
wir in jeder Spalte zu speichern beabsichtigen. Wenn die Datenbanksoftware den
Typ der Daten in jeder Spalte kennt, kann sie den effizientesten Weg zum Speichern
und Nachschlagen der Daten auf der Grundlage des Datentyps wählen.

Die verschiedenen Datentypen, die von SQLite unterstützt werden, können wir
unter der folgenden URL einsehen:

http://www.sqlite.org/datatypes.html

Das Definieren einer Struktur für unsere Daten im Voraus mag anfangs umständlich
erscheinen, aber der Vorteil ist ein schneller Zugriff auf unsere Daten, selbst wenn
die Datenbank eine große Menge an Daten enthält.

Der Code zum Erstellen einer Datenbankdatei und einer Tabelle namens Tracks
mit zwei Spalten in der Datenbank lautet wie folgt:

import sqlite3

conn = sqlite3.connect('music.sqlite')
cur = conn.cursor()

cur.execute('DROP TABLE IF EXISTS Tracks')
cur.execute('CREATE TABLE Tracks (title TEXT, plays INTEGER)')

conn.close()

Code: https://tiny.one/py4de/code3/db1.py

Die Operation connect stellt eine Verbindung zu der Datenbank her, die in der
Datei music.sqlite im aktuellen Verzeichnis gespeichert ist. Wenn die Datei nicht
vorhanden ist, wird sie erstellt. Der Grund, warum dies als Verbindung bezeichnet
wird, ist, dass die Datenbank manchmal auf einem anderen Datenbankserver als
dem Server gespeichert ist, auf dem wir unsere Anwendung ausführen. In unseren
einfachen Beispielen ist die Datenbank nur eine lokale Datei im gleichen Verzeichnis
wie der Python-Code, den wir ausführen.

Ein Cursor ist wie ein Dateihandler, mit dem wir Operationen mit den in der
Datenbank gespeicherten Daten durchführen können. Der Aufruf von cursor() ist
in etwa vergleichbar mit dem Aufruf von open() beim Umgang mit Textdateien.

Sobald wir den Cursor erhalten haben, können wir damit beginnen, mithilfe der
Methode execute() Datenbankoperationen auszuführen.

1SQLite erlaubt zwar eine gewisse Flexibilität bei der Speicherung von Daten in einer Tabellen-
spalte, aber wir werden uns strikt an bestimmte Datentypen halten, damit die hier vorgestellten
Konzepte auch auf andere Datenbanksysteme wie MySQL übertragbar sind.

http://www.sqlite.org/datatypes.html

214 Kapitel 15. Datenbanken und SQL

Your
Program

C
U
R
S
O
R

execute

fetchone

fetchall

close

Users

Members

Courses

Abbildung 15.2: Ein Datenbankcursor

Datenbankbefehle werden in einer speziellen Sprache ausgedrückt, die über viele
verschiedene Datenbankanbieter hinweg standardisiert wurde, sodass wir nur eine
einzige Datenbanksprache erlernen müssen. Die Datenbanksprache wird Structured
Query Language oder kurz SQL genannt. Eine Datenbankabfrage wird entsprechend
als Query bezeichnet.

https://de.wikipedia.org/wiki/SQL

In unserem Beispiel führen wir zwei SQL-Befehle in unserer Datenbank aus. Per
Konvention schreiben wir die SQL-Schlüsselwörter in Großbuchstaben und die
Teile des Befehls, die wir hinzufügen (z. B. unsere Tabellen- und Spaltennamen), in
Kleinbuchstaben. Das Datenbanksystem selbst unterscheidet nicht zwischen Groß-
und Kleinschreibung.

Der erste SQL-Befehl entfernt die Tabelle Tracks aus der Datenbank, falls sie schon
existieren sollte. Dies dient lediglich dazu, dass wir das gleiche Programm zum
Erstellen der Tabelle Tracks immer wieder ausführen können, ohne einen Fehler
zu verursachen. Es ist zu beachten, dass der Befehl DROP TABLE die Tabelle und
ihren gesamten Inhalt sofort aus der Datenbank löscht. Diese Operation kann ohne
Weiteres nicht rückgängig gemacht werden.

cur.execute('DROP TABLE IF EXISTS Tracks ')

Der zweite Befehl erstellt eine Tabelle namens Tracks mit einer Textspalte namens
title und einer Integer-Spalte namens plays.

cur.execute('CREATE TABLE Tracks (title TEXT, plays INTEGER)')

Nachdem wir nun eine Tabelle namens Tracks erstellt haben, können wir mit der
SQL-Operation INSERT Daten in diese Tabelle einfügen. Wieder beginnen wir damit,
eine Verbindung zur Datenbank herzustellen und einen „Cursor“ zu erhalten. Dann
können wir SQL-Befehle mit dem Cursor ausführen.

Der INSERT-Befehl gibt zunächst an, in welche Tabelle wir die Daten einfügen
möchten. In runden Klammern folgen die Spalten, in die die Werte geschrieben

https://de.wikipedia.org/wiki/SQL

15.4. Erstellen einer Datenbanktabelle 215

title plays

My Way

Thunderstruck

15

20

Tracks

Abbildung 15.3: Eine Tabelle mit zwei Datensätzen

werden sollen. Zuletzt werden die Werte (VALUES) aufgelistet. Statt konkreter
Werte verwenden wir hier zwei Fragezeichen als Platzhalter. Als zweites Argument
von execute() übergeben wir dann ein Python-Tupel, das die eigentlichen Werte
enthält. Intern ersetzt die execute()-Methode dann die Platzhalter durch die
tatsächlichen Werte.

import sqlite3

conn = sqlite3.connect('music.sqlite')
cur = conn.cursor()

cur.execute('INSERT INTO Tracks (title, plays) VALUES (?, ?)',
('Thunderstruck', 20))

cur.execute('INSERT INTO Tracks (title, plays) VALUES (?, ?)',
('My Way', 15))

conn.commit()

print('Tracks:')
cur.execute('SELECT title, plays FROM Tracks')
for row in cur:

print(row)

cur.execute('DELETE FROM Tracks WHERE plays < 100')
conn.commit()

cur.close()

Code: https://tiny.one/py4de/code3/db2.py

Zuerst fügen wir mit INSERT zwei Zeilen (Datensätze) in unsere Tabelle ein und
benutzen commit(), um das Schreiben der Daten in die Datenbankdatei zu veran-
lassen.

Dann verwenden wir den Befehl SELECT, um die Zeilen, die wir gerade eingefügt
haben, aus der Tabelle abzurufen. Beim SELECT-Befehl geben wir an, welche Spalten
wir abfragen möchten (title, plays) und aus welcher Tabelle wir die Daten
abrufen möchten. Nachdem wir die SELECT-Anweisung ausgeführt haben, können
wir den Cursor in einer for-Schleife durchlaufen. Um die Effizienz zu erhöhen, liest

216 Kapitel 15. Datenbanken und SQL

der Cursor nicht alle Daten aus der Datenbank, wenn wir die Anweisung SELECT
ausführen. Stattdessen werden die Daten bei Bedarf gelesen, während wir in der
Schleife durch die Zeilen iterieren.

Die Ausgabe des Programms sieht dann so aus:

Tracks:
('Thunderstruck', 20)
('My Way', 15)

Unsere for-Schleife findet zwei Zeilen, und jede Zeile ist ein Python-Tupel mit dem
ersten Wert als title und dem zweiten Wert als die Anzahl der plays.

Hinweis: In anderen Büchern oder im Internet sehen wir möglicherweise Zeichen-
ketten, die mit u' beginnen. Dies war in Python 2 ein Hinweis darauf, dass es sich
bei den Strings um Unicode-Strings handelt, die in der Lage sind, nicht-lateinische
Zeichensätze zu speichern. In Python 3 sind alle Zeichenketten standardmäßig
Unicode-Zeichenketten.

Ganz am Ende des Programms führen wir einen SQL-Befehl aus, um die gerade
erstellten Zeilen mit DELETE zu löschen, damit wir das Programm immer wieder
ausführen können. Der DELETE-Befehl zeigt die Verwendung einer WHERE-Klausel,
mit der wir ein Auswahlkriterium angeben. Damit wird der Befehl nur auf die
Datensätze angewendet, die das Kriterium erfüllen. In diesem Beispiel trifft das
Kriterium auf alle Zeilen zu, also leeren wir die Tabelle, damit wir das Programm
wiederholt ausführen können. Nachdem DELETE ausgeführt wurde, rufen wir wieder
commit() auf, um die Entfernung der Daten aus der Datenbank zu veranlassen.

15.5 Zusammenfassung von SQL

Bisher haben wir die Structured Query Language in unseren Python-Beispielen
verwendet und einige wesentliche Grundlagen ausgewählter SQL-Befehle behandelt.
In diesem Abschnitt gehen wir auf die SQL-Sprache im Speziellen ein und geben
einen Überblick über die SQL-Syntax.

Da es so viele verschiedene Datenbankanbieter gibt, wurde die Structured Query
Language (SQL) standardisiert, damit wir in einer portablen Weise mit Datenbank-
systemen verschiedener Anbieter kommunizieren können.

Eine relationale Datenbank setzt sich aus Tabellen, Zeilen und Spalten zusammen.
Die Spalten haben im Allgemeinen einen Typ, z. B. Text, numerische Daten oder
Datumsdaten. Wenn wir eine Tabelle erstellen, geben wir die Namen und Typen
der Spalten an:

CREATE TABLE Tracks (title TEXT, plays INTEGER)

Um eine Zeile in eine Tabelle einzufügen, verwenden wir den SQL-Befehl INSERT:

INSERT INTO Tracks (title, plays) VALUES ('My Way', 15)

15.5. Zusammenfassung von SQL 217

Die Anweisung INSERT gibt den Tabellennamen an, dann eine Liste der Spalten,
in die wir Werte schreiben möchten, und dann das Schlüsselwort VALUES und eine
Liste der entsprechenden Werte für jedes der Felder.

Der SQL-Befehl SELECT wird zum Abrufen von Zeilen und Spalten aus einer
Datenbank verwendet. Mit der SELECT-Anweisung können wir angeben, welche
Spalten wir abrufen möchten, sowie eine WHERE-Klausel definieren, um die Zeilen
auszuwählen, die wir sehen möchten. Sie erlaubt auch eine optionale ORDER BY-
Klausel, um die Sortierung der zurückgegebenen Zeilen zu steuern.

SELECT * FROM Tracks WHERE title = 'My Way'

Die Verwendung von * zeigt an, dass die Datenbank alle Spalten für jede Zeile
zurückgeben soll, die mit der WHERE-Klausel übereinstimmt.

Es ist zu beachten, dass – anders als in Python – in einer SQL-WHERE-Klausel ein
einzelnes Gleichheitszeichen verwendet wird, um einen Test auf Gleichheit durchzu-
führen, und nicht ein doppeltes Gleichheitszeichen. Andere logische Operationen,
die in einer WHERE-Klausel erlaubt sind, sind <, >, <=, >=, !=, sowie AND und OR und
Klammern, um unsere logischen Ausdrücke aufzubauen.

Wir können anfordern, dass die zurückgegebenen Zeilen nach einem der Felder wie
folgt sortiert werden:

SELECT title,plays FROM Tracks ORDER BY title

Um eine Zeile zu entfernen, benötigen wir eine WHERE-Klausel in einer SQL DELETE-
Anweisung. Die WHERE-Klausel bestimmt, welche Zeilen gelöscht werden sollen:

DELETE FROM Tracks WHERE title = 'My Way'

Es ist möglich, eine oder mehrere Spalten in einer oder mehreren Zeilen einer
Tabelle mit der SQL-Anweisung UPDATE wie folgt zu aktualisieren:

UPDATE Tracks SET plays = 16 WHERE title = 'My Way'

Die UPDATE-Anweisung gibt eine Tabelle an, gefolgt von einer Liste von Spalten und
Werten (nach SET), die geändert werden sollen, und schließlich eine optionale WHERE-
Klausel, um die Zeilen auszuwählen, die aktualisiert werden sollen. Eine einzelne
UPDATE-Anweisung ändert alle Zeilen, die mit der WHERE-Klausel übereinstimmen.
Wenn keine WHERE-Klausel angegeben ist, wird die UPDATE-Anweisung für alle Zeilen
in der Tabelle ausgeführt.

Diese vier grundlegenden SQL-Befehle (INSERT, SELECT, UPDATE und DELETE) er-
möglichen die vier grundlegenden Operationen, die zum Erstellen und Verwalten
von Daten erforderlich sind.

218 Kapitel 15. Datenbanken und SQL

15.6 Auslesen von Twitter-Daten mithilfe einer
Datenbank

In diesem Abschnitt werden wir ein einfaches Spider-Programm erstellen, das
Twitter-Konten durchgeht und eine Datenbank von ihnen erstellt. Hinweis: Vorsicht,
wenn das Programm ausgeführt wird. Wir möchten nicht zu viele Daten abrufen
oder das Programm zu lange laufen lassen, damit der Zugang nicht gesperrt wird.

Eines der Probleme von Spider-Programmen ist, dass sie in der Lage sein müssen,
viele Male angehalten und neu gestartet zu werden, ohne das wir dabei die Daten
verlieren, die wir bisher abgerufen haben. Wir wollen unsere Datenabfrage nicht
immer wieder von vorne beginnen, also wollen wir die Daten speichern, während wir
sie abrufen, damit unser Programm wieder starten und dort weitermachen kann,
wo es aufgehört hat.

Wir beginnen damit, dass wir die Twitter-Freunde einer Person und deren Status
(„schon verarbeitet“/„noch nicht verarbeitet“) abrufen, die Liste der Freunde in
einer Schleife durchlaufen und jeden der Freunde zu einer Datenbank hinzufügen,
um sie in Zukunft abrufen zu können. Nachdem wir die Twitter-Freunde einer
Person verarbeitet haben, schauen wir in unserer Datenbank nach und rufen einen
der Freunde des Freundes ab. Wir machen das immer wieder, wählen eine „nicht
besuchte“ Person aus, rufen ihre Freundesliste ab und fügen die Freunde, die wir
bisher nicht besucht haben, unserer Liste der noch nicht besuchten Freunde hinzu.

Wir verfolgen auch, wie oft wir einen bestimmten Freund in der Datenbank gesehen
haben, um ein Gefühl für seine Beliebtheit zu bekommen.

In einer Datenbank speichern wir die Liste der bekannten Konten, deren Beliebtheit
und die Information, ob wir das Konto bereits besucht (d. h. schon abgearbeitet)
haben. Dadurch können wir unser Programm beliebig oft anhalten und neu starten.

Dieses Programm ist recht komplex. Es basiert auf dem Code aus der Übung weiter
oben im Buch, die die Twitter-API verwendet.

Hier ist der Quellcode für unsere Twitter Spider-Anwendung:

from urllib.request import urlopen
import urllib.error
import twurl
import json
import sqlite3
import ssl

TWITTER_URL = 'https://api.twitter.com/1.1/friends/list.json'

conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()

cur.execute('''
CREATE TABLE IF NOT EXISTS Twitter
(name TEXT, retrieved INTEGER, friends INTEGER)''')

15.6. Auslesen von Twitter-Daten mithilfe einer Datenbank 219

Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

while True:
acct = input('Enter a Twitter account, or quit: ')
if (acct == 'quit'): break
if (len(acct) < 1):

cur.execute(
'SELECT name FROM Twitter WHERE retrieved = 0 LIMIT 1')

try:
acct = cur.fetchone()[0]

except:
print('No unretrieved Twitter accounts found')
continue

url = twurl.augment(
TWITTER_URL, {'screen_name': acct, 'count': '20'})

print('Retrieving', url)
connection = urlopen(url, context=ctx)
data = connection.read().decode()
headers = dict(connection.getheaders())

print('Remaining', headers['x-rate-limit-remaining'])
js = json.loads(data)
Debugging
print json.dumps(js, indent=4)

cur.execute(
'UPDATE Twitter SET retrieved=1 WHERE name = ?', (acct,))

countnew = 0
countold = 0
for u in js['users']:

friend = u['screen_name']
print(friend)
cur.execute(

'SELECT friends FROM Twitter WHERE name = ? LIMIT 1',
(friend,))

try:
count = cur.fetchone()[0]
cur.execute(

'UPDATE Twitter SET friends = ? WHERE name = ?',
(count+1, friend))

countold = countold + 1
except:

cur.execute(
'''INSERT INTO Twitter (name, retrieved, friends)
VALUES (?, 0, 1)''', (friend,))

220 Kapitel 15. Datenbanken und SQL

countnew = countnew + 1
print('New accounts=', countnew, ' revisited=', countold)
conn.commit()

cur.close()

Code: https://tiny.one/py4de/code3/twspider.py

Unsere Datenbank ist in der Datei spider.sqlite gespeichert und sie hat eine
Tabelle namens Twitter. Jede Zeile in der Twitter-Tabelle hat eine Spalte für den
Kontonamen, ob wir die Freunde dieses Kontos abgerufen haben und wie oft dieses
Konto „befreundet“ wurde.

In der Hauptschleife des Programms wird der Benutzer aufgefordert, den Namen
eines Twitter-Kontos einzugeben oder das Programm mit quit zu beenden. Wenn
der Benutzer einen Twitter-Account eingibt, rufen wir die Liste der Freunde und
den Status dieses Users ab und fügen jeden Freund zur Datenbank hinzu, wenn er
nicht bereits in der Datenbank vorhanden ist. Wenn der Freund bereits in der Liste
ist, fügen wir 1 zum Feld friends in der Zeile in der Datenbank hinzu.

Wenn der Benutzer die Eingabetaste drückt, suchen wir in der Datenbank nach dem
nächsten Twitter-Konto, das wir noch nicht abgerufen haben, rufen die Freunde
und den Status dieses Kontos ab, fügen sie der Datenbank hinzu oder aktualisieren
sie und erhöhen die Anzahl ihrer friends.

Sobald wir die Liste der Freunde und deren Status abgerufen haben, gehen wir in
einer Schleife durch alle user-Elemente im zurückgegebenen JSON und rufen den
screen_name für jeden Benutzer ab. Dann verwenden wir die Anweisung SELECT,
um zu sehen, ob wir diesen bestimmten screen_name bereits in der Datenbank
gespeichert haben und rufen die Anzahl der Freunde (friends) ab, wenn der
Datensatz existiert.

countnew = 0
countold = 0
for u in js['users']:

friend = u['screen_name']
print(friend)
cur.execute(

'SELECT friends FROM Twitter WHERE name = ? LIMIT 1',
(friend,))

try:
count = cur.fetchone()[0]
cur.execute(

'UPDATE Twitter SET friends = ? WHERE name = ?',
(count+1, friend))

countold = countold + 1
except:

cur.execute(
'''INSERT INTO Twitter (name, retrieved, friends)
VALUES (?, 0, 1)''', (friend,))

countnew = countnew + 1

15.6. Auslesen von Twitter-Daten mithilfe einer Datenbank 221

print('New accounts=', countnew, ' revisited=', countold)
conn.commit()

Sobald der Cursor (cur) die SELECT-Anweisung ausführt, müssen wir die Zeilen
abrufen. Wir könnten dies mit einer for-Schleife tun, aber da wir nur eine Zeile
abrufen (LIMIT 1), können wir die Methode fetchone() verwenden, um die erste
(und einzige) Zeile zu laden, die durch SELECT ermittelt wurde. Da fetchone() die
Zeile als Tupel zurückgibt (auch wenn es nur ein Feld gibt), nehmen wir den ersten
Wert aus dem Tupel, um die aktuelle Anzahl der Freunde in die Variable count zu
speichern.

Wenn dieser Abruf erfolgreich ist, verwenden wir die SQL-Anweisung UPDATE
mit einer WHERE-Klausel, um der Spalte friends für die Zeile, die dem Konto
des Freundes entspricht, um eins zu erhöhen. Es ist zu beachten, dass es zwei
Platzhalter (Fragezeichen) in der SQL-Anweisung gibt und der zweite Parameter
von execute() ein Tupel mit zwei Elementen ist, das die Werte enthält, die in der
SQL-Anweisung anstelle der Fragezeichen eingesetzt werden sollen.

Wenn der Code im try-Block fehlschlägt, liegt es wahrscheinlich daran, dass kein Da-
tensatz mit der WHERE name = ?-Klausel der SELECT-Anweisung übereinstimmt. Im
except-Block verwenden wir also die SQL-Anweisung INSERT, um den screen_name
des Freundes zur Tabelle hinzuzufügen, mit dem Hinweis, dass wir den screen_name
noch nicht abgerufen haben, und setzen die Anzahl der Freunde auf eins.

Wenn das Programm also zum ersten Mal ausgeführt wird und wir ein Twitter-Konto
eingeben, läuft das Programm wie folgt:

Enter a Twitter account, or quit: drchuck
Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 20 revisited= 0
Enter a Twitter account, or quit: quit

Da wir das Programm zum ersten Mal ausführen, ist die Datenbank leer. Wir
erstellen die Datenbank in der Datei spider.sqlite und fügen eine Tabelle namens
Twitter zur Datenbank hinzu. Dann rufen wir einige Freunde ab und fügen sie alle
zur Datenbank hinzu, da die Datenbank leer ist.

An dieser Stelle möchten wir vielleicht einen einfachen Datenbank-„Dumper“ im-
plementieren, um zu sehen, was in unserer Datei spider.sqlite steht:

import sqlite3

conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
cur.execute('SELECT * FROM Twitter')
count = 0
for row in cur:

print(row)
count = count + 1

print(count, 'rows.')
cur.close()

222 Kapitel 15. Datenbanken und SQL

Code: https://tiny.one/py4de/code3/twdump.py

Dieses Programm öffnet einfach die Datenbank und wählt alle Spalten aller Zeilen
in der Tabelle Twitter aus, geht dann in einer Schleife durch die Zeilen und gibt
jede Zeile aus.

Wenn wir dieses Programm nach der ersten Ausführung unseres obigen Twitter-
Spiders ausführen, sieht seine Ausgabe so aus:

('opencontent', 0, 1)
('lhawthorn', 0, 1)
('steve_coppin', 0, 1)
('davidkocher', 0, 1)
('hrheingold', 0, 1)
...
20 rows.

Wir sehen eine Zeile für jeden screen_name. Weiterhin sehen wir, dass wir die
Daten für diesen screen_name noch nicht abgerufen haben und dass jeder User in
der Datenbank einen Freund hat.

Jetzt spiegelt unsere Datenbank den Abruf der Freunde unseres ersten Twitter-
Accounts wider (drchuck). Wir können das Programm erneut starten und ihm sagen,
dass es die Freunde des nächsten „unverarbeiteten“ Kontos abrufen soll, indem wir
die Eingabetaste anstelle eines Twitter-Kontos drücken:

Enter a Twitter account, or quit:
Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 18 revisited= 2
Enter a Twitter account, or quit:
Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 17 revisited= 3
Enter a Twitter account, or quit: quit

Da wir die Eingabetaste gedrückt haben (d. h. wir haben kein Twitter-Konto
angegeben), wird der folgende Code ausgeführt:

if(len(acct) < 1):
cur.execute(

'SELECT name FROM Twitter WHERE retrieved = 0 LIMIT 1')
try:

acct = cur.fetchone()[0]
except:

print('No unretrieved twitter accounts found')
continue

Wir verwenden die SQL-Anweisung SELECT, um den Namen des ersten (LIMIT 1)
Benutzers abzurufen, bei dem der Wert für „haben wir diesen Benutzer abgerufen?“
noch auf Null gesetzt ist. Wir verwenden auch fetchone()[0] innerhalb eines

15.6. Auslesen von Twitter-Daten mithilfe einer Datenbank 223

try/except-Blocks, um entweder einen screen_name aus den abgerufenen Daten
zu extrahieren oder eine Fehlermeldung auszugeben und die Schleife erneut zu
starten.

Wenn wir erfolgreich einen unverarbeiteten screen_name abgerufen haben, rufen
wir dessen Daten folgendermaßen ab:

url=twurl.augment(TWITTER_URL,{'screen_name': acct,'count': '20'})
print('Retrieving', url)
connection = urllib.urlopen(url)
data = connection.read()
js = json.loads(data)

cur.execute('UPDATE Twitter SET retrieved=1 WHERE name = ?',
(acct,))

Sobald wir die Daten erfolgreich abgerufen haben, verwenden wir die Anweisung
UPDATE, um die Spalte retrieved auf 1 zu setzen, um damit anzuzeigen, dass wir
den Abruf der Freunde dieses Kontos abgeschlossen haben. Dies verhindert, dass wir
die gleichen Daten immer wieder abrufen, und sorgt dafür, dass wir im Netzwerk
der Twitter-Freunde vorankommen.

Wenn wir das friend-Programm ausführen und zweimal die Eingabetaste drücken,
um die Freunde des nächsten nicht besuchten Freundes abzurufen, und dann das
Dumper-Programm ausführen, erhalten wir die folgende Ausgabe:

('opencontent', 1, 1)
('lhawthorn', 1, 1)
('steve_coppin', 0, 1)
('davidkocher', 0, 1)
('hrheingold', 0, 1)
...
('cnxorg', 0, 2)
('knoop', 0, 1)
('kthanos', 0, 2)
('LectureTools', 0, 1)
...
55 rows.

Wir können sehen, dass wir lhawthorn und opencontent besucht haben. Auch die
Konten cnxorg und kthanos haben bereits zwei Follower. Da wir nun die Freunde
von drei Personen (drchuck, opencontent und lhawthorn) abgerufen haben, hat
unsere Tabelle 55 Zeilen mit Freunden zum Abrufen.

Jedes Mal, wenn wir das Programm starten und die Eingabetaste drücken, wählt es
das nächste nicht besuchte Konto aus (z. B. wird das nächste Konto steve_coppin
sein), ruft dessen Freunde ab, markiert sie als abgerufen und fügt sie für jeden
der Freunde von steve_coppin entweder am Ende der Datenbank hinzu oder
aktualisiert ihre Freundesanzahl, wenn sie bereits in der Datenbank sind.

Da die Daten des Programms alle auf der Festplatte in einer Datenbank gespeichert
werden, kann die Spider-Aktivität beliebig oft ohne Datenverlust unterbrochen und
wieder aufgenommen werden.

224 Kapitel 15. Datenbanken und SQL

15.7 Grundlagen der Datenmodellierung

Die eigentliche Leistung einer relationalen Datenbank besteht darin, dass wir
mehrere Tabellen erstellen und zwischen diesen Tabellen Verknüpfungen herstellen
können. Der Entwurfsprozess, in welchem wir unsere Anwendungsdaten in mehrere
Tabellen aufteilen und die Beziehungen zwischen den Tabellen herstellen, wird
Datenmodellierung genannt. Ein Diagramm, das die Tabellen und ihre Beziehungen
darstellt, wird als Datenmodell bezeichnet.

Die Datenmodellierung ist eine relativ anspruchsvolle Aufgabe und wir werden in
diesem Abschnitt nur die grundlegendsten Konzepte der relationalen Datenmodel-
lierung vorstellen. Weitere Details zur Datenmodellierung können hier eingesehen
werden:

https://de.wikipedia.org/wiki/Relationale_Datenbank

Nehmen wir an, für unsere Twitter-Spider-Anwendung wollten wir nicht nur die
Freunde einer Person zählen, sondern eine Liste aller eingehenden Beziehungen
führen, damit wir eine Liste aller Personen finden, die einem bestimmten Konto
folgen.

Da jeder User viele Konten haben kann, die ihm folgen, können wir nicht einfach
eine einzelne Spalte zu unserer Twitter-Tabelle hinzufügen. Also erstellen wir eine
neue Tabelle, die die Freundespaare speichert. Im Folgenden sehen wir eine einfache
Möglichkeit, eine solche Tabelle zu erstellen:

CREATE TABLE Pals (from_friend TEXT, to_friend TEXT)

Jedes Mal, wenn wir auf eine Person stoßen, der drchuck folgt, würden wir eine
Zeile dieser Form einfügen:

INSERT INTO Pals (from_friend, to_friend)
VALUES ('drchuck', 'lhawthorn')

Da wir die 20 Freunde aus dem Twitter-Feed von drchuck verarbeiten, fügen wir
20 Datensätze mit drchuck als erstem Parameter ein, sodass die Zeichenkette am
Ende viele Male in der Datenbank auftaucht.

Diese redundante Datenhaltung verstößt gegen eines der Prinzipien der Norma-
lisierung von Datenbanken, die im Grunde besagt, dass wir dieselben Daten nie
mehr als einmal in die Datenbank aufnehmen sollten. Wenn wir die Daten mehr als
einmal benötigen, erstellen wir einen numerischen Schlüssel (einen Primärschlüssel)
für die Daten und referenzieren die eigentlichen Daten über diesen Schlüssel.

In der Praxis nimmt eine Zeichenkette viel mehr Platz auf der Festplatte und im
Speicher unseres Computers ein als eine Ganzzahl und benötigt mehr Prozessorzeit
beim Vergleichen und Sortieren. Wenn wir nur ein paar hundert Einträge haben,
spielt die Speicher- und Prozessorzeit kaum eine Rolle. Aber wenn wir eine Million
Personen in unsere Datenbank aufnehmen und möglicherweise 100 Millionen Freund-
schaftsverbindungen, ist es wichtig, die Daten so schnell wie möglich durchsuchen
zu können.

https://de.wikipedia.org/wiki/Relationale_Datenbank

15.8. Arbeiten mit mehreren Tabellen 225

Wir speichern unsere Twitter-Konten in einer Tabelle namens People anstelle der
im vorherigen Beispiel verwendeten Tabelle Twitter. Die Tabelle People hat eine
zusätzliche Spalte, um den numerischen Schlüssel zu speichern, der mit der Zeile für
diesen Twitter-Benutzer verbunden ist. SQLite verfügt über eine Funktionalität, die
automatisch den Schlüsselwert (INTEGER PRIMARY KEY) für jede Zeile hinzufügt,
die wir in eine Tabelle einfügen.

Wir können die Tabelle People mit dieser zusätzlichen Spalte id wie folgt erstellen:

CREATE TABLE People
(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved INTEGER)

Es ist zu beachten, dass wir nicht mehr in jeder Zeile der Tabelle People die
Anzahl der Freunde mitführen. Wenn wir INTEGER PRIMARY KEY als Typ unserer
id-Spalte wählen, geben wir an, dass SQLite diese Spalte verwaltet und jeder Zeile,
die wir einfügen, automatisch einen eindeutigen numerischen Schlüssel zuweist. Wir
fügen auch das Schlüsselwort UNIQUE hinzu, um anzugeben, dass wir SQLite nicht
erlauben, zwei Zeilen mit demselben Wert für name einzufügen.

Statt der obigen Tabelle Pals erstellen wir nun eine Tabelle namens Follows
mit zwei Integer-Spalten from_id und to_id und der Einschränkung (englisch
Constraint) für die Tabelle, dass die Kombination von from_id und to_id in dieser
Tabelle eindeutig sein muss (d. h. wir können keine zwei identischen Zeilen einfügen).

CREATE TABLE Follows
(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id))

Wenn wir UNIQUE-Klauseln zu unseren Tabellen hinzufügen, vereinbaren wir eine
Reihe von Regeln, die die Datenbank befolgen wird, wenn wir versuchen, Datensätze
einzufügen. Wir erstellen diese Regeln aus Bequemlichkeit in unseren Programmen.
Die Regeln halten uns davon ab, Fehler zu machen, und erleichtern uns obendrein
die Programmierung.

Im Wesentlichen modellieren wir bei der Erstellung dieser Follows-Tabelle eine
Beziehung (Relation), bei der eine Person einer anderen „folgt“, und stellen sie mit
einem Zahlenpaar dar, das anzeigt, dass (a) die Personen miteinander verbunden
sind und (b) die Richtung der Beziehung verdeutlicht.

15.8 Arbeiten mit mehreren Tabellen

Wir werden nun das Twitter-Spider-Programm mit zwei Tabellen, Primärschlüsseln
und Schlüsselreferenzen wie oben beschrieben neu erstellen. Hier ist der Code für
die neue Version des Programms:

import urllib.request, urllib.parse, urllib.error
import twurl
import json
import sqlite3

226 Kapitel 15. Datenbanken und SQL

People

name

drchuck

opencontent

 1

1

retrieved
Follows

from_id

1

1 3

to_id
id

1

2

3

4

lhawthorn

steve_coppin

1

0

2

1 4

...
...

Abbildung 15.4: Beziehungen zwischen Tabellen

import ssl

TWITTER_URL = 'https://api.twitter.com/1.1/friends/list.json'

conn = sqlite3.connect('friends.sqlite')
cur = conn.cursor()

cur.execute(
'''CREATE TABLE IF NOT EXISTS People
(id INTEGER PRIMARY KEY, name TEXT UNIQUE,
retrieved INTEGER)''')

cur.execute(
'''CREATE TABLE IF NOT EXISTS Follows
(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id))''')

Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

while True:
acct = input('Enter a Twitter account, or quit: ')
if (acct == 'quit'): break
if (len(acct) < 1):

cur.execute(
'SELECT id, name FROM People WHERE retrieved=0 LIMIT 1')

try:

15.8. Arbeiten mit mehreren Tabellen 227

(id, acct) = cur.fetchone()
except:

print('No unretrieved Twitter accounts found')
continue

else:
cur.execute('SELECT id FROM People WHERE name = ? LIMIT 1',

(acct,))
try:

id = cur.fetchone()[0]
except:

cur.execute('''INSERT OR IGNORE INTO People
(name, retrieved) VALUES (?, 0)''',
(acct,))

conn.commit()
if cur.rowcount != 1:

print('Error inserting account:', acct)
continue

id = cur.lastrowid

url = twurl.augment(
TWITTER_URL, {'screen_name': acct, 'count': '100'})

print('Retrieving account', acct)
try:

connection = urllib.request.urlopen(url, context=ctx)
except Exception as err:

print('Failed to Retrieve', err)
break

data = connection.read().decode()
headers = dict(connection.getheaders())

print('Remaining', headers['x-rate-limit-remaining'])

try:
js = json.loads(data)

except:
print('Unable to parse json')
print(data)
break

Debugging
print(json.dumps(js, indent=4))

if 'users' not in js:
print('Incorrect JSON received')
print(json.dumps(js, indent=4))
continue

cur.execute(
'UPDATE People SET retrieved=1 WHERE name = ?', (acct,))

228 Kapitel 15. Datenbanken und SQL

countnew = 0
countold = 0
for u in js['users']:

friend = u['screen_name']
print(friend)
cur.execute('SELECT id FROM People WHERE name = ? LIMIT 1',

(friend,))
try:

friend_id = cur.fetchone()[0]
countold = countold + 1

except:
cur.execute(

'''INSERT OR IGNORE INTO People (name, retrieved)
VALUES (?, 0)''', (friend,))

conn.commit()
if cur.rowcount != 1:

print('Error inserting account:', friend)
continue

friend_id = cur.lastrowid
countnew = countnew + 1

cur.execute(
'''INSERT OR IGNORE INTO Follows (from_id, to_id)
VALUES (?, ?)''', (id, friend_id))

print('New accounts=', countnew, ' revisited=', countold)
print('Remaining', headers['x-rate-limit-remaining'])
conn.commit()

cur.close()

Code: https://tiny.one/py4de/code3/twfriends.py

Dieses Programm ist recht komplex, aber es veranschaulicht die Vorgehensweisen,
die wir verwenden müssen, wenn wir Integer-Schlüssel zur Verknüpfung von Tabellen
verwenden. Das grundlegende Vorgehen ist:

1. Erstellen der Tabellen mit Primärschlüsseln und Constraints.

2. Wenn wir einen logischen Schlüssel für eine Person haben (z. B. den Konto-
namen) und den id-Wert für die Person benötigen, müssen wir je nachdem,
ob die Person bereits in der Tabelle People enthalten ist oder nicht, entweder
(1) die Person in der Tabelle People nachschlagen und den Wert id für die
Person abrufen oder (2) die Person zur Tabelle People hinzufügen und den
Wert id für die neu hinzugefügte Zeile abrufen.

3. Einfügen der Zeilen, die die Follows-Beziehung erfasst.

Wir werden jeden dieser Punkte nacheinander behandeln.

15.8. Arbeiten mit mehreren Tabellen 229

15.8.1 Constraints in Datenbanktabellen

Wenn wir unsere Tabellenstrukturen entwerfen, können wir dem Datenbanksystem
mitteilen, dass wir möchten, dass es gewisse Regeln verfolgt. Diese Regeln helfen
uns, Fehler zu vermeiden und falsche Daten in unsere Tabellen einzufügen.

cur.execute('''CREATE TABLE IF NOT EXISTS People
(id INTEGER PRIMARY KEY, name TEXT UNIQUE,
retrieved INTEGER)''')

cur.execute('''CREATE TABLE IF NOT EXISTS Follows
(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id))''')

Wenn wir unsere Tabellen erstellen, dann geben wir an, dass die Spalte name in der
Tabelle People eindeutig (UNIQUE) sein muss. Wir geben außerdem an, dass die
Kombination der beiden Zahlen in jeder Zeile der Tabelle Follows eindeutig sein
muss. Diese Einschränkungen verhindern, dass wir Fehler machen, z. B. dieselbe
Beziehung mehr als einmal hinzufügen.

Wir können diese Einschränkungen im folgenden Code ausnutzen:

cur.execute('''INSERT OR IGNORE INTO People (name, retrieved)
VALUES (?, 0)''', (friend,))

Wir fügen die Klausel OR IGNORE zu unserer INSERT-Anweisung hinzu, um anzuge-
ben, dass das Datenbanksystem die INSERT-Anweisung ignorieren soll, wenn dieser
eine Verletzung der Regel, dass name eindeutig sein muss, verursachen würde. Wir
verwenden die Datenbankbeschränkung als Sicherheitsnetz, um zu gewährleisten,
dass wir nicht versehentlich etwas Falsches tun.

In ähnlicher Weise stellt der folgende Code sicher, dass wir nicht genau die gleiche
Follows-Beziehung zweimal hinzufügen.

cur.execute('''INSERT OR IGNORE INTO Follows
(from_id, to_id) VALUES (?, ?)''', (id, friend_id))

Auch hier sagen wir der Datenbank, dass sie ein INSERT ignorieren soll, wenn die
UNIQUE-Constraint verletzen werden würde, die wir für die Follows-Zeilen definiert
haben.

15.8.2 Abrufen und Einfügen eines Datensatzes

Wenn wir den Benutzer nach einem Twitter-Konto fragen, müssen wir, sofern das
Konto existiert, den id-Wert nachschlagen. Wenn das Konto noch nicht in der
Tabelle People vorhanden ist, müssen wir den Datensatz einfügen und den Wert
id aus der eingefügten Zeile holen.

Dies ist ein sehr häufiges Schema und wird in dem obigen Programm zweimal
ausgeführt. Dieser Code zeigt, wie wir die id für das Konto eines Freundes nach-
schlagen, wenn wir einen screen_name aus einem user-Knoten im abgerufenen
Twitter JSON extrahiert haben.

230 Kapitel 15. Datenbanken und SQL

Da es im Laufe der Zeit immer wahrscheinlicher wird, dass das Konto bereits in
der Datenbank vorhanden ist, prüfen wir zunächst mit einer SELECT-Anweisung,
ob der Datensatz People existiert.

Wenn alles gut geht2, rufen wir den Datensatz mit fetchone() ab und erhalten
dann das erste (und einzige) Element des zurückgegebenen Tupels und speichern es
in friend_id.

Wenn der SELECT fehlschlägt, schlägt fetchone()[0] fehl und die Kontrolle wird
in den except Abschnitt übertragen.

friend = u['screen_name']
cur.execute('SELECT id FROM People WHERE name = ? LIMIT 1',

(friend,))
try:

friend_id = cur.fetchone()[0]
countold = countold + 1

except:
cur.execute(

'''INSERT OR IGNORE INTO People (name, retrieved)
VALUES (?, 0)''', (friend,))

conn.commit()
if cur.rowcount != 1:

print('Error inserting account:',friend)
continue

friend_id = cur.lastrowid
countnew = countnew + 1

Wenn wir im except-Teil landen, bedeutet das schlichtweg, dass die Zeile nicht
gefunden wurde, also müssen wir die Zeile einfügen. Wir verwenden INSERT OR
IGNORE nur, um Fehler zu vermeiden und rufen dann commit() auf, um die Aktuali-
sierung der Datenbank zu erzwingen. Nachdem der Schreibvorgang abgeschlossen ist,
können wir die cur.rowcount überprüfen, um zu sehen, wie viele Zeilen betroffen
waren. Da wir versuchen, eine einzelne Zeile einzufügen, ist es ein Fehler, wenn die
Anzahl der betroffenen Zeilen etwas anderes als 1 ist.

Wenn das INSERT erfolgreich war, können wir uns cur.lastrowid ansehen, um
herauszufinden, welchen Wert die Datenbank der Spalte id in unserer neu erstellten
Zeile zugewiesen hat.

15.8.3 Speichern der Freundschaftsbeziehung

Sobald wir den Schlüsselwert sowohl für den Twitter-Benutzer als auch für den
Freund im JSON kennen, ist es einfach, die beiden Zahlen mit dem folgenden Code
in die Tabelle Follows einzufügen:

cur.execute(
'INSERT OR IGNORE INTO Follows (from_id, to_id) VALUES (?, ?)',
(id, friend_id))

2Wenn ein Satz schon mit „wenn alles gut geht“ beginnt, ist es häufig ratsam, den Code in
try/except-Blöcke einzuschließen.

15.8. Arbeiten mit mehreren Tabellen 231

Es ist wichtig zu beachten, dass wir es der Datenbank überlassen, uns vor dem
doppelten Einfügen einer Beziehung zu schützen, indem wir die Tabelle mit einer
UNIQUE-Einschränkung erstellt und dann OR IGNORE zu unserer INSERT-Anweisung
hinzugefügt haben.

Hier ist ein Beispiel für die Ausführung dieses Programms:

Enter a Twitter account, or quit:
No unretrieved Twitter accounts found
Enter a Twitter account, or quit: drchuck
Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 20 revisited= 0
Enter a Twitter account, or quit:
Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 17 revisited= 3
Enter a Twitter account, or quit:
Retrieving http://api.twitter.com/1.1/friends ...
New accounts= 17 revisited= 3
Enter a Twitter account, or quit: quit

Wir haben mit dem Konto drchuck begonnen und dann das Programm automatisch
die nächsten beiden Konten auswählen lassen, um sie abzurufen und zu unserer
Datenbank hinzuzufügen.

Hier sind die ersten paar Zeilen der Tabellen People und Follows, nachdem der
Programmlauf abgeschlossen ist:

People:
(1, 'drchuck', 1)
(2, 'opencontent', 1)
(3, 'lhawthorn', 1)
(4, 'steve_coppin', 0)
(5, 'davidkocher', 0)
55 rows.
Follows:
(1, 2)
(1, 3)
(1, 4)
(1, 5)
(1, 6)
60 rows.

Wir können die Felder id, name und visited in der Tabelle People sehen und
in der Tabelle Follows die IDs der Konten, die in einer Freundschaftsbeziehung
zueinander stehen. In der Tabelle People können wir sehen, dass die ersten drei
Personen besucht und ihre Daten abgerufen wurden. Die Daten in der Tabelle
Follows zeigen, dass drchuck (Benutzer 1) ein Freund aller Personen ist, die in
den ersten fünf Zeilen angezeigt werden. Dies ergibt Sinn, denn die ersten Daten,
die wir abgerufen und gespeichert haben, waren die Twitter-Freunde von drchuck.
Wenn wir weitere Zeilen aus der Tabelle Follows ausgeben würden, würden wir
auch die Freunde der Benutzer 2 und 3 sehen.

232 Kapitel 15. Datenbanken und SQL

15.9 Drei Arten von Schlüsseln

Nachdem wir nun mit dem Aufbau eines Datenmodells begonnen haben, in dem wir
unsere Daten in mehreren verknüpften Tabellen ablegen und die Zeilen in diesen
Tabellen mit Schlüsseln verknüpfen, müssen wir uns nun mit der Terminologie rund
um Schlüssel beschäftigen. Im Allgemeinen gibt es drei Arten von Schlüsseln, die
in einem Datenbankmodell verwendet werden.

• Ein logischer Schlüssel ist ein Schlüssel, den die „reale Welt“ zum Nachschlagen
eines Datensatzes verwenden könnte. In unserem Beispiel-Datenmodell ist
das Feld name ein logischer Schlüssel. Es ist der Benutzername des Benutzers
und wir schlagen die Zeile eines Benutzers in der Tat mehrmals im Programm
über das Feld name nach. Wir werden oft feststellen, dass es sinnvoll ist, eine
‘UNIQUE’-Einschränkung zu einem logischen Schlüssel hinzuzufügen. Da der
logische Schlüssel einen Datensatz identifiziert, ergibt es wenig Sinn, mehrere
Zeilen mit demselben Wert in der Tabelle zuzulassen.

• Ein Primärschlüssel (englisch Primary Key, kurz PK) ist meist eine Nummer,
die von der Datenbank automatisch vergeben wird. Er hat in der Regel keine
Bedeutung außerhalb des Programms und wird nur verwendet, um Zeilen
aus verschiedenen Tabellen miteinander zu verknüpfen. Wenn wir eine Zeile
in einer Tabelle nachschlagen wollen, ist die Suche nach der Zeile über den
Primärschlüssel normalerweise der schnellste Weg, die Zeile zu finden. Da es
sich bei den Primärschlüsseln um ganze Zahlen handelt, nehmen sie sehr wenig
Speicherplatz ein und können sehr schnell verglichen oder sortiert werden. In
unserem Datenmodell ist das Feld id ein Beispiel für einen Primärschlüssel.

• Ein Fremdschlüssel (englisch Foreign Key , kurz FK) ist normalerweise eine
Zahl, die auf den Primärschlüssel einer zugehörigen Zeile in einer anderen Ta-
belle verweist. Ein Beispiel für einen Fremdschlüssel in unserem Datenmodell
ist die Spalte from_id.

Wir verwenden die Namenskonvention, den Primärschlüssel immer id zu nennen
und das Suffix _id an jeden Spaltennamen anzuhängen, der ein Fremdschlüssel ist.

15.10 Abrufen von Daten mit JOIN

Da wir nun die Regeln der Datenbanknormalisierung befolgt haben und die Daten
in zwei Tabellen aufgeteilt sind, die über Primär- und Fremdschlüssel miteinander
verknüpft sind, müssen wir in der Lage sein, einen SELECT zu implementieren, der
die Daten in den Tabellen wieder zusammensetzt.

SQL verwendet die JOIN-Klausel, um diese Tabellen wieder zu verbinden. In der
JOIN-Klausel geben wir die Felder an, die zum Wiederverbinden der Zeilen zwischen
den Tabellen verwendet werden.

Im Folgenden sehen wir ein Beispiel für einen SELECT mit einer JOIN-Klausel:

SELECT * FROM Follows JOIN People
ON Follows.from_id = People.id WHERE People.id = 1

15.10. Abrufen von Daten mit JOIN 233

People

name

drchuck

opencontent

 1

1

retrieved

Follows

from_id

1

1 3

to_id
id

1

2

3

4

lhawthorn

steve_coppin

1

0

2

1 4

...
...

name

drchuck opencontent

id

1 2

3

4

lhawthorn

steve_coppin

drchuck 1

drchuck 1

to_id namefrom_id

1

1

1

Abbildung 15.5: Datenabfrage über mehrere Tabellen mit JOIN

Die JOIN-Klausel gibt an, dass die ausgewählten Felder sowohl die Follows- als
auch die People-Tabelle betreffen. Die ON-Klausel gibt an, wie die beiden Tabellen
verbunden werden sollen: Es wird eine passende Zeile aus Follows entnommen und
an die Zeile aus People angefügt, bei der das Feld from_id in Follows gleich dem
Wert id in der Tabelle People ist.

Das Ergebnis des JOIN sind Tabellenzeilen, die sowohl die Felder aus People
als auch die passenden Felder aus Follows enthalten. Wenn es mehr als eine
Übereinstimmung zwischen dem Feld id aus People und der from_id aus People
gibt, dann erzeugt JOIN eine Zeile für jedes der übereinstimmenden Zeilenpaare
und dupliziert Daten bei Bedarf.

Der folgende Code zeigt die Daten, die wir in der Datenbank erhalten, nachdem
das obige Spider-Programm mehrmals ausgeführt wurde.

import sqlite3

conn = sqlite3.connect('friends.sqlite')
cur = conn.cursor()

cur.execute('SELECT * FROM People')
count = 0
print('People:')
for row in cur:

if count < 5: print(row)
count = count + 1

234 Kapitel 15. Datenbanken und SQL

print(count, 'rows.')

cur.execute('SELECT * FROM Follows')
count = 0
print('Follows:')
for row in cur:

if count < 5: print(row)
count = count + 1

print(count, 'rows.')

cur.execute('''SELECT * FROM Follows JOIN People
ON Follows.to_id = People.id
WHERE Follows.from_id = 2''')

count = 0
print('Connections for id=2:')
for row in cur:

if count < 5: print(row)
count = count + 1

print(count, 'rows.')

cur.close()

Code: https://tiny.one/py4de/code3/twjoin.py

In diesem Programm werden zuerst die People- und Follows-Tabellen und dann
eine Teilmenge der Daten in den miteinander verbundenen Tabellen ausgegeben.

Hier ist die Ausgabe des Programms:

python twjoin.py
People:
(1, 'drchuck', 1)
(2, 'opencontent', 1)
(3, 'lhawthorn', 1)
(4, 'steve_coppin', 0)
(5, 'davidkocher', 0)
55 rows.
Follows:
(1, 2)
(1, 3)
(1, 4)
(1, 5)
(1, 6)
60 rows.
Connections for id=2:
(2, 1, 1, 'drchuck', 1)
(2, 28, 28, 'cnxorg', 0)
(2, 30, 30, 'kthanos', 0)
(2, 102, 102, 'SomethingGirl', 0)
(2, 103, 103, 'ja_Pac', 0)
20 rows.

15.11. Zusammenfassung 235

Wir sehen die Spalten aus den Tabellen People und Follows. Der letzte Satz von
Zeilen ist das Ergebnis des SELECT mit der JOIN-Klausel.

Im letzten SELECT suchen wir nach Konten, die mit opencontent befreundet sind
(d. h. People.id=2).

In jeder der Zeilen des letzten SELECT stammen die ersten beiden Spalten aus der
Tabelle Follows, gefolgt von den Spalten drei bis fünf aus der Tabelle People. Wir
können auch sehen, dass die zweite Spalte (Follows.to_id) mit der dritten Spalte
(People.id) in jeder der verknüpften Zeilen übereinstimmt.

15.11 Zusammenfassung

Datenbanktabellen anzulegen, zu verwalten und Datensätze einzufügen und abzu-
fragen, ist mit einem gewissen programmiertechnischen Aufwand verbunden. Die
Verwendung von Python-Datenstrukturen wie zum Beispiel Dictionarys ist dagegen
recht simpel. Datenbanken verfügen jedoch über Eigenschaften und Funktionalitä-
ten, wegen der man sie in bestimmten Szenarien präferiert.

Die Situationen, in denen eine Datenbank sehr nützlich sein kann, sind: (1) Wenn
die Anwendung viele kleine, zufällige Aktualisierungen innerhalb eines großen
Datensatzes vornehmen muss, (2) wenn die Daten so groß sind, dass sie nicht in ein
Dictionary passen und wir wiederholt Informationen nachschlagen müssen, oder (3)
wenn wir einen lange laufenden Prozess haben, den wir stoppen und neu starten
möchten und die Daten von einem Lauf zum nächsten beibehalten wollen.

Wir können eine einfache Datenbank mit einer einzigen Tabelle erstellen, um viele
Anwendungsanforderungen zu erfüllen, aber die meisten Probleme werden mehrere
Tabellen und Beziehungen zwischen diesen erfordern. Wenn wir damit beginnen,
Verknüpfungen zwischen Tabellen herzustellen, ist es wichtig, ein durchdachtes
Design zu entwerfen und die Regeln der Datenbanknormalisierung zu befolgen, um
die Fähigkeiten der Datenbank optimal nutzen zu können. Da die Hauptmotivation
für die Verwendung einer Datenbank darin besteht, mit einer großen Menge von
Daten zu arbeiten, ist es wichtig, Daten effizient zu modellieren, um damit auch
die Performanz unserer Programme zu optimieren.

15.12 Debugging

Ein häufiges Vorgehen, wenn wir ein Python-Programm zur Verbindung mit einer
SQLite-Datenbank entwickeln, wird sein, dass wir ein Python-Programm ausführen
und die Ergebnisse mit dem Datenbankbrowser für SQLite überprüfen. Mit dem
Browser können wir schnell überprüfen, ob unser Programm richtig funktioniert.

Wir müssen vorsichtig sein, weil SQLite darauf achtet, dass nicht zwei Programme
gleichzeitig dieselben Daten ändern. Wenn wir z. B. eine Datenbank im Browser
öffnen und eine Änderung an der Datenbank vornehmen und noch nicht die Schaltflä-
che „Speichern“ im Browser betätigt haben, sperrt der Browser die Datenbankdatei
und verhindert, dass ein anderes Programm auf die Datei zugreift. Insbesondere
unser Python-Programm kann nicht auf die Datei zugreifen, wenn sie gesperrt ist.

236 Kapitel 15. Datenbanken und SQL

Eine Lösung ist also, sicherzustellen, dass wir entweder den Datenbankbrowser
schließen oder das Menü Datei verwenden, um die Datenbank im Browser zu
schließen, bevor wir versuchen, von Python aus auf die Datenbank zuzugreifen.

15.13 Glossar

Attribut Einer der Werte innerhalb eines Tupels. Häufiger als Spalte oder Feld
bezeichnet.

Constraint Eine Anweisung an die Datenbank, eine Regel für ein Feld oder eine
Zeile in einer Tabelle zu erzwingen. Eine übliche Einschränkung ist, darauf
zu bestehen, dass es in einem bestimmten Feld keine doppelten Werte geben
darf, also alle Werte eindeutig sein müssen.

Cursor Mit einem Cursor können wir SQL-Befehle in einer Datenbank ausführen
und Daten aus der Datenbank abrufen. Ein Cursor ist vergleichbar mit einem
Socket oder einem Dateihandler für Netzwerkverbindungen bzw. Dateien.

Datenbankenbrowser Eine Software, die es ermöglicht, eine direkte Verbindung
zu einer Datenbank herzustellen und die Datenbank direkt zu manipulieren,
ohne dafür ein gesondertes Programm schreiben zu müssen.

Fremdschlüssel Ein numerischer Schlüssel, der auf den Primärschlüssel einer
Zeile in einer anderen Tabelle verweist. Fremdschlüssel stellen Beziehungen
zwischen Zeilen her, die in verschiedenen Tabellen gespeichert sind.

Index Zusätzliche Daten, die vom Datenbanksystem verwaltet und in eine Tabelle
einfügt werden, um Abfragen sehr schnell zu machen.

Logischer Schlüssel Ein Schlüssel, den die „Außenwelt“ verwendet, um eine
bestimmte Zeile nachzuschlagen. In einer Tabelle mit Benutzerkonten könnte
z. B. die E-Mail-Adresse einer Person ein guter Kandidat als logischer Schlüssel
für die Daten des Benutzers sein.

Normalisierung Entwurf eines Datenmodells mit dem Ziel, dass keine Daten repli-
ziert werden müssen. Wir speichern jedes Datenelement an einer Stelle in der
Datenbank und referenzieren es an anderer Stelle über einen Fremdschlüssel.

Primärschlüssel Ein numerischer Schlüssel, der jeder Zeile zugewiesen wird und
dazu dient, von einer anderen Tabelle aus auf eine Zeile in einer Tabelle
zu verweisen. Oft ist die Datenbank so konfiguriert, dass Primärschlüssel
automatisch zugewiesen werden, wenn Zeilen eingefügt werden.

Relation Ein Datensatz (eine Zeile) in einer Datenbanktabelle.
Tupel Ein einzelner Eintrag in einer Datenbanktabelle, der eine Menge von Attri-

buten darstellt. Er wird typischerweise als Zeile bezeichnet.

Kapitel 16

Visualisierung von Daten

Bisher haben wir Python erlernt und uns damit beschäftigt, wie man Python, das
Internet und Datenbanken verwendet, um Daten zu verarbeiten.

In diesem Kapitel werfen wir einen Blick auf drei vollständige Anwendungen, die
all diese Dinge zusammenbringen, um Daten zu verwalten und zu visualisieren. Wir
können diese Anwendungen als Beispielcode verwenden, um mit dem Lösen eines
realen Problems zu beginnen.

Jede der Anwendungen liegt als ZIP-Datei vor, die wir herunterladen, entpacken
und ausführen können.

16.1 Erstellen einer OpenStreetMap aus Geodaten

In diesem Projekt verwenden wir die OpenStreetMap-API, um die Standorte einiger
vom Benutzer eingegebenen Universitätsnamen auf einer aktuellen OpenStreetMap
zu platzieren.

Um loszulegen, laden wir die Anwendung hier herunter:

www.py4e.com/code3/opengeo.zip

Das erste zu lösende Problem ist, dass die Geocoding-APIs auf eine bestimmte
Anzahl von Anfragen pro Tag begrenzt sind. Wenn wir viele Daten haben, müssen
wir den Lookup-Prozess möglicherweise mehrmals anhalten und neu starten. Also
teilen wir das Problem in zwei Phasen auf.

In der ersten Phase nehmen wir die Daten (Universitätsnamen) in der Datei
where.data und lesen sie zeilenweise ein, rufen die Geoinformationen von Google
ab und speichern sie in einer Datenbank geodata.sqlite. Bevor wir die Geocoding-
API für jeden vom Benutzer eingegebenen Ort verwenden, prüfen wir zunächst,
ob wir die Daten für diese bestimmte Eingabezeile bereits haben. Die Datenbank
fungiert als lokaler Zwischenspeicher (Cache) unserer Geodaten, um sicherzustellen,
dass wir Google nie zweimal nach denselben Daten fragen.

Wir können den Prozess jederzeit neu starten, indem wir die Datei geodata.sqlite
löschen.

http://www.py4e.com/code3/opengeo.zip

238 Kapitel 16. Visualisierung von Daten

Abbildung 16.1: OpenStreetMap

Nun führen wir das Programm geoload.py aus. Das Programm liest die Einga-
bezeilen in where.data und prüft für jede Zeile, ob sie bereits in der Datenbank
vorhanden ist. Wenn wir die Daten für den Ort nicht haben, wird es die Geocoding-
API aufrufen, um die Daten abzurufen und in der Datenbank zu speichern.

Hier ist ein Beispiellauf, nachdem bereits einige Daten in der Datenbank vorhanden
sind:

Found in database AGH University of Science and Technology

Found in database Academy of Fine Arts Warsaw Poland

Found in database American University in Cairo

Found in database Arizona State University

Found in database Athens Information Technology

Retrieving https://py4e-data.dr-chuck.net/
opengeo?q=BITS+Pilani

Retrieved 794 characters {"type":"FeatureColl

Retrieving https://py4e-data.dr-chuck.net/
opengeo?q=Babcock+University

Retrieved 760 characters {"type":"FeatureColl

Retrieving https://py4e-data.dr-chuck.net/
opengeo?q=Banaras+Hindu+University

Retrieved 866 characters {"type":"FeatureColl
...

16.1. Erstellen einer OpenStreetMap aus Geodaten 239

Die ersten fünf Orte sind bereits in der Datenbank und werden daher übersprungen.
Das Programm scannt bis zu dem Punkt, an dem es neue Orte findet und beginnt,
diese abzurufen.

Das Programm geoload.py kann jederzeit gestoppt werden und es gibt einen Zähler,
mit dem wir die Anzahl der Aufrufe der Geocoding-API für jeden Lauf begrenzen
können. In Anbetracht der Tatsache, dass die Datei where.data nur ein paar hundert
Datenelemente enthält, sollten wir nicht an das tägliche Google-Zugriffslimit stoßen,
aber wenn wir mehr Daten hätten, könnte es mehrere Durchläufe über mehrere
Tage hinweg erfordern, bis unsere Datenbank alle Geodaten für unsere Eingabe
enthält.

Sobald wir einige Daten in geodata.sqlite geladen haben, können wir die Daten
mit dem Programm geodump.py visualisieren. Dieses Programm liest die Datenbank
und schreibt die Datei where.js mit dem Standort, dem Breitengrad und dem
Längengrad in Form von ausführbarem JavaScript-Code.

Ein Durchlauf des Programms geodump.py sieht folgendermaßen aus:

AGH University of Science and Technology, Czarnowiejska,
Czarna Wieś, Krowodrza, Kraków, Lesser Poland
Voivodeship, 31-126, Poland 50.0657 19.91895

Academy of Fine Arts, Krakowskie Przedmieście,
Northern Śródmieście, Śródmieście, Warsaw, Masovian
Voivodeship, 00-046, Poland 52.239 21.0155
...
260 lines were written to where.js
Open the where.html file in a web browser to view the data.

Die Datei where.html besteht aus HTML und JavaScript zur Visualisierung einer
Google-Karte. Sie liest die aktuellsten Daten aus where.js, um die zu visualisie-
renden Daten zu erhalten. Hier ist das Format der where.js Datei:

myData = [
[50.0657,19.91895,
'AGH University of Science and Technology, Czarnowiejska,
Czarna Wieś, Krowodrza, Kraków, Lesser Poland
Voivodeship, 31-126, Poland '],
[52.239,21.0155,
'Academy of Fine Arts, Krakowskie Przedmieściee,
Śródmieście Północne, Śródmieście, Warsaw,
Masovian Voivodeship, 00-046, Poland'],

...
];

Dies ist eine JavaScript-Variable, die eine Liste von Listen enthält. Die Syntax für
JavaScript-Listenkonstanten ist der von Python sehr ähnlich, daher sollte uns die
Syntax vertraut sein.

Nun muss die where.html in einem Browser geöffnet werden, um die Standorte
zu sehen. Wir können den Mauszeiger über jeden Pin bewegen, um den Standort

240 Kapitel 16. Visualisierung von Daten

Abbildung 16.2: Page-Ranking

zu finden, den die Geocoding-API für die vom Benutzer eingegebene Eingabe
zurückgegeben hat. Wenn wir beim Öffnen der Datei where.html keine Daten
vorfinden, sollten wir die JavaScript- oder Entwicklerkonsole für unseren Browser
überprüfen.

16.2 Visualisierung von Netzwerken

In dieser Anwendung werden wir einige der Funktionen einer Suchmaschine nach-
bilden. Wir werden zunächst eine kleine Teilmenge des Webs durchforsten und eine
eigene vereinfachte Version des Page-Ranking-Algorithmus von Google ausführen,
um festzustellen, welche Seiten am stärksten miteinander verbunden sind, und
dann den Page-Rank und die Verbindung in einem kleinen Teil des Webs visua-
lisieren. Wir werden die D3-JavaScript-Visualisierungsbibliothek http://d3js.org/
verwenden, um die Visualisierung zu erzeugen.

Wir können diese Anwendung hier herunterladen:

www.py4e.com/code3/pagerank.zip

Das erste Programm (spider.py) durchsucht eine Website und holt eine Reihe von
Seiten in die Datenbank (spider.sqlite), wobei die Links zwischen den Seiten
aufgezeichnet werden. Wir können den Prozess jederzeit neu starten, indem wir die
Datei spider.sqlite entfernen und spider.py erneut ausführen.

Enter web url or enter: http://www.dr-chuck.com/

http://d3js.org/
http://www.py4e.com/code3/pagerank.zip

16.2. Visualisierung von Netzwerken 241

['http://www.dr-chuck.com']
How many pages:2
1 http://www.dr-chuck.com/ 12
2 http://www.dr-chuck.com/csev-blog/ 57
How many pages:

In diesem Beispieldurchlauf haben wir das Programm angewiesen, eine Website
zu durchforsten und zwei Seiten abzurufen. Wenn wir das Programm neu starten
und ihm sagen, dass es weitere Seiten besuchen soll, wird es keine Seiten, die sich
bereits in der Datenbank befinden, erneut besuchten. Beim Neustart wechselt es zu
einer zufälligen, nicht besuchten Seite und beginnt dort. Somit verhält sich jeder
erneute Lauf von spider.py additiv.

Enter web url or enter: http://www.dr-chuck.com/
['http://www.dr-chuck.com']
How many pages:3
3 http://www.dr-chuck.com/csev-blog 57
4 http://www.dr-chuck.com/dr-chuck/resume/speaking.htm 1
5 http://www.dr-chuck.com/dr-chuck/resume/index.htm 13
How many pages:

Wir können mehrere Startpunkte in derselben Datenbank haben – im Programm
werden diese als webs bezeichnet. Der Spider wählt nach dem Zufallsprinzip aus
allen nicht besuchten Links über alle webs hinweg die nächste zu durchsuchende
Seite aus.

Wenn wir den Inhalt der Datei spider.sqlite ausgeben möchten, können wir
spdump.py wie folgt ausführen:

(5, None, 1.0, 3, 'http://www.dr-chuck.com/csev-blog')
(3, None, 1.0, 4, 'http://www.dr-chuck.com/dr-chuck/resume/speaking.htm')
(1, None, 1.0, 2, 'http://www.dr-chuck.com/csev-blog/')
(1, None, 1.0, 5, 'http://www.dr-chuck.com/dr-chuck/resume/index.htm')
4 rows.

Dies zeigt die Anzahl der eingehenden Links, den alten Page-Rank, den neuen
Page-Rank, die ID der Seite und die URL der Seite. Das Programm spdump.py
zeigt nur Seiten an, die mindestens einen eingehenden Link auf sie haben.

Sobald wir ein paar Websites in der Datenbank haben, können wir mit dem
Programm sprank.py das Page-Ranking in Gang setzen. Wir teilen ihm einfach
mit, wie viele Iterationen es ausführen soll.

How many iterations:2
1 0.546848992536
2 0.226714939664
[(1, 0.559), (2, 0.659), (3, 0.985), (4, 2.135), (5, 0.659)]

Wir können die Datenbank erneut ausgeben, um zu sehen, dass der Page-Rank
aktualisiert wurde:

242 Kapitel 16. Visualisierung von Daten

(5, 1.0, 0.985, 3, 'http://www.dr-chuck.com/csev-blog')
(3, 1.0, 2.135, 4, 'http://www.dr-chuck.com/dr-chuck/resume/speaking.htm')
(1, 1.0, 0.659, 2, 'http://www.dr-chuck.com/csev-blog/')
(1, 1.0, 0.659, 5, 'http://www.dr-chuck.com/dr-chuck/resume/index.htm')
4 rows.

Wir können sprank.py so oft ausführen wie wir möchten und es wird das Page-
Ranking jedes Mal verfeinern. Wir können sprank.py sogar ein paar Mal laufen
lassen und dann ein paar weitere Seiten mit spider.py durchforsten und dann
sprank.py laufen lassen, um die Page-Ranking-Werte neu zu berechnen. Eine
Suchmaschine lässt normalerweise sowohl das Crawling- als auch das Ranking-
Programm ständig laufen.

Wenn wir die Page-Ranking-Berechnungen neu starten wollen, ohne die Webseiten
neu zu laden, können wir spreset.py verwenden und dann sprank.py neu starten.

How many iterations:50
1 0.546848992536
2 0.226714939664
3 0.0659516187242
4 0.0244199333
5 0.0102096489546
6 0.00610244329379
...
42 0.000109076928206
43 9.91987599002e-05
44 9.02151706798e-05
45 8.20451504471e-05
46 7.46150183837e-05
47 6.7857770908e-05
48 6.17124694224e-05
49 5.61236959327e-05
50 5.10410499467e-05
[(512, 0.0296), (1, 12.79), (2, 28.93), (3, 6.808), (4, 13.46)]

Für jede Iteration des Page-Ranking-Algorithmus wird die durchschnittliche Än-
derung des Page-Ranks pro Seite ausgegeben. Das Netzwerk ist anfangs recht
unausgewogen, sodass sich die einzelnen Page-Rank-Werte zwischen den Iterationen
stark ändern. Aber in ein paar kurzen Iterationen konvergiert der Page-Rank.
Wir müssen sprank.py lange genug laufen lassen, damit die Page-Ranking-Werte
konvergieren.

Wenn wir die aktuellen Top-Seiten in Bezug auf den Page-Rank visualisieren
möchten, führen wir spjson.py aus, um die Datenbank zu lesen und die Daten für
die am stärksten verlinkten Seiten in ein JSON-Format zu schreiben, das in einem
Webbrowser angezeigt werden kann.

Creating JSON output on spider.json...
How many nodes? 30
Open force.html in a browser to view the visualization

16.3. Visualisierung von Maildaten 243

Abbildung 16.3: Eine Wortwolke aus der Sakai-Entwicklerliste

Wir können diese Daten betrachten, indem wir die Datei force.html in unserem
Webbrowser öffnen. Dies zeigt ein automatisches Layout der Knoten und Links. Wir
können jeden Knoten anklicken und ziehen und wir können auch auf einen Knoten
doppelklicken, um die URL zu sehen, die durch den Knoten dargestellt wird.

Wenn wir die anderen Dienstprogramme erneut ausführen, führen wir spjson.py
ebenfalls erneut aus. Dann drücken wir im Browser auf Aktualisieren, um die neuen
Daten aus spider.json zu erhalten.

16.3 Visualisierung von Maildaten

Bis zu diesem Punkt im Buch sind wir mit unseren Datendateien mbox-short.txt
und mbox.txt ziemlich vertraut geworden. Jetzt ist es an der Zeit, unsere Analyse
der E-Mail-Daten auf die nächste Stufe zu bringen.

In der realen Welt müssen wir manchmal Mail-Daten von Servern abrufen. Das
kann einige Zeit in Anspruch nehmen und die Daten können inkonsistent und
fehlerhaft sein und eine Menge Bereinigungen oder Anpassungen erfordern. In
diesem Abschnitt arbeiten wir mit einer Anwendung, die bisher die komplexeste
ist, und rufen fast ein Gigabyte an Daten ab und visualisieren diese.

Wir können diese Anwendung hier herunterladen:

https://www.py4e.com/code3/gmane.zip

Wir werden Daten von einem freien E-Mail-Listen-Archivierungsdienst namens

https://www.py4e.com/code3/gmane.zip

244 Kapitel 16. Visualisierung von Daten

http://www.gmane.org verwenden. Dieser Dienst ist sehr beliebt bei Open-Source-
Projekten, weil er ein schönes durchsuchbares Archiv der E-Mail-Aktivitäten bietet.
Sie haben auch eine sehr liberale Richtlinie bezüglich des Zugriffs auf Daten durch
ihre API. Die API hat keine Zugriffsbeschränkungen, wir sollten jedoch darauf
achten, den Dienst nicht zu überlasten und nur die Daten zu verwenden, die wir
benötigen. Die allgemeinen Geschäftsbedingungen von gmane sind auf der folgenden
Seite zu finden:

http://www.gmane.org/export.php

Hinweis: Es ist sehr wichtig, dass wir die Daten von gmane.org verantwortungsvoll
nutzen, indem wir unseren Zugriff auf deren Dienste verzögern und lang laufende
Aufträge über einen längeren Zeitraum verteilen. So missbrauchen wir diesen
kostenlosen Dienst nicht und ruinieren ihn nicht für andere Entwickler.

Als die Sakai-E-Mail-Daten mit dieser Software gesichtet wurden, produzierte dies
fast ein Gigabyte an Daten und erforderte eine Reihe von Durchläufen an mehre-
ren Tagen. Die Datei README.txt im obigen ZIP-Archiv enthält möglicherweise
Anweisungen, wie wir eine vorab erstellte Kopie der Datei content.sqlite für
einen Großteil des Sakai-E-Mail-Korpus herunterladen können, damit wir nicht
fünf Tage lang „spidern“ müssen, bevor wir unsere Programme endlich auszuführen
können. Wenn wir den vorbereiteten Inhalt herunterladen, sollten wir trotzdem den
Spider-Prozess ausführen, um neuere Nachrichten einzuholen.

Der erste Schritt besteht darin, das gmane-Repository zu durchforsten. Die Basis-
URL ist in gmane.py fest codiert und mit der Sakai-Entwicklerliste verknüpft. Wir
können ein anderes Repository spidern, indem wir diese Basis-URL ändern. Es
ist sicherzustellen, dass die Datei content.sqlite gelöscht wird, wenn wir die
Basis-URL ändern.

Das Programm Datei gmane.py arbeitet als verantwortlicher Caching-Spider, in-
dem es langsam läuft und nur eine Mail-Nachricht pro Sekunde abruft, um nicht
von gmane gedrosselt zu werden. Das Programm speichert alle Daten in einer
Datenbank und kann so oft wie nötig unterbrochen und neu gestartet werden. Es
kann viele Stunden dauern, bis alle Daten heruntergeladen sind. Wir müssen also
möglicherweise mehrmals neu starten.

Hier ist ein Lauf von gmane.py, der die letzten fünf Nachrichten der Sakai-
Entwicklerliste abruft:

How many messages:10
http://download.gmane.org/gmane.comp.cms.sakai.devel/51410/51411 9460

nealcaidin@sakaifoundation.org 2013-04-05 re: [building ...
http://download.gmane.org/gmane.comp.cms.sakai.devel/51411/51412 3379

samuelgutierrezjimenez@gmail.com 2013-04-06 re: [building ...
http://download.gmane.org/gmane.comp.cms.sakai.devel/51412/51413 9903

da1@vt.edu 2013-04-05 [building sakai] melete 2.9 oracle ...
http://download.gmane.org/gmane.comp.cms.sakai.devel/51413/51414 349265

m.shedid@elraed-it.com 2013-04-07 [building sakai] ...
http://download.gmane.org/gmane.comp.cms.sakai.devel/51414/51415 3481

samuelgutierrezjimenez@gmail.com 2013-04-07 re: ...
http://download.gmane.org/gmane.comp.cms.sakai.devel/51415/51416 0

Does not start with From

http://www.gmane.org
http://www.gmane.org/export.php

16.3. Visualisierung von Maildaten 245

Das Programm durchsucht die Datei content.sqlite von der allerersten bis zur
ersten noch nicht verarbeiteten Nachricht und beginnt das Spidering bei dieser
Nachricht. Es fährt mit dem Spidering fort, bis es die gewünschte Anzahl von
Nachrichten durchforstet hat oder es eine Seite erreicht, die nicht als ordnungsgemäß
formatierte Nachricht erscheint.

Manchmal fehlt auf gmane.org eine Nachricht. Vielleicht können Administratoren
Nachrichten löschen oder vielleicht gehen sie verloren. Wenn unser Spider anhält
und es scheint, dass er auf eine fehlende Nachricht gestoßen ist, gehen wir in den
SQLite Manager und fügen eine Zeile mit der fehlenden ID hinzu, wobei wir alle
anderen Felder leer lassen und gmane.py neu starten. Dies wird den Spider-Prozess
wieder freigeben und ihm erlauben, fortzufahren. Diese leeren Nachrichten werden
in der nächsten Phase des Prozesses ignoriert.

Eine schöne Sache ist, dass wir, sobald wir alle Nachrichten gespidert haben und
sie in content.sqlite vorliegen, gmane.py erneut ausführen können, um neue
Nachrichten zu erhalten, sobald sie in die Liste übertragen werden.

Die content.sqlite-Daten sind unbearbeitet, mit einem ineffizienten Datenmodell
gespeichert, und nicht komprimiert. Dies ist beabsichtigt, da es Ihnen ermöglicht,
content.sqlite im SQLite-Manager zu betrachten, um Probleme mit dem Spider-
Prozess zu beheben. Es wäre eine schlechte Idee, irgendwelche Abfragen über diese
Datenbank laufen zu lassen, da sie ziemlich langsam wären.

Der zweite Vorgang ist die Ausführung des Programms gmodel.py. Dieses Pro-
gramm liest die Rohdaten aus content.sqlite und erzeugt eine bereinigte und
gut modellierte Version der Daten in der Datei index.sqlite. Diese Datei wird
viel kleiner sein (oft 10 Mal kleiner) als content.sqlite, weil auch der Header-
und Body-Text komprimiert wird.

Jedes Mal, wenn gmodel.py läuft, löscht es die Datei index.sqlite und baut
sie neu auf, sodass wir die Parameter anpassen und die Mapping-Tabellen in
content.sqlite bearbeiten können, um den Datenbereinigungsprozess zu optimie-
ren. Dies ist ein Beispiellauf von gmodel.py. Jedes Mal, wenn 250 Mail-Nachrichten
verarbeitet werden, wird eine Zeile ausgegeben, damit wir den Fortschritt sehen
können, denn dieses Programm kann eine Weile laufen und fast ein Gigabyte an
Mail-Daten verarbeiten.

Loaded allsenders 1588 and mapping 28 dns mapping 1
1 2005-12-08T23:34:30-06:00 ggolden22@mac.com
251 2005-12-22T10:03:20-08:00 tpamsler@ucdavis.edu
501 2006-01-12T11:17:34-05:00 lance@indiana.edu
751 2006-01-24T11:13:28-08:00 vrajgopalan@ucmerced.edu
...

Das Programm gmodel.py übernimmt eine Reihe von Datenbereinigungsaufgaben.

Domainnamen werden auf zwei Domainlevel für .com, .org, .edu und .net gekürzt.
Andere Domain-Namen werden auf drei Level gekürzt. So wird si.umich.edu zu
umich.edu und caret.cam.ac.uk zu cam.ac.uk. E-Mail-Adressen werden ebenfalls
in Kleinschreibung überführt, und Adressen wie

arwhyte-63aXycvo3TyHXe+LvDLADg@public.gmane.org

246 Kapitel 16. Visualisierung von Daten

werden in die echte Adresse umgewandelt, wenn es an anderer Stelle im Nachrich-
tenkorpus eine passende echte E-Mail-Adresse gibt.
In der Datenbank mapping.sqlite gibt es zwei Tabellen, die es Ihnen ermöglichen,
sowohl Domänennamen als auch einzelne E-Mail-Adressen zuzuordnen, die sich
während der Lebensdauer der E-Mail-Liste ändern. Zum Beispiel hat Steve Githens
die folgenden E-Mail-Adressen verwendet, als er während der Lebensdauer der
Sakai-Entwicklerliste den Arbeitsplatz wechselte:

s-githens@northwestern.edu
sgithens@cam.ac.uk
swgithen@mtu.edu

Wir können zwei Einträge in die Mapping-Tabelle in mapping.sqlite hinzufügen,
sodass gmodel.py alle drei auf eine Adresse abbildet:

s-githens@northwestern.edu -> swgithen@mtu.edu
sgithens@cam.ac.uk -> swgithen@mtu.edu

Wir können auch ähnliche Einträge in der DNSMapping-Tabelle vornehmen, wenn
es mehrere DNS-Namen gibt, die wir einem einzigen DNS zuordnen möchten. Die
folgende Zuordnung wurde zu den Sakai-Daten hinzugefügt:

iupui.edu -> indiana.edu

So werden alle Konten der verschiedenen Standorte der Indiana University zusam-
men verfolgt.
Wir können gmodel.py immer wieder ausführen, während wir uns die Daten ansehen,
und Mappings hinzufügen, um die Daten immer mehr zu bereinigen. Wenn wir
fertig sind, haben wir eine ordentlich indizierte Version der E-Mail in index.sqlite.
Dies ist die Datenbankdatei, die für die Datenanalyse verwendet wird. Mit ihr wird
die Datenanalyse wirklich schnell sein.
Die erste und einfachste Datenanalyse besteht darin, festzustellen, wer die meisten
Mails verschickt hat und welche Organisation die meisten Mails verschickt hat. Dies
wird mit gbasic.py durchgeführt:

How many to dump? 5
Loaded messages= 51330 subjects= 25033 senders= 1584

Top 5 Email list participants
steve.swinsburg@gmail.com 2657
azeckoski@unicon.net 1742
ieb@tfd.co.uk 1591
csev@umich.edu 1304
david.horwitz@uct.ac.za 1184

Top 5 Email list organizations
gmail.com 7339
umich.edu 6243
uct.ac.za 2451
indiana.edu 2258
unicon.net 2055

16.3. Visualisierung von Maildaten 247

Abbildung 16.4: Sakai-Mail-Aktivität pro Organisation

Es ist zu beachten, wie viel schneller gbasic.py im Vergleich zu gmane.py oder
sogar gmodel.py läuft. Sie arbeiten alle mit den gleichen Daten, aber gbasic.py
verwendet die komprimierten und normalisierten Daten in index.sqlite. Wenn
wir viele Daten zu verwalten haben, kann ein mehrstufiger Prozess wie in dieser
Anwendung etwas länger dauern, aber es kann viel Zeit gespart werden, wenn Daten
untersucht und visualisiert werden.

Eine einfache Visualisierung der Worthäufigkeit in den Betreffzeilen können wir mit
gword.py erzeugen:

Range of counts: 33229 129
Output written to gword.js

Dies erzeugt die Datei gword.js, die wir mit gword.htm visualisieren können, um
eine Wortwolke ähnlich der am Anfang dieses Abschnitts zu erzeugen.

Eine zweite Visualisierung wird von gline.py erzeugt. Sie berechnet die E-Mail-
Aktivität von Organisationen im Laufe der Zeit.

Loaded messages= 51330 subjects= 25033 senders= 1584
Top 10 Oranizations
['gmail.com', 'umich.edu', 'uct.ac.za', 'indiana.edu',
'unicon.net', 'tfd.co.uk', 'berkeley.edu', 'longsight.com',
'stanford.edu', 'ox.ac.uk']
Output written to gline.js

Die Ausgabe wird in gline.js geschrieben, die mit gline.htm visualisiert wird.

Dies ist eine relativ komplexe und ausgefeilte Anwendung und sie verfügt über
Funktionen zum Abrufen, Bereinigen und Visualisieren von Daten.

Anhang A

Mitwirkende

A.1 Mitwirkende an „Python for Everybody“

Andrzej Wójtowicz, Elliott Hauser, Stephen Catto, Sue Blumenberg, Tamara
Brunnock, Mihaela Mack, Chris Kolosiwsky, Dustin Farley, Jens Leerssen, Naveen
KT, Mirza Ibrahimovic, Naveen (@togarnk), Zhou Fangyi, Alistair Walsh, Erica
Brody, Jih-Sheng Huang, Louis Luangkesorn, and Michael Fudge

Einzelheiten zu den Beiträgen finden Sie unter:

https://github.com/csev/py4e/graphs/contributors

A.2 Mitwirkende an „Python for Informatics“

Bruce Shields for copy editing early drafts, Sarah Hegge, Steven Cherry, Sarah
Kathleen Barbarow, Andrea Parker, Radaphat Chongthammakun, Megan Hixon,
Kirby Urner, Sarah Kathleen Barbrow, Katie Kujala, Noah Botimer, Emily Alinder,
Mark Thompson-Kular, James Perry, Eric Hofer, Eytan Adar, Peter Robinson,
Deborah J. Nelson, Jonathan C. Anthony, Eden Rassette, Jeannette Schroeder,
Justin Feezell, Chuanqi Li, Gerald Gordinier, Gavin Thomas Strassel, Ryan Clement,
Alissa Talley, Caitlin Holman, Yong-Mi Kim, Karen Stover, Cherie Edmonds, Maria
Seiferle, Romer Kristi D. Aranas (RK), Grant Boyer, Hedemarrie Dussan,

A.3 Vorwort von „Think Python“

A.3.1 Die seltsame Geschichte von „Think Python“

(Allen B. Downey)

Im Januar 1999 bereitete ich mich darauf vor, einen Einführungskurs in die Pro-
grammierung mit Java zu geben. Ich hatte ihn bereits dreimal unterrichtet und

250 Anhang A. Mitwirkende

war frustriert. Die Durchfallquote in der Klasse war zu hoch, und selbst bei den
Schülern, die erfolgreich waren, war das Leistungsniveau insgesamt zu niedrig.

Eines der Probleme, die ich sah, waren die Bücher. Sie waren zu umfangreich,
enthielten zu viele unnötige Details über Java und nicht genug Anleitungen von
guter Qualität, wie man programmiert. Außerdem hatten die Bücher folgenden
Fallstrick: Sie fingen gemächlich an, gingen allmählich voran, und dann plötzlich,
etwa ab Kapitel 5, zog das Tempo enorm an. Die Studenten lernten zu schnell zu
viel neues Material, und ich musste den Rest des Semesters damit verbringen, die
Scherben aufzusammeln.

Zwei Wochen vor dem ersten Unterrichtstag beschloss ich, mein eigenes Buch zu
schreiben. Meine Ziele waren:

• Es kurz halten. Es ist besser für die Schüler, 10 Seiten zu lesen, als 50 Seiten
nicht zu lesen.

• Vorsichtig mit dem Vokabular sein. Ich habe versucht, den Jargon einfach zu
halten und jeden Begriff bei der ersten Verwendung zu definieren.

• Schrittweises Vorgehen. Um zu vermeiden, dass die Leser abgehängt werden,
habe ich die schwierigsten Themen in eine Reihe kleiner Schritte aufgeteilt.

• Konzentrieren auf die Programmierung, nicht auf die Programmiersprache.
Ich habe die kleinste nützliche Teilmenge von Java einbezogen und den Rest
weggelassen.

Ich brauchte einen Titel und entschied mich aus einer Laune heraus für How to
Think Like a Computer Scientist.

Meine erste Version war holprig, aber sie funktionierte. Die Schüler haben die Lektü-
re gelesen und genug verstanden, sodass ich die Unterrichtszeit auf die schwierigen
und interessanten Themen verwenden und (was am wichtigsten ist) die Schüler
üben lassen konnte.

Ich habe das Buch unter der GNU Free Documentation License veröffentlicht, die
es den Benutzern erlaubt, das Buch zu kopieren, zu verändern und zu verbreiten.

Was dann passierte, ist der coole Teil. Jeff Elkner, ein Highschool-Lehrer in Virginia,
nahm sich meines Buches an und übersetzte es in Python. Er schickte mir eine
Kopie seiner Übersetzung, und ich machte die ungewöhnliche Erfahrung, Python
zu lernen, indem ich mein eigenes Buch las.

Jeff und ich überarbeiteten das Buch, fügten eine Fallstudie von Chris Meyers
ein und veröffentlichten im Jahr 2001 How to Think Like a Computer Scientist:
Learning with Python, ebenfalls unter der GNU Free Documentation License. Als
Green Tea Press veröffentlichte ich das Buch und begann mit dem Verkauf von
gedruckten Exemplaren über Amazon.com und College-Buchläden. Andere Bücher
von Green Tea Press sind unter greenteapress.com erhältlich.

Im Jahr 2003 begann ich am Olin College zu unterrichten, und ich durfte zum ersten
Mal Python unterrichten. Der Unterschied zu Java war frappierend. Die Studenten
hatten weniger Mühe, lernten mehr, arbeiteten an interessanteren Projekten und
hatten allgemein viel mehr Spaß.

greenteapress.com

A.4. Mitwirkende an „Think Python“ 251

In den letzten fünf Jahren habe ich das Buch weiterentwickelt, Fehler korrigiert,
einige der Beispiele verbessert und Material hinzugefügt, insbesondere Übungen.
Im Jahr 2008 begann ich mit der Arbeit an einer umfassenden Überarbeitung –
zur gleichen Zeit wurde ich von einem Redakteur der Cambridge University Press
kontaktiert, der an der Veröffentlichung der nächsten Ausgabe interessiert war.
Gutes Timing!

Ich wünsche Ihnen viel Spaß bei der Arbeit mit diesem Buch und hoffe, dass es
Ihnen hilft, zu programmieren und zumindest ein bisschen wie ein Informatiker zu
denken.

A.3.2 Danksagungen für „Think Python“

(Allen B. Downey)

Zunächst und vor allem danke ich Jeff Elkner, der mein Java-Buch in Python
übersetzt hat, was dieses Projekt ins Rollen brachte und mich in die Sprache
einführte, die sich als meine Lieblingssprache herausgestellt hat.

Ich danke auch Chris Meyers, der mehrere Abschnitte zu How to Think Like a
Computer Scientist beigetragen hat.

Und ich danke der Free Software Foundation für die Entwicklung der GNU Free
Documentation License, die meine Zusammenarbeit mit Jeff und Chris erst möglich
gemacht hat.

Ich danke auch den Redakteuren bei Lulu, die an How to Think Like a Computer
Scientist gearbeitet haben.

Ich danke allen Studierenden, die an früheren Fassungen dieses Buches mitgear-
beitet haben, und allen Autoren (die in einem Anhang aufgeführt sind), die mir
Korrekturen und Vorschläge zugesandt haben.

Und ich danke meiner Frau Lisa für ihre Arbeit an diesem Buch, an Green Tea
Press und an allem anderen auch.

Allen B. Downey
Needham MA

Allen Downey ist außerordentlicher Professor für Computerwissenschaften am
Franklin W. Olin College of Engineering.

A.4 Mitwirkende an „Think Python“

(Allen B. Downey)

Mehr als 100 aufmerksame Leser haben in den letzten Jahren Vorschläge und
Korrekturen eingesandt. Ihre Beiträge und ihre Begeisterung für dieses Projekt
waren eine große Hilfe.

Einzelheiten über die Art der Beiträge dieser Personen finden Sie im Text „Think
Python“.

252 Anhang A. Mitwirkende

Lloyd Hugh Allen, Yvon Boulianne, Fred Bremmer, Jonah Cohen, Michael Conlon,
Benoit Girard, Courtney Gleason and Katherine Smith, Lee Harr, James Kaylin,
David Kershaw, Eddie Lam, Man-Yong Lee, David Mayo, Chris McAloon, Matthew
J. Moelter, Simon Dicon Montford, John Ouzts, Kevin Parks, David Pool, Michael
Schmitt, Robin Shaw, Paul Sleigh, Craig T. Snydal, Ian Thomas, Keith Verheyden,
Peter Winstanley, Chris Wrobel, Moshe Zadka, Christoph Zwerschke, James Mayer,
Hayden McAfee, Angel Arnal, Tauhidul Hoque and Lex Berezhny, Dr. Michele
Alzetta, Andy Mitchell, Kalin Harvey, Christopher P. Smith, David Hutchins, Gregor
Lingl, Julie Peters, Florin Oprina, D. J. Webre, Ken, Ivo Wever, Curtis Yanko, Ben
Logan, Jason Armstrong, Louis Cordier, Brian Cain, Rob Black, Jean-Philippe
Rey at Ecole Centrale Paris, Jason Mader at George Washington University made
a number Jan Gundtofte-Bruun, Abel David and Alexis Dinno, Charles Thayer,
Roger Sperberg, Sam Bull, Andrew Cheung, C. Corey Capel, Alessandra, Wim
Champagne, Douglas Wright, Jared Spindor, Lin Peiheng, Ray Hagtvedt, Torsten
Hübsch, Inga Petuhhov, Arne Babenhauserheide, Mark E. Casida, Scott Tyler,
Gordon Shephard, Andrew Turner, Adam Hobart, Daryl Hammond and Sarah
Zimmerman, George Sass, Brian Bingham, Leah Engelbert-Fenton, Joe Funke,
Chao-chao Chen, Jeff Paine, Lubos Pintes, Gregg Lind and Abigail Heithoff, Max
Hailperin, Chotipat Pornavalai, Stanislaw Antol, Eric Pashman, Miguel Azevedo,
Jianhua Liu, Nick King, Martin Zuther, Adam Zimmerman, Ratnakar Tiwari,
Anurag Goel, Kelli Kratzer, Mark Griffiths, Roydan Ongie, Patryk Wolowiec, Mark
Chonofsky, Russell Coleman, Wei Huang, Karen Barber, Nam Nguyen, Stéphane
Morin, Fernando Tardio, and Paul Stoop.

Anhang B

Hinweise zum Urheberrecht

Dieses Werk ist lizenziert unter einer Creative Common Attribution-NonCommercial-
ShareAlike 3.0 Unported License. Diese Lizenz ist verfügbar unter

https://creativecommons.org/licenses/by-nc-sa/3.0/

Ich hätte es vorgezogen, das Buch unter der weniger restriktiven CC-BY-SA-
Lizenz zu lizenzieren. Aber leider gibt es ein paar skrupellose Organisationen,
die nach frei lizenzierten Büchern suchen und diese finden und dann praktisch
unveränderte Kopien der Bücher über einen Print-on-Demand-Dienst wie LuLu
oder KDP veröffentlichen und verkaufen. KDP hat (dankenswerterweise) eine
Richtlinie eingeführt, die den Wünschen des eigentlichen Urheberrechtsinhabers
Vorrang gegenüber einem Nicht-Urheberrechtsinhaber einräumt, der versucht, ein
frei lizenziertes Werk zu veröffentlichen. Leider gibt es viele Print-on-Demand-
Dienste, und nur wenige haben eine so gut durchdachte Politik wie KDP.

Bedauerlicherweise sah ich mich dazu gezwungen, der Lizenz für dieses Buch das
NC-Element hinzugefügt, um mir einen Rechtsanspruch zu sichern, falls jemand
versucht, dieses Buch zu vervielfältigen und es kommerziell zu verkaufen. Leider
schränkt das Hinzufügen des NC-Elements die Nutzung dieses Materials ein. Daher
habe ich diesen Abschnitt des Dokuments hinzugefügt, um bestimmte Fälle zu
beschreiben, in denen ich im Voraus meine Erlaubnis gebe, das Material in diesem
Buch in Situationen zu verwenden, die manche als kommerziell ansehen könnten.

• Wenn Sie eine begrenzte Anzahl von Kopien des gesamten Buches oder eines
Teils davon zur Verwendung in einem Kurs drucken (z. B. als Kurspaket),
erhalten Sie für diesen Zweck eine CC-BY-Lizenz für diese Materialien.

• Wenn Sie als Hochschullehrer dieses Buch in eine andere Sprache als Englisch
übersetzen und mit dem übersetzten Buch unterrichten, können Sie sich mit
mir in Verbindung setzen, und ich gewähre Ihnen eine CC-BY-SA-Lizenz
für diese Materialien im Hinblick auf die Veröffentlichung Ihrer Überset-
zung. Insbesondere wird Ihnen gestattet, das übersetzte Buch kommerziell zu
verkaufen.

https://creativecommons.org/licenses/by-nc-sa/3.0/

254 Anhang B. Hinweise zum Urheberrecht

Wenn Sie beabsichtigen, das Buch zu übersetzen, sollten Sie sich mit mir in Verbin-
dung setzen, damit wir sicherstellen können, dass Sie alle zugehörigen Kursmateria-
lien haben, damit Sie diese ebenfalls übersetzen können.

Natürlich können Sie mich gerne kontaktieren und um Erlaubnis bitten, wenn Ihnen
diese Klauseln nicht ausreichen. In jedem Fall wird die Erlaubnis zur Wiederver-
wendung und zum umarbeiten dieses Materials erteilt, solange ein klarer Mehrwert
oder Nutzen für Schüler oder Lehrer durch die Bearbeitung entsteht.

Charles Severance
www.dr-chuck.com
Ann Arbor, MI, USA
September 9, 2013

Index

abgeleitete Klasse 208, 210
Akkumulator 75

Summe 73
Aktualisierung 67

Element 108
slice 109

Algorithmus 64
Alias 115, 116, 122
alternative Ausführung 41
and (Operator) 38
Anführungszeichen 19, 20, 81
Anweisung 22, 34

bedingte 39, 48
break 69
continue 70
if 39
import 65
pass 40
try 99
while 68
zusammengesetzte 40
Zuweisung 21, 27

API-Schlüssel 185
append (Methode) 109, 117
Argument 51, 58, 61, 64, 117

Liste 117
optional 84, 114
Schlüsselwort 139

arithmetischer Operator 23
Attribut 210, 236
Auffangen einer Ausnahme 101
Aufruf einer Methode 84, 89
Ausdruck 23, 25, 33

boolescher 37, 47
Auslagern von Code 82
Auslassungspunkte (Ellipse) 58
Ausnahme 33, 45

IndexError 79, 106
IOError 99
KeyError 126
TypeError 78, 81, 138
ValueError 29, 141

Auswertung 25, 33
Auswertungsreihenfolge 25, 33

Basisklasse 208, 210
BeautifulSoup 173, 176, 200
bedingte Anweisung 39, 48
bedingte Ausführung 39
Bedingung 40, 48, 68

verkettete 41, 47
verschachtelte 42, 48

Benutzereingaben 28
Bild

jpg 166
binary 169
Binärdatei 169
Bisektion (Debugging) 75
Block 47

Einrückung 40
bool (Datentyp) 38
boolescher Ausdruck 37, 47
boolescher Operator 82
break (Anweisung) 69
Buchstabenhäufigkeit 148
Bug 16

Cache 237
Central Processing Unit 16
Character 77
choice (Funktion) 57
class (Schlüsselwort) 202
close (Methode) 101
connect (Funktion) 213
Constraint 236

256 Index

continue (Anweisung) 70
count (Methode) 85
CPU 16
curl 176
Cursor 236
cursor (Funktion) 213

Datei 91
lesen 94
schreiben 100
öffnen 92

Dateihandler 92
Datenbank 211

Index 211
Datenbankenbrowser 236
Datenbanknormalisierung 236
Datenstruktur 146
Datentyp 19, 20, 34, 205

bool 38
Datei 91
dict 125
Liste 105
Tupel 137

Debugging 14, 32, 47, 64, 88, 101, 118,
134, 146

Bisektion 75
def (Schlüsselwort) 58
Definition

Funktion 58
Dekrementieren 68, 75
del (Operator) 110
Delimiter 114, 122
Destruktor 206, 210
deterministisch 56, 64
dict (Funktion) 125
Dictionary 125, 134, 142

Iteration durch 131
Traversieren 143

dir (Funktion) 205
Division

Fließkomma 24
Doppelpunkt 58
DSU-Muster 139, 146

E-Mail-Adresse 142
Einrückung 40, 58
Einzelzeichen 77
Element 89, 105, 122
Element löschen 110
Elementaktualisierung 108

ElementTree
find 180
findall 181
fromstring 180
get 181

ElementTree XML-Parser 180, 186
Elementzuweisung 81, 106, 138
elif (Schlüsselwort) 42
Ellipse (Auslassungspunkte) 58
else (Schlüsselwort) 41
Endlosschleife 69, 75
experimentelles Debugging 15
extend (Methode) 109
eXtensible Markup Language

(XML) 187

False (Wahrheitswert) 38
Fehler

Laufzeit 33
semantischer 17, 20, 33
syntax 32

Fehlermeldung 20, 33
Filtermuster 95
findall (Methode) 152
Flag 89
Fließkommadivision 24
float (Funktion) 53
flow control 168
Flusskontrolle 168
Folge 77, 89, 105, 113, 137, 145
for-Schleife 71, 79, 107
Format-String 86, 89
Formatierungsoperator 89
Formatierungszeichen 86, 89
Fremdschlüssel 236
Funktion 58, 65

choice 57
connect 213
cursor 213
dict 125
float 53
int 53
len 79, 126
list 113
log 55
open 92, 99
print 17
randint 57
random 56
repr 101

Index 257

reversed 146
sorted 146
sqrt 56
str 53
tuple 138

Funktion mit Rückgabewert 62
Funktion ohne Rückgabewert, void 62
Funktionen 63
Funktionsargument 61
Funktionsaufruf 51, 65
Funktionsdefinition 58, 59, 65
Funktionskopf 58, 65
Funktionsobjekt 59, 65
Funktionsparameter 61
Funktionsrumpf 58, 64

Ganzzahl 20, 33
Geocoding 187
geschweifte Klammern 126
get (Methode) 128
Gleitkommazahl 20, 33
Google 187

Map 237
Page-Ranking 240

greedy 161, 171
greedy Matching 161
grep 159, 161
Groß-/Kleinschreibung 33
guardian pattern 45

Hardware 2
Architektur 2

hashbar 145, 147
Hashfunktion 134
Hashtabelle 127, 134
Hauptspeicher 17
High-Level-Sprache 17
Histogramm 128, 135
Hochsprache 17
HTML 173, 200

parsen 171
Häufigkeit 128

Buchstaben 148

identisch 122
Identität 116
Idiom 129, 131
if (Anweisung) 39
Implementation 128, 135
Implementierung 128, 135

Importanweisung 65
in (Operator) 82, 107, 127
Index 78, 89, 106, 122, 125, 236

beginnt mit Null 78, 106
mit Schleifen 107
negativ 79
slice 80, 109

IndexError 79, 106
Indexoperator 78, 106, 138
Initialisierung 68
Inkrementieren 68, 75
Instanz 203
int (Funktion) 53
interaktiver Modus 6, 17, 22, 62
Interpretieren 17
IOError 99
is (Operator) 115
items (Methode) 142
Iteration 67, 68, 75

durch Dictionary 131
durch Zeichenketten 82
mit Indizes 107

JavaScript Object Notation 182, 187
join (Methode) 114
jpg 166
JSON 182, 187

Key 125, 135
Key-Value-Paar 125, 135, 142
KeyError 126
keys (Methode) 131
Klammern

Argument in 51
geschweift 126
leer 58, 84
Parameter in 61
Tupeln innerhalb 137
Vorrangregeln überschreiben 25

Klasse 203, 210
float 20
int 20
str 20

Kommentar 30, 33
Kompilieren 17
Konkatenation 27, 33, 81, 114

Liste 108, 117
Konsistenzprüfung 134
Konstante 27
konstruieren 203

258 Index

Konstruktor 206, 210
Kopieren

slice 81, 109
Kurzschlussauswertung 45

Laufzeitfehler 33
Lebenszyklus von Objekten 206
leere Liste 106
leere Zeichenkette 89, 114
len (Funktion) 79, 126
list

Funktion 113
list (Objekt) 198
Liste 105, 113, 122, 145

als Argument 117
Element 106
Index 107
Konkatenation 108, 117
Kopieren 109
leer 106
Methode 109
Operation 108
slice 109
Traversieren 107, 122
verschachtelt 105, 108
Wiederholung 108

log (Funktion) 55
logischer Operator 37, 38
Logischer Schlüssel 236
Lookup 135
Low-Level-Sprache 17
Löschen, Listenelement 110

Maschinencode 17
math (Modul) 55
Menge, Zugehörigkeit 127
Methode 84, 89, 210

append 109, 117
close 101
count 85
extend 109
get 128
items 142
join 114
keys 131
Listen 109
pop 110
remove 111
sort 110, 118, 139
split 113, 142

values 127
void 110
Zeichenkette 89

Modul 55
random 56
sqlite3 213

Modulo (Operator) 26, 33
Modulobjekt 55, 65
Muster

Decorate-Sort-Undecorate 139
DSU 139
Filter 95
Suche 89
Swap 140
Wächter 45, 88

negativer Index 79
Newline 29, 93, 100, 101
non-greedy 171
None (Wert) 62, 73, 110, 111
Normalisierung 236
not (Operator) 38
Null, Index beginnt mit 78, 106

OAuth 185
Objekt 81, 89, 115, 116, 122, 203, 210

Funktion 59
Objekt-Lebenszyklus 206
objektorientiert 197
open (Funktion) 92, 99
OpenStreetMap 237
Operand 23, 33
Operator 33

and 38
arithmetisch 23
boolescher 82
del 110
Formatierung 89
in 82, 107, 127
indexbasierter Zugriff 78, 106, 138
is 115
logischer 37, 38
Modulo 26, 33
not 38
or 38
slice 80, 109, 117, 138
Vergleich 38
Zeichenkette 27

optionales Argument 84, 114
or (Operator) 38

Index 259

Packing 141
Paket 55
Parameter 61, 65, 117
Parsen 17

HTML 173, 200
pass (Anweisung) 40
Persistenz 91
pi (Konstante) 56
Plausibilitätsprüfung 134
pop (Methode) 110
Port 176
Portabilität 17
Primärschlüssel 236
print (Funktion) 17
Problemlösung 4, 17
Programm 12, 17
Programmablauf 60, 65, 68
Programmbibliothek 54
Programmiersprache 5
Prompt 17, 28
Prozessor 16
pseudozufällig 56, 65
Punktnotation 55, 65, 84
Python 2.0 24
Python 3.0 24

QS 99, 102
Qualitätssicherung 99, 102
Quellcode 17

randint (Funktion) 57
random (Funktion) 56
random (Modul) 56
re (Modul) 149
Referenz 116, 117, 122

Alias 116
Regex 149, 161

findall 152
runde Klammern 155, 171
search 149
Wildcard 150
Zeichenklassen 153

regulärer Ausdruck 149, 161
Relation 236
remove (Methode) 111
repr (Funktion) 101
reversed (Funktion) 146
Romeo and Juliet 122, 129, 132, 139
runde Klammern

regulärer Ausdruck 155, 171

Rückgabewert 51, 65
Rückgabewert einer Funktion 62

Schleife 68
endlos 69
for 71, 79, 107
Maximum 73
Minimum 73
mit Indizes 107
mit Zeichenketten 82
Traversieren 79
verschachtelt 129, 135
while 68
über Dictionary 131

Schleifen und Zählen 82
Schleifenzähler 75, 82, 89, 94
Schlüssel 125, 135
Schlüssel-Wert-Paar 125, 135, 142
Schlüsselwort 21, 22, 33

class 202
def 58
elif 42
else 41

Schlüsselwortargument 139
Sekundärspeicher 17, 91
Semantik 17
semantischer Fehler 17, 20, 33
Service Oriented Architecture 187
Set, Zugehörigkeit 127
short circuit 48
short-circuit evaluation 45
sine (Funktion) 55
Singleton 137, 147
Skript 10
Skriptmodus 22, 62
slice

Aktualisierung 109
Kopieren 81, 109
Liste 109
Tupel 138
Zeichenkette 80

slice-Operator 80, 109, 117, 138
SOA 187
Socket 176
sort (Methode) 110, 118, 139
sorted (Funktion) 146
Spider 176
split (Methode) 113, 142
Sprache

Programmieren 5

260 Index

sqlite3 (Modul) 213
sqrt (Funktion) 56
Standardbibliothek 54
Steinlaus 16
str (Funktion) 53
Stringrepräsentation 101
Suchmuster 89
Swap (Muster) 140
Syntaxfehler 32

Teilbarkeit 26
Teilzeichenkette 89
Textdatei 102
time 167
time.sleep (Funktion) 167
Traceback 44, 47, 48
Traversieren 79, 89, 128, 131, 139

Dictionary 143
Liste 107

trigonometrische Funktion 55
True (Wahrheitswert) 38
try (Anweisung) 99
Tupel 137, 145, 147, 236

als Schlüssel in Dictionarys 145
geklammert 145
Singleton 137
slice 138
Vergleich 139
Zuweisung 140

Tupelzuweisung 147
tuple (Funktion) 138
TypeError 78, 81, 138
typographischer Fehler 15
Typumwandlung 53

Umwandlung
Datentyp 53

Unicode 216
Unpacking 141
Unterstrich 22
Unveränderlichkeit 81, 89, 116, 137,

145
urllib

Bild 166
use before def 33, 60

ValueError 29, 141
values (Methode) 127
Variable 21, 34

aktualisieren 67

Vererbung 208, 210
Vergleich

Tupel 139
Zeichenkette 82

vergleichbar 137, 146
Vergleichsoperator 38
verkettete Bedingung 41, 47
verkürzte Auswertung 45, 48
verschachtelte Bedingung 42, 48
verschachtelte Liste 105, 108, 122
verschachtelte Schleifen 129, 135
Verzweigung 41, 47
Veränderbarkeit 81, 106, 109, 116, 137,

145
Visualisierung

Map 237
Netzwerke 240
Page-Ranking 240

void-Funktion 62, 65
void-Methode 110
Vorgehensmodell 15
Vorrang 34
Vorrangregeln 25, 34

Web-Scraping 171, 176
Webservice 187
Wert 19, 34, 115, 116, 135

False 38
None 62, 73, 110, 111
True 38

wget 176
while-Schleife 68
Whitespace 47, 64, 101
Wiederholung

Liste 108
Wildcard 150, 161
Wächter-Muster 45, 88

XML 187

Zeichenkette 19, 20, 34, 113, 145
find 150
leer 114
Methode 84, 89
Operation 27
slice 80
split 155
startswith 150
unveränderlich 81
Vergleich 82

Index 261

Zeilenendezeichen 101
Zufallszahl 56
Zugehörigkeit

Dictionary 127
Menge (Set) 127

Zugriff 106
Zugriff, indexbasiert 78, 106, 138

zusammengesetzte Anweisung 40, 48
Zusammengesetzte Datentypen 105
Zuweisung 21, 27, 33, 106

Element 81, 106, 138
Tupel 140, 147

Zählen mit Schleifen 82

	Vorwort
	Inhaltsverzeichnis
	1 Warum sollte man Programmieren lernen?
	1.1 Kreativität und Motivation
	1.2 Der Aufbau eines Computers
	1.3 Programmierung verstehen
	1.4 Wörter und Sätze
	1.5 Konversation mit Python
	1.6 Interpreter und Compiler
	1.7 Ein Programm schreiben
	1.8 Was ist ein Programm?
	1.9 Die Bausteine von Programmen
	1.10 Was kann schon schief gehen?
	1.11 Debugging
	1.12 Der Lernprozess
	1.13 Glossar
	1.14 Übungen

	2 Bezeichner, Ausdrücke und Anweisungen
	2.1 Werte und Datentypen
	2.2 Werte benennen
	2.3 Bezeichner und Schlüsselwörter
	2.4 Anweisungen
	2.5 Operatoren und Operanden
	2.6 Ausdrücke
	2.7 Reihenfolge der Auswertung
	2.8 Division mit Rest
	2.9 Operationen mit Zeichenketten
	2.10 Zuweisungen
	2.11 Typen
	2.12 Benutzereingaben
	2.13 Kommentare
	2.14 Wählen sprechender Variablennamen
	2.15 Debugging
	2.16 Glossar
	2.17 Übungen

	3 Bedingte Ausführung
	3.1 Boolesche Ausdrücke
	3.2 Logische Operatoren
	3.3 Bedingte Ausführung
	3.4 Alternative Ausführung
	3.5 Verkettete Bedingungen
	3.6 Verschachtelte Bedingungen
	3.7 Abfangen von Ausnahmen mit try und except
	3.8 Verkürzte Auswertung logischer Ausdrücke
	3.9 Debugging
	3.10 Glossar
	3.11 Übungen

	4 Funktionen
	4.1 Funktionsaufrufe
	4.2 Built-in-Funktionen
	4.3 Funktionen zur Typumwandlung
	4.4 Die Standardbibliothek
	4.5 Mathematische Funktionen
	4.6 Zufallszahlen
	4.7 Definition neuer Funktionen
	4.8 Definitionen und deren Verwendung
	4.9 Programmablauf
	4.10 Parameter und Argumente
	4.11 Funktionen mit und ohne Rückgabewert
	4.12 Wozu Funktionen?
	4.13 Debugging
	4.14 Glossar
	4.15 Übungen

	5 Iteration
	5.1 Aktualisieren von Variablen
	5.2 Die while-Schleife
	5.3 Abbrechen einer Iteration mit continue
	5.4 for-Schleifen
	5.5 Typische Anwendungen von Schleifen
	5.5.1 Zählen und Summieren
	5.5.2 Maximum und Minimum ermitteln

	5.6 Debugging
	5.7 Glossar
	5.8 Übungen

	6 Zeichenketten
	6.1 Was ist eine Zeichenkette?
	6.2 Länge einer Zeichenkette
	6.3 Traversieren einer Zeichenkette
	6.4 Der slice-Operator
	6.5 Zeichenketten sind unveränderlich
	6.6 Zählen mit Schleifen
	6.7 Der in-Operator
	6.8 Vergleich von Zeichenketten
	6.9 Funktionen von Zeichenketten
	6.10 Parsen von Zeichenketten
	6.11 Formatierte Zeichenketten
	6.12 Debugging
	6.13 Glossar
	6.14 Übungen

	7 Dateien
	7.1 Öffnen von Dateien
	7.2 Textdateien
	7.3 Lesen von Dateien
	7.4 Suchen in Dateien
	7.5 Wahl des Dateinamens durch den Benutzer
	7.6 Verwendung von try, except und open
	7.7 Schreiben von Dateien
	7.8 Debugging
	7.9 Glossar
	7.10 Übungen

	8 Listen
	8.1 Listen sind Folgen von Werten
	8.2 Listen sind veränderbar
	8.3 Traversieren einer Liste
	8.4 Listen-Operationen
	8.5 Listen-Slicing
	8.6 Listenmethoden
	8.7 Löschen von Elementen
	8.8 Listen und Funktionen
	8.9 Listen und Zeichenketten
	8.10 Parsen von Zeilen
	8.11 Objekte und Werte
	8.12 Aliase
	8.13 Listen als Funktionsargumente
	8.14 Debugging
	8.15 Glossar
	8.16 Übungen

	9 Dictionarys
	9.1 Was ist ein Dictionary
	9.2 Ein Dictionary zum Zählen verwenden
	9.3 Dictionarys und Dateien
	9.4 Schleifen und Dictionarys
	9.5 Fortgeschrittene Textanalyse
	9.6 Debugging
	9.7 Glossar
	9.8 Übungen

	10 Tupel
	10.1 Tupel sind unveränderbar
	10.2 Vergleichen von Tupeln
	10.3 Tupel-Zuweisung
	10.4 Dictionarys und Tupel
	10.5 Mehrfachzuweisung mit Dictionarys
	10.6 Worthäufigkeit zählen
	10.7 Tupel als Schlüssel in Dictionarys
	10.8 Zeichenketten, Listen und Tupel
	10.9 Debugging
	10.10 Glossar
	10.11 Übungen

	11 Reguläre Ausdrücke
	11.1 Wildcards
	11.2 Extrahieren von Daten
	11.3 Kombination von Suchen und Extrahieren
	11.4 Escapezeichen
	11.5 Zusammenfassung
	11.6 Bonuskapitel für Unix/Linux-Benutzer
	11.7 Debugging
	11.8 Glossar
	11.9 Übungen

	12 Vernetzen von Programmen
	12.1 Hypertext Transfer Protocol – HTTP
	12.2 Der einfachste Webbrowser der Welt
	12.3 Abrufen eines Bildes über HTTP
	12.4 Abrufen von Webseiten mit urllib
	12.5 Lesen von Binärdateien mit urllib
	12.6 Parsen von HTML und Erkunden des Webs
	12.7 Parsen von HTML mit regulären Ausdrücken
	12.8 Parsen von HTML mit BeautifulSoup
	12.9 Bonuskapitel für Unix-/Linux-User
	12.10 Glossar
	12.11 Übungen

	13 Web-Services
	13.1 eXtensible Markup Language – XML
	13.2 Parsen von XML
	13.3 Iterieren durch Knoten
	13.4 JavaScript Object Notation – JSON
	13.5 Parsen von JSON
	13.6 Application Programming Interfaces – API
	13.7 Sicherheit und API-Nutzung
	13.8 Glossar
	13.9 Anwendungsbeispiel 1: Google Geocoding Web Service
	13.10 Anwendungsbeispiel 2: Twitter

	14 Objektorientierte Programmierung
	14.1 Verwaltung größerer Programme
	14.2 Schon gehts los
	14.3 Handhabung von Objekten
	14.4 Betrachtung von außen
	14.5 Unterteilen eines Problems
	14.6 Unser erstes Python-Objekt
	14.7 Klassen als Datentypen
	14.8 Lebenszyklus von Objekten
	14.9 Mehrere Instanzen
	14.10 Vererbung
	14.11 Zusammenfassung
	14.12 Glossar

	15 Datenbanken und SQL
	15.1 Was ist eine Datenbank?
	15.2 Datenbankkonzepte
	15.3 Datenbankbrowser für SQLite
	15.4 Erstellen einer Datenbanktabelle
	15.5 Zusammenfassung von SQL
	15.6 Auslesen von Twitter-Daten mithilfe einer Datenbank
	15.7 Grundlagen der Datenmodellierung
	15.8 Arbeiten mit mehreren Tabellen
	15.8.1 Constraints in Datenbanktabellen
	15.8.2 Abrufen und Einfügen eines Datensatzes
	15.8.3 Speichern der Freundschaftsbeziehung

	15.9 Drei Arten von Schlüsseln
	15.10 Abrufen von Daten mit JOIN
	15.11 Zusammenfassung
	15.12 Debugging
	15.13 Glossar

	16 Visualisierung von Daten
	16.1 Erstellen einer OpenStreetMap aus Geodaten
	16.2 Visualisierung von Netzwerken
	16.3 Visualisierung von Maildaten

	A Mitwirkende
	A.1 Mitwirkende an „Python for Everybody``
	A.2 Mitwirkende an „Python for Informatics``
	A.3 Vorwort von „Think Python``
	A.3.1 Die seltsame Geschichte von „Think Python``
	A.3.2 Danksagungen für „Think Python``

	A.4 Mitwirkende an „Think Python``

	B Hinweise zum Urheberrecht
	Index

