PKR-QA: A Benchmark for Procedural Knowledge Reasoning with
Knowledge Module Learning

Thanh-Son Nguyen*?, Hong Yang*'?, Tzeh Yuan Neoh*!#, Hao Zhang*', Ee Yeo Keat'?,

Basura Fernando

1,23

!Centre for Frontier Al Research, Agency for Science, Technology and Research, Singapore
’Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore
3College of Computing and Data Science, Nanyang Technological University, Singapore
4 Harvard University
Nguyen_Thanh_Son@a-star.edu.sg, Fernando_Basura@a-star.edu.sg.

Abstract

We introduce PKR-QA (Procedural Knowledge Reasoning
Question Answering), a new benchmark for question answer-
ing over procedural tasks that require structured reasoning.
PKR-QA is constructed semi-automatically using a proce-
dural knowledge graph (PKG), which encodes task-specific
knowledge across diverse domains. The PKG is built by cu-
rating and linking information from the COIN instructional
video dataset and the ontology, enriched with commonsense
knowledge from ConceptNet and structured outputs from
Large Language Models (LLMs), followed by manual veri-
fication. To generate question-answer pairs, we design graph
traversal templates where each template is applied systemati-
cally over PKG. To enable interpretable reasoning, we pro-
pose a neurosymbolic approach called Knowledge Module
Learning (KML), which learns procedural relations via neu-
ral modules and composes them for structured reasoning with
LLMs. Experiments demonstrate that this paradigm improves
reasoning performance on PKR-QA and enables step-by-step
reasoning traces that facilitate interpretability.

Code & Dataset —
https://github.com/LUNAProject22/KML

Extended version — https://arxiv.org/abs/2503.14957

Introduction

Interest in understanding procedural tasks is growing, driven
by applications in cooking, machinery repair, medical pro-
cedures, and daily activities (Ashutosh et al. 2024), as re-
flected by platforms like WikiHow. Such tasks consist of
sequences of steps, where each step serves a specific pur-
pose and tools are used accordingly. Human understand-
ing of these tasks arises from lifelong learning, enriched by
commonsense knowledge of objects and their affordances,
as well as the ability to reason about temporal and causal
dependencies within multi-step processes. This enables in-
dividuals to infer not just what to do, but why and how each
step contributes to the overarching goal. Emulating this pro-

“These authors contributed equally.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cedural knowledge reasoning is essential for machines to as-
sist in complex real-world tasks.

Despite the rise of visual question answering and general
knowledge-based benchmarks, there remains a gap in evalu-
ating a model’s ability to perform procedural knowledge rea-
soning. To address this, we introduce PKR-QA (Procedural
Knowledge Reasoning Question Answering), a new bench-
mark designed to assess Vision Language Models (VLMs)
and Neurosymbolic (NS) methods on diverse procedural
reasoning capabilities, including multi-hop, deductive, prob-
abilistic, contextual, causal, and counterfactual reasoning.
Many procedural tasks require domain-specific knowledge
and an understanding of task structures, which can be ef-
fectively captured using knowledge graphs. To construct
the PKR-QA questions and answers, we build a procedu-
ral knowledge graph (PKG) that encodes temporal relation-
ships and causal links among key concepts. Our dataset chal-
lenges models to answer procedural questions by combining
information from the video with external knowledge about
the task. Unlike previous video QA benchmarks that primar-
ily test visual comprehension, i.e., reasoning over what is in
the video, our dataset emphasizes task-centric reasoning and
knowledge grounded in the procedure. This introduces new
challenges that jointly demands visual understanding, visual
reasoning, and procedural knowledge reasoning.

While VLMs demonstrate impressive reasoning and
knowledge capabilities, their internal reasoning mechanism
is not that transparent. Techniques like chain-of-thought,
graph-of-thought, and tree-of-thought aim to enhance VLM
reasoning (Wei et al. 2022; Besta et al. 2024; Yao et al.
2023), yet the reasoning remains implicit due to the lack of
constraints on intermediate variables. Moreover, reasoning
and execution are often entangled within the VLM’s inter-
nal mechanism. To address this, methods like ViperGPT de-
couple reasoning from execution by generating executable
programs. Inspired by such approaches and neurosymbolic
(NS) models (Johnson et al. 2017; Mascharka et al. 2018;
Andreas et al. 2016; Perez et al. 2018; Hudson and Manning
2019, 2018; Chen et al. 2021; Endo et al. 2023), we pro-
pose Knowledge Module Learning (KML), which models
knowledge-based relations as parameterized, trainable mod-

ules leveraging on modern embeddings. KML generates the
program of knowledge modules to answer knowledge-based
reasoning questions as compositions of knowledge modules
using the PKG schema and LLMs. KML explicitly answers
knowledge-based reasoning questions leveraging the pow-
erful reasoning mechanism of moderns LLMs allowing it
to execute reasoning steps in a more transparent manner to
derive the answer. KML supports explicit knowledge-based
reasoning, constrained to a well-defined set of knowledge
operations, plays a crucial role beyond procedural tasks in
domains that require structured decision-making, reliabil-
ity, and interpretability. KML provides explicit reasoning
steps that can be systematically verified, debugged, and re-
fined. Unlike end-to-end black-box models, which often lack
transparency in their decision-making, structured reasoning
through predefined operations enables more interpretable,
trustworthy, and controllable AI systems. Our dataset and
the approach promote these aspects.

Our contributions are three-fold. First, we introduce PKR-
QA, a new benchmark to test procedural knowledge rea-
soning by question answering. Second, we propose KML, a
neuro-symbolic method that executes LLM-generated pro-
grams over knowledge graphs using relation-specific neural
modules. Third, we benchmark PKR-QA with state-of-the-
art VLMs and NS methods. KML variants outperform all
baselines, highlighting the benefit of structured knowledge
for interpretable and controllable procedural reasoning. We
believe PKR-QA will serve as a valuable resource to ad-
vance trustworthy Al in this emerging domain.

Related Work

Understanding procedural and instructional videos remains
a significant challenge in computer vision. The authors
in (Ashutosh et al. 2024) introduced the key step recogni-
tion and procedure-aware video representation learning ap-
proach using step transitions is presented in (Zhou et al.
2023). We leverage on these works. Knowledge-based Vi-
sual Question Answering has become popular in recent
years. The majority of the past benchmarks on knowledge-
based visual question answering are for images while more
recently authors in (Wang et al. 2024) presented a bench-
mark to evaluate situated and open-world common-sense
reasoning in videos with compositionality, temporality, and
causality (Parmar et al. 2024). While the motivation of our
work shares similarities with (Wang et al. 2024), there are
notable distinctions. Their focus lies in situated common-
sense reasoning grounded in the specific contexts depicted in
videos, whereas we concentrate on testing the procedural un-
derstanding of models given some partial information such
as a step of a task. Integrating External Knowledge with
Video Understanding has been explored through knowl-
edge graphs (KGs) for tasks like activity recognition (Ma
et al. 2022) and visual commonsense reasoning (Lin et al.
2019). VidSitu (Sadhu et al. 2021) links events to seman-
tic roles, while TVQA+(Lei et al. 2019) uses script knowl-
edge for story-based QA. However, these works focus on
descriptive reasoning rather than procedural reasoning. Neu-
rosymbolic frameworks like ViperGPT (Suris, Menon, and
Vondrick 2023), MoreVqa (Min et al. 2024) and (Choud-

hury et al. 2024) decouple reasoning (e.g., program gen-
eration) from execution (e.g., API calls). While ViperGPT
uses predefined functions for visual queries, it lacks mecha-
nisms to learn domain-specific knowledge modules or con-
strain reasoning to procedural logic. Similarly, chain-of-
thought prompting (Wei et al. 2022) improves transparency
in LLMs/VLMs but remains dependent on the model’s in-
ternal knowledge, which may be unreliable for special-
ized domains. Our framework advances this by (1) train-
ing lightweight, interpretable Knowledge Modules directly
from a domain specific KG and (2) constraining reasoning
to predefined operations ensuring alignment with domain
knowledge. Our work is also related to (Zhong et al. 2024;
Shah et al. 2024), which employ logical queries to extract
information from a KG. This emphasis on curated, domain-
specific knowledge is especially valuable for Al assistants
operating in contexts where domain expertise, rather than
general commonsense reasoning, is crucial for success. Prior
knowledge completion works that learns embeddings of en-
tities and relations in KGs are also related to us (Bordes
et al. 2013; Wang et al. 2014). In contrast, KML utilizes em-
beddings to learn relational mappings, employing a separate
neural network for each relation through contrastive learn-
ing.

PKG Construction and Dataset Creation

Motivated by recent advances in the semi-automated con-
struction of knowledge-based question answering datasets
(Hoang et al. 2024), we introduce the Procedural Knowl-
edge Reasoning Question Answering (PKR-QA) dataset. It
is built on a Procedural Knowledge Graph (PKG) that in-
tegrates information from the COIN training set, the COIN
ontology, GPT-40-generated annotations, and external com-
monsense knowledge from ConceptNet, followed by hu-
man verification. To enable systematic QA generation, we
define a set of question templates and associated Cypher
queries (Francis et al. 2018), which are executed over the
knowledge graph to retrieve correct answers. In the follow-
ing sections, we detail the construction of both the knowl-
edge graph and the QA dataset.

Defining PKG’s Schema (PKGS). A knowledge graph
schema provides a high-level abstraction of the graph, spec-
ifying the types of entities that exist and the valid relation-
ships that can occur between them. It serves as a blueprint
for structuring the data and interpreting the semantics of the
graph. In our case, PKGS contains nodes where each node
correspond to an entity type (£) and edges represent relation
types (R) (Figure 1). The core entity types in PKGS include
Domain, Task, Step, Action, Object, Tool, and Purpose. Re-
lation types capture meaningful procedural links, such as
task-step associations or tool usage (e.g. HAS_TOOL), and
may carry attributes like id, type, or additional semantic
metadata.

Populating PKG. Based on this schema, we instantiate
PKG by populating it with specific entity and relation in-
stances. Each entity e € & has three main attributes: type,
name, and id. Relations » € R represent specific con-
nections between entity instances. To construct this graph,

Procedural Knowledge Graph Schema

Traversal Template

Sample Question

HAS_ACTION

HAS_OBJECT-

Py)

HAS_PURPOSE HAS_PURPOSE

R HAS_STEP HAS_TOOL HAS_PURPOSE .
COIN-based : o Task Step Tool What is the purpose of the tool
@D L1M-based | ‘ Purpose used in this step?
@ ConceptNet | HAS_TASK
....................... ' v HAS_PURPOSE e
Tool T ——— | What are the additional purposes
HAs sTEp— [Task HAS_STEP Purpose: P, where Task MHAS STER, fgr which the tool sh_own in tl}is
\ HAS_TOOL g Jias PygzosE | video can be used, aside from its
HAS_STEP Step ——— Tool : T1 PUrpose ! | jniended use in the step demon-
i @,NEXT,STEP 3! strated?
{ ° HAS_PURPOSE . .
START)-HAS NEXT_STEP—>(Step HAS_NEXT_STE Tool :Th _— Purpose : | what is an alternative tool that can

‘ P, where Task -—22=TF8, Step HASTOSL, | be used for this step if I don’t have

HAS_TOOL Tool : —_— Purpose
HAS_SIMILAR PURPOSE
P, _— Purpose

P3 and Tl#Tg and (P1:P2 or P1:

HAS_PURPOSE the current tool?

HAS_PURPOSE

HAS_STEP HAS.TOOL
Task:A4; ————— Step —— Tool

Purpose T _HASPURPOSE Purpose JRSFUREOSE | the tool shown in this video for the
Tool HAS_TOOL Step HAS_STEP same purpose?
HAS_SIMILAR_PURPOSE
S SIMILAR_PURPOS Task: A, where A # A,

‘What can be other task that can use

Figure 1: (Left) Schema of the Procedural Knowledge Graph (PKG). Middle: Traversal templates. Right: Corresponding ques-
tions. Blue text indicates information grounded in the input video. Red text denotes the target answer node.

we integrate annotations from the COIN dataset (Tang
et al. 2019), fine-grained information extracted using GPT-
40 (Hurst et al. 2024), and commonsense knowledge from
ConceptNet (Speer, Chin, and Havasi 2017).

COIN-based Data (Domain, Task, Step): We ex-
tract the procedural structure from the training split of the
COIN dataset, which provides annotations for domains,
tasks, and steps. For each unique instance of these enti-
ties, we create corresponding nodes in the graph. We define
HAS_TASK edges to link each domain to its associated tasks,
and HAS_STEP edges to connect tasks to their constituent
steps. To capture procedural flow, we analyze step sequences
from all training videos and construct HAS_NEXT_STEP re-
lations that represent the temporal ordering of steps. Addi-
tionally, we introduce special START and END nodes to ex-
plicitly mark task boundaries. Each HAS_NEXT_STEP edge
is annotated with its observed frequency to model empirical
transition likelihoods between steps.

LLM-Augmented Data (Action, Object, Tool):
To enhance procedural specificity, we use GPT-40 to ex-
tract action-object pairs from step descriptions. For instance,
the phrase “remove the tire” yields the action “remove” and
the object “tire”. Because COIN lacks explicit tool annota-
tions, we further prompt GPT-40 to infer potential tools for
each step. The tool lists are manually verified. We standard-
ize terms (e.g., “scissor” — “scissors”), consolidate dupli-
cates (e.g., “marker”, “marker pen”), and unify task-specific
variants (e.g., “toilet detergent” — “detergent”). Some task-
sensitive distinctions are preserved (e.g., “filter” — “coffee
filter”’) when relevant to the procedural context.

ConceptNet-based Data (Purpose): In procedural
tasks, actions are typically performed—and tools or objects
used—with specific purposes. To represent such intent in our
graph, we incorporate commonsense knowledge from Con-
ceptNet, a large-scale semantic network that connects words
and phrases through meaningful, human-readable relations

such as UsedFor, CapableOf, and IsA. Specifically, we
extract potential purposes of actions, tools, and objects us-
ing the UsedFor and CapableOf relations. To contex-
tualize these purposes within specific procedural steps and
tasks, we use GPT-4o to infer task- and step-specific inter-
pretations for each entity’s purpose —see the prompt template
in (Nguyen et al. 2025) for more details. This step ensures
that the resulting knowledge is not generic but grounded in
the procedural context in which the entity is used.

To reduce redundancy and merge semantically simi-
lar purposes, we compute pairwise cosine similarities of
Sentence-BERT embeddings (Reimers and Gurevych 2019)
and apply a similarity threshold of 0.8, validated through
manual inspection. Pairs of highly similar purposes are
linked using a HAS_SIMILAR_PURPOSE edge. The result-
ing purpose-augmented graph is stored in Neo4j', support-
ing efficient querying and reasoning via Cypher. All contents
are manually verified to ensure the reliability of the KG. The
constructed KG contains 2,954 unique entities and 12,484
relations. Detailed distributions of entities and relations are
shown in (Nguyen et al. 2025).

PKR-QA is a multiple-choice question answering dataset
designed to evaluate reasoning over procedural knowledge
in instructional videos. Each instance consists of a video
segment, a question, five answer choices, and one correct
answer. Unlike traditional video QA datasets that focus on
grounding answers directly in the visual content of a sin-
gle video, PKR-QA emphasizes reasoning over procedural
knowledge that extends beyond the given video.

Traversal Templates for Procedural Reasoning We de-
fine questions in PKR-QA based on traversal templates

which are specific reasoning patterns over PKG. For in-

HAS_TOOL HAS_PURPOSE
stance, the traversal Step ———— Tool —————

Purpose corresponds to the question: “What is the purpose

"https://neodj.com/

of the tool used in this step?”. We design 17 such traver-
sal templates to cover a wide range of procedural reasoning
types. For each template, we generate multiple question vari-
ants using GPT-40-mini, followed by manual filtering to en-
sure quality and clarity. These templates form the backbone
for producing diverse yet semantically consistent question-
answer instances. Figure 1 presents examples of Traver-
sal Templates alongside their corresponding questions. The
complete set of 17 question templates with example ques-
tions is provided in (Nguyen et al. 2025).

Question and Answer Generation We generate ques-
tions by aligning each video segment with its correspond-
ing Task and Step nodes in PKG, then apply traversal
templates to form questions and retrieve answers. For each
question, we sample one correct answer and four distractors.
To ensure balanced answer distributions and reduce bias, we
apply sampling strategies that equalize the frequency of each
answer candidate across correct and incorrect options. Each
question is paired with a Cypher query that retrieves sup-
porting facts from PKG. These structured annotations serve
as logical forms for KG-based evaluation, model supervi-
sion, and reasoning trace analysis.

PKR-QA is designed for scenarios with limited training
data but having access to structured knowledge, such as a
knowledge graph. We construct a training set of 1,700 sam-
ples (100 per traversal template) and a validation set of 850
samples (50 per template). The test set contains 46,921 ques-
tions, generated from all video segments in the COIN test
split. This setup supports zero- and few-shot generalization.

To assess the quality of our dataset, we evaluate whether a
question can be reasonably answered by a human—referred
to as plausibility. We conducted a case study with eight
participants, each answering a subset of 170 questions. For
each question, participants were shown a video segment, the
question, and five answer options, and were asked to se-
lect the correct answer. Each question was independently
answered by three participants. A question is considered
plausible if at least one participant selected the correct an-
swer. Using this criterion, we found that 92.4% of the ques-
tions are plausible. Additionally, random baselines perform
at chance level (~ 20% accuracy), suggesting low annota-
tion artifacts or answer biases.

Knowledge Module Learning

In this section, we introduce our proposed Knowledge Mod-
ule Learning (KML) for procedural knowledge reasoning,
which effectively handles uncertain (probabilistic) inputs
while producing interpretable reasoning outputs using a
small number of trainable parameters. We train a collection
of neural networks known as Neural Knowledge Module
(KM) to represent each binary relation type of PKG. Then
given a video and a question, we ask LLM to generate a pro-
gram consisting of KM invocations to answer the questions.
Then we execute those KMs sequentially with the grounded
evidence extracted from the video to obtain the final answer.
Next, we present the details.

Knowledge Module Learning. For each binary relation
type Ry (&, E;) in the PKG that maps from entity type &;

to £;, we learn a KM as a learnable neural relation (¢,)
with parameters (0,). KM learns to map from a given head
entity e; € &; to the corresponding set of tail entities Z;
where Z; C &; of relation R, as follows:

Or, (x(€; 02); Or,) — €; (1)

where x(e;;0,) is a d-dimensional embeddings of the
head entity and e; is a vector that is closer to x(e;)
for all e; € Z;. Here, Z; is the set of tail entities un-
der relation R for the head entity e; or formally Z; :=
{e; € £ | Ri(es,e;) = True}. Then the objective of KM
learning is to make sure to learn (0, , 8,) such that for each
head entity embedding x(e;) can be mapped to a vector e;
that is representative of all corresponding tail entities Z;. We
iterate over all the triplets (including the inverse triplets) of
all relation types of PKG in a batch-learning manner and
train the KMs using the contrastive loss.

emp(ejﬂ;(ej))

2 e, €TP

Here B is the set of tail entities in the batch of triplets ex-
cluding Z;, e; € Z; is one of the positive target entity for
e; under Ry, and 7 is the temperature. Note that we L2 nor-
malize all embeddings and the vector e; before computing
the contrastive loss. Contrastive loss plays a crucial role in
learning neural relation functions ¢g, (i.e. KMs), for mod-
elling symbolic binary relations of the form R (E;, £;).

The embedding learning function x(; 6,.) is implemented
using CLIP (Radford et al. 2021) text encoder embeddings
with frozen parameters (6,,). Alternatively, we also learn the
embedding function from scratch using standard implemen-
tations?. Similarly, we also learn the inverse KM for each
inverse relation R*1(&;,&;) of each relation Ry. Let us de-
note the set of all KMs by ¢r = {¢g, |k =1,---}.

At inference, KM takes an input embedding and maps that
to an output embedding that represents a set of correspond-
ing tail entities of that relation. For example, Table 3 shows
the semantic meaning of each output embedding that maps
to a set of tail entities of relation HAS_TOOL for given input
embedding of the Step entity. We experimented with differ-
ent neural configurations of multi-layered perceptron (MLP)
and found that two-layered MLP with Tanh activation per-
forms the best for learning KMs. Next, we present how to
answer questions using KMs and LLM generated programs.

—log (2

(ej'x(ep))

Question Answering. Given the video v, the question @,
and options Y = {y1,- - ,yn} (n = 5) we prompt a
LLM ¢() to find the relevant entity type (E,) that should
be grounded in the video to answer the question.

#(Q,PKGS) — E, 3)

For example, I, can be a task, step, object or action. Then
we find the entity instance(s) that is present in the given
video V' of the entity type E, using a vision foundation
model (VLM) as follows:

VLM(V, E;) — Xe “)

2We learn these using torch.nn.Embedding

where x, € RS represents the score vector for the entity
type (e.g., step distribution) across all categories of that en-
tity type. We assume there are C' categories for entity type
E,. To obtain estimates about the grounding entity F,, we
use ProceduralVRL (P.VRL) (Zhong et al. 2023) a VLM tai-
lored for procedural tasks.

Given the collection of Knowledge Module names (¢r)
and the question (), and the grounded entity type E,, we
use LLM (denoted by ¢ ()) to generate a list of sequence of
Knowledge module invocations (known as program or P;)
to answer the question. Using a similar concept to chain-
of-thought (Wei et al. 2022; Wang et al. 2022), tree-of-
thought (Yao et al. 2023), and graph-of-thought (Besta et al.
2024) we ask the LLM to generate multiple alternative pro-
grams to answer the same questions.

¢G(Q7¢R7Eg) = [Pl = <¢7‘1‘7¢T]‘7¢7‘k7 > [)
P = <¢m7¢7"j7¢rk7"~>]

Here P, is the specific module invocations and each P,
may result in different answers following an alternative-
thought of reasoning approach. The LLM module ¢¢()
can be implemented with any LLM with good reasoning
capability. We use a special prompt that invokes deep
understanding and consistent knowledge graph traversal
and alternative thought invocations— see (Nguyen et al.
2025) for more details on the prompt. As an example,
to answer the question what is an alternative
tool that can be used for this step?

it generates the following program of modules.

HAS_TOOL(Step) — Tool
HAS_PURPOSE(Tool) — Purpose
SIMILAR_PURPOSE(Purpose) — Purpose
PURPOSE_TO_TOOL (Purpose) — Tool

where PURPOSE_TO_TOOL (Purpose) is the inverse rela-
tion of HAS_PURPOSE(Tool). LLM may generate multiple
programs that leads to the answer, typically 3-5 alternatives
for complex problems. To predict the answer, we execute
each program in order, inputting the grounded entity rep-
resentation z; into the first module. For each program (P
to P)), z; is fed into the first module to obtain intermediate
embedding, invoking all modules sequentially. For example
zj = ¢r,(2;) then 2z = ¢, (2;) and finally zy = ¢,, (2).
Therefore the final embedding representing the answer to
the given question is zy. We can also inspect the meaning
of each intermediate representation as shown in Table 3
allowing more interpretable reasoning that can handle
uncertain inputs.

To compute the first input embedding z;, we use the
grounded top-K entity instance and weight the embeddings
of each grounded entity instance category name as follows:

Zi = S x XeT (6)
Xe = [1‘(61)733(62)7' te ,I(ek)] (7)

where ey, is the k-th category of the entity type E; and S =
[s1, 82, , sk] is a vector containing top-k scores for each
grounded entity-type category (e.g. Step categories).

Inference. Given the options Y = {y1,...,y,}, we obtain
the embeddings of Y, i.e., 2(Y) = [z(y1), 2(y2), - - - x(yn)]-

Then we compute the cosine similarity between the final
embedding z; and x(Y") and apply softmax to predict the
answer index for each program. When there are alternative
programs, we take the maximum score from all programs as
the final answer.

VQA Training for KML. We also fine-tune the KMs us-
ing a few examples of the video-question-answer using our
dataset. We compute the cosine similarity between z; and
2(Y") and apply softmax to predict the answer index.

U = softmax (cosine_sim (x(Y"), zf)) (8)

Then we train all KMs jointly using the cross-entropy loss
over the correct answer index. At test time, we predict
the right answer using the argmax of the cosine similar-
ity scores. One of the advantages of KML (auto-program)
approach is that, given the relation types, we do not need
to manually select any neural modules, or generate pro-
grams manually. We use LLMs such as GPT, DeepSeek or
Mistral. More implementation details of KML is presented
in (Nguyen et al. 2025).

Experiments
Experimental Setup

We conduct experiments on the PKR-QA benchmark to
evaluate the effectiveness of VLMs and Neurosymbolic
methods for procedural knowledge-based question answer-
ing. We use NVIDIA A100 GPUs (80GB VRAM) for con-
ducting experiments with VLMs, NVIDIA GeForce RTX
2080 Ti and A5000 GPUs for training KML, and RTX 3090
GPUs (24GB VRAM) for training knowledge graph embed-
ding methods.

VLM Evaluation Settings. We evaluate VLMs under five
different settings to assess their procedural knowledge rea-
soning ability: (1) Zero-shot: VLMs take a video segment
(8 uniformly sampled frames), a question, and options as in-
put; (2) VLM+P.VRL: VLMs take a video segment (8 uni-
formly sampled frames), a question, options, and the top-5
step/task categories from P.VRL as input; (3) KG-training:
VLMs are tuned using the triplet instances of our PKG as
questions using LoRA (Hu et al. 2021) and then evaluate the
fine-tuned VLMs with PKR-QA; (4) QA training: VLMs
are tuned using LoRA for 100 epochs with 4 randomly sam-
pled frames as input, demonstrating the impact of few-shot
fine-tuning. All models are trained using the training set of
1,700 question-answer pairs; (5) KG+QA training: VLMs
are tuned using triplet instances following KG-training, and
1,700 question-answer pairs as described in QA training.

Neurosymbolic Methods. We explore three variants of
KML, differing in how the embedding function z(;6,) is
implemented. In KML-F-CLIP, z(;6,) is a frozen CLIP
text encoder. In KML-CLIP, we initialize x(; 6,;) with CLIP
embeddings and fine-tune its parameters. In KML-Rand, 6,,
is learned from scratch (i.e., randomly initialized). We com-
pare our KML against the following NS methods:

Inference by Graph Propagation (IGP):We implement a
simple NS baseline that uses a given program and a set of
grounded entities with associated probabilities or logits to

answer questions. Given a directed knowledge graph with
binary relations, we propagate uncertainty from grounded
entities through the relations specified in the program. Us-
ing breadth-first traversal, we accumulate scores at each tar-
get entity by summing the propagated logits. This approach
resembles probabilistic logic-based inference.

KG Embedding Methods: We compare against standard
KG embedding models, including TransE (Bordes et al.
2013), TransH (Wang et al. 2014), and RotatE (Sun et al.
2019). After training, we use LLM-generated programs (as
in KML) to perform multi-hop reasoning. These models are
selected for their support of compositional reasoning. Em-
bedding dimensions are tuned on a validation set, yielding
optimal sizes of 256 for TransE, 100 for TransH, and 256
for RotatE. We also include variants with CLIP-initialized
entity and relation embeddings to enable direct comparison
with CLIP-based KML models.

Modern NS methods: We compare with modern NS meth-
ods including ViperGPT (Suris, Menon, and Vondrick 2023)
that uses the power of LLM and vision models, and
MAC (Hudson and Manning 2018). We evaluate MAC on
a classification-based VQA task, using a single image frame
and a question (without answer choices) as input. The model
predicts from 2,079 answer classes aggregated from the
dataset. We use GloVe (Pennington, Socher, and Manning
2014) embeddings for text and extract visual features with
a pretrained ResNet101 (He et al. 2016). We tuned the em-
bedding size, MAC hidden size, and the number of MAC
layers, selecting the best setup based on validation perfor-
mance. The comparison with NS methods such as (Jaiswal
et al. 2025; Li et al. 2025) are left for future work.

Metrics. Since VLM-generated text may not exactly match
the predefined multiple-choice options, we adopt the filter-
ing and MCQ accuracy computation strategy from (Yue et al.
2024; Lin et al. 2023). We report both overall accuracy and
mean accuracy for each model. Accuracy is computed as
the average score across all test samples, while mean ac-
curacy (mAcc)s is the average of per-template accuracies,
providing equal weight to each traversal template.

Analysis and Discussion

Benchmarking VLMs on PKR-QA. Table 1 compares
the performance of various VLMs across five training and
inference settings, revealing several key insights. Provid-
ing predicted step and task information from Procedu-
ralVRL (VLM+P.VRL) consistently improves performance
over the zero-shot setting. These gains highlight the impor-
tance of grounded procedural context in enhancing reason-
ing, even for strong models like MiniCPM-V and Qwen2.5-
VL. Training on KG triplets yields some improvement
over zero-shot baselines, though the gains are modest and
less consistent, suggesting that aligning symbolic represen-
tations with multimodal inputs remains non-trivial. QA-
based fine-tuning leads to larger improvements, particu-
larly for MiniCPM-V and Qwen2.5-VL. These gains indi-
cate that VLMs are capable of adapting to task-specific su-
pervision, even when provided with a relatively small num-
ber of QA pairs (1,700 samples). The best performance is
achieved when combining both KG and QA training, with

Setting | Model | Ace | mAce
DeepSeek-VL2 (27.4B) (Wu et al. 2024) | 584 | 554
MiniCPM-V (8B) (Yao et al. 2024) 62.6 | 59.7
Zero-shot mPLUG-OwI3 (7B) (Ye et al. 2024) 63.1 | 60.2
Qwen2.5-VL (7B) (Bai et al. 2025) 59.6 | 57.8
VideoChat2-HD (7B) (Li et al. 2023) 612 | 584
DeepSeek-VL2 (27.4B) (Wu et al. 2024) | 64.5 | 59.9
MiniCPM-V (8B) (Yao et al. 2024) 67.4 | 63.8
VLM + P.VRL mPLUG-Owl13 (7B) (Ye et al. 2024) 655 | 61.6
Qwen2.5-VL (7B) (Bai et al. 2025) 694 | 658
VideoChat2-HD (7B) (Li et al. 2023) 655 | 59.9
MiniCPM-V (8B) (Yao et al. 2024) 635 | 61.0
KG-training mPLUG-Ow13 (7B) (Ye et al. 2024) 64.8 | 614
Qwen2.5-VL (7B) (Bai et al. 2025) 673 | 64.1
MiniCPM-V (8B) (Yao et al. 2024) 71.1 | 714
QA training mPLUG-OwI3 (7B) (Ye et al. 2024) 718 | 724
Qwen2.5-VL (7B) (Bai et al. 2025) 73.6 | 734
MiniCPM-V(8B) (Yao et al. 2024) 72.1 | 72.1
KG+QA training | mPLUG-OwI3 (7B) (Ye et al. 2024) 73.1 | 738
Qwen2.5-VL (7B) (Bai et al. 2025) 74.2 | 73.8

Table 1: Comparison of VLMs in different settings. Under-
lined scores denote the best-performing method within each
setting, while bold scores highlight the best overall.

Setting | Model | Acc | mAce
No Training ViperGPT 41.6 | 409
/ No Program GPT-40 + PVRL 71.2 | 69.0
Program Only | IGP (+P.VRL) | 62.8 | 60.0
QA training Only | MAC | 11.6 | 20.0
TransE 63.6 | 51.6
TransH 73.1 | 66.3
RotatE 416 | 292
TransE+CLIP 56.8 | 45.4
KG-training TransH+CLIP 70.6 | 65.9
RotatE+CLIP 48.8 | 352

KML-F-CLIP (Ours) | 74.6 | 71.6
KML-Rand (Ours) 73.5 | 70.0
KML-CLIP (Ours) 753 | 715

KML-F-CLIP (Ours) | 76.7 | 75.3
KG+QA training | KML-Rand (Ours) 774 | 76.3
KML-CLIP (Ours) 781 | 77.1

Table 2: Performance comparison of NS methods.

Qwen2.5-VL reaching 74.2/73.8, indicating that integrating
structured procedural knowledge with task-specific exam-
ples provides complementary benefits for enhancing proce-
dural understanding in VLMs.

Benchmarking Neurosymbolic Methods. As shown in
Table 2, all KML variants outperform all baselines, confirm-
ing the benefit of executing LLM-generated KG-traversal
programs with relation-specific KMs for procedural rea-
soning QA. KML achieves the highest performance un-
der KG+QA training using KML-CLIP variant. The per-
formance of KML-Rand is not far from KML-F-CLIP and
interestingly, when tuned with KG+QA training the KML-
Rand performs better than KML-F-CLIP under the same
setting. ViperGPT performs poorly on our benchmark due
to the absence of built-in reasoning operators and reliance
on predefined program templates that are not suited for
the structured reasoning required in procedural knowledge
tasks. IGP suffers from combinatorial explosion and poor

grounding, often generating irrelevant results from uncer-
tain starting nodes. In contrast, KML handles such uncer-
tainty better by grounding traversal via learned knowledge
modules. MAC, originally designed for visual reasoning
tasks (e.g., answering questions like “What is to the left of
the green box?”), fails in our setting due to its lack of ac-
cess to external procedural knowledge. Among KG embed-
ding methods, TransE and TransH perform better due to
their additive or projective composition, aligning well with
our program-based reasoning. RotatE underperforms, likely
because its complex-valued, rotation-based composition is
less effective for multi-hop reasoning. CLIP-based initial-
ization yields mixed results—improving RotatE but degrad-
ing TransE and TransH—indicating varying alignment with
visual semantics across models. We also evaluate GPT-40
using top-5 predicted step/task category names from P.VRL.
It achieves 71.2% accuracy and 69.0% mean accuracy.

KML’s Interpretability. One key advantage of KML is
its interpretability, as illustrated in the qualitative example
in Table 3. We observe step-by-step reasoning and interme-
diate interpretations from the learned embeddings, offering
insight into the model’s decision process. The output entities
represented by the output vectors of each KM seems reason-
able and accurate for the given task.

KMUL’s Generalizability. To assess KML’s generalizabil-
ity, we added ten binary relations from the STAR bench-
mark. KML-F-CLIP achieved 74.9% on Interaction and
76.7% on Feasibility questions, outperforming prior bests
of 71.8% (Jaiswal et al. 2025) and 62.4% (Yu et al. 2023).
For Sequence and Prediction questions, it scored 57.3%
and 49.8%, respectively. We also trained KML-F-CLIP us-
ing a GPT-4o-generated KG from 7,687 WikiHow tasks
(57,027 steps, 8.7M triplets) capturing tools, actions, ob-
jects, and purposes. Evaluated on our PKR-QA dataset,
it achieved 73.9% mean accuracy, rising to 74.9% with
KG+QA training, suggesting that while generic KGs help,
domain-specific modules remain advantageous.

KML’s Robustness. Figure 2 (left) shows KML’s perfor-
mance using top-k step/task predictions (k = 1 to 5). Using
all top-5 predictions yields the best QA performance, while
top-1 predictions still achieve strong results, demonstrating
the model’s robustness to imperfect inputs. Figure 2 (right)
reports a moderate correlation (0.24) between step predic-
tion accuracy and QA accuracy, suggesting KML does not
heavily depend on input quality, benefiting from embedding-
based reasoning and generalizable knowledge modules.

KML Ablation. We train KML modules from scratch us-
ing only QA training, with KML-F-CLIP achieving 59.3%
mean accuracy—highlighting the value of training on PKG
data. KML allows exploration of multiple programs per
question (see (Nguyen et al. 2025)), though gains over
single-program use are marginal. It also supports expert
program editing for improved reliability. Evaluating differ-
ent LLMs for program generation in KML-F-CLIP, GPT-
40 leads with 71.6% accuracy, followed by LLaMA-3-
8B (68.4), DeepSeek-V2.5 (66.5), Mistral-7B (66.2), and
Qwen-2.5 (63.7), showing KML’s robustness across LLMs.

Q. What is the other task Task: Make Orange Juice
that use the tool in this Step: pour the orange

video for the same juice into the cup

purpose?
HAS_TOOL TOOL_TO_STEP STEP_TO_TASK
Out=Tool Out=Step Out=Task
cup (0.361) pour into the ingredients MakeCookie (0.221)
(0.337)
mug (0.273) pour in after mix it MakeCocktail (0.208)
(0.314)
measuring cup add some ingredients to MakeHomemadelceCream
(0.253) the tea (0.308) (0.191)

yogurt (0.249) add some ingredients in
the coffee (0.307)
pour the ingredients into

the bowl (0.293)

MakeChocolate (0.188)

bottle (0.223) MakeCoffee (0.185)

Table 3: Three-hop Reasoning using KML-F-CLIP: The
step-by-step reasoning outputs of KML with estimated prob-
ability value over the domain of relation using embeddings.

QA mean-acc vs step Top-1 acc (R? = 0.24)
720 T KML 100 A o gyttt o
80
73.5 I+
g 60
73.0 5
£ <t
72.5 =% ! .
o .
72.0 207 .
L3 N~ a0 D) 00:)0 025 050 075 1.00
@Q‘ '@Q/ @Q, *@Q‘ '&QI I I Step TL.)p-l acc '

Figure 2: (Left) QA performance of KML-F-CLIP using
top-1 to top-5 grounded entities from P.VRL. (Right) Cor-
relation between step prediction accuracy and QA accuracy.

Conclusion

Our PKR-QA is a benchmark for procedural knowledge
reasoning where VLMs demonstrate capability in procedu-
ral knowledge. However, their closed-loop reasoning lack
the transparency, controllability, and domain-specific con-
straints required for mission-critical applications such as
medical procedures or industrial automation. In contrast,
the proposed Knowledge Module Learning (KML) frame-
work explicitly grounds reasoning in procedural knowl-
edge graphs and decouples hypothesis generation (via LLM-
based program synthesis) from structured execution. By
constraining reasoning to predefined operations, KML en-
sures reliability and interpretability without sacrificing per-
formance. Our experiments highlight the promise of such
neurosymbolic architectures, where lightweight, domain-
aware modules (trained directly on KG relations) performs
well in knowledge-intensive reasoning.

Acknowledgments

This research is supported by the National Research Foun-
dation, Singapore, under its NRF Fellowship (Award# NRF-
NRFF14-2022-0001) and by funding allocation to Basura
Fernando by the A*STAR under its SERC Central Research
Fund (CRF), as well as its Centre for Frontier Al Research.

References

Andreas, J.; Rohrbach, M.; Darrell, T.; and Klein, D. 2016.
Learning to compose neural networks for question answer-
ing. arXiv preprint arXiv:1601.01705.

Ashutosh, K.; Ramakrishnan, S. K.; Afouras, T.; and Grau-
man, K. 2024. Video-mined task graphs for keystep recogni-
tion in instructional videos. Advances in Neural Information
Processing Systems, 36.

Bai, S.; Chen, K.; Liu, X.; Wang, J.; Ge, W.; Song, S.; Dang,
K.; Wang, P.; Wang, S.; Tang, J.; et al. 2025. Qwen2. 5-VL
Technical Report. arXiv preprint arXiv:2502.13923.

Besta, M.; Blach, N.; Kubicek, A.; Gerstenberger, R.;
Podstawski, M.; Gianinazzi, L.; Gajda, J.; Lehmann, T.;
Niewiadomski, H.; Nyczyk, P; et al. 2024. Graph of
thoughts: Solving elaborate problems with large language
models. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 38, 17682—-17690.

Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for modeling
multi-relational data. Advances in neural information pro-
cessing systems, 26.

Chen, W.; Gan, Z.; Li, L.; Cheng, Y.; Wang, W.; and Liu, J.
2021. Meta module network for compositional visual rea-
soning. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, 655-664.

Choudhury, R.; Niinuma, K.; Kitani, K. M.; and Jeni, L. A.
2024. Video Question Answering with Procedural Pro-
grams. In European Conference on Computer Vision, 315—
332. Springer.

Endo, M.; Hsu, J.; Li, J.; and Wu, J. 2023. Motion question
answering via modular motion programs. In International
Conference on Machine Learning, 9312-9328. PMLR.

Francis, N.; Green, A.; Guagliardo, P.; Libkin, L.; Lindaaker,
T.; Marsault, V.; Plantikow, S.; Rydberg, M.; Selmer, P.; and
Taylor, A. 2018. Cypher: An evolving query language for
property graphs. In Proceedings of the 2018 international
conference on management of data, 1433-1445.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770-778.

Hoang, L.; Liausvia, F;; Liu, Y.; and Nguyen, T.-S. 2024.
Semi-automated Construction of Complex Knowledge Base
Question Answering Dataset Using Large Language Model.
In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 230-248. Springer.
Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. Lora: Low-rank adaptation
of large language models. arXiv preprint arXiv:2106.09685.
Hudson, D.; and Manning, C. D. 2019. Learning by abstrac-
tion: The neural state machine. Advances in neural informa-
tion processing systems, 32.

Hudson, D. A.; and Manning, C. D. 2018. Compositional
attention networks for machine reasoning. arXiv preprint
arXiv:1803.03067.

Hurst, A.; Lerer, A.; Goucher, A. P.; Perelman, A.; Ramesh,
A.; Clark, A.; Ostrow, A.; Welihinda, A.; Hayes, A.; Rad-
ford, A.; et al. 2024. GPT-40 System Card. arXiv preprint
arXiv:2410.21276.

Jaiswal, S.; Roy, D.; Fernando, B.; and Tan, C. 2025. Learn-
ing to Reason Iteratively and Parallelly for Complex Visual
Reasoning Scenarios. Advances in Neural Information Pro-
cessing Systems, 37: 137965-137998.

Johnson, J.; Hariharan, B.; Van Der Maaten, L.; Hoffman,
J.; Fei-Fei, L.; Lawrence Zitnick, C.; and Girshick, R. 2017.
Inferring and executing programs for visual reasoning. In
Proceedings of the IEEE international conference on com-
puter vision, 2989-2998.

Lei, J.; Yu, L.; Berg, T. L.; and Bansal, M. 2019. Tvqa+:
Spatio-temporal grounding for video question answering.
arXiv preprint arXiv:1904.11574.

Li, C.; Sugandhika, C.; Ee, Y. K.; Peh, E.; Zhang, H.; Yang,
H.; Rajan, D.; and Fernando, B. 2025. IMoRe: Implicit
Program-Guided Reasoning for Human Motion Q&A. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 12987-12996.

Li, K.; He, Y.; Wang, Y.; Li, Y.; Wang, W.; Luo, P.; Wang,
Y.; Wang, L.; and Qiao, Y. 2023. Videochat: Chat-centric
video understanding. arXiv preprint arXiv:2305.06355.

Lin, B. Y.; Chen, X.; Chen, J.; and Ren, X. 2019. Kagnet:
Knowledge-aware graph networks for commonsense reason-
ing. arXiv preprint arXiv:1909.02151.

Lin, J.; Yin, H.; Ping, W.; Lu, Y.; Molchanov, P.; Tao,
A.; Mao, H.; Kautz, J.; Shoeybi, M.; and Han, S. 2023.
VILA: On Pre-training for Visual Language Models.
arXiv:2312.07533.

Ma, Y.; Wang, Y.; Wu, Y.; Lyu, Z.; Chen, S.; Li, X.; and
Qiao, Y. 2022. Visual knowledge graph for human action
reasoning in videos. In Proceedings of the 30th ACM Inter-
national Conference on Multimedia, 4132—4141.

Mascharka, D.; Tran, P.; Soklaski, R.; and Majumdar, A.
2018. Transparency by design: Closing the gap between
performance and interpretability in visual reasoning. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, 4942-4950.

Min, J.; Buch, S.; Nagrani, A.; Cho, M.; and Schmid, C.
2024. Morevqa: Exploring modular reasoning models for
video question answering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
13235-13245.

Nguyen, T.-S.; Yang, H.; Neoh, T. Y.; Zhang, H.; Keat, E. Y;
and Fernando, B. 2025. Neuro Symbolic Knowledge Rea-
soning for Procedural Video Question Answering. arXiv
preprint arXiv:2503.14957.

Parmar, P.; Peh, E.; Chen, R.; Lam, T. E.; Chen, Y.; Tan, E.;
and Fernando, B. 2024. Causalchaos! dataset for compre-
hensive causal action question answering over longer causal
chains grounded in dynamic visual scenes. Advances in Neu-
ral Information Processing Systems, 37: 92769-92802.

Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In Proceedings of

the 2014 conference on empirical methods in natural lan-
guage processing (EMNLP), 1532—1543.

Perez, E.; Strub, F.; De Vries, H.; Dumoulin, V.; and
Courville, A. 2018. Film: Visual reasoning with a general
conditioning layer. In Proceedings of the AAAI conference
on artificial intelligence, volume 32.

Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from nat-

ural language supervision. In International conference on
machine learning, 8748-8763. PMLR.

Reimers, N.; and Gurevych, 1. 2019. Sentence-BERT: Sen-
tence Embeddings using Siamese BERT-Networks. In Pro-
ceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing. Association for Computa-
tional Linguistics.

Sadhu, A.; Gupta, T.; Yatskar, M.; Nevatia, R.; and Kemb-
havi, A. 2021. Visual semantic role labeling for video un-
derstanding. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 5589-5600.
Shah, M.; Cahoon, J.; Milletari, M.; Tian, J.; Psallidas, F.;
Mueller, A.; and Litombe, N. 2024. Improving LLM-based
KGQA for multi-hop Question Answering with implicit rea-
soning in few-shot examples. In Biswas, R.; Kaffee, L.-
A.; Agarwal, O.; Minervini, P.; Singh, S.; and de Melo,
G., eds., Proceedings of the 1st Workshop on Knowledge
Graphs and Large Language Models (KaLLM 2024), 125—
135. Bangkok, Thailand: Association for Computational
Linguistics.

Speer, R.; Chin, J.; and Havasi, C. 2017. Conceptnet 5.5:
An open multilingual graph of general knowledge. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 31.

Sun, Z.; Deng, Z.-H.; Nie, J.-Y.; and Tang, J. 2019. Rotate:
Knowledge graph embedding by relational rotation in com-
plex space. arXiv preprint arXiv:1902.10197.

Suris, D.; Menon, S.; and Vondrick, C. 2023. Vipergpt:
Visual inference via python execution for reasoning. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 11888—11898.

Tang, Y.; Ding, D.; Rao, Y.; Zheng, Y.; Zhang, D.; Zhao, L.;
Lu, J.; and Zhou, J. 2019. Coin: A large-scale dataset for
comprehensive instructional video analysis. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 1207-1216.

Wang, A.; Wu, B.; Chen, S.; Chen, Z.; Guan, H.; Lee, W.-N.;
Li, L. E.; and Gan, C. 2024. SOK-Bench: A Situated Video
Reasoning Benchmark with Aligned Open-World Knowl-
edge. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 13384—13394.

Wang, X.; Wei, J.; Schuurmans, D.; Le, Q.; Chi, E.; Narang,
S.; Chowdhery, A.; and Zhou, D. 2022. Self-consistency
improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171.

Wang, Z.; Zhang, J.; Feng, J.; and Chen, Z. 2014. Knowl-
edge graph embedding by translating on hyperplanes. In

Proceedings of the AAAI conference on artificial intelli-
gence, volume 28.

Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Xia, F;
Chi, E.; Le, Q. V.; Zhou, D.; et al. 2022. Chain-of-
thought prompting elicits reasoning in large language mod-
els. Advances in neural information processing systems, 35:
24824-24837.

Wu, Z.; Chen, X.; Pan, Z.; Liu, X.; Liu, W.; Dai,
D.; Gao, H.; Ma, Y.; Wu, C.; Wang, B.; et al. 2024.
Deepseek-vl2: Mixture-of-experts vision-language models
for advanced multimodal understanding. arXiv preprint
arXiv:2412.10302.

Yao, S.; Yu, D.; Zhao, J.; Shafran, I.; Griffiths, T.; Cao,
Y.; and Narasimhan, K. 2023. Tree of thoughts: Deliber-
ate problem solving with large language models. Advances
in neural information processing systems, 36: 11809—11822.
Yao, Y.; Yu, T.; Zhang, A.; Wang, C.; Cui, J.; Zhu, H.; Cai,
T.; Li, H.; Zhao, W.; He, Z.; et al. 2024. MiniCPM-V:
A GPT-4V Level MLLM on Your Phone. arXiv preprint
arXiv:2408.01800.

Ye, J.; Xu, H.; Liu, H.; Hu, A.; Yan, M.; Qian, Q.; Zhang,
J.; Huang, F.; and Zhou, J. 2024. mplug-owl3: Towards
long image-sequence understanding in multi-modal large
language models. In The Thirteenth International Confer-
ence on Learning Representations.

Yu, S.; Cho, J.; Yadav, P.; and Bansal, M. 2023. Self-chained
image-language model for video localization and question
answering. Advances in Neural Information Processing Sys-
tems, 36: 76749-76771.

Yue, X.; Ni, Y.; Zhang, K.; Zheng, T.; Liu, R.; Zhang, G.;
Stevens, S.; Jiang, D.; Ren, W.; Sun, Y.; Wei, C.; Yu, B.;
Yuan, R.; Sun, R.; Yin, M.; Zheng, B.; Yang, Z.; Liu, Y;
Huang, W.; Sun, H.; Su, Y.; and Chen, W. 2024. MMMU:
A Massive Multi-discipline Multimodal Understanding and
Reasoning Benchmark for Expert AGIL. In Proceedings of
CVPR.

Zhong, Y.; Yu, L.; Bai, Y.; Li, S.; Yan, X.; and Li, Y.
2023. Learning procedure-aware video representation from
instructional videos and their narrations. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 14825-14835.

Zhong, Z.; Zhong, L.; Sun, Z.; Jin, Q.; Qin, Z.; and Zhang,
X. 2024. SyntheT2C: Generating Synthetic Data for Fine-
Tuning Large Language Models on the Text2Cypher Task.
arXiv preprint arXiv:2406.10710.

Zhou, H.; Martin-Martin, R.; Kapadia, M.; Savarese, S.; and
Niebles, J. C. 2023. Procedure-aware pretraining for instruc-
tional video understanding. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,
10727-10738.

