DataFrame#
Most DataFrame methods are lazy, meaning that they do not execute computation immediately when invoked. Instead, these operations are enqueued in the DataFrame's internal query plan, and are only executed when Execution DataFrame methods are called.
DataFrame #
DataFrame(builder: LogicalPlanBuilder)
A Daft DataFrame is a table of data.
It has columns, where each column has a type and the same number of items (rows) as all other columns.
Constructs a DataFrame according to a given LogicalPlan.
Users are expected instead to call the classmethods on DataFrame to create a DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
builder | LogicalPlanBuilder | LogicalPlan describing the steps required to arrive at this DataFrame | required |
Methods:
| Name | Description |
|---|---|
__contains__ | Returns whether the column exists in the dataframe. |
__getitem__ | Gets a column from the DataFrame as an Expression ( |
__iter__ | Alias of |
__len__ | Returns the count of rows when dataframe is materialized. |
agg | Perform aggregations on this DataFrame. |
agg_concat | Performs a global list concatenation agg on the DataFrame. |
agg_list | Performs a global list agg on the DataFrame. |
agg_set | Performs a global set agg on the DataFrame (ignoring nulls). |
any_value | Returns an arbitrary value on this DataFrame. |
collect | Executes the entire DataFrame and materializes the results. |
concat | Concatenates two DataFrames together in a "vertical" concatenation. |
count | Performs a global count on the DataFrame. |
count_rows | Executes the Dataframe to count the number of rows. |
describe | Returns the Schema of the DataFrame, which provides information about each column, as a new DataFrame. |
distinct | Computes distinct rows, dropping duplicates. |
drop_duplicates | Computes distinct rows, dropping duplicates. |
drop_nan | Drops rows that contains NaNs. If cols is None it will drop rows with any NaN value. |
drop_null | Drops rows that contains NaNs or NULLs. If cols is None it will drop rows with any NULL value. |
except_all | Returns the set difference of two DataFrames, considering duplicates. |
except_distinct | Returns the set difference of two DataFrames. |
exclude | Drops columns from the current DataFrame by name. |
explain | Prints the (logical and physical) plans that will be executed to produce this DataFrame. |
explode | Explodes a List column, where every element in each row's List becomes its own row, and all other columns in the DataFrame are duplicated across rows. |
filter | Filters rows via a predicate expression, similar to SQL |
groupby | Performs a GroupBy on the DataFrame for aggregation. |
intersect | Returns the intersection of two DataFrames. |
intersect_all | Returns the intersection of two DataFrames, including duplicates. |
into_batches | Splits or coalesces DataFrame to partitions of size |
into_partitions | Splits or coalesces DataFrame to |
iter_partitions | Begin executing this dataframe and return an iterator over the partitions. |
iter_rows | Return an iterator of rows for this dataframe. |
join | Column-wise join of the current DataFrame with an |
limit | Limits the rows in the DataFrame to the first |
max | Performs a global max on the DataFrame. |
mean | Performs a global mean on the DataFrame. |
melt | Alias for unpivot. |
min | Performs a global min on the DataFrame. |
num_partitions | Returns the number of partitions that will be used to execute this DataFrame. |
offset | Returns a new DataFrame by skipping the first |
pipe | Apply the function to this DataFrame. |
pivot | Pivots a column of the DataFrame and performs an aggregation on the values. |
repartition | Repartitions DataFrame to |
sample | Samples rows from the DataFrame. |
schema | Returns the Schema of the DataFrame, which provides information about each column, as a Python object. |
select | Creates a new DataFrame from the provided expressions, similar to a SQL |
show | Executes enough of the DataFrame in order to display the first |
sort | Sorts DataFrame globally. |
stddev | Performs a global standard deviation on the DataFrame. |
sum | Performs a global sum on the DataFrame. |
summarize | Returns column statistics for the DataFrame. |
to_arrow | Converts the current DataFrame to a pyarrow Table. |
to_arrow_iter | Return an iterator of pyarrow recordbatches for this dataframe. |
to_dask_dataframe | Converts the current Daft DataFrame to a Dask DataFrame. |
to_pandas | Converts the current DataFrame to a pandas DataFrame. |
to_pydict | Converts the current DataFrame to a python dictionary. The dictionary contains Python lists of Python objects for each column. |
to_pylist | Converts the current Dataframe into a python list. |
to_ray_dataset | Converts the current DataFrame to a Ray Dataset which is useful for running distributed ML model training in Ray. |
to_torch_iter_dataset | Convert the current DataFrame into a |
to_torch_map_dataset | Convert the current DataFrame into a map-style Torch Dataset for use with PyTorch. |
transform | Apply a function that takes and returns a DataFrame. |
union | Returns the distinct union of two DataFrames. |
union_all | Returns the union of two DataFrames, including duplicates. |
union_all_by_name | Returns the union of two DataFrames, including duplicates, with columns matched by name. |
union_by_name | Returns the distinct union by name. |
unique | Computes distinct rows, dropping duplicates. |
unpivot | Unpivots a DataFrame from wide to long format. |
where | Filters rows via a predicate expression, similar to SQL |
with_column | Adds a column to the current DataFrame with an Expression, equivalent to a |
with_column_renamed | Renames a column in the current DataFrame. |
with_columns | Adds columns to the current DataFrame with Expressions, equivalent to a |
with_columns_renamed | Renames multiple columns in the current DataFrame. |
write_bigtable | Write a DataFrame into a Google Cloud Bigtable table. |
write_clickhouse | Writes the DataFrame to a ClickHouse table. |
write_csv | Writes the DataFrame as CSV files, returning a new DataFrame with paths to the files that were written. |
write_deltalake | Writes the DataFrame to a Delta Lake table, returning a new DataFrame with the operations that occurred. |
write_huggingface | Write a DataFrame into a Hugging Face dataset. |
write_iceberg | Writes the DataFrame to an Iceberg table, returning a new DataFrame with the operations that occurred. |
write_json | Writes the DataFrame as JSON files, returning a new DataFrame with paths to the files that were written. |
write_lance | Writes the DataFrame to a Lance table. |
write_parquet | Writes the DataFrame as parquet files, returning a new DataFrame with paths to the files that were written. |
write_sink | Writes the DataFrame to the given DataSink. |
write_turbopuffer | Writes the DataFrame to a Turbopuffer namespace. |
Attributes:
| Name | Type | Description |
|---|---|---|
column_names | list[str] | Returns column names of DataFrame as a list of strings. |
columns | list[Expression] | Returns column of DataFrame as a list of Expressions. |
Source code in daft/dataframe/dataframe.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | |
column_names #
column_names: list[str]
Returns column names of DataFrame as a list of strings.
Returns:
| Type | Description |
|---|---|
list[str] | List[str]: Column names of this DataFrame. |
columns #
columns: list[Expression]
Returns column of DataFrame as a list of Expressions.
Returns:
| Type | Description |
|---|---|
list[Expression] | List[Expression]: Columns of this DataFrame. |
__contains__ #
__contains__(col_name: str) -> bool
Returns whether the column exists in the dataframe.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
col_name | str | column name | required |
Returns:
| Name | Type | Description |
|---|---|---|
bool | bool | whether the column exists in the dataframe. |
Examples:
1 2 3 | |
True Source code in daft/dataframe/dataframe.py
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 | |
__getitem__ #
__getitem__(item: int) -> Expression
__getitem__(item: str) -> Expression
__getitem__(item: slice) -> DataFrame
__getitem__(item: Iterable) -> DataFrame
__getitem__(item: int | str | slice | Iterable[str | int]) -> Union[Expression, DataFrame]
Gets a column from the DataFrame as an Expression (df["mycol"]).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
item | Union[int, str, slice, Iterable[Union[str, int]]] | The column to get. Can be an integer index, a string column name, a slice for multiple columns, or an iterable of column names or indices. | required |
Returns:
| Type | Description |
|---|---|
Union[Expression, DataFrame] | Union[Expression, DataFrame]: If a single column is requested, returns an Expression representing that column. |
Union[Expression, DataFrame] | If multiple columns are requested (via a slice or iterable), returns a new DataFrame containing those columns. |
Examples:
1 2 3 4 5 6 7 8 9 10 | |
col(a)
col(b)
col(a)
╭───────┬───────╮
│ b ┆ c │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╰───────┴───────╯
(No data to display: Dataframe not materialized, use .collect() to materialize)
╭───────┬───────╮
│ a ┆ c │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╰───────┴───────╯
(No data to display: Dataframe not materialized, use .collect() to materialize)
╭───────┬───────╮
│ a ┆ b │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╰───────┴───────╯
(No data to display: Dataframe not materialized, use .collect() to materialize)
╭───────┬───────╮
│ a ┆ b │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╰───────┴───────╯
(No data to display: Dataframe not materialized, use .collect() to materialize)
╭───────┬───────┬───────╮
│ a ┆ b ┆ c │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ Int64 ┆ Int64 │
╰───────┴───────┴───────╯
(No data to display: Dataframe not materialized, use .collect() to materialize) Source code in daft/dataframe/dataframe.py
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 | |
__iter__ #
__iter__() -> Iterator[dict[str, Any]]
Alias of self.iter_rows() with default arguments for convenient access of data.
Returns:
| Type | Description |
|---|---|
Iterator[dict[str, Any]] | Iterator[dict[str, Any]]: An iterator over the rows of the DataFrame, where each row is a dictionary |
Iterator[dict[str, Any]] | mapping column names to values. |
Examples:
1 2 3 4 | |
{'foo': 1, 'bar': 'a'}
{'foo': 2, 'bar': 'b'}
{'foo': 3, 'bar': 'c'} Tip
See also df.iter_rows(): iterator over rows with more options
Source code in daft/dataframe/dataframe.py
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 | |
__len__ #
__len__() -> int
Returns the count of rows when dataframe is materialized.
If dataframe is not materialized yet, raises a runtime error.
Returns:
| Name | Type | Description |
|---|---|---|
int | int | count of rows. |
Examples:
1 2 3 4 | |
3 Source code in daft/dataframe/dataframe.py
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 | |
agg #
agg(*to_agg: Expression | Iterable[Expression]) -> DataFrame
Perform aggregations on this DataFrame.
Allows for mixed aggregations for multiple columns and will return a single row that aggregated the entire DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*to_agg | Expression | aggregation expressions | () |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame with aggregated results |
Examples:
1 2 3 4 5 6 7 8 9 10 11 12 | |
╭─────────┬────────────────────┬────────────────────┬───────────╮
│ test1 ┆ test2 ┆ total_min ┆ total_max │
│ --- ┆ --- ┆ --- ┆ --- │
│ Float64 ┆ Float64 ┆ Float64 ┆ Float64 │
╞═════════╪════════════════════╪════════════════════╪═══════════╡
│ 0.55 ┆ 0.8500000000000001 ┆ 0.6000000000000001 ┆ 0.85 │
╰─────────┴────────────────────┴────────────────────┴───────────╯
(Showing first 1 of 1 rows) Source code in daft/dataframe/dataframe.py
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 | |
agg_concat #
agg_concat(*cols: ColumnInputType) -> DataFrame
Performs a global list concatenation agg on the DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*cols | Union[str, Expression] | columns that are lists to concatenate | () |
Returns: DataFrame: Globally aggregated list. Should be a single row.
Examples:
1 2 3 4 5 | |
╭──────────────╮
│ col_a │
│ --- │
│ List[Int64] │
╞══════════════╡
│ [1, 2, 3, 4] │
╰──────────────╯
(Showing first 1 of 1 rows) Source code in daft/dataframe/dataframe.py
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 | |
agg_list #
agg_list(*cols: ColumnInputType) -> DataFrame
Performs a global list agg on the DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*cols | Union[str, Expression] | columns to form into a list | () |
Returns: DataFrame: Globally aggregated list. Should be a single row.
Examples:
1 2 3 4 5 | |
╭─────────────╮
│ col_a │
│ --- │
│ List[Int64] │
╞═════════════╡
│ [1, 2, 3] │
╰─────────────╯
(Showing first 1 of 1 rows) Source code in daft/dataframe/dataframe.py
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 | |
agg_set #
agg_set(*cols: ColumnInputType) -> DataFrame
Performs a global set agg on the DataFrame (ignoring nulls).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*cols | Union[str, Expression] | columns to form into a set | () |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | Globally aggregated set. Should be a single row. |
Examples:
1 2 3 4 5 | |
╭─────────────╮
│ col_a │
│ --- │
│ List[Int64] │
╞═════════════╡
│ [1, 2, 3] │
╰─────────────╯
(Showing first 1 of 1 rows) Source code in daft/dataframe/dataframe.py
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 | |
any_value #
any_value(*cols: ColumnInputType) -> DataFrame
Returns an arbitrary value on this DataFrame.
Values for each column are not guaranteed to be from the same row.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*cols | Union[str, Expression] | columns to get an arbitrary value from | () |
Returns: DataFrame: DataFrame with any values.
Examples:
1 2 3 4 | |
╭───────╮
│ col_a │
│ --- │
│ Int64 │
╞═══════╡
│ 1 │
╰───────╯
(Showing first 1 of 1 rows) Source code in daft/dataframe/dataframe.py
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 | |
collect #
collect(num_preview_rows: int | None = 8) -> DataFrame
Executes the entire DataFrame and materializes the results.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
num_preview_rows | int | None | Number of rows to preview. Defaults to 8. | 8 |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame with materialized results. |
Note
This call is blocking and will execute the DataFrame when called
Examples:
1 2 3 4 | |
╭───────┬───────╮
│ x ┆ y │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╞═══════╪═══════╡
│ 1 ┆ 4 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 5 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 3 ┆ 6 │
╰───────┴───────╯
(Showing first 3 of 3 rows) Source code in daft/dataframe/dataframe.py
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 | |
concat #
Concatenates two DataFrames together in a "vertical" concatenation.
The resulting DataFrame has number of rows equal to the sum of the number of rows of the input DataFrames.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other | DataFrame | other DataFrame to concatenate | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame with rows from |
Note
DataFrames being concatenated must have exactly the same schema. You may wish to use the df.select() and expr.cast() methods to ensure schema compatibility before concatenation.
Examples:
1 2 3 4 5 | |
╭───────┬───────╮
│ a ┆ b │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╞═══════╪═══════╡
│ 1 ┆ 3 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 4 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 5 ┆ 7 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 6 ┆ 8 │
╰───────┴───────╯
(Showing first 4 of 4 rows) Source code in daft/dataframe/dataframe.py
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 | |
count #
count(*cols: ColumnInputType | int) -> DataFrame
Performs a global count on the DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*cols | Union[str, Expression, int] | columns to count | () |
Returns: DataFrame: Globally aggregated count. Should be a single row.
Examples:
If no columns are specified (i.e. in the case you call df.count()), or only the literal string "", this functions very similarly to a COUNT() operation in SQL and will return a new dataframe with a single column with the name "count".
1 2 3 4 | |
╭────────╮
│ count │
│ --- │
│ UInt64 │
╞════════╡
│ 3 │
╰────────╯
(Showing first 1 of 1 rows) However, specifying some column names would instead change the behavior to count all non-null values, similar to a SQL command for SELECT COUNT(foo), COUNT(bar) FROM df. Also, using df.count(col("*")) will expand out into count() for each column.
1 | |
╭────────┬────────╮
│ foo ┆ bar │
│ --- ┆ --- │
│ UInt64 ┆ UInt64 │
╞════════╪════════╡
│ 1 ┆ 2 │
╰────────┴────────╯
(Showing first 1 of 1 rows) 1 | |
╭────────┬────────┬────────╮
│ foo ┆ bar ┆ baz │
│ --- ┆ --- ┆ --- │
│ UInt64 ┆ UInt64 ┆ UInt64 │
╞════════╪════════╪════════╡
│ 1 ┆ 2 ┆ 3 │
╰────────┴────────┴────────╯
(Showing first 1 of 1 rows) Source code in daft/dataframe/dataframe.py
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 | |
count_rows #
count_rows() -> int
Executes the Dataframe to count the number of rows.
Returns:
| Name | Type | Description |
|---|---|---|
int | int | count of the number of rows in this DataFrame. |
Examples:
1 2 3 | |
3 Note
This will execute the DataFrame and return the number of rows in it.
Source code in daft/dataframe/dataframe.py
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 | |
describe #
describe() -> DataFrame
Returns the Schema of the DataFrame, which provides information about each column, as a new DataFrame.
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | A dataframe where each row is a column name and its corresponding type. |
Examples:
1 2 3 | |
╭─────────────┬────────╮
│ column_name ┆ type │
│ --- ┆ --- │
│ String ┆ String │
╞═════════════╪════════╡
│ a ┆ Int64 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ b ┆ String │
╰─────────────┴────────╯
(Showing first 2 of 2 rows) Source code in daft/dataframe/dataframe.py
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 | |
distinct #
distinct(*on: ColumnInputType) -> DataFrame
Computes distinct rows, dropping duplicates.
Optionally, specify a subset of columns to perform distinct on.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*on | Union[str, Expression] | columns to perform distinct on. Defaults to all columns. | () |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame that has only distinct rows. |
Examples:
1 2 3 4 5 6 7 8 9 | |
╭───────┬───────┬───────╮
│ x ┆ y ┆ z │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ Int64 ┆ Int64 │
╞═══════╪═══════╪═══════╡
│ 1 ┆ 4 ┆ 7 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 5 ┆ 8 │
╰───────┴───────┴───────╯
(Showing first 2 of 2 rows)
╭───────┬───────┬───────╮
│ x ┆ y ┆ z │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ Int64 ┆ Int64 │
╞═══════╪═══════╪═══════╡
│ 1 ┆ 4 ┆ 7 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 5 ┆ 8 │
╰───────┴───────┴───────╯
(Showing first 2 of 2 rows) Source code in daft/dataframe/dataframe.py
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 | |
drop_duplicates #
drop_duplicates(*subset: ColumnInputType) -> DataFrame
Computes distinct rows, dropping duplicates.
Alias for DataFrame.distinct.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*subset | Union[str, Expression] | columns to perform distinct on. Defaults to all columns. | () |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame that has only distinct rows. |
Examples:
1 2 3 4 5 | |
╭───────┬───────┬───────╮
│ x ┆ y ┆ z │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ Int64 ┆ Int64 │
╞═══════╪═══════╪═══════╡
│ 1 ┆ 4 ┆ 7 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 5 ┆ 8 │
╰───────┴───────┴───────╯
(Showing first 2 of 2 rows) Source code in daft/dataframe/dataframe.py
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 | |
drop_nan #
drop_nan(*cols: ColumnInputType) -> DataFrame
Drops rows that contains NaNs. If cols is None it will drop rows with any NaN value.
If column names are supplied, it will drop only those rows that contains NaNs in one of these columns.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*cols | str | column names by which rows containing nans/NULLs should be filtered | () |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame without NaNs in specified/all columns |
Examples:
1 2 3 | |
╭─────────╮
│ a │
│ --- │
│ Float64 │
╞═════════╡
│ 1 │
├╌╌╌╌╌╌╌╌╌┤
│ 2.2 │
├╌╌╌╌╌╌╌╌╌┤
│ 3.5 │
╰─────────╯
(Showing first 3 of 3 rows) 1 2 3 | |
╭─────────╮
│ a │
│ --- │
│ Float64 │
╞═════════╡
│ 1.6 │
├╌╌╌╌╌╌╌╌╌┤
│ 2.5 │
├╌╌╌╌╌╌╌╌╌┤
│ 3.3 │
╰─────────╯
(Showing first 3 of 3 rows) Source code in daft/dataframe/dataframe.py
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 | |
drop_null #
drop_null(*cols: ColumnInputType) -> DataFrame
Drops rows that contains NaNs or NULLs. If cols is None it will drop rows with any NULL value.
If column names are supplied, it will drop only those rows that contains NULLs in one of these columns.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*cols | str | column names by which rows containing nans should be filtered | () |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame without missing values in specified/all columns |
Examples:
1 2 3 | |
╭─────────╮
│ a │
│ --- │
│ Float64 │
╞═════════╡
│ 1.6 │
├╌╌╌╌╌╌╌╌╌┤
│ 2.5 │
├╌╌╌╌╌╌╌╌╌┤
│ NaN │
╰─────────╯
(Showing first 3 of 3 rows) Source code in daft/dataframe/dataframe.py
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 | |
except_all #
Returns the set difference of two DataFrames, considering duplicates.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other | DataFrame | DataFrame to except with | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame with the set difference of the two DataFrames, considering duplicates |
Examples:
1 2 3 4 | |
╭───────┬───────╮
│ a ┆ b │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╞═══════╪═══════╡
│ 1 ┆ 4 │
╰───────┴───────╯
(Showing first 1 of 1 rows) Source code in daft/dataframe/dataframe.py
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 | |
except_distinct #
Returns the set difference of two DataFrames.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other | DataFrame | DataFrame to except with | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame with the set difference of the two DataFrames |
Examples:
1 2 3 4 | |
╭───────┬───────╮
│ a ┆ b │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╞═══════╪═══════╡
│ 2 ┆ 5 │
╰───────┴───────╯
(Showing first 1 of 1 rows) Source code in daft/dataframe/dataframe.py
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 | |
exclude #
exclude(*names: str) -> DataFrame
Drops columns from the current DataFrame by name.
This is equivalent of performing a select with all the columns but the ones excluded.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*names | str | names to exclude | () |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame with some columns excluded. |
Examples:
1 2 3 4 | |
╭───────┬───────╮
│ y ┆ z │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╞═══════╪═══════╡
│ 4 ┆ 7 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 5 ┆ 8 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 6 ┆ 9 │
╰───────┴───────╯
(Showing first 3 of 3 rows) Source code in daft/dataframe/dataframe.py
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 | |
explain #
explain(show_all: bool = False, format: str = 'ascii', simple: bool = False, file: IOBase | None = None) -> Any
Prints the (logical and physical) plans that will be executed to produce this DataFrame.
Defaults to showing the unoptimized logical plan. Use show_all=True to show the unoptimized logical plan, the optimized logical plan, and the physical plan.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
show_all | bool | Whether to show the optimized logical plan and the physical plan in addition to the unoptimized logical plan. | False |
format | str | The format to print the plan in. one of 'ascii' or 'mermaid' | 'ascii' |
simple | bool | Whether to only show the type of op for each node in the plan, rather than showing details of how each op is configured. | False |
file | Optional[IOBase] | Location to print the output to, or defaults to None which defaults to the default location for print (in Python, that should be sys.stdout) | None |
Returns:
| Type | Description |
|---|---|
Any | Union[None, str, MermaidFormatter]: - If |
Examples:
1 2 3 4 5 6 7 8 9 10 | |
== Unoptimized Logical Plan ==
* Project: col(x) * col(x) as x
|
* Source:
| Number of partitions = 1
| Output schema = x#Int64
Set `show_all=True` to also see the Optimized and Physical plans. This will run the query optimizer. Source code in daft/dataframe/dataframe.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 | |
explode #
explode(*columns: ColumnInputType, index_column: ColumnInputType | None = None) -> DataFrame
Explodes a List column, where every element in each row's List becomes its own row, and all other columns in the DataFrame are duplicated across rows.
If multiple columns are specified, each row must contain the same number of items in each specified column.
Exploding Null values or empty lists will create a single Null entry (see example below).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*columns | ColumnInputType | columns to explode | () |
index_column | ColumnInputType | None | optional name for an index column that tracks the position of each element within its original list | None |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame with exploded column |
Examples:
1 2 3 4 5 6 7 8 9 10 11 12 13 | |
╭─────────────┬──────────────┬───────────────╮
│ x ┆ y ┆ z │
│ --- ┆ --- ┆ --- │
│ List[Int64] ┆ List[String] ┆ List[Float64] │
╞═════════════╪══════════════╪═══════════════╡
│ [1] ┆ [a] ┆ [1] │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ [2, 3] ┆ [b, c] ┆ [2, 2] │
╰─────────────┴──────────────┴───────────────╯
(Showing first 2 of 2 rows)
╭───────┬────────┬───────────────╮
│ x ┆ y ┆ z │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ String ┆ List[Float64] │
╞═══════╪════════╪═══════════════╡
│ 1 ┆ a ┆ [1] │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 2 ┆ b ┆ [2, 2] │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 3 ┆ c ┆ [2, 2] │
╰───────┴────────┴───────────────╯
(Showing first 3 of 3 rows) Example with Null values and empty lists:
1 2 3 4 5 | |
╭───────┬─────────────┬──────────────╮
│ id ┆ values ┆ labels │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ List[Int64] ┆ List[String] │
╞═══════╪═════════════╪══════════════╡
│ 1 ┆ [1, 2] ┆ [a, b] │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 2 ┆ [] ┆ [] │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 3 ┆ None ┆ None │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 4 ┆ [3] ┆ [c] │
╰───────┴─────────────┴──────────────╯
(Showing first 4 of 4 rows)
╭───────┬────────┬────────╮
│ id ┆ values ┆ labels │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ Int64 ┆ String │
╞═══════╪════════╪════════╡
│ 1 ┆ 1 ┆ a │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 1 ┆ 2 ┆ b │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 2 ┆ None ┆ None │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 3 ┆ None ┆ None │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 4 ┆ 3 ┆ c │
╰───────┴────────┴────────╯
(Showing first 5 of 5 rows) Example with index_column to track element positions:
1 2 | |
╭───────┬────────╮
│ a ┆ idx │
│ --- ┆ --- │
│ Int64 ┆ UInt64 │
╞═══════╪════════╡
│ 1 ┆ 0 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 2 ┆ 1 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 3 ┆ 0 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 4 ┆ 1 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 3 ┆ 2 │
╰───────┴────────╯
(Showing first 5 of 5 rows) Source code in daft/dataframe/dataframe.py
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 | |
filter #
filter(predicate: Expression | str) -> DataFrame
Filters rows via a predicate expression, similar to SQL WHERE.
Alias for daft.DataFrame.where.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
predicate | Expression | expression that keeps row if evaluates to True. | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | Filtered DataFrame. |
Tip
See also .where(predicate)
Examples:
1 2 3 | |
╭───────┬───────┬───────╮
│ x ┆ y ┆ z │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ Int64 ┆ Int64 │
╞═══════╪═══════╪═══════╡
│ 2 ┆ 6 ┆ 8 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 3 ┆ 6 ┆ 9 │
╰───────┴───────┴───────╯
(Showing first 2 of 2 rows) Source code in daft/dataframe/dataframe.py
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 | |
groupby #
groupby(*group_by: ManyColumnsInputType) -> GroupedDataFrame
Performs a GroupBy on the DataFrame for aggregation.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*group_by | Union[str, Expression] | columns to group by | () |
Returns:
| Name | Type | Description |
|---|---|---|
GroupedDataFrame | GroupedDataFrame | DataFrame to Aggregate |
Examples:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | |
╭────────┬─────────┬─────────┬────────┬────────╮
│ pet ┆ min_age ┆ max_age ┆ count ┆ name │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ String ┆ Int64 ┆ Int64 ┆ UInt64 ┆ String │
╞════════╪═════════╪═════════╪════════╪════════╡
│ cat ┆ 1 ┆ 4 ┆ 2 ┆ Alex │
├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ dog ┆ 2 ┆ 3 ┆ 2 ┆ Jordan │
╰────────┴─────────┴─────────┴────────┴────────╯
(Showing first 2 of 2 rows) Source code in daft/dataframe/dataframe.py
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 | |
intersect #
Returns the intersection of two DataFrames.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other | DataFrame | DataFrame to intersect with | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame with the intersection of the two DataFrames |
Examples:
1 2 3 4 5 6 | |
╭───────┬───────╮
│ a ┆ b │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╞═══════╪═══════╡
│ 1 ┆ 4 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 3 ┆ 6 │
╰───────┴───────╯
(Showing first 2 of 2 rows) Source code in daft/dataframe/dataframe.py
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 | |
intersect_all #
Returns the intersection of two DataFrames, including duplicates.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other | DataFrame | DataFrame to intersect with | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame with the intersection of the two DataFrames, including duplicates |
Examples:
1 2 3 4 | |
╭───────┬───────╮
│ a ┆ b │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╞═══════╪═══════╡
│ 1 ┆ 4 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 6 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 6 │
╰───────┴───────╯
(Showing first 3 of 3 rows) Source code in daft/dataframe/dataframe.py
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 | |
into_batches #
into_batches(batch_size: int) -> DataFrame
Splits or coalesces DataFrame to partitions of size batch_size.
Note
Batch sizing is performed on a best-effort basis. The heuristic is to emit a batch when we have enough rows to fill batch_size * 0.8 rows. This approach prioritizes processing efficiency over uniform batch sizes, especially when using the Ray Runner, as batches can be distributed over the cluster. The exception to this is that the last batch will be the remainder of the total number of rows in the DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
batch_size | int | number of target rows per partition. | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | Dataframe with |
Examples:
1 2 3 4 5 | |
Source code in daft/dataframe/dataframe.py
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 | |
into_partitions #
into_partitions(num: int) -> DataFrame
Splits or coalesces DataFrame to num partitions. Order is preserved.
This will naively greedily split partitions in a round-robin fashion to hit the targeted number of partitions. The number of rows/size in a given partition is not taken into account during the splitting.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
num | int | number of target partitions. | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | Dataframe with |
Source code in daft/dataframe/dataframe.py
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 | |
iter_partitions #
iter_partitions(results_buffer_size: int | None | Literal['num_cpus'] = 'num_cpus') -> Iterator[Union[MicroPartition, ObjectRef]]
Begin executing this dataframe and return an iterator over the partitions.
Each partition will be returned as a daft.recordbatch object (if using Python runner backend) or a ray ObjectRef (if using Ray runner backend).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
results_buffer_size | int | None | Literal['num_cpus'] | how many partitions to allow in the results buffer (defaults to the total number of CPUs available on the machine). | 'num_cpus' |
A quick note on configuring asynchronous/parallel execution using results_buffer_size.
The results_buffer_size kwarg controls how many results Daft will allow to be in the buffer while iterating. Once this buffer is filled, Daft will not run any more work until some partition is consumed from the buffer.
- Increasing this value means the iterator will consume more memory and CPU resources but have higher throughput
- Decreasing this value means the iterator will consume lower memory and CPU resources, but have lower throughput
- Setting this value to
Nonemeans the iterator will consume as much resources as it deems appropriate per-iteration
The default value is the total number of CPUs available on the current machine.
Returns:
| Type | Description |
|---|---|
Iterator[Union[MicroPartition, ObjectRef]] | Iterator[Union[MicroPartition, ray.ObjectRef]]: An iterator over the partitions of the DataFrame. |
Iterator[Union[MicroPartition, ObjectRef]] | Each partition is a MicroPartition object (if using Python runner backend) or a ray ObjectRef |
Iterator[Union[MicroPartition, ObjectRef]] | (if using Ray runner backend). |
Examples:
1 2 3 4 5 6 7 | |
MicroPartition with 3 rows:
TableState: Loaded. 1 tables
╭───────┬────────╮
│ foo ┆ bar │
│ --- ┆ --- │
│ Int64 ┆ String │
╞═══════╪════════╡
│ 1 ┆ a │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 2 ┆ b │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 3 ┆ c │
╰───────┴────────╯
Statistics: missing Source code in daft/dataframe/dataframe.py
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 | |
iter_rows #
iter_rows(results_buffer_size: int | None | Literal['num_cpus'] = 'num_cpus', column_format: Literal['python', 'arrow'] = 'python') -> Iterator[dict[str, Any]]
Return an iterator of rows for this dataframe.
Each row will be a Python dictionary of the form { "key" : value, ...}. If you are instead looking to iterate over entire partitions of data, see df.iter_partitions().
By default, Daft will convert the columns to Python lists for easy consumption. Datatypes with Python equivalents will be converted accordingly, e.g. timestamps to datetime, tensors to numpy arrays. For nested data such as List or Struct arrays, however, this can be expensive. You may wish to set column_format to "arrow" such that the nested data is returned as Arrow scalars.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
results_buffer_size | int | None | Literal['num_cpus'] | how many partitions to allow in the results buffer (defaults to the total number of CPUs available on the machine). | 'num_cpus' |
column_format | Literal['python', 'arrow'] | the format of the columns to iterate over. One of "python" or "arrow". Defaults to "python". | 'python' |
A quick note on configuring asynchronous/parallel execution using results_buffer_size.
The results_buffer_size kwarg controls how many results Daft will allow to be in the buffer while iterating. Once this buffer is filled, Daft will not run any more work until some partition is consumed from the buffer.
- Increasing this value means the iterator will consume more memory and CPU resources but have higher throughput
- Decreasing this value means the iterator will consume lower memory and CPU resources, but have lower throughput
- Setting this value to
Nonemeans the iterator will consume as much resources as it deems appropriate per-iteration
The default value is the total number of CPUs available on the current machine.
Returns:
| Type | Description |
|---|---|
Iterator[dict[str, Any]] | Iterator[dict[str, Any]]: An iterator over the rows of the DataFrame, where each row is a dictionary |
Iterator[dict[str, Any]] | mapping column names to values. |
Examples:
1 2 3 4 5 | |
{'foo': 1, 'bar': 'a'}
{'foo': 2, 'bar': 'b'}
{'foo': 3, 'bar': 'c'} Tip
See also df.iter_partitions(): iterator over entire partitions instead of single rows
Source code in daft/dataframe/dataframe.py
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 | |
join #
join(other: DataFrame, on: list[ColumnInputType] | ColumnInputType | None = None, left_on: list[ColumnInputType] | ColumnInputType | None = None, right_on: list[ColumnInputType] | ColumnInputType | None = None, how: Literal['inner', 'left', 'right', 'outer', 'anti', 'semi', 'cross'] = 'inner', strategy: Literal['hash', 'sort_merge', 'broadcast'] | None = None, prefix: str | None = None, suffix: str | None = None) -> DataFrame
Column-wise join of the current DataFrame with an other DataFrame, similar to a SQL JOIN.
If the two DataFrames have duplicate non-join key column names, "right." will be prepended to the conflicting right columns. You can change the behavior by passing either (or both) prefix or suffix to the function. If prefix is passed, it will be prepended to the conflicting right columns. If suffix is passed, it will be appended to the conflicting right columns.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other | DataFrame | the right DataFrame to join on. | required |
on | Optional[Union[List[ColumnInputType], ColumnInputType]] | key or keys to join on [use if the keys on the left and right side match.]. Defaults to None. | None |
left_on | Optional[Union[List[ColumnInputType], ColumnInputType]] | key or keys to join on left DataFrame. Defaults to None. | None |
right_on | Optional[Union[List[ColumnInputType], ColumnInputType]] | key or keys to join on right DataFrame. Defaults to None. | None |
how | str | what type of join to perform; currently "inner", "left", "right", "outer", "anti", "semi", and "cross" are supported. Defaults to "inner". | 'inner' |
strategy | Optional[str] | The join strategy (algorithm) to use; currently "hash", "sort_merge", "broadcast", and None are supported, where None chooses the join strategy automatically during query optimization. The default is None. | None |
suffix | Optional[str] | Suffix to add to the column names in case of a name collision. Defaults to "". | None |
prefix | Optional[str] | Prefix to add to the column names in case of a name collision. Defaults to "right.". | None |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | Joined DataFrame. |
Raises:
| Type | Description |
|---|---|
ValueError | if |
ValueError | if |
Note
Although self joins are supported, we currently duplicate the logical plan for the right side and recompute the entire tree. Caching for this is on the roadmap.
Examples:
1 2 3 4 5 6 | |
╭────────┬───────┬─────────╮
│ a ┆ b ┆ right.b │
│ --- ┆ --- ┆ --- │
│ String ┆ Int64 ┆ Int64 │
╞════════╪═══════╪═════════╡
│ x ┆ 2 ┆ 20 │
├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
│ y ┆ 3 ┆ 30 │
╰────────┴───────┴─────────╯
(Showing first 2 of 2 rows) Source code in daft/dataframe/dataframe.py
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 | |
limit #
limit(num: int) -> DataFrame
Limits the rows in the DataFrame to the first N rows, similar to a SQL LIMIT.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
num | int | maximum rows to allow. | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | Limited DataFrame |
Examples:
1 2 3 4 | |
╭───────╮
│ x │
│ --- │
│ Int64 │
╞═══════╡
│ 1 │
├╌╌╌╌╌╌╌┤
│ 2 │
├╌╌╌╌╌╌╌┤
│ 3 │
├╌╌╌╌╌╌╌┤
│ 4 │
├╌╌╌╌╌╌╌┤
│ 5 │
╰───────╯
(Showing first 5 of 5 rows) Source code in daft/dataframe/dataframe.py
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 | |
max #
max(*cols: ColumnInputType) -> DataFrame
Performs a global max on the DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*cols | Union[str, Expression] | columns to max | () |
Returns: DataFrame: Globally aggregated max. Should be a single row.
Examples:
1 2 3 4 | |
╭───────╮
│ col_a │
│ --- │
│ Int64 │
╞═══════╡
│ 3 │
╰───────╯
(Showing first 1 of 1 rows) Source code in daft/dataframe/dataframe.py
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 | |
mean #
mean(*cols: ColumnInputType) -> DataFrame
Performs a global mean on the DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*cols | Union[str, Expression] | columns to mean | () |
Returns: DataFrame: Globally aggregated mean. Should be a single row.
Examples:
1 2 3 4 | |
╭─────────╮
│ col_a │
│ --- │
│ Float64 │
╞═════════╡
│ 2 │
╰─────────╯
(Showing first 1 of 1 rows) Source code in daft/dataframe/dataframe.py
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 | |
melt #
melt(ids: ManyColumnsInputType, values: ManyColumnsInputType = [], variable_name: str = 'variable', value_name: str = 'value') -> DataFrame
Alias for unpivot.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
ids | ManyColumnsInputType | Columns to keep as identifiers | required |
values | Optional[ManyColumnsInputType] | Columns to unpivot. If not specified, all columns except ids will be unpivoted. | [] |
variable_name | Optional[str] | Name of the variable column. Defaults to "variable". | 'variable' |
value_name | Optional[str] | Name of the value column. Defaults to "value". | 'value' |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | Unpivoted DataFrame |
Examples:
1 2 3 4 5 6 7 8 9 10 11 | |
╭───────┬────────┬───────────╮
│ year ┆ month ┆ inventory │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ String ┆ Int64 │
╞═══════╪════════╪═══════════╡
│ 2020 ┆ Jan ┆ 10 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 2020 ┆ Feb ┆ 20 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 2021 ┆ Jan ┆ 30 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 2021 ┆ Feb ┆ 40 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 2022 ┆ Jan ┆ 50 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 2022 ┆ Feb ┆ 60 │
╰───────┴────────┴───────────╯
(Showing first 6 of 6 rows) Tip
See also unpivot
Source code in daft/dataframe/dataframe.py
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 | |
min #
min(*cols: ColumnInputType) -> DataFrame
Performs a global min on the DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*cols | Union[str, Expression] | columns to min | () |
Returns: DataFrame: Globally aggregated min. Should be a single row.
Examples:
1 2 3 4 | |
╭───────╮
│ col_a │
│ --- │
│ Int64 │
╞═══════╡
│ 1 │
╰───────╯
(Showing first 1 of 1 rows) Source code in daft/dataframe/dataframe.py
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 | |
num_partitions #
num_partitions() -> int | None
Returns the number of partitions that will be used to execute this DataFrame.
The query optimizer may change the partitioning strategy. This method runs the optimizer and then inspects the resulting physical plan scheduler to determine how many partitions the execution will use.
Returns:
| Name | Type | Description |
|---|---|---|
int | int | None | The number of partitions in the optimized physical execution plan. |
Examples:
1 2 3 4 5 6 7 8 9 10 11 12 13 | |
1
10 Source code in daft/dataframe/dataframe.py
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 | |
offset #
offset(num: int) -> DataFrame
Returns a new DataFrame by skipping the first N rows, similar to a SQL Offset.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
num | int | the number of rows to skip | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | A new DataFrame by skipping the first |
Examples:
1 2 3 4 | |
╭───────╮
│ x │
│ --- │
│ Int64 │
╞═══════╡
│ 2 │
├╌╌╌╌╌╌╌┤
│ 3 │
├╌╌╌╌╌╌╌┤
│ 4 │
├╌╌╌╌╌╌╌┤
│ 5 │
├╌╌╌╌╌╌╌┤
│ 6 │
╰───────╯
(Showing first 5 of 5 rows) Source code in daft/dataframe/dataframe.py
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 | |
pipe #
pipe(function: Callable[Concatenate[DataFrame, P], T], *args: args, **kwargs: kwargs) -> T
Apply the function to this DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
function | Callable[Concatenate[DataFrame, P], T] | Function to apply. | required |
*args | args | Positional arguments to pass to the function. | () |
**kwargs | kwargs | Keyword arguments to pass to the function. | {} |
Returns:
| Type | Description |
|---|---|
T | Result of applying the function on this DataFrame. |
Examples:
1 2 3 4 5 6 7 8 | |
╭───────╮
│ x │
│ --- │
│ Int64 │
╞═══════╡
│ 1 │
├╌╌╌╌╌╌╌┤
│ 4 │
├╌╌╌╌╌╌╌┤
│ 9 │
╰───────╯
(Showing first 3 of 3 rows) Source code in daft/dataframe/dataframe.py
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | |
pivot #
pivot(group_by: ManyColumnsInputType, pivot_col: ColumnInputType, value_col: ColumnInputType, agg_fn: str, names: list[str] | None = None) -> DataFrame
Pivots a column of the DataFrame and performs an aggregation on the values.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
group_by | ManyColumnsInputType | columns to group by | required |
pivot_col | Union[str, Expression] | column to pivot | required |
value_col | Union[str, Expression] | column to aggregate | required |
agg_fn | str | aggregation function to apply | required |
names | Optional[List[str]] | names of the pivoted columns | None |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame with pivoted columns |
Note
You may wish to provide a list of distinct values to pivot on, which is more efficient as it avoids a distinct operation. Without this list, Daft will perform a distinct operation on the pivot column to determine the unique values to pivot on.
Examples:
1 2 3 4 5 6 7 8 9 10 11 12 | |
╭─────────┬─────────┬───────╮
│ version ┆ windows ┆ macos │
│ --- ┆ --- ┆ --- │
│ String ┆ Int64 ┆ Int64 │
╞═════════╪═════════╪═══════╡
│ 3.8 ┆ None ┆ 300 │
├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 3.9 ┆ 250 ┆ 150 │
╰─────────┴─────────┴───────╯
(Showing first 2 of 2 rows) Source code in daft/dataframe/dataframe.py
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 | |
repartition #
repartition(num: int | None, *partition_by: ColumnInputType) -> DataFrame
Repartitions DataFrame to num partitions.
If columns are passed in, then DataFrame will be repartitioned by those, otherwise random repartitioning will occur.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
num | Optional[int] | Number of target partitions; if None, the number of partitions will not be changed. | required |
*partition_by | Union[str, Expression] | Optional columns to partition by. | () |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | Repartitioned DataFrame. |
This function will globally shuffle your data, which is potentially a very expensive operation.
If instead you merely wish to "split" or "coalesce" partitions to obtain a target number of partitions, you mean instead wish to consider using DataFrame.into_partitions which avoids shuffling of data in favor of splitting/coalescing adjacent partitions where appropriate.
Examples:
1 2 3 | |
Source code in daft/dataframe/dataframe.py
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 | |
sample #
sample(fraction: float | None = None, size: int | None = None, with_replacement: bool = False, seed: int | None = None) -> DataFrame
Samples rows from the DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
fraction | Optional[float] | fraction of rows to sample (between 0.0 and 1.0). Must specify either | None |
size | Optional[int] | exact number of rows to sample. Must specify either | None |
with_replacement | bool | whether to sample with replacement. Defaults to False. | False |
seed | Optional[int] | random seed. Defaults to None. | None |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame with sampled rows. |
Examples:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | |
Source code in daft/dataframe/dataframe.py
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 | |
schema #
schema() -> Schema
Returns the Schema of the DataFrame, which provides information about each column, as a Python object.
Returns:
| Name | Type | Description |
|---|---|---|
Schema | Schema | schema of the DataFrame |
Examples:
1 2 3 4 | |
╭─────────────┬────────╮
│ column_name ┆ type │
╞═════════════╪════════╡
│ x ┆ Int64 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ y ┆ String │
╰─────────────┴────────╯ Source code in daft/dataframe/dataframe.py
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 | |
select #
select(*columns: ColumnInputType, **projections: Expression) -> DataFrame
Creates a new DataFrame from the provided expressions, similar to a SQL SELECT.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*columns | Union[str, Expression] | columns to select from the current DataFrame | () |
**projections | Expression | additional projections in kwarg format. | {} |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | new DataFrame that will select the passed in columns |
Examples:
1 2 3 4 | |
╭───────┬───────┬───────╮
│ x ┆ y ┆ z │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ Int64 ┆ Int64 │
╞═══════╪═══════╪═══════╡
│ 1 ┆ 4 ┆ 8 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 5 ┆ 9 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 3 ┆ 6 ┆ 10 │
╰───────┴───────┴───────╯
(Showing first 3 of 3 rows) Source code in daft/dataframe/dataframe.py
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 | |
show #
show(n: int = 8, format: PreviewFormat | None = None, verbose: bool = False, max_width: int = 30, align: PreviewAlign = 'left', columns: list[PreviewColumn] | None = None) -> None
Executes enough of the DataFrame in order to display the first n rows.
If IPython is installed, this will use IPython's display utility to pretty-print in a notebook/REPL environment. Otherwise, this will fall back onto a naive Python print.
If no format is given, then daft's truncating preview format is used. - The output is a 'fancy' table with rounded corners. - Headers contain the column's data type. - Columns are truncated to 30 characters. - The table's overall width is limited to 10 columns.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
n | int | number of rows to show. Defaults to 8. | 8 |
format | PreviewFormat | the box-drawing format e.g. "fancy" or "markdown". | None |
verbose | bool | verbose will print header info | False |
max_width | int | global max column width | 30 |
align | PreviewAlign | global column align | 'left' |
columns | list[PreviewColumn] | column overrides | None |
Note
This call is blocking and will execute the DataFrame when called
Examples:
1 2 3 4 5 6 | |
Usage
- If columns are given, their length MUST match the schema.
- If columns are given, their settings override any global settings.
Source code in daft/dataframe/dataframe.py
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 | |
sort #
sort(by: ColumnInputType | list[ColumnInputType], desc: bool | list[bool] = False, nulls_first: bool | list[bool] | None = None) -> DataFrame
Sorts DataFrame globally.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
by | Union[ColumnInputType, List[ColumnInputType]] | column to sort by. Can be | required |
desc | Union[bool, List[bool]) | Sort by descending order. Defaults to False. | False |
nulls_first | Union[bool, List[bool]) | Sort by nulls first. Defaults to nulls being treated as the greatest value. | None |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | Sorted DataFrame. |
Note
- Since this a global sort, this requires an expensive repartition which can be quite slow.
- Supports multicolumn sorts and can have unique
descendingandnulls_firstflags per column.
Examples:
1 2 3 4 | |
╭───────┬───────╮
│ x ┆ y │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╞═══════╪═══════╡
│ 2 ┆ 4 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 1 ┆ 5 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 3 ┆ 6 │
╰───────┴───────╯
(Showing first 3 of 3 rows) You can also sort by multiple columns, and specify the 'descending' flag for each column:
1 2 3 | |
╭───────┬───────╮
│ x ┆ y │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╞═══════╪═══════╡
│ 2 ┆ 6 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 8 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 1 ┆ 7 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 1 ┆ 9 │
╰───────┴───────╯
(Showing first 4 of 4 rows) You can also specify null positioning (first/last) for each column
1 2 3 | |
╭───────┬───────╮
│ x ┆ y │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╞═══════╪═══════╡
│ None ┆ None │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 6 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 8 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 1 ┆ None │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 1 ┆ 9 │
╰───────┴───────╯
(Showing first 5 of 5 rows) Source code in daft/dataframe/dataframe.py
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 | |
stddev #
stddev(*cols: ColumnInputType) -> DataFrame
Performs a global standard deviation on the DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*cols | Union[str, Expression] | columns to stddev | () |
Returns: DataFrame: Globally aggregated standard deviation. Should be a single row.
Examples:
1 2 3 4 | |
╭───────────────────╮
│ col_a │
│ --- │
│ Float64 │
╞═══════════════════╡
│ 0.816496580927726 │
╰───────────────────╯
(Showing first 1 of 1 rows) Source code in daft/dataframe/dataframe.py
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 | |
sum #
sum(*cols: ManyColumnsInputType) -> DataFrame
Performs a global sum on the DataFrame.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*cols | Union[str, Expression] | columns to sum | () |
Returns: DataFrame: Globally aggregated sums. Should be a single row.
Examples:
1 2 3 4 | |
╭───────╮
│ col_a │
│ --- │
│ Int64 │
╞═══════╡
│ 6 │
╰───────╯
(Showing first 1 of 1 rows) Source code in daft/dataframe/dataframe.py
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 | |
summarize #
summarize() -> DataFrame
Returns column statistics for the DataFrame.
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | new DataFrame with the computed column statistics. |
Examples:
1 2 3 | |
╭────────┬────────┬────────┬────────────┬────────┬─────────────┬───────────────────────╮
│ column ┆ type ┆ min ┆ … ┆ count ┆ count_nulls ┆ approx_count_distinct │
│ --- ┆ --- ┆ --- ┆ ┆ --- ┆ --- ┆ --- │
│ String ┆ String ┆ String ┆ (1 hidden) ┆ UInt64 ┆ UInt64 ┆ UInt64 │
╞════════╪════════╪════════╪════════════╪════════╪═════════════╪═══════════════════════╡
│ x ┆ Int64 ┆ 1 ┆ … ┆ 3 ┆ 0 ┆ 3 │
├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ y ┆ Int64 ┆ 4 ┆ … ┆ 3 ┆ 0 ┆ 3 │
├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ z ┆ Int64 ┆ 7 ┆ … ┆ 3 ┆ 0 ┆ 3 │
╰────────┴────────┴────────┴────────────┴────────┴─────────────┴───────────────────────╯
(Showing first 3 of 3 rows) Source code in daft/dataframe/dataframe.py
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 | |
to_arrow #
to_arrow() -> Table
Converts the current DataFrame to a pyarrow Table.
If results have not computed yet, collect will be called.
Returns:
| Type | Description |
|---|---|
Table | pyarrow.Table: pyarrow Table converted from a Daft DataFrame |
Note
This call is blocking and will execute the DataFrame when called
Examples:
1 2 3 4 | |
pyarrow.Table
a: int64
b: int64
----
a: [[1,2,3]]
b: [[4,5,6]] Tip
See also DataFrame.to_arrow_iter() for a streaming iterator over the rows of the DataFrame as Arrow RecordBatches.
Source code in daft/dataframe/dataframe.py
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 | |
to_arrow_iter #
to_arrow_iter(results_buffer_size: int | None | Literal['num_cpus'] = 'num_cpus') -> Iterator[RecordBatch]
Return an iterator of pyarrow recordbatches for this dataframe.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
results_buffer_size | int | None | Literal['num_cpus'] | how many partitions to allow in the results buffer (defaults to the total number of CPUs available on the machine). | 'num_cpus' |
Note: A quick note on configuring asynchronous/parallel execution using results_buffer_size. The results_buffer_size kwarg controls how many results Daft will allow to be in the buffer while iterating. Once this buffer is filled, Daft will not run any more work until some partition is consumed from the buffer. * Increasing this value means the iterator will consume more memory and CPU resources but have higher throughput * Decreasing this value means the iterator will consume lower memory and CPU resources, but have lower throughput * Setting this value to None means the iterator will consume as much resources as it deems appropriate per-iteration The default value is the total number of CPUs available on the current machine.
Returns:
| Type | Description |
|---|---|
Iterator[RecordBatch] | Iterator[pyarrow.RecordBatch]: An iterator over the RecordBatches of the DataFrame. |
Examples:
1 2 3 4 5 | |
pyarrow.RecordBatch
foo: int64
bar: large_string
----
foo: [1,2,3]
bar: ["a","b","c"] Source code in daft/dataframe/dataframe.py
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 | |
to_dask_dataframe #
to_dask_dataframe(meta: Union[DataFrame, Series[Any], dict[str, Any], Iterable[Any], tuple[Any], None] = None) -> DataFrame
Converts the current Daft DataFrame to a Dask DataFrame.
The returned Dask DataFrame will use Dask-on-Ray to execute operations on a Ray cluster.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
meta | Union[DataFrame, Series[Any], dict[str, Any], Iterable[Any], tuple[Any], None] | An empty pandas DataFrameor Series that matches the dtypes and column names of the stream. This metadata is necessary for many algorithms in dask dataframe to work. For ease of use, some alternative inputs are also available. Instead of a DataFrame, a dict of | None |
Returns:
| Type | Description |
|---|---|
DataFrame | dask.DataFrame: A Dask DataFrame stored on a Ray cluster. |
Note
This function can only work if Daft is running using the RayRunner.
Examples:
1 2 3 4 | |
Source code in daft/dataframe/dataframe.py
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 | |
to_pandas #
to_pandas(coerce_temporal_nanoseconds: bool = False) -> DataFrame
Converts the current DataFrame to a pandas DataFrame.
If results have not computed yet, collect will be called.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
coerce_temporal_nanoseconds | bool | Whether to coerce temporal columns to nanoseconds. Only applicable to pandas version >= 2.0 and pyarrow version >= 13.0.0. Defaults to False. See | False |
Returns:
| Type | Description |
|---|---|
DataFrame | pandas.DataFrame: pandas DataFrame converted from a Daft DataFrame |
Note
This call is blocking and will execute the DataFrame when called
Examples:
1 2 3 4 | |
a b
0 1 4
1 2 5
2 3 6 Source code in daft/dataframe/dataframe.py
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 | |
to_pydict #
to_pydict() -> dict[str, list[Any]]
Converts the current DataFrame to a python dictionary. The dictionary contains Python lists of Python objects for each column.
If results have not computed yet, collect will be called.
Returns:
| Type | Description |
|---|---|
dict[str, list[Any]] | dict[str, list[Any]]: python dict converted from a Daft DataFrame |
Note
This call is blocking and will execute the DataFrame when called
Examples:
1 2 3 | |
{'a': [1, 2, 3, 4], 'b': [2, 4, 3, 1]} Tip
See also DataFrame.to_pylist() for a convenience method that converts the DataFrame to a list of Python dict objects.
Source code in daft/dataframe/dataframe.py
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 | |
to_pylist #
to_pylist() -> list[Any]
Converts the current Dataframe into a python list.
Returns:
| Type | Description |
|---|---|
list[Any] | List[dict[str, Any]]: List of python dict objects. |
Warning
This is a convenience method over DataFrame.iter_rows(). Users should prefer using .iter_rows() directly instead for lower memory utilization if they are streaming rows out of a DataFrame and don't require full materialization of the Python list.
Examples:
1 2 3 4 | |
[{'a': 1, 'b': 2}, {'a': 2, 'b': 4}, {'a': 3, 'b': 3}, {'a': 4, 'b': 1}] See also
df.iter_rows(): streaming iterator over individual rows in a DataFrame
Source code in daft/dataframe/dataframe.py
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 | |
to_ray_dataset #
to_ray_dataset() -> DataSet
Converts the current DataFrame to a Ray Dataset which is useful for running distributed ML model training in Ray.
Returns:
| Type | Description |
|---|---|
DataSet | ray.data.dataset.DataSet: Ray dataset |
Examples:
1 2 3 4 | |
Note
This function can only work if Daft is running using the RayRunner
Source code in daft/dataframe/dataframe.py
4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 | |
to_torch_iter_dataset #
to_torch_iter_dataset(shard_strategy: Literal['file'] | None = None, world_size: int | None = None, rank: int | None = None) -> IterableDataset
Convert the current DataFrame into a Torch IterableDataset <https://pytorch.org/docs/stable/data.html#torch.utils.data.IterableDataset>__ for use with PyTorch.
Begins execution of the DataFrame if it is not yet executed.
Items will be returned in pydict format: a dict of {"column name": value} for each row in the data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
shard_strategy | Optional[Literal['file']] | Strategy to use for sharding the dataset. Currently only "file" is supported. | None |
world_size | Optional[int] | Total number of workers for sharding. Required if shard_strategy is specified. | None |
rank | Optional[int] | Rank of current worker for sharding. Required if shard_strategy is specified. | None |
Returns:
| Type | Description |
|---|---|
IterableDataset | torch.utils.data.IterableDataset: A PyTorch IterableDataset containing the data from the DataFrame. |
Examples:
1 2 3 4 5 | |
[{'x': tensor([1]), 'y': tensor([4])}, {'x': tensor([2]), 'y': tensor([5])}, {'x': tensor([3]), 'y': tensor([6])}] Note
The produced dataset is meant to be used with the single-process DataLoader, and does not support data sharding hooks for multi-process data loading.
Do keep in mind that Daft is already using multithreading or multiprocessing under the hood to compute the data stream that feeds this dataset.
Tip
This method returns results locally. For distributed training, you may want to use DataFrame.to_ray_dataset().
Source code in daft/dataframe/dataframe.py
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 | |
to_torch_map_dataset #
to_torch_map_dataset(shard_strategy: Literal['file'] | None = None, world_size: int | None = None, rank: int | None = None) -> Dataset
Convert the current DataFrame into a map-style Torch Dataset for use with PyTorch.
This method will materialize the entire DataFrame and block on completion.
Items will be returned in pydict format: a dict of {"column name": value} for each row in the data.
Note
If you do not need random access, you may get better performance out of an IterableDataset, which streams data items in as soon as they are ready and does not block on full materialization.
Tip
This method returns results locally. For distributed training, you may want to use DataFrame.to_ray_dataset().
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
shard_strategy | Optional[Literal['file']] | Strategy to use for sharding the dataset. Currently only "file" is supported. | None |
world_size | Optional[int] | Total number of workers for sharding. Required if shard_strategy is specified. | None |
rank | Optional[int] | Rank of current worker for sharding. Required if shard_strategy is specified. | None |
Returns:
| Type | Description |
|---|---|
Dataset | torch.utils.data.Dataset: A PyTorch Dataset containing the data from the DataFrame. |
Note
The produced dataset is meant to be used with the single-process DataLoader, and does not support data sharding hooks for multi-process data loading.
Examples:
1 2 3 4 | |
Tip
This method returns results locally. For distributed training, you may want to use DataFrame.to_ray_dataset().
Source code in daft/dataframe/dataframe.py
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 | |
transform #
Apply a function that takes and returns a DataFrame.
Allow splitting your transformation into different units of work (functions) while preserving the syntax for chaining transformations.
Examples:
1 2 3 4 5 6 7 8 9 10 | |
╭───────╮
│ col_a │
│ --- │
│ Int64 │
╞═══════╡
│ 8 │
├╌╌╌╌╌╌╌┤
│ 12 │
├╌╌╌╌╌╌╌┤
│ 16 │
├╌╌╌╌╌╌╌┤
│ 20 │
╰───────╯
(Showing first 4 of 4 rows) Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
func | Callable[..., DataFrame] | A function that takes and returns a DataFrame. | required |
*args | Any | Positional arguments to pass to func. | () |
**kwargs | Any | Keyword arguments to pass to func. | {} |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | Transformed DataFrame. |
Source code in daft/dataframe/dataframe.py
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 | |
union #
Returns the distinct union of two DataFrames.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other | DataFrame | The DataFrame to union with this one. | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | A new DataFrame containing the distinct rows from both DataFrames. |
Examples:
1 2 3 4 | |
╭───────┬───────╮
│ x ┆ y │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╞═══════╪═══════╡
│ 1 ┆ 4 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 5 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 3 ┆ 6 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 4 ┆ 7 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 5 ┆ 8 │
╰───────┴───────╯
(Showing first 5 of 5 rows) Source code in daft/dataframe/dataframe.py
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 | |
union_all #
Returns the union of two DataFrames, including duplicates.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other | DataFrame | The DataFrame to union with this one. | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | A new DataFrame containing all rows from both DataFrames, including duplicates. |
Examples:
1 2 3 4 | |
╭───────┬───────╮
│ x ┆ y │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╞═══════╪═══════╡
│ 1 ┆ 4 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 1 ┆ 4 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 5 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 5 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 3 ┆ 6 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 3 ┆ 6 │
╰───────┴───────╯
(Showing first 6 of 6 rows) Source code in daft/dataframe/dataframe.py
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 | |
union_all_by_name #
Returns the union of two DataFrames, including duplicates, with columns matched by name.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other | DataFrame | The DataFrame to union with this one, matching columns by name. | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | A new DataFrame containing all rows from both DataFrames, including duplicates, with columns matched by name. |
Examples:
1 2 3 4 | |
╭───────┬───────┬───────┬────────╮
│ x ┆ y ┆ w ┆ z │
│ --- ┆ --- ┆ --- ┆ --- │
│ Int64 ┆ Int64 ┆ Int64 ┆ String │
╞═══════╪═══════╪═══════╪════════╡
│ 1 ┆ 4 ┆ 9 ┆ None │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 2 ┆ 5 ┆ 10 ┆ None │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ None ┆ 6 ┆ None ┆ a │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ None ┆ 6 ┆ None ┆ a │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ None ┆ 7 ┆ None ┆ b │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ None ┆ 7 ┆ None ┆ b │
╰───────┴───────┴───────┴────────╯
(Showing first 6 of 6 rows) Source code in daft/dataframe/dataframe.py
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 | |
union_by_name #
Returns the distinct union by name.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other | DataFrame | The DataFrame to union with this one, matching columns by name. | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | A new DataFrame containing the distinct rows from both DataFrames, with columns matched by name. |
Examples:
1 2 3 4 | |
╭───────┬───────┬───────┬────────╮
│ x ┆ y ┆ w ┆ z │
│ --- ┆ --- ┆ --- ┆ --- │
│ Int64 ┆ Int64 ┆ Int64 ┆ String │
╞═══════╪═══════╪═══════╪════════╡
│ 1 ┆ 4 ┆ 9 ┆ None │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ 2 ┆ 5 ┆ 10 ┆ None │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ None ┆ 6 ┆ None ┆ a │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
│ None ┆ 7 ┆ None ┆ b │
╰───────┴───────┴───────┴────────╯
(Showing first 4 of 4 rows) Source code in daft/dataframe/dataframe.py
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 | |
unique #
unique(*by: ColumnInputType) -> DataFrame
Computes distinct rows, dropping duplicates.
Alias for DataFrame.distinct.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*by | Union[str, Expression] | columns to perform distinct on. Defaults to all columns. | () |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame that has only distinct rows. |
Examples:
1 2 3 4 5 | |
╭───────┬───────┬───────╮
│ x ┆ y ┆ z │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ Int64 ┆ Int64 │
╞═══════╪═══════╪═══════╡
│ 1 ┆ 4 ┆ 7 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 5 ┆ 8 │
╰───────┴───────┴───────╯
(Showing first 2 of 2 rows) Source code in daft/dataframe/dataframe.py
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 | |
unpivot #
unpivot(ids: ManyColumnsInputType, values: ManyColumnsInputType = [], variable_name: str = 'variable', value_name: str = 'value') -> DataFrame
Unpivots a DataFrame from wide to long format.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
ids | ManyColumnsInputType | Columns to keep as identifiers | required |
values | Optional[ManyColumnsInputType] | Columns to unpivot. If not specified, all columns except ids will be unpivoted. | [] |
variable_name | Optional[str] | Name of the variable column. Defaults to "variable". | 'variable' |
value_name | Optional[str] | Name of the value column. Defaults to "value". | 'value' |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | Unpivoted DataFrame |
Tip
See also melt
Examples:
1 2 3 4 5 6 7 8 9 10 11 | |
╭───────┬────────┬───────────╮
│ year ┆ month ┆ inventory │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ String ┆ Int64 │
╞═══════╪════════╪═══════════╡
│ 2020 ┆ Jan ┆ 10 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 2020 ┆ Feb ┆ 20 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 2021 ┆ Jan ┆ 30 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 2021 ┆ Feb ┆ 40 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 2022 ┆ Jan ┆ 50 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 2022 ┆ Feb ┆ 60 │
╰───────┴────────┴───────────╯
(Showing first 6 of 6 rows) Source code in daft/dataframe/dataframe.py
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 | |
where #
where(predicate: Expression | str) -> DataFrame
Filters rows via a predicate expression, similar to SQL WHERE.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
predicate | Expression | expression that keeps row if evaluates to True. | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | Filtered DataFrame. |
Examples:
1 2 3 | |
╭───────┬───────┬───────╮
│ x ┆ y ┆ z │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ Int64 ┆ Int64 │
╞═══════╪═══════╪═══════╡
│ 2 ┆ 6 ┆ 8 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 3 ┆ 6 ┆ 9 │
╰───────┴───────┴───────╯
(Showing first 2 of 2 rows) You can also use a string expression as a predicate.
Note: this will use the method sql_expr to parse the string into an expression this may raise an error if the expression is not yet supported in the sql engine.
1 2 3 | |
╭───────┬───────┬───────╮
│ x ┆ y ┆ z │
│ --- ┆ --- ┆ --- │
│ Int64 ┆ Int64 ┆ Int64 │
╞═══════╪═══════╪═══════╡
│ 3 ┆ 6 ┆ 9 │
╰───────┴───────┴───────╯
(Showing first 1 of 1 rows) Source code in daft/dataframe/dataframe.py
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 | |
with_column #
with_column(column_name: str, expr: Expression) -> DataFrame
Adds a column to the current DataFrame with an Expression, equivalent to a select with all current columns and the new one.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
column_name | str | name of new column | required |
expr | Expression | expression of the new column. | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame with new column. |
Examples:
1 2 3 4 | |
╭───────┬───────╮
│ x ┆ x+1 │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╞═══════╪═══════╡
│ 1 ┆ 2 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 3 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 3 ┆ 4 │
╰───────┴───────╯
(Showing first 3 of 3 rows) Source code in daft/dataframe/dataframe.py
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 | |
with_column_renamed #
with_column_renamed(existing: str, new: str) -> DataFrame
Renames a column in the current DataFrame.
If the column in the DataFrame schema does not exist, this will be a no-op.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
existing | str | name of the existing column to rename | required |
new | str | new name for the column | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame with the column renamed. |
Examples:
1 2 3 | |
╭───────┬───────╮
│ foo ┆ y │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╞═══════╪═══════╡
│ 1 ┆ 4 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 5 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 3 ┆ 6 │
╰───────┴───────╯
(Showing first 3 of 3 rows) Source code in daft/dataframe/dataframe.py
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 | |
with_columns #
with_columns(columns: dict[str, Expression]) -> DataFrame
Adds columns to the current DataFrame with Expressions, equivalent to a select with all current columns and the new ones.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
columns | Dict[str, Expression] | Dictionary of new columns in the format { name: expression } | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame with new columns. |
Examples:
1 2 3 4 | |
╭───────┬───────┬───────┬───────╮
│ x ┆ y ┆ foo ┆ bar │
│ --- ┆ --- ┆ --- ┆ --- │
│ Int64 ┆ Int64 ┆ Int64 ┆ Int64 │
╞═══════╪═══════╪═══════╪═══════╡
│ 1 ┆ 4 ┆ 2 ┆ 3 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 5 ┆ 3 ┆ 3 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 3 ┆ 6 ┆ 4 ┆ 3 │
╰───────┴───────┴───────┴───────╯
(Showing first 3 of 3 rows) Source code in daft/dataframe/dataframe.py
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 | |
with_columns_renamed #
with_columns_renamed(cols_map: dict[str, str]) -> DataFrame
Renames multiple columns in the current DataFrame.
If the columns in the DataFrame schema do not exist, this will be a no-op.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
cols_map | Dict[str, str] | Dictionary of columns to rename in the format { existing: new } | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | DataFrame with the columns renamed. |
Examples:
1 2 3 | |
╭───────┬───────╮
│ foo ┆ bar │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╞═══════╪═══════╡
│ 1 ┆ 4 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 2 ┆ 5 │
├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
│ 3 ┆ 6 │
╰───────┴───────╯
(Showing first 3 of 3 rows) Source code in daft/dataframe/dataframe.py
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 | |
write_bigtable #
write_bigtable(project_id: str, instance_id: str, table_id: str, row_key_column: str, column_family_mappings: dict[str, str], client_kwargs: dict[str, Any] | None = None, write_kwargs: dict[str, Any] | None = None, serialize_incompatible_types: bool = True) -> DataFrame
Write a DataFrame into a Google Cloud Bigtable table.
Bigtable only accepts datatypes that can be converted to bytes in cells (for more details, please consult the Bigtable documentation: https://cloud.google.com/bigtable/docs/overview#data-types). By default, write_bigtable automatically serializes incompatible types to JSON. This can be disabled by setting auto_convert=False.
This data sink transforms each row of the dataframe into Bigtable rows. A row key is always required. The row_key_column parameter can be used to specify the column name to use for the row key.
Every column must also belong to a column family. The column_family_mappings parameter can be used to specify the column family to use for each column. For example, if you have a column "name" and a column "age", you can specify a "user_data" column family by passing a dictionary like {"name": "user_data", "age": "user_data"}.
EXPERIMENTAL: This features is early in development and will change.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
project_id | str | The Google Cloud project ID. | required |
instance_id | str | The Bigtable instance ID. | required |
table_id | str | The table to write to. | required |
row_key_column | str | Column name for the row key. | required |
column_family_mappings | dict[str, str] | Mapping of column names to column families. | required |
client_kwargs | dict[str, Any] | None | Optional dictionary of arguments to pass to the Bigtable Client constructor. | None |
write_kwargs | dict[str, Any] | None | Optional dictionary of arguments to pass to the Bigtable MutationsBatcher. | None |
serialize_incompatible_types | bool | Whether to automatically convert non-bytes/int values to Bigtable-compatible formats. If False, will raise an error for unsupported types. Defaults to True. | True |
Source code in daft/dataframe/dataframe.py
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 | |
write_clickhouse #
write_clickhouse(table: str, *, host: str, port: int | None = None, user: str | None = None, password: str | None = None, database: str | None = None, client_kwargs: dict[str, Any] | None = None, write_kwargs: dict[str, Any] | None = None) -> DataFrame
Writes the DataFrame to a ClickHouse table.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
table | str | Name of the ClickHouse table to write to. | required |
host | str | ClickHouse host. | required |
port | int | None | ClickHouse port. | None |
user | str | None | ClickHouse user. | None |
password | str | None | ClickHouse password. | None |
database | str | None | ClickHouse database. | None |
client_kwargs | dict[str, Any] | None | Optional dictionary of arguments to pass to the ClickHouse client constructor. | None |
write_kwargs | dict[str, Any] | None | Optional dictionary of arguments to pass to the ClickHouse write() method. | None |
Examples:
1 2 3 | |
╭────────────────────┬─────────────────────╮
│ total_written_rows ┆ total_written_bytes │
│ --- ┆ --- │
│ Int64 ┆ Int64 │
╞════════════════════╪═════════════════════╡
│ 4 ┆ 32 │
╰────────────────────┴─────────────────────╯ Source code in daft/dataframe/dataframe.py
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 | |
write_csv #
write_csv(root_dir: str | Path, write_mode: Literal['append', 'overwrite', 'overwrite-partitions'] = 'append', partition_cols: list[ColumnInputType] | None = None, io_config: IOConfig | None = None, delimiter: str | None = None, quote: str | None = None, escape: str | None = None, header: bool | None = True) -> DataFrame
Writes the DataFrame as CSV files, returning a new DataFrame with paths to the files that were written.
Files will be written to <root_dir>/* with randomly generated UUIDs as the file names.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
root_dir | str | root file path to write CSV files to. | required |
write_mode | str | Operation mode of the write. | 'append' |
partition_cols | Optional[List[ColumnInputType]] | How to subpartition each partition further. Defaults to None. | None |
io_config | Optional[IOConfig] | configurations to use when interacting with remote storage. | None |
delimiter | Optional[str] | Single-character field delimiter (default | None |
quote | Optional[str] | Single-character quote used around fields containing delimiters default | None |
escape | Optional[str] | Single-character escape for special characters default | None |
header | Optional[bool] | Whether to write a header row with column names, default True. | True |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | The filenames that were written out as strings. |
Note
This call is blocking and will execute the DataFrame when called
Examples:
1 2 3 | |
Tip
See also df.write_parquet() and df.write_json() other formats for writing DataFrames
Source code in daft/dataframe/dataframe.py
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 | |
write_deltalake #
write_deltalake(table: Union[str, Path, DataCatalogTable, DeltaTable, UnityCatalogTable], partition_cols: list[str] | None = None, mode: Literal['append', 'overwrite', 'error', 'ignore'] = 'append', schema_mode: Literal['merge', 'overwrite'] | None = None, name: str | None = None, description: str | None = None, configuration: Mapping[str, str | None] | None = None, custom_metadata: dict[str, str] | None = None, dynamo_table_name: str | None = None, allow_unsafe_rename: bool = False, io_config: IOConfig | None = None) -> DataFrame
Writes the DataFrame to a Delta Lake table, returning a new DataFrame with the operations that occurred.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
table | Union[str, Path, DataCatalogTable, DeltaTable, UnityCatalogTable] | Destination Delta Lake Table or table URI to write dataframe to. | required |
partition_cols | List[str] | How to subpartition each partition further. If table exists, expected to match table's existing partitioning scheme, otherwise creates the table with specified partition columns. Defaults to None. | None |
mode | str | Operation mode of the write. | 'append' |
schema_mode | str | Schema mode of the write. If set to | None |
name | str | User-provided identifier for this table. | None |
description | str | User-provided description for this table. | None |
configuration | Mapping[str, Optional[str]] | A map containing configuration options for the metadata action. | None |
custom_metadata | Dict[str, str] | Custom metadata to add to the commit info. | None |
dynamo_table_name | str | Name of the DynamoDB table to be used as the locking provider if writing to S3. | None |
allow_unsafe_rename | bool | Whether to allow unsafe rename when writing to S3 or local disk. Defaults to False. | False |
io_config | IOConfig | configurations to use when interacting with remote storage. | None |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | The operations that occurred with this write. |
Note
This call is blocking and will execute the DataFrame when called
Examples:
1 2 3 4 | |
Source code in daft/dataframe/dataframe.py
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 | |
write_huggingface #
write_huggingface(repo: str, split: str = 'train', data_dir: str = 'data', revision: str = 'main', overwrite: bool = False, commit_message: str = 'Upload dataset using Daft', commit_description: str | None = None, io_config: IOConfig | None = None) -> DataFrame
Write a DataFrame into a Hugging Face dataset.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
repo | str | The ID of the repository to push to in the following format: | required |
split | str | The name of the split that will be given to that dataset. | 'train' |
data_dir | str | Directory of the uploaded data files. | 'data' |
revision | str | Branch to push the uploaded files to. | 'main' |
overwrite | bool | Whether to overwrite or append. | False |
commit_message | str | Message to commit while pushing. | 'Upload dataset using Daft' |
commit_description | str | None | Description of the commit that will be created. | None |
io_config | IOConfig | None | Configurations to use when interacting with remote storage. | None |
Source code in daft/dataframe/dataframe.py
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 | |
write_iceberg #
Writes the DataFrame to an Iceberg table, returning a new DataFrame with the operations that occurred.
Can be run in either append or overwrite mode which will either appends the rows in the DataFrame or will delete the existing rows and then append the DataFrame rows respectively.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
table | Table | Destination PyIceberg Table to write dataframe to. | required |
mode | str | Operation mode of the write. | 'append' |
io_config | IOConfig | A custom IOConfig to use when accessing Iceberg object storage data. If provided, configurations set in | None |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | The operations that occurred with this write. |
Note
This call is blocking and will execute the DataFrame when called
Examples:
1 2 3 4 5 6 | |
Source code in daft/dataframe/dataframe.py
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 | |
write_json #
write_json(root_dir: str | Path, write_mode: Literal['append', 'overwrite', 'overwrite-partitions'] = 'append', partition_cols: list[ColumnInputType] | None = None, io_config: IOConfig | None = None) -> DataFrame
Writes the DataFrame as JSON files, returning a new DataFrame with paths to the files that were written.
Files will be written to <root_dir>/* with randomly generated UUIDs as the file names.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
root_dir | str | root file path to write JSON files to. | required |
write_mode | str | Operation mode of the write. | 'append' |
partition_cols | Optional[List[ColumnInputType]] | How to subpartition each partition further. Defaults to None. | None |
io_config | Optional[IOConfig] | configurations to use when interacting with remote storage. | None |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | The filenames that were written out as strings. |
Note
This call is blocking and will execute the DataFrame when called
Examples:
1 2 3 | |
Warning
Currently only supported with the Native runner!
Source code in daft/dataframe/dataframe.py
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 | |
write_lance #
write_lance(uri: str | Path, mode: Literal['create', 'append', 'overwrite', 'merge'] = 'create', io_config: IOConfig | None = None, schema: Union[Schema, Schema] | None = None, left_on: str | None = None, right_on: str | None = None, **kwargs: Any) -> DataFrame
Writes the DataFrame to a Lance table.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
uri | str | Path | The URI of the Lance table to write to | required |
mode | Literal['create', 'append', 'overwrite', 'merge'] | The write mode. One of "create", "append", "overwrite", or "merge". | 'create' |
io_config | IOConfig | configurations to use when interacting with remote storage. | None |
schema | Schema | Schema | Desired schema to enforce during write. - If omitted, Daft will use the DataFrame's current schema. - If a pyarrow.Schema is provided, Daft will enforce the field order, types, and nullability by casting the data to the provided schema prior to write. Table-level (dataset) metadata present on the pyarrow schema is preserved during create/overwrite. - If the target Lance dataset already exists, the data will be cast to the existing table schema to ensure compatibility unless | None |
left_on/right_on | Optional[str] | Only supported in | required |
**kwargs | Any | Additional keyword arguments to pass to the Lance writer. | {} |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | A DataFrame containing metadata about the written Lance table, such as number of fragments, number of deleted rows, number of small files, and version. |
Raises:
| Type | Description |
|---|---|
TypeError | If |
ValueError | When appending and the data schema cannot be cast to the existing table schema |
Examples:
1 2 3 4 5 6 7 | |
╭───────────────┬──────────────────┬─────────────────┬─────────╮
│ num_fragments ┆ num_deleted_rows ┆ num_small_files ┆ version │
│ --- ┆ --- ┆ --- ┆ --- │
│ Int64 ┆ Int64 ┆ Int64 ┆ Int64 │
╞═══════════════╪══════════════════╪═════════════════╪═════════╡
│ 1 ┆ 0 ┆ 1 ┆ 1 │
╰───────────────┴──────────────────┴─────────────────┴─────────╯
(Showing first 1 of 1 rows)
╭───────╮
│ a │
│ --- │
│ Int64 │
╞═══════╡
│ 1 │
├╌╌╌╌╌╌╌┤
│ 2 │
├╌╌╌╌╌╌╌┤
│ 3 │
├╌╌╌╌╌╌╌┤
│ 4 │
╰───────╯
(Showing first 4 of 4 rows)
╭───────────────┬──────────────────┬─────────────────┬─────────╮
│ num_fragments ┆ num_deleted_rows ┆ num_small_files ┆ version │
│ --- ┆ --- ┆ --- ┆ --- │
│ Int64 ┆ Int64 ┆ Int64 ┆ Int64 │
╞═══════════════╪══════════════════╪═════════════════╪═════════╡
│ 1 ┆ 0 ┆ 1 ┆ 2 │
╰───────────────┴──────────────────┴─────────────────┴─────────╯
(Showing first 1 of 1 rows) Source code in daft/dataframe/dataframe.py
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 | |
write_parquet #
write_parquet(root_dir: str | Path, compression: str = 'snappy', write_mode: Literal['append', 'overwrite', 'overwrite-partitions'] = 'append', partition_cols: list[ColumnInputType] | None = None, io_config: IOConfig | None = None) -> DataFrame
Writes the DataFrame as parquet files, returning a new DataFrame with paths to the files that were written.
Files will be written to <root_dir>/* with randomly generated UUIDs as the file names.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
root_dir | str | root file path to write parquet files to. | required |
compression | str | compression algorithm. Defaults to "snappy". | 'snappy' |
write_mode | str | Operation mode of the write. | 'append' |
partition_cols | Optional[List[ColumnInputType]] | How to subpartition each partition further. Defaults to None. | None |
io_config | Optional[IOConfig] | configurations to use when interacting with remote storage. | None |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | The filenames that were written out as strings. |
Note
This call is blocking and will execute the DataFrame when called
Examples:
1 2 3 | |
Tip
See also df.write_csv() and df.write_json() Other formats for writing DataFrames
Source code in daft/dataframe/dataframe.py
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 | |
write_sink #
Writes the DataFrame to the given DataSink.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
sink | DataSink[WriteResultType] | The DataSink to write to. | required |
Returns:
| Name | Type | Description |
|---|---|---|
DataFrame | DataFrame | A dataframe from the micropartition returned by the DataSink's |
Note
This call is blocking and will execute the DataFrame when called
Source code in daft/dataframe/dataframe.py
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 | |
write_turbopuffer #
write_turbopuffer(namespace: str | Expression, api_key: str | None = None, region: str | None = None, distance_metric: Literal['cosine_distance', 'euclidean_squared'] | None = None, schema: dict[str, Any] | None = None, id_column: str | None = None, vector_column: str | None = None, client_kwargs: dict[str, Any] | None = None, write_kwargs: dict[str, Any] | None = None) -> DataFrame
Writes the DataFrame to a Turbopuffer namespace.
This method transforms each row of the dataframe into a turbopuffer document. This means that an id column is always required. Optionally, the id_column parameter can be used to specify the column name to used for the id column. Note that the column with the name specified by id_column will be renamed to "id" when written to turbopuffer.
A vector column is required if the namespace has a vector index. Optionally, the vector_column parameter can be used to specify the column name to used for the vector index. Note that the column with the name specified by vector_column will be renamed to "vector" when written to turbopuffer.
All other columns become attributes.
The namespace parameter can be either a string (for a single namespace) or an expression (for multiple namespaces). When using an expression, the data will be partitioned by the computed namespace values and written to each namespace separately.
For more details on parameters, please see the turbopuffer documentation: https://turbopuffer.com/docs/write
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
namespace | str | Expression | The namespace to write to. Can be a string for a single namespace or an expression for multiple namespaces. | required |
api_key | str | None | Turbopuffer API key. | None |
region | str | None | Turbopuffer region. | None |
distance_metric | Literal['cosine_distance', 'euclidean_squared'] | None | Distance metric for vector similarity ("cosine_distance", "euclidean_squared"). | None |
schema | dict[str, Any] | None | Optional manual schema specification. | None |
id_column | str | None | Optional column name for the id column. The data sink will automatically rename the column to "id" for the id column. | None |
vector_column | str | None | Optional column name for the vector index column. The data sink will automatically rename the column to "vector" for the vector index. | None |
client_kwargs | dict[str, Any] | None | Optional dictionary of arguments to pass to the Turbopuffer client constructor. Explicit arguments (api_key, region) will be merged into client_kwargs. | None |
write_kwargs | dict[str, Any] | None | Optional dictionary of arguments to pass to the namespace.write() method. Explicit arguments (distance_metric, schema) will be merged into write_kwargs. | None |
Source code in daft/dataframe/dataframe.py
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 | |