Hyperfunctions: Communicating Continuations

DONNACHA OISIN KIDNEY, Imperial College London, United Kingdom
NICOLAS WU, Imperial College London, United Kingdom

A hyperfunction is a continuation-like construction that can be used to implement communication in the
context of concurrency. Though it has been reinvented many times, it remains obscure: since its definition by
Launchbury et al., hyperfunctions have been used to implement certain algebraic effect handlers, coroutines,
and breadth-first traversals; however, in each of these examples, the hyperfunction type went unrecognised.

We identify the hyperfunctions hidden in all of these algorithms, and we exposit the common pattern
between them, building a framework for working with and reasoning about hyperfunctions. We use this
framework to solve a long-standing problem: giving a fully-abstract continuation-based semantics for a
concurrent calculus, the Calculus of Communicating Systems. Finally, we use hyperfunctions to build a
monadic Haskell library for efficient first-class coroutines.

CCS Concepts: « Theory of computation — Concurrency; Process calculi; Operational semantics; Denota-
tional semantics; Algebraic semantics; « Software and its engineering — Functional languages; Coroutines.

Additional Key Words and Phrases: Continuations, Concurrency, CPS, CCS, Hyperfunctions, Coroutines

ACM Reference Format:
Donnacha Oisin Kidney and Nicolas Wu. 2026. Hyperfunctions: Communicating Continuations. Proc. ACM
Program. Lang. 10, POPL, Article 7 (January 2026), 30 pages. https://doi.org/10.1145/3776649

1 Introduction

While continuations and concurrency have a long and happy history together [Haynes et al. 1986;
Hieb and Dybvig 1990; Todoran 2000], occasionally the combination of these two patterns can result
in complex and intricate programs that resist comprehension. As is often the case in partnerships,
we think that the crux of the problem lies with communication: in particular, communication
between continuations. This paper is interested in hyperfunctions [Launchbury et al. 2000], a type
of continuation with a rich algebraic structure that facilitates communication.

Perhaps the best example of the problems that arise when continuations tangle with concurrency
comes from the field of program semantics. There, despite the widespread use of continuations,
it has proved difficult to find a continuation-based semantics for concurrent languages like the
Calculus of Communicating Systems (CCS) [Milner et al. 1980] and other process calculi.

Although continuation-passing style is sometimes regarded as a standard style to
use for denotational semantics, it is inadequate for describing languages that involve
non-determinism or concurrent processes. [Mosses 2010]

Though Ciobanu and Todoran have made significant progress on this problem [2018], there is
currently no fully-abstract continuation-based model for a concurrent language like CCS. However,
as we will show, hyperfunctions provide the principles to solve this long-standing problem.
Communicating continuations show up outside of program semantics, also. Coroutines, for
example, are a general control abstraction where communication plays a fundamental role; in

Authors’ Contact Information: Donnacha Oisin Kidney, Imperial College London, London, United Kingdom, o.kidney21@
imperial.ac.uk; Nicolas Wu, Imperial College London, London, United Kingdom, n.wu@imperial.ac.uk.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ART7

https://doi.org/10.1145/3776649

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

https://orcid.org/0000-0003-4952-7359
https://orcid.org/0000-0002-4161-985X
https://doi.org/10.1145/3776649
https://orcid.org/0000-0003-4952-7359
https://orcid.org/0000-0002-4161-985X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776649

7:2 Donnacha Oisin Kidney and Nicolas Wu

continuation-based implementations [Haynes et al. 1986; Shivers and Might 2006; Spivey 2017] this
communication becomes much more difficult to implement. A similar problem can show up even in
simple list algorithms like zip or interleave: when lists are represented with continuations [e.g. Gill
et al. 1993] the merging of two lists becomes communication between parallel processes [Launch-
bury et al. 2000]. Perhaps surprisingly, hyperfunctions encapsulate a pattern common to all of these
problems, and they provide a formalism for building algorithms to solve them.

On our way to proving full abstraction for CCS, we will take a tour through the literature,
spotting unrecognised hyperfunctions in the wild; from Hofmann’s algorithm for breadth-first
traversal in 1993, through Shivers and Might’s transducers in 2006 and Kammar et al.’s handlers of
algebraic effects in 2013, up to Spivey’s coroutine pipelines in 2017. Along the way, we will build a
toolbox for working with hyperfunctions, and a framework for reasoning about them. All of this
will equip us to define our eventual model for CCS. Finally, we will look at some novel uses for
hyperfunctions in real, practical applications: first in optimising some Haskell libraries, and finally
in building a monadic library for first-class asymmetric coroutines backed by continuations.

Contributions

e We identify and catalogue a number of appearances of hyperfunctions in the literature,
including Hofmann [1993]; Kammar et al. [2013]; Shivers and Might [2006]; Spivey [2017].
To the best of our knowledge, this is the first work to connect these appearances to the
hyperfunction definition of Launchbury et al. [2000].

e We describe how hyperfunctions behave through a handful of examples of using hyperfunc-
tions to solve simple programming problems (Section 2).

e We characterise the expressive power of hyperfunctions, by showing that they can form a fully-
abstract model (which we call the Communicator model) for the Calculus of Communicating
Systems (Section 3), thereby showing that hyperfunctions are capable of expressing at least
the model of concurrency captured by CCS.

e We use hyperfunctions to implement monadic concurrency constructions, including LogicT
for backtracking [Kiselyov et al. 2005] and Claessen’s concurrency monad [1999] (Section 4).

e Finally, we demonstrate that hyperfunctions underlie certain optimisations to coroutine
libraries [Gonzalez 2012; Spivey 2017], and we use this understanding to implement a new
Haskell library for asymmetric coroutines which allows for first-class transfer of control, and
solve the stable marriage problem using this library (Section 5).

One common feature among the works that have rediscovered hyperfunctions is that the authors
often comment on how difficult it was to figure out the hyperfunction-like structure they needed.
So, while the scientific and technical contribution of this paper is in its study of hyperfunctions
and in the development of a new model for CCS, we hope that the broader impact will be in saving
future programmers from having to reinvent this tricky type on their own.

2 Basic Hyperfunctions

Let’s start by actually defining the hyperfunction type itself. A hyperfunction of type a 3 b is an
infinitely left-nested function of the following form:

avb=((..—>a)—>b)—>a) —b

Cardinality restrictions prevent this type from having a set-theoretic interpretation. It does have a
domain-theoretic interpretation, however (as the solution to X = (X = A) = B), as explained by
Krsti¢ et al., who also show how to interpret hyperfunctions as final coalgebras [2001a; 2001b].
For now, though, we won’t concern ourselves with the details of the foundational setting of
the hyperfunction type (although we will return to the question in Remark 3.8). Happily, most

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

Hyperfunctions: Communicating Continuations 7:3

programming languages do not impose strict cardinality restrictions on type definitions: as a result,
hyperfunctions can be defined as a simple (but strange) recursive type. In Haskell:

newtype a% b=Hyp {t: (b a) — b} (1)

In isolation, this definition can be a little perplexing: however, it is possible to build an understanding
of this type by using it to implement concrete algorithms. Over the next few pages we will do just
that, using hyperfunctions to implement functions on church-encoded numbers, zip on lists, and
breadth-first traversal. Each of these examples will reveal some capability of the type; by the end of
this section we will have enough tools to attack the problem of modelling CCS.

Code. This paper uses code examples in Haskell throughout. We do not, however, use any special
features unique to the language; the algorithms we present can be translated to any general-
purpose language with higher-order functions. One caveat for strict-by-default languages is that
the hyperfunction type must be encoded as a lazy function (@ & b == (() = b & a) — b).

In addition to the Haskell code, we have also mechanised the proofs in Section 3 using Agda [Norell
2009]. This mechanisation is explained in more detail in Remark 3.17.

A brief note on syntax: we will use copatterns [Abel et al. 2013] to define hyperfunctions. A
copattern is a way to define an instance of a record type by defining each of its fields, instead of
using a constructor. The following two code snippets define the constant hyperfunction k, where
k x is a hyperfunction that always returns x.

k::b— (a3 b) k:b— (a% b)
kx=Hyp{i=1_— x} 1(kx)_=x

The snippet on the left uses Haskell’s record syntax, the version on the right uses copatterns.

2.1 Church Encoding

As we will see shortly, hyperfunctions tend to show up to solve problems that arise when working
with Church encodings. Church encoding is a way to encode inductive data types using only
functions; it is occasionally used for optimisation. Let’s quickly refresh our memory on Church
encoding, starting with the natural numbers, here encoded in the standard (unary) inductive way.

dataN=Z|SN
The fundamental function for processing this type is its fold:

fold:N— (a—a) >a—a
fold (Sn) s z=s (fold ns z) foldnsz = (so---05) z

[—

foldz _z=z n

For some n : N, fold n s z applies the function s to z n times. For instance, fold 3 s z =5 (s (s 2)).
The Church encoding of the naturals (given below as the type N, which also has a constructor
named N) is effectively the partial application of this fold function.

newtype N = church:N —» N
N {nat:Va(a— a) - a— a} church n =N (fold n)

Often Church encoding is used as an optimisation technique. Church-encoded lists, for instance,
underpin GHC’s list fusion machinery [Gill et al. 1993; Harper 2011; Hinze et al. 2011]. Here is an
example of how Church encoding can improve the performance of addition on N and N:

Z +m=m n+m=
Sn+m=S(n+m) N (As z — nat ns (nat m s z))

Because addition on N always destructs and then reconstructs the left-hand argument, left-nested

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

7:4 Donnacha Oisin Kidney and Nicolas Wu

sums (((...+ x) + y) + z) will evaluate in quadratic time. On N, in contrast, + is always linear,
regardless of whether it’s left- or right-nested. This removal of intermediate data structures—
deforestation—is one of the chief benefits of church encodings; foldr, map, and + on lists can benefit
in much the same way that addition benefited above.

However, not every function adapts easily to a Church encoded variant. The predecessor function
(pred), for instance, is infamously tricky to write, and asymptotically slow: pred on N is O(n). It
seems to suffer from the problem that Church encoding solved on addition: it has to traverse all of
its input and then rebuild it to produce a result.

This pattern of performance suggests that there is some class of functions that work well on
Church encodings: addition, #, and foldr; and there is another class that does not benefit from
Church encoding: pred, tail, etc. We are interested in a third class of functions which we will
call lateral functions. Lateral functions are things like subtraction, comparison, and zipping; they
process multiple structures in parallel, and they seem like they should be pathological cases for
Church encoding (subtraction, after all, is just iterative application of pred). There is a technique
to implement these functions efficiently, however, and it uses hyperfunctions as the core unit of
computation. Over the rest of this section, we will explore this technique, and we will build a
language of hyperfunctions that will enable the more complex examples in the rest of the paper.

2.2 Lateral Church Encoding
A simple example of a lateral function is <. On N it has the following implementation:
(<) =N —- N — Bool Sn<Sm=n<m Z < m=True
Sn<Z =False
The recursive call takes the subterm of both of the inputs. This is what makes Church encoding the

function difficult: while we can fold over one of the arguments, as is shown below, it is difficult to
see how we might fold over both.

n< m=fold nnsnzm ns:: (N — Bool) - N — Bool nz: N — Bool
where ns nk (Sm)=nkm nz m = True
ns nk Z = False

Notice that we can derive definitions like the above mechanically: the S case is replaced by the ns
function, and the Z case by nz.
We can try to proceed by applying the same transformation to the ns function:

ns nk = fold m ms mz nk ms mk nk = nk mk
where mz nk = False

But the ms case doesn’t work. We can’t apply nk mk, because nk expects an N, not the fold structure
built by ms. We need to rewrite the fold on n to receive a fold on m.

n < m= fold n ns nz (fold m ms mz) ns nk mk = mk nk ms mk nk = nk mk
where nz mk=True mz nk = False

The insight here is that we treat each fold as a coroutine. The fold on n checks if its input is Z,

returning True if so (the nz function), otherwise it transfers control to the fold on m, named mk.
Ignoring types for a moment, this function does compute. But, of course, this is Haskell: we can’t

ignore the types. Plug the above function into GHC and you will receive the following complaint:

Could not construct infinite type t ~ (t -> Bool) -> Bool

This is a similar error to the one you will encounter if you try to write the Y-combinator in Haskell
(without newtypes). While the function is correct in an untyped world, Haskell’s type system

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

Hyperfunctions: Communicating Continuations 7:5

cannot unify the types t and (t -> Bool) -> Bool. But while GHC can’t construct a type that
satisfies that equation, we can. It is, in fact, a hyperfunction: t above is inhabited by Bool 3+ Bool.

n< m=1 (nat n ns nz) 1 (ns nk) mk =1 mk nk t (ms mk) nk =1 nk mk
(nat m ms mz) where 1 nz mk = True L mz nk = False

This implementation follows the recursion pattern of the direct-style < exactly: as a result, we
know that it has the same asymptotic performance. This is a well-typed, linear implementation of
< on Church-encoded naturals, using hyperfunctions.

2.3 Hyperfunctions as Streams

In this example we will implement another lateral function: subtraction. We will also introduce
another concept here that can aid in reasoning about hyperfunctions: the stream model [Launchbury
et al. 2013]. While hyperfunctions themselves are just functions of a particular form, it can be
difficult to build a mental model for how they behave, especially when they are deeply nested and
intricately combined. However, it is possible to visualise hyperfunctions as streams, which we have
found to be much easier to reason about.

The stream model treats a hyperfunction of type a 3 b as a stream of functions of type a — b.

data Stream a = a < Stream a (a %> b) = Stream (a — b)

Think of the original hyperfunction type (Eq.(1)) as the low-level implementation, and the stream
version above as a high-level mental model. Note that this model is an approximation, not a one-to-
one representation. Many hyperfunctions are not streams, and so there are many situations when
the correspondence between the two representations breaks down.

However, when we confine ourselves to using only the interface below (Egs. (2) to (4)), the
behaviour of the two representations is indistinguishable. In particular, all equalities on the stream
model will hold on the hyperfunction model as well. In this way, we can write code with the stream
model in mind, and have it “compile” to the continuation model of Eq.(1).

The interface in question consists of three combinators: <, which pushes a function onto a stream;
©, which zips two streams together; and run, which collapses a stream into a single value (these
combinators were present in Launchbury et al.’s original work on hyperfunctions [2000]).

(«) = (a—> b) > (as b) (©) = (b ¢c) > (avb) run:a a—a

— (a% b) —(a%c) (2)

The < function is the stream constructor, so the expression f <g<h<... constructs a stream with f
at the head, followed by ¢, then h, and so on. The semantics of © (zipping) and run are as follows:

(fafs)0(g<gs)=(fog)<(fsOgs) (3) run (f < fs) = f (run fs) 4)

With this small toolbox of functions, we can build algorithms and prove things about them. For
instance, rep lifts a function a — b into a hyperfunction a 3» b. Using Eqs.(3) and (4) we can show
that rep is homomorphic through o and ©.

repfOrepg

=(farepf)o(garepg) {Eq()}

=(fog)<(repforepg) {Eq(3)}
=rep(fog)

Let’s now look at subtraction. To implement n — m, our strategy will be to convert both n and
m to hyperfunctions, zip them together using ©, and then run the result to get the answer. Our

rep:(a—b) >ad b

rep ab = ab<rep ab ®)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

7:6 Donnacha Oisin Kidney and Nicolas Wu

n—m=N Asz— run (nat n (id <) (rep (const z)) © nat m (id <) (rep s))
n

{natn,m}=NAsz— run ((id <---< id < id < id <const z <---)
O(id<--aid s as a«5sas <))

-
m n

{Apply©}=NAsz—run(idoid «---< idoid «idos «---<idos<constzos <---)

m n—m
n
{Applyallo} =N Asz—run(id <---< id<s <---<a s<aconst z<--)
m n—m

n
{Applyrun} =N Asz— id (...(id (s (... (s (const z (...)))))))
m n-m
{ Apply id, const} =N A sz — s (...(s 2))

NI
n—m

Fig. 1. Derivation of Subtraction

implementation returns 0 when n < m, but we assume that m < n for the rest of this explanation
for simplicity’s sake. The implementation is given below, and diagrammed in Fig.1.

n—m=N (As z — run (nat n (id<) (rep (const z)) © nat m (id<) (rep s)))

n is converted into a stream of functions that starts with n ids, followed by infinitely many const zs,
and m is converted to a stream starting with m ids, followed by infinitely many ss.

When zipped together, the resulting stream starts by drawing the ids from both n and m’s streams.
Then, at the mth entry in the stream, the ids from m run out, and the stream switches to id o s. At
the nth entry in the stream, the ids from n run out, and the stream switches to const z o s.

Our stream is now m ids, followed by n—m: ss, followed by infinitely many const zs. When we run
the stream, we discard the ids and anything after the first const z (since const z (const z ...) = z),
leaving behind n — m applications of ss applied to z. Subtraction is done!

Let’s now leave the stream model, and return to the continuation-based model from Eq.(1). We
swap out the implementations of <, ®, and run for the following:

(@) (a—>b) > (©):(b%) - run:a% a—a
(a3 b) > (ax= D) (6) (a3 b) > (a0 (7) run h =1 h (Hyp run)
t(f<h)k=f(kh 1(fog) h=1f(goh) ®)

As promised, the implementation of subtraction above still works, with all equalities preserved.
One final point to make is that for the stream model, these three combinators seem to be the

most “primitive” operations, from which other operations are derived. On the % type, however, the

primitive operation is 1. We can relate this operation to the stream model via the following identity:

1fg=run(fog))

2.4 Message Passing

The original motivation for hyperfunctions, and perhaps their most well-known use, is in imple-
menting zip [Launchbury et al. 2000]. An important optimisation in Haskell is foldr-fusion [Gill et al.
1993], which uses a continuation-based encoding of lists to eliminate intermediate data structures in
list-processing code. Gill et al. demonstrated how to apply this optimisation to a library of standard

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

Hyperfunctions: Communicating Continuations 7:7

list functions (map, filter, sum, etc.); however, zip proved to be more difficult. This is because, like
subtraction, zip is a lateral function, which processes two structures in parallel. Launchbury et al.
were the first [2000] to figure out how to apply foldr-fusion to zip, using hyperfunctions.

Zipping employs an additional feature of hyperfunctions that we have not yet seen: message
passing. To explain this feature, we will model hyperfunctions as processes that can communicate.

We will treat a hyperfunction a & a as a kind of process with some result domain a. In this
context, the run function runs the process, extracting the final result, and f < P prefixes a process P
with some action f :: a — a. © performs a parallel merge of processes.

Adding a parameter i to the domain of a &~ a gives a process which takes an i as input at every
step; (a, i) & a. We can curry this type to arrive at a & (i — a), which we call a Consumer.

type Consumeria=a % (i — a) (10)
The cons function prefixes a process with an action a — a that can rely on some input i.
cons:: (i » a — a) — Consumer i a — Consumer i a
t(consfp)qi=fi(qp)
The inverse of a consumer is a producer; we derive it simply by flipping the hyperfunction arrow.

(11)

prod :: 0 — Producer 0 a — Producer o a
t(prodop)q=1qpo
Finally, a pair of a producer and consumer can be run together with 1.

type Producer oa=(0— a) & a

1 :: Producer m a — Consumer ma — a

We will use this model of hyperfunctions to implement zip with folds on lists. To zip two lists, xs
and ys, we convert xs to a producer and ys to a consumer, and run both of them together with 1.

zip:[a] = [b] — [(a])]
zip xs ys = 1 (foldr xf xb xs) (foldr yf yb ys)

The conversion of xs is simple: on an empty list (xb), we return a process which ignores its input
and returns an empty list. On a non-empty list (xf), we produce one item: the head of the list.

xf :: a — Producer a [(a,)] xb :: Producer a [(a, D)]
— Producer a [(a, b)] txb _=1]
xf x xk = prod x xk

On ys, the conversion is slightly more complex. In the empty case (yb), we also just return an
empty list. However, in the non-empty case (yf), we consume one message, using the cons function.
This message is the x, sent from xf: we pair it up with the y we have, and cons it on to the output.

yf :: b — Consumer a [(a, b)] yb:: Consumer a [(a, b) |
— Consumer a [(a, D)] tyb_ _=1]
yf y yk = cons (Ax xys — (x, y) : xys) yk
This defines zip on lists, entirely with folds, and without any performance penalty.

The Producer and Consumer types are not just useful for implementing zip: the pattern displayed
here, of passing messages between continuations executed in lock-step, shows up repeatedly in
implementations of coroutines (where “coroutine” here refers to structures like the kind defined
in Gonzalez’s Pipes library [2012]). We will discuss this in more detail in Section 5.1, but for
now, we will note that types almost identical to the Producer and Consumer types (save for some
rearranging of parameters) appear in both Spivey’s optimised implementation of coroutines [2017],
and in Kammar et al.’s deep handlers for coroutines [2013].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

7:8 Donnacha Oisin Kidney and Nicolas Wu

2.5 Breadth-First Traversals

The first occurrence of a hyperfunction-like type we were able to find is in an email to the TYPES
mailing list [1993], where Hofmann uses the following type to implement breadth-first traversal.

data Rou a b = Over | Next ((Roua b — a) — b) (12)

This type differs from the hyperfunction type we have above in two ways: first, it unfolds the
recursive definition by one step, making the type regular (i.e. its parameters don’t change in the
recursive occurrence); secondly, Rou includes the Over constructor, which is used in Hofmann’s
algorithm to signify termination of the traversal.

Without the Over constructor, it becomes necessary to pass an extra parameter around to track
recursion depth. This technique can be seen clearly in Allison’s implementation [1989] of breadth-
first traversal (or Smith’s translation of those ideas to Haskell [2009]); both of these works develop
algorithms quite similar to Hofmann’s, though they don’t quite arrive at the hyperfunction type.

Notwithstanding the extra constructor, the structure of Hofmann’s algorithm shares some
elements with the implementation of zip above (Section 2.4). While we won’t present Hofmann’s
original algorithm here, we will say that it works by building a hyperfunction for each path into
the tree, and then zipping those hyperfunctions together. The hyperfunction structure handles
the separation of levels; as a result, the final algorithm resembles Gibbons et al. and Jones and
Gibbons’s the level-wise algorithms [2022; 1993].

3 Modelling CCS

Though continuations are widely used in denotational semantics, they can cause meta-theoretical
problems when used to model concurrent languages. This section will describe how we solved some
of those problems in developing a hyperfunction model of the Calculus of Communicating Systems
(CCS) [Milner et al. 1980]. The existence of this model shows that hyperfunctions are powerful
enough to express the essential components of concurrency; or at least the kind of concurrency
encapsulated by CCS.

3.1 CCS

CCS is a process calculus which supports concurrency, nondeterminism, and communication
between processes. Its syntax is given in Fig.2a. A term p : P n represents a process with names
of type n. The operational semantics of CCS, given in Fig.2b, is a labelled transition system. Each
transition is labelled with an action Act n, where an action can be silent, 7, an input n or an output
n of some name n. A trace for a process p is a list of actions [ay, . . ., a,] that label a sequence of

. a; a; an . .
transitions p — p; — -+ — py. A process can have multiple possible traces.

Actions. The term a - p represents a process consisting of an action (Act) a, followed by a
process p. The process a - p can emit the action a and reduce to p, according to the AcT rule.

Nondeterminism. The @ operator represents nondeterministic choice, and O represents the
empty or finished process. A process p @ g can proceed by stepping through the left hand
process (Sumy) or the right (Sumg). Notice that when one branch of a @ expression is chosen,
the other branch is discarded. So the processa-b -0 @® c - d - 0 has only two traces: [a, b] or
[c,d]. There is no rule related to 0, so the finished process cannot reduce.

Parallelism. The term p || q represents a parallel merge between the processes p and g, which
may communicate with each other. The rules STEP; and STEP; allow either side of || to step,
without discarding the other. So the process a- b - 0 || ¢ - O has the traces [a, b, c], [a,c, b],
and [c, a, b]. Parallel processes can also communicate: if an output from one process matches

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

Hyperfunctions: Communicating Continuations 79

data Actn=r7|n|mn dataPn=Actn-Pn|0|Pn@®Pn|Pn||Pn|vn-Pn|!(Pn)
(a) CCS Syntax

i} P’ Qi) Q/ Pi) P’
———— Acr ——— Sum, ———— Sumy ——————— STER,
aP>P PoQ— P PoQ—(Q PlO—P|Q
a n n n n
Q-0 PSP Q-0 J oy 0—0Q
e ——— STEPR P SYNCjo - SYNCop
’ 4 7 / ’
PlQ—>PlQ PlIQ—=P |l Q PIOQ—=P | Q
a _, — a _,
P—P aé{nn} P|'/P—>P
2 REs TRBP
vn-P—vn-P P— P

(b) CCS Operational Semantics

Fig. 2. CCS

an input to the other, both processes reduce one step and the silent action is emitted (Sync,o
and SYNC,). So the process n - 0 || 1 - 0 has the traces [n, 7], 1, n], and [7].

Restriction. The term vna - p hides the name n from anything outside of the process. As per
the REs rule, a process under a vn- term can only reduce if the emitted action does not
contain n. This can be used to enforce private communication: recall that the possible traces
fromn -0 || n- 0 included [n, 7]; if we instead wrap the term with vn:, then we enforce
communication, so the only valid trace is [7].

Iteration. The term ! p represents the infinitely replicated process p. The rule REp means that
the expression ! p is equivalent to p || ! p.

Our treatment of CCS is standard: we the same syntax and operational semantics as Chappe
et al. [2023], which is a slight variant of the versions used by Veltri and Vezzosi [2023] and Bruni
and Montanari [2017].

3.2 CCS Algebras

A CCS algebra is a way to interpret some CCS expression into a denotational domain. Concretely,
we capture the notion of a CCS algebra with a class, CCSAlg, where a type c is a carrier for a CCS
algebra if there is an instance CCSAlg c.

class CCSAlg ¢ where
type Name c:: Type

() =Act (Namec) > c— ¢ v--z:Namec— c— ¢ (13)
0 =c (Dzec—>c—>c
®)c—>c—oc ' tc—oc

This class has one method for each of the syntactic constructors of CCS. It also includes an associated
type Name, where Name c represents the type of names that the CCS algebra on ¢ supports.
Using this class, we define [_], which interprets a syntax tree P (Name c) into ¢ [Hutton 1998].

[_] :: CCSAlg ¢ = P (Name ¢) — ¢ (14)
This [_] function maps each syntactic construction to its corresponding method in CCSAlg. Note

that this style of defining denotational semantics means they are automatically compositional.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

7:10 Donnacha Oisin Kidney and Nicolas Wu

Remark 3.1. There are three “interpretation”-like functions in this section: [_] above (Eq.(14)),
and [_]| (Fig.3b) and [_]T (Fig.4b) below. These functions are polymorphic in their return types,
which can be difficult to infer from context, so we will occasionally use subscripts to disambiguate.
In Eq.(14) above, for example, we might write [_] to indicate that it has type P (Name ¢) — c.

Instances of the CCSAIlg class are expected to follow the following laws.

Oep=p (p@qQ&r=pod(q®r) pOI=q®p pOP=p (15)
Ollp=p @l llr=pli(gllr) pllg=qllp (16)
vn-0=0 vn-(p®q) =vn-pdvn-q (17)
'p=pl'p (18)

Under these laws, @ forms a semilattice (a commutative idempotent monoid) with identity 0
(Eq.(15)), || forms a commutative monoid with identity 0 (Eq.(16)), v- is homomorphic on the &
monoid (Eq.(17)), and ! expands to perform replication (Eq.(18)).

Structural congruence of CCS terms, an equivalence relation on P denoted by =y, is defined as the
equivalence closure of the relation generated by the above rules (with the addition of congruence
rules). Any lawful implementation of CCSAlg therefore satisfies the property:

pxsq = [p] =ldl

All models of CCS are expected to be lawful instances of the CCSAlg class. Furthermore the
syntax of CCS, when quotiented by =, also forms a lawful instance, where [_]p = id.

We will note at this point that while these laws are sound (i.e. structurally congruent processes
are semantically equivalent) they are not complete (bisimilar processes need not be structurally
congruent). In fact, there is no finite set of laws (with this particular set of operators) that has this
completeness property: this is explained in more detail in Section 3.4.

3.3 A Hyperfunction Model of CCS

Let’s now turn back to hyperfunctions, and to the hyperfunction model of CCS. The entirety of this
model is contained in Fig.3: it consists of the carrier type (Communicator, Fig.3a), a way to interpret
this type into another model of CCS (Fig.3b), and an implementation of the CCS operations (Fig.3c).

The Communicator Type. The carrier type of our hyperfunction model is Communicator (Fig.3a).
We have taken some structure from Section 2.4: a Communicator is a process with result type r,
that passes messages of type Message n. A Message is either a query or an answer. A query is like
a prompt: by passing a query to a Communicator, we are asking “what is your top-level action?”
The Communicator then responds with an answer containing that top-level action.

Interpretation. It can be difficult to understand some of the functions in Fig.3c in isolation: their
implementations only really make sense when we keep the interpretation of a Communicator
(Fig.3b) in mind. For that reason, we’ll go over interpretation first.

In this context, interpreting a Communicator n r means evaluating that Communicator to its
result type, r, via the function [_]| :: Communicator n r — r (Fig.3b). This evaluation translates
the actions and nondeterministic operations on the Communicator to their analogous operations
on r. In this way, [_]J| is a translation between two different representations of a CCS process.

The [_]| function works by taking a Communicator p, and passing it two arguments: 1 and .
Recall that passing a query to a Communicator as its second argument prompts it to respond with
its top-level action: in this case, the Communicator p will respond by passing its top-level action to
its first argument, 1. 1 is a special Communicator that translates Messages into actions on r: when
supplied with an answer containing some action a, it emits that action by using action prefixing

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

Hyperfunctions: Communicating Continuations 7:11

type Communicator n r [pll=:tp1lq
= (Message n — r) & (Message n — r)
tlp(aa)=a-[p]l
data Message n=q | a (Act n) 11_gq =0

(a) The Communicator Type (b) Interpretation

instance (Semilattice r, Eq n) = CCSAlg (Communicator n r) where
type Name (Communicator nr) = n

t(a-p)gqq =tqp(aa) t(vn-p) q(an) =0

t(n-p)glan=1qp(ar) (19) t(vn-p)q(an) =0 (22)

t(-9)-- =0 t(vn-p)gm=1p(vn-q) m

1t0__=0 (20) pllg=@llpe(qllp) (23)

L(p®qQ km=1pkmdi1qgkm (21) 'p=pll!p (24)
tpllgr=ep(qlln (25)

(c) The CCS Algebra on the Communicator Model

Fig. 3. The Communicator Model

on r, and then continues the interpretation of the rest of the process (1 will never be supplied a
query in the context of this section, so for the clause : 1 p g we simply terminate and return 0).

The CCSAlg Instance. While r needs to support both action prefixing and nondeterminism for
interpretation, only nondeterminism is needed for the CCSAlg instance on Communicator (Fig.3c).

THEOREM 3.2. A Communicator n r is a CCS algebra for any semilattice (r, ®, 0).

We prove this theorem by providing below instantiations for each of the methods; these proofs are
straightforward, and provided in our mechanisation. Notice that we use the same symbols (& and
0) for the semilattice on r and the semilattice on Communicator.

Actions on Communicators. The implementation of action prefixing on a Communicator is
given in Eq.(19). Recall that we define hyperfunctions with copattern syntax; in the context of
a Communicator, this means we define a Communicator by specifying what happens when it
interacts with another process and message. So, to define the process generated by prepending
the action a to a process p, we specify what happens when this process a - p is merged with the
process g and some Message m. There are three clauses:

o In the first clause, : (a-p) g q, the incoming message is a query, so we respond by transferring
control to q (by calling : g), passing it the rest of the current process (p), and the action being
prefixed (a a).

e In the second clause, i (n - p) q (a n), the incoming message a n matches the action being
prefixed 7, so we transfer control to g, passing it the message 7. This “emits” the silent
transition 7 on a communication match.

o Finally, if neither of those cases match, we end, returning the empty process.

As mentioned above, this makes more sense when we bear interpretation (Fig. 3b) in mind.
Consider the following example of stepping through the interpretation of a - p:

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

7:12 Donnacha Oisin Kidney and Nicolas Wu

[a-p]l = { Apply the definition of [_]| (Fig.3b) }
t(a-p)Lq= {Match the first clause of Eq.(19) }
t1p(aa) = {Apply the definition of 1 (Fig.3b) }
a-[p)l

In this way, we can see that [_]| is a homomorphism for action prefixing. We could also step
through a communication match (although we do not include the full trace here):

[n-plln-gll=r-[pllgllen-[plin-qllen-[n-pllqll

Nondeterminism. Nondeterminism in CCS comprises the operators 0 and @. These are imple-
mented on the Communicator model in Egs.(20) and (21). Since these two operators are simple
algebraic operators, they can be lifted pointwise into a hyperfunction. The proofs of the laws are
also simple: they follow directly from the semilattice instance on r.

Restriction. Restricting a process vn-p (Eq.(22)) makes it so that the process p cannot communicate
the name n with anything outside of p. A Communicator can both send and receive messages:
to restrict a Communicator, we censor incoming and outgoing messages to kill processes which
mention the restricted name. For example, the process 1 (vn - p) g m receives the message m, and
can send messages to g, all while restricting the name n. If the incoming message contains the
restricted name (i.e. when m := a n) the whole process is equal to 0. If the incoming message does
not contain the restricted name, we continue by transferring control to the next process, g. To
censor outgoing messages, we censor the incoming messages of the recipient process (q), by calling
v recursively (vn -).

Parallel Merge. Parallel merge is given in Eq.(23). We can use hyperfunction composition (Eq.(7)) as
a starting point for this implementation. However, while composition allows processes to interleave
and communicate, || needs to also produce all possible orderings between its two arguments. To
add this behaviour, we might first attempt something like p || ¢ = (p © q) ® (g © p), but this only
permutes the top level arguments. Instead, we need to replace o with a kind of composition which
continues reordering recursively: here we rely on a helper function, || (Eq.(25)). This performs one
layer of composition before calling back to || to permute all later arguments.

Remark 3.3. Later, when we prove that hyperfunctions form a model for CCS, we will use a
variant of the CCS syntax which includes the || operator. A similar technique is used in Bergstra
and Klop [1984], which also adds additional operators similar in semantics to the || operator here,
or step; and sync;, later (Egs.(33) and (34)).

Replication. Replication (Eq.(24)) should have the semantics ! p = p || ! p. Unfortunately, using
that equation as a definition is not well-founded: it would not give a productive definition in
our implementation. However, we can derive another identity, ! p = p || ! p, which does yield a
productive definition.

Remark 3.4. We can combine [_]]| with [_] to interpret CCS syntax into a Communicator and
then interpret that Communicator into the underlying CCS algebra.

[LJdo[_]::CCSAlgr= P (Namer) —r

However, notice that nowhere in Fig.3 do we make use of ||, v, or ! on r. This means that the above
function rewrites a CCS process into one that uses only &, 0, and - (action prefixing). When this
conversion is semantic-preserving (proven below in Lemma 3.10), it amounts to a constructive
proof of Theorem 11.10 from Bruni and Montanari [2017].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

Hyperfunctions: Communicating Continuations 7:13

3.4 Proving that Communicator is a Model

We now turn to the task of proving that the model established above (Fig.3) is fully abstract.

The Plan. We will start by defining bisimilarity and full abstraction (Section 3.4.1). Then, we will
discuss why full abstraction is difficult for continuation-based models in particular, and summarise
the progress made by Ciobanu and Todoran [2017, 2018] on this problem (Remark 3.6). From
there, we will introduce the Proc model [Veltri and Vezzosi 2023]: this is a standard fully-abstract
model for CCS which we can use to prove full abstraction for the Communicator via a pair of
homomorphisms between the Proc and Communicator model (Section 3.4.2). Then, we will give
our foundational model of hyperfunctions, based on the categorical model of Krsti¢ et al. [2001a],
and briefly give our argument for well-foundedness (Remark 3.8). Finally, in Sections 3.4.3 and 3.4.4,
we will briefly summarise the detailed proof (present in full in the appendix), and we will end with
a short discussion of formalisation (Remark 3.17).

3.4.1 Bisimilarity and Full Abstraction. Equivalence between CCS processes is captured by (strong)
bisimilarity, denoted by ~. Other notions of equivalence, like trace equivalence or weak bisimilarity
(a version of bisimilarity where emitted rs are ignored), fail to capture important aspects of CCS’s
semantics: Bruni and Montanari give a good summary of the problems [2017].

A model of CCS is an algebra that respects this bisimilarity. A fully abstract model is a model
where equality in the denotational domain corresponds precisely to bisimilarity of CCS processes.

Definition 3.5 (Full Abstraction). A model m of CCS is fully abstract when:
Vp.q-p~ g = [plm = [4]m

The structural congruence laws stated in Section 3.2 are not sufficient to prove this property, nor
even a weakening like p ~ ¢ = [p] = [g]. In fact, there is no finite set of laws that is sufficient. To
be precise, there is no finite axiomatisation of CCS that corresponds to the bisimulation equivalence
derived from the operational semantics in Fig.2b [Moller 1990a,b]. Our proof will have to take a
different route.

Remark 3.6 (Why Full Abstraction is Difficult for Continuation Models). Continuation-based models
tend to be large, where the denotational domain contains more values than there are denotations
of the source language. So, for some language with terms of type 77, and an interpretation into a
denotational domain of type D, if the domain is large then there are values v of type D for which
there are no terms that interpret to those values (3(v : D).3(t: 7).[t] = v).

This alone isn’t a showstopper: while a large domain can’t be isomorphic to the denotations, full
abstraction is a little weaker than isomorphism. Notice that the definition of full abstraction above
(Definition 3.5) only refers to values from the denotational domain that are generated from the
syntax of CCS: the fact that there might be extra “junk” in the denotational domain doesn’t matter.

For continuation-based models like the Communicator, however, this “junk” causes other prob-
lems. To understand why, consider the type of Communicators that are generated from syntax
trees. This is a subset of the Communicator type; Ciobanu and Todoran [2017] call their version of
this type the “denotable” continuations. While at first glance it might seem viable to work with this
subset type alone, remember that a Communicator is a function which takes another Communicator
as an argument.

Communicator n r = Communicator n r — Messagen — r

So any property we prove about the denotable Communicators will not necessarily apply to the
Communicator passed recursively. This breaks all but the simplest proofs that rely on (co)recursion.
We could amend the definition of Communicator to only accept denotable Communicators, but

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

7:14 Donnacha Oisin Kidney and Nicolas Wu

that turns a simple subset type into something much more restricted and complex altogether.
Furthermore, the T Communicator (Fig.3b) is decidedly not denotable, so we would have lost our
ability to interpret a Communicator with this change.

Ciobanu and Todoran identified this problem, and defined weak abstraction to better capture a
notion of correctness that applies to continuation-based models [2017]. Weak abstraction takes
into account the idea of “denotable” continuations: informally, a proof of weak abstraction is very
similar to one of full abstraction, but the former proof only considers denotable continuations.
Weak abstraction still gives strong correctness guarantees, and it may well be the case that some
useful continuation models can only ever be weakly abstract; Ciobanu and Todoran’s model of CCS
[2018] may be one such model.

Our proof of full abstraction does not contain any particularly clever trick or conceptual leap to
sidestep this problem of denotable continuations. Instead, some proofs apply to Communicators
generally, and others apply only to those Communicators that are denotations. It is only by the
careful design of the inductive hypotheses of Lemmas 3.15 and 3.16 that these restrictions line up
with available premises in the right places, yielding our eventual proof.

3.4.2 The Proc Model. As mentioned in Section 3.4.1, we cannot prove full abstraction via the laws
of the CCS algebra alone. We will instead prove full abstraction by relating the Communicator to
another fully-abstract model: the Proc model (Fig.4). The denotational domain for this model is
given as the Haskell type in Fig.4a. CCS processes are represented by forests of coinductive rose
trees, with internal nodes labelled by Acts: for example, the processa-b -0 || a - O is represented
by the tree in Fig.4c.

While this is a standard model for CCS, our specific iteration is based on the presentation in Veltri
and Vezzosi [2023], with some notable differences. Firstly, our type is not indexed by the number of
free names (Veltri and Vezzosi’s Proc has kind N — Type). Secondly, our type contains no special
constructions to handle the coinduction in Proc: these constructions are needed in Agda, where
inductive and coinductive types are distinguished; Haskell is less precise in this area, allowing us
to write coinductive types without ceremony.

Finally, our Proc type is built out of nested lists, where Veltri and Vezzosi’s Proc type is built out
of nested “countable powersets”. As it happens, the full generality of the countable powerset type is
not needed: Proc implemented with finite sets is also a fully abstract model of CCS. Unfortunately,
current Haskell does not have quotients (although projects like Hewer and Hutton [2024] are
beginning to remedy this), so even finite sets are unavailable to us. The usual trick in this situation
is to mimic quotients, by pretending that the desired equalities hold, and by carefully implementing
only functions which respect those desired equalities. The additional equalities on Proc are given
in Fig. 4d; when they hold, they imply the validity of identities like the following:

Proc [(a, Proc []), (b,Proc [])] = Proc [(b,Proc []), (a,Proc [])]
Proc [(a, Proc []), (a, Proc [])] = Proc [(a, Proc [])]

The CCS Algebra on Proc. The implementation of the CCS algebra on Proc is given in Fig.4e. It
implements the following methods:

Action prefixing, Eq.(26). a - p creates a new tree with root a, and a single child p.

Nondeterminism, Eqs.(27) and (28). & concatenates the root levels of trees; 0 is represented
by the empty tree.

Restriction, Eq.(29). vn - p recursively traverses p, deleting any branches with n at the root.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

Hyperfunctions: Communicating Continuations 7:15

newtype Proc n [Proc [1]T =0
= Proc {root :: [(Act n, Proc n)]} [Proc ((a, p) :)T = a- [p]T & [Proc]
(a) The Proc Type (b) Interpretation
r—b
Proc [(z, Proc [(b,Proc [])]) b _
T, _ , (a,Proc [(b,Proc [(a Proc [])]) _ _~b—a
l2£0 1 20]erec = (@ Proc [(bProc (DD~ T4~
, (@, Proc [(a Proc [(b,Proc [[)D])] i
a—a—2»>
(c) The Proc Representation of a CCS process
Vp, q. Proc (p + q) = Proc (q +p) Vp. Proc (p #+ p) = Proc p
(d) Quotients on Proc
instance Eq n = CCSAlg (Proc n) where pllg=sync, pq® step; pq (32)
type Name (Proc n) = n
step; p q =
a-p="Proc[(ap)] (26) Proc [(a.p/ || 9) (33)
0 = Proc [] (27) | (a,p") « root p]
p @ q = Proc (root p + root q) (28) synci, pq=
_ , Proc [(z.p" Il ¢)
vn - p = Proc [(a,v/n~p) | (ap') « root p (34)
| (a,p") « rootp (29) (b) — root
,a%na#n] A 1
, A= b]
pllg=@ILde(qllp (30)
b p=step (p®sync,, pp) (! p) (31)
(e) The CCSAlg Instance (f) Helper Functions

Fig. 4. The Proc Model

Parallel Merge, Eq.(30). || is the most complicated method. Similarly to || on the Communi-
cator, this method is implemented as nondeterministic choice between two applications of
the left-biased parallel merge, || (Eq.(32)). When we expand out the definition of ||, we see
that || has the implementation p || g = step; p q ® synci, p q ® step; q p ® synci, q p: in other
words, it is a nondeterministic choice between all four possible operational rules (Fig. 2b)
that apply to ||. The two helper functions step; (Eq.(33)) and sync;, (Eq.(34)) correspond to
the rules STEPL, and SYNcy,. step; allows the left-hand-side argument to perform one action,
and then merges the subsequent processes (step; (a-p) g = a- (p || q)). synci, p q pulls
an input from p, and a corresponding output from g, and merges the rest of the processes
(syncip (a-p) (a-q) =7 (p || q)).- These two rules are grouped together in the function ||.
The other two rules—STEP; and SYNCy,—are just symmetric variants of the first two, so they
can be applied by flipping the arguments to ||.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

7:16 Donnacha Oisin Kidney and Nicolas Wu

Replication, Eq.(31). We cannot use the identity Eq.(18) as a definition, because it is not
productive. The implementation given here, however, is productive, and is also bisimilar to
Eq.(18). This definition exploits the idempotency of @ to define an equivalent expression that
does not diverge.

These methods are all adapted from their implementations in Veltri and Vezzosi [2023]. The only
real change is our definition of ||, where Veltri and Vezzosi’s implementation is:

pll g=step; p q& step, p q® synch p q

step, is a variant of step; with the arguments reversed, and synch is a commutative variant of sync,,
where synch p q = synci, p q® sync;, q p. Some rearranging shows that the difference is superficial.

All laws given by our structural congruence are proven in Veltri and Vezzosi [2023], with the
exception of the idempotency of @, though that law is implied by the operational semantics, and so
is proven indirectly. Also proven in Veltri and Vezzosi [2023] is the following:

THEOREM 3.7 (PROC IS FULLY ABSTRACT). Vp,q. p ~ ¢ < [p]rroc = [q]Proc
We will use this to prove full abstraction for the Communicator.

Remark 3.8 (Foundations and Well-Foundedness). For cardinality reasons, the hyperfunction type
does not have a set-theoretic interpretation (there is no set that corresponds to the type a & b).
Hyperfunctions follow a standard domain-theoretic [Abramsky and Jung 1995] interpretation,
however, as described by Krsti¢ et al. [2001b]. The base category here is some (cartesian closed)
category of pointed domains, closed under bilimits. Under this interpretation, hyperfunctions of
type A & B are the canonical solution of the equation X = (X = A) = B. This interpretation
characterises the recursively-defined hyperfunctions and hyperfunction operations of Launchbury
et al. [2000]. Krsti¢ et al. also gave an account of hyperfunctions as final coalgebras [2001a], and
showed that the recursive definitions correspond to this coalgebraic interpretation.

Our proofs go through without issue in this setting; because our proofs proceed by induction on
the syntax of CCS, we do not need to use the more sophisticated tools of “hyperfunction induction”
from Krstic¢ et al. [2001b]; function extensionality is sufficient.

However, because CCS processes can be infinite, we do need to address the issue of corecur-
sion and well-foundedness in our proofs. We don’t necessarily need to consider corecursion on
hyperfunctions directly: to prove equality of Communicators, we need only prove the equality
of the underlying CCS processes that they produce. In fact, we can simplify further; instead of
referring to CCS processes in general, we can specialise to the Proc model. Because the Proc model
is fully-abstract, we can perform this specialisation without loss of generality. This means that all
proofs of equality in this section eventually resolve to proofs of equality on Proc objects.

The well-foundedness of our proofs, then, corresponds to the well-foundedness of proofs of
equality on coinductive Proc trees. This notion is well-defined: indeed, Veltri and Vezzosi’s formali-
sation of Proc contains a detailed exploration in the context of guarded cubical Agda and Ticked
Cubical Type Theory [Mogelberg and Veltri 2019]. We have not formalised our well-foundedness
argument (see Remark 3.17 for a discussion); instead this argument will be made in prose, and will
be based on syntactic guarded coinduction [Coquand 1994].

In this section, a CCS process is guarded if it is syntactically “under” some action. For example,
in the expression (a - p) @ g, the process p is guarded (“p is guarded by a”), whereas the process
q is unguarded. Corecursive calls are permitted only if they are guarded; so the infinite process
p = a- p, which consists of a stream of as, is well-founded, whereas the definition p := p @ p is not.

This notion of guardedness extends to proofs of equality: if a proof relies on some coinductive
call, that call must be guarded under an action. So, to prove the equality of two processes a - p

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

Hyperfunctions: Communicating Continuations 7:17

and b - g, the proof must prove equality of a and b inductively, but once those are proven some
coinductive call is permitted to prove the equality of p and gq.

All of the proofs and definitions in this section are well-founded according to this guardedness
condition. In particular, the proofs of full abstraction all proceed via induction on the syntax of
CCS: all recursive calls either reduce the size of one argument (i.e. they are “terminating” in the
normal/inductive sense), or the recursive call is guarded under an action. As might be expected, we
only need to employ this guardedness argument when the CCS process is infinite, i.e. it includes
the ! operator. Without that operator, our proofs are well-founded by induction on syntax.

3.4.3 Relating Communicator to Proc. Our strategy is to rely on the fact that Proc is fully abstract,
and prove full abstraction for the Communicator model via a relation between Communicator and
Proc. Let’s now define precisely what that relation is.

We have already seen a way to convert a Communicator to any CCSAlg, including Proc: the [_]|
function (Fig.3b). To go the other direction we use [_]T (Fig.4b). A Proc represents a CCS process
as nested sums-of-acts, so to convert that structure into another CCS algebra we just apply @ and -
in the right places.

If, at this point, we could show that these functions form the two halves of an isomorphism, we
would have our proof of full abstraction. And, indeed, [_]| is a retraction of [_]:

LEMMA 3.9. V(p : Proc n) [[[[p]]TCommunicator n (Proc n)]]lProc n=P

However the inverse is not true in general ([_]J1 o [_]| # id). As described in Remark 3.6, we do
not have an isomorphism; but we do not need a full isomorphism for full abstraction. Instead, the
following two lemmas are sufficient to prove full abstraction for the Communicator model:

LEMMA 3.10. Y(p : P n). [[p]communicator]d = [P]proc

LEMMA 3.11. V(P : Pl’l) H[[PHPI’OC]]T = [[P]]Communicator

The first of these, Lemma 3.10, says that, for any CCS term p, if we interpret that term into a
Communicator, and then interpret that Communicator into a Proc, that is the same as interpreting
the term p directly into a Proc. The second (Lemma 3.11) says the inverse. We can combine these
with Proc’s full abstraction to prove the following:

THEOREM 3.12 (COMMUNICATOR IS FULLY ABSTRACT).

VP’ q-p~q — [[PﬂCommunicator = [[QHCommunicator

Proor. Recall first that Proc is fully abstract (Theorem 3.7; ¥p,q. p ~ ¢ < [p]proc = [q]Proc)-
To prove full abstraction for Communicator, then, we need to show:

VP, q. [[P]] Proc = [[q]] Proc <—— [[P]]Communicator = [[q]]Communicator

Here we prove the bi-implication in both directions, for all p and g:

[[P]]Proc = [qﬂProc S [[p]]Communicator = [[q]]Communicator -
[[p]]Communicator = [[qﬂCommunicator [[p]]Proc = [[q]]Proc
[Pl communicator = {Lemma 3.11} [plproc = {Lemma 3.10}
[H[p]]ProcﬂT = {Given} [[[[P]]Communicator]]l = {Given}
MqHPFOC]]T = {Lemma 3'11} [[[[q]]CommunicatorHl = {Lemma 3~10}
[[q]]Communicator O [[q]] Proc 0
O

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

7:18 Donnacha Oisin Kidney and Nicolas Wu

Remark 3.13. Notice that the proof above refers specifically to a Communicator specialised to
Communicator n (Proc n). However, because Proc itself is fully abstract, we haven’t lost any
generality via this specialisation: a Proc can be interpreted (via [_]T, Fig.4b) into any other model
of CCS while preserving semantics.

3.4.4 Proving Lemmas 3.10 and 3.11. The main theorem of this section, Theorem 3.12, relies on
Lemmas 3.10 and 3.11. These lemmas establish that there is a relation between the Communicator
and Proc models, and this relation is homomorphic through the CCS algebra. Proving these lemmas
is where the bulk of the work of proving full abstraction for Communicator occurs.

The proofs of both lemmas follow the same pattern: we will give a brief outline of that pattern
here (full proofs are present in the appendix). Unfortunately, it is not possible to prove either of these
lemmas by proving individual homomorphisms for each operator. While such homomorphisms do
hold for some operators:

[pll & [4ll = [p® 4]l [0]L =0

They do not hold for others, with || being the most problematic.

Recall the problem of not being able to finitely axiomatise CCS, discussed above. Though we no
longer rely on such an axiomatisation, solutions (or, rather, workarounds) to this problem from the
literature will provide insights that we can use in our own proof.

Bergstra and Klop [1984] describe the Algebra of Communicating Processes (ACP), a similar
calculus to CCS that can be finitely axiomatised. The key change in ACP that allows this axiomati-
sation is the addition of two new operators: a left-biased operator supporting the STEp, rule, and a
commutative operator that allows for communication. The original || can then be defined in terms
of these operators. Unfortunately, the Communicator type does not implement ACP; but their
decomposition of || is similar to our decomposition.

We have defined ||, on both Communicator (Eq.(25)) and Proc (Eq.(32)), and || can be defined in
terms of it. Furthermore, on Proc, the || operator is defined in terms of two even more fundamental
operators: step; (Eq.(33)) and sync;, (Eq.(34)). The || operator on Communicator can almost be
decomposed in a similar way with the following definitions:

L (step;pg)o=1p (o]l g t(synci,pq)o=1p(qll o)
However, the identity p || ¢ = synci, p q @ step; p g does not hold in general. The problem is that
we cannot distribute a @ under 1 p; however this equality does hold (definitionally) in the situation
where p := a - p’. We will use this fact to prove homomorphism for Communicator.

LemMa 3.14. Ya,p,q. a-p || g = synci, (a-p) q® step; (a-p) q

The strategy for this proof, then, is to rewrite the term p into a form where Lemma 3.14 and
similar lemmas can apply. One other thing to note about the proof is that we add the || operator to
the syntax of CCS; this allows us to easier track when a term stays the same size or gets smaller. It
also does not lose any generality: any term p can be converted to a term that contains ||.

The bulk of the work of this proof is accomplished in Lemmas 3.15 and 3.16.

LEmMMA 3.15. Vn,Ps q. [[[[Vs”(P IL q)ﬂCommunicator]]l = [[Vsn-(p IL q)]]Proc
LEmMMA 3.16. Vn, p,q. [[[[Vsn(p ”. q)HProc]]T = [[Vsn-(P ”. q)]]Communicator

Lemmas 3.15 and 3.16 are effectively special cases of Lemmas 3.10 and 3.11; they prove that [_]|
and [_]1 are homomorphisms on terms of the form vsn.(p || g). The operator v here is a variant
of v that takes a list of names rather than a single name, where

vsllp=p vs(n:ns).p =vsnsvn-p

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

Hyperfunctions: Communicating Continuations 7:19

To use Lemma 3.15 we notice that all terms ¢ can be rewritten into this form (vsn.(p || q)),
because t = v[].(¢ || 0). This identity holds on both Proc and Communicator, so we can apply it
to both sides of the equation, meaning that Lemma 3.15 proves the homomorphism.

Remark 3.17 (Mechanisation). Accompanying this paper, we have provided a mechanisation of
our proofs of full abstraction. This mechanisation is encoded in Agda [Norell 2009]. It follows the
same structure as our prose proofs of Theorem 3.12, and of the proofs in the appendix.

This mechanisation is necessarily partial, because there are aspects of the nature of hyperfunc-
tions and the Communicator model that are not expressible in current Agda (without significant
extensions to the underlying type theory which are beyond the scope of this work).

The first roadblock to full formalisation is that hyperfunctions (and specifically the Communicator
type) are not (currently) admissible in Agda. As discussed in Remark 3.8, the hyperfunction type
itself is somewhat exotic, and as such does not exist in all foundational settings (set theory, in
particular, does not support the definition of hyperfunctions). Agda’s type theory is another setting
which does not admit hyperfunctions, however the problem here is positivity. Since the hyperfunc-
tion type contains recursion to the left of a function arrow, it is not positive. The presence of such
types can allow for proofs of Curry’s paradox [1942].

There are some possible routes around the positivity restriction. For example, while the type
a % bisnot “strictly” positive, if we were able to restrict a to being contravariant, and b to covariant,
then the whole definition would become positive (albeit not strictly so). There is some evidence that
Agda could admit these positive types (with the co/contra-variant restrictions) without sacrificing
soundness [Coquand 2013; Sjoberg 2015].

Another route to admissibility comes from Berger et al.’s formalisation [2019] of Hofmann’s
breadth-first traversal [1993]. Berger et al. give several different verifications of the algorithm which
use the Rou type (Eq.(12)); we believe the techniques of embedding the Rou type could also apply
to the Communicator type.

The second assumption our mechanisation makes concerns well-foundedness. We have already
given our argument for well-foundedness in the text (Remark 3.8); unfortunately, this argument
relies on mixing notions of guardedness and continuations in ways that are currently beyond
the capabilities of Agda’s productivity checker. Certainly, the work of Veltri and Vezzosi [2020,
2023] paves the way for a future formalisation: however, adapting these techniques to work with a
continuation-based representation would require extension to Agda itself.

It is worth emphasising that our foundational setting in this work is the domain-theoretic setting
established by Krstic et al. [2001b]. This is different from the setting of our mechanisation, and as
such the mechanisation should be regarded as supplementary to the proofs in this paper. Because
the proofs can get quite intricate and dense, we think that the mechanisation gives some valuable
reassurance that all cases/parameters have been handled.

The code is rendered online at doisinkidney.com/code/hyperfunctions/README.html. Alterna-
tively, the code is available to download from doisinkidney.com/artifacts/popl-2025-hyperfunctions-
agda.tar.gz; it has been typechecked with Agda version 2.8.0, and the cubical library version 0.8.

4 Hyperfunctions and Monads

So far, we have seen hyperfunctions model various aspects of concurrency, culminating in an imple-
mentation of CCS. In this section, we will show how hyperfunctions interact with monads [Wadler
1995], and in particular how they can be used to build concurrency monads. This section will
demonstrate that hyperfunctions can serve a useful role in implementing efficient monadic library
code, especially when concurrency or concurrency-like patterns are involved.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

https://doisinkidney.com/code/hyperfunctions/README.html
https://doisinkidney.com/artifacts/popl-2025-hyperfunctions-agda.tar.gz
https://doisinkidney.com/artifacts/popl-2025-hyperfunctions-agda.tar.gz

7:20 Donnacha Oisin Kidney and Nicolas Wu

4.1 Adding Monads Simply

We will warm up with a simple example of combining monads and hyperfunctions. Recall the
implementation of zip using hyperfunctions (Section 2.4): there, hyperfunctions allowed us to write
zip on two Church-encoded lists without the usual O(n?) slowdown that comes from repeated
applications of tail. We can use a similar technique to efficiently implement disjunction on the
LogicT type [Kiselyov et al. 2005], a type for Prolog-style logic programming.

On LogicT, disjunction is implemented by interleaving ([1, 2, 3] <>[4,5, 6] = [1,4, 2,5, 3, 6]). On the
CPS-encoded version of LogicT, interleaving runs into the same problems as zip, because interleave
is a lateral function. However, we are armed with a toolbox of hyperfunctions and hyperfunction
combinators. As a result, implementing interleave is not difficult, following the pattern of zip:

interleave :: [a] — [a] — [a]
interleave xs ys = let xz = foldr (Ax xk — (x:) «xk) (Hyp (const [])) xs
yz = foldr (Ay yk — (y:) < yk) (Hyp (const [1)) ys
in 1 xz yz
In fact, it is a little simpler than zip, since no message-passing is needed.
The LogicT type is not just a Church-encoded list, however. It is a CPS-encoded list transformer.
newtype LogicT m a = LogicT {runLogicT =:Vb.(a > mb— mb) - mb— mb}

This type is similar to a Church-encoded list, but it allows effects—drawn from m—to be interleaved
with the elements of the list. The following function, for instance, converts a list to a LogicT list,
interleaving each element with an 10 effect that prints that element to stdout.

printed :: Show a = [a] — LogicT 10 a

printed xs = LogicT (Ac n — foldr (Ax xs — do putStr (show x); ¢ x xs) n xs)

We can evaluate a LogicT with the following function:

evalLogicT :: Monad m >>> evallogicT (printed [1,2,3])
= LogicT ma— m [a] 123
evalLogicT Is = runLogicT [1,2,3]

Is (Ax — fmap (x3)) (return [])

Luckily, many of the hyperfunction combinators can be adapted to this monadic setting. For
instance, the < function (Eq.(6)) has the following monadic variant:

(¢m) :Monad m= (ma—b) > m(mad b) > (mas b)
t(famh) k=f (k=< h)

Notice that this function preserves the ordering of effects: h is executed before 1 k. This can be used
as a drop-in replacement for <, resulting in the following function:

interleaveT :: Monad m = LogicT m a — LogicT m a — LogicT ma
interleaveT xs ys = LogicT (Ac n —
do xz « runLogicT xs (Ax xk — return (¢ x <, xk)) (return (Hyp (const n)))
yz < runLogicT ys (Ay yk — return (¢ y <, yk)) (return (Hyp (const n)))
1 Xz yz)
And again, the effect order is preserved.

>>> evallogicT (interleaveT (printed [1,2]) (printed [3,4]))

1324

[1,3,2,4]

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

Hyperfunctions: Communicating Continuations 7:21

4.2 A Monadic Language for Concurrency

We now know that hyperfunctions and monads can interface without much ceremony. Let’s next
look at using hyperfunctions to build an actual monad transformer for concurrency.
We will use Claessen’s concurrency monad [1999] for this example, given below by the type C.

type C m = Cont (Action m) newtype Cont r a = Cont {runCont :: (a > r) — r}

data Action m = Atom (m (Action m)) | Fork (Action m) (Action m) | Stop

A term C m a is a concurrent computation that draws effects from m. It is built on top of the Cont
monad, and has the following interface:

atom :: Functorm= ma—>Cma forkz:Cma— Cm()
atom m = Cont (Ak — Atom (frmap k m)) fork m = Cont (Ak — Fork (action m) (k ()))

atom lifts an atomic action into C; fork runs a process in the background.
The following simple program draws effects from the Writer monad, which allows us to log
output, via the tell :: String — Writer () function.

prog :: C (Writer String) ()
prog = do atom (tell "go!"); fork (forever (atom (tell "to"))); forever (atom (tell "fro"))

This program first lifts an action that outputs the string "go! ", then, in the background, it repeatedly
outputs "to", and then, on the main thread, it repeatedly outputs the string "fro".
We can interpret this language into the underlying effect using run:
run :: Monad m= C ma— m () round :: Monad m = [Action m] — m ()
run, ¢ = round [action c] round [] = return ()
round (x : xs) = case x of
Atom a,, — ap, >= (Aa — round (xs+ [a]))
Fork a; ay — round (xs+ [ay, az])
Stop — round xs

>>> take 15 (execWriter (runC prog))
"go!tofrotofroto”

round here implements round-robin scheduling. However, notice that this function follows the
pattern of foldr on lists: if we proceed by mechanically fusing away the intermediate list (similarly
to our approach in Section 2.4), we arrive at a hyperfunction-based implementation. Below, we
have packaged up that implementation into a type called Conc.

type Concr m=Cont (mr % mr) atomy, :: Monad m = ma— Concrma

atomy, a,, = Cont (Ak — id <, (k <$> ay,))
fork,, :: Conc r ma— Concr m ()

fork, m = runpConcrma— mr
Cont (Ak — runCont m (const id) o k ()) runy ¢ = run (runCont ¢ (const id))

This language has the same operations as C. It demonstrates how hyperfunctions can be a building
block for a “concurrency monad”, when used in combination with the continuation monad. This
monad is a monad transformer [Jones 1995], where atom corresponds to the lift function.

5 Coroutines

We have now seen a few small examples of how hyperfunctions might be used in a functional
programming language to implement concurrency as a monadic effect. This section will explore
a larger example: we will see that hyperfunctions underpin important optimisations in practical
coroutine libraries, and then we will see how to use hyperfunctions to build a new, powerful library
for asymmetric coroutines.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

7:22 Donnacha Oisin Kidney and Nicolas Wu

5.1 Pipes

Coroutines are a broad concept, with many different implementations; in Haskell alone, the ma-
chines [Kmett 2025], conduit [Snoyman 2011], and Pipes [Gonzalez 2012] libraries all present
different interpretations of the abstraction. Though they differ in their details, these libraries are all
built around a central coroutine-like object, which is a kind of computation that can be paused and
resumed, and can communicate by sending and receiving data. For our purposes, we will take the
specific interface described by Gonzalez [2012] and Blazevi¢ [2011].

newtype Piperioma yield :: 0 — Pipe riom () halt : mr — Piperiomx

await :: Piperiom i merge:: Piperixm 1l — Piperxoml — Piperioma

A value of type Pipe r i 0 m a is a coroutine that takes input of type i, outputs os, performs effects
in m, has a final result type r, and intermediate result of type a. yield produces an output; await
requests an input; halt ends the computation; and merge joins two Pipes, connecting corresponding
yields and awaits.

Early implementations of this interface were written in direct style: the Pipe type was represented
by an inductive, tree-like data type (a variant of the free monad), and each function was defined by
pattern-matching on that type. However, as Spivey noted [2017], this direct-style implementation
can suffer from a slow-down when pipes are deeply nested. Unfortunately, the usual trick of
CPS-encoding everything turns out to be much more difficult to apply than it might first appear.
The problem lies with the merge function. Just like the zip function on lists, merge processes two
sequences in lock-step, and also just like zip, it becomes much more difficult to implement when
those sequences are CPS-encoded: merge is a lateral function.

Spivey’s solution (further explained by Pieters and Schrijvers [2019]) uses the following encoding
of a Pipe that is an intricate variant of the Cont monad (Section 4.2), given below.

newtype Pipe r i 0 m a = MkPipe type Result rio
((a—> Result (mr) io) — Result (mr) io) =InCont r i — OutContro—r

A Result takes two continuations before returning the final computation m r: the InCont is called
when the Pipe requests input (of type i, with await), and the OutCont when the Pipe emits some o
(with yield).

newtype InCont ri = MkInCont {resumeln :: OQutCont r i — r}

newtype OutCont r 0 = MkOutCont {resumeQOut :: 0 — InCont r 0 — r}

It is not difficult to see that, after flipping the arguments to resumeOut, these types are structurally
identical to a specialisation of hyperfunctions.

OutCont r o InCont r i
=o0— InContro—r =QutContri—r
=InContro—o—r =(i—>InContri—r) —>r
= (OutContri—r) s o—r ~(nContri—i—r)—r
=rv(o—or) =(i->rNsr

In fact, we can see that these two constructions are actually instances of the Consumer and Producer
types (Egs.(10) and (11)), where

OutCont r o ~ Consumer o r InCont r i =~ Producer i r

Much like how these types enabled us to implement message-passing in a CPS-encoded zip in Sec-
tion 2.4, they allowed Spivey to implement message-passing for CPS-encoded Pipes.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

Hyperfunctions: Communicating Continuations 7:23

Spivey was not the only author to independently rediscover the hyperfunction type while
working with Pipe-like abstractions. Shivers and Might’s encoding of transducers [2006] includes
the same structure (although a large portion of their work is untyped, so the hyperfunction structure
is a little more difficult to see). Furthermore, Kammar et al.’s work on handlers for algebraic effects
[2013] used the following types to implement a handler for Pipes:

data Prod s r = Prod (() » Conssr —r) data Conssr=Cons (s— Prodsr—r)

Like InCont and OutCont above, both Prod and Cons are simple rearrangements of the Producer
and Consumer types.

5.2 First-class Coroutines

The Pipe implementation above has a significant shortcoming: the only way to communicate with
a Pipe is to merge it with another Pipe. From inside a Pipe, we can yield and await to send and
receive values, but there are no corresponding functions to communicate from outside a Pipe.

send:: i — Piperioma— receive :: Piperioma —
m (Pipe rioma) m (Maybe (o, Pipe r i 0 m a))

The above putative interface would allow us to pass Pipes around as first-class values, while still
communicating with them. send passes a value a Pipe, and advances its execution to the next await.
receive “pops” a value from a Pipe. These two functions are necessary for many standard patterns
in coroutine programming: if we want to store a pool of coroutines, for instance, and receive one
value from each entry, we cannot accomplish this with merging alone.

To build the solution we will take some inspiration from Shivers and Might [2006]. One of the
coroutine implementations in their work is built on Channel, an SML type:

type a cont (* Continuations. *)
datatype (a,f) Channel = Chan of (a * (f,a) Channel) cont
Without the continuation machinery of SML we cannot translate this type directly to Haskell;
we can, however, adapt it using the Cont monad:
type Channel r @ f = Cont r (a,Channel r f &) = (((a,Channel r fa) —» r) - r)

Notice that the type on the right-hand-side above resembles the Producer hyperfunction (Eq.(11)):
it “produces” «, and the parameters to Channel swap on recursion, just like a hyperfunction. It’s
not a perfect match, but it seems like the Haskell analogue of the Channel type is the following:

type Channelrio=(o—>r) %+ (i—>r)
We can turn this type into a monad by wrapping it in a continuation:
newtype Co r i o m a= Co {route:: (a —» Channel (mr) i 0) — Channel (mr) i o}

This type has a lot in common with Pipe from the previous section, with one significant difference:
instead of using separate producer and consumer continuations, it has one continuation which
both produces and consumes. This means that every input is accompanied by an output: in terms
of the interface to this type, this means that yield and await are combined into one function that
outputs a value and waits for an input at the same time.

yield:0—> Coriomi

yield x = Co (Ak = Hyp (Ah i — 1 h (ki) x))

The statement yield x suspends execution, outputs the value x, and awaits input of some type i.
We also have the merge and halt functions from the Pipe interface, and we can also run a
coroutine to produce a result. We will not include the implementations for brevity’s sake.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

7:24 Donnacha Oisin Kidney and Nicolas Wu

So far, so familiar. However, we have not yet implemented send. To do so, we turn back to Shivers
and Might [2006], where control operators are used to implement a function they call switch:

val switch : a * (a,f) Channel -> B * («,f) Channel
fun switch(x, Chan k) = callcc (fn k’ => throw k (x, Chan k’))

This function is analogous to send: it takes a value of type «, and a channel, sends the value to the
channel, and returns a response f along with the new channel. It does so by using callcc (call
with current continuation): callcc (fn k => e) binds k to the continuation that callcc was
called from. The throw function invokes a continuation; so switch binds the current continuation
to k', and then throws to the continuation contained in the supplied channel, with the current
continuation embedded in the new channel.

Unfortunately, Haskell doesn’t have first-class continuations. It does have the continuation
monad, however, and the MonadCont typeclass [Jones 1995], which supplies a variant of call/cc.

callCC :: MonadCont m = ((a—> mb) > ma) > ma
Using this, we can build a combinator to send values to a coroutine from outside the coroutine.
send :: MonadCont m= Coriomr — i — m (Eitherr (o,Coriomr))

The function send ¢ v send a value v : i to the coroutine ¢ : Co r i 0 m r, and returns an effectful
computation m (Either r (0,Co r i o m r)). The returned value can be Left if the coroutine
terminates (either by running out of yields, or by encountering a halt), or it is Right containing the
yielded value along with the rest of the coroutine.

The implementation of send is as follows:

send ¢ v = callCC $ Ak — Left <$> 1 (route ¢ (Ax — Hyp (A _ — return x)))
(Hyp (Ar o — k (Right (o, Co (const r))))) v

callCC supplies a continuation, k : Either r (0,Co r i 0o m r) — m _, which can be called to “return”
from the computation. Above, it is called from inside a hyperfunction, where it returns the next
value supplied to the consumer, and wraps the rest of the hyperfunction. The other branch, the halt
branch, is called when there are no more values to return. This branch is represented by return x.

Sending Without Return. Given a coroutine of type Co L i 0 m L, we know that it cannot
return or exit, because there is no value of type L to return or exit with. A variant of send makes
use of this fact to avoid the need for Either.

send’ :: MonadCont m= Co Liom L —>i—>m(o,CoLliomdl)
send’ ¢ v = either absurd id <$> send ¢ v

Execution Order. Note that the order of execution of effects is slightly unintuitive. When a
process sends to a coroutine, the coroutine executes up until the previous yield statement, and then
transfers control back to the caller. Changing the execution order, so that send executes up until
the next yield is not too difficult: the Channel type is replaced with Suspension (Suspension r i o =
Channel r 0 i — r), and the coroutine is represented by i — Co r i 0 m a rather than Cor i 0o m a.

Coroutines with References. The expression send g i returns a pair (o, g’), where g’ is the
updated generator; this is a common pattern in Haskell, often encapsulated with the state monad.
In our case, we can use references (IORef) to build a clean interface with the following function:

send’ :: (MonadCont m, MonadlO m) = IORef (i— Co Lioml) > i— mo

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

Hyperfunctions: Communicating Continuations 7:25

5.3 Stable Marriages

To demonstrate the power of our coroutine implementation, we will now implement the stable
marriage example, following the coroutine-based implementation of Allison [1983].

The stable marriage problem [Gale and Shapley 1962] takes two groups of people—described in
the original formulation as a group of men and a group of women who wish to be married—and
generates a matching, where each member of one group is paired with a distinct member of the
other. This matching should also be stable: given that each individual has a preference ranking
for the members of the opposing group, a stable matching is one where no two individuals would
prefer to be matched with each other than with their current match.

Allison’s algorithm is an elegant encoding of a natural solution to the problem. A coroutine is
constructed for each man and each woman, and the “men” propose to the women, in order of the
men’s preference. If a man’s proposal is accepted, his coroutine is suspended. The “women” are
coroutines awaiting proposals; if a proposal is better than their current offer they jilt their current
fiancé, whose coroutine resumes and then continues to propose to his next choice.

For our encoding of the algorithm, we will have three men (Aaron, Barry, and Conor), and three
women (Annie, Betty, and Ciara). Their rankings are as follows:

mranks = assoc [(Aaron, [Ciara, Annie, Betty]) wranks = assoc [(Annie, [Barry, Conor, Aaron])
, (Barry, [Ciara, Betty, Annie]) , (Betty, [Aaron, Barry, Conor])
, (Conor, [Ciara, Annie, Betty])] , (Ciara, [Conor, Aaron, Barry])]

Our encoding of the algorithm has the following type:
stable :: Array Man [Woman] — Array Woman [Man] — 10 [(Woman, Man) |

It takes a pair of rankings, and outputs a list of marriages.
The first step of the algorithm is to initialise the array of engagements:

engagements « liftlO (newArray_ (minBound, maxBound) :: 10 (IOArray Woman Man))

This will store the current engagements while the algorithm runs. Note that we do not use this for
inter-process communication; all communication is done with the send” and yield functions.
Next, we construct the array of coroutines for men and women:

men <« genM (Ai — newlORef (man i)); women < genM (Ai — newlORef (woman i))

Each coroutine is stored in an array, indexed by the Man and Woman data types.
The next step is to construct a coroutine for a man:

man::Man —> () > ColL () OM L
man me () = do for_ (mranks! me) $ Awi — do
liftlO (printf "%s proposes to %s; " me wi)
accept « lift (send’ (women ! wi) me)
when accept (yield ())
return (error "Unreachable")

This function takes an index representing the man that corresponds to the coroutine. Then, it
iterates through the man’s ranks, and for each it sends a proposal to the corresponding woman
(send’ (women ! wi) me). The response to this message is a Bool saying whether or not the woman
has accepted; if she does accept, the man suspends himself (when accept (yield ())). The end of
this loop will never be reached if all preferences are strict total orders, but we cannot prove that in
Haskell, so we need to use error in the return statement so that the coroutine has return type L.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

7:26 Donnacha Oisin Kidney and Nicolas Wu

Then, the women. A “woman” is a coroutine that takes a Man as input (a suitor), and yields
Bools as output (responses to marriage proposals).

woman :: Woman — Man — Co L Man Bool M L
woman me suitor = do
liftIO (printf "%s accepts %s\n" me suitor)
liftlO (writeArray engagements me suitor)
yield True >= loop (Asuitor — do
jiltee — [iftlO (readArray engagements me)
if elemIndex suitor (wranks! me) < elemIndex jiltee (wranks ! me)
then do [iftIO (printf "%s jilts %s for %s\n" me jiltee suitor)
liftIO (writeArray engagements me suitor)
lift (send” (men! jiltee) ())
yield True
else do liftlO (printf "%s rejects %s, stays with %s\n" me suitor jiltee)
yield False)

The first suitor is always accepted (yield True), after that the coroutine loops, comparing the new
suitor to the old, and jilting the old suitor if the new is preferable. If that does happen, the woman
will modify the engagements array, notify her jiltee (send” (men ! jiltee)), and respond True to the
marriage proposal. If the new suitor is not preferable, she will instead yield False.

Finally, to run the algorithm we initiate all of the men and collect the engagments:

forAll_ (Ai — send’ (men! i) ()); liftlO (getAssocs engagements)

The output of the algorithm is as follows:

>>> stable mranks wranks

Aaron proposes to Ciara; Ciara accepts Aaron

Barry proposes to Ciara; Ciara rejects Barry, stays with Aaron
Barry proposes to Betty; Betty accepts Barry

Conor proposes to Ciara; Ciara jilts Aaron for Conor

Aaron proposes to Annie; Annie accepts Aaron

[(Annie,Aaron), (Betty,Barry), (Ciara,Conor)]

The final result is [(Annie, Aaron), (Betty, Barry), (Ciara, Conor) |, what a happy coincidence that
their names match too.

6 Related Work

The first research on hyperfunctions was conducted by Launchbury et al., who defined and named
the construction in a technical report [2000]. Subsequently, Krsti¢ et al. established the formal basis
for hyperfunctions, and developed the coalgebraic interpretation of the type [2001a; 2001b]. In
2013, Launchbury et al. revised and published their earlier technical report; this publication forms
the basis of the research contained in this paper.

Outside of the academic literature, Kmett’s Haskell library for hyperfunctions [2015] proved
extremely helpful for demonstrating some of the more complex patterns of hyperfunction usage. In
addition, the first occurrence of a hyperfunction-like type we were able to find was Hofmann’s
Rou type [1993], which was later studied in more depth by Berger et al. [2019].

The algorithms of Allison [1983, 1989] seem to be quite similarly structured to hyperfunction
algorithms, although they do not contain hyperfunctions themselves. In particular, the research of

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

Hyperfunctions: Communicating Continuations 7:27

Smith [2009] on Allison’s “corecursive queues” includes a lot of recursion patterns reminiscent of
Hofmann’s breadth-first traversal [1993].

One of the contentions of this work is that hyperfunctions are already being used throughout
the functional programming world by programmers who need to combine continuations and
concurrency in certain ways. While we have documented some of these usages [Hofmann 1993;
Kammar et al. 2013; Shivers and Might 2006; Spivey 2017], we think it is likely that the pattern
is even more widespread. In particular, while most of the examples we have documented are in
Haskell, we are much less familiar with the Scheme or Lisp communities, and we think that the
prevalence of continuations in those languages would increase the likelihood of rediscoveries of
hyperfunctions.

One of the main patterns of usage of hyperfunctions is in efficiently implementing zip-like
functions (what we have called “lateral” functions) on CPS-encoded data. The difficulty of imple-
menting this pattern is precisely what Spivey identified in implementing CPS-encoded Pipes [2017].
Pieters and Schrijvers wrote a follow-up to this work [2019], with the intention of simplifying the
exposition by systematically deriving Spivey’s more efficient implementation. We think that this
paper can also help clarify Spivey’s intricate type by isolating the hard-to-understand part—the
hyperfunction—and demonstrating its use in more simple examples.

While the original motivation for the development of hyperfunctions was in allowing fold-fusion
[Gill et al. 1993] to apply to the zip function, these days stream fusion [Coutts et al. 2007] is able to
perform most of the functions of fold-fusion, and has no difficulty in fusing away zip.

Our approach to CCS is strongly influenced by Bruni and Montanari [2017]. Early drafts of our
model took inspiration (especially for the implementation of the || operator) from Bahr and Hutton
[2023] and Bergstra and Klop [1985]. The canonical model we use (Proc) comes from [Veltri and
Vezzosi 2023], whose work was also invaluable for understanding the well-founded implementation
of the CCS operations.

Our model of CCS is similar in many ways to the model of Ciobanu and Todoran [2018]. The
formal foundation for their model is in metric spaces, however, which differs from ours. While
we did not need to use their weak abstractness condition [Ciobanu and Todoran 2017] for our
Communicator model of CCS, it is possible that other process calculi (especially those which
contain sequencing operators, like ACP Bergstra and Klop [1986], which we were not able to model
using hyperfunctions) can only ever have weakly abstract continuation models.

7 Conclusion

In the early history of continuations, basic concepts were independently discovered
an extraordinary number of times. This was due less to poor communication among
computer scientists than to the rich variety of settings in which continuations were
found useful [Reynolds 1993]

Hyperfunctions, like continuations, have been rediscovered multiple times. Wherever concurrency
and continuations intersect, authors have used hyperfunctions “to open up apparently closed
doors” [Launchbury et al. 2013]. Despite their many uses, however, hyperfunctions have remained
obscure and under-studied. This paper has demonstrated that hyperfunctions are powerful and
broadly useful: we hope that our work sheds more light on hyperfunctions, facilitates their more
widespread use, and spurs further research on these curious beasts.

Acknowledgments

We would like to thank the reviewers for their feedback, which significantly improved the paper.
We would also like to thank Jeremy Gibbons, whose notes were invaluable.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

7:28 Donnacha Oisin Kidney and Nicolas Wu

References

Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. 2013. Copatterns: Programming Infinite Structures
by Observations. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’13). Association for Computing Machinery, New York, NY, USA, 27-38. doi:10.1145/2429069.2429075

Samson Abramsky and Achim Jung. 1995. Domain Theory. In Handbook of Logic in Computer Science, S Abramsky, Dov M
Gabbay, and T S E Maibaum (Eds.). Oxford University PressOxford, 1-168. doi:10.1093/050/9780198537625.003.0001

Lloyd Allison. 1983. Stable Marriages by Coroutines. Inform. Process. Lett. 16, 2 (Feb. 1983), 61-65. d0i:10.1016/0020-
0190(83)90025-X

Lloyd Allison. 1989. Circular Programs and Self-Referential Structures. Software: Practice and Experience 19, 2 (1989), 99-109.
doi:10.1002/spe.4380190202

Patrick Bahr and Graham Hutton. 2023. Calculating Compilers for Concurrency. 7, ICFP (Aug. 2023), 213:740-213:767.
doi:10.1145/3607855

Ulrich Berger, Ralph Matthes, and Anton Setzer. 2019. Martin Hofmann’s Case for Non-Strictly Positive Data Types.
In 24th International Conference on Types for Proofs and Programs (TYPES 2018) (Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 130), Peter Dybjer, José Espirito Santo, and Luis Pinto (Eds.). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 22. doi:10.4230/LIPIcs. TYPES.2018.1

Jan Bergstra and Jan Willem Klop. 1984. Process Algebra for Communication and Mutual Exclusion. R 8409 (Jan. 1984).
https://ir.cwinl/pub/6504

J. A. Bergstra and J. W. Klop. 1985. Algebra of Communicating Processes with Abstraction. Theoretical Computer Science 37
(Jan. 1985), 77-121. doi:10.1016/0304-3975(85)90088-X

Jan A Bergstra and Jan Willem Klop. 1986. Algebra of Communicating Processes. Mathematics and Computer Science, CWI
Monograph 1, 89-138 (1986), 9. https://dspace.library.uu.nl/handle/1874/13997

Mario Blazevi¢. 2011. Coroutine Pipelines. The Monad.Reader 19 (Oct. 2011), 29-48. https://themonadreader.wordpress.
com/wp-content/uploads/2011/10/issue19.pdf

Roberto Bruni and Ugo Montanari. 2017. CCS, the Calculus of Communicating Systems. In Models of Computation. Springer
International Publishing, Cham, 221-270. doi:10.1007/978-3-319-42900-7_11

Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and Steve Zdancewic. 2023. Choice Trees: Representing
Nondeterministic, Recursive, and Impure Programs in Coq. Proceedings of the ACM on Programming Languages 7, POPL
(Jan. 2023), 61:1770-61:1800. doi:10.1145/3571254

Gabriel Ciobanu and Eneia Nicolae Todoran. 2017. Abstract Continuation Semantics for Asynchronous Concurrency. In
2017 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). 296-303.
doi:10.1109/SYNASC.2017.00056

Gabriel Ciobanu and Eneia Nicolae Todoran. 2018. On the Abstractness of Continuation Semantics. In 2018 20th International
Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). 167-174. doi:10.1109/SYNASC.2018.
00036

Koen Claessen. 1999. A Poor Man’s Concurrency Monad. Journal of Functional Programming 9, 3 (May 1999), 313-323.
do0i:10.1017/S0956796899003342

Thierry Coquand. 1994. Infinite Objects in Type Theory. In Types for Proofs and Programs, Henk Barendregt and Tobias
Nipkow (Eds.). Springer, Berlin, Heidelberg, 62-78. doi:10.1007/3-540-58085-9_72

Thierry Coquand. 2013. [Agda] Defining Coinductive Types. https://lists.chalmers.se/pipermail/agda/2013/006189.html

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. 2007. Stream Fusion: From Lists to Streams to Nothing at All. ACM
SIGPLAN Notices 42, 9 (Oct. 2007), 315-326. d0i:10.1145/1291220.1291199

Haskell B. Curry. 1942. The Inconsistency of Certain Formal Logics. The Journal of Symbolic Logic 7, 3 (Sept. 1942), 115-117.
doi:10.2307/2269292

D. Gale and L. S. Shapley. 1962. College Admissions and the Stability of Marriage. The American Mathematical Monthly 69, 1
(1962), 9-15. doi:10.2307/2312726

Jeremy Gibbons, Donnacha Oisin Kidney, Tom Schrijvers, and Nicolas Wu. 2022. Breadth-First Traversal via Staging. In
Mathematics of Program Construction, Ekaterina Komendantskaya (Ed.). Springer International Publishing, Cham, 1-33.
doi:10.1007/978-3-031-16912-0_1

Andrew Gill, John Launchbury, and Simon L. Peyton Jones. 1993. A Short Cut to Deforestation. In Proceedings of the
Conference on Functional Programming Languages and Computer Architecture (FPCA *93). Association for Computing
Machinery, New York, NY, USA, 223-232. doi:10.1145/165180.165214

Gabriella Gonzalez. 2012. Pipes: Compositional Pipelines. http://hackage.haskell.org/package/pipes-3.0.0

Thomas Harper. 2011. A Library Writer’s Guide to Shortcut Fusion. In Proceedings of the 4th ACM Symposium on Haskell
(Haskell °11). Association for Computing Machinery, New York, NY, USA, 47-58. do0i:10.1145/2034675.2034682

Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. 1986. Obtaining Coroutines with Continuations. Computer
Languages 11, 3 (Jan. 1986), 143-153. doi:10.1016/0096-0551(86)90007-X

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

https://doi.org/10.1145/2429069.2429075
https://doi.org/10.1093/oso/9780198537625.003.0001
https://doi.org/10.1016/0020-0190(83)90025-X
https://doi.org/10.1016/0020-0190(83)90025-X
https://doi.org/10.1002/spe.4380190202
https://doi.org/10.1145/3607855
https://doi.org/10.4230/LIPIcs.TYPES.2018.1
https://ir.cwi.nl/pub/6504
https://doi.org/10.1016/0304-3975(85)90088-X
https://dspace.library.uu.nl/handle/1874/13997
https://themonadreader.wordpress.com/wp-content/uploads/2011/10/issue19.pdf
https://themonadreader.wordpress.com/wp-content/uploads/2011/10/issue19.pdf
https://doi.org/10.1007/978-3-319-42900-7_11
https://doi.org/10.1145/3571254
https://doi.org/10.1109/SYNASC.2017.00056
https://doi.org/10.1109/SYNASC.2018.00036
https://doi.org/10.1109/SYNASC.2018.00036
https://doi.org/10.1017/S0956796899003342
https://doi.org/10.1007/3-540-58085-9_72
https://lists.chalmers.se/pipermail/agda/2013/006189.html
https://doi.org/10.1145/1291220.1291199
https://doi.org/10.2307/2269292
https://doi.org/10.2307/2312726
https://doi.org/10.1007/978-3-031-16912-0_1
https://doi.org/10.1145/165180.165214
http://hackage.haskell.org/package/pipes-3.0.0
https://doi.org/10.1145/2034675.2034682
https://doi.org/10.1016/0096-0551(86)90007-X

Hyperfunctions: Communicating Continuations 7:29

Brandon Hewer and Graham Hutton. 2024. Quotient Haskell: Lightweight Quotient Types for All. Proceedings of the ACM
on Programming Languages 8, POPL (Jan. 2024), 785-815. doi:10.1145/3632869

R. Hieb and R. Kent Dybvig. 1990. Continuations and Concurrency. ACM SIGPLAN Notices 25, 3 (March 1990), 128-136.
doi:10.1145/99164.99178

Ralf Hinze, Thomas Harper, and Daniel W. H. James. 2011. Theory and Practice of Fusion. In Implementation and Application
of Functional Languages, Jurriaan Hage and Marco T. Morazan (Eds.). Springer, Berlin, Heidelberg, 19-37. doi:10.1007/978-
3-642-24276-2_2

Martin Hofmann. 1993. Non Strictly Positive Datatypes in System F. https://www.seas.upenn.edu/~sweirich/types/archive/
1993/msg00027.html

Graham Hutton. 1998. Fold and Unfold for Program Semantics. In Proceedings of the Third ACM SIGPLAN International
Conference on Functional Programming. ACM, Baltimore Maryland USA, 280-288. doi:10.1145/289423.289457

Geraint Jones and Jeremy Gibbons. 1993. Linear-Time Breadth-First Tree Algorithms: An Exercise in the Arithmetic of Folds
and Zips. Technical Report 71. Dept of Computer Science, University of Auckland. http://www.cs.ox.ac.uk/people/
jeremy.gibbons/publications/linear.ps.gz

Mark P. Jones. 1995. Functional Programming with Overloading and Higher-Order Polymorphism. In Advanced Functional
Programming, Gerhard Goos, Juris Hartmanis, Jan Leeuwen, Johan Jeuring, and Erik Meijer (Eds.). Vol. 925. Springer
Berlin Heidelberg, Berlin, Heidelberg, 97-136. doi:10.1007/3-540-59451-5_4

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in Action. In Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Programming - ICFP ’13. ACM Press, Boston, Massachusetts, USA, 145. doi:10.
1145/2500365.2500590

Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry. 2005. Backtracking, Interleaving, and Terminating
Monad Transformers: (Functional Pearl). In Proceedings of the Tenth ACM SIGPLAN International Conference on Functional
Programming (ICFP °05). ACM, New York, NY, USA, 192-203. doi:10.1145/1086365.1086390

Edward Kmett. 2015. Hyperfunctions: Hyperfunctions. https://hackage.haskell.org/package/hyperfunctions

Edward Kmett. 2025. Machines. https://hackage.haskell.org/package/machines

Sava Krsti¢, John Launchbury, and Dusko Pavlovi¢. 2001a. Categories of Processes Enriched in Final Coalgebras. In
Foundations of Software Science and Computation Structures (Lecture Notes in Computer Science), Furio Honsell and Marino
Miculan (Eds.). Springer, Berlin, Heidelberg, 303-317. do0i:10.1007/3-540-45315-6_20

Sava Krsti¢, John Launchbury, and Dusko Pavlovi¢. 2001b. Hyperfunctions. In FICS 2001 Workshop on Fixed Points in
Computer Science. Firenze, Italy. http://wwwusers.di.uniromal.it/~labella/partecipation.html

John Launchbury, Sava Krsti¢, and Timothy E. Sauerwein. 2000. Zip Fusion with Hyperfunctions. Technical Report. Oregon
Graduate Institute. https://launchbury.blog/wp-content/uploads/2019/01/zip-fusion-with-hyperfunctions.pdf

John Launchbury, Sava Krsti¢, and Timothy E. Sauerwein. 2013. Coroutining Folds with Hyperfunctions. Electronic
Proceedings in Theoretical Computer Science 129 (Sept. 2013), 121-135. arXiv:1309.5135 doi:10.4204/EPTCS.129.9

Robin Milner, G. Goos, J. Hartmanis, W. Brauer, P. Brich Hansen, D. Gries, C. Moler, G. Seegmiiller, J. Stoer, and N. Wirth
(Eds.). 1980. A Calculus of Communicating Systems. Lecture Notes in Computer Science, Vol. 92. Springer, Berlin,
Heidelberg. doi:10.1007/3-540-10235-3

Rasmus Ejlers Mogelberg and Niccolod Veltri. 2019. Bisimulation as Path Type for Guarded Recursive Types. Proceedings of
the ACM on Programming Languages 3, POPL, Article 4 (Jan. 2019), 4:1-4:29 pages. do0i:10.1145/3290317

Faron Moller. 1990a. The Importance of the Left Merge Operator in Process Algebras. In Automata, Languages and
Programming, Michael S. Paterson (Ed.), Vol. 443. Springer, Berlin, Heidelberg, 752-764. doi:10.1007/BFb0032072

F. Moller. 1990b. The Nonexistence of Finite Axiomatisations for CCS Congruences. In [1990] Proceedings. Fifth Annual IEEE
Symposium on Logic in Computer Science. 142—153. doi:10.1109/LICS.1990.113741

Peter D. Mosses. 2010. Programming Language Description Languages. In Formal Methods: State of the Art and New Directions,
Paul Boca, Jonathan P. Bowen, and Jawed Siddigi (Eds.). Springer, London, 249-273. doi:10.1007/978-1-84882-736-3_8

Ulf Norell. 2009. Dependently Typed Programming in Agda. In AFP 2008, Pieter Koopman, Rinus Plasmeijer, and Doaitse
Swierstra (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 230-266. doi:10.1007/978-3-642-04652-0_5

Ruben P. Pieters and Tom Schrijvers. 2019. Faster Coroutine Pipelines: A Reconstruction. In Practical Aspects of Declarative
Languages (Lecture Notes in Computer Science), José Julio Alferes and Moa Johansson (Eds.). Springer International
Publishing, Cham, 133-149. doi:10.1007/978-3-030-05998-9_9

John C. Reynolds. 1993. The Discoveries of Continuations. LISP and Symbolic Computation 6, 3 (Nov. 1993), 233-247.
doi:10.1007/BF01019459

Olin Shivers and Matthew Might. 2006. Continuations and Transducer Composition. ACM SIGPLAN Notices 41, 6 (June
2006), 295-307. doi:10.1145/1133255.1134016

Vilhelm Sjoberg. 2015. Why Must Inductive Types Be Strictly Positive? https://vilhelms.github.io/posts/why-must-
inductive-types-be-strictly-positive/

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

https://doi.org/10.1145/3632869
https://doi.org/10.1145/99164.99178
https://doi.org/10.1007/978-3-642-24276-2_2
https://doi.org/10.1007/978-3-642-24276-2_2
https://www.seas.upenn.edu/~sweirich/types/archive/1993/msg00027.html
https://www.seas.upenn.edu/~sweirich/types/archive/1993/msg00027.html
https://doi.org/10.1145/289423.289457
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/linear.ps.gz
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/linear.ps.gz
https://doi.org/10.1007/3-540-59451-5_4
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/1086365.1086390
https://hackage.haskell.org/package/hyperfunctions
https://hackage.haskell.org/package/machines
https://doi.org/10.1007/3-540-45315-6_20
http://wwwusers.di.uniroma1.it/~labella/partecipation.html
https://launchbury.blog/wp-content/uploads/2019/01/zip-fusion-with-hyperfunctions.pdf
https://arxiv.org/abs/1309.5135
https://doi.org/10.4204/EPTCS.129.9
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1145/3290317
https://doi.org/10.1007/BFb0032072
https://doi.org/10.1109/LICS.1990.113741
https://doi.org/10.1007/978-1-84882-736-3_8
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-030-05998-9_9
https://doi.org/10.1007/BF01019459
https://doi.org/10.1145/1133255.1134016
https://vilhelms.github.io/posts/why-must-inductive-types-be-strictly-positive/
https://vilhelms.github.io/posts/why-must-inductive-types-be-strictly-positive/

7:30 Donnacha Oisin Kidney and Nicolas Wu

Leon P Smith. 2009. Lloyd Allison’s Corecursive Queues: Why Continuations Matter. The Monad.Reader 14, 14 (July 2009),
28. https://meldingmonads.files.wordpress.com/2009/06/corecqueues.pdf

Michael Snoyman. 2011. Conduit. https://hackage.haskell.org/package/conduit-0.0.0.1

Michael Spivey. 2017. Faster Coroutine Pipelines. Proceedings of the ACM on Programming Languages 1, ICFP (Aug. 2017),
5:1-5:23. doi:10.1145/3110249

Eneia Todoran. 2000. Metric Semantics for Synchronous and Asynchronous Communication: A Continuation-based
Approach. Electronic Notes in Theoretical Computer Science 28 (Jan. 2000), 101-127. doi:10.1016/S1571-0661(05)80632-2

Niccolo Veltri and Andrea Vezzosi. 2020. Formalizing 7z-Calculus in Guarded Cubical Agda. In Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs (CPP 2020). Association for Computing Machinery,
New York, NY, USA, 270-283. doi:10.1145/3372885.3373814

Niccolo Veltri and Andrea Vezzosi. 2023. Formalizing CCS and 7-Calculus in Guarded Cubical Agda. Journal of Logical and
Algebraic Methods in Programming 131 (Feb. 2023), 100846. doi:10.1016/j.jlamp.2022.100846

Philip Wadler. 1995. Monads for Functional Programming. In Advanced Functional Programming (Lecture Notes in Computer
Science), Johan Jeuring and Erik Meijer (Eds.). Springer, Berlin, Heidelberg, 24-52. do0i:10.1007/3-540-59451-5_2

Received 2025-07-10; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 7. Publication date: January 2026.

https://meldingmonads.files.wordpress.com/2009/06/corecqueues.pdf
https://hackage.haskell.org/package/conduit-0.0.0.1
https://doi.org/10.1145/3110249
https://doi.org/10.1016/S1571-0661(05)80632-2
https://doi.org/10.1145/3372885.3373814
https://doi.org/10.1016/j.jlamp.2022.100846
https://doi.org/10.1007/3-540-59451-5_2

	Abstract
	1 Introduction
	2 Basic Hyperfunctions
	2.1 Church Encoding
	2.2 Lateral Church Encoding
	2.3 Hyperfunctions as Streams
	2.4 Message Passing
	2.5 Breadth-First Traversals

	3 Modelling CCS
	3.1 CCS
	3.2 CCS Algebras
	3.3 A Hyperfunction Model of CCS
	3.4 Proving that Communicator is a Model

	4 Hyperfunctions and Monads
	4.1 Adding Monads Simply
	4.2 A Monadic Language for Concurrency

	5 Coroutines
	5.1 Pipes
	5.2 First-class Coroutines
	5.3 Stable Marriages

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

