Residual Primitive Fitting of 3D Shapes with SuperFrusta
— Supplementary —

Aditya Ganeshan* Matheus Gadelha” Thibault Groueix” Zhigin Chen'
Siddhartha Chaudhuri’ Vladimir Kim" Wang Yifan’ Daniel Ritchie*

*Brown University

T Adobe Research

adityaganeshan@gmail.com

Supplementary Overview

This document provides additional qualitative results, de-
tailed technical explanations, and extended experiments
supporting the main paper. For ease of navigation, we list
the major sections below.

1. Qualitative Examples (Sec. 1)
Expanded visualizations of primitive assemblies on
Toys4K, Part-Objaverse, and 3D GenPrim.

2. Understanding SuperFrusta (Sec. 2)
Expanded formulation, parameterization, and projection
operators.

3. ResFit Details (Sec. 3)
High-level design, iterative loop structure, and full algo-
rithmic flow.

4. Decomposition & Initialization (Sec. 4)
Detailed description of our volumetric partitioning
method.

5. Optimization Details (Sec. 5)
Two-phase optimization, stochastic preconditioning, cur-
vature weighting, and hyperparameters.

6. Applications (Sec. 6)
Textured primitive assemblies, canonical CSG inference,
and semantic refinement.

7. Additional Experiments (Sec. 7)
Further evaluations, ablations, and extended compar-
isons.

8. Failure Cases (Sec. 8)
Representative scenarios where our method struggles and
directions for improvement.

1. Qualitative Examples

Qualitative results on diverse 3D shapes. Figures |
and 2 present qualitative reconstructions produced by our
method on assets sourced from two datasets: Toys4K [10]
and Part-Objaverse [13]. Across both collections, by com-
bining ResFit with SuperFrustum, we successfully models

a broad range of object categories and geometric shapes.
The inferred assemblies remain both accurate and parsi-
monious, capturing thin features, complex curvature, while
partitioning the shape (often) along semantically meaning-
ful partitions. These examples highlight the versatility of
our primitive design: despite its compact parameterization,
it adapts fluidly to highly heterogeneous shapes, producing
coherent decompositions across diverse objects.

Comparison to prior work. We additionally compare
our method against Primitive Anything [14] (PA) (with test-
time optimization) and Marching Primitives [4] (MPS) (at
128 resolution) on representative meshes from the 3D Gen-
Prim dataset [12]. As shown in Figures 3, our method
achieves noticeably higher reconstruction fidelity while us-
ing substantially fewer primitives. The performance gap
is visually pronounced: prior methods tend to either over-
fragment shapes or underfit curved and intricate structures,
whereas our approach consistently yields clean, coherent
assemblies that more closely match the target geometry.

Figure 1. Qualitative results on the Toys4K dataset. Each example shows the input mesh (gray, bottom row) and the corresponding primitive
assembly inferred by ResFit. These examples highlight our method’s ability to capture fine geometric detail and overall structure using
compact, interpretable assemblies across a wide variety of toy categories.

Figure 2. Primitive assemblies inferred on samples from Toys4K and Part-Objaverse. The top two rows show reconstructions on the diverse,
real-world objects of Part-Objaverse, while the bottom rows show additional Toys4K results. Across both datasets, ResFit consistently
produces compact assemblies that faithfully follow complex, varied geometries; gray rows show the corresponding input meshes.

AWy elle™

O P o w

Saw

O Pbaw

higher

amples from the 3D GenPrim dataset [12]. Our method achieves

Figure 3. Comparison with PA (TTO) [14] and MPS [4] on ex:

geometric fidelity while us

ing far fewer primitives.

2. Understanding SuperFrusta

As discussed in the main paper, SuperFrusta is a convex
primitive defined by an exact signed—distance function f
with six interpretable controls: size, dilation, roundness, ta-
per, curvature, and onion (shell thickness). We group them
as 0 = {sy,sy,s,r,d,t,c,o}, where “size” counts as one
control though it has three components.
sdfy, = f(p;6), 0 ={sz,8y,5:, 7, d, t, c, o}.

Construction by composition. Let p = (,y, z) and de-
fine the stages

p* = DomainCurve3D(p; s., ¢),
Sop = RoundedRect2D(p;y; Sz, 8y, r) ,

*

S

Trapezoid2D((s2p, P}); Sz, t, 0),
f(p;0) = s" —d.

We start by defining the 2D SDF primitives
RoundedRect2D and Trapezoid2D, as well as their
respective parameters. Second, we discuss how to
compose these two 2D SDFs to form a 3D SDF, with
Trapezoid2D((s2p, P); Sz, t, 0). Third, we describe
the curving function DomainCurve3D that produces
the bulge effect. Last, we discuss the related work that
informed this formulation.

2.1. RoundedRect2D

In this section, we describe the analytic formulation for
RoundedRect2D, parameterized by s.,s,,r. See our
Shadertoy example for an illustration, as well as panels
(a)—(b) of Figure 4 for a visualization of the level sets and
the parameters.

Symmetry preamble. Consider an origin—centered,
axis—aligned rectangle. The shape is invariant under
the reflections (z,y) +— (&x,+y), and the oriented
(inside—negative) distance to its boundary is unchanged
by these reflections. It therefore suffices to derive the
expression for the top-right quadrant z > 0, y > 0; the
formulas for the other quadrants follow by replacing z,y
with |z|, |y|. (This symmetry relies on the rectangle being
centered and axis—aligned.)

We start by defining the SDF for a 2D rectangle, then
generalize to RoundedRect2D.

Axis-aligned rectangle. Let p,, = (z,y) € R% We
consider a rectangle centered at the origin, with half-sizes
h = (hm,hy) = (%Ia S?y) Define q = (%:aQy) =
(|z| = ha, |y| — hy). The signed distance to the rect-

angle (negative inside) is obtained by studying four cases

(outside—corner, outside—near a vertical edge, outside—near
a horizontal edge, inside); see panel (c) of Figure 4:

Hq||27 qx > 07 dy > 07

q gz >0 2 gy,
dD(pxy§h) = o ! Y

Qy> qy > 02> qq,

max(qz, qy), ¢x <0, gy <O.

The above can be rewritten more compactly:

q= |sz‘ —h,

sdo(pey; h) = Hmax(q, O)H2 + min(max(qm, qy)s O).
(D

Rounded rectangle via dilation by radius ». To form a
rounded rectangle, given a corner radius r > 0, we first
shrink the half-extents, h’ = h — (r,r) (assume r <
min(h;, hy)), then take the r-level set (a morphological di-
lation / Minkowski sum with a disk of radius 7). See panel
(d) of Figure 4. In signed-distance terms this is

Sdrrect (Pay; Sx,8y, 1) = sdo (pzy§h/) -

h/ = SzTy - (’I‘,’f’),

2

where sd,yect is an appreviation for the ROUNDEDRECT2D
function. Expanding with the rectangle one-liner gives the
standard shader form:

q = !sz| - (h - (T,T‘)),
Sdrrect(pzy; S:Ea Syv T) = Hmax(q, 0)H2 (3)
+ min(max(qz, qy), O) -

2.2. Trapezoid2D

We now describe the analytic formulation for
Trapezoid2D, parameterized by s, t, o (height, taper, and
onion factor), visualized in Figure 5 and Shadertoy.

Trapezoid geometry. Letp = (v,y) € R% We work
with the intermediary parameters H > 0, inner > 0, and
x3 € R (derived from ¢, s,,s,,s;), and set yp = —H,
yr = +H. The trapezoid is defined by its four vertices:

Rt = (%37 yT)7
Rb = (05 yB)

I — (—i

e =(%nnen YT, @

L, = (—inner, yp),

Its four edges are: [Lp, L] (left), [Ry, Ry] (right), [Ly, Ry

(bottom), [L;, R;] (top). The right-edge direction is eg =

(23, 2H); the left edge is vertical.

Here, the intermediary parameters are computed based

on the parameters ¢ and s as follows:

inner = min(s,, s,) x 0.5,
23 = —(1 —t)inner, (5)
H=0.5xs,.

https://www.shadertoy.com/view/WctyD7
https://www.shadertoy.com/view/WftyD7

a) Level sets of RoundedRect2D b) Parameterization

¢) SDF by region in the quarter rectangle

: A
Py — Sy/z i length(pxy — Sxy/2)
----------------- 7 > N 7
’ Z2RRN N r

! AN A
max(py — S2/2,py — $y/2) Do — 52/2 T | —

\ \ / N/ /|

N N2 P s
> >

d) Morphological dilation

Figure 4. RoundedRect2D. From left to right: level sets of the primitive; parameterization with size (s, sy) and radius 7; SDF for each
of the four regions of an origin-centered rectangle (by symmetry in = and y we reason in the top-right quadrant); morphological dilation
to achieve a rounded rectangle with corner radius r, formed by shrinking to %(sz, sy) — (r,) and taking the r-level set. In all panels, the

0-level set is shown in red.

0.5 min(s., s,) igpner T
4_;4—t—-> 15 13y,

L
L Ry

b
a) Level sets of Trapezoid2D b) Superfrustra param c¢) Trapezoid2D param

Figure 5. Trapezoid2D. Level sets and parameterization: s. con-
trols the height, while ¢ controls the amount of tapering (i.e., how
slanted the right edge is).

The distance function is the minimum distance from p to
the four edges:

sdirap (p) = =+ min{dleft (p)7 dright (p); dbotlom(p)7 dtop (10)},

with negative sign inside the trapezoid and positive outside.
We now detail the distance to one edge (the right slanted
edge); the other edges follow analogously.

Distance to one segment via projection. Consider the

segment [A, B] = [Ry, R;] with
A=Ry = (07 *H)7
B = Rt = (1'3, +H)7 (6)
CZB—A:<.’I}3, 2H>

Define the (unclamped) line-projection parameter

<p—A, e>

H6H2 with

tine (P) = le|* = a3 + (2H)*.

The segment projection clamps this to [0, 1]:

t*(p) = clamp(tf,e(p), 0, 1), q(p) = A+t*(p)e.
The exact Euclidean distance from p to the segment is

dign(p) = lp—a(p) |l

Sign from an oriented half-edge. For an oriented edge
[A, B] with direction e = B — A, define

casp(p) = det(pfA, e) = p—Aze,—p—Ay e,
Geometrically, caze(P) g the signed distance from p to the
infinite line through [A, B], positive on the left side of the
oriented edge and negative on the right. To make the poly-
gon interior correspond to “non-positive”’, we orient edges
accordingly and, if needed, flip the sign (multiply by —1).

We collect the four signs; p is inside the trapezoid iff all
four signs are non-positive.

Magnitude. We compute the four segment distances via
projection:
drigni(p) = d(p, [Ry, Ri]),
diete(p) = d(p, [L, Lt)),
dvotom (p) = d(p, [Lv, Rs)), ™)
diop(p) = d(p. [Lt, Ri]),
dmin (P) = min{dleﬁ, dright, dbottoma dtop}-

Sign. With the orientations/sign flips fixed above, set

inside(p) <= C(p)
C(p) = max{cr(p), cs(p), c(p), cr(p)} < 0.

Final expression.

sdirap(p) = sign(=C(p)) - dmin(p)-

This yields the exact signed distance for the convex
trapezoid (negative inside, positive outside). The same
projection-and-half-space procedure applies identically to
each edge.

(a) rectangle o rectangle

(b) Trapezoid2D o RoundedRect2D

Figure 6. Composition of 2D SDFs to form a 3D SDF. The 0-
level sets of the two 2D primitives are shown as dashed curves: red
for the base XY primitive, and green for the vertical gate primi-
tive. For each z-slice, the vertical primitive defines a band on the
red primitive (constant here for simplicity). The 0-level set of the
resulting 3D primitive is drawn in solid red (line on slices; filled
on top and bottom caps).

2.3. Combining two 2D SDFs to define a 3D SDF

Remarkably, 2D signed—distance functions (SDFs) can be
composed to form a 3D SDF, as in our parameterization:

Sop = RoundedRectQD(p;y; Sz, 8y, 7") ,
s* = Trapezoid2D((sa2p, P:); Sz, t, 0).

We now provide an intuitive visualization of how this
composition operates.

A simple example with two 2D rectangles. We begin
with a toy example to introduce the concept of composing
two 2D SDFs. Define two rectangles: (i) a base rectangle in
the (, y)-plane that defines the 2D signed distance (dashed
red in Figure 6):

s(z,y) = SdD((x, Y); ba, by), with half-sizes (b, by),
and (ii) a gate rectangle in the (s, z)-plane, namely [a, b] X
[—H, H], which selects a distance band ¢ < s < b and a
vertical slab |z| < H (dashed green in Figure 6).

The 3D SDF for this volume is obtained by composing
the two 2D SDFs:

sd(p) = sd((s(z,y) —m, 2); w, H),
metg, weige
One can verify that sd(p) < 0iff a < s(x,y) < b and
|z| < H, with sd(p) = 0 on the faces s = a, s = b, and

z==+H.

Composing a rounded rectangle with a trapezoid. We
now generalize the rectangle-rectangle composition in two
ways. First, the base SDF in the (x,y)-plane can be any
2D primitive; in SuperFrusta, we use a rounded rectangle
because it is instrumental for modeling conic shapes:

= Sdrrect((x7y); b7 T)v

Second, the gate in the (s, z)-plane is no longer a constant
band [a,b] x [—H, H], but a trapezoid whose horizontal
bounds vary linearly with height z. Let H > 0 denote the
vertical half-extent, inner > 0 the bottom-left extent in
s-space, x5 € R the top-right offset, and v € [0,1] the
onion-thinning factor. With normalized height

s(z,y) b = (w, h).

z+H
t = 0,1
5 € (0.1]

(t = 0 bottom, ¢ = 1 top),

the z-dependent band becomes

a(2) = L (2) = —inner (1—7) + (yas)t,
b(z) = Ry(z) = z3t.

Each slice thus enforces

inside <= a(z) < s(z,y) < b(z) and |z] < H,

with slice width b(z) — a(z) = (1 — 7)(inner + z3t).
The resulting 3D SDF is obtained by evaluating the exact
trapezoid SDF in (s, z):

sd(p) = sdirap((s(,y), 2); inner, H, x3, 7).

2.4. Onioning.

In signed—distance modeling, onioning extracts a fi-
nite—thickness shell by thresholding an SDF symmetrically
about its zero set. Let d : R™ — R be an exact SDF for
I' = {« | d(z) = 0} and let 0 > 0 be a half—thickness.
Define

d°(z) = |d(z)] — o. (8)
This operator assigns a negative SDF to points between the

two isosurfaces {x | d(x) = +o}.

Topology under onioning. Shadertoy. Consider a disk
of radius R > 0 with signed distance d(z) = ||z|| — R. For
half-thickness o > 0, the onioned band is

B, = {z:|dz)| <o} = {z: R—o<|lz|| < R+o}.

There is a critical value 0* = R at which the band changes
topology. If o > R, the inner bound collapses and

B, = {w: |z <R+o},

i.e., a pure morphological dilation of the original disk
(genus 0). If 0 < o < R, then B, is an annulus with inner

https://www.shadertoy.com/view/3ftyD7

radius R—o and outer radius [2+4-o (a hole appears, genus 1).
This illustrates that onioning can change the topology of a
base shape, controlled continuously by o—a convenient pa-
rameterization that is harder to achieve with explicit primi-
tives.

A naive approach to achieve the onion effect is to simply
apply the onion computation on the 2D rounded rectangle
sdf value, i.e.

sdprect = ‘Sdrrect(Pmyé Sz, Sy; r)|—o)

Since this 2D sdf function is used along along with
the trapezoid function to create a 3D surface, the result-
ing sdf after this onion operation is very inaccurate — to
the extent that sphere tracing with such a primitive defi-
nition results wrong renders. Furthermore, this design of
the onion operator couples the inner ’hole” creation with
outer rounding operation. That is, the inner hole bound-
ary (—d(z) + o = 0) exists in tandem with a dilation of
the outer surface (d(z) + o = 0). Therefore, we instead
have a formulation where a) the onion effect is achieved by
modifying the trapezoid parameterization, and (b) its only
performed for the inner hole creation without affecting the
positive sdf outside:

Ty = — inner (1 — 0),
xrr = —inner + (x3+ inner)o,
yp = —h, yr = h, (10
Ly = (zr, yB), Ly = (vrL, y7),
Ry = (0, yB), Ry = (z3, yr).
2.5. Adding curvature

We now explain the last parameter, the curvature ¢, used
to bend primitives with DomainCurve3D. The function is
parameterized by the primitive height s, and by the bulging
intensity c.

The goal of the mapArcBulge transformation is to
construct a smooth bijection between a rectangular chart
in canonical coordinates (z’,y’) and a bulged cap region
in the original domain (z,y). Intuitively, the mapping un-
wraps a circular arc into a straight vertical strip. Concentric
circles around the arc’s center correspond to vertical iso-z’
lines, while the angular coordinate ¢ along the arc maps
linearly to the vertical coordinate y'. Outside the sector de-
limited by the arc, the mapping transitions continuously to
tangent-plane coordinates, ensuring differentiability across
the boundary. In practice, the shader implements the inverse
transformation: given a point p = (x,y) in the bulged do-
main, it computes its corresponding chart-space coordinate

p' = (2',y).

Construction of the reference arc. Let h = z/2 be half
the height and define the endpoints E+ = (0,+h) and

a) Source domain of the mapping b) target domain

Figure 7. DomainCurve3D. (a) Source domain. The sector
is parameterized around the circle center C, with polar angle
¢ € [—6,0]. Inside the sector, iso-offset curves (colored) are
circular arcs about C; at the boundaries ¢ = £0 they meet the
tangent frames with unit directions t+ = (sin @, cos @) and nor-
mals nt. (b) Target domain. Under ¢ = mapArcBulge(p),
concentric arcs map to vertical lines inside the strip x’ € [—U, U],
y" € [-%,], while the tangent continuations remain straight out-
side the strip. Colors are preserved to track corresponding curves
across panels. The red iso-surface of the bulged rectangle on the
left maps to the rectangle on the right.

E, = (0,—h). The circular arc through these points

has center C = (z.,0) on the z-axis and radius R =
/&2 + h2. We set the half-opening angle
0 = max(c X 5, E),

where ¢ € [0, 1] controls curvature: ¢ = 0 yields a flat cap
(0 — 0), while ¢ = 1 produces a semicircular cap (0 =
m/2). By trigonometry,

h
tan@’

Te =

The circular sector bounded by ¢ = =+6 is the interior of
the bulged region.

Inside-sector mapping. For points whose polar angle
around C satisfies || < 6,

y = gclamp(%, -1, 1) ,
' =[p-C|-R

The first line linearly reparameterizes angle into vertical co-
ordinate (clamped to y’ = =+h at the endpoints), and the sec-
ond converts radial offset to 2/, so the reference arc maps to
2’ = 0. Hence concentric arcs map to vertical iso-z’ lines.

Outside-sector mapping. For ¢ > 0 or ¢ < —0, we
switch to a local tangent frame anchored at the top or bottom

endpoint. At the top, with unit tangent and normal

t+ = (siné, cosh), nT = (—cosf,sinf),
(and analogously ¢t; = (—sin 6, cos®) at the bottom), we
project

alongz(pr,t% perp:<p7E7n>a

and define

, (perp, +h + along), ¢ >0,
(@,y) =

(perp, —h + along), ¢ < —6.
This continues the mapping outside the arc by following
tangent rays: horizontal displacements measure perpendic-
ular offsets to the tangent, while the vertical coordinate ad-

vances along the tangent direction.

2.6. Our Contributions.

Prior “super primitives” have appeared in the demoscene
and Shadertoy community [5-8], where the central goal is
to achieve a large variety of analytic shapes using com-
pact expressions suitable for real-time rendering. Our work
shows that these formulations are not only expressive under
this original objective, but—crucially—can also serve as
differentiably optimizable primitives. We demonstrate that,
with appropriate reformulation, this family of primitives be-
comes highly effective for inverse modeling, enabling sta-
ble gradient-based fitting while retaining compactness and
editability.

Size-relative parameterization. A key contribution of our
work is the introduction of size-relative parameterization
for the taper, rounding, and onion factors. In prior for-
mulations, these parameters are specified in absolute units;
while this is acceptable for manual authoring, gradient de-
scent during inverse modeling can drive the parameters to-
ward values where the SDF becomes inaccurate or even ill-
defined, causing optimization instability. Our relative for-
mulation guarantees geometric validity across all optimiza-
tion iterates, ensuring that the solid remains well-behaved
and sphere-traceable for all parameter updates. This modi-
fication is critical for reliable differentiable fitting.
Arc-based bending via domain reparameterization. We
introduce an analytic bending operation based on an arc-
based domain reparameterization (Section 2.5). To our
knowledge, no prior Shadertoy super primitive incorporates
this arc-based mapping. This bending operation substan-
tially expands the shape family expressible by a single prim-
itive—enabling smooth axial curvature without sacrificing
differentiability.

Lower-error onion operator. We also introduce a revised
formulation of the onion (shell) operator that preserves the

accuracy of the signed distance field (Section 2.4). Conven-
tional onioning introduces SDF distortions that lead to ren-
dering artifacts, incorrect gradients, and inconsistencies in
the constructed surface—issues that become critical during
inverse modeling. Our alternative formulation maintains
correct distance values across the entire shell region, en-
suring stable gradient flow and producing reliable geometry
under subsequent constructive operations such as onioning
and dilation.

On SDF accuracy and exact formulations. Our super
primitive yields a accurate but not mathematically exact
signed distance field. In practice this leads to only mild
rendering artifacts, and these can be further suppressed by
restricting the parameter ranges to regions where the SDF
approximation remains most reliable.

For completeness, we explored an exact formulation in
which the SDF is computed as the minimum distance to
analytically partitioned surface patches. However, the ta-
pered—rounded corner regions form canal surfaces whose
exact distance queries require solving a quartic equation,
making the method significantly more expensive. More-
over, this exact variant does not naturally accommodate
onioning or bending. Given these limitations, we adopt the
approximate—but efficient and stable—formulation pre-
sented in the main paper.

3. Residual Primitive Fitting (ResFit) Details

High-level overview. ResFit addresses the gap between
top—down geometric analysis and bottom—up primitive op-
timization. Purely optimization-based methods tend to pro-
duce entangled assemblies, while analysis-only methods
partition shapes without regard to the expressive limits of
the primitive family. ResFit bridges these extremes by al-
ternating between residual-based shape analysis and joint
primitive optimization: each analysis step extracts regions
from the unexplained residual, and each optimization step
fits the growing assembly to maximize O. By allowing
these two phases to inform each other, the method pro-
duces assemblies that remain both compact and geometri-
cally faithful, correcting over- and under-parameterization
as the reconstruction progresses.

Procedure. At iteration k, the current residual volume is
decomposed into regions using morphological shape de-
composition (MSD). Each region seeds a new primitive,
which are merged with the existing assembly. All primi-
tives are then optimized together to maximize O, with each
primitive influenced by its local support. A pruning step
then remove redundant primitives whose presence lowers
O. Finally, the pruned assembly defines a new residual, and
the cycle repeats until the objective saturates or no further
valid partitions can be extracted. This interleaved process

Initialization

Target/Residual

oo AT
N -2 tan S

N
N

]
~

~

Final Output:

Optimized

Target/Residual Initialization Optimized

Final Output:

Figure 8. ResFit reconstruction sequences for a couch and a dog toy. Each row corresponds to a single round of ResFit. Each initialization
phase introduces primitives required for the residual region, and each optimization phase jointly re-optimizing all existing primitives. This
full-assembly refinement enables ResFit to correct early under-fitting errors, progressively improving fidelity while carefully increasing the
number of primitives. This process consequently converges to a accurate yet compact assembly.

enables the system to refine earlier primitives as new ones
are added, yielding a coherent and compact final assembly.
Figure 8 visualizes ResFit sequences. The iterative loop
progressively improves reconstruction quality while keep-
ing the assembly compact: each round refines the resid-
ual, introduces new primitives only where needed, and re-
optimizes the entire assembly. Importantly, the sequence
does not form a hierarchy—primitives introduced early are
re-adjusted whenever new primitives are added. This con-
tinual re-optimization enables the method to self-correct
and converge toward a coherent, parsimonious assembly.

4. Decomposition & Initialization

4.1. Morphological Shape Decomposition (MSD)

MSD identifies thickness—homogeneous regions by analyz-
ing progressively less—eroded level sets of the target SDF.
Let m = min(7T) denote the most negative SDF value,
and let /1 < ¢y < --- < {p be a linear sequence from
m to 0. For each erosion level ¢;, we form the eroded
mask My, = {z : R(x) < {;} and extract its con-
nected components {C;}. Components whose eroded sup-
port satisfies |C;| > Serode are then dilated back toward the
zero level of R to obtain morphological-opening candidates
D;; components meeting the post—dilation size requirement
|D;| > Spart are retained as MSD parts. Once such a batch

Algorithm 1: Residual Primitive Fitting (ResFit):
Interleaved Decomposition and Optimization
Input: Target SDF grid T'; max iterations K; MSD
thresholds (Vpin, €min); parsimony weight A
Output: Final primitive assembly P
P+
R+ T
Oprev &~ —00
for k <+ 1to K do
C < MSDDECOMPOSE(R, Umin, €min)
if C = () then
| return P

P < P UINITPRIMITIVES(C)
P < OPTIMIZEPROGRAM(P, T, \)
P < PRUNE(P, T, \)
O < OBJECTIVE(P, T, \)
if O < O,y then
| return P

Oprey <~ O
| R < RESIDUAL(P,T)

return P

is obtained, these parts are subtracted from the current tar-

Algorithm 2: MSDDecompose: Morphological
Shape Decomposition
Input: Target SDF T
n. erosion levels L; max iterations K ;
min eroded size Serode; Min part size Spayt.
Output: Set of MSD parts P
P10
R+T
m < min(7)
{¢; }JL:1 < linspace(m, 0, L)
for £ < 1to K do
D+ 0
for j < 1to L do
My, < {z: R(z) < {;}
{Ci} « connected components of M,
// Eroded size condition
{Oz} — {Cz : ‘Oz‘ > Serode}
if {C;} # 0 then
// Dilate parts
D « dilations of {C;} toward R
// Part size condition
D« {D; € D:|D;| > Spart }

if D = () then
P+ PUD
B break
if D — () then
L return P

// Residual update

R < SUBTRACTPARTS(T, P)

R <+ RENORMALIZEFASTSWEEP(R)
R < CLEANUPMORPHOPEN(R)

return P

get, the SDF is redistanced using a fast-sweep [11] to re-
store sdf correctness, finally a small morphological opening
removes residual artifacts. This procedure, detailed in Al-
gorithm 2, is repeated until no further valid parts can be
extracted, yielding a compact set of coherent regions that
serve as initialization seeds for primitive fitting.

4.2. Initializing SuperFrusta

Once MSD yields volumetric partitions {V;}, we initialize
one SuperFrustum per partition as part of the INITPRIMI-
TIVES(C) step in Algorithm 1. For each V;, we first sam-
ple points from its interior and compute a centroid-aligned
PCA frame. Each candidate direction (in both orientations)
is evaluated as a potential primitive axis.

For a selected axis direction Z, we project all points onto
Z to obtain axial coordinates ¢, and slice the point set along
this axis. For each slice, we compute the 2D covariance
of the points in the plane orthogonal to Z, whose eigenval-

ues (02,02) represent cross-sectional variances along two
orthogonal in-plane directions. These statistics yield three
scalar measures: (1) stability (Sgap), capturing how consis-
tent the cross-sections are along Z; (2) circularity (Scirc),
capturing how similar the in-plane variances are (i.e., how
round the section is); and (3) elongation (Seiong), capturing
the normalized length of the region along Z. Given slice-
averaged variances 02,02 and axial range tmin, tmax, the

v
cylindricity score for axis Z is:

std(o3, 07)
Sstab =1- 5 9o)
mean(o2,02) + ¢
o — o3
2 2 ’
o5 +to;+e (11)
tmax - tmin
)
o2+o02+¢

S = Sstab + Scirc +0.1 Selong~

Scirc =1-

Selong =

The axis with the highest score is chosen as the principal
axis of the initialized SuperFrustum.

Once the principal axis is selected, the primitive’s trans-
lation, rotation, and in—plane size parameters are obtained
directly from the centroid and PCA frame of the partition’s
point cloud. We additionally estimate the remaining shape
parameters using simple statistics computed in the local
(u,v,t) coordinate system aligned with the chosen axis.
Roundness is initialized from the uniformity of in—plane
radii across cross—sections, giving higher values when the
region is consistently circular. Taper is inferred from the
relative change in in—plane extent between the lower and
upper portions of the volume, capturing whether the shape
widens or narrows along the axis. Finally, the Onion param-
eter is estimated from the ratio between inner and outer radii
measured in narrow bands around the coordinate axes, pro-
viding an initial guess for how much the shape contains an
inner “core” structure. Other parameters such as Bulge, Di-
lation and smooth union amount are initialized with a fixed
initial value. We emphasize that all the parameters are con-
tinuously adjusted using gradient descent during optimiza-
tion. Please refer to the code for more details.

4.3. Additional Remarks

We highlight two details that clarify how MSD interacts
with the fitting loop.

MSD can yield multiple seeds per round. Each MSD it-
eration extracts all connected components that satisfy the
thickness criteria for the current erosion level. Conse-
quently, a single round may produce several volumetric
partitions if multiple regions share similar thickness in the
residual. Thus running N rounds of MSD does not imply
obtaining exactly N primitives; the method can expand the

seed set adaptively when the residual contains many sim-
ilarly thick, disconnected regions. This behavior is essen-
tial for modeling complex shapes: even with as few as 5—
10 rounds, ResFit can introduce dozens of primitives when
needed (see the grapes example in Fig. 1), allowing recon-
struction quality to scale with shape complexity without re-
quiring many outer-loop iterations.

Relation to Marching Primitives [4] The initialization
strategy used in Marching Primitives (MPS) can be inter-
preted as a restricted, single-iteration instance of MSD. At
each round, MPS selects the deepest erosion level whose
eroded region exceeds a minimum volume and directly ini-
tializes primitives from that eroded component. In MSD
terms, this corresponds to taking a single erosion threshold,
extracting the qualifying eroded region, and not performing
the dilation step that restores the component’s full morpho-
logical extent. Because MPS does not decompose the shape
into multiple connected components at that erosion level, it
behaves more like an optimization-based method driven by
residual depth. Nonetheless, its seeding process aligns with
a simplified form of MSD.

5. Optimization Details

We provide additional clarification on the components of
our decomposition-aware optimization strategy.

Two-phase stochastic dropout. Our optimization pro-
ceeds in two phases distinguished by the temperature pa-
rameter of the Gumbel-Softmax existence distribution.
During the first phase, the temperature is held at 1.0, yield-
ing a smooth relaxation that allows primitives to remain ac-
tive while the assembly adjusts globally. Once progress sat-
urates, we enter a second phase in which the temperature is
gradually annealed toward 0.1, sharpening the distribution
and forcing the optimizer to make discrete keep-or-delete
decisions for each primitive.

Stochastic preconditioning. At the beginning of each
phase, we apply stochastic preconditioning [2]. For the
first third of the iterations of that phase, we add diminish-
ing Gaussian noise to the input sample points, reducing it
linearly to zero by the one-third mark. This strategy im-
proves convergence by smoothing the loss landscape early
on and reducing local trapping, particularly in the presence
of complex residual geometry.

Periodic surface resampling. To ensure fresh and ac-
curate near-surface supervision, we resample both surface
points and surface-adjacent perturbed points every k£ = 100
iterations. Occupancy queries for these points are computed
using a BVH-accelerated signed-distance evaluation [9],

providing robust ground-truth supervision throughout the
optimization trajectory.
In total our loss for reconstruction can be written as:

Lr = Lol +W* Lgur + W Lyg), (12)

where, Lyo stands for occupancy loss on points sampled
uniformly in R? (for each voxel, typically in 642 resolution
from -1.0 to 1.0, L, stands for loss on points on the surface
of the target mesh, where the loss forces the signed distance
value to be equal to 0, and L,qj stands for occupancy loss
on points sampled around the mesh surface. Additionally,
w stands for the mesh curvature based weights.

Curvature-aware reconstruction weighting. To empha-
size thin and high-curvature structures during optimization,
each surface sample p is assigned a curvature weight w(p)
derived from the principal curvatures of the target mesh.
We first estimate a multiscale curvedness value C'(p) by
smoothing the raw per-vertex curvedness through heat dif-
fusion at several scales and averaging the results. This pro-
duces a stable curvature estimate that suppresses spurious
high-frequency spikes. To bound the influence of curvature
and avoid extreme weights, we map C(p) through a sig-
moid function:

w(p) =1+o(a(C(p) - Co)),

where o(-) is the logistic sigmoid, « controls the sharp-
ness of the transition, and Cj sets the curvature threshold
at which weighting begins to increase. Thus w(p) € [1, 2],
providing a modest but reliable emphasis on geometrically
salient regions. The same weighting is used both in the re-
construction loss and in the reconstruction component of the
overall objective O.

Bound-preserving reparameterization. Rather than op-
timizing primitive parameters directly, we optimize uncon-
strained variables and map them to valid parameter ranges
via a smooth reparameterization. For a parameter with
bounds [Piow, Phigh, We write

p = tanh(z) R + C,

where R = £ (Phigh — Plow) and C' = 1 (phigh + Plow). This
guarantees that parameters remain within their prescribed
domain throughout optimization and improves numerical
stability.

Further details. We refer readers to our code release for
complete reproducibility.

5.1. Hyperparameters

For all experiments, we use a consistent set of hyperparam-
eters governing optimization, sampling, and temperature
scheduling. We optimize with a learning rate of 0.01 and
run a maximum of 1600 iterations, with a base budget of
400 iterations and a saturation patience of 100 iterations for
both triggering the second (temperature-decay) phase and
finishing optimization. The Gumbel-Softmax temperature
is fixed at T,,x = 1.0 during Phase 1 and annealed toward
Tmin = 0.1 during Phase 2. To stabilize occupancy predic-
tions, we apply a scale-factor schedule increasing smoothly
from 10 to 15 over the course of optimization. The keep the
losses local, we use loss banding, that is, the loss is only
evaluated on points = where F < 0.05.

Stochastic preconditioning uses an initial noise magni-
tude of v/3 x 0.02, linearly reduced to zero over the first
third of each phase. Every 100 iterations we resample
105 surface points and corresponding perturbed surface-
adjacent points from the target mesh. Volumetric supervi-
sion is provided by uniformly sampling the SDF on a 1283
grid.

All results reported in the paper and supplementary use
these settings without per-shape or per-category tuning.

5.2. Pruning Routine

Our pruning strategy follows the general variant-sampling
approach used in [, 3]. After differentiable optimization
converges, we generate candidate program variants and se-
lect the one that maximizes the objective O.

Sampling via stochastic existence variables. Because
each primitive has an associated Gumbel-Softmax exis-
tence variable, we can sample discrete program variants by
adding fresh Gumbel noise to the optimized existence log-
its and converting the resulting probabilities into one-hot
indicators (primitive kept or removed). We draw K = 100
such samples, evaluate O for each resulting assembly, and
retain the best-scoring variant. This captures stochastic un-
certainty from the optimization phase and can remove prim-
itives that are only marginally supported.

Deterministic leave-one-out pruning. When the exis-
tence distributions have already sharpened, stochastic sam-
pling alone is often insufficient. We therefore complement
it with a deterministic leave-one-out procedure: for each
primitive, we evaluate O on the assembly formed by re-
moving that primitive. If any removal improves O, we ac-
cept the corresponding reduced assembly. This process is
applied recursively—each accepted deletion triggers a new
pass over the remaining primitives—until no further im-
provement is possible.

Final selection. The highest-scoring assembly identified
by either stochastic sampling or recursive leave-one-out
pruning is returned as the final pruned program.

6. Applications

6.1. Inferring Canonical CSG Programs

We describe how the inferred primitive assembly can be
adapted to recover programs composed only of canonical
solids such as cuboids, cylinders, cones, and spheres. Di-
rectly constraining each primitive to one of these forms
would disrupt the continuous optimization process that is
central to our representation. Instead, we introduce a Solid
Super—Primitive: a variant of SuperFrustum augmented
with four additional logits that define a distribution over
the canonical forms. During optimization, the primitive be-
haves as a probabilistic mixture of these canonical shapes,
and gradually collapses to one of them when the tempera-
ture is annealed.

Canonical parameterizations. Note that Su-
perFrustum is parameterized with 8 parameters
0 = {sz,8y,8:7,d,t,c,o} Each canonical solid is
expressed as a special case of SuperFrustum by fixing or
tying its parameters appropriately:

Fewve = F(P; (82, 8y, 52, 0,0,1,0,0)),

Feone = F(P; (52, 8y, 52, 1,0,0,0,0)),

Feyi = F(P; (82, 8y, 52, 1,0,1,0,0)),
Fophere = F (P; (0,0,0, 7,d,1,0,0)).

Notably, allowing nonzero onion amounts for cubes and
cylinders enables axis-aligned subtractive effects, which
commonly arise in mechanical designs.

Solid Super-Primitive. Let pcype, Dsphere Peyl, Peone D€
soft selection weights (from a Gumbel-Softmax distribu-
tion) over the four canonical solids, and let s = (s, sy, S5),
r, d, t, ¢, and o denote the base size, roundness, dila-
tion, tapering, bulge ratio, and onion ratio parameters of
SuperFrustum. Instead of evaluating all four SDFs and
mixing them in execution space, we construct a single su-
per—primitive by blending these parameters in parameter
space.

We first form a cylindrical size profile by averaging the
in-plane extents,

Sxy = %(SI + 3y)> Scyl = (S‘”y’smy’sz)’

CAPRI - ’

NET

Ours wj
(SOLID)]
gF Y4

N ‘L -)

Figure 9. Failure cases arising from the lack of explicit subtractive
operations in our assembly. Certain shapes—such as parts with
cavities, through-holes, or cutouts—require true CSG subtraction
to be represented exactly. As illustrated, ResFit approximates
these structures using positive volumes only, which can reproduce
the outer form but cannot capture internal voids or Boolean detail.

and then define the blended parameters

8" = Peuve S + (Peyl + Peone) Seyls
r = Deyl + Peones

d" = DPsphere d,

t' = Peube + Dsphere + Peyl,

c =0,

0" = (Peuve + Peyl + Deone) O

(13)

The Solid Super—Primitive is then evaluated as a
single instance of SuperFrustum with parameters
(s',r',d' t', o). This parameter-space blend-
ing approximates a mixture-of-SDF formulation
DeubeFeube + pspherejT sphere 1 pcyl]: eyl + DeoneFcone» bUL
avoids the 4x cost of evaluating all four SDFs separately,
making canonical-program inference computationally
practical.

Temperature coupling and canonical collapse. The
soft-selection distribution is governed by a temperature
variable that we tie to the per-primitive existence temper-
ature used in our two-phase optimization. During Phase 1,
this temperature is held at 1.0, allowing the super-primitive
to explore continuous interpolations among the canonical
families. During Phase 2, it is annealed toward 0.1, forcing
the mixture to collapse to a single canonical solid. Con-
sequently, the final assembly contains only the four tar-
get canonical shapes, even though the underlying primitive
family is far more expressive.

Limitations and subtractive structures. Because our as-
sembly does not include explicit subtraction, the inferred
canonical programs cannot express full CSG trees with

complex Boolean structure. As shown in Fig. 9, parts with
true subtractive operations may therefore be approximated
but not reproduced exactly. Extending our framework to
handle subtractive compositions is an exciting direction for
future work.

6.2. Editable & Deployable Assets

Each inferred primitive serves not only as a geometric ele-
ment but can also server as a texturable, editable primitive.
To this end, every primitive JF; is assigned a single 2D tex-
ture map T; defined in spherical coordinates. During sphere
tracing, when a surface point p is hit on primitive i, we
convert its local coordinates pjoca into spherical angles and
perform a texture lookup:

d= Plocal

r= ||plocalH; r

)

0 = atan2(d,, d,), ¢ = arccos(dy),

0

u= (—F;, ¢) , albedo = T;(u).
27 T

This yields a stable, distortion-minimal parameterization

for arbitrary primitive shapes, enabling consistent texture

authoring and editing.

Materials under smooth union. While the geometry of
two primitives is blended with a smooth-union operator,
we do not blend their textures. Given two primitives with
SDF outputs f1(p) and f(p), the smooth union computes
a blended SDF

fsu(Pp) = SmoothUnion(f1, f2, 8),

but the material is taken from whichever primitive attains
the smaller SDF value:
material(p) — {mau(p) if f1(p) < f2(P),
maty(p) otherwise.
This choice avoids texture mixing across primitives, pro-
ducing cleaner, more interpretable textures while retaining
smooth geometric transitions.

Together, these mechanisms allow the inferred primitive
assemblies to act as lightweight, editable, and visually rich
assets that can be deployed directly in real-time sphere-
traced renderers. Next, we describe how these per-primitive
texture maps are inferred by optimization to match a target
textured mesh.

Texture inversion for deployable assets. Given a tex-
tured input mesh, we first run ResFit to obtain a geometric
primitive assembly. We then equip each primitive with a
learnable 128 x 128 x 3 texture map. To supervise these

S. Union 10U CD #Prims Overlap

Cuboid X 82.81 0.208 2426 0.333
SQ X 76.61 0954 1879 0.293
SP X 86.30 0.214 2393 0.340
SF X 87.69 0.206 20.55 0.299
Cuboid v 8446 0.128 23.88 0.340
SQ v 7894 0.601 17.96 0.171
SP v 89.06 0.152 2259 0.192
SF v 89.97 0.144 2401 0214

Table 1. We compare our full SuperFrustum against Cuboids,
Superquadrics (SQ), and variants of the SuperPrimitive (SP). SP
corresponds to SuperFrustum with tapering and bending disabled.
Results are shown both with and without smooth union. Across all
settings, SuperFrustum achieves the best reconstruction fidelity,
while smooth union consistently improves performance for every
primitive family.

textures, we mesh the primitive assembly via dual contour-
ing on its SDF and uniformly sample points on the recon-
structed surface. For each sampled point on primitive ¢, we
find the closest point on the original textured mesh and as-
sign its color as the target albedo for that location.

During optimization, the primitive geometry remains
fixed; only the per-primitive textures are updated. Each sur-
face point p; is evaluated through the textured assembly,
producing a predicted color €; via spherical texture lookup
(Sec. 6.2). Let ¢; denote the ground-truth color transferred
from the mesh. Both are converted to Oklab using a fixed
mapping ¢(-), and we minimize an ¢5 color loss:

1 N 2
Liex = N Z Hg(éj) - g(cj)Hz'
j=1

To encourage spatial coherence and suppress high-
frequency artifacts, we apply a standard total-variation
penalty TV (T') on the texture maps, yielding the final ob-
jective

Emat = ﬁtex + /\tv TV(T)

We optimize the texture parameters using the same
stochastic-preconditioning framework as in primitive fit-
ting, but with all geometric parameters frozen. This pro-
duces a textured primitive assembly that matches the ap-
pearance of the original asset while remaining compact,
sphere-traceable, and fully editable.

7. Additional Experiments
7.1. Primitive Design Ablation

In the main paper we evaluated several alternative primitive
families without smooth union. Here we extend this study

by repeating the ablation with smooth union enabled for all
families (Table 1). This isolates the geometric expressive-
ness of each primitive class from the benefits provided by
smooth blending. The results confirm two trends observed
earlier: (1) smooth union improves reconstruction fidelity
and reduces overlap across all primitive families, and (2)
even under this more favorable setting, SuperFrustum re-
mains the strongest representation, achieving the highest re-
construction accuracy with competitive parsimony and low
overlap.

7.2. ResFit Ablation

We now perform ablations to verify design decisions. We
evaluate the variations in this sub-section on a subset of
250 Shapes from Toys4k dataset. As discussed in the pa-
per, several design choices ensure that ResFit iterative loop
can correct both over-parameterization, that is having more
primitives than required, and under-parameterization, that
is, having fewer primitives than required.

Table 3 isolates the impact of these design choices in
ResFit. To avoid underparameterization, two components
are essential. First, local optimization ensures that newly in-
serted primitives focus on the region that seeded them, leav-
ing clean, fillable residuals for subsequent iterations. Re-
moving this (“No re-opt”) substantially lowers reconstruc-
tion due to primitives competing for the same geometry.
Second, global re-optimization refines all existing primi-
tives at every iteration instead of freezing earlier ones; omit-
ting this step (“No freeze”, shown as “Global Opt” versus
the baseline) limits the system’s ability to correct early mis-
takes and reduces overall fidelity.

To avoid overparameterization, we use a decomposition-
aware objective that balances reconstruction with redun-
dancy penalties. If we maximize reconstruction alone (“No
prune”), the system indeed attains the highest IoU, but only
by introducing nearly 30% more primitives—yielding as-
semblies that are far less compact. Our full method strikes
the intended middle ground: high reconstruction quality
while maintaining strong parsimony.

Effect of the number of MSD-seeded primitives
per round. A key mechanism preventing over-
parameterization in ResFit is that each MSD round
contributes only a small number of new primitives rather
than instantiating all detected volumetric parts at once.
Table 2 evaluates this design by varying the number
of primitives seeded per round. The results reveal a
clear trade-off: seeding too few primitives (e.g., MSD-2
or MSD-5) produces more compact programs but can
prematurely halt the fitting loop, leading to underfitting
and lower reconstruction quality. Conversely, seeding too
many primitives (e.g., MSD-40) improves reconstruction
in some cases but yields substantially worse program

MSD Steps Reconstruction Quality Program Quality

Per Round 10U (1) BiSurflOU (1) CD () EMD (}) #Prims (1) Overlap () IntraPrim (}) InterPrim (1)
2 86.59 79.85 0.246 0.072 17.49 0.155 0.248 0.278
5 87.82 81.32 0.244 0.069 19.83 0.175 0.233 0.235
7 90.26 85.87 0.148 0.066 24.09 0.214 0.219 0.200
10 88.77 82.55 0.262 0.066 22.63 0.220 0.220 0.203
20 88.38 86.24 0.185 0.068 21.91 0.216 0.215 0.197
00 88.46 82.41 0.318 0.073 28.49 0.242 0.211 0.184

Table 2. Ablation on the number of MSD-seeded primitives per round. Seeding too few primitives (e.g., 2 or 5) yields compact programs
but can prematurely terminate the fitting loop, reducing reconstruction quality. Seeding too many (e.g., /0o) improves some reconstruction
metrics but substantially worsens program quality due to over-parameterization. Moderate seeding (7 to 20) provides the best balance,
achieving high fidelity while maintaining compact, low-overlap assemblies.

10U #P Overlap IntraPrim InterPrim
No re-opt 84.18 23.66 0.220 0.231 0.207
Global Opt 87.82 19.16 0.165 0.229 0.222
No Prune 91.13 29.02 0.213 0.211 0.182
Ours 89.92 2398 0.213 0.220 0.201

Table 3. Ablation of the key components of ResFit. Local opti-
mization and global re-optimization are both crucial for preventing
underparameterization and achieving strong reconstruction. Con-
versely, removing decomposition-aware pruning (“No prune”) in-
creases IoU but at the cost of substantially more primitives, in-
dicating overparameterization. Our full method provides the best
balance of accuracy and parsimony.

quality—especially larger primitive counts and higher
overlap—indicating over-parameterization. Moderate seed-
ing levels (MSD-7 to MSD-20) strike the best balance,
achieving strong reconstruction while maintaining compact
and well-behaved assemblies.

MSD vs. CoACD Initialization. We compare our mor-
phological shape decomposition (MSD) seeding strat-
egy with CoACD—a widely used convex decomposition
method—under matched budgets of decomposition steps
(Table 4). Across all settings, both approaches yield broadly
similar reconstruction fidelity; however, MSD consistently
produces significantly more parsimonious assemblies. At
5, 10, and 20 decomposition steps, MSD achieves com-
parable or superior Chamfer distance and markedly lower
overlap while using 10-20% fewer primitives. These
results highlight that MSD is a better structural prior
for primitive-based reconstruction: it extracts coherent,
thickness-homogeneous regions that align naturally with
our primitives, whereas CoACD tends to over-fragment the
shape. Overall, MSD offers a more compact, semantically
aligned initialization without sacrificing reconstruction ac-

N Steps IOU CD #Prims Overlap
MSD 5 87.55 0249 19.67 0.174
CoACD 5 88.47 0.307 21.32 0.224
MSD 10 8845 0.260 2235 0.218
CoACD 10 88.24 0.243 25.11 0.229
MSD 20 89.37 0.182 2194 0.215
CoACD 20 89.95 0.216 25.14 0.231
MSD 00 88.46 0.318 2849 0.242
CoACD) 89.61 0.242 30.83 0.273

Table 4. Comparison of MSD and CoACD as decomposition-
based initializers under matched step counts. Both methods
achieve similar reconstruction accuracy, but MSD consistently
produces more compact assemblies with fewer primitives and
lower overlap. This supports MSD as a more structurally appro-
priate prior for primitive-based reconstruction.

curacy.

7.3. Optimization Loss Ablation

Losses on Program Length and Program Quality. We
first ablate the two decomposition—aware terms that dis-
courage over—parameterization: the program-length loss
Lp and the primitive—quality loss L. Removing Lp yields
the highest reconstruction accuracy in the table, but does
so by inflating the primitive count by nearly 30%, confirm-
ing that this term is essential for maintaining parsimony.
Conversely, removing L produces assemblies with signif-
icantly higher primitive overlap and weaker geometric co-
herence, even though the primitive count remains low. To-
gether, these losses jointly regulate the structure of the in-
ferred program, trading a small amount of reconstruction
fidelity for a substantially cleaner and more compact assem-
bly.

Method Reconstruction Quality Program Quality
10U (1) BiSurfIOU (1) CD) EMD ({) #Prims ({) Overlap ({) IntraPrim () InterPrim (1)

- Lg 89.63 85.00 0.145 0.066 20.45 0.248 0.226 0.208
-Lp 91.13 87.51 0.143 0.064 29.05 0.213 0.211 0.182
- Lourt 83.03 76.07 0.212 0.073 23.640 0.161 0.232 0.210
w(p) =1 87.81 81.34 0.295 0.068 20.01 0.189 0.228 0.222
+ Lversky 87.97 81.93 0.322 0.067 23.48 0.221 0.221 0.196
- Prune 89.73 85.16 0.151 0.066 22.74 0.194 0.223 0.219
Ours 89.92 85.66 0.154 0.067 23.67 0.208 0.221 0.202

Table 5. Ablation of our loss components. Removing program-length or program—quality losses dramatically alters the parsimony and
coherence of the inferred assemblies (top block). Ablations of the reconstruction losses (middle block) show the importance of surface
supervision, curvature weighting, and balanced inner/outer penalties. Removing hard pruning (bottom block) causes early saturation and
weaker reconstructions. Overall, the full loss design achieves the best balance between fidelity and program quality.

10U #P Overlap IntraPrim InterPrim
No 89.49 2856 0.294 0.219 0.187
Low 8936 28.09 0.278 0.219 0.194
Med 89.93 2400 0.213 0.219 0.201
High 8397 16.80 0.094 0.240 0.258

Table 6. Ablation of jointly scaling the program—length and pro-
gram—quality loss weights. Excessively small weights reduce pro-
gram quality, while excessively large weights severely hurt recon-
struction by over—regularizing the assembly. The medium setting
(our default) provides the best balance between fidelity and struc-
tural compactness.

Losses Governing Reconstruction. We next ablate com-
ponents of the reconstruction loss. Eliminating the sur-
face—point loss L+ leads to a sharp drop in both 10U
and BiSurflOU, showing that explicit surface supervision is
critical for convergence. Replacing curvature—aware sam-
ple weights w(p) with a constant w(p) = 1 also hurts
performance—especially surface IOU—demonstrating that
curvature weighting effectively guides optimization toward
challenging geometric regions. We additionally evaluate a
Tversky—style outer—vs.—inner reweighting (heavier penal-
ties for false positives), similar to LightSQ, but find that it
degrades performance: overly emphasizing exterior errors
can prematurely shrink primitives before they have adapted
to their local neighborhoods.

Pruning. Finally, we ablate the hard—pruning step used
after optimization. Removing pruning does not degrade
parsimony in the way one might expect; instead, it leads
to lower reconstruction accuracy with slightly fewer prim-
itives. This occurs because without pruning the objec-
tive saturates sooner, causing ResFit to terminate earlier

and reducing the number of refinement rounds. Thus,
pruning acts as a stabilizer that prolongs meaningful
improvement and contributes to the overall reconstruc-
tion—quality—vs.—parsimony balance achieved by our full
method.

Joint Scaling of Program-Length and Program—Quality
Losses. We jointly vary the loss weights for program
length (Acount) and program quality (Aquar), where Agua con-
trols both the overlap and unoverlap terms. In the main
paper we report Aoune = 1072 and Aquar = 1072 the ac-
tual coefficients used during optimization are twice these
values due to symmetric penalties applied to inside—outside
consistency. Here, we sweep four regimes: No (Acount =
Aqual = 0), Low, Med (our default), and High, correspond-
ing to weight configurations ranging from 0 up to 2 x 1072
and 2 x 107! for Aeoun and Aqual, respectively. This ex-
periment evaluates how the relative strength of these two
regularizers shapes the reconstruction—parsimony tradeoff.

Increasing these weights too aggressively (High) yields
extremely compact assemblies with very low overlap, but
at the cost of a large drop in reconstruction quality. At
the opposite extreme, eliminating both terms (No) sur-
prisingly does not improve reconstruction, while signifi-
cantly degrading program quality—indicating that a mod-
erate amount of structure regularization is beneficial for fit-
ting. Our default Med setting achieves the best overall bal-
ance: strong reconstruction accuracy, reasonable primitive
counts, and clean low—overlap assemblies.

7.4. Others

Statistical significance of reported metrics. Be-
cause our fitting procedure includes stochastic compo-
nents—sampling of Gumbel variables, point-resampling,
and stochastic preconditioning—it is important to verify
that the evaluation metrics reported in the main paper are

Method Reconstruction Quality Program Quality

10U (1) BiSurfloU (1) CD () EMD (}) #Prims (1) Overlap ({) IntraPrim (}) InterPrim (1)
Run 1 88.10 81.70 0.243 0.067 21.18 0.193 0.227 0.215
Run 2 88.03 81.67 0.248 0.067 20.98 0.186 0.227 0.223
Run 3 87.91 81.62 0.250 0.068 20.98 0.195 0.227 0.217
Avg 88.01 81.66 0.247 0.067 21.05 0.191 0.227 0.218
Std 0.078 0.032 0.003 0.000 0.094 0.004 0.0 0.003

Table 7. Statistical significance of evaluation metrics. We report reconstruction and program-quality scores across three independent
runs, along with their mean and standard deviation. The extremely small variance across all metrics confirms that the quantitative results

presented in the main paper are statistically reliable and not sensitive to run-to-run randomness.

Method Reconstruction Quality Program Quality Timing
I0U (1) BiSurflOU (1) CD () #Prims ({) Overlap ({) IntraPrim ({) InterPrim (1)

MPS 64 71.46 51.68 2.207 9.338 0.472 0.355 0.332 7.9
MPS 128 80.60 72.75 1.147 30.62 0.588 0.245 0.201 37.9
MPS 256 86.30 79.93 0.740 85.76 0.738 0.196 0.103 194.6
Ours 1 81.13 73.83 0.798 9.354 0.113 0.288 0.326 84.8
Ours 2 86.55 80.62 0.231 15.54 0.145 0.241 0.248 184.1
Ours 3 88.28 83.08 0.167 19.19 0.168 0.230 0.223 290.6
Ours 5 89.67 85.25 0.149 23.01 0.203 0.222 0.204 551.2
Ours 10 89.91 85.68 0.147 23.93 0.213 0.220 0.201 692.6

Table 8. Comparison with Marching Primitives (MPS) across voxel resolutions (64, 128, 256). ResFit achieves a substantially better
reconstruction—parsimony tradeoff: even with only two refinement iterations, our method attains reconstruction quality comparable to
MPS-256 while requiring 5—6x fewer primitives and similar runtime. With additional iterations, ResFit surpasses all MPS variants across

all reconstruction metrics while maintaining compact assemblies.

statistically meaningful rather than artifacts of a single
run. To assess this, we execute the full pipeline three times
on the same inputs and report the per-run scores together
with their mean and standard deviation (Table 8). To lower
the computational cost of this experiment, we conduct
volumetric point sampling at 642 resolution instead of 1283
resolution used for other experiments (consequentely, all
the three runs have slightly lower reconstruction accuracy).
Across all reconstruction metrics (IoU, BiSurfloU, CD,
EMD) and program-quality measures (#Prims, Overlap,
IntraPrim, InterPrim), the variance is extremely small,
indicating that the differences we observe across methods
and ablations in the main paper are well above the noise
floor. Thus, the metrics used throughout our comparisons
can be interpreted as statistically stable and representative
of the method’s true performance.

Comparison to Marching Primitives Across Resolutions.
Table 8 compares our method to Marching Primitives
(MPS) evaluated at three voxel resolutions (64, 128, 256).
As the MPS resolution increases, reconstruction improves
but at the cost of substantially more primitives and rapidly
growing runtime. In contrast, our ResFit iterations trace

out a significantly better Pareto frontier: for a comparable
number of primitives, our reconstructions exhibit markedly
higher IOU, lower Chamfer distance, and stronger surface
consistency. Notably, our 2—iteration setting (Ours 2) nearly
matches or exceeds the reconstruction quality of MPS at
256 resolution while using 5—6 x fewer primitives and sim-
ilar runtime. Our full 10—iteration model further pushes re-
construction quality well beyond MPS at any tested reso-
lution. This highlights the efficiency and effectiveness of
decomposition—aware fitting: high fidelity does not require
ever-increasing voxel grids, but instead a sequence of in-
formed primitive refinements.

Cheaper optimization regime. We also investigate
whether the fitting procedure can be accelerated by relax-
ing several optimization hyperparameters. Specifically, we
reduce the number of optimization iterations (from 400 to
250), lower the maximum iteration cap (from 1600 to 1200),
increase the learning rate (from 0.01 to 0.015), and perform
volumetric sampling at 323 resolution instead of 643. As
shown in Table 9, these modifications reduce runtime by
more than 1.6x while preserving most of the reconstruc-
tion fidelity and structural quality of the inferred assem-

~
S
S

—e— ours 24 —o— ours 1 —e— ours
—e— Cheap —o— Cheap —— Cheap

~N
N
o
S
S

88
201

w
=
S

86

IoU 1

-

o
Time (s) ¢
w o
s &

s 3

84

Primitive Count

200+
82

104 100

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
ResFit Iteration ResFit Iteration ResFit Iteration

Figure 10. Comparison of our default fitting schedule (Ours) against the accelerated configuration (Cheap) across ResFit iterations.
Left: IOU steadily improves under both settings, with our configuration achieving higher accuracy. Middle: Primitive count grows more
aggressively under the full schedule, supporting higher reconstruction fidelity. Right: The accelerated regime reduces runtime substantially
while maintaining competitive quality.

Method Reconstruction Quality Program Quality Timing (1)
10U (1) BiSurfIOU (1) CD) #Prims ({) Overlap () IntraPrim ({) InterPrim (1)

Cheap 89.05 84.14 0.160 19.71 0.222 0.227 0.221 417.2

Ours 90.02 85.74 0.146 23.87 0.214 0.220 0.199 692.6

Table 9. Effect of a cheaper optimization configuration. Reducing the number of iterations, increasing the learning rate, and using lower-
resolution volumetric sampling significantly decreases runtime (from 692 s to 417 s) while maintaining comparable reconstruction and
program-quality metrics. This shows that meaningful speed—accuracy trade-offs are achievable without major degradation in assembly
quality.

blies. Although the “Cheap” configuration yields slightly ‘
weaker performance than the full model, the gap remains —@— Resfit (Ours) MPS —@= PA

{

small across all metrics, indicating that substantially faster = 0601
fitting is possible with modest trade-offs. Exploring more 8 .\.
principled acceleration strategies—such as adaptive sched- N
ules, coarse-to-fine decomposition, or learned initializa- ~ 030
tion—presents a promising direction for future work. 5

To better understand how the accelerated configuration ,_E
behaves over the course of the ResFit loop, Fig. 10 plots the S 0151
evolution of IOU, primitive count, and runtime across itera-] |
tions. Both schedules follow the same qualitative trajectory, g g';g]
but the cheaper regime progresses more quickly and satu- 2
rates earlier, yielding slightly lower reconstruction accuracy g 0061 ' ' ' . '
and fewer primitives. Importantly, ResFit does not force a e« 100 200 300 400 500 1000
fixed number of refinement rounds: the loop continues only Assembly Complexity (Parameter Count)
while the objective improves, and we merely raise the maxi-
mum iteration limit rather than enforcing all iterations. This Figure 11. Reconstruction IOU versus total parameter count for
highlights the trade-off—our full schedule achieves higher Primitive Anything (PA), Marching Primitives (MPS), and our
accuracy, while the accelerated variant offers a controlled method. Despite using a more complex primitive, our approach

yields the best accuracy for a given parameter budget, resetting

speed—quality compromise for.))
the accuracy—parsimony Pareto frontier.

Accuracy-Parameter Tradeoff. In the main paper we

compare reconstruction accuracy against primitive count, parameters each, PA uses 2-3 depending on type, while our
but different primitive families vary substantially in the SuperFrustum uses 8. To provide a fair cross-method com-
number of parameters they require: since Marching prim- parison, Fig. 11 plots IOU against the rotal parameter count

itives (MPS) uses super quadrics, its primitives require 5 of each inferred program. Even here, our method estab-

—
—T

(b)

Figure 12. Common Failure Cases (a) Shell-like or hollow shapes (e.g., helmets, shoes) cannot be represented without explicit negative
operations, leading to many primitives. (b) Multi-turn curved structures (e.g., LED filaments) fragment due to the single-arc primitive
design. (c) Some complex shapes (e.g., chairs) require overlapping primitives when local geometry exceeds the primitive’s expressiveness.
(d) Extremely thin curved surfaces yield weak gradients and underfit geometry. (e) Irregular thickness can cause MSD to decompose
hollow containers into thin slats, rather than a hollow cylinder. (f) In rare cases, primitives spill across semantic boundaries when needed

to maintain fidelity.

lishes a new Pareto frontier: for any given parameter budget,
SuperFrustum assemblies achieve higher fidelity than both
MPS and PA, highlighting that our primitive is not only ex-
pressive but also parameter-efficient.

8. Failure Cases

While ResFit performs reliably across a broad range of
shapes, we observe several characteristic failure modes
(Fig. 12).

(a) Non uniform hollow or shell-like structures. Our
primitive family cannot represent arbitrary hollow surfaces.
Shapes such as helmets, hats, and shoes contain thin shells
enclosing large voids; without explicit negative-space op-
erations, ResFit approximates these with many primitives,
producing assemblies that are geometrically valid but se-
mantically unsatisfying. Richer support for subtractive ge-
ometry would address many of these cases, though de-
formable materials (e.g., cloth) may remain difficult regard-
less.

(b) Multi-arc or winding structures. Because each
primitive contains only a single bending arc, it cannot
capture long, continuously curved trajectories. In shapes
such as LED filament spirals, the desired geometry has
a multi-turn curve, but MSD splits it into multiple short
thickness-consistent segments; the optimizer faithfully fits
each, yielding many fragmented primitives. A multi-arc or
curve-swept primitive family would resolve this limitation.

(c) Overlapping assemblies in complex but common cat-
egories. Even in standard categories such as chairs, we
occasionally observe assemblies that achieve reasonable
reconstruction but require a large number of overlapping
primitives. This arises when local curvature cannot be
matched well by the current primitive’s shape space, sug-
gesting the need for a more expressive base primitive.

(d) Extremely flat curved surfaces. When a part is both
highly curved and extremely thin, the gradients associated
with roundness, scale, or taper parameters become very

small, leading to weak updates. As a result, surfaces such
as thin bent panels such as the wings of the dragon may
be improperly fit. Sampling points directly from a dual-
contoured reconstruction of the target mesh would provide
higher-quality supervision in such cases.

(e) Irregular thickness in hollow containers. We ob-
serve that for some hollow shapes, the ground truth con-
tains inconsistent wall thickness. In such caese, MSD de-
composes the shape into thin slats instead of recovering a
coherent onioned cylinder. This occurs because thickness
irregularity perturbs the morphological openings. Increas-
ing MSD’s robustness to noisy or highly variable thickness
fields is an important future improvement.

(f) Semantic spillover across part boundaries. In a few
cases, achieving high fidelity requires primitives whose spa-
tial support crosses semantic boundaries—for example, a
primitive intended for the cheek region may extend into the
eye area. These issues could be mitigated by incorporating
segmentation cues from multi-view renderings during opti-
mization, nudging primitives to remain consistent with part
structure.

References

[1] Aditya Ganeshan, R. Kenny Jones, and Daniel Ritchie. Im-
proving unsupervised visual program inference with code
rewriting families. In Proceedings of the International Con-
ference on Computer Vision (ICCV), 2023. 13

[2] Selena Ling, Merlin Nimier-David, Alec Jacobson, and
Nicholas Sharp. Stochastic preconditioning for neural field
optimization. ACM Trans. Graph., 44(4), 2025. 12

[3] Hsueh-Ti Derek Liu, Maneesh Agrawala, Cem Yuksel, Tim
Omernick, Vinith Misra, Stefano Corazza, Morgan Mcguire,
and Victor Zordan. A unified differentiable boolean operator
with fuzzy logic. In ACM SIGGRAPH 2024 Conference Pa-
pers, New York, NY, USA, 2024. Association for Computing
Machinery. 13

[4] Weixiao Liu, Yuwei Wu, Sipu Ruan, and Gregory Chirikjian.
Marching-primitives: Shape abstraction from signed dis-
tance function. In Proceedings IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2023. 1,4, 12

[5] paniq. sdsuperprim. Shadertoy shader, 2016. https://
www.shadertoy.com/view/Xdy3Rm. 9

[6] paniq. sdsuperprim. Shadertoy shader, 2016. https://
www.shadertoy.com/view/MsVGWG.

[7] paniq. sdsuperpill. Shadertoy shader, 2016. https://
www.shadertoy.com/view/MdK3RW.

[8] Inigo Quilez. 3d sdfs — distance functions. https://
iquilezles .org/articles /distfunctions/,
nd. 9

[9] Alex Yu Shen. cubvh: Cuda-accelerated bounding vol-
ume hierarchy. https://github.com/ashawkey/
cubvh, 2023. Accessed: 2025-02-18. 12

[10] Stefan Stojanov, Anh Thai, and James M. Rehg. Using shape
to categorize: Low-shot learning with an explicit shape bias.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1798-1808,
2021. 1

[11] Delio Vicini, Sébastien Speierer, and Wenzel Jakob. Dif-
ferentiable signed distance function rendering. Transactions
on Graphics (Proceedings of SIGGRAPH), 41(4):125:1-
125:18,2022. 11

[12] Yuhan Wang, Weikai Chen, Zeyu Hu, Runze Zhang, Yingda
Yin, Ruoyu Wu, Keyang Luo, Shengju Qian, Yiyan Ma,
Hongyi Li, Yuan Gao, Yuhuan Zhou, Hao Luo, Wan Wang,
Xiaobin Shen, Zhaowei Li, Kuixin Zhu, Chuanlang Hong,
Yueyue Wang, Lijie Feng, Xin Wang, and Chen Change
Loy. Light-sq: Structure-aware shape abstraction with su-
perquadrics for generated meshes. In SIGGRAPH Asia,
2025. 1,4

[13] Yunhan Yang, Yukun Huang, Yuan-Chen Guo, Liangjun Lu,
Xiaoyang Wu, Edmund Y Lam, Yan-Pei Cao, and Xihui Liu.
Sampart3d: Segment any part in 3d objects. arXiv preprint
arXiv:2411.07184,2024. 1

[14] Jingwen Ye, Yuze He, Yanning Zhou, Yiqin Zhu, Kaiwen
Xiao, Yong-Jin Liu, Wei Yang, and Xiao Han. Primitiveany-
thing: Human-crafted 3d primitive assembly generation with
auto-regressive transformer, 2025. 1, 4

https://www.shadertoy.com/view/Xdy3Rm
https://www.shadertoy.com/view/Xdy3Rm
https://www.shadertoy.com/view/MsVGWG
https://www.shadertoy.com/view/MsVGWG
https://www.shadertoy.com/view/MdK3RW
https://www.shadertoy.com/view/MdK3RW
https://iquilezles.org/articles/distfunctions/
https://iquilezles.org/articles/distfunctions/
https://github.com/ashawkey/cubvh
https://github.com/ashawkey/cubvh

	Qualitative Examples
	Understanding SuperFrusta
	RoundedRect2D
	Trapezoid2D
	Combining two 2D SDFs to define a 3D SDF
	Onioning.
	Adding curvature
	Our Contributions.

	Residual Primitive Fitting (ResFit) Details
	Decomposition & Initialization
	Morphological Shape Decomposition (MSD)
	Initializing SuperFrusta
	Additional Remarks

	Optimization Details
	Hyperparameters
	Pruning Routine

	Applications
	Inferring Canonical CSG Programs
	Editable & Deployable Assets

	Additional Experiments
	Primitive Design Ablation
	ResFit Ablation
	Optimization Loss Ablation
	Others

	Failure Cases

