
Programmable Bitcoin Verification via Synthesis-Aided
Lifting

HANZHI LIU, Nubit and University of California, Santa Barbara
JINGYU KE, Nubit
HONGBO WEN, Nubit and University of California, Santa Barbara
LUKE PEARSON, Polychain Capital
ROBIN LINUS, ZeroSync and Stanford University
LUKAS GEORGE, ZeroSync
MANISH BISTA, Alpen Labs
HAKAN KARAKUŞ, Chainway Labs
DOMO, Layer 1 Foundation
JUNRUI LIU, University of California, Santa Barbara
YANJU CHEN, University of California, Santa Barbara
YU FENG, Nubit and University of California, Santa Barbara

A new wave of proposals, such as covenants (OP_CHECKTEMPLATEVERIFY), the reactivation of OP_CAT,
and BitVM-style fraud proofs, promises to turn Bitcoin into a settlement layer for decentralised finance. These
projects must be expressed in Bitcoin script, a stack language with no loops or recursion; practical applications
therefore expand into megabytes of unrolled opcodes whose slightest error can freeze or steal funds. Existing
verification tools collapse under the resulting explosion of constraints.

We present 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡, the first scalable verifier for programmable-Bitcoin artifacts. Inspired by recent ad-
vances in program lifting and synthesis, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 automatically (i) lifts raw script into a semantics-preserving,
register-based DSL and (ii) detects repetitive slices that mimic batch operations (map, fold, filter, Merkle-proof
checks). Each slice is replaced with a single higher-order combinator whose behavior is captured by an
axiom, shrinking downstream SMT constraints by orders of magnitude. A counter-example-guided inductive
synthesis loop ensures every transformed fragment remains equivalent to its original script.

Evaluated on 104 real-world benchmarks, including full BitVM2 prover–verifier pairs, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 automat-
ically verifies 88% of the cases in an average of 23.57s, outperforms direct SMT encodings by up to two
orders of magnitude, and uncovers 5 previously unknown vulnerabilities. These results demonstrate that
synthesis-aided lifting with axiomatized batch combinators delivers practical, rigorous assurance for the
emerging ecosystem of programmable Bitcoin.

Additional Key Words and Phrases: BitVM, Bitcoin Script, Formal Verification, Program Synthesis

1 Introduction
Bitcoin [Nakamoto 2008] has earned its reputation as the most secure and decentralised ledger
in existence, yet the ecosystem’s aspirations have recently shifted from mere value trans-
fer toward a fully fledged platform for programmable money. Proposals such as covenants
(OP_CHECKTEMPLATEVERIFY) [Rubin 2020], the reactivation of OP_CAT [Heilman and Sabouri
2023], and the BitVM fraud-proof framework [Linus et al. 2024] all point to the same goal: execute
sophisticated logic off-chain or under tight on-chain templates while letting Bitcoin’s conservative

Authors’ Contact Information: Hanzhi Liu, hanzhi@ucsb.edu, Nubit and University of California, Santa Barbara; Jingyu Ke,
windocotber@riema.xyz, Nubit; Hongbo Wen, hongbowen@ucsb.edu, Nubit and University of California, Santa Barbara;
Luke Pearson, luke@polychain.capital, Polychain Capital; Robin Linus, roblinus@stanford.edu, ZeroSync and Stanford
University; Lukas George, lukas@zerosync.org, ZeroSync; Manish Bista, manish@alpenlabs.io, Alpen Labs; Hakan Karakuş,
hakan@chainway.xyz, Chainway Labs; Domo, domodata@proton.me, Layer 1 Foundation; Junrui Liu, junrui@ucsb.edu,
University of California, Santa Barbara; Yanju Chen, yanju@ucsb.edu, University of California, Santa Barbara; Yu Feng,
yufeng@ucsb.edu, Nubit and University of California, Santa Barbara.

2 Liu et al.

base layer arbitrate disputes. If successful, these ideas would unlock decentralized exchanges,
lending markets, and roll-ups that settle directly in BTC, without abandoning Bitcoin’s minimalist
design philosophy. The impact is already tangible [Hiro Systems PBC 2025; IOV Labs 2025; Linus
et al. 2024; Sovryn Community 2025]: the Rootstock side-chain today secures roughly $258 million
in total value locked (TVL), Stacks exceeds $107 million, and Sovryn’s non-custodial margin-trading
system alone controls about $65 million. These nine-figure commitments underscore that pro-
grammable Bitcoin is no longer aspirational; instead, it is a production reality that demands strong
correctness guarantees.

Yet developers face a steep correctness cliff. Unlike other platforms such as Ethereum [Buterin et al.
2014], which provides a Turing-complete programming model and built-in support for common
cryptographic primitives such as elliptic curves and hash functions, Bitcoin script is deliberately
non-Turing-complete, offers neither loops nor native cryptographic primitives, and exposes every
operation through an untyped stack. Practical applications must therefore unroll every control-
flow construct into megabytes of opcodes and then shard the result across taproot branches to
respect Bitcoin’s 4 MB block limit. For instance, implementing a standard zero-knowledge SNARK
verifier [Ben-Sasson et al. 2014] that requires only 200 lines of Solidity code on Ethereum could
result in a Bitcoin script program with several gigabytes. The stakes are painfully real: in June
2025 the Stacks-based ALEX protocol lost approximately $8.3 million (who had already suffered
a $4.3 million bridge exploit the previous year [Cointelegraph 2024, 2025]); Rootstock’s Sovryn
lending pool was drained of roughly $1 million in October 2022 [Behnke 2022]; and the pNetwork
cross-chain bridge leak of 277 BTC (about $13 million at the time) in September 2021 remains one
of the largest Bitcoin-denominated DeFi breaches to date [Behnke 2021]. In an environment where
a single misplaced opcode can freeze or steal funds, manual testing alone is manifestly inadequate.
Off-the-shelf verification pipelines struggle with these artifacts. Stack-oriented bytecode hides

data flow, and naively encoding the resulting traces as Satisfiability Modulo Theories (SMT) con-
straints overwhelms modern solvers: verifying a 256-bit BitVM transcript directly in SMT can
exhaust memory after hours (Section 7). Two empirical observations guide our solution. First,
despite contorted stack manipulations, most script fragments implement register-style logic and
can therefore be lifted to a cleaner intermediate form. Second and central to this paper, the apparent
code explosion stems from repetitive yet simple patterns that mimic batch operations such as map,
fold, and filter, idioms not expressible in raw Bitcoin script. Because each iteration performs the
same straightforward arithmetic or boolean step, checking its equivalence to a concise summary is
far easier than reasoning about an arbitrary low-level optimization; the difficulty lies in recognizing
and compressing the repetition, not in proving the arithmetic itself.

Motivated by recent successes in program lifting and synthesis [Cheung et al. 2013], our solution
assembles an end-to-end verificationworkflow that connects raw Bitcoin script tomodern constraint
solvers while keeping the original semantics intact. It unfolds in three stages. First, we introduce a
register-style domain-specific language, G, whose instruction set faithfully covers every opcode
required by covenants and BitVM contracts, yet removes the clutter of explicit stack manipulation.
Second, a two-tier lifting engine rewrites script into G: a lightweight peephole pass translates
local stack patterns, after which a counter-example-guided inductive-synthesis (CEGIS) loop [Solar-
Lezama 2008] iteratively proposes, checks, and refines larger fragments until they match their
script originals. Third, G provides a compact library of higher-order combinators (map, fold, zip,
filter, etc.), each accompanied by a precise axiom that captures its observable behaviour. During
lifting, the workflow detects repetitive “batch” slices in the script trace that correspond to these
patterns and replaces thousands of unrolled instructions with a single axiomatized combinator call.
Because the solver reasons directly over the axiom rather than the low-level code, the resulting SMT
constraints shrink by orders of magnitude; equivalence checks collapse to short algebraic identities

Programmable Bitcoin Verification via Synthesis-Aided Lifting 3

that modern engines discharge in seconds. In practice, this strategy turns proofs that previously
timed out, such as a 256-bit BitVM2 multiplication transcript, into sub-minute verification tasks
(§7).

To evaluate our approach, we applied our tool to five real-world Bitcoin infrastructures, using a
suite of 104 benchmarks derived from various implementations of BitVM and other cryptographic
protocols. Our tool successfully verified 88% of the cases, demonstrating both its effectiveness and
practicality. The verification process is efficient, with an average runtime of 23.57 seconds per
benchmark.
Finally, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 identified 5 previously unknown vulnerabilities, and our ablation study also

demonstrates the benefit of our synthesis approach, especially on complex benchmarks.
In summary, our contributions are as follows:
• We formulate the verification challenge for programmable Bitcoin contracts and present
𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡, the first automated framework that bridges raw Bitcoin script and modern formal-
methods tooling.
• We design G, a semantics-faithful yet analysis-friendly DSL equipped with higher-order
constructs that succinctly summarise unrolled batch operations.
• We develop a CEGIS procedure that lifts large script artifacts to G and proves their equiva-
lence, enabling scalable verification without manual annotations.
• We empirically demonstrate that 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 scales to multi-megabyte transcripts, uncovers
latent vulnerabilities, and offers a practical path toward safer programmable Bitcoin.

2 Background
To motivate our verification strategy, we first summarize the Bitcoin execution model, the con-
straints of its scripting language, the proposals that extend its programmability, and the security
failures that make rigorous analysis essential.

Execution environment. Bitcoin maintains an unspent-transaction-output (UTXO) ledger: each
transaction consumes one or more UTXOs and creates new ones. Spending a UTXO requires
executing a two-part script program—an unlocking (witness) script supplied by the spender and a
locking script stored in the UTXO. Both parts are concatenated and evaluated by every full node
inside a sandbox whose resources are capped by consensus rules [Nakamoto 2008]: a maximum
stack depth of 1 000 items, individual pushes limited to 520 bytes, and an aggregate 4 MB block size.
Execution halts if the final stack top is non-zero; otherwise the transaction is invalid and the entire
block is rejected.

Bitcoin script by example. To avoid DoS attacks, a Bitcoin script is intentionally tiny and
non–Turing-complete. It has no loops or function calls, only about 110 opcodes, and all data flow
passes through an untyped stack. The canonical pay-to-public-key-hash (P2PKH) output illustrates
the style:

OP_DUP OP_HASH160 <pkh> OP_EQUALVERIFY OP_CHECKSIG

A spender supplies <sig> <pubkey> as the unlocking script; evaluation leaves true on the stack if
(and only if) the signature is valid. More ambitious applications quickly hit the language limits.
For example, a 256-bit modular multiply that occupies ≈200 lines of Solidity on Ethereum expands
to more than 10 MB of inlined script because every loop iteration, conditional branch, and limb
operation must be written out explicitly.

Extending expressiveness without a hard fork. Three proposals collectively known as the
programmable-Bitcoin tool kit push expressiveness while preserving consensus:

4 Liu et al.

(1) Covenants via OP_CHECKTEMPLATEVERIFY (BIP-119) [Rubin 2020], which fixes the shape
of the future spending transaction.

(2) OP_CAT (draft BIP-420) [Heilman and Sabouri 2023], a cheap concatenation opcode that
enables limited transaction introspection.

(3) BitVM2 [Linus et al. 2024], which moves arbitrary computation off-chain and lets script
enforce correctness through a logarithmic fraud-proof game.

These building blocks already underpin high-value Bitcoin-centric DeFi (BTCFi) systems: Stacks
secures roughly $110M in total value locked (TVL), Rootstock ∼ $250𝑀 , and cross-chain bridges
such as ALEX routinely clear eight-figure volumes.

What can go wrong. Incorrect script or bridge logic has led to substantial losses. The Stacks-
based ALEX protocol suffered a $4.3M bridge exploit in 2024 and a $8.3M validator bug in 2025 [Coin-
telegraph 2024, 2025]; Rootstock’s Sovryn lending pool lost $1M in 2022 [Behnke 2022]; and the
pNetwork bridge leak of 277 BTC ($13 M) in 2021 remains one of the largest Bitcoin-denominated
breaches [Behnke 2021]. Because affected contracts are immutable, remediation required emergency
treasuries, user bail-outs, or protocol-level rollbacks, none of which is ideal for a settlement layer
trusted with billions of dollars.

Verification obstacles. Three technical hurdles combine to thwart conventional analyzers:
• Implicit State All variables live on the stack; recovering a data-flow graph requires
untangling hundreds of OP_SWAP, OP_ROT, and arithmetic opcodes.
• Code Explosion Loop unrolling, table look-ups, and hand-rolled cryptographic kernels

inflate contracts into multi-megabyte artifacts that must be split across Merkle branches to
fit the block limit.
• Solver Blowup A direct SMT encoding of a 256-bit BitVM2 verifier yields millions of
non-linear constraints and typically times out or runs out of memory in state-of-the-art
solvers such as cvc5 [Barbosa et al. 2022; Ozdemir 2022] or Bitwuzla [Niemetz and Preiner
2023].

Nonetheless, the underlying computations are often repetitive and straight-line. For instance, a
sequence of identical limb additions that collectively implements a map or fold. Capturing these
patterns at a higher level and verifying them as wholes, rather than as billions of individual stack
mutations, is the central idea pursued in the rest of this paper.

3 Overview

In this section, we motivate our proposed approach, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡, with a motivating example.

Motivating example. Big integer (BigInt) multiplication is a fundamental operation underpin-
ning critical cryptographic primitives, including RSA encryption and signatures, elliptic curve
cryptography, zero-knowledge proofs, and homomorphic encryption. Figure 1(a) illustrates a BitVM
implementation of BigInt multiplication written in Bitcoin script, whose functional correctness we
aim to formally verify. Specifically, given two BigInts 𝐴 and 𝐵, the correctness verification problem
can be succinctly expressed by the following Hoare triple:

BigInt(𝐴) ∧ BigInt(𝐵) {𝐶 (𝐴, 𝐵)} 𝑅 = 𝐶 (𝐴, 𝐵) ∧ 𝑅 = 𝐴 · 𝐵, (1)

where 𝐶 corresponds to the program being verified, 𝑅 is the output, and BigInt type checks the
given number as big integer.
As with many multi-precision arithmetic techniques used for representing very large integers,

the big integer implementation in this example divides numbers into smaller slices (or formally:

Programmable Bitcoin Verification via Synthesis-Aided Lifting 5

OP_PUSHBYTES_1 11 OP_ROLL x9

OP_i OP_ROLL OP_DUP x9, i=8:17

OP_ADD OP_DUP OP_PUSHBYTES_4 00000020 OP_GREATERTHANOREQUAL
OP_TUCK OP_IF OP_PUSHBYTES_4 00000020 OP_SUB OP_ENDIF
OP_TOALTSTACK
OP_ADD x8

OP_ADD OP_DUP OP_PUSHBYTES_3 000040 OP_GREATERTHANOREQUAL OP_IF
OP_PUSHBYTES_3 000040 OP_SUB OP_ENDIF

OP_FROMALTSTACK x8

OP_PUSHBYTES_1 11 OP_ROLL x9

OP_FROMALTSTACK OP_IF

OP_PUSHBYTES_1 11 OP_PICK x9

OP_PUSHBYTES_1 11 OP_ROLL OP_PUSHBYTES_1 j OP_ROLL x9, j=0x9:0x12

OP_ADD OP_DUP OP_PUSHBYTES_4 00000020 OP_GREATERTHANOREQUAL
OP_TUCK OP_IF OP_PUSHBYTES_4 00000020 OP_SUB OP_ENDIF
OP_TOALTSTACK
OP_ADD x8

OP_ADD OP_DUP OP_PUSHBYTES_3 000040 OP_GREATERTHANOREQUAL OP_IF
OP_PUSHBYTES_3 000040 OP_SUB OP_ENDIF

OP_FROMALTSTACK x8

OP_ENDIF

mapto(main[9:18], “mv”, 0);

map(main[0:9], “repeat”, 2);

bigaddx(main[0:18], 0x20000000, 0x400000);

mapto(main[9:18], “mv”, 0);

zip(main[9:18], main[0:9], “flat”);

bigaddx(main[0:18], 0x20000000, 0x400000);

if (alt[0])

.

...

x253

1

2

3

4

5

6

...
 loop (253)

.
 ...

...

pre_a ← bigint.from(main[9:17]);
 pre_r ← bigint.from(main[0:9]);
 bit ← alt[0];

A

post_a ← bigint.from(main[9:17]);
 post_r ← bigint.from(main[0:9);
 assert(post_a = safe_mul(2, pre_a));
 assert(post_r = safe_add(pre_r, bit*post_a));

B

(a) Original Bitcoin Script

(c) 𝓖 Program (Synthesized) and Specification/Invariants

(d) Constraints (Optimized)

(b) Constraints (Unoptimized)

Big Integers A, BInput

Big Integer: A*BOutput

Fig. 1. A motivating example showing a partial Bitcoin script for computing big integer multiplication and
its corresponding G program synthesized by 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡. One then checks the correctness of the snippet by
providing specification written in G, which produces optimized constraints.

limbs) to accommodate the limited word size of the underlying virtual machine. Specifically, a
BigInt 𝐴 is represented as a 254-bit integer divided into 9 slices (𝐴[0], . . . , 𝐴[8]), where each slice
contains 29 bits, except the final slice, which has 22 bits. Formally, the integer 𝐴 can be expressed
as:

𝐴 =

8∑︁
𝑖=0

229·𝑖 · 𝐴[𝑖] .

Therefore, multiplication of two BigInts 𝐴 and 𝐵 then corresponds to summary of each slice:
𝐴 · 𝐵 = (𝐴[0] · 𝐵 [0] (mod 229), 𝐴[1] · 𝐵 [1] + 𝑐0 (mod 258), ...),

where 𝑐𝑖 corresponds to the carry of the multiplication of the 𝑖-th slices.

Challenges. However, as shown by Figure 1, the multiplication is further broken down into
low-level stack operations that are non-straightforward due to the limitation of the Bitcoin script’s
stack-based virtual machine. In order to store the result on top of the stack, one has to break 𝐵 up
into its binary representation stored in an alternative stack, and invokes a loop of 253 iterations
that multiplies each bit from 𝐵 with slices of 𝐴 step by step. This entangles the high-level BigInt
multiplication semantics and produces a large number of non-linear constraints during verification,
making it difficult to scale.

Key observations and insights. Figure 2 illustrates the changes of stacks during the execution
of a single loop iteration in BigInt multiplication, where we can see a series of high-level semantic
patterns if we mark out BigInt𝐴, 𝐵 and the multiplication result 𝑅. Here, Bitcoin Script’s stack-based
execution uses both a main stack and an alt stack, where the alt stack serves as auxiliary storage
for temporarily saving and restoring intermediate values, to manage all data through explicit stack

6 Liu et al.

A
B

Main Stack Alt Stack

[9]
[10]
...
[17]

[1]
[2]
[3]
[4]
...
...
[251]
[252]
[253]

R
[0]
[1]
...
[8]

1

B

Main Stack Alt Stack

[1]
[2]
[3]
[4]
...
...
[251]
[252]
[253]

R
[9]
[10]
...
[17]

A
[0]
[1]
...
[8] 2

B

Main Stack Alt Stack

[1]
[2]
[3]
[4]
...
...
[251]
[252]
[253]

R
[18]
[19]
...
[26]

...

...
A[8]
A[8]

AA

A[0]
A[0]
A[1]
A[1]

B

Main Stack Alt Stack

[1]
[2]
[3]
[4]
...
...
[251]
[252]
[253]

R
[9]
[10]
...
[17]

2A
[0]
[1]
...
[8]3

B

Main Stack Alt Stack

[1]
[2]
[3]
[4]
...
...
[251]
[252]
[253]

R
[0]
[1]
...
[9]

2A
[9]
[10]
...
[17]

B

Main Stack Alt Stack

[2]
[3]
[4]
[5]
...
...
[251]
[252]
[253]

R
[18]
[19]
...
[26]

...

...
2A[8]
 R[8]

2A[0]
 R[0]
2A[1]
 R[1]

B

Main Stack Alt Stack

[2]
[3]
[4]
[5]
...
...
[251]
[252]
[253]

R+2A
[0]
[1]
...
[8]

2A
[0]
[1]
...
[8]

B

Main Stack Alt Stack

[2]
[3]
[4]
[5]
...
...
[251]
[252]
[253]

R
[0]
[1]
...
[9]

2A
[9]
[10]
...
[17]

5 64

B[1] == 1

B[1] == 0

move repeat bigadd

move flatzip bigadd

(Initial State)

(Final State 1) (Final State 2)

R

R’ R’

A

A’ A’

(𝐑! == 𝐑+𝐁 𝟏 ∗ 𝟐 ∗ 𝐀)	∧ (𝐀! == 𝟐 ∗𝐀)

B

Verification Condition (Current Step)

Fig. 2. Illustration of the operations within a single loop iteration of big integer multiplication.

operations. In order to compute such a step of𝐴 ·𝐵 [0] and put the result into 𝑅, one needs to move𝐴
to the top of stack and repeat itself, before multiplication with 𝐵 [0] and setting it to the result. Such
a sequence actually corresponds to the loop body as shown in Figure 1 but comes in such a way
that its semantics can be concisely formalized to reduce the complexity for verification; it soundly
provides the semantics with higher-order functions without analysis of low-level computation.

Our solution: lifting to a high-level DSL. Based on the above observation, we propose lifting
the original low-level Bitcoin script to a high-level domain-specific language (DSL). Inspired by
recent successes in program synthesis [Cheung et al. 2013; Solar-Lezama 2008], our key insight is
to synthesize and lift Bitcoin script into its equivalent high-level representation. Figure 1(b) shows
the equivalent version of the BigInt multiplication script in our DSL G. Note that this approach
abstracts away the complexity of stack manipulation by converting the original script into a more
concise and understandable three-address code format with a clean loop structure that is easy to
verify.

Verification for functional properties. With the synthesized G program, we can verify its
correctness. Specifically, given a Hoare triple {𝑃}𝐶{𝑄} as shown in Equation 1, where 𝑃 is the
precondition, 𝑄 is the postcondition, 𝐶 is the program in our high-level DSL, we reduce the non-
linear constraints generated by the original script into simpler, tractable verification conditions as
follows:
• Precondition The precondition for the BigInt multiplication in BitVM could involve
ensuring that the inputs are valid BigInt values, and that the initial states of the registers
(e.g., 𝑅 and 𝐴) are correctly set: 𝐴 = BigInt(𝐴[0]) ∧ 𝑅 = 0 .
• Postcondition The postcondition ensures that after the loop has completed, the program

has computed the correct product of 𝐴 and 𝐵; i.e., the postcondition describes the final state
of 𝑅 and A after all iterations have completed: 𝑅′ = 𝐴 · 𝐵 ∧𝐴′ = 2253 · 𝐴[0] , where 𝑅′ and 𝐴′
denote the resulting states after all iterations.
• Loop Invariant After lifting the code to our high-level DSL, we leverage the Houdini
algorithm [Flanagan and Leino 2001] to synthesize the loop invariant—a logical condition

Programmable Bitcoin Verification via Synthesis-Aided Lifting 7

Lifting VerificationProgrammable
Bitcoin Contract

Specification &
Annotation

Symbolic Evaluation &
Optimization

𝓖 Program Constraints

Safe / Unsafe /
Unknown

Fig. 3. A high-level overview of the 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 verification framework.

that holds true before and after each iteration of a loop. The loop invariant for this multipli-
cation ensures that after each iteration: 𝑅′ = 𝑅 + 𝐵 [𝑖] · 2𝐴 ∧𝐴′ = 2𝐴. As shown in Figure 2,
this loop invariant captures the relationship between the intermediate result 𝑅, the 𝑖-th bit
𝐵 [𝑖] from the multiplier, and the multiplicand 𝐴 after the 𝑖-th iteration.
• Verification Condition (VC) The verification conditions are logical formulas that must
hold for the program to be considered correct. These conditions are generated from the
Hoare triples and are checked to ensure that: a) the precondition implies the invariant holds
before the first iteration of the loop:

𝐴 = BigInt(𝐴[0]) ∧ 𝑅 = 0 =⇒ 𝑅′ = 𝑅 + 𝐵 [1] · 2𝐴 ∧𝐴′ = 2𝐴,

b) invariant holds after each loop iteration, and c) invariant and the loop termination
condition imply the postcondition.

These simplified constraints can be verified efficiently by an off-the-shelf SMT solver [Barbosa et al.
2022; de Moura and Bjørner 2008], ensuring the correctness of the BigInt multiplication. Note that
our approach significantly reduces the complexity of the verification process compared to directly
unrolling the original Bitcoin script, making it feasible to tackle more complex cryptographic
operations like BigInt.

4 The 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 Framework
In this section, we introduce the overall verification algorithm of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡. We first describe a
high-level overview of the system (Section 4.1), including its key procedures. Then we introduce the
domain-specific language G built within 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 (Section 4.2) and its symbolic evaluation rules
(Section 4.3), which can be used to summarize stack-based operations in a verification-friendly way.
As an improvement to verification, G can be further strengthened by user-provided specification
and loop invariants.

4.1 System Overview
As shown in Figure 3, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 takes inputs as a Bitcoin script that implements a full system such
as BitVM [Linus et al. 2024] and user-provided specifications. It then outputs whether the given
system is safe regarding the specification, in particular, in three potential outcomes: safe (✔), unsafe
(✕) or unknown (?). Specifically, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 contains two major phases:

• Lifting Bitcoin scripts are notoriously difficult to analyze directly due to their stack-
based, low-level nature. To overcome this challenge, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 lifts the original script into a
high-level, register-style intermediate representation with the proposed G language using
program synthesis. This lifting process automatically recognizes local stack patterns and
iteratively rewrites larger fragments into concise G code, while detecting repetitive struc-
tures that correspond to batch operations such as map, fold, and filter. These patterns are
then replaced by succinct combinators in G, significantly reducing downstream verification

8 Liu et al.

𝑠 ::= Statement:
| 𝑠∗ sequence
| 𝑒 ; expression
| 𝜎 ; stack operation
| if (𝑒) then 𝑠 else 𝑠. branch
| loop (𝑐) 𝑠. loop
| 𝑖 ← 𝑒 ; assignment
| assume(𝑒) ; assumption
| assert(𝑒) ; assertion

𝑒 ::= Expression:
| 𝑖 identifier
| 𝑐 constant
| ⋄ symbolic
| 𝜇 [𝑐∗] context accessor
| 𝑒 • 𝑒 | • 𝑒 | • operations

𝜇 ∈ {main, alt, ext} Context Selectors
𝜎 ::= Stack Operation:

| append(𝑐∗) stack append
| switch(𝑘) move bt. stacks
| mapto(𝑘, •, 𝑐) stack mapto
| filter(𝑘, ⊗, 𝑐) stack filter
| map(𝑘, •, 𝑐) stack map
| fold(𝑘, •, 𝑐) stack fold
| zip(𝑘, 𝑘, •) stack zip

• ∈ {⊗, ⊕, ⊙, ⊘, ⊖} Operators
⊗ ∈ {∧,∨,=,≠,<, ≤, ...} Boolean Ops.
⊕ ∈ {+, −, ∗, /, ...} Integer Ops.
⊙ ∈ {sha1, hash160, ...} Hashing Ops.
⊘ ∈ {cat, size, ...} String Ops.
⊖ ∈ {mv, cp, flatzip, ...} Stack Ops.

Fig. 4. A representative set of the syntax of G programs. For clarify, we omit the OP_ prefix in Bitcoin script
operators, e.g., cat for OP_CAT.

complexity. The result is a G program that faithfully captures the original script’s semantics
while enabling scalable formal reasoning.
• Verification The user provides correctness specifications (such as preconditions, post-
conditions, and verification conditions) directly within the synthesized G program using
G’s dedicated verification interface (e.g., assume and assert). To handle loops appearing in
the original Bitcoin script, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 lifts them into corresponding higher-order functional
constructs. In the subsequent verification phase, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 leverages symbolic evaluation
rules to transform the annotated G program into logical constraints, which can then be
efficiently analyzed by an off-the-shelf constraint solver.

We first elaborate on the verification procedure and defer a detailed discussion of the lifting
phase to Section 5. Specifically, we give an introduction of the G language in Section 4.2, including
its core syntax for modeling program behavior and writing verification queries. Building on top of
G, we then describe how an G program can be optimized for verification with an algorithm for
automatic inference of loop invariants. Finally, a set of symbolic evaluation and merging rules is
introduced in Section 4.3, which convert an G program into logical constraints, thus reducing a
verification task into constraint solving.

4.2 The G Language for Modeling Stack Operations
Figure 4 shows the syntax of our G language, for modeling stack-based computations in Bitcoin
script. From a high-level perspective, G is a functional programming language with higher-order
functions for batched stack operations and verification. The top level of an G program consists of a
sequence of statements from three different categories:

• Specification as Correctness Properties G incorporates two constructs for verification
queries, namely assume and assert, where assume takes a boolean expression 𝑒 and appends
it to the current path condition as additional assumption, and assert checks in place whether
the given expression 𝑒 evaluates to true. In a G program, a verification query 𝑒 can be
built from G expressions, and tracked with the assignment construct 𝑖 ← 𝑒 in a dedicated
environment besides the stacks.

Programmable Bitcoin Verification via Synthesis-Aided Lifting 9

Example 4.1 (Properties). For the BigInt multiplication example shown in Figure 1, the
property from Equation 1 can be expressed in the following way:

assert(𝐴′ = safe_mul(2, 𝐴[0]));
assert(𝑅′ = safe_add(𝑅, 𝐵 [0] ∗𝐴[0]));

where safe_mul and safe_add are safe arithmetic multiplication and addition operations
that prevent overflows and underflows.

• Basic Types and Control Flows There are three basic types in G, namely booleans,
integers and hashes. In addition to standard arithmetic operators for booleans (⊗) and
integers (⊕), G also models cryptographic operations (⊙) such as sha1 and hash160, which
compute hashes as their output, as well as string operations (⊘) that transform and obtain
properties of strings. G models standard control flows such as branches and loops. Note that
a loop in G by default has a constant bound 𝑐 (i.e., bounded) due to the nature of stack-based
scripts.
• Stack Operations G incorporates higher-order functions that perform stack-based com-

putations in a batched manner without exposing details of low-level data structures. Specif-
ically:
– The append operator pushes to the top of the stack a new set of elements.
– The switch operator moves a subset of stack elements into another stack; e.g., if the

specified elements are in the main stack, then they will be moved to the alt stack; vice
versa.

– The map operator is a higher-order operator, which selects a subset of stack elements,
and applies a function • with argument 𝑐 in place to each element in the subset.

– The mapsto operator performs a similar operation as the map operator does, except
that mapsto moves the resulting subset of elements to the top of the stack.

– The filter operator selects a subset of stack elements that satisfy the given condition,
and moves the results to the top of the stack.

– The fold operator is a higher-order operator that consumes a seed value 𝑐 and a subset
of stack elements and progressively constructs a result on top of the stack with the
function •.

– The zip operator is a higher-order operator, which takes two subsets of stack elements
and applies a function • to each pair of them. The resulting set of elements is then
pushed to the top of the stack.

Example 4.2 (A Program in G). The following shows a G program:
map(main[0:3], +, 1); zip(main[0:3],main[3:6], ∗);

which first adds 1 to the first three elements, and then multiplies each pair of the first three and
second three elements. The results are pushed to the top of the stack.

Inference of Loop Invariants. For a loop statement, we implement a Houdini-style [Flanagan
and Leino 2001] inference algorithm that generates conjunctive invariants. This baseline generates
all possible atomic predicates by unwinding the grammar that captures common templates in our
domain up to a fixed bound and generates conjunctive invariants over this universe in the standard
way.

4.3 Symbolic Evaluation for the G Language
We build upon the existing symbolic operational semantics for Bitcoin script defined by Klomp
and Bracciali [2018]. Specifically, we adopt their formalization to capture the symbolic side effects

10 Liu et al.

produced during script execution and integrate these effects into our defined program state. Formally,
we represent the resulting state as a 4-tuple ⟨𝑝,𝛾, 𝛿, 𝜋⟩, where:

• 𝑝 is the program counter that points to the immediate next statement.
• 𝛾 is the assertion store that tracks verification conditions generated during symbolic eval-
uation, which can be implied by the language constructs or derived from user-provided
specification.
• 𝛿 is the program store that provides access to the memory and stacks. Specially, a stack

operation 𝜎 can access both the main and alt stacks by the form 𝛿 [main] and 𝛿 [alt]; some
operators likeOP_CHECKTEMPLATEVERIFY can access information from the external context
𝛿 [ext], such as the transaction that the current script is in (via 𝛿 [ext] .tx), the message sender
(via 𝛿 [ext] .sender), etc.; besides, the verification interface can access the memory with given
identifier 𝑖 , in the form 𝛿 [𝑖].
• 𝜋 keeps track of the current path condition, which is a boolean value that evaluates to true
in the current program state, and remains true in order to reach the next program state;
otherwise, the next program state is said to be unreachable.

During transition of program states, if a value 𝑥 can only be accessed under certain path condition
𝜋 , we then say 𝑥 is guarded by 𝜋 , denoted by L𝜋M𝑥 . Thus, each slot 𝑖 of the program store 𝛿 , also
denoted as 𝛿 [𝑖], is mapped to a set of possible values guarded by different path conditions:

𝛿 [𝑖] = {L𝜋0M𝑥0, ..., L𝜋𝑛M𝑥𝑛}.

Consider accessing a given slot 𝑖 in the program store 𝛿 , only those values guarded by 𝜋 ′ which
implies the current path condition 𝜋 can be successfully retrieved; we use the form 𝛿𝜋 J𝑖K (or 𝛿J𝑖K
for short) to denote access to program store 𝜋 under path condition 𝜋 :

𝛿J𝑖K = 𝛿𝜋 J𝑖K = {L𝜋 ′M𝑥 ∈ 𝛿 [𝑖] | 𝜋 ′ ⇒ 𝜋}.

We then describe how 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 symbolically evaluates a G program and keeps track of program
states via a set of evaluation rules. The G language shares the same formulation of program state
of the Bitcoin script language.

Control flows and verification interface. Figure 5 shows a representative set of symbolic
evaluation rules for the control flow constructs and verification interface of G. The following
judgment:

⟨𝑝,𝛾, 𝛿, 𝜋⟩ { ⟨𝑞,𝛾 ′, 𝛿 ′, 𝜋 ′⟩

denotes a successful execution of the form 𝑝 in the program state ⟨𝑝,𝛾, 𝛿, 𝜋⟩ and results in the
return form 𝑞 in the program state ⟨𝑞,𝛾 ′, 𝛿 ′, 𝜋 ′⟩.
The evaluation process starts with the (Seqn) rule, which populates each statement 𝑠 within

the given sequence (𝑠0, ..., 𝑠𝑛) and evaluates them accordingly. Rules (Cnst), (Symb), and (Iden)
define three different ways to retrieve data via directly providing constant value, symbolic value,
and access to the program store 𝛿 . Note that each constant or symbolic value is typed; it’s either
a boolean, integer or hash. Thus, binary expression (Bexp) and unary expression (Uexp) require
operands to match the type requirement of the corresponding operators.

The (Bnch) rule denotes how a program state should be tracked for separate execution branches,
and merged afterward: The condition 𝑒 will first be evaluated and the resulting condition 𝑣 is then
conjoined with the current path condition 𝜋 for evaluation of the then-branch; for the else-branch,
the negation of the condition ¬𝑣 is conjoined instead. The two ending program states are then
merged. In particular, assertion stores are merged by disjunction, and program stores are merged

Programmable Bitcoin Verification via Synthesis-Aided Lifting 11

⟨𝑠0, 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾0, 𝛿0, 𝜋0 ⟩ ... ⟨𝑠𝑛, 𝛾𝑛−1, 𝛿𝑛−1, 𝜋𝑛−1 ⟩ { ⟨∅, 𝛾𝑛, 𝛿𝑛, 𝜋𝑛 ⟩
⟨ (𝑠0, ..., 𝑠𝑛), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾𝑛, 𝛿𝑛, 𝜋𝑛 ⟩

(Seqn)

⟨𝑐,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑐,𝛾, 𝛿, 𝜋 ⟩
(Cnst)

⟨⋄, 𝛾, 𝛿, 𝜋 ⟩ { ⟨⋄, 𝛾, 𝛿, 𝜋 ⟩
(Symb)

⟨𝑖,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝛿J𝑖K, 𝛾, 𝛿, 𝜋 ⟩
(Iden)

⟨𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣,𝛾𝑒 , 𝛿𝑒 , 𝜋𝑒 ⟩
⟨𝑝0, 𝛾𝑒 , 𝛿𝑒 , 𝜋𝑒 ∧ 𝑣⟩ { ⟨∅, 𝛾0, 𝛿0, 𝜋0 ⟩
⟨𝑝1, 𝛾𝑒 , 𝛿𝑒 , 𝜋𝑒 ∧ ¬𝑣⟩ { ⟨∅, 𝛾1, 𝛿1, 𝜋1 ⟩
𝛾 ′ = 𝛾𝑒 ∪ 𝛾0 ∪ 𝛾1 𝛿 ′ = 𝛿𝑒 ⊎ 𝛿0 ⊎ 𝛿1

⟨if (𝑒) then 𝑝0 else 𝑝1, 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋𝑒 ⟩
(Bnch)

⟨𝑒0, 𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣0, 𝛾0, 𝛿0, 𝜋0 ⟩
⟨𝑒1, 𝛾0, 𝛿0, 𝜋0 ⟩ { ⟨𝑣1, 𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩

𝑣0, 𝑣1 ∈ booleans ∪ integers ∪ strings
◦ ∈ {⊗, ⊕} 𝑣 = 𝑣0 ◦ 𝑣1

⟨𝑒0 ◦ 𝑒1, 𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣,𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩
(Bexp)

⟨𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣,𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩
𝑣 ∈ booleans ∪ integers ∪ strings ∪ hashes

◦ ∈ {⊙, −,¬} 𝑣′ = ◦𝑣
⟨◦𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣′, 𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩

(Uexp)

⟨𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣,𝛾 ′, 𝛿0, 𝜋 ′ ⟩
𝛿 ′ = 𝛿0 ⊎ {𝑖 ↦→ {L𝜋M𝑣}}

⟨𝑖 ← 𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩
(Asgn)

⟨𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣,𝛾 ′, 𝛿 ′, 𝜋0 ⟩
𝜋 ′ = 𝜋0 ∧ 𝑣

⟨assume(𝑒), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩
(Asum)

⟨𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣,𝛾0, 𝛿 ′, 𝜋 ′ ⟩
𝛾 ′ = 𝛾0 ∪ {𝜋 ′ ⇒ 𝑣}

⟨assert(𝑒), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩
(Asrt)

Fig. 5. A representative set of the symbolic evaluation rules (part 1) for the control flow constructs and
verification interface of G.

per each value mapping. Given program stores 𝛿0 and 𝛿1, their merged version 𝛿0 ⊎ 𝛿1 is given by:

𝛿0 ⊎ 𝛿1 = 𝐴 ∪ 𝐵 ∪𝐶,
where 𝐴 = {𝑖 ↦→ 𝛿0 [𝑖] | 𝑖 ∈ dom(𝛿0)\dom(𝛿1)}, 𝐵 = {𝑖 ↦→ 𝛿1 [𝑖] | 𝑖 ∈ dom(𝛿1)\dom(𝛿0)},
and 𝐶 = {𝑖 ↦→ 𝛿0 [𝑖] ∪ 𝛿1 [𝑖] | 𝑖 ∈ dom(𝛿0) ∩ dom(𝛿1)}.

Here, dom(𝛿) denotes the set of identifiers in the program store 𝛿 .
The (Asgn), (Asum), and (Asrt) rules denote how the verification interface interacts with the

program state. The assignment rule (Asgn) binds a location in the program store 𝛿 to an identifier
𝑖 . The assumption rule (Asum) adds the resulting value 𝑣 of evaluation of the expression 𝑒 into
the current path condition 𝜋 by conjunction. Similarly, the assertion rule (Asrt) appends 𝑣 to the
assertion store 𝛾 . During the evaluation, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 terminates when the current path condition 𝜋

evaluates to false, or the conjunction of all clauses from the assertion store 𝛾 can not be satisfied.

Bitcoin script operators. Figure 6 formalizes the symbolic semantics of several key Bitcoin
script operators used in programmable contracts. (OpCat) enables symbolic concatenation of two
stack elements, supporting advanced protocols that require dynamic commitments. (OpDepth)
provides stack introspection by pushing the current stack depth, which is critical for scripts that
manipulate stack indices. (OpCheckTemplateVerify) enforces template-based spending via an
uninterpreted predicate over the current transaction, enabling covenant-style restrictions without
modeling full transaction structure. Finally, (OpSwap), (OpRot), (OpPick), and (OpRoll) are stack
manipulation primitives that enable efficient batch processing and complex arithmetic by directly
updating the stack layout. Together, these rules extend the verifier’s ability to reason about modern
programmable Bitcoin scripts involving advanced data manipulation, introspection, and template
constraints.

12 Liu et al.

⟨𝑒0, 𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣0, 𝛾0, 𝛿0, 𝜋0 ⟩
⟨𝑒1, 𝛾0, 𝛿0, 𝜋0 ⟩ { ⟨𝑣1, 𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩

𝑣0, 𝑣1 ∈ strings ◦ ≡ OP_CAT 𝑣 = 𝑣0 · 𝑣1
⟨𝑒0 ◦ 𝑒1, 𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣,𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩

(OpCat)

◦ ≡ OP_DEPTH
𝑙 = 𝛿JmainK

𝛿 ′ = 𝛿 ⊎ {main ↦→ [|𝑙 |] · 𝑙 }
⟨◦, 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾, 𝛿 ′, 𝜋 ⟩

(OpDepth)

⟨𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣𝑒 , 𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩ 𝑣𝑒 ∈ hashes
◦ ≡ OP_CHECKTEMPLATEVERIFY 𝑣 = UF(𝛿 [ext] .tx, 𝑣𝑒)

⟨◦𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣,𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩
(OpCheckTemplateVerify)

𝛿JmainK ≡ [𝑣0, 𝑣1] · 𝑙 ◦ ≡ OP_SWAP
𝛿 ′ = 𝛿 ⊎ {main ↦→ [𝑣1, 𝑣0] · 𝑙 }
⟨◦, 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾, 𝛿 ′, 𝜋 ⟩

(OpSwap)

𝛿JmainK ≡ [𝑣0, 𝑣1, 𝑣2] · 𝑙 ◦ ≡ OP_ROT
𝛿 ′ = 𝛿 ⊎ {main ↦→ [𝑣2, 𝑣0, 𝑣1] · 𝑙 }
⟨◦, 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾, 𝛿 ′, 𝜋 ⟩

(OpRot)

⟨𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣𝑒 , 𝛾 ′, 𝛿0, 𝜋 ′ ⟩
𝑣𝑒 ∈ integers ◦ ≡ OP_PICK

𝛿0JmainK = [𝑣0, ..., 𝑣𝑛] · 𝑙
𝛿 ′ = 𝛿0 ⊎ {main ↦→ [𝑣𝑛, 𝑣0, ..., 𝑣𝑛] · 𝑙 }
⟨◦𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩

(OpPick)

⟨𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨𝑣𝑒 , 𝛾 ′, 𝛿0, 𝜋 ′ ⟩
𝑣𝑒 ∈ integers ◦ ≡ OP_ROLL

𝛿0JmainK = [𝑣0, ..., 𝑣𝑛] · 𝑙
𝛿 ′ = 𝛿0 ⊎ {main ↦→ [𝑣𝑛, 𝑣0, ..., 𝑣𝑛−1] · 𝑙 }

⟨◦𝑒,𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ′ ⟩
(OpRoll)

Fig. 6. A representative set of the symbolic evaluation rules (part 2) for the programmable Bitcoin script
operators. Here, we define the concatenation of two elements 𝑣1 and 𝑣2 as 𝑣1 · 𝑣2, and an uninterpreted
function UF.

Batched stack operators. The symbolic evaluation rules of the higher-order constructs for
modeling batched stack operations of G are shown in Figure 7. To provide a high-level intuition,
each rule is accompanied by a visualization that depicts the stack’s state before and after the
corresponding operation is applied, highlighting its side effects. Specifically, the (Append) and
(Switch) rules do not change the values of the input elements. The (Append) rule moves the input
elements to the top of themain stack, while the (Switch) rule moves the selected elements between
main and alt stacks. The rules for the remaining four higher-order operations, namely the rules
of (Mapto), (Filter), (Map), (Fold) and (Zip), accept an operator • that is used to transform the
input elements into new ones.

Example 4.3 (Batch Processing with a G Construct: map). Given the following G program:
map(main[0:2], +, 1);

Suppose main[0:2] is (1, 2) initially, execution of the program results in (2, 3). For the symbolic
version of the program:

map(main[0:2], +, {L𝜋0M𝑥, L𝜋1M𝑦});
with a stack that also contains symbolic values, e.g.,

main[0:2] = ({L𝜋1M1, L𝜋2M2}, 3),

execution of the G program yields a symbolic result main′ [0:2] with the path conditions merged:
main′ [0:2] = ({L𝜋0 ∧ 𝜋1M𝑥 + 1, L𝜋0 ∧ 𝜋2M𝑥 + 2, L𝜋1M𝑦 + 1, L𝜋1 ∧ 𝜋2M𝑦 + 2}, {L𝜋0M𝑥 + 3, L𝜋1M𝑦 + 3}) .

We then generalize the merging of path conditions in the above example during program
execution as a general path merging rule: the result of applying an operator • on the guarded
values 𝑔0 and 𝑔1 is given by:

𝑔0 • 𝑔1 = L𝜋0 ∧ 𝜋1M(𝑥0 • 𝑥1),
where 𝑔0 = L𝜋0M𝑥0 and 𝑔1 = L𝜋1M𝑥1.

Programmable Bitcoin Verification via Synthesis-Aided Lifting 13

𝑙 = (𝑐0, ..., 𝑐𝑛) 𝑋 = 𝑙 · 𝛿JmainK 𝛿 ′ = 𝛿 ∪ {main ↦→ 𝑋 }
⟨append(𝑙), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾, 𝛿 ′, 𝜋 ⟩

(Append)

𝜇′ = alt if 𝜇 ≡ main else main 𝑀 = 𝛿J𝜇K 𝑀 ′ = 𝛿J𝜇′K
𝐴 = 𝛿J𝜇KJ𝑙K 𝑋0 = 𝑀\𝐴 𝑋1 = 𝐴 ·𝑀 ′
𝛿 ′ = 𝛿 ∪ {𝜇 ↦→ 𝑋0, 𝜇

′ ↦→ 𝑋1} 𝛾 ′ = 𝛾 ∪ 𝛾0
⟨switch(𝜇 [𝑙]), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ⟩

(Switch)

𝑀 = 𝛿J𝜇K 𝐴 = 𝛿J𝜇KJ𝑙K 𝐴′ = flatten({𝑣 • 𝑐 | 𝑣 ∈ 𝐴})
𝑋 = 𝐴′ · (𝑀\𝐴) 𝛿 ′ = 𝛿 ∪ {𝜇 ↦→ 𝑋 } 𝛾 ′ = 𝛾 ∪ 𝛾𝑎

⟨mapto(𝜇 [𝑙], •, 𝑐), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ⟩
(Mapto)

𝑀 = 𝛿J𝜇K 𝐴 = 𝛿J𝜇KJ𝑙K 𝐴′ = {𝑣 | 𝑣 ⊗ 𝑐 = true ∧ 𝑣 ∈ 𝐴}
𝑋 = 𝐴′ · (𝑀\𝐴) 𝛿 ′ = 𝛿 ∪ {𝜇 ↦→ 𝑋 } 𝛾 ′ = 𝛾 ∪ 𝛾0

⟨filter(𝜇 [𝑙], ⊗, 𝑐), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ⟩
(Filter)

𝑀 = 𝛿J𝜇K 𝑋 = {𝑀J𝑖K • 𝑐 if 𝑖 ∈ 𝑙 else𝑀J𝑖K | 0 ≤ 𝑖 ≤ |𝑀 | }
𝛿 ′ = 𝛿 ∪ {𝜇 ↦→ 𝑋 } 𝛾 ′ = 𝛾 ∪ 𝛾0

⟨map(𝜇 [𝑙], •, 𝑐), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ⟩
(Map)

𝑙 = (𝑐0, ..., 𝑐𝑛) 𝑀 = 𝛿J𝜇K 𝐴 = 𝛿J𝜇KJ𝑙K 𝑣0 = 𝑐 •𝑀J𝑐0K
... 𝑣𝑛 = 𝑣𝑛−1 •𝑀J𝑐𝑛K 𝑋 = {𝑣𝑛 } · (𝑀\𝐴)

𝛿 ′ = 𝛿 ∪ {𝜇 ↦→ 𝑋 } 𝛾 ′ = 𝛾 ∪ 𝛾𝑎
⟨fold(𝜇 [𝑙], •, 𝑐), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ⟩

(Fold)

𝑙𝑎 = (𝑐0, ..., 𝑐𝑛) 𝑙𝑏 = (𝑑0, ..., 𝑑𝑛) 𝑀 = 𝛿J𝜇K 𝐴 = 𝛿J𝜇KJ𝑙𝑎K
𝐵 = 𝛿J𝜇KJ𝑙𝑏K 𝑋 = {𝐴J𝑐𝑖K • 𝐵J𝑑𝑖K | 0 ≤ 𝑖 ≤ 𝑛} · (𝑀\𝐴\𝐵)

𝛿 ′ = 𝛿 ∪ {𝜇 ↦→ 𝑋 } 𝛾 ′ = 𝛾 ∪ 𝛾𝑏
⟨zipwith(𝜇 [𝑙𝑎], 𝜇 [𝑙𝑏], •), 𝛾, 𝛿, 𝜋 ⟩ { ⟨∅, 𝛾 ′, 𝛿 ′, 𝜋 ⟩

(Zip)

A

Stack Stack

mapto

A’

A

Stack Stack

filter

A’

Stack

A

Stack

A

append

Alt Stack

A

switch

Main Stack

A

A

Stack

map

Stack

A’

A

Stack Stack

fold

A’

A

Stack Stack

zip C

B

Fig. 7. A representative set of the symbolic evaluation rules (part 3) for the stack operations of G. We illustrate
changes to stacks before and after the corresponding stack operation to the right of each rule, and define the
concatenation of two lists 𝑙1 and 𝑙2 as 𝑙1 · 𝑙2, as well as the removal of list 𝑙2 from top of 𝑙1 as 𝑙1\𝑙2.

5 Synthesis-Aided Lifting
In this section, we introduce the lifting algorithm that converts a Bitcoin script into its equivalent
G program via a counterexample-guided inductive synthesis (CEGIS) loop. The synthesized G
program will then be used for reasoning in the verification phase as mentioned in Section 4. We
first give an overview of the synthesis algorithm (Section 5.1), and explain in detail the synthesis
procedure (Section 5.2) and the equivalence checking (Section 5.3).

5.1 Algorithm Overview
As shown in Algorithm 1, given the domain-specific language G and a Bitcoin script 𝑃 , 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡
starts by obtaining the synthesis specification S𝜙 via symbolic evaluation (i.e., the SEval procedure)

14 Liu et al.

Algorithm 1 Synthesis-Aided Lifting
1: procedure Lift(G, 𝑃)
2: input: domain-specific language G, Bitcoin script 𝑃
3: output: lifted G program 𝑃 ′ or ⊥ if not found
4: S𝜙 ← SEval(𝑃) ⊲ symbolically evaluates original script into logical specification
5: sample 𝐸 ∼ {(𝑒in, 𝑒out) | 𝑃 (𝑒in) = 𝑒out} ⊲ samples input-output examples from script 𝑃
6: 𝜅 ← ⊤ ⊲ initializes knowledge base
7: while 𝑃 ′ ← Enumerate(G, 𝐸, 𝜅) do
8: S′ ← SEval(𝑃 ′) ⊲ symbolically evaluates candidate program into logical constraints
9: 𝑟 ← sat(S′ ̸ |= S𝜙) ⊲ check for counterexample
10: if 𝑟 then
11: (𝑒′in, 𝑒

′
out) ← cex(𝑟), 𝐸 ← 𝐸 ∪ (𝑒′in, 𝑒

′
out) ⊲ gets the counterexample and adds to example set

12: 𝜅 ← 𝜅 ∧ block(𝑃 ′) ⊲ blocks the current candidate program
13: else return 𝑃 ′ ⊲ no counterexample is found; returns the program
14: return ⊥ ⊲ exhausted

of 𝑃 (line 4). It then samples an initial set 𝐸 of input-output examples from the original script 𝑃
(line 5). Each example (𝑒in, 𝑒out) consists of an input 𝑒in and an output 𝑒out that correspond to the
status of the stacks before and after applying the script 𝑃 respectively, i.e., 𝑃 (𝑒in) = 𝑒out. 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡
then continuously constructs candidate G programs via the Enumerate procedure (line 7-14)
until a solution is found. Specifically for each proposed candidate program 𝑃 ′, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 obtains its
representation S′ in constraints (line 8) and checks if there exists an input-output example (i.e., a
counterexample) fromS′ that violates the synthesis specificationS𝜙 (line 9). The candidate program
𝑃 ′ is not the solution if such a counterexample (𝑒′in, 𝑒′out) exists (line 10). In this case, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡
retrieves the exact counterexample and adds it to the example set 𝐸 (line 11) while blocking the
program 𝑃 ′ (line 12); otherwise, if no counterexample is found, the candidate program 𝑃 ′ is then
returned since it proves to be equivalent to the original script 𝑃 (line 13).

5.2 The Enumeration Procedure
Given a domain-specific language, which here refers to G = (𝑉 , Σ, 𝑅, 𝑆), where𝑉 , Σ, 𝑅 and 𝑆 denote
the non-terminals, terminals, productions and start symbol respectively, the enumeration procedure
finds a feasible program 𝑃 in G, such that for all given input-output examples (𝑒in, 𝑒out) ∈ 𝐸,
execution of 𝑃 over each input 𝑒in results in the corresponding output 𝑒out.
There are three steps in the enumeration procedure, namely derivation, encoding and pruning.

The derivation step constructs a well-typed G program, which is then encoded with the given
input-output examples into a logical summary. The enumeration procedure prunes a program if its
logical summary proves unsatisfiable and returns it otherwise. We elaborate on the three steps in
detail as follows.

Derivation. To derive a well-typed program 𝑃 from G by construction, we model 𝑃 as a sequence
of terminals 𝑉 and non-terminals Σ in G: 𝑃 ∈ (𝑉 ∪ Σ)∗, such that 𝑃 can be derived from 𝑆 via a
sequence of productions from 𝑅:

𝑆
𝑟∗
⇁ 𝑃 where 𝑟 ∈ 𝑅.

A program that contains non-terminals is partial, and such non-terminals are also referred to as
holes. Starting from 𝑆 , by gradually filling in a partial program’s holes, the enumeration procedure
eventually derives a well-typed and complete program without any non-terminals.

Example 5.1 (Partial Program Derivation). The following shows a partial program written in G:
mapto(𝑘0, “mv”, 0); zip(𝑘1, 𝑘2, “flat”);

Programmable Bitcoin Verification via Synthesis-Aided Lifting 15

Operator Description Logical Summary

Batched Stack Operators
append(𝑥) pushes new elements to the top of stack (𝜎𝑚′ = 𝜎𝑚 + 𝜎𝑥) ∧ (𝜎𝑎′ = 𝜎𝑎)
switch(𝑥) moves elements between stacks (𝜎𝑚′ = 𝜎𝑚 − 𝜎𝑥) ∧ (𝜎𝑎′ = 𝜎𝑎 + 𝜎𝑥)

mapto(𝑥, _, _) applies a function to each selected elements and
moves results to the top of stack

(𝜎𝑚′ ≥ 𝜎𝑚) ∧ (𝜎𝑎′ = 𝜎𝑎)

filter(𝑥, _, _) selects a subset of elements with conditions and
moves results to the top of stack

(𝜎𝑚′ ≤ 𝜎𝑚) ∧ (𝜎𝑎′ = 𝜎𝑎)

map(𝑥, _, _) applies a function to each selected elements in place (𝜎𝑚′ = 𝜎𝑚) ∧ (𝜎𝑎′ = 𝜎𝑎)
fold(𝑥, _, _) progressively constructs a result to the top of stack (𝜎𝑚′ = 𝜎𝑚 − 𝜎𝑥 + 1) ∧ (𝜎𝑎′ = 𝜎𝑎)
zip(𝑥0, 𝑥1, _) applies a function to each pair of two sets of elements

and pushes results to the top of stack
(𝜎𝑚′ = 𝜎𝑚 − 𝜎𝑥0) ∧ (𝜎𝑎′ = 𝜎𝑎)∧
(𝜎𝑥0 = 𝜎𝑥1)

Control Flows
if 𝑒 then 𝑝0 else 𝑝1 . branch statement 𝜙𝑝0 ∨ 𝜙𝑝1

loop (𝑐) 𝑝. loop statement
∧

𝑐 𝜙𝑝

Table 1. A representative set of logical summary of G. 𝑥 denotes the input.𝑚 and 𝑎 denote the main and
alt stack respectively. 𝜎𝑝 denotes the size of 𝑝 , and 𝜙𝑝 retrieves the logical summary of 𝑝 . We differentiate a
stack’s status before and after an operation with ′, e.g.,𝑚 (before) and𝑚′ (after).

where 𝑘0, 𝑘1 and 𝑘2 are non-terminals. With the productions 𝑘 ::= 𝜇 [𝑐∗], 𝜇 ::= main and 𝑐 ::= 9,
we can fill in the hole 𝑘0 and thus derive a new partial program:

mapto(main[9], “mv”, 0); zip(𝑘1, 𝑘2, “flat”);

Encoding. For a given program 𝑃 , the enumeration procedure performs a quick checking of
its feasibility over the given set of examples 𝐸 via its logical summary. Insipired methodology of
component-based synthesis with over-approximate logical specifications [Feng et al. 2017], we refer
to a logical summary as a set of logical formulas that describes the behavior of a language construct
in an abstract way.
For example, Table 1 shows the logical summary for each of the stack operators of G, where 𝑥

and 𝑦 denotes the input and output stack of an operator, with certain type of stack specified by
subscript (e.g.,𝑚 formain stack and 𝑎 for alt stack). Each summary quantifies the relation between
the size properties of the input and output stacks. For example, in the logical summary of append,
the size of the main stack becomes larger in the output than input but alt stack remains the same;
for switch, the main stack shrinks and the alt stack grows.

Thus, let 𝔗𝑃 be the AST representation of 𝑃 , we can then encode a program 𝑃 with given input
𝑒in and output 𝑒out into its logical summary Ψ(𝑃 (𝑒in) = 𝑒out):

Ψ(𝑃 (𝑒in) = 𝑒out) =
∧

𝑁 ∈Nodes(𝔗𝑃)
𝜙 (𝑁),

where 𝜙𝑛 denotes the logical summary of the node 𝑛.

Example 5.2 (Logical Summary). Consider the following partial program:
mapto(main[0:3], •0, 𝑐0); zip(main[0:3],main[3:6], •1);

Let 𝑥0 be the input of mapto, and 𝑥1𝑎 , 𝑥1𝑏 be the inputs of zip. The above program is then encoded
to the following logical summary:

(𝜎𝑚1 ≥ 𝜎𝑚0) ∧ (𝜎𝑎1 = 𝜎𝑎0) ∧ (𝜎𝑚2 = 𝜎𝑚1 − 𝜎𝑥1𝑎) ∧ (𝜎𝑎2 = 𝜎𝑎1) ∧ (𝜎𝑥1𝑎 = 𝜎𝑥1𝑏),

where𝑚0 and 𝑎0 correspond to the initial stacks,𝑚1 and 𝑎1 are stacks after the first operation
mapto,𝑚2 and 𝑎2 are the final stacks after the second operation zip.

16 Liu et al.

Pruning. For each given input-output pair (𝑒in, 𝑒out) ∈ 𝐸, if its logical encoding Ψ(𝑃 (𝑒in) = 𝑒out)
is unsatisfiable, then 𝑃 can be safely pruned. Therefore, the enumeration procedure returns the
program 𝑃 , if the following query yields true:∧

(𝑒in,𝑒out) ∈𝐸
SAT(Ψ(𝑃 (𝑒in) = 𝑒out)).

5.3 Equivalence Checking
Once a candidate program 𝑃 ′ has been proposed by the enumeration procedure, it is essential to
ensure that it is semantically equivalent to the original script 𝑃 . However, verifying this equivalence
is non-trivial, as there is no off-the-shelf equivalence checker for comparing Bitcoin script with
programs in G. We thus implemented equivalence checking to address this challenge.

The core idea is to symbolically evaluate (via the SEval procedure) both programs on a common
input state and check if their resulting output states are the same. To build the checker, we adapted
existing symbolic evaluation rules for Bitcoin script from existing work [Klomp and Bracciali
2018] with those already defined in Section 4 for G. The checker was built on top of the Rosette
framework [Torlak and Bodik 2014] and leverages its SMT encoding facilities as well as its symbolic
evaluation engine.
Given the described equivalence checking mechanism, we are now ready to formally establish

the soundness of the proposed lifting-based verification method.

Theorem 5.3 (Soundness of Verification via Synthesis-Aided Lifting). Let 𝑃BTC be a
Bitcoin script program, and let 𝑃G be a corresponding program synthesized by the inductive lifting
procedure Lift (Algorithm 1). LetMBTC andMG denote the operational semantics of Bitcoin script
and the G language respectively, formally defined by their respective execution models (Section 4).
Suppose for all input states 𝑠 , executing 𝑃BTC underMBTC and executing 𝑃G underMG produce
behaviorally equivalent outcomes (i.e., identical observable final stack states and outputs):

∀𝑠 .MBTC [𝑃BTC] (𝑠) ≈ MG [𝑃G] (𝑠),

then verifying a correctness specification Φ at the G level implies correctness at the Bitcoin script
level:

MG |= 𝑃G : Φ =⇒ MBTC |= 𝑃BTC : Φ,

assuming the equivalence checker used by the Lift is sound and complete within the considered
input domain.

Proof Sketch. We first clarify the involved semantics:MBTC is the formal operational semantics
that precisely describes execution rules for Bitcoin script operations (Section 4.3), while MG
denotes the formal semantics defined for our register-style intermediate language G (Section 4.2
and Section 4.3).
The inductive synthesis procedure Lift produces a G program 𝑃G from 𝑃BTC via iterative

synthesis (Algorithm 1). Each step involves symbolic equivalence checking, which formally verifies
that both programs produce identical observable behaviors for all inputs. This equivalence checking
is assumed sound and complete, ensuring that no behaviorally inequivalent transformations are
admitted.
Given behavioral equivalence, correctness verification conducted using MG on 𝑃G directly

transfers correctness claims to the original Bitcoin script 𝑃BTC executed underMBTC. Specifically,
if a correctness specification Φ (such as safety properties or functional correctness) is satisfied by
𝑃G , then it must also hold for 𝑃BTC, due to the exact correspondence in observable behaviors as
enforced by the equivalence checker.
Therefore, verification at the G level is soundly reflected at the Bitcoin script level. □

Programmable Bitcoin Verification via Synthesis-Aided Lifting 17

6 Implementation

We have implemented 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 in Rosette [Torlak and Bodik 2014] with a back-end constraint
solver (Bitwuzla [Niemetz and Preiner 2023] version 0.4.0). The total codebase comprises 2,574
lines of code. This includes all implementation components and benchmarks of verified Bitcoin
scripts. Below, we elaborate on various aspects of our implementation.

Modeling big integers with symbolic limbs. Bitcoin script represents integers using sign-
magnitude representation, where the highest bit serves as the sign bit. During arithmetic operations,
numbers are converted to two’s complement representation and then converted back after the
operation.

To accurately model operations involving big integers (i.e., BigInts) in 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡, we introduced
a new symbolic operator called PUSH_BIGINT_X. This operator allows us to push a large integer
onto the symbolic stack, defined by the following parameters:
• N : The total number of bits of the BigInt.
• L: The number of bits per limb.
• 𝑙 : The base name for each limb, with 𝑙𝑖 representing the 𝑖-th limb.
• 𝑣 : The identifier for the entire BigInt, with 𝑣𝑖 representing the 𝑖-th BigInt.

For example, PUSH_BIGINT_0 254 29 𝑠 𝑣0 creates a 254-bit BitInt, split into limbs of 29 bits each,
named 𝑠0, 𝑠1 etc., with a symbolic identifier 𝑣0 for the whole BigInt. The variable 𝑣0 is constrained
to be equal to the sum of its limbs, each shifted by its position:

𝑣0 =
𝑛∑︁
𝑖=0

𝑠𝑖 · 2L·𝑖 , where 𝑛 =

⌈
N
L

⌉
− 1.

After this operation, the stack will have 𝑠0, 𝑠1, ..., 𝑠𝑛 pushed onto it, where each 𝑠𝑖 is a symbolic
bitvector of size L (except possibly the highest limb, which may be smaller if N is not a multiple
of L.

Handling sign bits. In our modeling, we handle the sign bit and limb representations carefully.
Since in Bitcoin’s implementation, each limb of a BigInt is represented as a positive number (with
the sign bit being 0 under normal circumstances), we model each limb as a bitvector of size L and
constrain it to be within the range [0, 2L − 1].
For the highest limb, we adjust the limb size to account for any remainder bits:

Lℎ = N (mod L) .

The highest limb is of size L if Lℎ = 0.
To ensure that the sign bit is correctly modeled, we constrain the most significant bit of the

highest limb to be 0 by default. The position of the sign bit within the highest limb is:

sign =

{
Lℎ − 1 if Lℎ > 0,
L − 1 if Lℎ = 0.

We then apply the following constraint to the highest limb 𝑠𝑛 : 𝑠𝑛 [sign] = 0, where 𝑠𝑛 [𝑖] denotes the
𝑖-th bit of 𝑠𝑛 . By modeling BigInts in this way, we avoid issues related to sign bits during arithmetic
operations. Each limb is treated as an unsigned bitvector, and the entire BigInt is assembled from
these limbs.

Abstraction of cryptographic primitives. Cryptographic operations introduce complex non-
linear constraints that are difficult for SMT solvers to handle efficiently. We abstracted these
primitives using uninterpreted functions with essential properties captured as axioms. For example,
hash functions (e.g.,OP_SHA256) are modeled as injective functions without specifying their internal

18 Liu et al.

workings. This allows the solver to reason about the high-level behavior without dealing with
underlying complexities.

Loop invariant templates. Similar to previous work on loop invariant inference, we provide a
set of templates as domain-specific knowledge to guide and prioritize the search. Below is a subset
of representative templates for constructing loop invariants:
• A symbolic variable is zero: 𝑣 = 0.
• A variable is binary: 𝑣 = 0 ∨ 𝑣 = 1.
• A variable representing a 29-bit limb is within its valid range: 0 ≤ 𝑣 < 229.
• The 𝑖-th element of the stack is equal to a symbolic variable 𝑣 : 𝜇 [𝑖] = 𝑣 .

7 Evaluation

In this section, we describe the setup and results for our evaluation, which are designed to answer
the following key research questions:
• RQ1 (Performance) How does 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 perform in verification for Bitcoin scripts?
• RQ2 (Ablation) How does the key design of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 affect its performance?
• RQ3 (Zero-Days) Is 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 useful for detecting previously unknown vulnerabilities?

Benchmarks. We collect a total of 104 verification tasks from the three major open-source
repositories written using Bitcoin script, which contains the usage of a wide coverage of Bitcoin
script language constructs in various computational tasks, libraries, and components, as follows:
• Bitvm bridge1 (or BVM for short) implements BitVM2 [Linus et al. 2024], the official

implementation from the original authors. It also comes with a library of functions written
in Bitcoin script for various computations and operations in arithmetics, cryptography,
stack, bitvector, etc.
• Bitcoin circle STARK verifier2 (or BSV for short) implements a circle plonk [Gabizon

et al. 2019] verifier in Bitcoin script. It also comes with reusable cryptographic components
written in Bitcoin script.
• Arithmetic over the M31 or BabyBear field in Bitcoin script3 (or MBB for short)

implements efficient M31 and BabyBear field arithmetic in Bitcoin script, providing reusable
building blocks for zero-knowledge and cryptographic protocols on Bitcoin.

Among our 104 benchmarks, 63 benchmarks are from BVM, 11 from BSV, and 30 from MBB.
Each benchmark has on average 525,411 lines of code, with a maximum of 5,780,711 Bitcoin script
opcodes. The computations implemented in the benchmarks mainly fall into several categories:
• Big integer operations, including standard bitwise conversion, comparison, arithmetics, etc.
• Elliptic curve (BN254) operations, including standard arithmetics over the curves.
• Merkle tree implementation, including folding and hashing operations used as its building
blocks.

Specification and Properties. 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 verifies functional correctness of each benchmark (i.e.,
ensuring that computations produce expected results). Each benchmark follows the standard defini-
tions of cryptographic operations, whose documentation is generally available in various prevailing
tools (e.g., circom-pairing4). We construct the specification according to the documentation using
𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 ’s DSL.
1https://github.com/BitVM/BitVM/tree/main/bitvm/src
2https://github.com/Bitcoin-Wildlife-Sanctuary/bitcoin-circle-stark
3https://github.com/BitVM/rust-bitcoin-m31-or-babybear
4https://github.com/yi-sun/circom-pairing/tree/master/docs

https://github.com/BitVM/BitVM/tree/main/bitvm/src
https://github.com/Bitcoin-Wildlife-Sanctuary/bitcoin-circle-stark
https://github.com/BitVM/rust-bitcoin-m31-or-babybear
https://github.com/yi-sun/circom-pairing/tree/master/docs

Programmable Bitcoin Verification via Synthesis-Aided Lifting 19

Total Avg. Time Solved Safe (✔) Unsafe (✕) Unknown (?)

BVM 63 37.05s 50 (79%) 49 (78%) 1 (2%) 13 (21%)
BSV 11 3.49s 11 (100%) 11 (100%) 0 (0%) 0 (0%)
MBB 30 2.62s 30 (100%) 26 (87%) 4 (13%) 0 (0%)

Overall 104 23.57s 91 (88%) 86 (83%) 5 (5%) 13 (12%)

Table 2. Summarized experimental result for performance evaluation of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡.

Experimental setup. All experiments are conducted on a system with an AMD Ryzen 9 5950X
16-Core Processor and 64 GB of memory, running Ubuntu 20.04. 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 encodes semantics of
bitcoin script in bitvector theory [Barrett et al. 1998] and leverages Bitwuzla [Niemetz and Preiner
2023] as its default backend constraint solver. The default timeout for evaluation of each benchmark
is set to 15 minutes.

Evaluation metrics. We use two key metrics to evaluate the performance of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡:
• Number of Benchmarks Solved There are three potential outcomes that 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 can
produce for verification of a benchmark:
– Safe (“✔”), meaning that the program conforms with the specification;
– Unsafe (“✕”), meaning that a counterexample that violates the specification is found;
– Unknown (denoted by “?”), meaning that 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 cannot terminate within a given

time limit, due to various reasons such as complex benchmarks, running out of resource
allocation, backend solver giving up, etc.

To evaluate the effectiveness of our approach, we measure the number of benchmarks
with a known result (both safe and unsafe are counted) produced by 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 as solved,
as this gives a concrete proof or counterexample as an answer to the given query in the
specification. Since predicates are generated by unwinding the G grammar to a fixed bound,
some counterexamples may be spurious, leading to incorrect "unsafe" conclusions. To
address this, we integrate a CEGAR-based refinement process, which refines invariants by
eliminating spurious counterexamples. Specifically, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 iteratively strengthens the
candidate invariant and continues with the verification process until a definite conclusion
is reached.
• Solving Time To evaluate the efficiency of our approach, we measure the solving time of
benchmarks. In particular, to reduce variance, only the time spent for benchmarks solved
are taken into consideration.

7.1 Performance of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 in Verification for Bitcoin scripts (RQ1)
We start by showing the summarized experimental result in Table 2. Overall, out of 104 benchmarks,
𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 solves 91 (88%) of them, with 86 (83%) proven safe (✔) and 5 (5%) having counterexamples
found, i.e., proven unsafe (✕). 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 takes an average of 23.57s to solve a benchmark. Only 13
(12%) of the benchmarks cannot be answered by 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡; our analysis shows that the top reasons
for producing unknown (?) results are: (1) complex constraints (e.g.,mul in bigint), and (2) excessive
resource consumption (e.g., sub in bn254/fp254impl).

Table 3 shows more details about the status of each benchmark and category. Two of the bench-
marks have user-provided annotations. For two of the more complex categories, bigint/bits and
bigint/inv, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 demonstrates its efficiency. In the bigint/bits category, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 successfully
solved 100% of the benchmarks with an average time of 3.91s. There are also some cases that are
worth noting, for example, bigint/mul, which contains the most loops, but 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 solves it within
452.10s, despite its complexity and the introduction of computationally expensive operations that

20 Liu et al.

Benchmark LOC Result Time (s)
(BVM) bigint/std

zip 36 ✔ 2.03
copy 18 ✔ 2.02
roll 36 ✔ 2.02
is_zero_ke 37 ✔ 2.16
is_one_ke 38 ✔ 2.21
totalstack 9 ✔ 1.99
fromaltstack 18 ✔ 2.01
is_negative 4 ✔ 2.16
is_positive 4 ✕ 2.16
resize 12 ✔ 1.92

overall 19 100% 2.07
(BVM) bigint/add

add 173 ✔ 3.58
double_allow_overflow_ke 134 ✔ 3.58
double_prevent_overflow 133 ✔ 3.54
lshift_prevent_overflow 3,713 ✔ 5.54
add_ref_with_top 164 ✔ 4.03

overall 863 100% 4.05
(BVM) bigint/bits

convert_to_be_bits 3,297 ✔ 4.38
convert_to_le_bits 3,297 ✔ 4.35
convert_to_be_bits_ta 3,081 ✔ 4.34
convert_to_le_bits_ta 3,535 ✔ 4.36
limb_from_bytes 121 ✔ 2.14

overall 2,666 100% 3.91
(BVM) bigint/inv

div2 4,157 ✔ 6.26
div2rem 4,156 ✔ 6.48
div3 5,057 ✔ 2.29
div3rem 5,056 ✔ 2.40
div3_toaltstack 5,295 ✔ 3.63
inv_stage1 4,992,182 ? TO

overall 835,983 83% 4.21
(BVM) bn254/curves

push_generator 27 ✔ 1.95
push_zero 15 ✔ 1.96
is_zero_ke 37 ✔ 2.17
add 2,180,126 ? TO
double 947,166 ? TO
equalverify 1,089,148 ? TO
into_affine 5,780,711 ? TO

overall 1,428,176 43% 2.03
(BVM) bigint/mul

mul 102,932 ✔ 452.10
mul_ke 102,952 ✔ 454.80
mul_toaltstack 103,170 ✔ 455.31
u29_mul_toaltstack 1,065 ✔ 35.19
u29_mul_ke 837 ✔ 34.84
u29_mul 827 ✔ 33.57

overall 51,964 100% 244.30
(BVM) bigint/sub

sub 180 ✔ 2.14
overall 180 100% 2.14

(BSV) utils
limb_to_le_bits 376 ✔ 2.48
ltbbt_exc_low2b 351 ✔ 2.13
ltbbt_common 349 ✔ 2.40
qm31_reverse 3 ✔ 2.00
ltbbt_exc_low1b 351 ✔ 2.09
dup_mv_g 64 ✔ 2.05
mv_from_bottom_g 96 ✔ 2.05
cta_top_item_first_in_g 28 ✔ 2.00

overall 202 100% 2.15

Benchmark LOC Result Time (s)
(BSV) folding

check_0_or_1 8 ✔ 2.11
decompose_positions_g 436 ✔ 11.95
skip_one_and_ext_bits_g 361 ✔ 7.14

overall 268 100% 7.07
(BVM) bn254/fp254impl

div2 4,547 ✔ 4.85
div3 5,845 ✔ 95.41
div3_toaltstack 6,083 ✔ 97.23
convert_to_be_u4 4,007 ✔ 28.13
convert_to_be_bits 3,297 ✔ 4.22
convert_to_be_bits_ta 3,081 ✔ 4.28
convert_to_le_bits 3,297 ✔ 4.31
convert_to_le_bits_ta 3,535 ✔ 4.39
sub 396 ✔ 5.44
sub_fq2 792 ✔ 8.90
sub_fq6 2,376 ✔ 27.68
sub_fq 396 ✔ 5.35
double 350 ✔ 2.30
inv 5,235,924 ? TO
mul_by_constant 101,871 ? TO
square 133,523 ? TO
mul 136,960 ? TO
mul_bucket 71,852 ? TO
decode_mtg 63,322 ? TO
convert_to_be_bytes 67,363 ? TO
mul_by_constant_bucket 67,745 ? TO

overall 281,741 62% 22.50
(BVM) bigint/cmp

equalverify 45 ✔ 2.13
lessthanorequal 183 ✔ 2.13

overall 114 100% 2.13
(MBB) babybear

u31_adjust 7 ✔ 2.01
u31_double 11 ✔ 2.34
u31_to_v31 2 ✔ 2.15
u31_add 10 ✔ 2.31
u31_neg 3 ✕ 2.40
u31_add_v31 8 ✔ 2.12
v31_neg 3 ✕ 2.42
v31_add_u31 8 ✔ 2.13
v31_adjust 7 ✔ 1.98
u31_sub 8 ✔ 2.18
v31_double 11 ✔ 2.31
v31_to_u31 2 ✔ 2.13
u31_to_bits 270 ✔ 8.37
v31_sub 8 ✔ 2.16
v31_add 10 ✔ 2.19

overall 25 100% 2.61
(MBB) m31

u31_adjust 7 ✔ 2.00
u31_double 11 ✔ 2.39
u31_to_v31 2 ✔ 2.20
u31_add 10 ✔ 2.33
u31_neg 3 ✕ 2.50
u31_add_v31 8 ✔ 2.14
v31_neg 3 ✕ 2.47
v31_add_u31 8 ✔ 2.13
v31_adjust 7 ✔ 1.96
u31_sub 8 ✔ 2.11
v31_double 11 ✔ 2.34
v31_to_u31 2 ✔ 2.10
u31_to_bits 270 ✔ 8.29
v31_sub 8 ✔ 2.11
v31_add 10 ✔ 2.19

overall 25 100% 2.62

Table 3. Statistics and breakdown of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡’s performance for the full set of benchmarks. “TO” means
timeout. For each small category, we show the averaged LOC, percentage of benchmarks solved and averaged
time in the “overall” row.

generate non-linear constraints. However, even though inv_stage1 contains only 1 loop, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡
fails to solve it due to the complicated loop invariants.

Programmable Bitcoin Verification via Synthesis-Aided Lifting 21

0 10 20 30 40 50 60 70 80 90
0

400

800

1,200

1,600

2,000

Number of Benchmarks Solved

C
um

ul
at
iv
e
Ti
m
e
(s
)

𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡

Baseline
Baseline (FF)

Fig. 8. A comparison between 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 and its baselines without transpilation, where x-axis denotes the
total number of benchmarks solverd, and y-axis denotes the cumulative time spent in seconds.

Failure analysis. For the 13 benchmarks that 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 fails to solve, we perform a manual
analysis to identify the root causes. A vast majority of them (12 out of 13) could not be solved
within the given time limit due to the complex constraints generated by multiple factors, such
as the introduction of non-linear operations, complex loop unrolling, and loop invariants. The
backend solver gives up on all 13 of them based on its internal strategy. Even after relaxing the
time limit to 24 hours, none of these benchmarks could be solved, as they continued to face the
same issues related to complex constraints.

Result for RQ1: 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 is able to solve a significant portion (91 out of 104, i.e., 88%) of
benchmarks with a 23.57s averaged solving time, where synthesis of snippets takes an average of
1.49s (around 6% of total time). Therefore, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 is both effective and efficient, and we believe
that this answers RQ1 in a positive way.

7.2 Ablation Study (RQ2)
Since there is no publicly available tool for verification of Bitcoin scripts, to evaluate the effectiveness
of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡’s key design in Section 5.1, we conduct an ablation study that compares 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 with
its baseline version, where a Bitcoin script is compiled directly into constraints according to the
rules presented in previous work [Klomp and Bracciali 2018]. That is, the baseline version doesn’t
perform any transpilation nor optimization. While it still shares the backend solver (Bitwuzla) with
the default 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡, we refer to this version as Baseline.
A subset of benchmarks (15.4%, especially in the category of bn254) is intended for elliptic

curve computations over finite fields. Solving such benchmarks generally poses challenges for
backend solvers that rely on integer/bitvector theories, as shown in previous works [Pailoor et al.
2023]. To explore whether a finite field solver could improve performance, we introduce a second
ablative version, Baseline (FF). This version uses cvc5 [Barbosa et al. 2022] with specialized finite
field theory [Ozdemir 2022] (i.e., cvc5−ff) as its backend solver. Specifically, for the 21 benchmarks
that assume finite field inputs/outputs, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 compiles them into finite field constraints and
invokes cvc5−ff; for other benchmarks, cvc5 with default bitvector theory is used.
Figure 8 shows the result for ablation study, where the x-axis represents the total number of

benchmarks solved, and the y-axis shows the cumulative time spent. All three configurations
show an increase in cumulative time as more benchmarks are solved. However, Baseline (FF) un-
derperforms compared to both 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 and Baseline. This is because most benchmarks do not
involve direct finite field operations but rather use Bitcoin scripts to simulate these operations.
As a result, the finite field optimizations in cvc5−ff do not provide a significant advantage and

22 Liu et al.

may even introduce overhead, making it less efficient than the Bitwuzla baseline for this particular
set of benchmarks. Compared to Baseline, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 demonstrates a clear advantage in 20.19% of
benchmarks, thanks to the high-level DSL and the synthesis procedure discussed in Section 5.1.
Baseline (FF) initially performs similarly to 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 for the first 50 benchmarks but falls behind as
more benchmarks are added, with 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 ultimately solving 18.27% more benchmarks.

A closer analysis reveals that 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 actually solves some of the largest and most challenging
benchmarks that other variants cannot, such as div3 and mul. Notably, the div3 series — including
bigint’s div3, div3rem and bn254’s div3 — are among the most fundamental operations in modern
cryptographic protocols (e.g., bigint and bn254). BitGuard’s experimental results demonstrate its
ability to efficiently handle these critical benchmarks, achieving substantial performance gains
rather than merely incremental improvements on easier ones.
In addition to the ablation configurations discussed above, we separately report the synthesis

time of the tool, denoted by 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 (synth. only). The synthesis time consistently accounts for only
a small fraction of the overall verification time across all benchmarks. In most cases, the synthesis
step takes less than 5% - 9% of the total, while the majority of the computation is consumed by
symbolic evaluation and constraint solving. This observation confirms that the cost of automated
DSL lifting does not constitute a practical bottleneck, and highlights the scalability of our approach
even for large, real-world BitVM programs.

Result for RQ2: 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 performs significantly better than its ablative versions, with notable
efficiency gains in 20.19% - 32.69% of cases. Both the synthesis phase and the overall workflow
demonstrate strong scalability across benchmarks. These results highlight the effectiveness and
scalability of the framework’s design, answering RQ2 in a positive way.

7.3 Detecting Previously Unknown Vulnerabilities (RQ3)
As shown in Table 2, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 has identified 5 previously unknown vulnerabilities, with all of
them confirmed by the developers. In this section, we elaborate in more detail about the zero-days
found. In particular, those vulnerabilities can be grouped into two categories:

Buggy zero handling in positive number detection. Recall that Table 2 shows a benchmark
(is_positive) that could not be successfully verified. Further analysis revealed that the verification
failure is due to a subtle, previously undocumented issue in the implementation.
As shown in Figure 9(a), the is_positive function used OP_LESSTHAN with the threshold

HEAD_OFFSET >> 1 to check if a bigint was “not negative”. Here, HEAD_OFFSET >> 1 serves as
a midpoint: if the most significant limb of the bigint is less than this threshold, it indicates
the sign bit is 0, meaning the number is non-negative. However, this approach mistakenly
classified an all-zero number as positive because zero also has a most significant limb below
HEAD_OFFSET >> 1. To correct this, in Figure 9(b), the revised code adds an explicit zero check
(Self::is_zero_keep_element(depth)) and uses OP_NOT to exclude zero values from being posi-
tive. The final check combines OP_LESSTHAN with the inverted zero check using OP_BOOLAND,
ensuring that only non-zero, non-negative numbers are considered positive.

In this example, a seemingly minor mistake in the arithmetic logic could have led to significant
financial losses, depending on how the function was integrated into the broader system. For
instance, in the original code, zero could incorrectly pass the check, potentially allowing unintended
validations where zero should have been excluded. Our tool uncovered one zero-day vulnerability
in this category.

Programmable Bitcoin Verification via Synthesis-Aided Lifting 23

pub fn is_positive(depth: u32) -> Script {
 script! {

{ (1 + depth) * Self::N_LIMBS - 1 } OP_PICK

 { Self::HEAD_OFFSET >> 1 }
 OP_LESSTHAN

 }
}

(a) the buggy snippet

1
2
3
4
5
6
7
8
9

10

pub fn is_positive(depth: u32) -> Script {
 script! {

{ (1 + depth) * Self::N_LIMBS - 1 } OP_PICK
 { Self::is_zero_keep_element(depth) } OP_NOT

{ (1 + depth) * Self::N_LIMBS } OP_PICK
 { Self::HEAD_OFFSET >> 1 }
 OP_LESSTHAN
 OP_BOOLAND
 }
}

1
2
3
4
5
6
7
8
9

10

(b) the fixed snippet

Fig. 9. An example code snippet demonstrating a bug in BitVM’s implementation (a) and its fixed version (b).

Canonical encoding violations in field arithmetic. In addition to the is_positive zero-day,
we uncovered four more zero-days in MBB. It encodes numbers in two related formats: u31, which
breaks each value into unsigned 31-bit limbs and then reassembles them modulo a prime, and v31,
which does the same but treats the top bit of each limb as a sign bit for signed arithmetic. Both of the
u31 negation routines (u31_neg and its subtraction-based variant) mistakenly folded 0 into the MOD

(and thus gave 0 two distinct representations), and likewise both of the v31 negation routines (v31_-
neg and its subtraction variant) collapsed the special value -MOD back into 0. These misencodings
violate the fundamental invariant that each field element has exactly one canonical representation,
which in turn can let an attacker bypass zero-checks or range-checks that assume uniqueness and
trigger undefined or insecure behavior. Our tool uncovered four zero-day vulnerabilities in this
category.

Result for RQ3: 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 detected 5 previously unknown vulnerabilities in widely-used Bitcoin
scripts, which could allow invalid proofs to be mistakenly accepted as valid. These results
highlight the critical role of 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡’s verification design in identifying logical flaws from
modern programmable Bitcoin systems.

8 Related work

Recent work has addressed formal methods for cryptography, zero-knowledge proof systems,
and smart contract verification. We briefly review the most relevant developments in these areas as
they relate to our approach.

Formal methods for cryptography. There is extensive research on applying formal verification
techniques to cryptographic protocols. For example, Corin et al.[Corin and den Hartog 2005] utilized
a variant of probabilistic Hoare logic to verify the security of ElGamal, while Gagne et al.[Gagné
et al. 2013] applied similar methods to analyze the security of CBC-based MACs, PMAC, and HMAC.
Tiwari et al. [Tiwari et al. 2015] employed component-based program synthesis to automatically
generate padding-based encryption schemes and block cipher modes of operation. EasyCrypt
[Barthe et al. 2013] offers a toolset for specifying and proving the correctness of cryptographic
protocols.

In addition to the rich literature on the intersection of cryptography and formal methods, there
is emerging research on the formal verification of zero-knowledge proofs (ZKPs). Almeida et
al.[Almeida et al. 2010] developed a certifying compiler for Σ-protocols, which includes zk-SNARKs,
using Isabelle/HOL [Nipkow et al. 2002] for formal correctness proofs. Sidorenco et al.[Sidorenco
et al. 2021] produced the first machine-checked proofs for ZK protocols using the Multi-Party
Computation-In-The-Head paradigm with EasyCrypt. More recent work has focused on building

24 Liu et al.

specialized solvers for polynomial equations over finite fields. While finite field arithmetic can
theoretically be encoded using integer or bitvector theories, solving the resulting constraints with
off-the-shelf solvers is often impractical. To address this, Hader et al. [Hader 2022] developed a
custom decision procedure for solving polynomial equations over finite fields by combining a
quantifier elimination procedure with Groebner basis computation. Ozdemir et al. [Ozdemir et al.
2023] recently proposed a finite field solver that does not scale well in our benchmarks due to
too many complex constraints. Finally, Coda [Liu et al. 2024] proposed the first verifier for the
functional correctness of ZKP circuits. However, compared to 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡, it requires a significant
amount of manual effort to write interactive theorem proofs in Coq, which makes it less practical
to reason about large programs in bitVMs.

Bug finders for cryptography programs. Writing correct yet efficient cryptography programs
requires specialized domain expertise. A Static analyzer called Circomspect [Dahlgren 2022] was
designed to find bugs in Circom programs. Circomspect looks for simple syntactic patterns such
as using the <-- operator when <== can be used. Such a syntactic pattern-matching approach
generates many false positives and can also miss real bugs. In contrast, Zkap [Wen et al. 2024]
significantly improves the prior work by reasoning about semantic violations in zero-knowledge
circuits. However, those tools are effective in detecting common vulnerabilities with known patterns
and can not detect functional violations in cryptography programs, including the benchmarks in
our evaluation.

Constraint solving. Satisfiability Modulo Theories (SMT)[Nelson and Oppen 1980] has become
an essential tool for symbolic reasoning, driven by the availability of practical, high-performance
solvers like Z3[de Moura and Bjørner 2008], CVC4[Barrett et al. 2011], and Gurobi[Gurobi Optimiza-
tion 2019]. The programming languages community has extensively explored the use of solvers for
both verification and synthesis [Leino 2010; Schkufza et al. 2013; Solar-Lezama 2008]. Traditional
SMT-based tools often rely on either custom-built constraint solvers or manual translation of
problems into constraints for existing solvers. In contrast, solver-aided domain-specific languages
(DSLs)[Torlak and Bodik 2014; Uhler and Dave 2014] automatically generate these constraints
through symbolic compilation. One example is the Rosette framework[Torlak and Bodik 2014],
which leverages Racket’s meta-programming capabilities to provide a high-level interface to mul-
tiple solvers. Building on top of Rosette, 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 employs a specialized compilation strategy in
Section 3 to produce highly efficient constraints, resulting in a significant reduction in solving
time.

9 Conclusion

This work tackles the correctness gap at the heart of programmable Bitcoin. We presented
𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡, a synthesis-aided verifier that lifts raw Bitcoin script into a register-style DSL, detects
the repetitive slices that emulate batch operations, and replaces them with axiomatized higher-
order combinators. A counter-example-guided inductive-synthesis engine then proves each lifted
fragment equivalent to its original script, after which off-the-shelf SMT solvers can discharge
the remaining obligations in seconds rather than hours. The approach eliminates the need for
developers to reason directly about megabytes of stack gymnastics while retaining fidelity to
Bitcoin’s execution model.

An evaluation on seventy-four real-world artefacts, including full BitVM2 prover–verifier pairs,
covenant templates, and cryptographic sub-routines, shows that 𝔟𝔦𝔱𝔤𝔲𝔞𝔯𝔡 verifies 88% of the
benchmarks in an average of 23.57 seconds and uncovers 5 previously unknown vulnerabilities.
These results demonstrate that automated lifting, axiomatized batch combinators, and inductive

Programmable Bitcoin Verification via Synthesis-Aided Lifting 25

synthesis together provide a practical path to rigorous assurance for the growing ecosystem of
Bitcoin-centric DeFi and cross-chain applications.

References
José Almeida, Endre Bangerter, Manuel Barbosa, Stephan Krenn, Ahmad-Reza Sadeghi, and Thomas Schneider. A certifying

compiler for zero-knowledge proofs of knowledge based on sigma-protocols. volume 6345, pages 151–167, 09 2010. doi:
10.1007/978-3-642-15497-3_10.

Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, AbdalrhmanMohamed, Mudathir
Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli,
and Yoni Zohar. cvc5: A versatile and industrial-strength SMT solver. In Dana Fisman and Grigore Rosu, editors, Tools and
Algorithms for the Construction and Analysis of Systems, pages 415–442, Cham, 2022. Springer International Publishing.

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and
Cesare Tinelli. Cvc4. In Proceedings of the 23rd International Conference on Computer Aided Verification, CAV’11, pages
171–177, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-22109-5. URL http://dl.acm.org/citation.cfm?id=
2032305.2032319.

Clark W Barrett, David L Dill, and Jeremy R Levitt. A decision procedure for bit-vector arithmetic. In Proceedings of the 35th
Annual Design Automation Conference, DAC ’98, page 522–527, New York, NY, USA, 1998. Association for Computing
Machinery.

Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and Pierre-Yves Strub. Easycrypt: A
tutorial. In FOSAD, 2013.

Rob Behnke. Explained: The pNetwork Hack (September 2021), 2021. URL https://www.halborn.com/blog/post/explained-
the-pnetwork-hack-september-2021. Accessed 28 Jun 2025.

Rob Behnke. Explained: The Sovryn Hack (October 2022), 2022. URL https://www.halborn.com/blog/post/explained-the-
sovryn-hack-october-2022. Accessed 28 Jun 2025.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct Non-Interactive zero knowledge for a von
neumann architecture. In 23rd USENIX Security Symposium (USENIX Security 14), pages 781–796, San Diego, CA, August
2014. USENIX Association. ISBN 978-1-931971-15-7. URL https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/ben-sasson.

Vitalik Buterin et al. A next-generation smart contract and decentralized application platform. white paper, 3(37):2–1, 2014.
Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Optimizing database-backed applications with query synthesis.

In Hans-Juergen Boehm and Cormac Flanagan, editors, ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 3–14. ACM, 2013.

Cointelegraph. Alex Lab points to Lazarus Group after last month’s $4M exploit, 2024. URL https://cointelegraph.com/
news/bitcoin-layer-2-alex-lab-may-exploit-lazrus-group-north-korea. Accessed 28 Jun 2025.

Cointelegraph. Bitcoin DeFi platformAlex Protocol loses $8.3M to exploit, 2025. URL https://cointelegraph.com/news/bitcoin-
defi-platform-alex-protocol-loses-8-3m-to-exploit. Accessed 28 Jun 2025.

Ricardo Corin and Jerry den Hartog. A probabilistic hoare-style logic for game-based cryptographic proofs (extended
version), 2005. URL http://eprint.iacr.org/2005/467. To appear in ICALP 2006 Track C corin@cs.utwente.nl 13264 received
23 Dec 2005, last revised 26 Apr 2006.

Fredrick Dahlgren. It pays to be circomspect. https://blog.trailofbits.com/2022/09/15/it-pays-to-be-circomspect/, 09 2022.
Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms for the Construction and

Analysis of Systems, pages 337–340. Springer Berlin Heidelberg, 2008.
Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. Component-based synthesis of table consoli-

dation and transformation tasks from examples. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, page 422–436, New York, NY, USA, 2017. Association for Computing
Machinery.

Cormac Flanagan and K Rustan M Leino. Houdini, an annotation assistant for ESC/java. In Proceedings of the International
Symposium of Formal Methods Europe on Formal Methods for Increasing Software Productivity, FME ’01, page 500–517,
Berlin, Heidelberg, 2001. Springer-Verlag.

Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. PLONK: Permutations over lagrange-bases for oecumenical
noninteractive arguments of knowledge. Cryptology ePrint Archive, Paper 2019/953, 2019.

Martin Gagné, Pascal Lafourcade, and Yassine Lakhnech. Automated security proofs for almost-universal hash for mac
verification. Cryptology ePrint Archive, Paper 2013/407, 2013. URL https://eprint.iacr.org/2013/407. https://eprint.iacr.
org/2013/407.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2019. URL http://www.gurobi.com.
Thomas Hader. Non-linear smt-reasoning over finite fields, 2022.

http://dl.acm.org/citation.cfm?id=2032305.2032319
http://dl.acm.org/citation.cfm?id=2032305.2032319
https://www.halborn.com/blog/post/explained-the-pnetwork-hack-september-2021
https://www.halborn.com/blog/post/explained-the-pnetwork-hack-september-2021
https://www.halborn.com/blog/post/explained-the-sovryn-hack-october-2022
https://www.halborn.com/blog/post/explained-the-sovryn-hack-october-2022
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://cointelegraph.com/news/bitcoin-layer-2-alex-lab-may-exploit-lazrus-group-north-korea
https://cointelegraph.com/news/bitcoin-layer-2-alex-lab-may-exploit-lazrus-group-north-korea
https://cointelegraph.com/news/bitcoin-defi-platform-alex-protocol-loses-8-3m-to-exploit
https://cointelegraph.com/news/bitcoin-defi-platform-alex-protocol-loses-8-3m-to-exploit
http://eprint.iacr.org/2005/467
https://blog.trailofbits.com/2022/09/15/it-pays-to-be-circomspect/
https://eprint.iacr.org/2013/407
https://eprint.iacr.org/2013/407
https://eprint.iacr.org/2013/407
http://www.gurobi.com

26 Liu et al.

Ethan Heilman and Armin Sabouri. BIP-420: OP_CAT. https://github.com/bip420/bip420, 2023. Draft Bitcoin Improvement
Proposal, accessed 28 Jun 2025.

Hiro Systems PBC. Stacks (stx). https://stacks.co, 2025. Bitcoin Layer 2 enabling smart contracts and DeFi using Clarity.
IOV Labs. Rootstock (rsk). https://rootstock.io, 2025. EVM-compatible Bitcoin sidechain secured by BTC hash power.
Rick Klomp and Andrea Bracciali. On symbolic verification of bitcoin’s script language. In Joaquin Garcia-Alfaro, Jordi

Herrera-Joancomartí, Giovanni Livraga, and Ruben Rios, editors, Data Privacy Management, Cryptocurrencies and
Blockchain Technology, pages 38–56, Cham, 2018. Springer International Publishing.

K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In Proceedings of the 16th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning, LPAR’10, pages 348–370, Berlin, Heidelberg,
2010. Springer-Verlag. ISBN 3-642-17510-4, 978-3-642-17510-7. URL http://dl.acm.org/citation.cfm?id=1939141.1939161.

Robin Linus, Lukas Aumayr, Alexei Zamyatin, Andrea Pelosi, Zeta Avarikioti, and Matteo Maffei. BitVM2: Bridging bitcoin
to second layers, August 2024.

Junrui Liu, Ian Kretz, Hanzhi Liu, Bryan Tan, Jonathan Wang, Yi Sun, Luke Pearson, Anders Miltner, Isil Dillig, and
Yu Feng. Certifying zero-knowledge circuits with refinement types. In IEEE Symposium on Security and Privacy, SP
2024, San Francisco, CA, USA, May 19-23, 2024, pages 1741–1759. IEEE, 2024. doi: 10.1109/SP54263.2024.00078. URL
https://doi.org/10.1109/SP54263.2024.00078.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Satoshi Nakamoto, 2008.
Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure. J. ACM, 27(2):356–364, April 1980.

ISSN 0004-5411. doi: 10.1145/322186.322198. URL http://doi.acm.org/10.1145/322186.322198.
Aina Niemetz and Mathias Preiner. Bitwuzla. In Constantin Enea and Akash Lal, editors, Computer Aided Verification, pages

3–17, Cham, 2023. Springer Nature Switzerland.
Tobias Nipkow, Markus Wenzel, and Lawrence Charles Paulson. Isabelle/hol: A proof assistant for higher-order logic. 2002.
Alex Ozdemir. Cvc5-ff. https://github.com/alex-ozdemir/CVC4/tree/ff, 2022.
Alex Ozdemir, Gereon Kremer, Cesare Tinelli, and Clark W. Barrett. Satisfiability modulo finite fields. In Constantin

Enea and Akash Lal, editors, Computer Aided Verification - 35th International Conference, CAV 2023, Paris, France, July
17-22, 2023, Proceedings, Part II, volume 13965 of Lecture Notes in Computer Science, pages 163–186. Springer, 2023. doi:
10.1007/978-3-031-37703-7_8. URL https://doi.org/10.1007/978-3-031-37703-7_8.

Shankara Pailoor, Yanju Chen, Franklyn Wang, Clara Rodríguez, Jacob Van Gaffen, Jason Morton, Michael Chu, Brian Gu,
Yu Feng, and Isil Dillig. Automated detection of underconstrained circuits for zero-knowledge proofs. Cryptology ePrint
Archive, Paper 2023/512, 2023. URL https://eprint.iacr.org/2023/512. https://eprint.iacr.org/2023/512.

Jeremy Rubin. BIP-119: OP_CHECKTEMPLATEVERIFY. https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki,
2020. Bitcoin Improvement Proposal, accessed 28 Jun 2025.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’13, pages 305–316, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-1870-9. doi: 10.1145/2451116.2451150. URL http://doi.acm.org/10.1145/
2451116.2451150.

Nikolaj Sidorenco, Sabine Oechsner, and Bas Spitters. Formal security analysis of mpc-in-the-head zero-knowledge protocols.
In 2021 IEEE 34th Computer Security Foundations Symposium (CSF), pages 1–14, 2021. doi: 10.1109/CSF51468.2021.00050.

Armando Solar-Lezama. Program Synthesis by Sketching. PhD thesis, Berkeley, CA, USA, 2008. AAI3353225.
Sovryn Community. Sovryn. https://www.sovryn.app, 2025. Bitcoin-native DeFi protocol built on RSK.
Ashish Tiwari, Adria Gascon, and Bruno Dutertre. Program synthesis using dual interpretation. In Automated Deduction -

CADE-25 - 25th International Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, volume
9195 of LNCS, pages 482–497, 2015. doi: 10.1007/978-3-319-21401-6_33. URL http://dx.doi.org/10.1007/978-3-319-21401-
6_33.

Emina Torlak and Rastislav Bodik. A lightweight symbolic virtual machine for solver-aided host languages. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, page 530–541,
New York, NY, USA, 2014. Association for Computing Machinery.

Richard Uhler and Nirav Dave. Smten with satisfiability-based search. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications, OOPSLA ’14, pages 157–176, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2585-1. doi: 10.1145/2660193.2660208. URL http://doi.acm.org/10.1145/2660193.2660208.

Hongbo Wen, Jon Stephens, Yanju Chen, Kostas Ferles, Shankara Pailoor, Kyle Charbonnet, Isil Dillig, and Yu Feng.
Practical security analysis of zero-knowledge proof circuits. In Davide Balzarotti and Wenyuan Xu, editors, 33rd USENIX
Security Symposium, USENIX Security 2024, Philadelphia, PA, USA, August 14-16, 2024. USENIX Association, 2024. URL
https://www.usenix.org/conference/usenixsecurity24/presentation/wen.

https://github.com/bip420/bip420
https://stacks.co
https://rootstock.io
http://dl.acm.org/citation.cfm?id=1939141.1939161
https://doi.org/10.1109/SP54263.2024.00078
http://doi.acm.org/10.1145/322186.322198
https://github.com/alex-ozdemir/CVC4/tree/ff
https://doi.org/10.1007/978-3-031-37703-7_8
https://eprint.iacr.org/2023/512
https://eprint.iacr.org/2023/512
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki
http://doi.acm.org/10.1145/2451116.2451150
http://doi.acm.org/10.1145/2451116.2451150
https://www.sovryn.app
http://dx.doi.org/10.1007/978-3-319-21401-6_33
http://dx.doi.org/10.1007/978-3-319-21401-6_33
http://doi.acm.org/10.1145/2660193.2660208
https://www.usenix.org/conference/usenixsecurity24/presentation/wen

	Abstract
	1 Introduction
	2 Background
	3 Overview
	4 The bitguard Framework
	4.1 System Overview
	4.2 The G Language for Modeling Stack Operations
	4.3 Symbolic Evaluation for the G Language

	5 Synthesis-Aided Lifting
	5.1 Algorithm Overview
	5.2 The Enumeration Procedure
	5.3 Equivalence Checking

	6 Implementation
	7 Evaluation
	7.1 Performance of bitguard in Verification for Bitcoin scripts (RQ1)
	7.2 Ablation Study (RQ2)
	7.3 Detecting Previously Unknown Vulnerabilities (RQ3)

	8 Related work
	9 Conclusion
	References

