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Abstract 

Equity portfolio managers are often required to estimate numerous statistical 

parameters for modelling large databases of stocks and/or assets. These input 

assumptions are often estimated with limited historical data which are then used to 

arrive at efficient portfolios through optimization procedures. Traditional optimization 

methods are based upon Modern Portfolio Theory, and require both return and 

variance/covariance inputs to solve for portfolio weights. Applying this framework to 

large-scale optimization is complicated by the “Curse of Dimensionality” due to the 

thousands or even hundreds of thousands of separate estimates that need to be 

derived from a limited dataset. The main purpose of this paper is to apply the principles 

of machine learning to specifically address the problem of Curse of Dimensionality in 

the optimization of large portfolios. Specifically, we apply the Random Subspace 

Method (RSO)- which is a well-accepted machine learning methodology for dealing with 

high dimensionality. RSO is a stochastic sampling procedure to reduce an initial space 

into a series of smaller sub-spaces that require fewer estimates. These subspaces are 

then aggregated to produce a more robust  output since it  relies upon fewer total 

parameter estimates. We improve upon the deficiencies of the RSO framework: 1) 

inefficient or poor diversification 2) vulnerability to universe bias and 3) introducing 

arbitrary sampling parameters that need to pre-specified that are dependent on both the 

size and homogeneity or heterogeneity of the universe of assets chosen. We instead 

introduce a novel RSO variation that uses clustering and also a heuristic to pre-define 

the number of samples required, that we term the “Cluster Random Subspace Method” 

CRSO. We compare the effectiveness of RSO and CRSO methodologies versus 

traditional approaches such as the “Maximum Sharpe Ratio” (MSR) or tangency 



 
 

portfolio through large-scale optimization on a variety of asset class data. We show that 

both CRSO and RSO are superior to traditional methods, but CRSO is the best 

performer overall on a wide variety of metrics across a number of different universes. 

This makes CRSO a practical alternative to MSR for large-scale optimization problems. 
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1. Introduction 

1.1. Description of Problem 

There are many pitfalls associated with building an investment portfolio. Institutional 

investors like pension plans and sovereign wealth funds are constantly faced with how 

to best allocate capital to various assets. Given their sheer size, these funds face 

challenges and constraints that are not applicable to most retail investors. As a 

consequence, even reasonably low levels of turnover for such funds can move markets 

and increase the associated costs of trading. Rapid shifts in portfolio allocations are 

impractical net of trading costs and therefore it is paramount that these funds build their 

investment portfolios to be as diversified as possible. This usually entails the analysis 

and modeling of a large universe of securities in order to identify what will provide the 

best opportunity.  

The analysis of large security universes requires a sound statistical framework 

and a strong theoretical framework. An investment portfolio that is built to achieve 

optimal exposure to equities, for example, will require the study and monitoring of 

thousands of investable publicly traded companies. The formulation of a quantitative 

equity portfolio requires the researcher to estimate numerous statistical parameters. 

These input assumptions, estimated with limited historical data, are then used to arrive 

at theoretically optimal portfolios. The conventional approach to the problem is derived 

from the work of Harry Markowitz based on his 1952 work “Portfolio Selection”. This 

book lays the foundation for much of modern day asset allocation under the familiar 

moniker of “Modern Portfolio Theory”. The derivation of the efficient frontier, and 

identification of the minimum variance and tangency portfolios have provided 

generations of investors with better insight into the risks and rewards associated with 

building an investment portfolio from various assets. 

One shared characteristic of the minimum variance and tangency portfolios is 

that they are often highly concentrated or poorly diversified. As a consequence, asset 

weights are sensitive to the ever-changing input assumptions such as the variance-

covariance structure. With even the slightest estimation error, the optimal weights would 
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shift significantly.  As the number of assets increases for modeling, the so-called “Curse 

of Dimensionality” greatly magnifies this error.  

The curse of dimensionality is a common problem in Machine Learning (ML) whereby 

researchers are faced with a high dimensional feature space with limited amounts of 

training data. To illustrate the problem, imagine searching for an object along a one 

hundred meter one-dimensional line. This problem is relatively simple. But what 

happens if we extend the search space in to 2 dimensions? Now the search space 

expands to a much larger square area that is 100 meters by 100 meters or 10,000 

meters total. As the dimensionality grows further (ie 3 dimensions) the search space in 

turn increases. A larger search space requires commensurately more time to search 

with the same degree of effectiveness. Drawing a parallel to portfolio management, as 

the number of assets in the universe increases, the number of total input estimates 

required to solve for portfolio weights climbs exponentially. This in turn requires that the 

amount of historical data used  to arrive at meaningful estimates also must increase 

exponentially. Since time series data is often limited, this becomes a serious problem 

when optimizing for efficient portfolios. Even if there was enough data, there is still the 

challenge of latency—markets are non-stationary and more recent data is more 

meaningful than older data. As a consequence, we need an approach that can 

effectively reduce dimensionality without increasing latency. 

 

1.2. Solution 

The plan of this paper is to explore the application of methods used in ML to reduce 

dimensionality. Traditional methods for dimensionality reduction used by ML 

researchers often include the use of Principal Component Analysis (PCA). PCA is able 

to find linearly 𝑑 dimensions that are lower than the total number of variables in 

consideration. The dimensions are in form such that it represents the most variation of 

the original dataset. For example, given a 3 dimensional dataset, we can apply PCA to 

reduce the total number of dimensions via analyzing the principal components. When 

applying PCA, we get back eigenvectors and eigenvalues. Eigenvectors and 
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eigenvalues are represented in pairs; for each column of eigenvector loadings, there 

exists an eigenvalue that summarizes that principal components explained variation. 

Therefore, if through our analysis finds that the first two principal components (ie, first 2 

columns of the eigenvectors) explain 90% of the variability of the original dataset, we 

can decide to take out the last component thereby reducing our dimensionality.  

The problem with PCA is the difficulty of applying it within the context of portfolio 

optimization. Instead, we propose using a modification of an algorithm called the 

Random Subspace Method (RSM), developed by Tin Kan Ho at Bell Labs, to directly 

address the problem. We show that RSM applied to the tangency portfolio optimizations 

facilitates improved returns over a large security universe. Furthermore, we will 

demonstrate that stability is improved when we overlay cluster analysis (Clustered RSM 

- CRSM ). Through CRSM we are able to make the portfolio optimization universe 

agnostic.  

 

2. Data and Methodology 

2.1.  Data 

To validate our algorithm, we have chosen securities from a wide range of asset 

classes. This is to ensure our model is resilient to data pre-selection bias, which is 

widely prevalent in financial research when strategies and results are only valid for a 

small subset of asset universes. 

All data are retrieved from Yahoo Finance and are adjusted for splits and 

dividends. In our universe of assets, we have selected both stocks from various indices 

and exchange traded funds (ETFs) to represent multiple asset types. Specifically, our 

data set covers asset classes ranging from single stock equity, equity indices, 

government bonds, corporate bonds, real estate, commodities, and precious metals. 

Our analysis will be conducted on data from 2006 to 2014 to facilitate testing on as wide 

a universe as possible, given that many ETFs were only listed in the past few years.  
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For added granularity, we have divided our universe into six different portfolios. 

Three of the six portfolios are built to contain highly correlated assets like equities. They 

include, the Standard and Poor’s 100 stocks, U.S. equity sector ETFs, and international 

equity index ETFs. (Note that the components of the Standard and Poors 100 index are 

current day and therefore do not account for companies that transition into or out of the 

index during the period of our analysis.) 

For the last three portfolios, they are built with diversification in mind; in other 

words, they contain assets that are dissimilar with respect to each other. Components of 

the portfolios includes equities, commodities, government bonds and corporate bonds. 

To test sensitivity we’ve also structure extreme portfolios that are highly skewed 

towards certain asset classes, mainly equities. For example, we place a bond ETF (IEF) 

into a highly homogenous asset universe composed of ether country equity index ETFs, 

or components of the S&P 100 index in order to illustrate the strengths and weakness of 

the different algorithms.  

 

2.2.  Modern Portfolio Theory and Diversification 

Harry Markowitz introduced Modern Portfolio theory (MPT) in 1952, which provided 

investors with an elegant framework for quantitative portfolio construction. In this model, 

portfolio weights are derived from expected or historical asset returns and the variance 

covariance matrix in order to maximize return for a given level of risk. The core idea 

behind the framework stresses the importance of diversification - by mixing uncorrelated 

securities together, one is able to arrive at a final portfolio allocation that is less risky 

compared to holding any of the component securities individually. This is theoretically 

possible when you have asset returns that are not perfectly correlated. This imperfect 

correlation acts as an implicit hedge against risk. 

We consider a portfolio that is composed of 𝑁 assets. We denote 𝑹 and 𝝈 to 

represent 𝑁 dimensional return and risk vector respectively. Let the correlation matrix 

between each asset be denoted as 𝐶 = {𝑝𝑖𝑗}, then the variance covariance matrix is 
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simply ∑ =  (𝑝𝑖𝑗𝜎𝑖𝜎𝑗) where 𝑖 ≤ 𝑖, 𝑗 ≤ 𝑁. For a given set of weight vector {𝑤1, … , 𝑤𝑁}, the 

portfolio return and variance is given by matrix multiplication as: 

           𝑅𝑝 = 𝑤𝑹′                                                       (1) 

    𝑉𝐴𝑅𝑝 = 𝑤′∑𝑤                                                   (2) 

From MPT, Markowitz also derived two timeless optimal portfolios known as the global 

minimum variance portfolio, and the maximum Sharpe portfolio or tangency portfolio. 

These portfolios lie on or toward the left-most border of what has come to be known as 

the efficient frontier. The efficient frontier lies on a Cartesian plane that comprises all 

possible combinations of efficient portfolios measured by their risk and return. Anything 

to the right of the efficient frontier is a feasible portfolio given a set of securities. The 

global minimum variance portfolio is then simply the portfolio that minimizes the portfolio 

level variance (furthest left) and is characterized by minimizing equation (2): 

argmin 𝑉𝐴𝑅𝑝 = 𝑤′∑𝑤                                          (3) 

The Sharpe ratio of a portfolio is a risk adjusted performance measure that aims to 

quantify the risk associated with a rate of return. The higher the ratio, the better; the 

portfolio Sharpe ratio is: 

     𝑆ℎ𝑎𝑟𝑝𝑒𝑝 =
𝑤𝑹′−𝑅𝑓

√𝑤′∑𝑤
                                              (4) 

Maximizing this ratio given a set of weights will yield the tangency. In this paper, we will 

focus solely on the long only tangency portfolio for portfolio construction. As a further 

simplification, we will assume Rf to be 0.  

Going back to equation (1) and (2), the portfolio return is just a weighted average 

of asset returns. The novel contribution made by Markowitz relates to the portfolio risk 

equation. At the center of it all is the variance covariance matrix, which is composed of 

the variances and pairwise covariances between each asset. The level of risk 

associated with a portfolio is influenced by assets’ individual risks , but also by the 
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overall level of diversification among assets in the portfolio. But how does one analyze 

and measure diversification? 

There are numerous methods one might utilize to measure diversification. The 

most straight forward way of measuring diversification is whether we are allocating 

proportionately across a given universe of assets;  the aim here is  not to be 

concentrated in only a few assets. In this perspective, given 𝑁 assets with weight vector 

𝑤, the most diversified portfolio allocates 
1

𝑁
 percentage of capital to each individual 

security.  

The 1/n or equal weight method of constructing a diversified portfolio is naïve 

however, as it hides the most important characteristic: risk. Recent popularity in the 

concept of risk parity focuses entirely on proportionally allocating to the inverse of 

individual securities’ volatility. To calculate the risk parity portfolio weights, we simply 

normalize the inverse of the asset volatility risk vector 
1

𝜎
 to sum to 1. While risk parity 

accounts for risk, it doesn’t take into account how correlation across assets can also 

help reduce risk. An alternative approach proposed by Maillard, Roncalli, and Teiletche 

aims to equalize the risk contribution of each asset to final portfolio risk. More formally, 

the risk contribution for each asset can be derived as 𝜎 = 𝑤 × [ ∑𝒘 ], where 𝑤 is weight 

and ∑ is the covariance matrix. Note that within the bracket, we are doing matrix 

multiplication as oppose to simple multiplication. Taking in to account the covariance 

matrix allows us to account for the two main levers for controlling risk, correlations and 

volatilities, but it doesn’t account for the various drivers of risk. 

Another framework that takes risk allocation a step further is the concept of equal 

risk factor allocation. Risk factors are essentially building blocks that explains an asset’s 

risk and return characteristics. For example, the majority of risk and return associated 

with investing in the corporate bonds market can be explain by the macroeconomic 

interest rate movements and the underlying company’s performance. Focusing on risk 

factor is more superior to asset specific characteristics like correlation because  it’s a lot 

less nosier. If we decompose the returns of assets to their respective risk factor 

exposures, we can quantitatively understand if we are over allocating to unwanted risk 
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factors. This allows us to penetrate through all the noise and focus on what constitutes 

a diversified portfolio. 

In Managing Diversification (Meucci, 2009), Meucci formulated the framework on 

decomposing returns into uncorrelated latent risk factors through PCA. Given the 

variance covariance matrix ∑, we can perform the following eigen decomposition: 

  𝐸′∑𝐸 ≡ 𝐴                                                         (5) 

In the above expression, 𝐸 represents the eigenvectors or loadings {𝑒1, … , 𝑒𝑁}while 𝐴 

represents a vector of eigenvalues {𝜆1, … , 𝜆𝑁} sorted in decreasing order of variance. 

Each eigenvector is a column vector that corresponds to each principal components’ 

(PCs) respective asset exposures. Interpreted from a finance perspective, each PC can 

be interpreted as an individual principal portfolio. Each principal portfolio’s return can be 

derived from the following equation: 

  𝑅𝑃𝐶 = 𝐸−1𝑹                                                      (6) 

The derived return stream can be viewed as risk factor returns and each portfolio’s 

respective variance is defined by its corresponding eigenvalue. Since the eigenvalues 

are sorted decreasingly by variance this also means each principal portfolio explains 

decreasing variance.  

Based on the work in Partovi and Caputo (2004), given a weight vector in asset 

space, one can convert it to principal space. The weights in principal space can be 

viewed as exposures to the various risk factors. With this information, it will allow us to 

identify over- and under- allocation to various risk factors. To convert between asset 

space and principal space, we utilize the following equation: 

    𝑤̌ = 𝐸−1𝑤                                                       (7) 

Weight vector 𝑤̌ represents the factor exposure of asset space weights 𝑤. Given the 

factor exposures we can calculate the variance contribution from the ith factor given the 

following equation: 

  𝑣𝑎𝑟̌𝑖 = 𝑤̌𝑖
2𝜆𝑖                                                           (8) 
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As mentioned earlier, the eigenvalues corresponds to each principal portfolio’s variance. 

Then the weighted sum of all the eigenvalues is equal to the aggregate portfolio 

variance: 

     𝑉𝐴𝑅𝑝 = 𝑤′∑𝑤 ≡ ∑ 𝑣𝑎𝑟̌𝑖
𝑁
𝑖=1                                             (9) 

The diversification distribution curve as outlined in Meucci (2009) can then be calculated 

as 

    𝑝𝑖 ≡
𝑣𝑎𝑟̌𝑖

𝑉𝐴𝑅𝑝
                                                             (10) 

This above equation allows us to measure the variance contribution of the nth principal 

portfolio. In other words, it can be viewed as a measure of how risk is distributed across 

the factors. Any over allocation to risk factors can be viewed as concentration of risk. To 

bring this full circle, we can calculate the true diversity of a given weight vector via the 

entropy equation: 

                                              𝑛𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑒𝑥𝑝(− ∑ 𝑝𝑖𝑙𝑛(𝑝𝑖)
𝑁
𝑖=1 )                                      (11) 

This above equation yields the effective number of bets (ENB), which helps us measure 

the effective diversification given an asset space weight vector. For a fully concentrated 

portfolio, where all equity is allocated to a single asset, the number of bets (n) is 1. On 

the other hand, the most diversified portfolio will yield a value equal to 𝑁. We will use 

the ENB to measure the exposure towards various risk factors across various weighing 

schemes and portfolio universes. Such analysis will help us determine whether a given 

weighing scheme depends on its universe composition.  

 

2.3.  Curse of Dimensionality and the Random Subspace Method 

The curse of dimensionality problem in machine learning usually reveals itself in the 

feature selection process. When training a model for classification, many researchers 

face the problem of deciding what features should be included in their analysis such that 
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out of sample model performance is maximized. To maintain the same density of 

samples with increases in the number of features, we will need a larger datasets.   

Relating this back to finance, one of the central statistical input parameters used 

for optimization is the covariance matrix. Since it takes into account the pairwise 

correlation structure of input variables, the number of unique estimates for a covariance 

matrix equals: 

                                                           
𝑁(𝑁+1)

2
                                                     (12) 

Where 𝑁 equals the number of assets. It is important to recognize that as the number of 

asset increases, the number of unique values grows at approximately a quadratic pace 

or 𝑂(𝑛2). To maintain the same data density, data points also have to grow at a rapid 

pace. For example, if 250 days of data for each asset is enough for estimating a reliable 

covariance matrix for a 3 assets universe, then when we increase our universe size to 

contain 10 assets, we will need 4167 days of data for each asset. If we ignored the data 

requirements and performed portfolio optimization, we are essentially conducting an 

over-fit exercise to fit our model to past data. In problems whereby additional data is not 

available, we may be better off just assuming that assets are uncorrelated, in other 

words assuming the entire covariance matrix is zero except the diagonal variance 

estimates. Another important factor that should be considered is whether the underlying 

distribution of the data is known. If we are dealing with an unknown distribution, it is 

always prudent to incorporate more data for parameter estimation. 

One method used in machine learning that has the capabilities of reducing the 

impact of curse of dimensionality is the Random Subspace Method (Ho, 1999). 

Developed by Ho at Bell Laboratories, it is an ensemble meta-algorithm originally 

developed to construct robust decision trees. In this paper, we have adapted it towards 

portfolio optimization and show that through the application of this method, we are able 

to improve results when dealing with large universes of securities.  

The main idea behind RSM is that it acknowledges the fact that through 

combining weak learners we are able to come up with a strong learner. From a ML 
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perspective, RSM aims to randomly split the entire feature space into smaller 

subspaces.  From there, a classifier is trained on each subspace. In order to produce a 

final prediction, each individual subspace classifier must generate a prediction, which 

will then be aggregated  by ether simple averaging or voting. 

From a finance perspective, optimization that is conducted directly on the sample 

covariance matrix derived from a large universe of assets is prone to estimation error as 

the estimated statistical input parameters are noisy and sparse. To reduce the impact of 

sparsity, we randomly choose 𝑘 assets from the portfolio 𝑠 times with replacement and 

perform mini optimizations on each of these mini portfolios, or subspaces. The final 

weight vector is the average of all the individual weights from each of the mini 

optimizations. This method is similar to the concept of ‘divide and conquer’, and its’ 

superiority over direct optimization results from the fact that focusing on a smaller 

subspace of assets reduces the dimensionality of the problem relative to the fixed 

amount of data we have. 

 

2.3.1 Universe Specification  

While RSM overlaid on top of large-scale portfolio optimization was designed to 

reduce the impact of the curse of dimensionality, the model is heavily dependent upon 

the type of securities within the portfolio. For example, if the universe contains 6 equity-

like asset classes, 2 bonds and 2 commodities, the probability of sampling an equity 

asset in to a subspace is 60%, while the probability of sampling a bond or commodity 

asset is just 20%. This means that if our asset universe contains a large number of 

securities that belong to the same group, applying RSM on top of portfolio 

optimization will result in under diversification and over concentration.  

To combat this problem, we propose to introduce a clustering filter before 

performing RSM, which we call Cluster Random Subspace Method (CRSM). Cluster 

analysis is a group of unsupervised learning algorithms that aims to sort random 

variables into groups. Variables within groups are highly similar while variables between 

different groups are highly dissimilar. In our analysis, we employed the common K-
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means clustering algorithm. To cluster assets we employ the correlation structure 

across assets as the distance matrix. More specifically, our distance matrix is simply 

𝑑𝑖𝑠𝑡 = 1 − 𝜌, where 𝜌 is the correlation of asset returns. To avoid parameter bias we 

have chosen to vary the number of centers with the elbow algorithm. The elbow 

algorithm chooses the number of centers that maximizes the marginal percentage of 

variance explained.  

The main reason for applying clustering before performing the RSM is that it 

equalizes the probability that assets from each source of risk will be drawn in each 

subspace sample, limiting the probability of sub-space over-concentration.  

There are two approaches for applying the CRSM, one with replacement and one 

without. As mentioned above, the sampling probabilities for RSM doesn’t take in to 

account the portfolio compositions so there is a chance that a large proportion of 

sampled subspaces contain assets that behave similarly. CRSM with replacement is 

structured in such a way that it accounts for this probability distortion. The algorithm is 

as follows: for 𝑐 clusters, we will randomly choose a number between {1 … 𝑐}, 𝑘 times. 

These 𝑘 randomly chosen numbers represent clusters from which assets will be 

selected for each subspace sample. The replacement feature ensures that the 

probability of choosing assets from any cluster stays the same across 𝑘 random 

samples. On the other hand, CRSM without replacement means that once we have 

chosen an asset from that cluster, we will not be able to sample from this cluster again. 

In other words, each sample will contain an asset from separate clusters.  

These two modified algorithms’ parameters, 𝑘 and 𝑠, will be dynamic to ensure 

model simplicity and robustness. For parameter 𝑘, we will set it equal to the number of 

dynamically derived clusters at each rebalance period, while for parameter 𝑠, we will 

apply the following simple heuristic:  

                                                                  𝑠 = 𝑁 ∗  √𝑐                                             (13) 

Where c equals the number of clusters. This equation is formulated in such a way that it 

takes enough samples to properly account for all assets, which improves diversity.  
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3. Results and Discussion 

3.1.  Homogenous Universe 

Applying the Markowitz algorithm - Max Sharpe Optimization (MSO) - to a large 

homogenous asset universe produces sub-optimal performance. This is primarily 

caused by the fact that the covariance structure of such universes tend to be very noisy. 

What is shown to be useful information in one period will likely be noise that will 

dissipate in another. Tables 1-6 shows the summary statistics for the various 

optimization procedures conducted on our six uniquely selected portfolios. As our 

benchmark, we have chosen to focus on an Equal Weight Portfolio and the Tangency 

portfolio. The equal weight portfolio assumes we know nothing about the risk, return, 

and correlation characteristics of our portfolio of assets. 

At first glance, the daily mean returns and volatilities in the first three columns of 

table 1 and 2 (SP100, Sector, and Country), confirms how poorly the tangency portfolio 

performed when confronted with a highly homogenous security universe. More 

specifically, the daily mean return and volatility for the tangency portfolio is 

approximately 40% less and 13% higher than the simple equal weight portfolio 

respectively. In each of these instances, the investor would have performed better 

simply by just allocating equal proportions to each asset and periodically rebalancing as 

oppose to having to deal with the intricacies of estimating risks, returns and correlations. 

But through ignoring these input parameters, the investor makes the assumption that all 

securities are the same. The macroeconomic relationship across business cycles are 

not constant, for example, it wasn’t always the case that bonds and stocks had negative 

correlation.  

Our overlay of the Random Subspace Method on top of portfolio optimization 

shows an improvement over to the tangency portfolio. While returns are not as high 

when compared to equal weight portfolio, we can see that RSM, CRSM-R, and CRSM 

show higher Sharpe ratios (Table 6) relative to our benchmarks. In other words, while 

our algorithm wasn’t able to generate the highest returns, it was able to generate the 
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most stable returns. A more intuitive visualization is displayed in tables 7-12, where we 

rank the relative measures (higher the better).  

The effectiveness of overlaying the RSM on portfolio optimization is attributed to 

the fact that by sampling numerous different times, we get subspaces that are 

representative of all securities inside a universe. Once we aggregate all the subspaces 

via equal weight averaging, we end up with a more proportional allocation. By spreading 

out our weights across all assets, we inherently build a buffer for error out of sample.  

For example, for a given universe of equity assets, we can expect several stocks 

to be in the same industry, maybe even serving the same geographical area. These 

fundamental factors may give them similar future prospects which are not reflected in 

the input assumptions that go into MSO. With MSO’s built in feature of holding 

concentrated assets, the margin for error out of sample is much larger to a more 

diversified portfolio.  

3.2 Heterogeneous Universe 

The poor performance of equal weight portfolios is most evident when we test on 

heterogeneous universes such as a diversified basket of asset classes. By ignoring 

relative returns, risks and correlations, an equal weight portfolio is exposed to 

comparatively severe drawdowns during volatile market conditions. The naïve RSM 

method whereby no clustering is applied before optimization is useful for homogeneous 

asset universes. However, as we discussed, the primary weakness of RSM is that it is 

highly dependent on the security composition of the universe. For a universe that 

incorporates many equity-like assets along with a few non-equity asset classes like 

commodities and fixed income, the sampling probabilities will be largely skewed 

towards equities because that is the asset class that is most representative in the 

universe. We use the heterogeneous universes to highlight this deficiency. RSM 

performs poorly compared to MSR and CRSM variants in these universes, and does not 

adequately take advantage of the risk reducing asset classes. 

CRSM solves this problem by adjusting the sampling probabilities via clustering. 

CRSM with replacement is a direct extension to RSO. It adjusts the probabilities by 
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grouping assets into their respective clusters before randomly choosing a cluster to 

sample from with replacement. This increases the chances that it will identify assets or 

combine portfolios that will reduce risk. In tables 1-12 we can see that the CRSM and 

CRSM-R can easily self-adjust to changes in universe composition. The performance of 

the CRSM variations are more consistent versus RSM and MSR in both homogenous 

and heterogeneous and control asset universes.  

The results show that both CRSM methods - with and without replacement - 

improve diversification significantly as measured by each portfolio’s average exposure 

to risk factors (ENB). In the IEF plus S&P 100 universe for example, the effective 

number of bets for CRSM without replacement is 5 times higher than it is with standard 

RSM. For all three universes, CRSM methods reduce risk and limit maximum 

drawdowns significantly.  

 In table 13 we aggregated the performance statistics across universes and show 

a final score for each sizing algorithm. We can see that all three RSM algorithms rank in 

on the top 3, with our CRSM variations showing the best performance. This is expected 

given the adaptive nature and their ability to curb the curse of dimensionality present in 

portfolio optimization on large data sets.  

 

 

 

 

 

 

4. Conclusion  

In this paper, we have demonstrated the application of different RSM methods to large-

scale portfolio optimization. In addition, we modified the RSM method to create a novel 
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approach- CRSM- that can dynamically adjust to different asset universes by using 

clusters to draw samples. Such novel procedure allows the algorithm to become more 

adaptive to the asset composition within an arbitrarily selected universe. Our results 

show that the pure RSM approach is much less stable across a variety of universes 

relative to CRSM. For example, in heterogeneous universes- such as a broad mix of 

asset classes- RSM applies naive diversification and holds a lot of assets but does not 

create allocations that capture opportunities for superior risk reduction. The larger 

maximum drawdowns and higher volatility of RSM versus MSR and CRSM portfolios on 

the heterogeneous universes highlight this inefficiency. Overall, CRSM demonstrates 

the highest aggregate scores/metrics across universe in comparison to alternative 

methods such as MSR (traditional mean-variance) and equal weight, and dominates 

traditional RSM. Given this nature, CRSM is an excellent procedure to utilize when 

optimizing for a large universe of securities. 
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The charts below (Figure 1-6)  show the aggregate metric computed for each allocation method across all of the 

different universes used for testing. This is a measure of the average success of each allocation method. CRSM is 

Cluster Random Subspace Method, CRSM-R is Cluster Random Subspace Method with Replacement, MSR is the 

Max Sharpe/Tangency portfolio in Markowitz, RSM is the original Random Subspace Method, Equal Weight is an 

equal weight portfolio of all securities in the chosen universe. 
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Figure 2 

 

Figure 3 
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Figure 4 

 

 

Figure 5 
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Figure 6 

 

 

 

The tables below (tables 1-3) show the summary breakdown across metrics by universe and allocation method. 
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Table 1,2,3 
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The tables below (tables 4-12) show the ranking by metric by allocation method and by universe.  (Higher ranks are 

better) 
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Table 10,11,12 

 

 

 

Table 13 
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