
Case Study: Liftopia

Executive Summary

Challenge: Accelerate data analytics while
optimizing costs to meet increasing demand

Customer Challenge

Liftopia is a commerce platform that provides pricing, ecommerce and distribution solutions for high
volume ticketing businesses, and is used by over 120 ski lift companies, water parks and other attraction
providers worldwide. They also operate their own ski portal, Liftopia.com to help their ski clients find
customers. In order to manage and analyze their customer data, they use Amazon Redshift to centralize
data across multiple sources, and Looker as an analytics solution provider for themselves and their
partners. As Liftopia’s partner base increased and reporting needs expanded, the performance of their
end user experience began to be impacted and Service Level Objectives for report rendering were not
being met. With peak ski season looming, they needed help fast to stay ahead of the impending wave of
demand so they could deliver performant insights to their partners. Bytecode IO was engaged to analyze
and optimize their Redshift implementation and Looker queries, so Liftopia could keep delivering value to
their partners in a timely fashion and optimize costs, even as demand increased.

The challenges for Liftopia are multifaceted. First, they needed analysis and tuning of Redshift
implementation. Do they have sufficient disk space, processing capability and is their workload
management set up in the most efficient way? In addition, analysis time needed to be spent on the
structure of the data and the Looker queries themselves. With Liftopia developer resources busy focusing
on their application, they didn’t have the bandwidth needed to tune both Redshift and Looker.

What Liftopia needed was:

A trusted partner that could come in quickly and get their analytics stack back in shape;

A partner skilled in Redshift best practices along with a deep understanding of how to increase the
efficiency of Looker queries, in order to significantly improve the end user experience.



Liftopia leverages several Amazon Web Services:

Simple Storage Service (S3) - A flexible
way to store and retrieve data, providing
Liftopia with cost optimization, access
control, and compliance.

Redshift - Is a scalable and cost effective
data warehouse store that has already
proven itself as a low administration
analytics database for Liftopia.

Bytecode IO was initially brought in to augment Liftopia’s DevOps team. As a Looker Services Partner
already familiar with Liftopia's data, Bytecode IO was primed to augment Liftopia’s analysis team when
Looker was implemented.

Bytecode IO brought to Liftopia the prior experience of a dozen Redshift performance tunings, half of
which included Looker as the primary BI tool. Bytecode IO was familiar with the areas where
performance is often compromised, and had an arsenal of tools to remedy them. Bytecode IO was also
engaged with Liftopia in enhancing Looker reports, so it was an opportune time to make adjustments to
that code.

Bytecode IO’s Performance Solutions for Liftopia

Bytecode IO’s approach to taking on complex challenges like these is methodical, logical and data
driven. Starting with the analysis of the Redshift implementation and then working forward to the data
and queries, no opportunity for optimization is missed.

an estimated need of storage capacity, since the amount of storage available per node of the cluster is a
fixed amount. AWS guidelines and user experience shows that performance can suffer when space
becomes tight (greater than 80%), since disk can be used for temporary tables that don’t fit in memory.

Bytecode IO's first step in a Redshift performance evaluation is to examine the cluster
configuration for right-sizing to ensure performance efficiency. In sizing a cluster, we start with

Why AWS and Bytecode IO

Liftopia moved to AWS early on, as it provided the most scalable, secure and reliable base on which to
build their business. When Redshift was released as a low administrative and affordable data warehouse,
it was a natural fit on which to build Liftopia’s analytics platform.

1

StitchData
Application

DB

S3 Redshift



When sizing the cluster for a specific capacity, an extra 20% will need to be tacked onto calculations. In
Liftopia’s configuration, the cluster consists of four dc2.large with an average disk space utilization of
40%, with only very occasional temporary spikes up to 60%. Considering that data growth is around 3%
per month, that gives Liftopia a full year of headroom, even with no data archive policy. So, this analysis
showed that Liftopia’s cluster has enough space and is not contributing to the slow down that end users
are experiencing.

For sizing analysis, Bytecode IO also considers performance. Through the UI, we saw the CPU
utilization averaged around 20% utilization, but compute nodes spiked to 100% hourly. While

Once it is determined that the cluster size
and performance capability is correct,

2

3

performance issues can be mitigated by other approaches described below, we determined the cluster
could benefit from the parallelization of adding another node. In discussion with Liftopia, we found that
their Service Level Objective (SLO) was to have all queries in Looker return within 20 seconds. At the
end of our engagement, after we had applied the other approaches, we were still seeing between
20-25% of queries going over 20 seconds of run time (execution plus queue time); so we made the
recommendation that another node be added. The four existing nodes were not reserved. If another
node was added to the cluster and they reserved them all, the overall cluster cost would remain about
the same. During our analysis, we also discovered that usage trends were largely seasonal, with daily
activity starting to rise in mid November. An extra node or two could be added then, and removed when
reporting activity dies down in April. The extra node could be removed until the following November or
December to optimize cost while ensuring optimal performance.

Bytecode IO’s approach becomes iterative and
data driven; implementing logical changes,
analyzing results and taking appropriate steps
from there. For example, the next configuration
element considered was the efficiency of the
WorkLoad Management (WLM) system. Right
away, it was observed that the WLM
configuration was set to the default with a single
queue having 5 concurrency slots. In querying
the STL_WLM_QUERY table, we noticed that
there was a huge amount of waiting for slots to
become available that far exceeds the actual
execution time of queries. So as a first step, the
WLM mode was changed to automatic, with
Short Query Acceleration enabled. The impact
was immediate, with an average of 25% (~6
seconds) reduction in query times. This change
was allowed to settle in so that a useful range of
usage metrics could be collected as work
continued in other areas. Coming back to take a
deeper look, it was found that almost all of the
queueing was associated with Looker queries.

Data Ingestion
Queries

Cluster Memory

WLM

D
ef
au
lt
Q
ue
ue

Lo
o
ke
r
Q
ue
ue

Looker Queries

slot 1

slot 1

slot 2

slot 2

slot 3

slot 3

slot 4

slot 4

slot 5

slot 5



The WLM mode was switched back from automatic mode to manual to give more control, and Looker
was given its own queue, letting everything else fall under the default queue.

The Liftopia cluster is also hit fairly hard by data loading processes from data integrators. Since other
user queries outside of Looker are pretty minimal, those other users could just use the same default
queue as the ETL processes, minimizing the siloing of memory and concurrency resources and
maximizing memory per slot. This approach was validated by followup monitoring of the WLM
queueing. It was also noted that there were only a very small percentage of disk based queries where
there wasn't enough memory in the slot and some temporary data gets written to disk. This reinforces us
seeing only small disk usage spikes. Since adding a new queue and increasing the overall concurrency
cuts the memory per slot, Liftopia was informed that we would need to monitor and adjust as required.

Subsequent followup showed that there was still headroom which allowed us to increase the Looker
queue concurrency even more. At the end of the adjustments, it was observed that disk based queries
in the Looker queue were up to around 11%, which leads to the conclusion we should be hesitant to
further increase the concurrency. Since the DC nodes are using SSDs, the disk based issue is not as big a
problem compared to using DS nodes, but it still can degrade performance as data is moved in and out
of memory.

After applying WLM changes and addressing some table structure and query issues, queueing was still
an issue. Queries executing over 20 seconds were spending 1/4 of their time waiting in-queue. Redshift
recently rolled out concurrency scaling where an additional cluster that handles queued queries gets
spun up during times of high concurrency. It was considered as an option to alleviate queuing issues
occuring during high usage spikes over the course of the day. Redshift credits a free hour of the
concurrency cluster for each hour the regular cluster runs. However, there was hesitation to enable this
configuration at Liftopia because there was queuing such that concurrency scaling usage could top 30
hours per month, and there was no room in the budget for increased database cost. There was a way to
test this scenario out without a risk of added cost by enabling it for a week while monitoring it for usage.
Adding query monitoring rules to the Looker queue could also trim the concurrency cluster usage to
service only the most egregious of SLO offenders. Since the configuration change is dynamic, these
tests could be done without interruption to users.

With Redshift configurations understood and recommendations in place and being monitored, the
next step is to turn to the structure of the data. Performance optimization will often come down

The next step of analysis was to focus on Looker and how the Looker models need to be tuned to
be performant on Redshift. In this case, there were key changes made in the way Looker queries

4

5

to tuning tables and queries. Detailed analysis brought to light that very few tables had sort or
distribution keys. Bytecode IO then identified the top 30 costliest queries in terms of total seconds
running and total count, noting that the top five dominated cluster resources by an order of magnitude.
Structural rebuilds of the tables in those queries were executed, adding sort and distribution keys as well
as column encodings. A 15% reduction in query execution times resulted from this effort.

Redshift. There were several widely used derived views which consist of a query of a single table or
more. The query gets written by the Looker SQL compiler as a Common Table Expression (CTE), which
may also then be embedded within nested queries. Given that Liftopia only needs a data refresh rate of



15 minutes, these CTEs don’t need to be queried in real time, but can be pre-run. Looker allows this ETL
type solution to be performed right within the BI tool using a feature called Persistent Derived Tables
(PDT), a quick and easy mechanism to make those changes without a large developer effort. The PDTs
can also be configured in Looker to create appropriate sort and distribution keys. The end result of this
effort reduced query times that used these derived views over 20%.

Although progress had been made on the efficiency of individual queries, the number of queries had
steadily increased 5% per week. Improvements were being overshadowed during peak hours. A survey of
the top 30 costliest queries showed that when tested individually, most run within the SLO of 20
seconds. When multiple queries run together, as occurs when a Looker dashboard is refreshed, there is
substantial resource contention which causes them to run beyond that 20 second window. Additional
analysis showed that more than half of the 30 queries, and about 1/3 of all queries run against Redshift,
had joins that could be made 30-50% more performant by denormalization of 5 tables into a single wide
table. Using a PDT, we can schedule the creation of this flat table (which takes around 30 seconds) to
occur every 15 minutes. The query to join these tables would be run only 100 times per day instead of
1000 times per day, thus relieving a lot of pressure on the database. This recommendation is currently
being implemented, and Bytecode IO will monitor its effectiveness and take the next data driven
decision to continue implementing improvements.

The Benefits

Bytecode IO worked with Liftopia specifically on performance for six weeks, honing queries, tuning tables,
setting up WLM and adjusting it, and testing the performance. With each step of the engagement, we
were able to impart understanding of the tuning steps and best practice patterns within both Redshift and
Looker to the Liftopia team. Bytecode IO has architected the next steps which should enable Liftopia to
reach their 20 second goal while minimizing cost for the additional performance. Bytecode IO’s DevOps
group and Looker developers will continue to work with Liftopia, providing the documentation needed to
move forward with those steps and help Liftopia continue to successfully grow their business and deliver
positive results.

Bytecode IO is an AWS certified consulting service that helps businesses make the best use of the valuable
data they collect. With over a decade of experience helping customers deploy scalable, reliable and cost
effective data analysis solutions in the cloud, Bytecode IO has helped hundreds of clients unlock value from
their data to deliver valuable insights. As a remote team of US based consultants, Bytecode IO works with
customers across industries to understand their business and technical requirements, to architect, develop and
deploy full stack solutions.


