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Figure 1. (Left) Primitive assemblies inferred by our method capture a wide range of shapes, including hollow forms (vase), curved toroidal
parts (bike), intricate geometry (ladder, robot), and smooth organic shapes (crab). (Right) Our approach shifts the reconstruction–parsimony
Pareto frontier: compared to state-of-the-art methods, Marching Primitives [18] (MPS) and Primitive Anything [45] (PA), we achieve
markedly lower reconstruction error using significantly fewer primitives.

Abstract

We introduce a framework for converting 3D shapes into
compact and editable assemblies of analytic primitives, di-
rectly addressing the persistent trade-off between recon-
struction fidelity and parsimony. Our approach combines
two key contributions: a novel primitive, termed SuperFrus-
tum, and an iterative fiting algorithm, Residual Primitive
Fitting (ResFit). SuperFrustum is an analytical primitive
that is simultaneously (1) expressive, being able to model
various common solids such as cylinders, spheres, cones &
their tapered and bent forms, (2) editable, being compactly
parameterized with 8 parameters, and (3) optimizable, with
a sign distance field differentiable w.r.t. its parameters al-
most everywhere. ResFit is an unsupervised procedure that
interleaves global shape analysis with local optimization,
iteratively fitting primitives to the unexplained residual of
a shape to discover a parsimonious yet accurate decompo-
sitions for each input shape. On diverse 3D benchmarks,
our method achieves state-of-the-art results, improving IoU
by over 9 points while using nearly half as many primitives
as prior work. The resulting assemblies bridge the gap be-
tween dense 3D data and human-controllable design, pro-

ducing high-fidelity and editable shape programs.

1. Introduction
Recent breakthroughs in 3D generation have enabled the
creation of high-quality assets from simple prompts [15,
38]. However, while visually impressive, these outputs are
often structurally unorganized, posing challenges for down-
stream applications like animation, rigging, and interactive
editing. Primitive-based representations offer a compelling
alternative by distilling complex geometry into a compact
assembly of interpretable, analytic parts. This approach
yields editable assets and aligns with cognitive findings
that humans perceive objects as compositions of simpler
forms [3], providing a structured understanding that dense
representations lack. The central challenge is converting
these unstructured 3D assets into meaningful, primitive-
based designs.

Inferring a primitive assembly from a raw 3D shape,
however, presents a fundamental trade-off between recon-
struction fidelity and program parsimony. Approaches that
prioritize high fidelity often yield dense, redundant assem-
blies of overlapping primitives [1, 4, 8, 27, 34]. Conversely,



Round profileTaper

Bulge 3D Dilation

OnionAnisotropic Scale SuperFrustum Variations

Figure 2. SuperFrustum— An Expressive, Compact & Differentiable Primitive. SuperFrustum is a unified analytic SDF primitive
with only 8 parameters controlling dilation, taper, bulge, onion-like hollowing, profile roundness, and axial scaling. Its SDF is C0-
continuous and fully differentiable (almost eveywhere) with respect to all parameters, enabling robust inverse modeling and gradient-based
optimization. As shown on the right, these parameters allow a single formulation to morph smoothly across common solids—cuboids,
cylinders, cones, spheres, and toroidal variants—and to produce more complex shapes such as bent, hollow, or smoothly capped forms.

methods that enforce parsimony may fail to capture fine ge-
ometric details or curved structures [18, 26, 39]. Achieving
a representation that is simultaneously expressive, compact,
and editable remains an open challenge.

This persistent trade-off can be attributed to two factors.
First, commonly used primitive families such as cuboids,
superquadrics, or ellipsoids [2] may require a large num-
ber of instances to model the rich shape variations in 3D
assets. Second, the inference procedures themselves have
distinct limitations. Methods that first commit to a com-
plete segmentation of the input rely on a fixed partition that
may not align with what the primitives can efficiently repre-
sent [19, 35, 40, 49]. This makes the process brittle, as any
initial segmentation errors propagate directly to the final as-
sembly. On the other hand, optimization-driven approaches
that fit a large ”soup” of primitives from scratch must navi-
gate a highly non-convex loss landscape [4, 28, 36].

To address these limitations, we introduce a framework
that marries a highly expressive primitive with a robust in-
ference strategy. At the core of our approach is the SU-
PERFRUSTUM, an analytic primitive that fills a key gap in
prior work: existing primitive families typically satisfy only
one or two of the critical desiderata—expressivity, editabil-
ity, and optimizability. In contrast, SuperFrustum (1) spans
common solids such as cylinders, cones, spheres, and their
tapered or bent variants; (2) is compactly parameterized
with just 8 parameters; and (3) admits a signed-distance
field that is differentiable with respect to all parameters, en-
abling smooth blending and effective inverse modeling. In-
triguingly, its design builds on analytic functions uncovered
by the Shadertoy and Demoscene communities in their pur-
suit of highly expressive analytic forms with minimal de-
scription length [22–24, 29]. We find that, when carefully
adapted, these formulations are exceptionally well-suited
for inverse modeling.

To achieve parsimonious assemblies, an expressive prim-
itive must be paired with an equally effective inference al-
gorithm. We propose RESIDUAL PRIMITIVE FITTING
(RESFIT), an unsupervised procedure that tightly inter-
leaves global shape analysis with local primitive optimiza-
tion to better navigate the highly non-convex reconstruction
loss. Instead of optimizing a large set of primitives jointly
from scratch, ResFit first analyzes the input geometry to
propose initial structures based on global cues. These prim-
itives are then refined via gradient descent to conform to the
local geometry. The resulting assembly is subtracted from
the target shape, and the process repeats on the unexplained
residual. By alternating between proposing global structure
and optimizing local parameters, ResFit allows these two
signals to mutually inform each other, producing assemblies
that are both compact and high-fidelity.

Our approach sets a new state-of-the-art on diverse
3D benchmarks. It consistently produces higher-fidelity
reconstructions—improving IoU by over 9 points—while
using nearly half the primitives of prior work, demonstrat-
ing a fundamental shift in the fidelity-parsimony frontier.
These results are enabled by our two primary contributions:

1. The SuperFrustum: A single compact analytic prim-
itive that spans a wide range of canonical volumetric
forms while remaining differentiable and suitable for
gradient-based optimization.

2. Residual Primitive Fitting (ResFit): An unsupervised
inference procedure that alternates between global shape
analysis and local primitive optimization to produce
compact and accurate assemblies.

Beyond reconstruction, we demonstrate how this frame-
work enables downstream applications including the gen-
eration of editable assets, the inference of structured CSG
programs, and the enrichment of semantic part segmenta-
tions. Code will be open-sourced upon acceptance.



2. Related Works
Inferring primitive assemblies. Existing approaches fall
into three main categories. Shape-analysis–driven meth-
ods [19, 35, 39, 40, 49] partition a shape into regions us-
ing geometric cues—such as curvature, thickness, or con-
vexity—and then fit primitives to these regions. They pro-
duce structurally coherent decompositions when the parti-
tions match the primitive family, but are often brittle across
diverse shapes and sensitive to tuning. Since the decompo-
sition is fixed and independent of what the primitives can
represent, these methods struggle to balance fidelity and
compactness. Optimization-driven methods directly adjust
primitive parameters to minimize reconstruction error for a
target shape [18, 28] or its renders [21]. While effective
on small assemblies, they often require many primitives for
high fidelity, as reconstruction loss tends to dominate dis-
entanglement and parsimony without strong initialization.
Learned methods predict primitive parameters or part lay-
outs using neural networks. Some methods train the net-
work on supervised data [10, 13, 20, 45] while others for-
mulate unsupervised reconstruction-based objectives to in-
fer the assemblies [4–6, 8, 11, 25–27, 32, 41, 50]. Such
models achieve high reconstruction accuracy on domains
similar to their training data but generalize poorly to novel
or complex objects.

Our approach combines the strengths of analysis- and
optimization-driven paradigms: rather than committing to
a single decomposition or a fixed primitive set, we inter-
leave analysis and optimization so that each informs the
other. This bidirectional formulation adapts the decomposi-
tion to the representational capacity of the primitives, pro-
ducing assemblies that remain both compact and geometri-
cally faithful.
Primitive representations. Primitive design has pro-
gressed from simple analytic forms to more expressive but
increasingly complex parameterizations. Early methods
used cuboids or cylinders [8, 36], which are interpretable
but limited in expressivity. Superquadrics [2, 7, 26] and al-
gebraic surfaces [44] enlarge the shape space but sacrifice
editability and cannot exactly reproduce canonical solids
such as cubes or cones—common in manufactured objects.
Recent generalized-cylinder–based primitives [31, 48] in-
crease flexibility yet still fall short in reconstruction fidelity.
Neural implicit part representations [8, 9, 27, 43] offer high
expressivity but are opaque, costly, and difficult to control
or reuse.

In parallel, the graphics and demoscene communities
have explored unified analytic primitives that morph be-
tween basic shapes within a single functional form [22–
24, 29]. These formulations were developed to minimize
scene-description size and enable real-time rendering, not
for inverse modeling or differentiable fitting. SuperFrustum
draws inspiration from this work, extending it to a broader
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Figure 3. ResFit infers parsimonious assemblies by interleaving
shape analysis and primitive optimization. Shape decomposition
provides initial primitives, which are refined with decomposition-
aware optimization. Residual unexplained volumes are then ex-
tracted and seeded with new primitives.

shape space and demonstrating its effectiveness for high-
fidelity primitive assembly inference.

3. Method
We define the primitive assembly inference task as follows:
given a 3D shape x, our goal is to infer a primitive assembly
z composed of analytic primitives whose execution E(z)
reconstructs the input shape. Each program z defines a se-
quence of primitives {fθi}

|z|
i=1 combined through composi-

tional operators to yield a closed surface E(z). Following
Occam’s razor, we seek programs that are both accurate and
compact. Formally, we aim to maximize the following ob-
jective:

z∗ = argmax
z

O(x, z), (1)

O(x, z) = R(x,E(z))− α|z|, (2)

where R measures the reconstruction accuracy between the
input shape x and the program execution E(z), |z| denotes
the program complexity (or number of primitives in the pro-
gram), and α controls the trade-off between accuracy and
compactness. Maximizing O thus favors concise programs
that explain the geometry with a small set of expressive
parts.

We now summarize the components of our method.
Section 3.1 introduces ResFit, our iterative fitting proce-
dure. Section 3.2 defines SuperFrustum, the unified analytic
primitive used in all assemblies. Section 3.3 describes our
MSD-based initialization strategy, and Section 3.4 details
the optimization process that balances geometric fidelity
with parsimony.



3.1. ResFit : Residual Primitive Fitting

Purely optimization-based methods often produce entan-
gled reconstructions, while analysis-based approaches par-
tition shapes without considering the primitive family’s rep-
resentational capacity. This creates a disconnect between
the geometric analysis (top-down) and the primitive rep-
resentation (bottom-up). Residual Primitive Fitting (Res-
Fit) bridges this divide by interleaving shape analysis and
assembly optimization, allowing each phase to inform the
other and yielding assemblies that are both compact and ge-
ometrically faithful.

Our procedure alternates between analysis and optimiza-
tion (Fig. 3). The analysis stage decomposes the current
residual volume into regions that seed new primitives. The
optimization stage then adjusts parameters to maximize
O (Eq. 1), separating explained geometry from remaining
residuals. This cycle repeats until O saturates or a fixed
iteration budget K is reached.

Several design choices ensure that the iterative loop can
correct both over- and under-parameterization. To prevent
over-parameterization, we seed few primitives per round
and employ parsimony-aware optimization: a soft regular-
izer penalizes redundancy during fitting, while hard prun-
ing removes parts that degrade O. To address under-
parameterization, primitives are optimized based on their
local support, and the full assembly is re-optimized in each
round. This enables self-correction as new parts are added,
allowing the system to converge toward a compact and co-
herent structure.

3.2. Expressive, Editable & Optimizable Primitive

Primitive Expressive Editable Optimizable

S. quadrics [26] ✗ ✓ ✓
Alg. Surf [44] ✓ ✗ ✓
Multi-type [45] ✓ ✓ ✗

SuperFrusta ✓ ✓ ✓

An ideal primitive
for inverse graph-
ics must be expres-
sive enough for di-
verse forms, ed-
itable via intuitive controls, and robustly optimizable. As
existing families often fall short, we introduce SuperFrusta,
a unified analytic primitive designed to meet all three
desiderata.

A SuperFrustum is the zero-level set of a signed distance
function

SF (p) = f(p; θ), θ = (s, r, d, t, b, o), (3)

with parameters θ = (s, r, d, t, b, o). These 8 scalars intu-
itively control anisotropic scale (s), profile rounding (r), di-
lation (d), taper (t), bulge (b), and onion/shell thickness (o),
as shown in Fig. 2 (further implementation details and the
reference code are provided in the supplementary). Its con-
tinuous, piecewise-C1 formulation spans a wide range of
shapes including cuboids, cylinders, cones, and tori, and is
differentiable almost everywhere, enabling stable gradient-
based fitting.

The complete primitive assembly z = E(z) is formed by
composing transformed SuperFrusta. Each instance i has a
pose (Ri, ti) and shape parameters θi, yielding a signed dis-
tance gi(p) = f(R⊤

i (p− ti); θi). The final implicit field F
is obtained by recursively applying a smooth union operator
U :

F1(p) = g1(p),

Fk+1(p) = U
(
Fk(p), gk+1(p); βk

)
,

(4)

where βk controls blend sharpness. The final surface is the
zero level set of F .

3.3. Shape Decomposition for SuperFrusta
ResFit initializes primitives from the volumetric regions
produced by a shape decomposition method, and its per-
formance improves when the chosen decomposition strat-
egy aligns with the primitive family’s expressiveness.
While recent work adapt Approximate Convex Decompo-
sition (ACD) [39] for initializing primitives, we find an
adapted variant of Morphological Shape Decomposition
(MSD) [28] is more suitable for initializing SuperFrusta.

MSD is an iterative “peel the thickest part first” tech-
nique. At each step, it finds the largest connected region
of roughly uniform thickness, extracts it, removes it from
the shape, and repeats on the residual. This process yields
a thickness-ordered set of volumetric regions for primitive
initialization, as shown in Figure 4.

Formally, given a signed distance field f(p), each iter-
ation k identifies the thickest interior region Γk by finding
the connected component (cc) that survives erosion up to a
radius |τ |:

Γk ⊆ {p∈Ω | f(p) ≤ τ}, Γk is a cc. (5)

The threshold τ ≤ 0 is the minimum value such that
Vol(Γk) meets a volume fraction κ. To recover its full spa-
tial extent, we dilate Γk back by the same radius, Rk =
Γk⊕B|τ |. This part Rk is recorded and subtracted from the
shape by updating the residual field:

fk+1(p) = fk(p) \Rk, f1 ≡ f. (6)

Repeating this process produces a sequence of candidate re-
gions {Rk} ordered by decreasing thickness.

MSD offers two key advantages over ACD [14, 40]
for this task. First, ACD’s convexity constraint over-
partitions non-convex structures that a single SuperFrustum
can model, such as the bent and hollow forms shown in Fig-
ure 4 (bottom). Second, MSD is substantially more robust
to the noisy surface artifacts present in the residual volumes
generated during our iterative fitting loop, making it better
suited for ResFit.

For each decomposed part volume, we instantiate a Su-
perFrustum. We initialize its parameters by using PCA on
points sampled within the volume. Cylindricity score along
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Figure 4. Morphological Shape Decomposition (MSD) iteratively extracts connected regions of similar thickness. Top: successive MSD
partitions of a input mesh. Bottom: MSD yields regions that form suitable initialization seeds for SuperFrusta —capturing non-convex
structures such as bicycle tires (left), a cat’s curved tail (center), and bowl rims (right). In contrast, CoACD over-partitions these regions
into many convex fragments, often using axis-aligned cuts that produce semantically misaligned parts.

the different PCA axis is used to select a canonical direc-
tion. Pose (R, t) and Scale is then inferred w.r.t the canoni-
cal axis. Refer to the supplementary for further details.

3.4. Decomposition-Aware Optimization

We optimize the assembly parameters to maximize the ob-
jective O (Eq. 1) in two stages. First, a differentiable phase
minimizes a corresponding loss via gradient descent. Sec-
ond, a discrete pruning phase removes primitives that de-
grade O. The differentiable loss comprises three com-
ponents addressing reconstruction fidelity, program parsi-
mony, and program quality.
Reconstruction. The reconstruction loss is a differentiable
surrogate for R in Eq. 2. We supervise the predicted oc-
cupancy field ô(p) = σ(−β F(p)) of the current assembly
against the ground-truth occupancy o(p). Samples p are
drawn uniformly from the shape’s volume and densely near
its surface. To better reconstruct thin, high-curvature struc-
tures, each point is weighted by the principal curvature κ(p)
of the target mesh. The loss is evaluated only within a spa-
tial mask M = {p | F(p) < τ} to focus optimization on
signals from the assembly’s vicinity.

w(p) = 1 + σ(κ(p)),

Lrec =
1

|M|
∑
p∈M

w(p)
(
ô(p)− o(p)

)2
. (7)

Parsimony. To encourage compact assemblies, each prim-
itive i is assigned a stochastic existence variable qi ∈ (0, 1)
sampled via a Gumbel-Softmax distribution. Its signed dis-
tance field is then modulated as f∗

i (p) = qi fi(p)+(1−qi),
which smoothly erodes primitives with low existence prob-
ability. The parsimony loss penalizes the expected number
of active primitives: Lcount =

∑
i qi.

Quality. To improve editability and prevent geometrically
entangled or overly blended assemblies, we add a structural
regularizer that combines overlap and smooth-union consis-

tency losses:

Lqual = max(1,
∑

i
ôi(p))︸ ︷︷ ︸

Loverlap

+ ô(p)−min(
∑

i
ôi(p), 1)︸ ︷︷ ︸

Lunion

,

where ôi is the occupancy of primitive i. The Loverlap term
penalizes regions where multiple primitives are simultane-
ously active, discouraging redundant coverage. The Lunion
term penalizes regions that are occupied by the smooth
union assembly but not by any of the independent primi-
tives, discouraging excessive blending.

The total differentiable loss is the weighted sum of these
components:

Ltotal = Lrec + λcountLcount + λqualLqual. (8)

Pruning. After the differentiable optimization converges, a
discrete pruning step further simplifies the assembly. Prim-
itives with negligible volume or contribution are tested for
removal, and deletions are greedily accepted if they improve
the primary objective O.

4. Experiments
Datasets. We evaluate on two datasets capturing generated
and real-world assets. As the 3DGen-Prim dataset [39] is
not public, we recreate it using 510 prompts from 3DGen-
Bench [47] with the Hunyuan3D-2.1 [33] generator. Our
second dataset contains 500 geometrically diverse shapes
from Toys4K [30], selected via farthest-point sampling.
Metrics. We evaluate reconstruction accuracy and program
quality. For accuracy, we use standard metrics: voxel IoU
(1283), Chamfer Distance (CD), and Earth Mover’s Dis-
tance (EMD) over 2048 randomly sampled surface points.
We also report a Bidirectional Surface IoU (BiSurfIoU) to
better capture surface fidelity, computed as the mean of
IoU scores from near-surface points sampled on both the
target and reconstructed shapes, with the latter surface ex-
tracted via dual contouring of the SDF. For program qual-
ity, we introduce four metrics. Program length (|z|) and



Method Reconstruction Quality Program Quality

IOU (↑) BiSurfIOU (↑) CD (↓) EMD (↓) #Prims (↓) Overlap (↓) IntraPrim (↓) InterPrim (↑)

3DGen-Prim Dataset

PA [45] 34.62 30.56 7.588 0.119 19.81 0.402 0.359 0.238
PA (TTO) 53.73 37.90 0.742 0.131 64.87 0.493 0.244 0.156
MPS [18] 82.67 71.53 0.884 0.093 42.96 0.684 0.250 0.157
Ours 88.74 80.19 0.168 0.073 23.98 0.210 0.244 0.207

Toy4K Dataset

PA [45] 36.76 31.63 5.771 0.142 19.14 0.341 0.322 0.255
PA (TTO) 49.08 37.78 1.220 0.146 44.78 0.408 0.237 0.179
MPS [18] 80.60 72.75 1.147 0.086 30.62 0.588 0.245 0.201
Ours 89.92 85.66 0.154 0.067 23.67 0.208 0.221 0.202

Table 1. Evaluation on 3DGen-Prim [47] and Toys4K [30] datasets. Our method achieves the best reconstruction and program quality
scores simultaneously—improving IOU by 6–9 points while using roughly half as many primitives. Gold = best, Silver = second best.

Overlap Ratio (the volumetric percentage of the shape cov-
ered by multiple primitives) measure parsimony and redun-
dancy. To quantify semantic coherence, we use two met-
rics based on PartField features [16]. After associating sur-
face points on the target mesh to their nearest primitive,
we compute: IntraPrim, the mean feature variance within
each primitive (lower is better), and InterPrim, the average
nearest-neighbor distance between primitive feature cen-
troids (higher is better). These scores are aggregated using
a size-weighted average.

Baselines. We compare our method against two state-
of-the-art approaches. Primitive Anything (PA)[45] is a
learning-based method trained on a large dataset of man-
ually annotated shapes to predict assemblies of cuboids,
cylinders, and ellipsoids from point cloud inputs. Follow-
ing the original work, we also report its test-time optimiza-
tion variant, PA (TTO), which refines its predictions using
Chamfer Distance. Marching Primitives (MPS)[18] serves
as a strong optimization-based baseline that directly opti-
mizes a superquadric-based assembly from an SDF grid to
achieve state-of-the-art reconstruction fidelity. We run MPS
at 128 voxel resolution to match our input. We omit com-
parisons to methods outperformed by MPS [7, 17] or those
without public code [37, 39].

Implementation Details. All experiments use a fixed set
of hyperparameters unless stated otherwise. ResFit runs for
a maximum of 10 fitting rounds or until convergence, with
each round applying 7 iterations of MSD. The high-level
objective O (Eq. 1) combines curvature-weighted surface
IoU with a program-length penalty (α = 10−3). During
optimization, the loss weights are set to λcount = 10−3 and
λqual = 10−2 (Eq. 8). Additional optimization details and
ablations are provided in the supplementary material.

4.1. Parsimonious High fidelity Assemblies
Table 1 summarizes the reconstruction and program quality
metrics on both datasets. Across all reconstruction mea-
sures, our method improves IoU scores by +6.1 points on
3DGen-Prim and +9.3 points on Toys4K over prior work.
We attribute this performance to the expressivity of the Su-
perFrustum primitive and the iterative analysis-optimization
loop of ResFit.

These reconstruction gains are accompanied by im-
proved program quality. Our assemblies use approximately
half as many primitives as Marching Primitives while reduc-
ing volumetric overlap by over 3×. The inferred primitives
also demonstrate high semantic coherence: our method
achieves the lowest IntraPrim scores, indicating high se-
mantic purity within primitives, and among the highest In-
terPrim scores, reflecting meaningful distinctions between
parts. These results demonstrate that ResFit produces as-
semblies that are simultaneously more accurate, compact,
and semantically interpretable.

Qualitative comparisons in Figure 5 corroborate these
findings. Our assemblies exhibit higher geometric fidelity
and are more interpretable, using a compact set of non-
overlapping, semantically aligned primitives. In contrast,
baseline reconstructions can show lower fidelity on com-
plex structures and tend to produce assemblies with greater
primitive overlap.

4.2. Ablative Analysis
Primitive Assembly Design. Table 2 compares different
primitive families and composition operators. Our full Su-
perFrustum formulation achieves the highest reconstruc-
tion fidelity. Disabling smooth unions reduces accuracy
and increases overlap, as continuous volumes must then
be formed by intersecting primitives rather than by smooth
blending. Superprimitive [22], a variant of our primitive
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Figure 5. Our method reconstructs target shapes with high geometric fidelity and produces more interpretable assemblies, using compact,
minimally-overlapping primitives. In contrast, Primitive Anything [45] (PA) and Marching Primitives [18] (MPS) often lose fine structure
and generate assemblies with substantial primitive overlap.

S. Union IOU CD #Prims Overlap

Cuboid ✗ 82.33 0.129 20.49 0.298
S Q ✗ 76.50 0.523 18.17 0.286
S P ✗ 86.66 0.134 21.36 0.291

S F ✗ 87.15 0.173 18.68 0.257
S F ✓ 88.37 0.147 21.46 0.199

Table 2. Primitive representation ablation: SuperFrustum deliv-
ers superior performance over Cuboids, Superquadrics (SQ) and
SuperPrimitive(SP) (ref. Section 4.2). Combining SuperFrustum
with smooth union further improves performance.

without tapering or bending also lowers accuracy, con-
firming these degrees of freedom are important for captur-
ing curved and non-uniform structures. Substituting our
primitive with cuboids or superquadrics (SQs) further de-
grades performance. SQs are particularly susceptible to
poor local minima when their axes misalign with the tar-
get geometry—an issue that methods like MPS mitigate via
non-differentiable heuristics such as periodic axis-flipping,
which are excluded from our controlled comparison.
Decomposition and Fitting Strategy. Table 3 compares
our iterative ResFit procedure against a single-shot fitting
baseline, using both MSD and CoACD for initialization.
The single-shot approach optimizes all primitives simulta-
neously after the initial decomposition. This makes it sen-
sitive to the initial partition, as it has no mechanism to re-
allocate capacity to unexplained regions, resulting in less
accurate and less compact assemblies.

In contrast, ResFit uses multiple refinement rounds

Step Method IOU CD #Prims Overlap

Single CoACD 86.56 0.368 26.67 0.226
Single MSD 87.95 0.337 28.17 0.236
ResFit CoACD 88.02 0.290 24.18 0.214

ResFit MSD 89.86 0.157 23.46 0.207

Table 3. Fitting and decomposition ablation: ResFit, which inter-
leaves analysis and optimization, outperforms a single-shot fitting
approach (cf. Section 4.2). Moreover, pairing ResFit with MSD
yields better results than using CoACD [40].

to progressively reallocate primitives toward residual er-
rors and prune where unnecessary. This iterative process
achieves higher fidelity with fewer primitives and lower
overlap. When comparing decomposition strategies, MSD
consistently outperforms CoACD. MSD’s ability to produce
non-convex partitions provides better initializations for our
primitives, especially on the curved, hollow, and branching
geometries as shown in Figure 4.

Timing. On the Toys4K test set, the full ten-round ver-
sion of ResFit takes 652.6 s per shape on average. However,
even a two-round variant offers a strong quality–time trade-
off: it runs in 184.1 s while achieving 86.54 IOU with only
15.54 primitives. This matches—and slightly exceeds—the
reconstruction accuracy of MPS at 2563 resolution (86.30
IOU) while using over 5× fewer primitives and a compara-
ble runtime (194.6 s). PA (58.3 s) and MPS (37.9 s at 1283)
are faster but produce lower-quality assemblies. We note
that ResFit is not yet optimized for speed; dedicated CUDA
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Method IOU CD #Prims Overlap

CAPRI-Net [46] 84.46 0.100 23.0 N/A

Ours (Solid) 82.64 0.192 14.18 0.342
Ours 88.30 0.127 13.16 0.186

Table 4. CSG inference on the ABC dataset [12]: Our method
achieves comparable reconstruction accuracy to CAPRI-Net [46]
while using significantly fewer primitives.

kernels for SuperFrustum may reduce runtime.

5. Applications
Our representation enables several downstream uses that
combine visual quality, editability, and analytic structure.
We highlight four such applications and provide implemen-
tation details in the supplementary.

Editable and Deployable Asset Generation. Our primi-
tives are simultaneously compact, editable, and capable of
high-fidelity reconstruction, allowing them to serve directly
as deployable 3D assets. To produce textured assemblies,
we associate each primitive with a local 2D spherical tex-
ture map that we optimize against the target textured mesh.
The resulting textured assemblies can be directly deployed
in real-time sphere traced scenes, while remaining editable
(see Fig. 6).

Inferring Canonical CSG Programs. Although our
framework is designed for smooth, soft-union assemblies, it
can also infer discrete Constructive Solid Geometry (CSG)
programs composed of canonical solids. We achieve this
by constraining the parameters of SuperFrustum to be a
barycentric interpolation of parameters to fetch canonical
shapes—cuboid, cylinder, cone, and sphere—within the Su-
perFrustum formulation. Despite the lack of subtraction as
a compositional operator, our primitive space natively con-
tains “subtracted” shapes via the onion operator, which we
include in the list of canonical shapes. Fitting under these

Capri
Net

Ours
(solid)

Capri

(solid)

Figure 7. Our method can infer CSG programs using canonical
solids (e.g., cylinders, cuboids; cf. Sec. 5), producing far more
parsable and structured trees than CAPRI-Net [46].

Figure 8. Our method can infer primitive assemblies from images
by leveraging Text-2-3D models (Hunyuan3D-2.1 [33]).

constraints yields solid CSG programs that remain compact
and interpretable. In Table 4, we compare this constrained
version of our method, named “solid” to CAPRI-Net [46]
on a randomly sampled subset of the ABC dataset [12]
containing 100 samples. Our approach achieves nearly the
same CSG reconstruction accuracy as CAPRI-Net while us-
ing roughly two-third as many primitives. As shown in
Fig. 6, our inferred programs produce cleaner, less entan-
gled assemblies—owing to the analytic expressivity of our
primitives and the structured refinement in ResFit.

Image to primitive. Our method can seamlessly be com-
bined with 3D generative models to achieve image to prim-
itive assembly. In Figure 8, we use Hunyuan3D-2.1 [33]
with ResFit on samples from the 3DGen-Bench suite [47].

Semantic Segmentation Enrichment. Manually anno-
tating parts can be quite expensive - as a result datasets often
provide coarse grained annotations. ResFit can help to an-
notate finer parts. In Figure 9, we intersect coarse semantic
labels from the PartObjVerse dataset [42] with our primi-



Figure 9. ResFit enables finer, semantically consistent part seg-
mentation. Row 1 shows the coarse semantic regions provided
in PartObjVerse. Row 2 shows the primitive assemblies inferred
by ResFit. Intersecting each coarse region with its corresponding
assembly (Row 3) yields meaningful sub-parts—capturing func-
tional structure while remaining strictly within the original seman-
tic boundaries.

tive assemblies to enhance segmentation granularity. As a
result, we subdivide large parts into functionally meaning-
ful subcomponents without drifting outside their semantic
boundaries. This suggests a promising direction for inte-
grating analytic decomposition as a prior for open-world
part segmentation tasks.

6. Conclusion

We introduced a framework for converting 3D shapes into
compact and editable assemblies of analytic primitives.
Our method combines two contributions: SuperFrustum,
an expressive, compact, and optimizable analytic primitive;
and Residual Primitive Fitting, an iterative inference algo-
rithm that couples shape analysis with primitive optimiza-
tion to recover parsimonious yet accurate assemblies. To-
gether, they shift the reconstruction–parsimony Pareto fron-
tier, achieving state-of-the-art performance across bench-
marks while producing high-fidelity, editable shape pro-
grams. Despite its expressiveness, ResFit is still restricted
by its purely additive composition; shapes requiring sub-
tractive operations remain challenging. Future work in-
cludes extending our decomposition strategies (e.g., tree-of-
shapes) and developing richer applications in CSG model-
ing, interactive editing, and structured scene understanding.
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