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Abstract
Cryptographic security protocols, such as TLS or WireGuard,
form the foundation of a secure Internet; hence, a long line
of research has shown how to formally verify their high-level
designs. Unfortunately, these formal guarantees have not yet
reached real-world implementations of these protocols, which
still rely on testing and ad-hoc manual audits for security and
correctness. This gap may be explained, in part, by the sub-
stantial performance and/or development overhead imposed
by prior efforts to verify implementations.

To make it more practical to deploy verified implementa-
tions of security protocols, we present OwlC, the first fully
automated, security-preserving compiler for verified, high-
performance implementations of security protocols. From
a high-level protocol specification proven computationally
secure in the Owl language, OwlC emits an efficient, interop-
erable, side-channel resistant Rust library that is automatically
formally verified to be correct.

We produce verified libraries for all previously written Owl
protocols, and we also evaluate OwlC on two new verified
case studies: WireGuard and Hybrid Public-Key Encryption
(HPKE). Our verified implementations interoperate with ex-
isting implementations, and their performance matches unver-
ified industrial baselines on end-to-end benchmarks.

1 Introduction

Security protocols, such as TLS, Kerberos, and Signal, are
vital components of modern digital infrastructure, but vulnera-
bilities are discovered in them with alarming frequency [1, 14,
68, 71]. Attacks on these critical protocols—both against high-
level design flaws, and low-level implementation details—can
have outsized impacts.

Formal verification promises to provide a foundational
solution to this problem, by developing rigorous machine-
checked proofs of security. Extensive prior work has verified
the designs of cryptographic protocols, leading to a range
of tools [8, 10, 15, 21, 42, 67]. While such tools can give
powerful assurance about the logical structure of protocols,

they elide many details that must appear in actual implemen-
tations. The code that runs when a protocol is ultimately
deployed thus has only a tenuous, informal connection to the
computer-aided proof. As we discuss in §11, additional work
has sought to verify implementations of protocols, using a
range of approaches. Some tools have translated verified pro-
tocol designs into unverified implementations [16, 42, 56] or
specifications suitable for manual program verification [7];
others [18, 33, 49] have, with heroic effort, manually verified
a single protocol or family of protocols. However, none can
verify both the design and a performant implementation of a
protocol in an automated, reusable fashion.

We present OwlC, the first tool that can automatically gen-
erate verified, interoperable, side-channel-resistant implemen-
tations of computationally secure cryptographic protocols.
Given a protocol design, OwlC generates a high-performance
memory-safe Rust library that is automatically verified to
preserve the security properties of the design. In particular,
OwlC guarantees that the implementation does not leak any
data that is secret in the protocol design.

OwlC is based on a novel, lightweight technique for build-
ing proof-producing compilers for domain-specific languages
with effects. Our approach features two components: a sim-
ple, trusted specification compiler that translates the source
program into specification code in the target verification lan-
guage, and an untrusted compiler that generates efficient, ver-
ified, executable code. Our security-preservation technique is
based on restricting the externally observable behavior of the
generated code, encompassing both explicit leakage via input-
output behavior and implicit leakage via digital side-channel
attacks. To prevent explicit leakage, we compile specifica-
tions as interaction trees [92], a higher-order data structure
consisting of effects and their continuations. We then interpret
these interaction trees as permissions to perform input-output
effects in executable code; thus if verification succeeds, we
prove that the executable code performs exactly the network
I/O that the protocol specified.

To prevent implicit leakage (e.g., through timing), we guar-
antee resistance to basic digital side-channel attacks via a
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type abstraction mechanism similar to prior work on verified
cryptographic primitives [95]. However, our new focus on
protocols requires a new account of declassification, which
historically has been encoded through ad-hoc trusted APIs. In-
stead, we leverage our interaction tree-based specifications to
specify a semantically meaningful policy on declassification
that applies to all protocols automatically.

OwlC instantiates this technique by compiling protocol de-
signs in the Owl protocol language [42]. Owl is a state-of-the-
art protocol design verifier that provides scalability, automa-
tion, and strong cryptographic security results. We choose
Owl as our source since—unlike many prior tools—Owl’s
input language is designed to be compatible with real-world
concerns, such as network packet formats. Owl’s information-
flow types also tell us which values can be made public, which
we use in our declassification technique.

OwlC compiles Owl protocols to Rust [55] libraries, which
we verify using Verus [61], an SMT-based deductive program
verifier for Rust. By carefully employing Verus’s powerful
proof automation and support for ergonomic permission track-
ing, OwlC’s libraries typically compile and verify fully auto-
matically, without any user-specified annotations. Since the
compiled code is in safe Rust, it is also automatically memory-
safe. Application developers can seamlessly integrate OwlC’s
generated libraries into a larger Rust codebase using cargo.
We also illustrate how verified applications can use our pro-
tocol specifications in the service of a larger correctness or
security guarantee (§7), facilitating the development of end-
to-end verified applications.

We demonstrate the utility and scalability of OwlC via
several case studies. We compile verified libraries for all 14
protocol case studies from the original Owl work [42], includ-
ing the core logic of SSH and Kerberos; however, these case
studies made a number of simplifications relative to realis-
tic implementations. To show that OwlC can automatically
generate performant, interoperable implementations of real-
world protocols, we perform two large-scale case studies on
(1) WireGuard [36], a widely-adopted VPN protocol based
on state-of-the-art cryptography, and (2) HPKE [12], a recent
standard for hybrid public-key encryption. We implement
and prove cryptographic security for WireGuard and HPKE
in Owl, and then we use OwlC to compile verified libraries.
Our generated code interoperates with existing implementa-
tions of WireGuard and HPKE, and achieves state-of-the-art
performance on end-to-end benchmarks.

Thus, OwlC eliminates the difficult task of verifying the
connection between an implementation of a protocol and its
specification. Protocol designers using OwlC can obtain for
free a performant, interoperable library for their protocol, plus
a proof that this library is functionally correct, memory safe,
and free of both explicit and implicit leakages.
Limitations. OwlC’s guarantees rely on the correctness of
the underlying tools, namely Owl, Verus, and Rust. We trust
the correctness of the simple specification compiler that gen-

erates interaction trees from Owl protocols. While our type
abstraction provides resistance to timing- and memory-based
side-channel attacks at the level of Rust source code, we do
not provide assembly- or hardware-level guarantees since we
use stock rustc to compile OwlC’s output.
Contributions. In summary, this paper contributes:

1. A technique for developing proof-producing compilers
for domain-specific programming languages with effects,
based on higher-order ghost linear tokens enforcing per-
missions to perform effects.

2. A technique for providing source-level digital side-
channel protections, combining type abstraction with
a semantically founded policy for declassification, the
first such technique for cryptographic protocol code.

3. OwlC, an instantiation of these techniques and the first
tool that automatically produces verified, performant,
interoperable, and side-channel-resistant libraries from
computationally secure protocols specified in a high-
level language.

4. Over a dozen compiled protocol case studies, plus the
first automatically verified, interoperable implementa-
tions of the HPKE and WireGuard protocols with the
performance of unverified industrial implementations.

2 Background and Threat Model

To verify protocols for cryptographic security, OwlC utilizes
Owl [42], a verification framework for security protocols.
Owl uses an intuitive, ML-style source language equipped
with an information-flow type system that guarantees computa-
tional security [22], the cryptographic “gold standard” which
demonstrates that the protocol is secure against arbitrary prob-
abilistic attackers who may perform arbitrary computations
on low-level bitstrings. OwlC then translates well-typed Owl
protocols into provably secure Rust code.

To produce and analyze verified implementations, we use
Verus [60, 61], a state-of-the-art program verifier for Rust.
Verus verifies Rust programs using annotations for pre- and
post-conditions, loop invariants, and inline assertions, all of
which generate verification conditions that are checked by
the Z3 [31] SMT solver. Verus also takes advantage of Rust’s
strong ownership type system to dramatically simplify rea-
soning about mutable memory.

Verus further leverages Rust’s type system to support linear
ghost state, wherein ghost variables (i.e., variables used only
for proof purposes, not compiled code) are subject to the
ownership rules of Rust’s type system. In essence, linear ghost
state allows Verus developers to enforce complex program
invariants that evolve during execution.

2.1 Threat Model and Security Guarantee
We inherit Owl’s security guarantee, which proves that no
arbitrary polynomial-time cryptographic adversary interacting
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Figure 1: Architecture of OwlC. Blue elements are trusted
components, while red elements are untrusted; a blue border
indicates a verified component whose specification is trusted
by OwlC.

with the protocol’s functional specification can violate its
type-based security specification.

In turn, OwlC guarantees that compiling this functional
specification to realistic low-level code is security preserv-
ing: any low-level adversary interacting with the compiled
Rust code is equivalent to a high-level one interacting with
the functional specification. For OwlC, low-level adversaries
are those which may interact with compiled Rust modules
in type-safe ways (e.g., receiving and delivering untrusted
network messages, and calling functions at API boundaries)
and observe digital side channels, such as memory access
patterns and timing.

To guarantee that compilation is security preserving, we
prove two key properties: functional correctness, including
performing only the I/O effects dictated by the source pro-
gram; and side-channel resistance, meaning that the untrusted
output of our compiler cannot exfiltrate secrets through ob-
servable timing or memory behaviors. Further side channels,
including microarchitectural channels, are out of scope.
Trusted Computing Base. Our TCB consists of the Rust com-
piler, Verus, Owl, and OwlC’s specification compiler. While
we statically forbid unsafe Rust in OwlC’s output, bugs in
our TCB could compromise memory safety or our security-
preservation guarantee. OwlC relies on an existing verified
library of cryptographic primitives [79], but we axiomatize
the connection between OwlC’s output and this library (§8.1).
For side-channel security, we trust that our secret type is im-
plemented in constant time (§5.1).

3 Overview of OwlC

Given a security protocol written in the Owl language, OwlC
generates a corresponding verified, high-performance imple-
mentation. In this section, we summarize OwlC’s architecture
and verification techniques.

Our Approach: Translation Validation. OwlC compiles
Owl protocols to Rust code formally verified using the Verus
framework. Verus enables the creation of verified software
that is uncompromising in both correctness and performance,
both of which are essential for security protocols.

To use Verus to generate verified implementations, we do
not verify the correctness of the compiler itself (e.g., as in
CompCert [62] or CakeML [59]); instead, inspired by transla-
tion validation [70, 72, 78], we generate proofs of correctness
and security in Verus alongside the implementation. Transla-
tion validation allows us to verify implementations without
conducting proofs that universally quantify over programs.

Figure 1 outlines our approach. Given an Owl protocol,
we first type check it using Owl to ensure cryptographic se-
curity. Then, OwlC translates it into two representations: a
Verus specification, to embed the high-level semantics of the
Owl program into Verus; and a library of executable imple-
mentation routines, which utilize mutable state and efficient
cryptographic operations to run the protocol. The translation
to specifications is trusted for correctness, while the transla-
tion to libraries is not. Additionally, to provide high-assurance
implementations, OwlC uses two other verified components:
Vest [27], a library of verified combinators for reading and
writing network formats; and EverCrypt [79], a library of
verified cryptographic implementations. Finally, developers
can use the generated Verus library to build a larger verified
application; OwlC guarantees via the Rust type system that
protocol secrets and derived keys are securely encapsulated
when returned to application code.
Preventing Explicit Implementation Leakage. OwlC must
guarantee that the generated code performs only actions that
have been proved secure by the Owl type-checker. Hence, it
must prevent any input-output operations that do not appear
in the Owl program, since such operations—such as writing
a secret key to the network, or outputting extra values—could
compromise the protocol’s security. To do so, OwlC encodes
specifications using Interaction Trees (or ITrees [92]), an em-
bedding of effects into a verifier. We then use the generated
ITree specifications, combined with Verus’s support for linear
ghost permission reasoning, to control input-output operations
in the generated library (§4).
Preventing Implicit Implementation Leakage. Even in the
absence of explicit leakage, a protocol implementation might
implicitly leak secrets via side-channels. OwlC prevents this
using a type abstraction mechanism, in which secret data is
encapsulated in an opaque type that only allows constant-time
operations. Type abstraction is a well-established technique
that has been especially successful for verified implementa-
tions of cryptographic primitives [95]; in that setting, certain
inputs are designated as secret once and for all, so it is straight-
forward to add opaque types. Protocols, on the other hand,
may require explicit declassification of opaque secrets into
public values; for instance, protocols may branch on whether a
decryption operation succeeds, even if the decrypted plaintext
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remains secret. However, allowing arbitrary declassifications
clearly compromises any guarantee of side-channel security.
OwlC therefore carefully uses Verus’s linear ghost permis-
sions to control access to declassification, guaranteeing that
any value that is declassified in the implementation is always
public in the Owl protocol (§5).

4 Restricting Explicit Input-Output Leakages

In this section, we explain our approach to preventing explicit
information leakage by restricting the input-output behavior
of the generated library. §4.1 explains how we represent the
input/output behavior of Owl protocols as Verus specifications.
§4.2 shows how we verify that compiled Owl code adheres to
its input/output specification, as well as how that verification
technique generalizes.

1 locality Alice, Bob
2 name kA2B, kB2A : enckey
3
4 struct EncMsg {
5 version_num: Const(0x01)
6 cipher : Bytes〈public〉
7 }
8
9 def alice_send(m : Bytes〈secret〉) @ Alice {

10 let send_key = get(kA2B) in
11 let c = enc(send_key, m) in
12 output EncMsg(0x01, c)
13 }
14
15 def alice_recv() @ Alice : Option Bytes〈secret〉 {
16 input p in
17 parse p as EncMsg(_, c) in {
18 let recv_key = get(kB2A) in
19 dec(recv_key, c)
20 }
21 otherwise { None() }
22 }

Figure 2: Basic Secure Transport in Owl. Details irrelevant
for compilation have been erased.

Example: Secure Transport. We begin by introducing a
simple running example. Figure 2 shows a fragment of a sim-
ple Owl protocol for secure transport, where Alice and Bob
communicate over a previously established secure channel,
constructed using two unidirectional keys. To simplify the pre-
sentation, we show the protocol after OwlC’s concretization
pass (Appendix D); hence, Owl’s fine-grained information-
flow types have been flattened to just secret and public, corre-
sponding to values that are possibly secret or always public,
respectively.

To implement the secure channel in Owl, we first in Line 1
specify the two localities, or parties, which serve to organize
the protocol into independent pieces of executable code. Next,
Line 2 declares names, which are the cryptographic secrets

1 enum ITree〈A〉 {
2 Ret(A),
3 Input(Seq〈u8〉 → ITree〈A〉),
4 Output(Seq〈u8〉, ITree〈A〉),
5 Sample(usize, Seq〈u8〉 → ITree〈A〉),
6 Declassify (DeclassifyingOp, ITree〈A〉)
7 }
8
9 fn bind〈A, B〉(t : ITree〈A〉, k : A→ ITree〈B〉)→ ITree〈B〉 { ... }

Figure 3: Definition of the ITree Data Structure in Simpli-
fied Verus Syntax. The bind operator is used to implement
sequential composition of ITrees.

that the protocol uses. The two names kA2B and kB2A represent
encryption keys for sending messages from Alice to Bob,
and vice versa. The annotation enckey declares that both of
these keys should be sampled according to the underlying
symmetric encryption scheme.

The struct EncMsg on Lines 4-7 specifies the network for-
mat for the secure channel, consisting of a protocol version
number followed by the ciphertext. The version field has type
Const(0x01), specifying the single byte 0x01.

Finally, Lines 9-22 contain the routines for Alice to send
and receive encrypted messages. The routine alice_send obtains
the sending key kA2B via a call to get (Owl’s abstraction for
looking up pre-configured local keys), encrypts the message
m, and outputs the version number and ciphertext on the net-
work. For simplicity, encryption is probabilistic and involves
randomly sampling an appropriate nonce; OwlC also sup-
ports counter-based nonces, which we use for WireGuard and
HPKE in §9.

The routine for alice_recv is similar, but it requires parsing
a message p from the network into the EncMsg struct. Parsing
may fail (e.g., if p is too short or does not begin with the
constant 0x01); in this case, we must provide an otherwise clause
that handles this failure explicitly.

4.1 ITrees for Specifying Effectful Code

The core of our verification technique is to use interaction
trees (or ITrees [92]) to guarantee that untrusted protocol
code generated by OwlC not only returns the correct values,
but also performs exactly the side effects (e.g., network I/O)
dictated by its specification, and nothing more. The latter is
critical, since a spurious output of a key on the network would
destroy the protocol’s security.

To specify code that uses side effects, ITrees allow one
to embed effectful code inside a proof assistant; they explic-
itly represent effects through datatype constructors that hold
continuations, i.e., functions that define how to handle the
effects. As shown in Figure 3, our ITree〈A〉 enum has five con-
structors. The Ret constructor injects values of type A into
the ITree, while Input, Output, and Sample perform network I/O
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1 spec fn alice_recv_spec(cfg: AliceCfg, state: AliceSt)
2 → ITree〈(Option〈Seq〈u8〉〉, state_Alice)〉 {
3 owl_spec! (
4 (input (p)) in
5 (parse (p) as (EncMsg { _, ctxt }) in {
6 let recv_key = (ret(cfg.kB2A)) in
7 (declassify(ADec(recv_key, ctxt))) in
8 (ret(Some(dec_spec(recv_key, ctxt))))
9 } otherwise (ret(None())))

10 )
11 }
12 // the owl_spec! macro above expands to:
13 Input(|p|
14 if let EncMsg(_, c) = parse_EncMsg_spec(p) {
15 Declassify(ADec(cfg.kB2A, c),
16 Ret((Some(dec_spec(cfg.kB2A, c)), state)))
17 } else {
18 Ret((None, state))
19 })

Figure 4: ITree for Alice’s Receive Routine in Secure Trans-
port. OwlC generates the owl_spec! macro invocation, which
Rust internally expands to the ITree shown below.

and sampling from a random source. The final constructor,
Declassify, is used for side-channel resistance (see §5). Each
effect constructor contains an argument as well as a continua-
tion that describes the ITree’s behavior after performing the
effect. Additionally, ITrees support sequential composition
via a monadic bind operator; this is useful for compositionally
reasoning about ITrees.

Our implementation of ITrees in Verus uses an inductive
type (meaning any value with that type has a finite size), as
opposed to ITrees in Coq [92] which are coinductive; thus,
our ITrees only handle terminating computations and can-
not handle general loops. This is sufficient for OwlC, since
we encode long-running protocols via terminating message
handlers that may be called multiple times.

Using ITrees, we can automatically translate Owl protocols
into Verus specs through a simple compilation pass. Figure 4
shows an ITree-producing function (alice_recv_spec) for Alice’s
receive routine from Figure 2. Notice the nearly line-for-line
correspondence with the original Owl routine. This correspon-
dence simplies our trusted spec compiler, and it makes manual
audit feasible, if desired. We achieve this close corresponce
via a 119-line Rust macro owl_spec! that expands to the ITree
constructors shown in the bottom half of Figure 4.

Compared to the original Owl routine, OwlC makes small
syntactic modifications, chiefly adding parentheses to make
scoping explicit, to account for Rust’s macro parser. The
spec function (and the ITree it produces) is parameterized by
two pieces of state: cfg, which holds Alice’s keys that do not
change throughout the protocol; and state, which holds muta-
ble counters for stateful AEAD (Appendix A), not used in this
example. Decrypting the ciphertext requires declassification
(§5.2), which we mark explicitly in the ITree specification.

4.2 Linear Ghost State for Controlling Effects

Historically, ITrees have been used to give denotational se-
mantics to programming languages [54, 85, 94]. By them-
selves, they do not provide a means for controlling how those
effects are performed in executable code. In OwlC, our key
idea is to require the implementation to thread through a ghost
linear token for the ITree specification of an Owl routine; the
token grants the implementation permission to perform the
ITree’s I/O effects.

For example, if the implementation wishes to perform an
input and currently holds token T , we require that T is of the
form Input(|x| k(x)). If it is, then the implementation may “trade
in” T to perform the input. In return, the implementation re-
ceives a message, v, from the network along with the token
k(v), which allows it to perform further effects. We use Rust’s
type system to ensure that tokens are unforgeable and can-
not be duplicated, so the implementation may only perform
effects according to its ITree token.

We encode the above interface using Verus’s support for
linearity, abstract types, and verification conditions. In par-
ticular, our definition of ITree tokens and their interface is
given in Figure 5. The token, ITreeToken〈A〉, holds a ghost ITree
that returns a value of type A. Importantly, since the inner field
of the token is private, and the token does not implement
Clone or Copy, the linearity and scoping rules of Rust ensure
that tokens cannot be copied, duplicated, or constructed. In
addition to the API in Figure 5, we also support functions for
splitting a monadic bind, bind(t, k), into two tokens for t and k,
and later joining a monadic return Ret(v) and continuation k

back together to form a token for k(v); these two functions are
crucial for supporting modular verification of subroutines.

To perform network I/O, the implementation must use input

and output, given on Lines 5 and 11, respectively; we ensure
syntactically that no other I/O routines are accessible to the
implementation. The input function formalizes the informal
description above, while output requires that the provided to-
ken is of the form Output(v, k), and that the value to be output
actually is v; in return, output modifies the token to hold k. The
function sample is constructed similarly and internally calls a
cryptographically secure PRNG.

These functions are trusted (indicated by #[axiom]). The
verifier cannot reason about the details of the various system
calls implementing the network and sampling routines. In-
stead, these axiomatized specifications can be thought of as
defining for the verifier what it means to perform an effect.
Using Tokens in Executable Code. Figure 6 shows an ex-
ample of how OwlC compiles and verifies code using ghost
linear ITree tokens. OwlC compiles an Owl procedure to
an executable Verus function, which takes as an argument a
mutable reference to a linear ghost ITree. We use a requires

clause to demand that this reference initially points to the
ITree representation of the Owl procedure generated by the
specification compiler. We add an ensures clause stating that
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1 mod ITreeToken {
2 pub struct ITreeToken〈A〉(inner : Ghost〈ITree〈A〉〉);
3
4 #[axiom]
5 pub fn input〈A〉(t : &mut ITreeToken〈A〉)→ (v : Vec〈u8〉)
6 requires old(t).inner is Input
7 ensures t.inner == old(t).inner.continuation(v)
8 { /* receive v from network */ }
9

10 #[axiom]
11 pub fn output〈A〉(t : &mut ITreeToken〈A〉, v : &[u8])
12 requires old(t).inner is Output,
13 old(t).inner.output_value == v
14 ensures t.inner == old(t).inner.continuation
15 { /* output v on network */ }
16
17 // sample is similar
18 } // ITreeToken is unforgeable in this scope

Figure 5: Interface for ITree Token and Associated Exe-
cutable Effects in Verus. (Simplified)

Figure 6: Controlling the Evolution of Program State Us-
ing Tokens. The code on the left must follow the effects
defined by go_spec, using the ghost linear argument tok.

after execution, the ITree should be of the form Ret(res), where
res is the result of the executable function. This serves two
purposes: it guarantees that the compiled code performs all
of the effects specified by the Owl procedure, rather than just
some prefix of them; and it shows that the compiled code
computes and returns the correct value.

In general, translation validation requires the compiler to
emit proof hints that help the verifier prove that the generated
implementation refines its specification. OwlC does not need
to emit any such hints: verification proceeds completely auto-
matically just using the ITree specification and the executable
code. This is primarily due to our use of linearity: the verifier
can reason straightforwardly about the ITree specification and
the axioms for the effects (Figure 5), without having to prove
expensive verification conditions about mutable memory or
token unforgeability.
Generalizing Our Verification Technique. While our verifi-
cation technique is useful for OwlC, it is broadly useful for
verifying software that performs observable effects. Indeed,
almost any effect with the signature effect : Inputs→Outputs is
expressible in our framework; the only restriction is that the

continuation for the effect must be used linearly, to soundly
interoperate with executable code in Rust.

Our technique can also be generalized to target verification
tools besides Verus. OwlC relies on datatype abstraction and
linearity to ensure that the ITree token cannot be duplicated
or copied. Any other program verification tool that natively
supports substructural reasoning (e.g., Iris [53] or Steel [41])
could also encode ITree tokens. In the absence of linearity,
one could manually enforce that tokens cannot be duplicated
or copied using verification conditions [46].

5 Restricting Implicit Side-Channel Leakages

The techniques described in §4 guarantee that OwlC’s gen-
erated Rust code is secure against logical and cryptographic
attacks; however, protocol code must also be secure against
lower-level side-channel attacks. In particular, protocol im-
plementations that satisfy the secrecy guarantees provided by
Owl may still leak information about secrets via their timing
and memory behavior. For example, the Raccoon attack [81]
against TLS 1.2 relies on hash functions leaking information
about their input lengths via timing: since TLS 1.2 requires
stripping leading zeroes from some secret values before hash-
ing, precise timing measurements can leak the secret’s number
of leading zeroes.

To our knowledge, ours is the first systematic technique
for automatically providing side-channel resistance to crypto-
graphic protocol implementations. Our use of type abstraction
(§5.1) to prevent secrets from influencing control flow fol-
lows an established technique, but our approach to restricting
declassification to only provably public data (§5.2) is novel,
and critical to the security guarantees of OwlC.

5.1 Constant-Time via Type Abstraction

Similar to prior work [95], OwlC guarantees adherence to a
cryptographic constant-time coding discipline [2, 3, 13] via
type abstraction, which entails encapsulating secret values
within opaque wrapper types that prevent code from observ-
ing or branching on them. However, unlike prior work, we
target protocols, rather than primitives, necessitating a more
expressive security policy.

Our opaque wrapper type is SecretBuf, shown in Figure 7,
which hides a byte buffer containing a secret value, exposing
an API that only allows operations that can be implemented
in constant time. SecretBuf is built on top of PublicBuf, a OwlC-
specific type for byte buffers that we introduce for perfor-
mance reasons (described in §6). Note that while the SecretBuf

struct itself is pub, the inner buf field is private, meaning that
it cannot be accessed outside of the secret module. Each of
the four API functions is implemented with simple straight-
line Rust code, with no branching that could leak information
about the contents of the secret buffer.
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1 pub mod secret {
2 pub struct SecretBuf { buf: PublicBuf }
3 impl SecretBuf {
4 pub fn len(self)→usize { ... }
5 pub fn from_public(buf: PublicBuf)→SecretBuf { ... }
6 pub fn subrange(self, start: usize, end: usize)→SecretBuf { ... }
7 pub fn concat(self, other: SecretBuf)→SecretBuf { ... }
8 }
9 }

Figure 7: SecretBuf Definition and API. We elide some Verus
details such as lifetimes and requires/ensures specifications.

To demonstrate SecretBuf’s utility, we attempted to write
a function to strip leading zeroes from a SecretBuf as in the
Raccoon attack, but Rust’s typechecker immediately rejected
it—there is no way to read the encapsulated bytes.
Limitations. Our digital side-channel resistance property is
only enforced at the level of Rust source programs, so we must
trust that rustc does not introduce any new side-channel leak-
ages. While such an assumption may be unrealistic for stock
rustc, prior work has developed constant-time-preserving
compilers [13, 28], so we may expect to compile Rust in this
way in the future.

5.2 Handling Semantic Declassifications

Side-channel resistance for cryptographic protocols is signif-
icantly more complex than for primitives, since non-trivial
protocols are not classically constant time. For example, pro-
tocols may branch on whether a decryption dec(k,c) succeeds,
even if k is a secret. In our setting, Owl proves that it is safe to
branch on whether a decryption succeeded; intuitively, this is
because with an authenticated encryption scheme, the adver-
sary already knows that ciphertexts produced by legitimate
parties will successfully authenticate, while those the adver-
sary produces will fail. Verifying side-channel resistance for
protocols therefore requires reasoning about semantic declas-
sifications, in which a secret value (such as the result of de-
cryption) becomes public when justified by the cryptographic
invariants of the protocol. Importantly, such declassifications
do not appear when verifying primitives (e.g., ciphers). Fur-
ther, OwlC’s generated library code should not be allowed to
declassify arbitrary values, since a faulty or malicious imple-
mentation could then declassify a secret, potentially resulting
in side-channel leakage.

Our solution is based on the observation that Owl already
computes which values are safe to declassify—Owl’s type
system features a fine-grained information-flow lattice that
considers all possible corruption scenarios for the names in
the protocol. We can then justify declassifications in the gen-
erated code by proving that Owl assigns a public type to every
declassified value. To model this, we insert declassifications
as effects in the ITree (Figure 3).

1 pub enum DeclassifyingOp {
2 ControlFlow (Seq〈u8〉),
3 EnumParse (Seq〈u8〉),
4 EqCheck (Seq〈u8〉, Seq〈u8〉),
5 ADec (Seq〈u8〉, Seq〈u8〉), // key, ciphertext
6 ... // other crypto ops that may fail
7 }

Figure 8: DeclassifyingOp Definition.

1 mod DeclassifyingOpToken {
2 pub struct DeclassifyingOpToken(inner: Ghost〈DeclassifyingOp〉);
3 } // DeclassifyingOpToken is unforgeable in this scope
4
5 #[axiom]
6 pub ghost fn consume_itree_declassify〈A〉(t: &mut ITreeToken〈A〉)
7 → (d: DeclassifyingOpToken)
8 requires old(t).inner = Declassify(op, continuation)
9 ensures t.inner == continuation,

10 d.inner == op
11 { /* no−op */ }
12
13 #[axiom]
14 pub fn declassify(s: SecretBuf, d: DeclassifyingOpToken)
15 → (res: PublicBuf)
16 requires d.inner == ControlFlow(s)
17 ensures res == s.buf
18 { /* return contents of s */ }

Figure 9: Declassification in Implementation Code.

Unlike other effects which can only happen through Owl
primitives (input/output/sample), declassification can occur in a
number of places in an Owl program: these include branching
control flow; parsing bytes as an enum, which declassifies the
first tag byte; checking equality of two secrets; and using
cryptographic primitives that may fail. We encode these possi-
bilities via our DeclassifyingOp type (Figure 8), which is passed
as an argument to Declassify nodes in the ITree.

For declassification in executable code, one might imag-
ine a single declassify primitive that takes an ITreeToken and the
arguments to be declassified, similar to the input and output

primitives in Figure 5. However, the ITree enforces an or-
dering of all effects, including declassification; while this is
desirable for I/O, OwlC’s optimizations may re-order some
cryptographic operations for greater efficiency (§6). Thus, we
instead split this routine into two, as shown in Figure 9. First,
consume_itree_declassify consumes the Declassify node in the ITree
to produce a DeclassifyingOpToken, which serves as a ghost linear
permission to perform a declassification later on. Then, in
turn, declassify consumes this declassification token to turn a
corresponding SecretBuf into a PublicBuf. Here, the declassifica-
tion corresponds to control flow (i.e., branching on a value,
which reveals the branch); other routines for parsing into
enums, checking equality of secrets, and unwrapping crypto-
graphic operations are similar.
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Inserting Declassification During Compilation. The first
order of business for OwlC is to determine which Owl values
should be in SecretBufs and which can be public. OwlC begins
by collapsing Owl’s information-flow lattice to two levels:
always-public, for values that are always safe to leak to the
adversary; and possibly-secret-with-public-length, for values
that may in some scenarios be unsafe to leak. The always-
public values are compiled into PublicBufs, while the possibly-
secret values are compiled into SecretBufs. Importantly, Owl’s
type system already guarantees that only public values can
drive control flow [42]. Next, OwlC inserts declassifications
in cases where Owl deems a value to be always public, but
that value is held in a SecretBuf. For instance, if a protocol
decrypts a public constant, the decryption routine will put the
plaintext in a SecretBuf, but it should be treated as public. In
this case, OwlC will insert a ControlFlow DeclassifyingOp into the
ITree, plus calls to consume_itree_declassify and declassify in the
implementation code.
Public Lengths of SecretBufs. Note that Figure 7 allows unre-
stricted access to the length of the SecretBuf. This is required
for operations such as serialization and encryption/decryption,
since we may need to allocate a fresh buffer for the output;
the length of the output buffer depends on the length of the
input SecretBuf. The original Owl type system [42] allowed
types to have secret lengths; since we cannot express such
types in Verus, we modified the typing rules of Owl to addi-
tionally forbid constructing values with secret lengths. We
found that doing so did not prevent us from modeling and ver-
ifying realistic protocols in Owl, indicating that protocols do
not typically use data with secret lengths. Indeed, operations
over secret-length data are prone to side-channel leakage;
for example, hashing a buffer with a secret length will likely
introduce a timing channel [81].

6 Generating Fast, Interoperable Libraries

We now turn to compiling safe, efficient, and interoperable li-
braries using only the information in the Owl source program.
Protocols are particularly suitable for automated code gen-
eration: they typically consist of relatively short procedures
with straightforward control flow, weaving together various
building blocks, such as cryptographic operations, parsing,
and network communication. While a naïve compilation is
simple, obtaining competitive performance involves several
subtleties. We defer a full description of the compiler’s imple-
mentation to Appendix D, focusing here on how we address
three key challenges.
Type-Guided Compilation. OwlC does not need to formally
prove that its emitted code is valid Rust, since Verus type
checks it. Nevertheless, we do need to track enough Rust-
level detail so that our emitted code does not violate the Rust
type system. Rust guarantees memory safety via ownership
types and a borrow checker for lifetimes, abstract symbolic
constraints on how owned values can be borrowed.

A naïve solution to satisfy Rust’s borrow checker would be
to copy each value every time it is used; however, this would
be prohibitively slow. Instead, we note that protocols largely
operate on byte buffers, and focus on generating efficient code
to manipulate these buffers. We use the type PublicBuf, a data
structure that efficiently supports immutable operations on
byte buffers. PublicBuf internally uses reference counting, so
that PublicBuf values can be copied cheaply without copying the
underlying bytes in memory. PublicBuf allows OwlC to com-
pile functional Owl protocols to efficient Rust code, without
detailed reasoning about lifetimes in the compiler.
Leveraging Verified Parsing. To transmit structured data
over the network, protocols rely on serializers and parsers,
which present particularly large attack surfaces, since they
manipulate low-level buffers and directly handle adversarial
inputs. Buffer overflows from reading untrusted data can have
catastrophic effects [29, 71], while format confusion attacks
can trick implementations into holding false beliefs [65, 90].

To minimize this attack surface, we leverage Vest [27], an
existing Rust library of verified, bidirectional parser/serial-
izer combinators for Verus, which eliminates large classes of
format confusion and parser malleability attacks [80, 88, 90].
Vest also provides side-channel security via type abstraction,
so we can map OwlC’s type-protected secrets to Vest’s.
Fused Operations. Efficient protocol code must (where possi-
ble) mutate memory in-place and avoid excessive allocations.
However, Owl is a high-level functional language, so a naïve
translation of Owl into Rust might allocate a fresh buffer for
every intermediate value, imposing significant runtime costs.

To avoid these costs, OwlC lazily evaluates certain compu-
tations in order to fuse them into their final destination buffer,
once it is known. For example, if the code encrypts, serializes,
and then outputs a value, all of those operations can be fused
into a single computation. This computation mutates a single
buffer in place, avoiding the allocation of intermediate buffers
for the ciphertext and serialized datatype.

OwlC currently supports a set of fuseable operations for
performance-critical code, including cryptographic operations
(e.g., encryption) and network output. We also extend Vest to
support fused operations, whereby computations (including
cryptographic operations) may happen inside the serialization
routine for a given datatype. Importantly, the details of these
optimizations are untrusted—they do not appear in specifica-
tions and are verified to be functionally correct.

7 Using OwlC’s Protocol Libraries

While OwlC focuses on verifying protocol implementations,
these protocols may be deployed in larger verified systems.
Hence, we illustrate how such systems can use OwlC’s gener-
ated libraries and formal specs.

Broadly, there are two possible approaches. The most cryp-
tographically sound approach is to implement the application
logic in Owl, and prove secrecy and integrity for the whole
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application using Owl’s information-flow type system. The de-
veloper can then use OwlC to generate a verified Rust library
for the application logic. This approach enables end-to-end
cryptographic proofs for the composed system. However, Owl
may be awkward for certain applications due to its high-level
representation of protocols and current limitations (e.g., the
lack of recursion).

Alternatively, a developer can write the application logic
directly in Verus, with a handwritten ITree for its spec. This
handwritten ITree can call OwlC’s generated ITrees to invoke
protocol functionality. ITrees can be recursive, so the devel-
oper can naturally express applications with repeating behav-
ior. However, Verus does not (presently) feature information-
flow control or cryptographic reasoning, so this approach can-
not prove properties beyond functional correctness without
significant extensions to Verus.
Echo Server. To illustrate these approaches, we have used
each to implement a basic secure echo server: upon receiving
a message from a client, the echo server simply sends the same
message back to the client. Messages are transmitted using
the secure transport example from Figure 4; for simplicity,
we assume the server has been pre-configured with sending
and receiving keys (the names kA2B and kB2A from Figure 2).

7.1 Implementing Application Logic in Owl

1 def echo_server() @ Server : Unit =
2 let recv_result = call alice_recv() in
3 case recv_result {
4 | Ok ptxt =⇒ call alice_send(ptxt)
5 | Err =⇒ ()
6 }

Figure 10: Echo Server Implementation in Owl. The func-
tions alice_recv and alice_send are defined in Figure 2.

Figure 10 shows our Owl code for the echo server, which
straightforwardly encodes the application logic. Owl proves
via typing that the plaintext ptxt remains secret from the adver-
sary, and that unless the server’s keys are corrupted, the client
receives back an encryption of the same ptxt it sent.

Note that Owl does not yet allow recursive definitions or
loops, so echo_server only runs the echo server once. However,
it is sound to run echo_server an arbitrary number of times;
hence, we write a trusted wrapper that just calls the compiled
Rust routine for echo_server in an infinite loop. Since this is a
trivial 3-line loop, it is straightforward to audit for correctness.

7.2 Implementing Application Logic in Verus

To write the verified application in Verus, we must connect
the app’s spec to the generated library’s spec. We thus specify
the application logic as an ITree, using our owl_spec! macro.

1 spec fn echo_server(cfg: cfg_Server, fuel: usize)→ ITree〈()〉 {
2 owl_spec! (
3 if (fuel == 0) { ret(()) } else {
4 let recv_result = (call(alice_recv(cfg))) in
5 let _ = (case (recv_result) {
6 | Ok(ptxt) =⇒ { (call(alice_send(cfg, ptxt))) },
7 | Err() =⇒ { ret(()) },
8 }) in (call(echo_server(cfg, fuel − 1)))
9 }) }

Figure 11: Handwritten ITree for Echo Server.

Figure 11 shows our ITree-based spec for the echo server.
Because we write it directly in Verus (unconstrained by Owl’s
limitations), we can make the spec recursive: the echo_server

function calls itself to proceed with the next round of the
protocol. Since Verus requires all spec functions to termi-
nate, we provide a fuel parameter to bound the recursion. The
ITree seamlessly composes with the OwlC-generated ITrees
produced by the alice_send and alice_recv spec functions.

On the implementation side, we wrote a loop that calls
Alice’s compiled send and receive routines. Like similar tools,
Verus requires loop invariants to verify loops. We straightfor-
wardly use echo_server to provide the loop invariant: at each it-
eration, the current ITreeToken should contain the ITree given by
echo_server(cfg, cur_fuel), where cur_fuel is the current fuel. Thus,
ITrees provide a flexible spec format for verified applications,
without constraining implementation choices—we are free to
use a more performant looping implementation, rather than
perfectly mirroring the ITree’s control flow.

8 Implementation of OwlC

We have implemented OwlC as a tool in Haskell, based on
the Owl’s open-source Haskell implementation. Our two com-
pilers (§3) are 5,934 lines of Haskell, which breaks down as
753 lines for the trusted specification compiler, 2,083 lines
for the untrusted implementation compiler, and 3,098 lines
of shared definitions and utilities. We also have 1,865 lines
of handwritten Verus code for ancillary definitions (§8.1).
Modifications to the Owl Type System. To automatically
verify and compile realistic protocols, OwlC extends the Owl
type system in a few ways. First, as discussed in §5.2, we
restrict Owl’s information-flow typing rules to enforce extra
constraints for side-channel resistance. Additionally, we sup-
port two new cryptographic primitives — plain-model key
derivation functions and authenticated encryption with addi-
tional data — as well as singleton types which are used to
encode magic constants. For more details, see Appendix A.

8.1 OwlC Output
OwlC generates Verus files containing the specifications and
implementations of the protocol routines. These files link
against trusted handwritten Verus files defining the ITree data
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1 #[axiom]
2 spec fn enc_spec(k, x, nonce, aad : Seq〈u8〉)→ (c: Seq〈u8〉);
3 #[axiom]
4 exec fn enc(k, x, nonce, aad : SecretBuf)→ (cipher: PublicBuf)
5 ensures cipher == enc_spec(k, x, nonce, aad)
6 { /* call EverCrypt AEAD */ }

Figure 12: OwlC’s Embedding of Authenticated Encryp-
tion. Owl assumes that enc_spec models a secure authenticated
encryption algorithm. Other primitives are similar.

structure, the effect functions, and our interface to the cryp-
tographic provider. The result is a verified Rust library crate
implementing the protocol. We briefly discuss the crate’s
relevant external dependencies and its interface.

8.1.1 External Dependencies

Cryptographic Primitives. As a design-level verification
tool, Owl does not explicitly model the internals of crypto-
graphic primitives, such as encryption schemes. OwlC, how-
ever, must link with concrete implementations. We use Ev-
erCrypt [79], a previously verified library of cryptographic
primitives, via libcrux [30], a Rust API into EverCrypt.

Since EverCrypt is verified in F? [87], our connection from
Verus to EverCrypt is trusted; fortunately, the EverCrypt API
is relatively small and simple, as Figure 12 illustrates. Since
EverCrypt is also verified to be constant time through type
abstraction [79], we may soundly add EverCrypt’s routines
into SecretBuf’s API in order to operate directly over SecretBufs
without declassifying them.
Connecting Vest to OwlC. Owl treats message formats as
opaque components of a larger protocol. During compilation,
OwlC uses the Vest [27] combinators to generate a parser and
serializer for every struct and enum used, and inserts calls to
parsing and serialization where needed. Specifically, we use
Vest’s combinators for concrete bytes, integers, pairs of com-
binators, and tagged unions of combinators; from these, OwlC
is able to synthesize verified combinators for arbitrary structs
and enums written in Owl. To provide side-channel security,
OwlC connects to Vest’s opaque interface when parsing or
serializing secrets.

8.1.2 Generated Interface

OwlC compiles each imperative procedure in the Owl source
to a corresponding Rust function. Each party in Owl has a
corresponding Rust struct whose fields contain local state (e.g.,
nonce counters for encryption) as well as configuration data
such as pre-shared keys; in turn, the relevant Rust functions
take these structs in as (partially mutable) input. To use a com-
piled Owl protocol, larger software systems must initialize
these structs appropriately and call each generated function as
desired.1

1Owl’s type system guarantees that any calling order is secure.

Protecting Owl Secrets. All protocol secrets, including pre-
shared and derived keys, are stored in SecretBufs; additionally,
we mark generated structs holding protocol state as private
outside of the OwlC-generated module. Hence, by design,
Rust’s type system guarantees that unverified user code cannot
read or modify protocol secrets. Even if the surrounding (safe)
Rust code is buggy, these bugs cannot affect the security of
the OwlC-verified protocols.

9 Protocol Case Studies

We demonstrate the practicality and scalability of OwlC
via two large-scale case studies: formally verified, interop-
erable implementations of the WireGuard [36] and Hybrid
Public-Key Encryption (HPKE) [12] protocols. We select
these protocols since both are widely adopted in industrial
and open-source applications, yet neither has a verified, high-
performance implementation. In both cases, we verify and
implement the core protocol in Owl, then use OwlC to extract
a verified, performant Verus library; we finally use this library
to build an interoperable implementation.

9.1 Protocol-level Analysis in Owl
OwlC uses Owl to prove computational security in an auto-
mated and modular fashion using information-flow types (§3).
Other than new cryptographic primitives and parsing capabil-
ities (Appendix A), OwlC does not extend Owl’s core type
checker; thus, we inherit the advantages and limitations of
Owl for protocol-level (as opposed to implementation-level)
security analysis. In particular, since Owl models corruption
at the level of keys rather than parties, Owl can model KCI
attacks [20], which require proving security for parties even
when their static keys are compromised. However, since Owl
does not model dynamic compromise [42], we cannot prove
perfect forward secrecy in full generality [43]. Additionally,
while Owl cannot model injective correspondences of pro-
tocol events as in CryptoVerif [21], non-injective correspon-
dences can be modeled using refinement types; e.g., if Alice
accepts a message, then Bob must have sent it.

Extensions to Owl to handle these richer security properties
are orthogonal and future work. Importantly, OwlC would
benefit from these improvements with little-to-no cost, since
they would not affect Owl’s executable fragment.

9.2 WireGuard
WireGuard is a state-of-the-art virtual private network (VPN)
protocol that provides both strong security guarantees and
good performance. It has seen widespread adoption, including
in the Linux kernel.

WireGuard consists of two stages: the handshake, during
which authentication is established and fresh transport keys
are generated; and data transport, during which application
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data is exchanged using the derived transport keys. Each party
in the protocol has a static Diffie-Hellman key, and each party
also generates an ephemeral Diffie-Hellman key for each new
connection. WireGuard generates transport keys from the
Diffie-Hellman shared secrets using a key derivation function.
During the transport phase, stateful AEAD with a counter is
used to encrypt messages.

9.2.1 Verifying WireGuard in Owl

While we are not the first to formally verify cryptographic
security for WireGuard [64], our proof in Owl is succinct
and is attached to a verified implementation. Additionally,
through Owl’s type system, we give the first modular proof of
WireGuard that does not require inlining the handshake and
transport routines together.
Verification Scope. Similar to prior verification efforts [64],
we do not verify the entire WireGuard executable, only the
security-critical “core protocol” containing the cryptographic
computations for the handshake and transport routines. We
rely on unverified implementations of virtual network devices
and UDP; verifying these components is left to future work.
Verification Results. Using Owl, we prove that WireGuard
provides a secure channel:

• Secrecy of transport messages: After a successful hand-
shake, all transport messages remain secret, unless the
sender’s static and ephemeral keys are compromised, or
the receiver’s static key is compromised.

• Authenticity of transport messages: In a clean session,
any message decrypted by the Initiator was sent by the
Responder; similarly, in a clean session, any message
decrypted by the Responder was sent by the Initiator.

These properties do not cover all properties verified in prior
work [64] (e.g., we do not yet verify anonymity properties,
or that messages may only be received once), but are strong
enough for most realistic use cases. We defer full details of
our verification of WireGuard in Owl to Appendix B.

9.2.2 Building an Interoperable Implementation

Having modeled the core cryptographic routines of Wire-
Guard in Owl as above, we use OwlC to produce a Verus li-
brary of verified implementations of those routines. Industrial
WireGuard implementations typically consist of an executable
with functionality beyond the core cryptographic operations,
connecting to kernel APIs for networking and traffic routing.
Developers would ideally write verified Verus implementa-
tions of this functionality, connecting to OwlC’s library to
produce a verified WireGuard executable.

To demonstrate that OwlC generates usable and performant
code, we instead link our generated library to off-the-shelf
industrial WireGuard implementations. We replace the hand-
shake and transport modules in WireGuard implementations

with our verified routines, but leave the other unverified com-
ponents as-is, including the packet demultiplexer, timers for
rekeying, and UDP network interface; none of these unveri-
fied components manipulate secret or high-integrity data. Our
compilation generates simple, safe Rust interfaces for each
generated method, so integrating our verified modules into
pre-existing codebases is straightforward.

Our main WireGuard executable re-uses components from
wireguard-rs [44], an officially supported, userspace imple-
mentation of WireGuard written in Rust. To demonstrate that
our library can be used outside of Rust, and achieves state-
of-the-art performance (§10.2), we also use FFI to connect
to wireguard-go [37], the fastest open-source WireGuard
implementation of which we are aware. In both cases, we
write a small amount of glue code to allow existing code to
communicate with OwlC’s compiled routines.

9.3 HPKE
HPKE is a recent standardization of hybrid public-key encryp-
tion schemes, in which a Diffie-Hellman exchange is com-
bined with a traditional symmetric cipher to allow for public-
key encryption of arbitrary-length messages. HPKE has been
adopted in several larger protocols, including Messaging
Layer Security [11] and TLS Encrypted Client Hello [82].

HPKE uses a key encapsulation mechanism (KEM) to gen-
erate a shared symmetric secret protected by the receiver’s
public key; this shared secret then encrypts payload messages.
It features multiple authentication modes for binding public
keys to identities, plus a wide selection of primitives. Typ-
ically, HPKE exposes a single-shot API, in which the key
encapsulation, key derivation, and encryption (or decryption)
are all fused into a single procedure.

9.3.1 Verifying HPKE in Owl

Using Owl, we present the first proof of HPKE (instantiated
with the Diffie-Hellman Key Encapsulation Mechanism [12])
in the plain model; that is, using realistic assumptions on
hash functions, and not relying on random oracles. As with
our WireGuard case study, our verification of HPKE in Owl
consists of imperative procedures for each of the logical com-
ponents of the HPKE sender and receiver procedures. Our
model also includes HPKE’s single-shot API for both sending
and receiving messages.
Verification Results. We prove that HPKE (in its strongest
authentication mode, AuthPSK) constructs a secure channel
from the sender to the receiver; this includes both secrecy and
integrity. In particular, we prove that whenever both parties
are not fully compromised, messages sent using HPKE re-
main secret, and all received messages came from the sender.2

2The sender is fully compromised when the pre-shared key and its static
and ephemeral keys are; the receiver is compromised when the pre-shared
key and its static key are.
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Prior formal verification efforts prove more detailed security
properties for HPKE, including CCA security [4]; we leave
verification of these in Owl for future work. We also leave
verification of the other modes of HPKE (e.g., the Base mode,
which does not use ephemeral or pre-shared keys) for future
work. We defer details of our Owl verification to Appendix C.

9.3.2 Building an Interoperable Implementation

We use OwlC to produce a Verus library of the HPKE sender
and receiver routines. Unlike WireGuard, HPKE is agnostic
about details of message formats, network protocols, and rout-
ing, and it does not present a single uniform interface. We
therefore do not need to reuse components from an off-the-
shelf implementation, nor write any “glue” code to connect
to one. Instead, our compiled HPKE library can be used di-
rectly in applications that rely on the protocol. We provide a
simple API for the single-shot HPKE routines. Since Verus
code easily links with regular Rust code, users of our library
can directly call this API without depending on Verus.

10 Evaluation

We evaluate the scalability and performance of OwlC using
a range of case studies. All performance tests use a Dell
workstation with a 3.6GHz Intel Core i7-12700K with 32GB
of RAM and running Ubuntu 20.04.
Verification Performance. As discussed in §4.2, OwlC does
not emit proof hints to aid verification. We found that Verus
verified our generated implementations against their ITree
specifications completely automatically, even for large pro-
tocols such as WireGuard with ∼6,500 LoC. Furthermore,
Verus verifies the code quickly, with our largest protocol
(WireGuard) verifying in 13 seconds.

Figure 13 summarizes the verified protocol case studies
that we examine. We discuss each group in the table in turn.

10.1 Owl Toy Protocols
The first 14 case studies shown in Figure 13 are drawn from
the original Owl work [42], which used them to demonstrate
Owl’s utility as a protocol verifier. We successfully compile
and verify implementations from each using OwlC. How-
ever, these legacy protocols are highly simplified and were
not designed to be interoperable. Hence, we did not attempt
to measure the performance or interoperability of OwlC’s
compiled code for these protocols.

10.2 WireGuard
We focus our evaluation of OwlC on the WireGuard case
study (§9.2). We have two OwlC-based WireGuard exe-
cutables, one using components from wireguard-rs [44]
and one using components from wireguard-go [37]. We

LoC Verif. Time (s)
Owl Verus Owl Verus

Basic-Hash [25] 52 849 2.8 2.0
Hash-Lock [52] 62 1,489 3.8 2.9
LAK [48] 76 1,699 3.4 3.2
MW [69] 77 2,051 5.8 4.3
Feldhofer [40] 36 825 0.9 1.6
Private Auth [9] 76 1,653 10.1 3.0
Needham-Schroeder (sym) [73] 115 2,743 6.8 4.9
Needham-Schroeder (pub) [73] 95 2,299 25.8 3.5
Otway-Rees [75] 221 5,210 27.3 10.7
Yahalom (sym) [26] 175 4,028 13.4 7.4
Denning-Sacco (pub) [34] 103 2,133 7.9 3.1
Core Kerberos [57] 274 4,376 15.5 6.4
Diffie-Hellman Key Ex [35] 78 1,266 9.6 2.4
SSH Forwarding Agent [93] 223 3,130 33.0 4.5
WireGuard [36] 910 6,499 659.8 13.1
HPKE [12] 332 4,030 83.0 7.8

Figure 13: OwlC Case Studies. Left to right, we show: the
number of lines of Owl code; number of lines of generated
Verus code; the wall-clock time for Owl to verify the protocol’s
security; and the wall-clock time for (multi-threaded) Verus
to verify the generated code. In all cases, OwlC compiles the
protocol to Verus in under a second.

compare our OwlC-based WireGuard executables to their
unverified baselines, as well as wireguard-linux [38],
the Linux kernel WireGuard module. To our knowledge,
wireguard-linux and wireguard-go are the most widely-
deployed open-source WireGuard implementations; we in-
clude wireguard-rs since it is the only full-featured Rust
implementation of which we are aware.
Interoperability. Most importantly, our implementations are
able to interoperate with off-the-shelf implementations of
WireGuard. We verify this by unit-testing our library in four
configurations, corresponding to OwlC code or baseline code
running as each of the initiator and responder of the hand-
shake. In all four cases, both parties ultimately derive the
same transport keys and are able to communicate.

Furthermore, our WireGuard implementations can present
themselves using a Linux network interface; we use this to
perform an end-to-end test. We use Linux network names-
paces to set up a simulated network with two peers connected
via a WireGuard VPN tunnel, using either the baseline code or
our compiled routines as the implementation of WireGuard. In
all four cases, the peers perform the handshake, derive trans-
port keys, and communicate. Our OwlC-based WireGuard
executables thus provide drop-in verified replacements for
existing user-space WireGuard implementations.
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Figure 14: End-to-End Performance Benchmark of OwlC-
compiled Code. We report the throughput (higher is better)
against the configured link delay for each configuration. Each
measurement is taken for 120 seconds using the default TCP
MSS (1460 B).

10.2.1 End-to-End Transport Benchmarks

Our end-to-end benchmarks are designed to measure the per-
formance effects on WireGuard users of using OwlC, com-
pared to standard baselines.

We use the aforementioned virtual network topology to
benchmark our code. We use iperf3 [51], a standard network
performance measurement utility, to obtain measurements of
the throughput of the network. This largely measures the
transport layer, since WireGuard performs its handshake only
once every 120 seconds, by default.

Among the baselines, we find that wireguard-go
and wireguard-linux both significantly outperform
wireguard-rs by up to 4×, with wireguard-go supporting
up to 50% greater throughput than the kernel module. This
is unsurprising, given that wireguard-go is more widely
deployed and heavily optimized [91] than wireguard-rs.
We therefore focus our evaluation here on wireguard-go.
We compare our OwlC-based code with both wireguard-go
and wireguard-linux; since wireguard-linux does not
have a single-threaded mode, our benchmarks use the default
multi-threaded configuration.

For our main end-to-end benchmark, using the Linux
netem network emulator utility [74], we configure various
amounts of symmetric link latency between the two virtual
WireGuard peers and measure the resulting throughput. Fig-
ure 14 shows the results. We see that the OwlC implementa-
tion performs very similarly to wireguard-go, incurring a
maximum overhead of 6%; both OwlC and wireguard-go
outperform the kernel module by 35%-50%. More impor-
tantly, the OwlC-compiled implementation becomes indis-
tinguishable in performance from wireguard-go once we
add even a tiny amount of link latency (1 ms). Considering
that, for example, AWS claims “single-digit millisecond la-
tency” even between availability zones in the same region [5],
most wireguard-go users would notice no overhead from

switching to our verified implementation; indeed, when in-
tegrated with a state-of-the-art WireGuard implementation,
OwlC’s WireGuard library yields an end-to-end executable
that outperforms the widely-deployed Linux kernel module.

We additionally measured the performance of our code on
small packets, as reported in §E.1; we observed no signifi-
cant difference in performance on large packets, and a minor
overhead on small packets.

We also benchmarked our executable based on
wireguard-rs. As with our Go-based implementa-
tion, the wireguard-rs-based implementation using OwlC
performs indistinguishably to its baseline with link latencies
2 ms or more. We observe minor overheads of up to 13% in
the artificial zero-latency case, largely because libcrux is
slower than the unverified Rust cryptographic primitives in
wireguard-rs. Full details are reported in §E.2.

10.2.2 Micro-Benchmarks

In addition to end-to-end performance testing, we also com-
pare the performance of our generated WireGuard hand-
shake and transport routines in isolation. For these micro-
benchmarks, we compare against wireguard-rs to avoid
conflating overhead with the effects of comparing a lan-
guage with manually managed memory (Rust) against one
with garbage collection (Go). For all micro-benchmarks,
we test OwlC in two configurations: using verified crypto-
graphic primitives from EverCrypt [79] via commit 5bc3ad6
of libcrux [30] (abbreviated as OwlCV), and using the
same, unverified primitives from the baseline (abbreviated
as OwlCB). All data for these experiments can be found in
Appendix F.

Our first micro-benchmark measures the number of hand-
shakes per second that OwlC can perform against the baseline.
When using OwlCV, OwlC’s implementation of WireGuard
outperforms the baseline by 10%; this is mostly due to Ever-
Crypt’s more efficient elliptic curve implementation, which
dominates the running time. When using OwlCB, we see a
negligible performance penalty of 3%.

Next, we benchmark the performance of our transport rou-
tines, measured via raw Gbps when calling the relevant func-
tions. Here, we see a 40% performance penalty when using
OwlCV when compared to the baseline, and a 15% penalty
when using OwlCB; this is due to the baseline containing a
more efficient algorithm for encryption. Crucially, however,
this micro-benchmark is maximally pessimistic, since we
are measuring only the transport routines, without any no-
tion of a network. When we measure end-to-end performance
over a virtual network with 2ms of line delay (see Figure 14),
the difference in throughput between OwlC and unverified
implementations vanish.
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Sender
rust-hpkeB OwlCV

Receiver rust-hpkeB 6,894 (—) 7,485 (+8.6%)
OwlCV 7,486 (+8.6%) 8,239 (+19.5%)

Sender
rust-hpkeB OwlCB

Receiver rust-hpkeB 6,894 (—) 7,248 (+5.1%)
OwlCB 7,259 (+5.2%) 7,640 (+10.9%)

Figure 15: Performance Comparison of OwlC-compiled
Code Against rust-hpke. Each entry indicates the num-
ber of single-shot HPKE runs per second in that configura-
tion, along with the percentage difference from the baseline
(rust-hpke as both sender and receiver); higher is better.
The computed standard deviation is less than 1%.

10.3 HPKE
We evaluate our HPKE case study (§9.3) by comparison to
rust-hpke [84], a full implementation in Rust of the HPKE
standard [12] which has been used in production at Cloud-
flare [32]. It uses a number of handwritten optimizations for
performance; e.g., disallowing all allocation by default.
Interoperability. Both OwlC’s HPKE code and rust-hpke
are library crates presenting a straightforward single-shot
API. To test interoperability, we wrote a small wrapper crate
that generates the requisite static Diffie-Hellman key pairs
and a random payload, calls either the OwlC or rust-hpke
SingleShotSeal primitive on the payload, and finally calls either
the OwlC or rust-hpke SingleShotOpen primitive on the re-
sulting ciphertext. We find that in all four permutations, the
decrypted message is equal to the initial payload, confirming
interoperability.
Performance. To benchmark OwlC’s HPKE implementation,
we modify the test above to measure the combined runtime
of the SingleShotSeal and SingleShotOpen routines, using cargo
bench as we did for the WireGuard micro-benchmarks. Fig-
ure 15 shows the results of this benchmark. As with Wire-
Guard, we report the runtime both when using verified cryp-
tographic primitives from EverCrypt (OwlCV) and using the
same unverified primitives as the baseline (OwlCB). We see
that when using the default verified primitives, OwlC per-
forms ∼ 20% faster than rust-hpke; even when they use the
same primitives, OwlC outperforms rust-hpke by ∼ 11%.

11 Related work

Side-channel Security for Protocols. While prior work
has addressed side-channel security for cryptographic primi-
tives [3, 23, 28, 79, 95], to our knowledge, no prior work has
presented a general solution for side-channel security in cryp-
tographic protocols. Noise* [49] also uses type abstraction to
implement protocols in the Noise framework, but they use an

unchecked declassification primitive; by contrast, OwlC’s ap-
proach to semantic declassification guarantees that only pub-
lic values are declassified. Delignat-Lavaud et al. [33] prove
side-channel resistance for an implementation of QUIC, but
do not develop a general-purpose solution that automatically
applies to any protocol as OwlC does. Ironclad Apps [47]
provide a scheme for declassification, but do not connect it to
cryptographic constant-time.
Verified Implementations for Security Protocols. OwlC
is not the first work to verify security protocol implementa-
tions. Noise* [49] automatically translates protocols from
the Noise framework [77] to verified implementations in C;
however, Noise* is limited to a specific class of protocols,
while OwlC supports general-purpose cryptographic proto-
cols. Moreover, relying on DY* [15], Noise* only guaran-
tees symbolic security, which ignores security-critical cryp-
tographic details; OwlC guarantees computational security,
which does not make the same compromise.

Recent work [7] using Tamarin [67] translates protocol
descriptions into separation logic specs, and manually proves
code written in Go against those specs. A related approach [6]
embeds symbolic security reasoning into a Go separation-
logic verifier, enabling manual symbolic proofs on the imple-
mentations. Similarly, cv2fstar [63] translates protocols in Cryp-
toVerif [21] to partially verified implementations in F? [87]
to be completed by expert developers. In contrast, OwlC gen-
erates verified implementations fully automatically.

A line of work [17–19, 33] has formally verified imple-
mentations of high-impact security protocols, such as TLS
and QUIC; however, all of these projects consist of one-off,
manual proof efforts, wherein implementations and their spec-
ifications are hand-written in proof assistants. OwlC presents
an alternative, foundational approach, based on automatic
compilation to verified code.

Many prior efforts also hurt runtime performance, with ex-
amples adding 6× [19] or 13× [18], compared to unverified
baselines. By contrast, OwlC’s design facilitates optimiza-
tions that lead to state-of-the-art performance.
State Machines for Protocol Implementations. Interactive
protocols can either be written imperatively, where network
input/output are effects, or as state machines, using explicit
handlers for messages. Prior work [7, 50] has focused on
verifiably mapping between these two implementation styles.
In contrast, OwlC maps Owl to Rust, which are both written
imperatively, greatly simplifying verification.
Proof-Producing Compilation. While compiling into formal
proofs is an old idea [70, 72, 78], our use of a deductive pro-
gram verifier for automatically compiling into Rust is novel,
and presents a “sweet spot” between expressivity and the
automation needed for fully automatic compilation.
Tokens for Effects. While previous work uses Interac-
tion Trees (ITrees) for specifying effects in pure proof lan-
guages [92], our work differs in regarding ITrees as abstract
permissions to perform effects, and using these permissions
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by embedding them into executable code via linear typing.
Our embedding of permissions is reminiscent of prior work,

such as IronSync [45]; however, IronSync uses these tokens
to coordinate threads in a single program, while we use them
to control the external effects of a protocol implementation.

12 Conclusion

We present OwlC, an automatic compiler from Owl proto-
cols to efficient libraries that are verified for correctness and
security. Our libraries are competitive in performance with
unverified industrial implementations; we demonstrate this
with two case studies, WireGuard [36] and HPKE [12], along
with 14 smaller case studies from early Owl work [42].

In future, we hope to use OwlC to generate verified libraries
for larger protocols, such as TLS and Signal. This will entail
improvements to Owl, from which OwlC would benefit au-
tomatically, plus significant engineering effort to model the
complexity of these protocols.

Ethics Considerations

Our work aims to develop formally verified, secure protocol
implementations to be used by software clients in a plug-and-
play manner. We do not anticipate any ethical issues arising
from our work, as we are developing tools to make software
more secure, and have not uncovered any vulnerabilities in
other software packages, nor discovered new ways of attack-
ing protocols or implementations.

Open Science

Our implementation of OwlC [86] is developed in a publicly
available open-source repository [76], including the verified
echo server example described in §7, the artifact described
in §8, the large-scale protocol case studies of WireGuard
and HPKE described in §9, and the 14 toy protocols from
Owl [42] listed in Figure 13.
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A Modifications to the Owl Type System

Here, we describe additions we made to Owl’s type checker
in order to support realistic protocols, including WireGuard
and HPKE.
Plain-Model KDFs. First, to support sophisticated key ex-
change protocols such as WireGuard, OwlC extends Owl’s
support for Key Derivation Functions (KDFs), which are used
to convert shared secrets into uniformly random keys. In
particular, the extended Owl type system now supports plain-
model KDFs, which do not require assuming that the protocol
has access to an idealized random oracle.

In particular, OwlC extends Owl with an abstraction of
the HKDF [58] primitive, which combines the Extract and
Expand steps into one function with three arguments: the salt,
which may be optionally filled with secret uniform random-
ness; the input keying material, or IKM, which may contain
other forms of shared secrets (e.g., Diffie-Hellman shared se-
crets); and a context, which is used to bind the output key to
public data (e.g., algorithm parameters).

To verify security protocols, we assume that HKDF satisfies
three (standard) assumptions: that HKDF is a pseudo-random
function (PRF) when the salt is a uniformly random secret
key; similarly, HKDF is a PRF when the IKM is a uniform
secret key; and a mild variant of PRF-ODH [24], which states
that HKDF is also a PRF when the IKM contains a Diffie-
Hellman secret.3

The typing rules for KDFs in Owl are similar in spirit to
the original ones for Random Oracles: when the KDF is fed
with appropriate secrets, the KDF outputs a value of type
Name(KDF〈pos〉(salt, ikm, ctx)); this states that the value is a fresh
cryptographic secret, where pos contains metadata about how
many bytes were extracted for the KDF, and salt, ikm, and ctx

are the corresponding inputs to the KDF.
Stateful AEAD. Additionally, OwlC extends Owl to support
the most common form of symmetric encryption today, au-
thenticated encryption with associated data, or AEAD [83].
AEAD is quite similar to the basic form of symmetric encryp-
tion already supported by Owl, but it has two additional fea-
tures useful for real-world protocols: counter-driven nonces
and additional associated data, or AAD, which can authenti-
cate data outside of the secret message.

Real-world AEAD schemes (e.g., AES-GCM [66]) allow
the developer to choose a nonce, so long as no nonce is used
twice for encrypting. The near-universal choice for the nonce
is to use a counter that is stored with the encryption key and
incremented each time it is used.

To support this in Owl, OwlC includes a new name type for
Stateful AEAD (st_aead), which embeds a monotonic counter
into the specification for the encryption key; thus, by con-
struction, no nonce can be reused. Additionally, for more
sophisticated uses, OwlC allows this counter to be mapped

3For WireGuard, we rely on PRF-ODH as-is; but for HPKE, we need to
slightly extend PRF-ODH to handle IKM values of the form gwx||gyz.

under a user-chosen bijection; for example, our HPKE case
study uses nonces of the form b⊕n, where n is the counter,
and b is a random base nonce that obscures network traffic.
Byte-Precise Data Types. Finally, we extend Owl’s type
system to incorporate low-level format details necessary for
interoperability. For example, the WireGuard network format
includes magic constants to differentiate various messages;
to support this, we include singleton types Const(N) in Owl
structs, which hold exactly the magic constant N.

B Verifying WireGuard in Owl

Following Owl’s design philosophy, we write the procedures
for the Initiator and Responder in Owl as imperative programs,
closely resembling executable implementations. By using
Owl’s support for indexed code, we prove security in a setting
with an arbitrary number of Initiators and Responders who
participate in arbitrarily many sessions.

By using Owl, we guarantee information-flow security by
default. In particular, any secret not corrupted by the adversary
cannot flow to the network. The only valid network messages
must have the information-flow label adv, which stands for
fully public data.

For data transport, we model secrecy using ab-
stract labels, [channel_secret_init_to_resp〈@n,m〉] and
[channel_secret_resp_to_init〈@n,m〉], for the two unidirectional
channels between the nth Initiator and the mth Responder.
Via information flow, we prove that the Initiator’s channel to
the Responder is compromised only when both its static and
ephemeral keys are compromised, or when the Responder’s
static key is compromised. We prove the equivalent result for
the Responder’s channel to the Initiator.
Handshake Security via Clean Sessions. The central chal-
lenge of verifying WireGuard’s handshake is proving se-
curity in the presence of unauthenticated key shares, since
ephemeral public keys are passed in plaintext without any
form of authentication. To specify security in this setting, we
must, as in prior work [39, 64], define a clean session, which
defines the conditions under which the secrecy and integrity
of derived keys are guaranteed.

At the end of the handshake, the Initiator derives two
unidirectional transport keys. The Owl type for these keys
is, roughly, if init_clean then SecretName(...) else Data〈adv〉. Hence,
if the initiator’s session is clean, the keys derived are both
secret and authentic. If the session is not clean, the keys are
arbitrary, possibly corrupted, public data.

On the Initiator side, a session is clean when it is invoked
with a secret pre-shared key (if it is using a pre-shared key),
or at least one of the four Diffie-Hellman computations (Ini-
tiator’s ephemeral/static key↔ Responder’s ephemeral/static
key) involves two keys that are uncompromised (i.e., the keys
are actual secrets). Since the Initiator may be invoked with a
fake ephemeral key for the Responder, an “uncompromised”
ephemeral key for the Initiator also requires that the ephemeral
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key corresponds to the intended Responder. The Responder’s
notion of clean sessions is similar, except that the Responder’s
cleanliness predicate also requires that, in the absence of a
valid, secret pre-shared key, the received ephemeral key is a
valid ephemeral key of some Responder.
Key Confirmation for the Responder. An interesting quirk
of WireGuard is that security for the Responder is only guar-
anteed after it receives a transport message from the Initiator,
which confirms that the Initiator has completed the hand-
shake. In prior proof efforts, both formally verified and oth-
erwise [36, 64], this restriction breaks modularity between
the two phases, resulting in a proof that combines part of the
transport phase with the handshake phase.

Notably, our security proof in Owl does not require break-
ing modularity in this way. Instead of combining the phases,
we use Owl’s support for dependent types to encode a form
of typestate. The Responder’s derived keys are contained in a
struct with a field received : Bool, which indicates whether the
first transport message has been received. In turn, the transport
keys have a type of the form

SecName(..) if resp_clean && (received || correct_key)

JunkSecret(..) if resp_clean && !received && !correct_key

Data〈adv〉 otherwise

Above, correct_key indicates whether the adversary chose to
deliver the correct keys in the handshake, SecName(..) is the
correct, secret key, and JunkSecret(..) is a secret but useless en-
cryption key that is specified to not encrypt any plaintexts.
Without receiving a message from the transport, the Respon-
der cannot guarantee that it is using the correct key instead
of the junk secret; however, after receiving the key, in a clean
session, the Responder is guaranteed to be using the authentic
transport key. By using the above type signature for transport
keys in Owl, we can separately typecheck the handshake and
transport phases of WireGuard.

C Verifying HPKE in Owl

Our Owl proof of HPKE implements the strongest authentica-
tion mode (AuthPSK), in which the key for the symmetric ci-
pher is derived using a pre-shared key and two Diffie-Hellman
computations—one between the sender and receiver’s public
keys, and one between the sender’s ephemeral key and the
receiver’s public keys. Our Owl implementation focuses on
AuthPSK for its maximal security properties, but it can readily
be adapted to handle the other modes as well.
Security Assumptions for AuthPSK. Interestingly, in the
plain model (i.e., without a random oracle), AuthPSK requires
a cryptographic assumption that, to our knowledge, has not yet
been defined in the literature. To derive a shared symmetric
secret, the receiver computes (roughly) a hash of the form
H = hkdf(. . . ,“HPKE_v1”++gsS sR ++hsR , . . .) where hkdf is
the HKDF key derivation function [58], sS and sR are the

sender and receiver’s static Diffie-Hellman keys, and h is an
unauthenticated group element that is meant to be interpreted
as the sender’s public ephemeral key. In the random oracle
model, the secrecy of the hash H follows from the Gap Diffie-
Hellman assumption [24]; however, in the plain model, one
must use a more precise assumption.

The state of the art in the plain model is PRF-ODH [24],
which states that for Diffie-Hellman secrets x and y, hashes of
the form hkdf(. . . ,hx, . . .) are secret whenever h = gy, even
when the adversary may obtain hashes using arbitrary other
group elements h 6= gy.

While useful for cases such as TLS [24], PRF-ODH is not
applicable for HPKE, since the second input to hkdf (the
input keying material, or IKM) has more structure. Thus, for
HPKE, we assume a generalization of PRF-ODH wherein the
adversary may construct arbitrary contexts for the IKM of
the form ·++hx ++ ·. Since the pseudorandomness of HKDF
hinges on the min-entropy of the IKM [58], adding extra
information to the IKM cannot harm security.

D Compiler Architecture and Passes

As described in §3, OwlC’s compilation pipeline consists of
two compilers: a simple, trusted specification compiler that
translates the Owl program into an equivalent ITree; and an
untrusted implementation compiler that generates the exe-
cutable Rust functions and Verus spec/proof annotations to
prove adherence to the ITree specification.
Concretization and Spec Compilation. Before compilation,
OwlC performs concretization, which erases ghost code from
the Owl program. Additionally, this phase collapses the fine-
grained information-flow lattice of the Owl program to just
public and secret: public values are those whose information-flow
label is public under all corruption scenarios, while secret val-
ues are those whose information-flow label may not be public
in at least one corruption scenario. The output of concretiza-
tion corresponds to the example protocol in Figure 2.

Given the concretized protocol, OwlC performs spec com-
pilation to produce the ITree representation of each protocol
routine. While this phase of the compiler is trusted for cor-
rectness, the translation from concretized Owl to Interaction
Trees is a simple syntactic transformation, implemented as a
single traversal of the AST.

As described in §6, however, the implementation compiler
must keep track of type information, both to generate valid
Rust code and to enable optimizations. OwlC does so over
three passes.
Format Type Elaboration. First, the compiler annotates
every node in the concretized AST with a format type. In
essence, format types encode the concrete representation of
abstract terms in Owl, without committing to Rust-level imple-
mentation details. Format types are defined by the following
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grammar:

τ ::= unit | bool | usize | ADT(s)
| Option〈τ〉 | buffer〈`〉[N?] | hexconst(v)

Here, ADT(s) corresponds to Owl structs and enums, which
are represented in OwlC’s output as Rust structs and enums.
buffer〈`〉[N?] encompasses byte buffers: ` represents the
information-flow secrecy of the buffer (either public or secret);
N? represents the length of the buffer, and may be present for
buffers of a known length (e.g., a key), or absent for buffers of
unknown lengths (e.g., network messages). We additionally
have hexconst(v) for byte constants, such as those appearing in
network formats, which are kept separate from the buffer〈l〉[N?]
type to facilitate the generation of Vest parsers and serializers
for those formats.
Lowering to Rust Types. Next, the compiler translates the
elaborated AST into a new AST annotated with Rust types.
The full grammar of Rust types that OwlC uses is shown
below:

τ ::= unit | bool | usize | Vec〈u8〉 | &[u8]
| [u8;N] | ADT(s) | Option〈τ〉 | PublicBuf | SecretBuf

Compared to the format types, we have eliminated hexconst(v),
and replaced buffer〈`〉[N?] with our OwlC-specific PublicBuf and
SecretBuf, as well as the standard Rust buffer types of Vec〈u8〉,
&[u8], and [u8;N].

This pass performs a limited amount of analysis to deter-
mine the right Rust-level representation of each intermediate
value, and it inserts explicit Rust-level conversion operations
(such as Vec::as_slice()) as necessary. Importantly, the compiler
only has to emit a small set of basic operations, correspond-
ing to cryptography, parsing/serialization, network interaction,
and other basic operations such as bytestring concatenation.
Thus, OwlC simply hardcodes the type signatures of the cor-
responding Rust functions and uses these signatures to inform
the lowering pass.

Lowering is also responsible for generating the fused buffer
operations described in §6. To do so, the lowering pass tracks
whether each intermediate value can be computed by a fused
operation; it then inserts the fused operation whenever that
value is used. To avoid redoing expensive computations, this
pass also tracks whether the result of a fused operation is
used multiple times, in which case we fall back to allocating
a buffer for the intermediate value.
Code Generation. Finally, the compiler pretty prints the low-
ered AST as Verus concrete syntax. With the AST already
annotated with Rust types, code generation can be imple-
mented as a simple traversal of the AST, without needing
to track any contextual information. Code generation also
emits Rust struct and enum definitions, and Vest combinator
definitions, for the data type definitions in the Owl program.

Figure 16: End-to-End Performance Comparison Against
Packet Payload Size. We report the throughput (higher is
better) against the TCP MSS. Each measurement was taken
for 120 seconds, with zero link latency.

E Additional End-to-End Benchmarks

E.1 Comparison to wireguard-go
WireGuard Packet Size Benchmark. In addition to our link-
latency benchmark (§10.2), we measure the performance of
OwlC’s WireGuard implementation on small packets. We
do so by adjusting the TCP maximum segment size, which
controls the size of the WireGuard packet payloads. We mea-
sure performance in the worst-case scenario where there is no
latency between the two parties.

Figure 16 shows the results. Comparing OwlC to
wireguard-go and wireguard-linux, we observe broadly
similar performance between OwlC and wireguard-go. Note
that wireguard-go is optimized for large packets, explaining
the significant throughput jump at MSS 600; since OwlC uses
the same network-handling code as wireguard-go, OwlC
inherits the same performance behavior.

E.2 Comparison to wireguard-rs
We repeat the benchmarks described in §10.2.1 and §E.1,
but using our OwlC-based WireGuard executable using com-
ponents from wireguard-rs. This implementation suffers
from significantly poorer performance than wireguard-go,
or our OwlC implementation based on wireguard-go, since
wireguard-go features significant performance optimiza-
tions. However, our wireguard-rs-based implementation
is more similar to the intended use case of OwlC, featuring
application Rust code calling directly into our WireGuard
library, rather than an FFI bridge to Go code.

Our wireguard-rs benchmarks run both OwlC and
wireguard-rs in single-threaded mode. Similar to our micro-
benchmarks, we report performance for OwlC in two configu-
rations: OwlCV, using libcrux for cryptographic primitives;
and OwlCB, using the unverified pure-Rust primitives used
in wireguard-rs. Our OwlCB results isolate the specific
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Figure 17: End-to-End Performance Comparison of OwlC-
compiled Code Against wireguard-rs. We report the
throughput (higher is better) against the configured link delay
for each configuration. Each measurement is taken for 120
seconds using the default TCP MSS (1460 B).

impact of our work, ignoring the effect of using a different
cryptographic library.
WireGuard Line Delay Benchmark. We use the same vir-
tual network setup as described in §E.2 to configure symmet-
ric link latency and measure throughput. Figure 17 shows the
results. We see that at zero link latency, we observe a perfor-
mance penalty of approximately 13% for OwlCV, whereas
with OwlCB, the performance overhead drops to only 4%.
This indicates that code compiled by OwlC adds only 4%
overhead and that the baseline’s unverified implementation
of ChaCha20-Poly1305 (drawn from OpenSSL) outperforms
the verified implementation in EverCrypt. Again, we note that
with a link latency of just 2 ms, OwlC performs indistinguish-
ably from the baseline.
WireGuard Packet Size Benchmark. We additionally com-
pare OwlC’s performance to wireguard-rs on small packets,
using the artificial worst-case of zero link latency. Figure 18
shows the results. We observe a consistent throughput penalty
of 13-21% for OwlCV. Switching to the same primitives as
the baseline lowers the overhead to only 3-5%.

F Details on Micro-Benchmarks

Our micro-benchmarks run specific functions from the OwlC
and baseline code bases; during normal execution these func-
tions would be just one component among many in the im-
plementation. We also remove any communication cost by
running the relevant routines from two separate WireGuard
devices in the same address space, so that “reading” and
“writing” packets can be done by just reading and writing
to a buffer in memory. We measure the runtime of these
benchmarks using Rust’s standard cargo bench infrastruc-
ture [89], which runs at least 300 iterations of the benchmark
and continues to run until the overall median converges to a
stable value, reporting the median and scaled median absolute

Figure 18: End-to-End Performance Comparison Against
Packet Payload Size For OwlC-compiled Code Against
wireguard-rs. We report the throughput (higher is better)
against the TCP MSS. Each measurement was taken for 120
seconds, with zero link latency.

Initiator
wg-rsB OwlCV

Responder wg-rsB 4,914 (—) 5,102 (+3.8%)
OwlCV 5,162 (+5.0%) 5,392 (+9.7%)

Initiator
wg-rsB OwlCB

Responder wg-rsB 4,914 (—) 4,809 (−2.1%)
OwlCB 4,873 (−0.8%) 4,759 (−3.1%)

Figure 19: Performance Comparison of OwlC-compiled
Code Against wireguard-rs for WireGuard Hand-
shake. Each entry indicates the number of handshakes/second
in that configuration, along with the percentage difference
from the baseline (wireguard-rs as both initiator and re-
sponder); higher is better. In all measurements, the computed
standard deviation is less than 2%.

deviation of the runtimes.
Handshake. Our handshake micro-benchmark initializes
two WireGuard devices and performs one handshake be-
tween them, checking that both devices derive the same
transport keys. We test this benchmark with both OwlC and
wireguard-rs code for both devices. Figure 19 shows the re-
sults, for both OwlCV (using verified cryptographic primitives
from EverCrypt [79]) and OwlCB (using the same unverified
pure-Rust primitives as wireguard-rs).
Transport. Our transport micro-benchmark isolates just the
routines that generate and handle WireGuard packets: it re-
peatedly generates a random payload, calls the WireGuard
packet creation routine on that payload, then calls the Wire-
Guard packet processing routine on the output of packet cre-
ation. It omits all state management, routing, network com-
munication, and packetization/stream reconstruction function-
ality; it is thus an artificial worst-case measurement of our
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Figure 20: Performance Comparison of OwlC-compiled
Code Against wireguard-rs for WireGuard Transport.
Effective line delay is zero (see Figure 14). We report the effec-
tive throughput (higher is better) against the packet payload
for each configuration. This micro-benchmark isolates just
the routines for sending and receiving packets.

code, since all of that functionality is required for a working
WireGuard implementation.

Figure 20 shows the results in terms of the effective implied
throughput of the packet-sending and packet-receiving rou-
tines at a range of packet sizes. The default configuration of
OwlC incurs an overhead of about 40% at the largest packet
size. This is due in large part to the faster implementation
of ChaCha20-Poly1305 in the baseline; when using that im-
plementation, OwlC incurs an overhead of about 15%. We
additionally report performance for OwlCunopt, a version of
our WireGuard implementation compiled without our opti-
mizations (including those in §6). Despite using the faster
unverified ChaCha20-Poly1305 implementation, OwlCunopt
incurs a significant overhead of up to 80%, underscoring the
importance of our optimizations. We leave the task of improv-
ing performance with verified cryptography to future work.
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