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A hyperfunction is a continuation-like construction that can be used to implement communication in the

context of concurrency. Though it has been reinvented many times, it remains obscure: since its definition by

Launchbury et al., hyperfunctions have been used to implement certain algebraic effect handlers, coroutines,

and breadth-first traversals; however, in each of these examples, the hyperfunction type went unrecognised.

We identify the hyperfunctions hidden in all of these algorithms, and we exposit the common pattern

between them, building a framework for working with and reasoning about hyperfunctions. We use this

framework to solve a long-standing problem: giving a fully-abstract continuation-based semantics for a

concurrent calculus, the Calculus of Communicating Systems. Finally, we use hyperfunctions to build a

monadic Haskell library for efficient first-class coroutines.
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1 Introduction
While continuations and concurrency have a long and happy history together [Haynes et al. 1986;

Hieb and Dybvig 1990; Todoran 2000], occasionally the combination of these two patterns can result

in complex and intricate programs that resist comprehension. As is often the case in partnerships,

we think that the crux of the problem lies with communication: in particular, communication

between continuations. This paper is interested in hyperfunctions [Launchbury et al. 2000], a type

of continuation with a rich algebraic structure that facilitates communication.

Perhaps the best example of the problems that arise when continuations tangle with concurrency

comes from the field of program semantics. There, despite the widespread use of continuations,

it has proved difficult to find a continuation-based semantics for concurrent languages like the

Calculus of Communicating Systems (CCS) [Milner et al. 1980] and other process calculi.

Although continuation-passing style is sometimes regarded as a standard style to

use for denotational semantics, it is inadequate for describing languages that involve

non-determinism or concurrent processes. [Mosses 2010]

Though Ciobanu and Todoran have made significant progress on this problem [2018], there is

currently no fully-abstract continuation-based model for a concurrent language like CCS. However,

as we will show, hyperfunctions provide the principles to solve this long-standing problem.

Communicating continuations show up outside of program semantics, also. Coroutines, for

example, are a general control abstraction where communication plays a fundamental role; in
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continuation-based implementations [Haynes et al. 1986; Shivers and Might 2006; Spivey 2017] this

communication becomes much more difficult to implement. A similar problem can show up even in

simple list algorithms like zip or interleave: when lists are represented with continuations [e.g. Gill

et al. 1993] the merging of two lists becomes communication between parallel processes [Launch-

bury et al. 2000]. Perhaps surprisingly, hyperfunctions encapsulate a pattern common to all of these

problems, and they provide a formalism for building algorithms to solve them.

On our way to proving full abstraction for CCS, we will take a tour through the literature,

spotting unrecognised hyperfunctions in the wild; from Hofmann’s algorithm for breadth-first

traversal in 1993, through Shivers and Might’s transducers in 2006 and Kammar et al.’s handlers of

algebraic effects in 2013, up to Spivey’s coroutine pipelines in 2017. Along the way, we will build a

toolbox for working with hyperfunctions, and a framework for reasoning about them. All of this

will equip us to define our eventual model for CCS. Finally, we will look at some novel uses for

hyperfunctions in real, practical applications: first in optimising some Haskell libraries, and finally

in building a monadic library for first-class asymmetric coroutines backed by continuations.

Contributions
• We identify and catalogue a number of appearances of hyperfunctions in the literature,

including Hofmann [1993]; Kammar et al. [2013]; Shivers and Might [2006]; Spivey [2017].

To the best of our knowledge, this is the first work to connect these appearances to the

hyperfunction definition of Launchbury et al. [2000].

• We describe how hyperfunctions behave through a handful of examples of using hyperfunc-

tions to solve simple programming problems (Section 2).

• We characterise the expressive power of hyperfunctions, by showing that they can form a fully-

abstract model (which we call the Communicator model) for the Calculus of Communicating

Systems (Section 3), thereby showing that hyperfunctions are capable of expressing at least

the model of concurrency captured by CCS.

• We use hyperfunctions to implement monadic concurrency constructions, including LogicT

for backtracking [Kiselyov et al. 2005] and Claessen’s concurrency monad [1999] (Section 4).

• Finally, we demonstrate that hyperfunctions underlie certain optimisations to coroutine

libraries [Gonzalez 2012; Spivey 2017], and we use this understanding to implement a new

Haskell library for asymmetric coroutines which allows for first-class transfer of control, and

solve the stable marriage problem using this library (Section 5).

One common feature among the works that have rediscovered hyperfunctions is that the authors

often comment on how difficult it was to figure out the hyperfunction-like structure they needed.

So, while the scientific and technical contribution of this paper is in its study of hyperfunctions

and in the development of a new model for CCS, we hope that the broader impact will be in saving

future programmers from having to reinvent this tricky type on their own.

2 Basic Hyperfunctions
Let’s start by actually defining the hyperfunction type itself. A hyperfunction of type 𝑎 ↬ 𝑏 is an

infinitely left-nested function of the following form:

𝑎 ↬ 𝑏 = (((. . .→ 𝑎) → 𝑏) → 𝑎) → 𝑏

Cardinality restrictions prevent this type from having a set-theoretic interpretation. It does have a
domain-theoretic interpretation, however (as the solution to 𝑋 � (𝑋 ⇒ 𝐴) ⇒ 𝐵), as explained by

Krstić et al., who also show how to interpret hyperfunctions as final coalgebras [2001a; 2001b].

For now, though, we won’t concern ourselves with the details of the foundational setting of

the hyperfunction type (although we will return to the question in Remark 3.8). Happily, most
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programming languages do not impose strict cardinality restrictions on type definitions: as a result,

hyperfunctions can be defined as a simple (but strange) recursive type. In Haskell:

newtype a ↬ b = Hyp { 𝜄 :: (b ↬ a) → b} (1)

In isolation, this definition can be a little perplexing: however, it is possible to build an understanding

of this type by using it to implement concrete algorithms. Over the next few pages we will do just

that, using hyperfunctions to implement functions on church-encoded numbers, zip on lists, and

breadth-first traversal. Each of these examples will reveal some capability of the type; by the end of

this section we will have enough tools to attack the problem of modelling CCS.

Code. This paper uses code examples in Haskell throughout. We do not, however, use any special

features unique to the language; the algorithms we present can be translated to any general-

purpose language with higher-order functions. One caveat for strict-by-default languages is that

the hyperfunction type must be encoded as a lazy function (𝑎 ↬ 𝑏 ≔ (() → 𝑏 ↬ 𝑎) → 𝑏).

In addition to theHaskell code, we have alsomechanised the proofs in Section 3 usingAgda [Norell

2009]. This mechanisation is explained in more detail in Remark 3.17.

A brief note on syntax: we will use copatterns [Abel et al. 2013] to define hyperfunctions. A

copattern is a way to define an instance of a record type by defining each of its fields, instead of

using a constructor. The following two code snippets define the constant hyperfunction 𝑘 , where

𝑘 𝑥 is a hyperfunction that always returns 𝑥 .

k :: b→ (a ↬ b)
k x = Hyp { 𝜄 = 𝜆 → x }

k :: b→ (a ↬ b)
𝜄 (k x) = x

The snippet on the left uses Haskell’s record syntax, the version on the right uses copatterns.

2.1 Church Encoding
As we will see shortly, hyperfunctions tend to show up to solve problems that arise when working

with Church encodings. Church encoding is a way to encode inductive data types using only

functions; it is occasionally used for optimisation. Let’s quickly refresh our memory on Church

encoding, starting with the natural numbers, here encoded in the standard (unary) inductive way.

data ℕ = Z | S ℕ
The fundamental function for processing this type is its fold:

fold :: ℕ→ (a→ a) → a→ a
fold (S n) s z = s (fold n s z)
fold Z z = z

fold n s z = (𝑠 ◦ · · · ◦ 𝑠) z
𝑛

For some n : ℕ, fold n s z applies the function s to z n times. For instance, fold 3 s z = s (s (s z)).
The Church encoding of the naturals (given below as the type N , which also has a constructor

named N ) is effectively the partial application of this fold function.

newtype N =

N {nat :: ∀a.(a→ a) → a→ a}
church :: ℕ→ N
church n = N (fold n)

Often Church encoding is used as an optimisation technique. Church-encoded lists, for instance,

underpin GHC’s list fusion machinery [Gill et al. 1993; Harper 2011; Hinze et al. 2011]. Here is an

example of how Church encoding can improve the performance of addition on ℕ and N :

Z +m = m
S n +m = S (n +m)

n +m =

N (𝜆s z → nat n s (nat m s z))
Because addition on ℕ always destructs and then reconstructs the left-hand argument, left-nested
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7:4 Donnacha Oisín Kidney and Nicolas Wu

sums (((. . . + 𝑥) + y) + 𝑧) will evaluate in quadratic time. On N , in contrast, + is always linear,
regardless of whether it’s left- or right-nested. This removal of intermediate data structures—

deforestation—is one of the chief benefits of church encodings; foldr ,map, and ++ on lists can benefit

in much the same way that addition benefited above.

However, not every function adapts easily to a Church encoded variant. The predecessor function

(pred), for instance, is infamously tricky to write, and asymptotically slow: pred on N is O(𝑛). It
seems to suffer from the problem that Church encoding solved on addition: it has to traverse all of

its input and then rebuild it to produce a result.

This pattern of performance suggests that there is some class of functions that work well on

Church encodings: addition, ++, and foldr; and there is another class that does not benefit from

Church encoding: pred, tail, etc. We are interested in a third class of functions which we will

call lateral functions. Lateral functions are things like subtraction, comparison, and zipping; they

process multiple structures in parallel, and they seem like they should be pathological cases for

Church encoding (subtraction, after all, is just iterative application of pred). There is a technique
to implement these functions efficiently, however, and it uses hyperfunctions as the core unit of

computation. Over the rest of this section, we will explore this technique, and we will build a

language of hyperfunctions that will enable the more complex examples in the rest of the paper.

2.2 Lateral Church Encoding
A simple example of a lateral function is ⩽. On ℕ it has the following implementation:

(⩽) :: ℕ→ ℕ→ Bool S n ⩽ S m = n ⩽ m
S n ⩽ Z = False

Z ⩽ m = True

The recursive call takes the subterm of both of the inputs. This is what makes Church encoding the

function difficult: while we can fold over one of the arguments, as is shown below, it is difficult to

see how we might fold over both.

n ⩽ m = fold n ns nz m
where

ns :: (ℕ→ Bool) → ℕ→ Bool

ns nk (S m) = nk m
ns nk Z = False

nz :: ℕ→ Bool

nz m = True

Notice that we can derive definitions like the above mechanically: the S case is replaced by the ns
function, and the Z case by nz.
We can try to proceed by applying the same transformation to the ns function:

ns nk = fold m ms mz nk
where

ms mk nk = nk mk
mz nk = False

But thems case doesn’t work. We can’t apply nk mk, because nk expects anℕ, not the fold structure
built by ms. We need to rewrite the fold on n to receive a fold on m.

n ⩽ m = fold n ns nz (fold m ms mz)
where

ns nk mk = mk nk
nz mk = True

ms mk nk = nk mk
mz nk = False

The insight here is that we treat each fold as a coroutine. The fold on n checks if its input is Z,

returning True if so (the nz function), otherwise it transfers control to the fold on m, named mk.
Ignoring types for a moment, this function does compute. But, of course, this is Haskell: we can’t

ignore the types. Plug the above function into GHC and you will receive the following complaint:

Could not construct infinite type t ~ (t -> Bool) -> Bool

This is a similar error to the one you will encounter if you try to write the Y-combinator in Haskell

(without newtypes). While the function is correct in an untyped world, Haskell’s type system
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cannot unify the types t and (t -> Bool) -> Bool. But while GHC can’t construct a type that

satisfies that equation, we can. It is, in fact, a hyperfunction: t above is inhabited by Bool ↬ Bool.

n ⩽ m = 𝜄 (nat n ns nz)
(nat m ms mz) where

𝜄 (ns nk) mk = 𝜄 mk nk
𝜄 nz mk = True

𝜄 (ms mk) nk = 𝜄 nk mk
𝜄 mz nk = False

This implementation follows the recursion pattern of the direct-style ⩽ exactly: as a result, we

know that it has the same asymptotic performance. This is a well-typed, linear implementation of

⩽ on Church-encoded naturals, using hyperfunctions.

2.3 Hyperfunctions as Streams
In this example we will implement another lateral function: subtraction. We will also introduce

another concept here that can aid in reasoning about hyperfunctions: the streammodel [Launchbury
et al. 2013]. While hyperfunctions themselves are just functions of a particular form, it can be

difficult to build a mental model for how they behave, especially when they are deeply nested and

intricately combined. However, it is possible to visualise hyperfunctions as streams, which we have

found to be much easier to reason about.

The stream model treats a hyperfunction of type 𝑎 ↬ 𝑏 as a stream of functions of type 𝑎 → 𝑏.

data Stream a = a ⊳ Stream a (a ↬ b) ≈ Stream (a→ b)
Think of the original hyperfunction type (Eq.(1)) as the low-level implementation, and the stream

version above as a high-level mental model. Note that this model is an approximation, not a one-to-
one representation. Many hyperfunctions are not streams, and so there are many situations when

the correspondence between the two representations breaks down.

However, when we confine ourselves to using only the interface below (Eqs. (2) to (4)), the

behaviour of the two representations is indistinguishable. In particular, all equalities on the stream

model will hold on the hyperfunction model as well. In this way, we can write code with the stream

model in mind, and have it “compile” to the continuation model of Eq.(1).

The interface in question consists of three combinators: ⊳, which pushes a function onto a stream;

⊙, which zips two streams together; and run, which collapses a stream into a single value (these

combinators were present in Launchbury et al.’s original work on hyperfunctions [2000]).

(⊳) :: (a→ b) → (a ↬ b)
→ (a ↬ b)

(⊙) :: (b ↬ c) → (a ↬ b)
→ (a ↬ c)

run :: a ↬ a→ a
(2)

The ⊳ function is the stream constructor, so the expression 𝑓 ⊳ 𝑔 ⊳ ℎ ⊳ . . . constructs a stream with 𝑓

at the head, followed by 𝑔, then ℎ, and so on. The semantics of ⊙ (zipping) and run are as follows:

(f ⊳ fs) ⊙ (g ⊳ gs) = (f ◦ g) ⊳ (fs ⊙ gs) (3) run (f ⊳ fs) = f (run fs) (4)

With this small toolbox of functions, we can build algorithms and prove things about them. For

instance, rep lifts a function 𝑎 → 𝑏 into a hyperfunction 𝑎 ↬ 𝑏. Using Eqs.(3) and (4) we can show

that rep is homomorphic through ◦ and ⊙.
rep :: (a→ b) → a ↬ b
rep ab = ab ⊳ rep ab (5)

rep f ⊙ rep g
≡ (f ⊳ rep f ) ⊙ (g ⊳ rep g) { Eq.(5) }

≡ (f ◦ g) ⊳ (rep f ⊙ rep g) { Eq.(3) }

≡ rep (f ◦ g)
Let’s now look at subtraction. To implement 𝑛 −𝑚, our strategy will be to convert both 𝑛 and

𝑚 to hyperfunctions, zip them together using ⊙, and then run the result to get the answer. Our
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n −m = N 𝜆 s z → run (nat n (id ⊳) (rep (const z)) ⊙ nat m (id ⊳) (rep s))

= N 𝜆 s z → run ({ nat 𝑛,𝑚 } (id ⊳ · ·· ⊳ id ⊳ id ⊳ id
𝑛

⊳ const z ⊳ · ··)
(id ⊳ · ·· ⊳ id⊙

𝑚

⊳ s ⊳ s ⊳ s ⊳ s ⊳ · ··))

{ Apply ⊙ } = N 𝜆 s z → run (id ◦ id ⊳ · ·· ⊳ id ◦ id ⊳ id ◦ s ⊳ · ·· ⊳ id ◦ s ⊳ const z ◦ s ⊳ · ··)
𝑛

𝑚 𝑛 −𝑚

= N 𝜆 s z → run (id ⊳ · ·· ⊳ id ⊳ s ⊳ · ·· ⊳ s ⊳ const z ⊳ · ··)
𝑛

𝑚 𝑛 −𝑚
{ Apply all ◦ }

= N 𝜆 s z → id (. . . (id (s (. . . (s (const z (. . .)))))))
𝑛

𝑚 𝑛 −𝑚
{ Apply run }

= N 𝜆 s z → s (. . . (s z))
𝑛 −𝑚

{ Apply id, const }

Fig. 1. Derivation of Subtraction

implementation returns 0 when 𝑛 < 𝑚, but we assume that𝑚 ⩽ 𝑛 for the rest of this explanation

for simplicity’s sake. The implementation is given below, and diagrammed in Fig.1.

n −m = N (𝜆s z → run (nat n (id⊳) (rep (const z)) ⊙ nat m (id⊳) (rep s)))
𝑛 is converted into a stream of functions that starts with 𝑛 ids, followed by infinitely many const zs,
and𝑚 is converted to a stream starting with𝑚 ids, followed by infinitely many ss.

When zipped together, the resulting stream starts by drawing the ids from both 𝑛 and𝑚’s streams.

Then, at the𝑚th entry in the stream, the ids from𝑚 run out, and the stream switches to id ◦ s. At
the 𝑛th entry in the stream, the ids from 𝑛 run out, and the stream switches to const z ◦ s.

Our stream is now𝑚 ids, followed by 𝑛−𝑚 ss, followed by infinitely many const zs. When we run
the stream, we discard the ids and anything after the first const z (since const z (const z . . .) = 𝑧),

leaving behind 𝑛 −𝑚 applications of ss applied to z. Subtraction is done!

Let’s now leave the stream model, and return to the continuation-based model from Eq.(1). We

swap out the implementations of ⊳, ⊙, and run for the following:

(⊳) :: (a→ b) →
(a ↬ b) → (a ↬ b)

𝜄 (f ⊳ h) k = f (𝜄 k h)
(6)

(⊙) :: (b ↬ c) →
(a ↬ b) → (a ↬ c)

𝜄 (f ⊙ g) h = 𝜄 f (g ⊙ h)
(7)

run :: a ↬ a→ a
run h = 𝜄 h (Hyp run)

(8)

As promised, the implementation of subtraction above still works, with all equalities preserved.

One final point to make is that for the stream model, these three combinators seem to be the

most “primitive” operations, from which other operations are derived. On the↬ type, however, the

primitive operation is 𝜄. We can relate this operation to the stream model via the following identity:

𝜄 𝑓 𝑔 = run (𝑓 ⊙ 𝑔) (9)

2.4 Message Passing
The original motivation for hyperfunctions, and perhaps their most well-known use, is in imple-

menting zip [Launchbury et al. 2000]. An important optimisation in Haskell is foldr-fusion [Gill et al.
1993], which uses a continuation-based encoding of lists to eliminate intermediate data structures in

list-processing code. Gill et al. demonstrated how to apply this optimisation to a library of standard
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list functions (map, filter , sum, etc.); however, zip proved to be more difficult. This is because, like

subtraction, zip is a lateral function, which processes two structures in parallel. Launchbury et al.

were the first [2000] to figure out how to apply foldr-fusion to zip, using hyperfunctions.

Zipping employs an additional feature of hyperfunctions that we have not yet seen: message

passing. To explain this feature, we will model hyperfunctions as processes that can communicate.

We will treat a hyperfunction 𝑎 ↬ 𝑎 as a kind of process with some result domain 𝑎. In this

context, the run function runs the process, extracting the final result, and 𝑓 ⊳ 𝑃 prefixes a process 𝑃

with some action 𝑓 :: 𝑎 → 𝑎. ⊙ performs a parallel merge of processes.

Adding a parameter 𝑖 to the domain of 𝑎 ↬ 𝑎 gives a process which takes an 𝑖 as input at every

step; (𝑎, 𝑖) ↬ 𝑎. We can curry this type to arrive at 𝑎 ↬ (𝑖 → 𝑎), which we call a Consumer.

type Consumer i a = a ↬ (i→ a) (10)

The cons function prefixes a process with an action 𝑎 → 𝑎 that can rely on some input 𝑖 .

cons :: (i→ a→ a) → Consumer i a→ Consumer i a
𝜄 (cons f p) q i = f i (𝜄 q p)

The inverse of a consumer is a producer; we derive it simply by flipping the hyperfunction arrow.

type Producer o a = (o→ a) ↬ a prod :: o→ Producer o a→ Producer o a
𝜄 (prod o p) q = 𝜄 q p o (11)

Finally, a pair of a producer and consumer can be run together with 𝜄.

𝜄 :: Producer m a→ Consumer m a→ a

We will use this model of hyperfunctions to implement zip with folds on lists. To zip two lists, xs
and ys, we convert xs to a producer and ys to a consumer, and run both of them together with 𝜄.

zip :: [a] → [b] → [ (a, b) ]
zip xs ys = 𝜄 (foldr xf xb xs) (foldr yf yb ys)

The conversion of xs is simple: on an empty list (xb), we return a process which ignores its input

and returns an empty list. On a non-empty list (xf ), we produce one item: the head of the list.

xf :: a→ Producer a [ (a, b) ]
→ Producer a [ (a, b) ]

xf x xk = prod x xk

xb :: Producer a [ (a, b) ]
𝜄 xb = [ ]

On ys, the conversion is slightly more complex. In the empty case (yb), we also just return an

empty list. However, in the non-empty case (yf ), we consume one message, using the cons function.
This message is the x, sent from xf : we pair it up with the y we have, and cons it on to the output.

yf :: b→ Consumer a [ (a, b) ]
→ Consumer a [ (a, b) ]

yf y yk = cons (𝜆x xys→ (x, y) : xys) yk

yb :: Consumer a [ (a, b) ]
𝜄 yb = [ ]

This defines zip on lists, entirely with folds, and without any performance penalty.

The Producer andConsumer types are not just useful for implementing zip: the pattern displayed
here, of passing messages between continuations executed in lock-step, shows up repeatedly in

implementations of coroutines (where “coroutine” here refers to structures like the kind defined

in Gonzalez’s Pipes library [2012]). We will discuss this in more detail in Section 5.1, but for

now, we will note that types almost identical to the Producer and Consumer types (save for some

rearranging of parameters) appear in both Spivey’s optimised implementation of coroutines [2017],

and in Kammar et al.’s deep handlers for coroutines [2013].
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2.5 Breadth-First Traversals
The first occurrence of a hyperfunction-like type we were able to find is in an email to the TYPES

mailing list [1993], where Hofmann uses the following type to implement breadth-first traversal.

data Rou a b = Over | Next ((Rou a b→ a) → b) (12)

This type differs from the hyperfunction type we have above in two ways: first, it unfolds the

recursive definition by one step, making the type regular (i.e. its parameters don’t change in the

recursive occurrence); secondly, Rou includes the Over constructor, which is used in Hofmann’s

algorithm to signify termination of the traversal.

Without the Over constructor, it becomes necessary to pass an extra parameter around to track

recursion depth. This technique can be seen clearly in Allison’s implementation [1989] of breadth-

first traversal (or Smith’s translation of those ideas to Haskell [2009]); both of these works develop

algorithms quite similar to Hofmann’s, though they don’t quite arrive at the hyperfunction type.

Notwithstanding the extra constructor, the structure of Hofmann’s algorithm shares some

elements with the implementation of zip above (Section 2.4). While we won’t present Hofmann’s

original algorithm here, we will say that it works by building a hyperfunction for each path into

the tree, and then zipping those hyperfunctions together. The hyperfunction structure handles

the separation of levels; as a result, the final algorithm resembles Gibbons et al. and Jones and

Gibbons’s the level-wise algorithms [2022; 1993].

3 Modelling CCS
Though continuations are widely used in denotational semantics, they can cause meta-theoretical

problems when used to model concurrent languages. This section will describe how we solved some

of those problems in developing a hyperfunction model of the Calculus of Communicating Systems

(CCS) [Milner et al. 1980]. The existence of this model shows that hyperfunctions are powerful

enough to express the essential components of concurrency; or at least the kind of concurrency

encapsulated by CCS.

3.1 CCS
CCS is a process calculus which supports concurrency, nondeterminism, and communication

between processes. Its syntax is given in Fig.2a. A term 𝑝 : P 𝑛 represents a process with names

of type n. The operational semantics of CCS, given in Fig.2b, is a labelled transition system. Each

transition is labelled with an action Act 𝑛, where an action can be silent, 𝜏 , an input 𝑛 or an output

𝑛 of some name 𝑛. A trace for a process 𝑝 is a list of actions [𝑎1, . . . , 𝑎𝑛] that label a sequence of
transitions 𝑝

𝑎1−→ 𝑝1
𝑎2−→ · · · 𝑎𝑛−−→ 𝑝𝑛 . A process can have multiple possible traces.

Actions. The term 𝑎 · 𝑝 represents a process consisting of an action (Act) a, followed by a

process 𝑝 . The process 𝑎 · 𝑝 can emit the action 𝑎 and reduce to 𝑝 , according to the Act rule.

Nondeterminism. The ⊕ operator represents nondeterministic choice, and 𝟘 represents the

empty or finished process. A process 𝑝 ⊕ 𝑞 can proceed by stepping through the left hand

process (Suml) or the right (Sumr). Notice that when one branch of a ⊕ expression is chosen,

the other branch is discarded. So the process 𝑎 · 𝑏 · 𝟘 ⊕ 𝑐 · 𝑑 · 𝟘 has only two traces: [𝑎, 𝑏] or
[𝑐, 𝑑]. There is no rule related to 𝟘, so the finished process cannot reduce.

Parallelism. The term 𝑝 ∥ 𝑞 represents a parallel merge between the processes 𝑝 and 𝑞, which

may communicate with each other. The rules Stepl and Stepr allow either side of ∥ to step,

without discarding the other. So the process 𝑎 · 𝑏 · 𝟘 ∥ 𝑐 · 𝟘 has the traces [𝑎, 𝑏, 𝑐], [𝑎, 𝑐, 𝑏],
and [𝑐, 𝑎, 𝑏]. Parallel processes can also communicate: if an output from one process matches
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data Act n = 𝜏 | n | n data P n = Act n · P n | 𝟘 | P n ⊕ P n | P n ∥ P n | 𝜈n · P n | ! (P n)
(a) CCS Syntax

𝑎·𝑃 𝑎−→ 𝑃
Act

𝑃
𝑎−→ 𝑃 ′

𝑃 ⊕ 𝑄 𝑎−→ 𝑃 ′
Suml

𝑄
𝑎−→ 𝑄 ′

𝑃 ⊕ 𝑄 𝑎−→ 𝑄 ′
Sumr

𝑃
𝑎−→ 𝑃 ′

𝑃 ∥ 𝑄 𝑎−→ 𝑃 ′ ∥ 𝑄
Stepl

𝑄
𝑎−→ 𝑄 ′

𝑃 ∥ 𝑄 𝑎−→ 𝑃 ∥ 𝑄 ′
Stepr

𝑃
𝑛
−→ 𝑃 ′ 𝑄

𝑛−→ 𝑄 ′

𝑃 ∥ 𝑄 𝜏−→ 𝑃 ′ ∥ 𝑄 ′
Syncio

𝑃
𝑛−→ 𝑃 ′ 𝑄

𝑛
−→ 𝑄 ′

𝑃 ∥ 𝑄 𝜏−→ 𝑃 ′ ∥ 𝑄 ′
Syncoi

𝑃
𝑎−→ 𝑃 ′ 𝑎 ∉ {𝑛, 𝑛}

𝜈𝑛 · 𝑃 𝑎−→ 𝜈𝑛 · 𝑃 ′
Res

𝑃 ∥ !𝑃 𝑎−→ 𝑃 ′

!𝑃
𝑎−→ 𝑃 ′

Rep

(b) CCS Operational Semantics

Fig. 2. CCS

an input to the other, both processes reduce one step and the silent action is emitted (Syncio

and Syncoi). So the process 𝑛 · 𝟘 ∥ 𝑛 · 𝟘 has the traces [𝑛, 𝑛], [𝑛, 𝑛], and [𝜏].
Restriction. The term 𝜈𝑛 · 𝑝 hides the name 𝑛 from anything outside of the process. As per

the Res rule, a process under a 𝜈𝑛· term can only reduce if the emitted action does not

contain 𝑛. This can be used to enforce private communication: recall that the possible traces

from 𝑛 · 𝟘 ∥ 𝑛 · 𝟘 included [𝑛, 𝑛]; if we instead wrap the term with 𝜈𝑛·, then we enforce

communication, so the only valid trace is [𝜏].
Iteration. The term !𝑝 represents the infinitely replicated process 𝑝 . The rule Rep means that

the expression ! 𝑝 is equivalent to 𝑝 ∥ !𝑝 .
Our treatment of CCS is standard: we the same syntax and operational semantics as Chappe

et al. [2023], which is a slight variant of the versions used by Veltri and Vezzosi [2023] and Bruni

and Montanari [2017].

3.2 CCS Algebras
A CCS algebra is a way to interpret some CCS expression into a denotational domain. Concretely,

we capture the notion of a CCS algebra with a class, CCSAlg, where a type 𝑐 is a carrier for a CCS

algebra if there is an instance CCSAlg 𝑐 .

class CCSAlg c where
type Name c :: Type
(·) :: Act (Name c) → c → c
𝟘 :: c
(⊕) :: c → c → c

𝜈 · · :: Name c → c → c
(∥) :: c → c → c
! :: c → c

(13)

This class has onemethod for each of the syntactic constructors of CCS. It also includes an associated

type Name, where Name 𝑐 represents the type of names that the CCS algebra on 𝑐 supports.

Using this class, we define J_K, which interprets a syntax tree P (Name 𝑐) into c [Hutton 1998].

J_K :: CCSAlg 𝑐 ⇒ P (Name 𝑐) → 𝑐 (14)

This J_K function maps each syntactic construction to its corresponding method in CCSAlg. Note

that this style of defining denotational semantics means they are automatically compositional.
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Remark 3.1. There are three “interpretation”-like functions in this section: J_K above (Eq.(14)),
and J_K↓ (Fig.3b) and J_K↑ (Fig.4b) below. These functions are polymorphic in their return types,

which can be difficult to infer from context, so we will occasionally use subscripts to disambiguate.

In Eq.(14) above, for example, we might write J_K𝑐 to indicate that it has type P (Name 𝑐) → 𝑐 .

Instances of the CCSAlg class are expected to follow the following laws.

𝟘 ⊕ 𝑝 = 𝑝 (𝑝 ⊕ 𝑞) ⊕ 𝑟 = 𝑝 ⊕ (𝑞 ⊕ 𝑟 ) 𝑝 ⊕ 𝑞 = 𝑞 ⊕ 𝑝 𝑝 ⊕ 𝑝 = 𝑝 (15)

𝟘 ∥ 𝑝 = 𝑝 (𝑝 ∥ 𝑞) ∥ 𝑟 = 𝑝 ∥ (𝑞 ∥ 𝑟 ) 𝑝 ∥ 𝑞 = 𝑞 ∥ 𝑝 (16)

𝜈𝑛 · 𝟘 = 𝟘 𝜈𝑛 · (𝑝 ⊕ 𝑞) = 𝜈𝑛 · 𝑝 ⊕ 𝜈𝑛 · 𝑞 (17)

! 𝑝 = 𝑝 ∥ !𝑝 (18)

Under these laws, ⊕ forms a semilattice (a commutative idempotent monoid) with identity 𝟘
(Eq.(15)), ∥ forms a commutative monoid with identity 𝟘 (Eq.(16)), 𝜈 · is homomorphic on the ⊕
monoid (Eq.(17)), and ! expands to perform replication (Eq.(18)).

Structural congruence of CCS terms, an equivalence relation on P denoted by ≈𝑠 , is defined as the
equivalence closure of the relation generated by the above rules (with the addition of congruence

rules). Any lawful implementation of CCSAlg therefore satisfies the property:

𝑝 ≈𝑠 𝑞 =⇒ J𝑝K ≡ J𝑞K

All models of CCS are expected to be lawful instances of the CCSAlg class. Furthermore the

syntax of CCS, when quotiented by ≈𝑠 , also forms a lawful instance, where J_KP ≡ id.
We will note at this point that while these laws are sound (i.e. structurally congruent processes

are semantically equivalent) they are not complete (bisimilar processes need not be structurally

congruent). In fact, there is no finite set of laws (with this particular set of operators) that has this

completeness property: this is explained in more detail in Section 3.4.

3.3 A Hyperfunction Model of CCS
Let’s now turn back to hyperfunctions, and to the hyperfunction model of CCS. The entirety of this

model is contained in Fig.3: it consists of the carrier type (Communicator, Fig.3a), a way to interpret
this type into another model of CCS (Fig.3b), and an implementation of the CCS operations (Fig.3c).

The Communicator Type. The carrier type of our hyperfunction model isCommunicator (Fig.3a).

We have taken some structure from Section 2.4: a Communicator is a process with result type r ,
that passes messages of typeMessage n. AMessage is either a 𝕢uery or an 𝕒nswer. A 𝕢uery is like

a prompt: by passing a 𝕢uery to a Communicator, we are asking “what is your top-level action?”

The Communicator then responds with an 𝕒nswer containing that top-level action.

Interpretation. It can be difficult to understand some of the functions in Fig.3c in isolation: their

implementations only really make sense when we keep the interpretation of a Communicator

(Fig.3b) in mind. For that reason, we’ll go over interpretation first.

In this context, interpreting a Communicator 𝑛 𝑟 means evaluating that Communicator to its

result type, 𝑟 , via the function J_K↓ :: Communicator 𝑛 𝑟 → 𝑟 (Fig.3b). This evaluation translates

the actions and nondeterministic operations on the Communicator to their analogous operations

on 𝑟 . In this way, J_K↓ is a translation between two different representations of a CCS process.

The J_K↓ function works by taking a Communicator 𝑝 , and passing it two arguments: 1 and 𝕢.
Recall that passing a 𝕢uery to a Communicator as its second argument prompts it to respond with

its top-level action: in this case, the Communicator 𝑝 will respond by passing its top-level action to

its first argument, 1. 1 is a special Communicator that translates Messages into actions on 𝑟 : when

supplied with an 𝕒nswer containing some action 𝑎, it emits that action by using action prefixing
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type Communicator n r
= (Message n→ r) ↬ (Message n→ r)

data Message n = 𝕢 | 𝕒 (Act n)
(a) The Communicator Type

JpK↓ = 𝜄 p 1 𝕢

𝜄 1 p (𝕒 a) = a · JpK↓
𝜄 1 𝕢 = 𝟘
(b) Interpretation

instance (Semilattice r, Eq n) ⇒ CCSAlg (Communicator n r) where
type Name (Communicator n r) = n

𝜄 (a · p) q 𝕢 = 𝜄 q p (𝕒 a)
𝜄 (n · p) q (𝕒 n) = 𝜄 q p (𝕒 𝜏)
𝜄 ( · ) = 𝟘

(19)

𝜄 𝟘 = 𝟘 (20)

𝜄 (p ⊕ q) k m = 𝜄 p k m ⊕ 𝜄 q k m (21)

𝜄 (𝜈n · p) q (𝕒 n) = 𝟘
𝜄 (𝜈n · p) q (𝕒 n) = 𝟘
𝜄 (𝜈n · p) q m = 𝜄 p (𝜈n · q) m

(22)

p ∥ q = (p |⌊ q) ⊕ (q |⌊ p) (23)

! p = p |⌊ ! p (24)

𝜄 (p |⌊ q) r = 𝜄 p (q ∥ r) (25)

(c) The CCS Algebra on the Communicator Model

Fig. 3. The Communicator Model

on 𝑟 , and then continues the interpretation of the rest of the process (1 will never be supplied a

𝕢uery in the context of this section, so for the clause 𝜄 1 𝑝 𝕢 we simply terminate and return 𝟘).

The CCSAlg Instance. While 𝑟 needs to support both action prefixing and nondeterminism for

interpretation, only nondeterminism is needed for the CCSAlg instance on Communicator (Fig.3c).

Theorem 3.2. A Communicator 𝑛 𝑟 is a CCS algebra for any semilattice (𝑟, ⊕, 𝟘).

We prove this theorem by providing below instantiations for each of the methods; these proofs are

straightforward, and provided in our mechanisation. Notice that we use the same symbols (⊕ and

𝟘) for the semilattice on 𝑟 and the semilattice on Communicator.

Actions on Communicators. The implementation of action prefixing on a Communicator is

given in Eq. (19). Recall that we define hyperfunctions with copattern syntax; in the context of

a Communicator, this means we define a Communicator by specifying what happens when it

interacts with another process and message. So, to define the process generated by prepending

the action 𝑎 to a process 𝑝 , we specify what happens when this process 𝑎 · 𝑝 is merged with the

process 𝑞 and some Message𝑚. There are three clauses:

• In the first clause, 𝜄 (𝑎 ·𝑝) 𝑞 𝕢, the incoming message is a 𝕢uery, so we respond by transferring
control to 𝑞 (by calling 𝜄 𝑞), passing it the rest of the current process (𝑝), and the action being

prefixed (𝕒 𝑎).

• In the second clause, 𝜄 (𝑛 · 𝑝) 𝑞 (𝕒 𝑛), the incoming message 𝕒 𝑛 matches the action being

prefixed 𝑛, so we transfer control to 𝑞, passing it the message 𝜏 . This “emits” the silent

transition 𝜏 on a communication match.

• Finally, if neither of those cases match, we end, returning the empty process.

As mentioned above, this makes more sense when we bear interpretation (Fig. 3b) in mind.

Consider the following example of stepping through the interpretation of 𝑎 · 𝑝:
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Ja · pK↓ ≡ { Apply the definition of J_K↓ (Fig.3b) }
𝜄 (a · p) 1 𝕢 ≡ { Match the first clause of Eq.(19) }

𝜄 1 p (𝕒 a) ≡ { Apply the definition of 1 (Fig.3b) }

a · JpK↓

In this way, we can see that J_K↓ is a homomorphism for action prefixing. We could also step

through a communication match (although we do not include the full trace here):

J𝑛 · 𝑝 ∥ 𝑛 · 𝑞K↓ ≡ 𝜏 · J𝑝 ∥ 𝑞K↓ ⊕ 𝑛 · J𝑝 ∥ 𝑛 · 𝑞K↓ ⊕ 𝑛 · J𝑛 · 𝑝 ∥ 𝑞K↓

Nondeterminism. Nondeterminism in CCS comprises the operators 𝟘 and ⊕. These are imple-

mented on the Communicator model in Eqs.(20) and (21). Since these two operators are simple

algebraic operators, they can be lifted pointwise into a hyperfunction. The proofs of the laws are

also simple: they follow directly from the semilattice instance on 𝑟 .

Restriction. Restricting a process 𝜈𝑛 ·𝑝 (Eq.(22)) makes it so that the process 𝑝 cannot communicate

the name 𝑛 with anything outside of 𝑝 . A Communicator can both send and receive messages:

to restrict a Communicator, we censor incoming and outgoing messages to kill processes which

mention the restricted name. For example, the process 𝜄 (𝜈𝑛 · 𝑝) 𝑞 𝑚 receives the message𝑚, and

can send messages to 𝑞, all while restricting the name 𝑛. If the incoming message contains the

restricted name (i.e. when𝑚 ≔ 𝕒 𝑛) the whole process is equal to 𝟘. If the incoming message does

not contain the restricted name, we continue by transferring control to the next process, 𝑞. To

censor outgoing messages, we censor the incoming messages of the recipient process (𝑞), by calling

𝜈 recursively (𝜈𝑛 · 𝑞).

ParallelMerge. Parallel merge is given in Eq.(23).We can use hyperfunction composition (Eq.(7)) as

a starting point for this implementation. However, while composition allows processes to interleave

and communicate, ∥ needs to also produce all possible orderings between its two arguments. To

add this behaviour, we might first attempt something like 𝑝 ∥ 𝑞 = (𝑝 ◦ 𝑞) ⊕ (𝑞 ◦ 𝑝), but this only
permutes the top level arguments. Instead, we need to replace ◦ with a kind of composition which

continues reordering recursively: here we rely on a helper function, |⌊ (Eq.(25)). This performs one

layer of composition before calling back to ∥ to permute all later arguments.

Remark 3.3. Later, when we prove that hyperfunctions form a model for CCS, we will use a

variant of the CCS syntax which includes the |⌊ operator. A similar technique is used in Bergstra

and Klop [1984], which also adds additional operators similar in semantics to the |⌊ operator here,
or stepl and syncio later (Eqs.(33) and (34)).

Replication. Replication (Eq.(24)) should have the semantics !𝑝 = 𝑝 ∥ !𝑝 . Unfortunately, using
that equation as a definition is not well-founded: it would not give a productive definition in

our implementation. However, we can derive another identity, ! 𝑝 = 𝑝 |⌊ !𝑝 , which does yield a

productive definition.

Remark 3.4. We can combine J_K↓ with J_K to interpret CCS syntax into a Communicator and

then interpret that Communicator into the underlying CCS algebra.

J_K↓ ◦ J_K :: CCSAlg 𝑟 ⇒ P (Name 𝑟 ) → 𝑟

However, notice that nowhere in Fig.3 do we make use of ∥, 𝜈 ·, or ! on 𝑟 . This means that the above

function rewrites a CCS process into one that uses only ⊕, 𝟘, and · (action prefixing). When this

conversion is semantic-preserving (proven below in Lemma 3.10), it amounts to a constructive

proof of Theorem 11.10 from Bruni and Montanari [2017].
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3.4 Proving that Communicator is a Model
We now turn to the task of proving that the model established above (Fig.3) is fully abstract.

The Plan. We will start by defining bisimilarity and full abstraction (Section 3.4.1). Then, we will

discuss why full abstraction is difficult for continuation-based models in particular, and summarise

the progress made by Ciobanu and Todoran [2017, 2018] on this problem (Remark 3.6). From

there, we will introduce the Proc model [Veltri and Vezzosi 2023]: this is a standard fully-abstract

model for CCS which we can use to prove full abstraction for the Communicator via a pair of

homomorphisms between the Proc and Communicator model (Section 3.4.2). Then, we will give

our foundational model of hyperfunctions, based on the categorical model of Krstić et al. [2001a],

and briefly give our argument for well-foundedness (Remark 3.8). Finally, in Sections 3.4.3 and 3.4.4,

we will briefly summarise the detailed proof (present in full in the appendix), and we will end with

a short discussion of formalisation (Remark 3.17).

3.4.1 Bisimilarity and Full Abstraction. Equivalence between CCS processes is captured by (strong)

bisimilarity, denoted by ∼. Other notions of equivalence, like trace equivalence or weak bisimilarity

(a version of bisimilarity where emitted 𝜏s are ignored), fail to capture important aspects of CCS’s

semantics: Bruni and Montanari give a good summary of the problems [2017].

A model of CCS is an algebra that respects this bisimilarity. A fully abstract model is a model

where equality in the denotational domain corresponds precisely to bisimilarity of CCS processes.

Definition 3.5 (Full Abstraction). A model𝑚 of CCS is fully abstract when:

∀𝑝, 𝑞. 𝑝 ∼ 𝑞 ⇐⇒ J𝑝K𝑚 ≡ J𝑞K𝑚

The structural congruence laws stated in Section 3.2 are not sufficient to prove this property, nor

even a weakening like 𝑝 ∼ 𝑞 =⇒ J𝑝K ≡ J𝑞K. In fact, there is no finite set of laws that is sufficient. To

be precise, there is no finite axiomatisation of CCS that corresponds to the bisimulation equivalence

derived from the operational semantics in Fig.2b [Moller 1990a,b]. Our proof will have to take a

different route.

Remark 3.6 (Why Full Abstraction is Difficult for ContinuationModels). Continuation-basedmodels

tend to be large, where the denotational domain contains more values than there are denotations

of the source language. So, for some language with terms of type T , and an interpretation into a

denotational domain of type D, if the domain is large then there are values v of type D for which

there are no terms that interpret to those values (∃(v : D) .∄(t : T).JtK = v).
This alone isn’t a showstopper: while a large domain can’t be isomorphic to the denotations, full

abstraction is a little weaker than isomorphism. Notice that the definition of full abstraction above

(Definition 3.5) only refers to values from the denotational domain that are generated from the

syntax of CCS: the fact that there might be extra “junk” in the denotational domain doesn’t matter.

For continuation-based models like the Communicator, however, this “junk” causes other prob-

lems. To understand why, consider the type of Communicators that are generated from syntax

trees. This is a subset of the Communicator type; Ciobanu and Todoran [2017] call their version of

this type the “denotable” continuations. While at first glance it might seem viable to work with this

subset type alone, remember that a Communicator is a function which takes another Communicator
as an argument.

Communicator 𝑛 𝑟 ≡ Communicator 𝑛 𝑟 → Message 𝑛 → 𝑟

So any property we prove about the denotable Communicators will not necessarily apply to the

Communicator passed recursively. This breaks all but the simplest proofs that rely on (co)recursion.

We could amend the definition of Communicator to only accept denotable Communicators, but
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that turns a simple subset type into something much more restricted and complex altogether.

Furthermore, the 𝟙 Communicator (Fig.3b) is decidedly not denotable, so we would have lost our

ability to interpret a Communicator with this change.

Ciobanu and Todoran identified this problem, and defined weak abstraction to better capture a

notion of correctness that applies to continuation-based models [2017]. Weak abstraction takes

into account the idea of “denotable” continuations: informally, a proof of weak abstraction is very

similar to one of full abstraction, but the former proof only considers denotable continuations.

Weak abstraction still gives strong correctness guarantees, and it may well be the case that some

useful continuation models can only ever be weakly abstract; Ciobanu and Todoran’s model of CCS

[2018] may be one such model.

Our proof of full abstraction does not contain any particularly clever trick or conceptual leap to

sidestep this problem of denotable continuations. Instead, some proofs apply to Communicators

generally, and others apply only to those Communicators that are denotations. It is only by the

careful design of the inductive hypotheses of Lemmas 3.15 and 3.16 that these restrictions line up

with available premises in the right places, yielding our eventual proof.

3.4.2 The Proc Model. As mentioned in Section 3.4.1, we cannot prove full abstraction via the laws

of the CCS algebra alone. We will instead prove full abstraction by relating the Communicator to

another fully-abstract model: the Proc model (Fig.4). The denotational domain for this model is

given as the Haskell type in Fig.4a. CCS processes are represented by forests of coinductive rose

trees, with internal nodes labelled by Acts: for example, the process 𝑎 · 𝑏 · 𝟘 ∥ 𝑎 · 𝟘 is represented

by the tree in Fig.4c.

While this is a standard model for CCS, our specific iteration is based on the presentation in Veltri

and Vezzosi [2023], with some notable differences. Firstly, our type is not indexed by the number of

free names (Veltri and Vezzosi’s Proc has kind ℕ→ Type). Secondly, our type contains no special

constructions to handle the coinduction in Proc: these constructions are needed in Agda, where

inductive and coinductive types are distinguished; Haskell is less precise in this area, allowing us

to write coinductive types without ceremony.

Finally, our Proc type is built out of nested lists, where Veltri and Vezzosi’s Proc type is built out

of nested “countable powersets”. As it happens, the full generality of the countable powerset type is

not needed: Proc implemented with finite sets is also a fully abstract model of CCS. Unfortunately,

current Haskell does not have quotients (although projects like Hewer and Hutton [2024] are

beginning to remedy this), so even finite sets are unavailable to us. The usual trick in this situation

is tomimic quotients, by pretending that the desired equalities hold, and by carefully implementing

only functions which respect those desired equalities. The additional equalities on Proc are given

in Fig.4d; when they hold, they imply the validity of identities like the following:

Proc [ (a, Proc [ ]), (b, Proc [ ]) ] ≡ Proc [ (b, Proc [ ]), (a, Proc [ ]) ]

Proc [ (a, Proc [ ]), (a, Proc [ ]) ] ≡ Proc [ (a, Proc [ ]) ]

The CCS Algebra on Proc. The implementation of the CCS algebra on Proc is given in Fig.4e. It

implements the following methods:

Action prefixing, Eq.(26). 𝑎 · p creates a new tree with root 𝑎, and a single child 𝑝 .

Nondeterminism, Eqs.(27) and (28). ⊕ concatenates the root levels of trees; 𝟘 is represented

by the empty tree.

Restriction, Eq.(29). 𝜈𝑛 · 𝑝 recursively traverses 𝑝 , deleting any branches with 𝑛 at the root.
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newtype Proc n
= Proc { root :: [ (Act n, Proc n) ] }

(a) The Proc Type

JProc [ ]K↑ = 𝟘
JProc ((a, p) : q)K↑ = a · JpK↑ ⊕ JProc qK↑

(b) Interpretation

J𝑎·𝑏 ·𝟘 ∥ 𝑎·𝟘KProc =

Proc [ (𝜏, Proc [ (b, Proc [ ]) ])
, (a , Proc [ (b, Proc [ (a, Proc [ ]) ])

, (a , Proc [ (b, Proc [ ]) ]) ])
, (a , Proc [ (a, Proc [ (b, Proc [ ]) ]) ]) ]

=

𝜏 𝑏

𝑎
𝑏 𝑎

𝑎 𝑏

𝑎 𝑎 𝑏

(c) The Proc Representation of a CCS process

∀𝑝, 𝑞. Proc (𝑝 ++ 𝑞) ≡ Proc (𝑞 ++ 𝑝) ∀𝑝. Proc (𝑝 ++ 𝑝) ≡ Proc 𝑝

(d) Quotients on Proc

instance Eq n⇒ CCSAlg (Proc n) where
type Name (Proc n) = n

a · p = Proc [ (a, p) ] (26)

𝟘 = Proc [ ] (27)

p ⊕ q = Proc (root p ++ root q) (28)

𝜈n · p = Proc [ (a, 𝜈n · p′)
| (a, p′) ← root p
, a . n, a . n]

(29)

p ∥ q = (p |⌊ q) ⊕ (q |⌊ p) (30)

! p = stepl (p ⊕ syncio p p) (! p) (31)

(e) The CCSAlg Instance

p |⌊ q = syncio p q ⊕ stepl p q (32)

stepl p q =

Proc [ (a, p′ ∥ q)
| (a, p′) ← root p ]

(33)

syncio p q =

Proc [ (𝜏, p′ ∥ q′)
| (a, p′) ← root p
, (b, q′) ← root q
, a ≡ b]

(34)

(f) Helper Functions

Fig. 4. The Proc Model

Parallel Merge, Eq.(30). ∥ is the most complicated method. Similarly to ∥ on the Communi-

cator, this method is implemented as nondeterministic choice between two applications of

the left-biased parallel merge, |⌊ (Eq.(32)). When we expand out the definition of |⌊, we see
that ∥ has the implementation 𝑝 ∥ 𝑞 = stepl 𝑝 𝑞 ⊕ syncio 𝑝 𝑞 ⊕ stepl 𝑞 𝑝 ⊕ syncio 𝑞 𝑝 : in other

words, it is a nondeterministic choice between all four possible operational rules (Fig.2b)

that apply to ∥. The two helper functions stepl (Eq.(33)) and syncio (Eq.(34)) correspond to

the rules StepL and Syncio. stepl allows the left-hand-side argument to perform one action,

and then merges the subsequent processes (stepl (𝑎 · 𝑝) 𝑞 = 𝑎 · (𝑝 ∥ 𝑞)). syncio 𝑝 𝑞 pulls

an input from 𝑝 , and a corresponding output from 𝑞, and merges the rest of the processes

(syncio (𝑎 · 𝑝) (𝑎 · 𝑞) = 𝜏 · (𝑝 ∥ 𝑞)). These two rules are grouped together in the function |⌊.
The other two rules—Stepr and Syncoi—are just symmetric variants of the first two, so they

can be applied by flipping the arguments to |⌊.
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Replication, Eq.(31). We cannot use the identity Eq. (18) as a definition, because it is not

productive. The implementation given here, however, is productive, and is also bisimilar to

Eq.(18). This definition exploits the idempotency of ⊕ to define an equivalent expression that

does not diverge.

These methods are all adapted from their implementations in Veltri and Vezzosi [2023]. The only

real change is our definition of ∥, where Veltri and Vezzosi’s implementation is:

p ∥ q = stepl p q ⊕ stepr p q ⊕ synch p q

stepr is a variant of stepl with the arguments reversed, and synch is a commutative variant of syncio,
where synch 𝑝 𝑞 = syncio 𝑝 𝑞 ⊕ syncio 𝑞 𝑝 . Some rearranging shows that the difference is superficial.

All laws given by our structural congruence are proven in Veltri and Vezzosi [2023], with the

exception of the idempotency of ⊕, though that law is implied by the operational semantics, and so

is proven indirectly. Also proven in Veltri and Vezzosi [2023] is the following:

Theorem 3.7 (Proc is fully abstract). ∀𝑝, 𝑞. 𝑝 ∼ 𝑞 ⇐⇒ J𝑝KProc ≡ J𝑞KProc

We will use this to prove full abstraction for the Communicator.

Remark 3.8 (Foundations and Well-Foundedness). For cardinality reasons, the hyperfunction type

does not have a set-theoretic interpretation (there is no set that corresponds to the type 𝑎 ↬ 𝑏).

Hyperfunctions follow a standard domain-theoretic [Abramsky and Jung 1995] interpretation,

however, as described by Krstić et al. [2001b]. The base category here is some (cartesian closed)

category of pointed domains, closed under bilimits. Under this interpretation, hyperfunctions of

type 𝐴 ↬ 𝐵 are the canonical solution of the equation 𝑋 � (𝑋 ⇒ 𝐴) ⇒ 𝐵. This interpretation

characterises the recursively-defined hyperfunctions and hyperfunction operations of Launchbury

et al. [2000]. Krstić et al. also gave an account of hyperfunctions as final coalgebras [2001a], and

showed that the recursive definitions correspond to this coalgebraic interpretation.

Our proofs go through without issue in this setting; because our proofs proceed by induction on

the syntax of CCS, we do not need to use the more sophisticated tools of “hyperfunction induction”

from Krstić et al. [2001b]; function extensionality is sufficient.

However, because CCS processes can be infinite, we do need to address the issue of corecur-

sion and well-foundedness in our proofs. We don’t necessarily need to consider corecursion on

hyperfunctions directly: to prove equality of Communicators, we need only prove the equality

of the underlying CCS processes that they produce. In fact, we can simplify further; instead of

referring to CCS processes in general, we can specialise to the Proc model. Because the Proc model

is fully-abstract, we can perform this specialisation without loss of generality. This means that all

proofs of equality in this section eventually resolve to proofs of equality on Proc objects.

The well-foundedness of our proofs, then, corresponds to the well-foundedness of proofs of

equality on coinductive Proc trees. This notion is well-defined: indeed, Veltri and Vezzosi’s formali-

sation of Proc contains a detailed exploration in the context of guarded cubical Agda and Ticked

Cubical Type Theory [Møgelberg and Veltri 2019]. We have not formalised our well-foundedness

argument (see Remark 3.17 for a discussion); instead this argument will be made in prose, and will

be based on syntactic guarded coinduction [Coquand 1994].

In this section, a CCS process is guarded if it is syntactically “under” some action. For example,

in the expression (𝑎 · 𝑝) ⊕ 𝑞, the process 𝑝 is guarded (“𝑝 is guarded by 𝑎”), whereas the process

𝑞 is unguarded. Corecursive calls are permitted only if they are guarded; so the infinite process

𝑝 ≔ 𝑎 · 𝑝 , which consists of a stream of 𝑎s, is well-founded, whereas the definition 𝑝 ≔ 𝑝 ⊕ 𝑝 is not.

This notion of guardedness extends to proofs of equality: if a proof relies on some coinductive

call, that call must be guarded under an action. So, to prove the equality of two processes 𝑎 · 𝑝
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and 𝑏 · 𝑞, the proof must prove equality of 𝑎 and 𝑏 inductively, but once those are proven some

coinductive call is permitted to prove the equality of 𝑝 and 𝑞.

All of the proofs and definitions in this section are well-founded according to this guardedness

condition. In particular, the proofs of full abstraction all proceed via induction on the syntax of

CCS: all recursive calls either reduce the size of one argument (i.e. they are “terminating” in the

normal/inductive sense), or the recursive call is guarded under an action. As might be expected, we

only need to employ this guardedness argument when the CCS process is infinite, i.e. it includes

the ! operator. Without that operator, our proofs are well-founded by induction on syntax.

3.4.3 Relating Communicator to Proc. Our strategy is to rely on the fact that Proc is fully abstract,

and prove full abstraction for the Communicator model via a relation between Communicator and

Proc. Let’s now define precisely what that relation is.

We have already seen a way to convert a Communicator to any CCSAlg, including Proc: the J_K↓
function (Fig.3b). To go the other direction we use J_K↑ (Fig.4b). A Proc represents a CCS process

as nested sums-of-acts, so to convert that structure into another CCS algebra we just apply ⊕ and ·
in the right places.

If, at this point, we could show that these functions form the two halves of an isomorphism, we

would have our proof of full abstraction. And, indeed, J_K↓ is a retraction of J_K↑:

Lemma 3.9. ∀(𝑝 : Proc 𝑛). JJ𝑝K↑
Communicator 𝑛 (Proc 𝑛)K↓Proc 𝑛 ≡ 𝑝

However the inverse is not true in general (J_K↑ ◦ J_K↓ . id). As described in Remark 3.6, we do

not have an isomorphism; but we do not need a full isomorphism for full abstraction. Instead, the

following two lemmas are sufficient to prove full abstraction for the Communicator model:

Lemma 3.10. ∀(𝑝 : P 𝑛). JJ𝑝KCommunicatorK↓ ≡ J𝑝KProc

Lemma 3.11. ∀(𝑝 : P 𝑛). JJ𝑝KProcK↑ ≡ J𝑝KCommunicator

The first of these, Lemma 3.10, says that, for any CCS term 𝑝 , if we interpret that term into a

Communicator, and then interpret that Communicator into a Proc, that is the same as interpreting

the term 𝑝 directly into a Proc. The second (Lemma 3.11) says the inverse. We can combine these

with Proc’s full abstraction to prove the following:

Theorem 3.12 (Communicator is fully abstract).

∀𝑝, 𝑞. 𝑝 ∼ 𝑞 ⇐⇒ J𝑝KCommunicator ≡ J𝑞KCommunicator

Proof. Recall first that Proc is fully abstract (Theorem 3.7; ∀𝑝, 𝑞. 𝑝 ∼ 𝑞 ⇐⇒ J𝑝KProc ≡ J𝑞KProc).
To prove full abstraction for Communicator, then, we need to show:

∀𝑝, 𝑞. J𝑝KProc ≡ J𝑞KProc ⇐⇒ J𝑝KCommunicator ≡ J𝑞KCommunicator

Here we prove the bi-implication in both directions, for all 𝑝 and 𝑞:

J𝑝KProc ≡ J𝑞KProc =⇒
J𝑝KCommunicator ≡ J𝑞KCommunicator

J𝑝KCommunicator ≡ {Lemma 3.11}
JJ𝑝KProcK↑ ≡ {Given}
JJ𝑞KProcK↑ ≡ {Lemma 3.11}
J𝑞KCommunicator □

J𝑝KCommunicator ≡ J𝑞KCommunicator =⇒
J𝑝KProc ≡ J𝑞KProc

J𝑝KProc ≡ {Lemma 3.10}
JJ𝑝KCommunicatorK↓ ≡ {Given}
JJ𝑞KCommunicatorK↓ ≡ {Lemma 3.10}
J𝑞KProc □

□
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Remark 3.13. Notice that the proof above refers specifically to a Communicator specialised to

Communicator 𝑛 (Proc 𝑛). However, because Proc itself is fully abstract, we haven’t lost any

generality via this specialisation: a Proc can be interpreted (via J_K↑, Fig.4b) into any other model

of CCS while preserving semantics.

3.4.4 Proving Lemmas 3.10 and 3.11. The main theorem of this section, Theorem 3.12, relies on

Lemmas 3.10 and 3.11. These lemmas establish that there is a relation between the Communicator

and Procmodels, and this relation is homomorphic through the CCS algebra. Proving these lemmas

is where the bulk of the work of proving full abstraction for Communicator occurs.

The proofs of both lemmas follow the same pattern: we will give a brief outline of that pattern

here (full proofs are present in the appendix). Unfortunately, it is not possible to prove either of these

lemmas by proving individual homomorphisms for each operator. While such homomorphisms do

hold for some operators:

JpK↓ ⊕ JqK↓ ≡ Jp ⊕ qK↓ J𝟘K↓ ≡ 𝟘
They do not hold for others, with ∥ being the most problematic.

Recall the problem of not being able to finitely axiomatise CCS, discussed above. Though we no

longer rely on such an axiomatisation, solutions (or, rather, workarounds) to this problem from the

literature will provide insights that we can use in our own proof.

Bergstra and Klop [1984] describe the Algebra of Communicating Processes (ACP), a similar

calculus to CCS that can be finitely axiomatised. The key change in ACP that allows this axiomati-

sation is the addition of two new operators: a left-biased operator supporting the Stepl rule, and a

commutative operator that allows for communication. The original ∥ can then be defined in terms

of these operators. Unfortunately, the Communicator type does not implement ACP; but their

decomposition of ∥ is similar to our decomposition.

We have defined |⌊, on both Communicator (Eq.(25)) and Proc (Eq.(32)), and ∥ can be defined in

terms of it. Furthermore, on Proc, the |⌊ operator is defined in terms of two even more fundamental

operators: stepl (Eq. (33)) and syncio (Eq. (34)). The |⌊ operator on Communicator can almost be
decomposed in a similar way with the following definitions:

𝜄 (stepl p q) o = 𝜄 p (o |⌊ q) 𝜄 (syncio p q) o = 𝜄 p (q |⌊ o)
However, the identity 𝑝 |⌊ 𝑞 ≡ syncio 𝑝 𝑞 ⊕ stepl 𝑝 𝑞 does not hold in general. The problem is that

we cannot distribute a ⊕ under 𝜄 𝑝 ; however this equality does hold (definitionally) in the situation

where 𝑝 ≔ 𝑎 · 𝑝′. We will use this fact to prove homomorphism for Communicator.

Lemma 3.14. ∀𝑎, 𝑝, 𝑞. 𝑎 · 𝑝 |⌊ 𝑞 ≡ syncio (𝑎 · 𝑝) 𝑞 ⊕ stepl (𝑎 · 𝑝) 𝑞

The strategy for this proof, then, is to rewrite the term 𝑝 into a form where Lemma 3.14 and

similar lemmas can apply. One other thing to note about the proof is that we add the |⌊ operator to
the syntax of CCS; this allows us to easier track when a term stays the same size or gets smaller. It

also does not lose any generality: any term 𝑝 can be converted to a term that contains |⌊.
The bulk of the work of this proof is accomplished in Lemmas 3.15 and 3.16.

Lemma 3.15. ∀𝑛, 𝑝, 𝑞. JJ𝜈𝑠𝑛.(𝑝 |⌊ 𝑞)KCommunicatorK↓ ≡ J𝜈𝑠𝑛.(𝑝 |⌊ 𝑞)KProc
Lemma 3.16. ∀𝑛, 𝑝, 𝑞. JJ𝜈𝑠𝑛.(𝑝 |⌊ 𝑞)KProcK↑ ≡ J𝜈𝑠𝑛.(𝑝 |⌊ 𝑞)KCommunicator

Lemmas 3.15 and 3.16 are effectively special cases of Lemmas 3.10 and 3.11; they prove that J_K↓
and J_K↑ are homomorphisms on terms of the form 𝜈𝑠𝑛.(𝑝 |⌊ 𝑞). The operator 𝜈𝑠 here is a variant
of 𝜈 that takes a list of names rather than a single name, where

𝜈𝑠 [] .𝑝 = 𝑝 𝜈𝑠 (𝑛 : ns).𝑝 = 𝜈𝑠ns.𝜈𝑛 · 𝑝
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To use Lemma 3.15 we notice that all terms 𝑡 can be rewritten into this form (𝜈𝑠𝑛.(𝑝 |⌊ 𝑞)),
because 𝑡 ≡ 𝜈𝑠 [] .(𝑡 |⌊ 𝟘). This identity holds on both Proc and Communicator, so we can apply it

to both sides of the equation, meaning that Lemma 3.15 proves the homomorphism.

Remark 3.17 (Mechanisation). Accompanying this paper, we have provided a mechanisation of

our proofs of full abstraction. This mechanisation is encoded in Agda [Norell 2009]. It follows the

same structure as our prose proofs of Theorem 3.12, and of the proofs in the appendix.

This mechanisation is necessarily partial, because there are aspects of the nature of hyperfunc-

tions and the Communicator model that are not expressible in current Agda (without significant

extensions to the underlying type theory which are beyond the scope of this work).

The first roadblock to full formalisation is that hyperfunctions (and specifically theCommunicator

type) are not (currently) admissible in Agda. As discussed in Remark 3.8, the hyperfunction type

itself is somewhat exotic, and as such does not exist in all foundational settings (set theory, in

particular, does not support the definition of hyperfunctions). Agda’s type theory is another setting

which does not admit hyperfunctions, however the problem here is positivity. Since the hyperfunc-
tion type contains recursion to the left of a function arrow, it is not positive. The presence of such
types can allow for proofs of Curry’s paradox [1942].

There are some possible routes around the positivity restriction. For example, while the type

𝑎 ↬ 𝑏 is not “strictly” positive, if we were able to restrict 𝑎 to being contravariant, and𝑏 to covariant,

then the whole definition would become positive (albeit not strictly so). There is some evidence that

Agda could admit these positive types (with the co/contra-variant restrictions) without sacrificing

soundness [Coquand 2013; Sjöberg 2015].

Another route to admissibility comes from Berger et al.’s formalisation [2019] of Hofmann’s

breadth-first traversal [1993]. Berger et al. give several different verifications of the algorithm which

use the Rou type (Eq.(12)); we believe the techniques of embedding the Rou type could also apply

to the Communicator type.

The second assumption our mechanisation makes concerns well-foundedness. We have already

given our argument for well-foundedness in the text (Remark 3.8); unfortunately, this argument

relies on mixing notions of guardedness and continuations in ways that are currently beyond

the capabilities of Agda’s productivity checker. Certainly, the work of Veltri and Vezzosi [2020,

2023] paves the way for a future formalisation: however, adapting these techniques to work with a

continuation-based representation would require extension to Agda itself.

It is worth emphasising that our foundational setting in this work is the domain-theoretic setting

established by Krstić et al. [2001b]. This is different from the setting of our mechanisation, and as

such the mechanisation should be regarded as supplementary to the proofs in this paper. Because

the proofs can get quite intricate and dense, we think that the mechanisation gives some valuable

reassurance that all cases/parameters have been handled.

The code is rendered online at doisinkidney.com/code/hyperfunctions/README.html. Alterna-

tively, the code is available to download from doisinkidney.com/artifacts/popl-2025-hyperfunctions-

agda.tar.gz; it has been typechecked with Agda version 2.8.0, and the cubical library version 0.8.

4 Hyperfunctions and Monads
So far, we have seen hyperfunctions model various aspects of concurrency, culminating in an imple-

mentation of CCS. In this section, we will show how hyperfunctions interact with monads [Wadler

1995], and in particular how they can be used to build concurrency monads. This section will

demonstrate that hyperfunctions can serve a useful role in implementing efficient monadic library

code, especially when concurrency or concurrency-like patterns are involved.
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4.1 Adding Monads Simply
We will warm up with a simple example of combining monads and hyperfunctions. Recall the

implementation of zip using hyperfunctions (Section 2.4): there, hyperfunctions allowed us to write

zip on two Church-encoded lists without the usual O(𝑛2) slowdown that comes from repeated

applications of tail. We can use a similar technique to efficiently implement disjunction on the

LogicT type [Kiselyov et al. 2005], a type for Prolog-style logic programming.

On LogicT, disjunction is implemented by interleaving ([1, 2, 3]‹|›[4, 5, 6] = [1, 4, 2, 5, 3, 6]). On the
CPS-encoded version of LogicT, interleaving runs into the same problems as zip, because interleave
is a lateral function. However, we are armed with a toolbox of hyperfunctions and hyperfunction

combinators. As a result, implementing interleave is not difficult, following the pattern of zip:

interleave :: [a] → [a] → [a]
interleave xs ys = let xz = foldr (𝜆x xk → (x:) ⊳ xk) (Hyp (const [ ])) xs

yz = foldr (𝜆y yk → (y:) ⊳ yk) (Hyp (const [ ])) ys
in 𝜄 xz yz

In fact, it is a little simpler than zip, since no message-passing is needed.

The LogicT type is not just a Church-encoded list, however. It is a CPS-encoded list transformer.

newtype LogicT m a = LogicT { runLogicT :: ∀b.(a→ m b→ m b) → m b→ m b}
This type is similar to a Church-encoded list, but it allows effects—drawn from𝑚—to be interleaved

with the elements of the list. The following function, for instance, converts a list to a LogicT list,

interleaving each element with an IO effect that prints that element to stdout.

printed :: Show a⇒ [a] → LogicT IO a
printed xs = LogicT (𝜆c n→ foldr (𝜆x xs→ do putStr (show x); c x xs) n xs)

We can evaluate a LogicT with the following function:

evalLogicT :: Monad m
⇒ LogicT m a→ m [a]

evalLogicT ls = runLogicT
ls (𝜆x → fmap (x:)) (return [ ])

>>> evalLogicT (printed [1,2,3])
123
[1,2,3]

Luckily, many of the hyperfunction combinators can be adapted to this monadic setting. For

instance, the ⊳ function (Eq.(6)) has the following monadic variant:

(⊳𝑚) ::Monad m⇒ (m a→ b) → m (m a ↬ b) → (m a ↬ b)
𝜄 (f ⊳𝑚 h) k = f (𝜄 k =<< h)

Notice that this function preserves the ordering of effects: ℎ is executed before 𝜄 𝑘 . This can be used

as a drop-in replacement for ⊳, resulting in the following function:

interleaveT ::Monad m⇒ LogicT m a→ LogicT m a→ LogicT m a
interleaveT xs ys = LogicT (𝜆c n→
do xz ← runLogicT xs (𝜆x xk → return (c x ⊳𝑚 xk)) (return (Hyp (const n)))

yz ← runLogicT ys (𝜆y yk → return (c y ⊳𝑚 yk)) (return (Hyp (const n)))
𝜄 xz yz)

And again, the effect order is preserved.

>>> evalLogicT (interleaveT (printed [1,2]) (printed [3,4]))
1324
[1,3,2,4]
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4.2 A Monadic Language for Concurrency
We now know that hyperfunctions and monads can interface without much ceremony. Let’s next

look at using hyperfunctions to build an actual monad transformer for concurrency.

We will use Claessen’s concurrency monad [1999] for this example, given below by the type 𝐶 .

type C m = Cont (Action m) newtype Cont r a = Cont { runCont :: (a→ r) → r }

data Action m = Atom (m (Action m)) | Fork (Action m) (Action m) | Stop
A term C𝑚 𝑎 is a concurrent computation that draws effects from𝑚. It is built on top of the Cont

monad, and has the following interface:

atom :: Functor m⇒ m a→ C m a
atom m = Cont (𝜆k → Atom (fmap k m))

fork :: C m a→ C m ()
fork m = Cont (𝜆k → Fork (action m) (k ()))

atom lifts an atomic action into 𝐶; fork runs a process in the background.

The following simple program draws effects from the Writer monad, which allows us to log

output, via the tell :: String→Writer () function.
prog :: C (Writer String) ()
prog = do atom (tell "go!"); fork (forever (atom (tell "to"))); forever (atom (tell "fro"))

This program first lifts an action that outputs the string "go!", then, in the background, it repeatedly
outputs "to", and then, on the main thread, it repeatedly outputs the string "fro".

We can interpret this language into the underlying effect using run:

runc ::Monad m⇒ C m a→ m ()
runc c = round [action c ]

>>> take 15 (execWriter (runC prog))
"go!tofrotofroto"

round ::Monad m⇒ [Action m] → m ()
round [ ] = return ()
round (x : xs) = case x of

Atom am → am >>= (𝜆a→ round (xs ++ [a]))
Fork a1 a2 → round (xs ++ [a1, a2 ])
Stop→ round xs

round here implements round-robin scheduling. However, notice that this function follows the

pattern of foldr on lists: if we proceed by mechanically fusing away the intermediate list (similarly

to our approach in Section 2.4), we arrive at a hyperfunction-based implementation. Below, we

have packaged up that implementation into a type called Conc.

type Conc r m = Cont (m r ↬ m r)

forkh :: Conc r m a→ Conc r m ()
forkh m =

Cont (𝜆k → runCont m (const id) ◦ k ())

atomh ::Monad m⇒ m a→ Conc r m a
atomh am = Cont (𝜆k → id ⊳𝑚 (k ‹$› am))

runh :: Conc r m a→ m r
runh c = run (runCont c (const id))

This language has the same operations as C. It demonstrates how hyperfunctions can be a building

block for a “concurrency monad”, when used in combination with the continuation monad. This

monad is a monad transformer [Jones 1995], where atom corresponds to the lift function.

5 Coroutines
We have now seen a few small examples of how hyperfunctions might be used in a functional

programming language to implement concurrency as a monadic effect. This section will explore

a larger example: we will see that hyperfunctions underpin important optimisations in practical

coroutine libraries, and then we will see how to use hyperfunctions to build a new, powerful library

for asymmetric coroutines.
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5.1 Pipes
Coroutines are a broad concept, with many different implementations; in Haskell alone, the ma-

chines [Kmett 2025], conduit [Snoyman 2011], and Pipes [Gonzalez 2012] libraries all present

different interpretations of the abstraction. Though they differ in their details, these libraries are all

built around a central coroutine-like object, which is a kind of computation that can be paused and

resumed, and can communicate by sending and receiving data. For our purposes, we will take the

specific interface described by Gonzalez [2012] and Blažević [2011].

newtype Pipe r i o m a

await :: Pipe r i o m i

yield :: o→ Pipe r i o m ()

merge :: Pipe r i x m ⊥ → Pipe r x o m ⊥ → Pipe r i o m a

halt ::m r → Pipe r i o m x

A value of type Pipe 𝑟 𝑖 𝑜 𝑚 𝑎 is a coroutine that takes input of type 𝑖 , outputs 𝑜s, performs effects

in𝑚, has a final result type 𝑟 , and intermediate result of type 𝑎. yield produces an output; await
requests an input; halt ends the computation; andmerge joins two Pipes, connecting corresponding
yields and awaits.

Early implementations of this interface were written in direct style: the Pipe type was represented

by an inductive, tree-like data type (a variant of the free monad), and each function was defined by

pattern-matching on that type. However, as Spivey noted [2017], this direct-style implementation

can suffer from a slow-down when pipes are deeply nested. Unfortunately, the usual trick of

CPS-encoding everything turns out to be much more difficult to apply than it might first appear.

The problem lies with the merge function. Just like the zip function on lists, merge processes two
sequences in lock-step, and also just like zip, it becomes much more difficult to implement when

those sequences are CPS-encoded: merge is a lateral function.
Spivey’s solution (further explained by Pieters and Schrijvers [2019]) uses the following encoding

of a Pipe that is an intricate variant of the Cont monad (Section 4.2), given below.

newtype Pipe r i o m a = MkPipe

((a→ Result (m r) i o) → Result (m r) i o)
type Result r i o

= InCont r i→ OutCont r o→ r

A Result takes two continuations before returning the final computation𝑚 𝑟 : the InCont is called

when the Pipe requests input (of type 𝑖 , with await), and the OutCont when the Pipe emits some 𝑜

(with yield).

newtype InCont r i = MkInCont { resumeIn ::OutCont r i→ r }
newtype OutCont r o = MkOutCont { resumeOut :: o→ InCont r o→ r }

It is not difficult to see that, after flipping the arguments to resumeOut, these types are structurally
identical to a specialisation of hyperfunctions.

OutCont r o
≡ o→ InCont r o→ r
≃ InCont r o→ o→ r
≡ (OutCont r i→ r) → o→ r
≡ r ↬ (o→ r)

InCont r i
≡ OutCont r i→ r
≡ (i→ InCont r i→ r) → r
≃ (InCont r i→ i→ r) → r
≡ (i→ r) ↬ r

In fact, we can see that these two constructions are actually instances of theConsumer and Producer

types (Eqs.(10) and (11)), where

OutCont 𝑟 𝑜 ≃ Consumer 𝑜 𝑟 InCont 𝑟 𝑖 ≃ Producer 𝑖 𝑟

Much like how these types enabled us to implement message-passing in a CPS-encoded zip in Sec-

tion 2.4, they allowed Spivey to implement message-passing for CPS-encoded Pipes.
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Spivey was not the only author to independently rediscover the hyperfunction type while

working with Pipe-like abstractions. Shivers and Might’s encoding of transducers [2006] includes

the same structure (although a large portion of their work is untyped, so the hyperfunction structure

is a little more difficult to see). Furthermore, Kammar et al.’s work on handlers for algebraic effects

[2013] used the following types to implement a handler for Pipes:

data Prod s r = Prod (() → Cons s r → r) data Cons s r = Cons (s→ Prod s r → r)
Like InCont and OutCont above, both Prod and Cons are simple rearrangements of the Producer

and Consumer types.

5.2 First-class Coroutines
The Pipe implementation above has a significant shortcoming: the only way to communicate with

a Pipe is to merge it with another Pipe. From inside a Pipe, we can yield and await to send and

receive values, but there are no corresponding functions to communicate from outside a Pipe.

send :: i→ Pipe r i o m a→
m (Pipe r i o m a)

receive :: Pipe r i o m a→
m (Maybe (o, Pipe r i o m a))

The above putative interface would allow us to pass Pipes around as first-class values, while still

communicating with them. send passes a value a Pipe, and advances its execution to the next await.
receive “pops” a value from a Pipe. These two functions are necessary for many standard patterns

in coroutine programming: if we want to store a pool of coroutines, for instance, and receive one

value from each entry, we cannot accomplish this with merging alone.

To build the solution we will take some inspiration from Shivers and Might [2006]. One of the

coroutine implementations in their work is built on Channel, an SML type:

type 𝛼 cont (* Continuations. *)
datatype (𝛼,𝛽) Channel = Chan of (𝛼 * (𝛽,𝛼) Channel) cont

Without the continuation machinery of SML we cannot translate this type directly to Haskell;

we can, however, adapt it using the Cont monad:

type Channel r 𝛼 𝛽 ≈ Cont r (𝛼,Channel r 𝛽 𝛼) ≈ (((𝛼,Channel r 𝛽 𝛼) → r) → r)
Notice that the type on the right-hand-side above resembles the Producer hyperfunction (Eq.(11)):

it “produces” 𝛼 , and the parameters to Channel swap on recursion, just like a hyperfunction. It’s

not a perfect match, but it seems like the Haskell analogue of the Channel type is the following:

type Channel r i o = (o→ r) ↬ (i→ r)
We can turn this type into a monad by wrapping it in a continuation:

newtype Co r i o m a = Co { route :: (a→ Channel (m r) i o) → Channel (m r) i o }
This type has a lot in common with Pipe from the previous section, with one significant difference:

instead of using separate producer and consumer continuations, it has one continuation which

both produces and consumes. This means that every input is accompanied by an output: in terms

of the interface to this type, this means that yield and await are combined into one function that

outputs a value and waits for an input at the same time.

yield :: o→ Co r i o m i
yield x = Co (𝜆k → Hyp (𝜆h i→ 𝜄 h (k i) x))

The statement yield x suspends execution, outputs the value x, and awaits input of some type i.
We also have the merge and halt functions from the Pipe interface, and we can also run a

coroutine to produce a result. We will not include the implementations for brevity’s sake.
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So far, so familiar. However, we have not yet implemented send. To do so, we turn back to Shivers

and Might [2006], where control operators are used to implement a function they call switch:

val switch : 𝛼 * (𝛼,𝛽) Channel -> 𝛽 * (𝛼,𝛽) Channel
fun switch(x, Chan k) = callcc (fn k’ => throw k (x, Chan k’))

This function is analogous to send: it takes a value of type 𝛼 , and a channel, sends the value to the

channel, and returns a response 𝛽 along with the new channel. It does so by using callcc (call
with current continuation): callcc (fn k => e) binds k to the continuation that callcc was

called from. The throw function invokes a continuation; so switch binds the current continuation

to k', and then throws to the continuation contained in the supplied channel, with the current

continuation embedded in the new channel.

Unfortunately, Haskell doesn’t have first-class continuations. It does have the continuation

monad, however, and the MonadCont typeclass [Jones 1995], which supplies a variant of call/cc.

callCC ::MonadCont m⇒ ((a→ m b) → m a) → m a

Using this, we can build a combinator to send values to a coroutine from outside the coroutine.

send ::MonadCont m⇒ Co r i o m r → i→ m (Either r (o,Co r i o m r))

The function send 𝑐 𝑣 send a value 𝑣 : 𝑖 to the coroutine 𝑐 : Co 𝑟 𝑖 𝑜 𝑚 𝑟 , and returns an effectful

computation 𝑚 (Either 𝑟 (𝑜,Co 𝑟 𝑖 𝑜 𝑚 𝑟 )). The returned value can be Left if the coroutine

terminates (either by running out of yields, or by encountering a halt), or it is Right containing the

yielded value along with the rest of the coroutine.

The implementation of send is as follows:

send c v = callCC $ 𝜆k → Left ‹$› 𝜄 (route c (𝜆x → Hyp (𝜆 → return x)))
(Hyp (𝜆r o→ k (Right (o,Co (const r))))) v

callCC supplies a continuation, 𝑘 : Either 𝑟 (𝑜,Co 𝑟 𝑖 𝑜 𝑚 𝑟 ) →𝑚 _, which can be called to “return”

from the computation. Above, it is called from inside a hyperfunction, where it returns the next

value supplied to the consumer, and wraps the rest of the hyperfunction. The other branch, the halt
branch, is called when there are no more values to return. This branch is represented by return 𝑥 .

Sending Without Return. Given a coroutine of type Co ⊥ 𝑖 𝑜 𝑚 ⊥, we know that it cannot

return or exit, because there is no value of type ⊥ to return or exit with. A variant of send makes

use of this fact to avoid the need for Either.

send′ ::MonadCont m⇒ Co ⊥ i o m ⊥ → i→ m (o,Co ⊥ i o m ⊥)
send′ c v = either absurd id ‹$› send c v

Execution Order. Note that the order of execution of effects is slightly unintuitive. When a

process sends to a coroutine, the coroutine executes up until the previous yield statement, and then

transfers control back to the caller. Changing the execution order, so that send executes up until

the next yield is not too difficult: the Channel type is replaced with Suspension (Suspension 𝑟 𝑖 𝑜 =

Channel 𝑟 𝑜 𝑖 → 𝑟 ), and the coroutine is represented by 𝑖 → Co 𝑟 𝑖 𝑜 𝑚 𝑎 rather than Co 𝑟 𝑖 𝑜 𝑚 𝑎.

Coroutines with References. The expression send g 𝑖 returns a pair (𝑜, g′), where g′ is the
updated generator; this is a common pattern in Haskell, often encapsulated with the state monad.

In our case, we can use references (IORef) to build a clean interface with the following function:

send′ :: (MonadCont m,MonadIO m) ⇒ IORef (i→ Co ⊥ i o m ⊥) → i→ m o
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5.3 Stable Marriages
To demonstrate the power of our coroutine implementation, we will now implement the stable

marriage example, following the coroutine-based implementation of Allison [1983].

The stable marriage problem [Gale and Shapley 1962] takes two groups of people–described in

the original formulation as a group of men and a group of women who wish to be married–and

generates a matching, where each member of one group is paired with a distinct member of the

other. This matching should also be stable: given that each individual has a preference ranking

for the members of the opposing group, a stable matching is one where no two individuals would

prefer to be matched with each other than with their current match.

Allison’s algorithm is an elegant encoding of a natural solution to the problem. A coroutine is

constructed for each man and each woman, and the “men” propose to the women, in order of the

men’s preference. If a man’s proposal is accepted, his coroutine is suspended. The “women” are

coroutines awaiting proposals; if a proposal is better than their current offer they jilt their current

fiancé, whose coroutine resumes and then continues to propose to his next choice.

For our encoding of the algorithm, we will have three men (Aaron, Barry, and Conor), and three

women (Annie, Betty, and Ciara). Their rankings are as follows:

mranks = assoc [ (Aaron, [Ciara,Annie,Betty])
, (Barry, [Ciara,Betty,Annie])
, (Conor, [Ciara,Annie,Betty]) ]

wranks = assoc [ (Annie, [Barry,Conor,Aaron])
, (Betty, [Aaron,Barry,Conor])
, (Ciara, [Conor,Aaron,Barry]) ]

Our encoding of the algorithm has the following type:

stable :: Array Man [Woman] → Array Woman [Man] → IO [ (Woman,Man) ]

It takes a pair of rankings, and outputs a list of marriages.

The first step of the algorithm is to initialise the array of engagements:

engagements← liftIO (newArray_ (minBound,maxBound) :: IO (IOArray Woman Man))

This will store the current engagements while the algorithm runs. Note that we do not use this for

inter-process communication; all communication is done with the send′ and yield functions.

Next, we construct the array of coroutines for men and women:

men← genM (𝜆i→ newIORef (man i));women← genM (𝜆i→ newIORef (woman i))

Each coroutine is stored in an array, indexed by the Man and Woman data types.

The next step is to construct a coroutine for a man:

man ::Man→ () → Co ⊥ () () M ⊥
man me () = do for_ (mranks !me) $ 𝜆wi→ do

liftIO (printf "%s proposes to %s; " me wi)
accept ← lift (send′ (women ! wi) me)
when accept (yield ())

return (error "Unreachable")

This function takes an index representing the man that corresponds to the coroutine. Then, it

iterates through the man’s ranks, and for each it sends a proposal to the corresponding woman

(send′ (women ! wi) me). The response to this message is a Bool saying whether or not the woman

has accepted; if she does accept, the man suspends himself (when accept (yield ())). The end of

this loop will never be reached if all preferences are strict total orders, but we cannot prove that in

Haskell, so we need to use error in the return statement so that the coroutine has return type ⊥.
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Then, the women. A “woman” is a coroutine that takes a Man as input (a suitor), and yields

Bools as output (responses to marriage proposals).

woman ::Woman→ Man→ Co ⊥ Man Bool M ⊥
woman me suitor = do
liftIO (printf "%s accepts %s\n" me suitor)
liftIO (writeArray engagements me suitor)
yield True >>= loop (𝜆suitor → do
jiltee← liftIO (readArray engagements me)
if elemIndex suitor (wranks !me) < elemIndex jiltee (wranks !me)

then do liftIO (printf "%s jilts %s for %s\n" me jiltee suitor)
liftIO (writeArray engagements me suitor)
lift (send′ (men ! jiltee) ())
yield True

else do liftIO (printf "%s rejects %s, stays with %s\n" me suitor jiltee)
yield False)

The first suitor is always accepted (yield True), after that the coroutine loops, comparing the new

suitor to the old, and jilting the old suitor if the new is preferable. If that does happen, the woman

will modify the engagements array, notify her jiltee (send′ (men ! jiltee)), and respond True to the

marriage proposal. If the new suitor is not preferable, she will instead yield False.

Finally, to run the algorithm we initiate all of the men and collect the engagments:

forAll_ (𝜆i→ send′ (men ! i) ()); liftIO (getAssocs engagements)

The output of the algorithm is as follows:

>>> stable mranks wranks
Aaron proposes to Ciara; Ciara accepts Aaron
Barry proposes to Ciara; Ciara rejects Barry, stays with Aaron
Barry proposes to Betty; Betty accepts Barry
Conor proposes to Ciara; Ciara jilts Aaron for Conor
Aaron proposes to Annie; Annie accepts Aaron
[(Annie,Aaron),(Betty,Barry),(Ciara,Conor)]

The final result is [ (Annie,Aaron), (Betty,Barry), (Ciara,Conor) ], what a happy coincidence that

their names match too.

6 Related Work
The first research on hyperfunctions was conducted by Launchbury et al., who defined and named

the construction in a technical report [2000]. Subsequently, Krstić et al. established the formal basis

for hyperfunctions, and developed the coalgebraic interpretation of the type [2001a; 2001b]. In

2013, Launchbury et al. revised and published their earlier technical report; this publication forms

the basis of the research contained in this paper.

Outside of the academic literature, Kmett’s Haskell library for hyperfunctions [2015] proved

extremely helpful for demonstrating some of the more complex patterns of hyperfunction usage. In

addition, the first occurrence of a hyperfunction-like type we were able to find was Hofmann’s

Rou type [1993], which was later studied in more depth by Berger et al. [2019].

The algorithms of Allison [1983, 1989] seem to be quite similarly structured to hyperfunction

algorithms, although they do not contain hyperfunctions themselves. In particular, the research of
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Smith [2009] on Allison’s “corecursive queues” includes a lot of recursion patterns reminiscent of

Hofmann’s breadth-first traversal [1993].

One of the contentions of this work is that hyperfunctions are already being used throughout

the functional programming world by programmers who need to combine continuations and

concurrency in certain ways. While we have documented some of these usages [Hofmann 1993;

Kammar et al. 2013; Shivers and Might 2006; Spivey 2017], we think it is likely that the pattern

is even more widespread. In particular, while most of the examples we have documented are in

Haskell, we are much less familiar with the Scheme or Lisp communities, and we think that the

prevalence of continuations in those languages would increase the likelihood of rediscoveries of

hyperfunctions.

One of the main patterns of usage of hyperfunctions is in efficiently implementing zip-like

functions (what we have called “lateral” functions) on CPS-encoded data. The difficulty of imple-

menting this pattern is precisely what Spivey identified in implementing CPS-encoded Pipes [2017].

Pieters and Schrijvers wrote a follow-up to this work [2019], with the intention of simplifying the

exposition by systematically deriving Spivey’s more efficient implementation. We think that this

paper can also help clarify Spivey’s intricate type by isolating the hard-to-understand part—the

hyperfunction—and demonstrating its use in more simple examples.

While the original motivation for the development of hyperfunctions was in allowing fold-fusion

[Gill et al. 1993] to apply to the zip function, these days stream fusion [Coutts et al. 2007] is able to

perform most of the functions of fold-fusion, and has no difficulty in fusing away zip.
Our approach to CCS is strongly influenced by Bruni and Montanari [2017]. Early drafts of our

model took inspiration (especially for the implementation of the ∥ operator) from Bahr and Hutton

[2023] and Bergstra and Klop [1985]. The canonical model we use (Proc) comes from [Veltri and

Vezzosi 2023], whose work was also invaluable for understanding the well-founded implementation

of the CCS operations.

Our model of CCS is similar in many ways to the model of Ciobanu and Todoran [2018]. The

formal foundation for their model is in metric spaces, however, which differs from ours. While

we did not need to use their weak abstractness condition [Ciobanu and Todoran 2017] for our

Communicator model of CCS, it is possible that other process calculi (especially those which

contain sequencing operators, like ACP Bergstra and Klop [1986], which we were not able to model

using hyperfunctions) can only ever have weakly abstract continuation models.

7 Conclusion
In the early history of continuations, basic concepts were independently discovered

an extraordinary number of times. This was due less to poor communication among

computer scientists than to the rich variety of settings in which continuations were

found useful [Reynolds 1993]

Hyperfunctions, like continuations, have been rediscovered multiple times. Wherever concurrency

and continuations intersect, authors have used hyperfunctions “to open up apparently closed

doors” [Launchbury et al. 2013]. Despite their many uses, however, hyperfunctions have remained

obscure and under-studied. This paper has demonstrated that hyperfunctions are powerful and

broadly useful: we hope that our work sheds more light on hyperfunctions, facilitates their more

widespread use, and spurs further research on these curious beasts.
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