BABE: Veritying Proofs on Bitcoin Made 1000x Cheaper

Sanjam Garg'?, Dimitris Kolonelos', Mikhail Sergeevitch?, Srivatsan Sridhar*, and David Tse*’

"University of California, Berkeley
*Exponential Science Foundation
’Babylon Labs
‘Byzantine Research
>Stanford University

Abstract

Endowing Bitcoin with the ability to verify succinct proofs has been a longstanding problem with
important applications such as scaling Bitcoin and allowing the Bitcoin asset to be used in other
blockchains trustlessly. It is a challenging problem due to the lack of expressiveness in the Bitcoin
scripting language and the small Bitcoin block space. BitVM2 [LAA™'25] is the state-of-the-art verifi-
cation protocol for Bitcoin used in several mainnets and testnets [Bit25a, Cit25, BOB25a], but it suffers
from very high on-chain Bitcoin transaction fees in the unhappy path (over $14, 000 in a recent exper-
iment [LAA™T25]). Recent research BitVM3 dramatically reduces this on-chain cost by using a garbled
SNARK verifier circuit to shift most of the verification off-chain [Rub24, Lin24], but each garbled cir-
cuit is 42 GiBytes in size, so the off-chain storage and setup costs are huge. This paper introduces
BABE, a new proof verification protocol on Bitcoin, which preserves BitVM3’s savings of on-chain
costs but reduces its off-chain storage and setup costs by three orders-of-magnitude. BABE uses a wit-
ness encryption scheme for linear pairing relations [GKPW24] to verify Groth16 proofs. Since Groth16
verification involves non-linear pairings, this witness encryption scheme is augmented with a secure
two-party computation protocol implemented using a very efficient garbled circuit for scalar multipli-
cation on elliptic curves. The design of this garbled circuit builds on the recent work of Argo MAC
[EL26], a garbling primitive that efficiently computes homomorphic MACs on such curves.

Contents

1

Introduction
1.1 Motivating Example
1.2 Verifying Proofson Bitcoin L
1.21 BitVMand BitVM2
1.2.2 BitVM3 . .
1.3 New Verification Protocol: BABE
1.3.1 Witness Encryption
1.3.2 Witness encryption for linear pairings
1.3.3 Garbled Circuit for Scalar Multiplication
1.4 Other Applications
Preliminaries
2.1 BasicNotation e
2.2 Bilinear Groups e
2.21 Generic Bilinear GroupModel Lo Lo
2.3 Succinct Non-Interactive Arguments of Knowledge (SNARKs)
23.1 TheGroth16 SNARK
2.4 Extractable Witness Encryption L
2.5 Garbling Schemes
2.6 TheBitcoin Ledger

The BiTVM-CORE Primitive
Witness Encryption for Linear Pairing Relation

Garbled Circuit for BN254 Scalar Multiplication

51 OVerview e
5.2 Elliptic Curve Addition and Notation
5.3 Decomposable Randomized Encodings: Definitions and Preliminaries
5.4 Decomposable Randomized Encodings Constructions
5.5 DRE for the Scalar Multiplication
5.6 Completing the Garbled Circuit
BABE Protocol
6.1 Honest Setup Protocol
6.1.1 SetupPhase
6.1.2 ProvingPhase
6.1.3 Transaction Graph
6.2 Verifying Setup Correctness
Security Proof
7.1 Security Proof Assuming Honest Setup
7.1.1 Proof of Honest-Setup u-Robustness
7.1.2 Proof of Honest-Setup Knowledge Soundness

O O U R R s

10
10
10
10
11
12
13
14
15

18

20

23
23
25
28
29
30
32

34
34
34
35
36
39

8 Extensions and Optimizations
8.1 Multiple Verifiers and Provers
8.2 OptimisticPath

9 Evaluation

9.1 HomestSetup
9.2 Cut-and-Choose Setup Verification
9.3 Soldering (zk-SNARK-soldering)
9.4 Verifiable Shamir Secret Sharing

A Honest-Setup BABE Protocol Details

Al Transactions e e e
A1l Notation o
A.1.2 Example: The Assert Transaction

B Protocol for Malicious Security

45
45
45

45
45
46
47
49

56
56
56
56

58

1 Introduction

1.1 Motivating Example

Bob has 1 BTC and would like to use it as collateral to borrow $50K worth of stablecoins for real-world
use. Currently Bob’s only options are to go to a centralized entity such as Tether to directly borrow, or
to a centralized entity like Coinbase which mints Bob a wrapped asset cbBTC that he can use in a smart
contract lending protocol on Ethereum or other chains. However, in both cases the centralized entity
would take custody of Bob’s BTC, violating the core ethos of Bitcoin: trustlessness.! If Bob had 1 ETH,
on the other hand, he would be able to participate directly in a trustless lending protocol like Aave on
Ethereum without going through a centralized entity. Unfortunately, the Bitcoin chain does not support
smart contract protocols such as Aave. This begs the question:

How do we allow the $1.8 trillion worth of BTC to participate trustlessly in smart contracts like Aave on chains
like Ethereum?

Consider what such a protocol would look like:

1. Borrower Bob deposits his BTC using a Bitcoin transaction;

2. Alending position is created on Ethereum with the BTC as collateral and $50K in stablecoin is lent
from a lender Larry to Bob;

3. If Bob returns the loan, then the BTC collateral can be withdrawn by Bob;

4. If Larry liquidates the loan because BTC price has dropped below a threshold, then the BTC collateral
can be withdrawn by Larry.

To achieve step 2 trustlessly, Bob has to prove a certain state of the Bitcoin chain to Ethereum. This
proof can be verified by smart contracts which already exist on Ethereum [Cat25]. To achieve steps 3 and 4
trustlessly, each party has to prove a certain state of the Ethereum chain to Bitcoin so that he can withdraw.
Due to the rudimentary nature of the Bitcoin scripting language, however, even a succinct proof verifier
takes about 900 Mbytes of Bitcoin block space, equivalent to 225 Bitcoin blocks [LAAT25]. Moreover, this
verifier has to be submitted on-chain as a Bitcoin transaction every time a proof needs to be verified, thus
rendering it totally impractical (the transaction fees will be millions of dollars).

Note that the lending example is only one application. The ability to verify proofs is important for any
application in which the withdrawal of the deposited BTC depends on the state of another chain, such as
light-client based Bitcoin bridges to rollups and other chains [LAAT25].

1.2 Verifying Proofs on Bitcoin
1.2.1 BitVM and BitVM2

BitVM [Lin23, AAL™24] initiated a line of work to reduce the on-chain footprint of proof verification using
optimistic methods. It is a two-party protocol between the Prover and the Verifier, with the Verifier helping
Bitcoin verify the Prover’s proof by challenging the Prover if its proof is invalid. This protocol ends if either
the Prover wins, i.e. convinces Bitcoin its proof is correct, or the Verifier wins, i.e. convinces Bitcoin the
Prover’s proof is incorrect. This framework can be applied to our motivating example: when Bob tries to
withdraw, he is the Prover, with Larry being the Verifier. Bob wins if he succeeds in withdrawing, and
Larry wins if he succeeds in stopping Bob from withdrawing. (We formalize the BitVM setting in Sec. 3
and use it to prove security in this paper.)

'In Satoshi Nakamoto’s initial post introducing Bitcoin to the world, he described it as: “It’s completely decentralized, without
relying on central servers or trusted parties, because everything is based on crypto proofs rather than trust” [Nak09]

Conditional disclosure of secret

Garbled msg if invalid w
H Circuit 1 if valid w
Prover

signs proof

Verifier
evaluates
\
Prover wins
Prover claims Timeout
with signed
witness @

ﬂ> Verifier wins

Verifier reveals
secret msg

Figure 1: Verification on Bitcoin using a SNARK verifier garbled circuit. This is a solution to a crypto-
graphic problem called conditional disclosure of secrets [GIKM00]. A Lamport signature o serves both
Bitcoin verification and as input labels to the garbled circuit.

The state-of-the-art protocol in that line of work is BitVM2 [LAA ™ 25]; this protocol follows the frame-
work of naysayer proofs [SGB24] where the Prover posts the intermediate states of the proof verification
computation trace on-chain and the Verifier can challenge a specific state transition by posting the correct
verification trace only for that state transition. Even though this drastically reduces the on-chain costs as
compared to posting the entire verification trace, the on-chain cost is still substantial as the intermediate
states have to be signed by Lamport signatures [Lam79], verifiable on Bitcoin using hashlocks. (Lamport
signatures are very large, requiring 256 bits per bit of each intermediate state.) In a mainnet experiment
on Bitcoin [LAAT25], the on-chain footprint of posting these dispute transactions is over 5.4 Mbytes,
costing over $15, 000 of transaction fees. This high challenge cost necessitates large amounts of capital
locked as a bond to pay for the challenge. Moreover, the Bitcoin transactions involved in the challenge
are non-standard® and require special services for submission to Bitcoin, thus increasing fee rates and
centralization risks.

1.2.2 BitVMs3

To reduce the on-chain costs of BitVM2, [Rub24] suggested using garbled circuits (GC) to shift the proof
verification off-chain. Follow-up works include [Lin24, Che25, Eag25] under the general umbrella of
BitVM3. Garbled circuits, originally invented by Yao [Ya082] for private two-party computation, are used
in BitVM3 for authenticated computation. In the two-party setting, it works as follows (Fig. 1). At setup,
the Prover generates a secret msg and shares a garbled circuit encrypting msg with the Verifier. The gar-
bled circuit implements a SNARK verifier and can be used to decrypt the secret if an invalid proof is input
into the garbled circuit. The Prover commits to the hashed value H(msg) to create a hash lock such that
the Verifier can open the hash lock and stop the Prover’s claim if the Verifier can learn msg. The Verifier
stores the garbled circuit. At the proving phase, the Prover posts a Lamport signed proof on Bitcoin, and
the Verifier feeds the signed proof as input into the garbled circuit, with the Lamport signatures as input
labels.® So if the proof is invalid, the Verifier will be able to stop the Prover by decrypting the scret and
use it to open the hashlock. Otherwise, after a timeout, the Prover will win. This is basically a hash-time
lock contract (HTLC) [Wik21] used in many Bitcoin protocols including atomic swaps [Wik20, Her18],
Lightning [PD16], and Bitcoin staking [DLT"24]. HTLC had earlier been generalized to verification of

- i vali itcoi us ru u i i inclusion i
*Non-standard transactions are valid as per Bitcoin consensus rules but most miners do not consider them for inclusion in the
blocks they mine because, for example, the transactions are too large.

*In an uncanny coincidence, Yao’s input labels correspond exactly to a Lamport signature and vice-versa.

$14,211 353.7s 352.1s A0.5 GiB
104 4
10° 4 10° 4 5 104 4
a 2 2,022x ;. ¥ 2,783x | g 1,868x |
2 103 4 250% | < 1044 < 104 4 © 103 4
ot o o o
@ £ g g
3 = = 1034 2
107] 10° 5 10 B 102
$56.90
$37.65 174.9 ms 126.5 ms 22.2 MiB
| e 0L NES — I E——
BitVM2 BitVM3 BABE BitVM3 BABE BitvM3 BABE BitVM3 BABE
(a) On-chain Cost (b) Setup Time (c) Decryption Time (d) Storage Requirements

CPU: AMD Ryzen 7 7840U; timing: single-threaded. BTC price: $95, 500 (Jan 3, 2026). Fee rate: 2.2sats/vB for BitVM3, BABE,

11sats/vB for BitVM2 (premium rate for non-standard transactions). Details: Sec. 9.

Figure 2: On-chain and off-chain costs of BitVM2 [LAA ™ 25], BitVM3 (Boolean garbled circuit for Groth16
verification) [Bit25b], and BABE. On-chain costs are derived from experiments on Bitcoin mainnet. These
metrics are in the honest-setup setting where the Prover and Verifier are assumed to be honest during setup
(but can be malicious afterwards). Sec. 9 evaluates multiple methods for achieving malicious security.

signatures by discreet log contracts [Dry17], and one can view BitVM3 as a final generalization to verifi-
cation of arbitrary computations using the SNARK verifier garbled circuit.

The on-chain cost of BitVM3 compared to BitVM2 is reduced from $14, 000 to less than $40 because
only the signed proof has to be put on-chain instead of the signed intermediate states, and a hashlock
script of negligible size replaces the verification traces. The challenge for BitVM3 is the significant off-
chain costs. A Boolean garbled circuit for the Groth16 verifier [Gro16] was implemented [Bit25b], and
even with free-XOR [KS08] and privacy-free half-gate [ZRE15] optimizations, the garbled circuit size is
still 42 Gibytes (total of 10 B gates and 3 B non-free gates). Garbling time per circuit is 6 minutes on
a single core. Moreover, proving the correctness of the garbled circuit with a zero-knowledge proof is
infeasible and with a standard cut-and-choose method [LP07] requires garbling many instances of the
circuits, translating to a total setup time of hours.

The large size of the garbled circuit for the Groth16 verifier primarily stems from the expensive pairing
operations on the BN254 curve [BN06]. By replacing the Groth16 by a designated-verifier SNARK and by
replacing the BN254 curve with a curve on the binary field, [Eag25] shows that the garbled circuit size
can be reduced to 12 Mbytes. Unfortunately, the security of binary curves is not widely accepted by the
community and so this approach is not currently pursued in practice. Arithmetic circuits were proposed
recently [FBFL25] for garbling the Groth16 verifier, but the size is still expected to be 100 million ciphertexts
(a few GBs).

1.3 New Verification Protocol: BABE

In this paper, we introduce a new verification protocol, BABE, which verifies Groth16 proofs (on the stan-
dard BN254 curve) on Bitcoin. BABE improves the off-chain costs of the existing Groth16 verifier garbled
circuit [Bit25b] in BitVM3 by a factor of more than 1000 while preserving its low on-chain costs relative
to BitVM2 (Fig. 2).

Instead of using a garbled circuit for the Groth16 verifier, our approach uses witness encryption [GGSW13]
as a starting point. In simple terms, a witness encryption (WE) scheme for a relation R allows one to en-
crypt a secret under an NP statement x € R such that anyone that knows the corresponding witness w
can decrypt.*

*Technically, this describes a stronger notion of witness encryption called “extractable witness encryption” [GKP'13]. For

Witness Encryption

msg if valid w
R > L ifinvalid w
Prover
N
Verifier wins
Prover claims Timeout

with witness w

—a—> Prover wins

Prover reveals
secret msg

Figure 3: Verification on Bitcoin using witness encryption (if it were practical). Note that unlike under the
conditional secret disclosure formulation, the secret is leaked when the proof is valid.

1.3.1 Witness Encryption

Let R be the relation for Groth16 verification, i.e. x is the statement (public inputs), w is the Groth16
proof (witness of this relation), and (x, w) € R is true iff the proof w is valid for the statement x. If we
have a solution for WE on R, then we can use that to solve the Prover-Verifier problem above (Fig. 3).

The Verifier plays the role of the WE-encryptor. At setup, it encrypts a secret msg using the statement
x to generate ciphertext ct. It creates a hash lock by committing to the hashed value H(msg) of the secret
msg. The Prover plays the role of the WE-decryptor and stores the ciphertext ct. At the proving phase, the
Prover obtains the proof w of the application-specific relation, and runs Dec(ct, w) to decrypt the secret
msg. This is used to open the hash lock to win.

1.3.2 Witness encryption for linear pairings

Even before the advent of BitVM, witness encryption had already been proposed as a technique to perform
trustless verification on Bitcoin (in the context of building Bitcoin bridges) [Hio22]. Unfortunately, witness
encryption for all relations is a notoriously challenging cryptographic primitive, and to date it lacks an
efficient realization for general relations.

Specifically, the Groth16 relation R involves verifying an equation containing pairing terms:

e(my,) + e(ms, 1) = x2 (1)

Here, w = (71, w2, m3) is the proof, x = (z1,x2) is the statement. The issue is the pairing between the
two witness elements (e(71, 72)): There is no known efficient construction of WE for this type of relation.

However, we do know [BC16, GKPW24] an efficient WE scheme for relations that are pairing equations
linear in the witness w. Consider for example, the linear pairing relation e(wy, x1) +e(z2, w2) = x3. Then
we can obtain a WE scheme as follows:’

« Relation: Rijpear = {(x = (21,9, 23); W = (w1, w3)) : e(wy, z1) + e(x2, ws) = $3}
« Encryption (for x): ct = (rx1,rxe, rrs + msg)

« Decryption (using w): msg = ct3 — e(cty, wa) — e(wy, cty)

the sake of this overview we omit this delicate difference; we elaborate in the technical sections.
Formally, for the security proof we need the “masking” term of the ciphertext to be passed through a random oracle, i.e.
RO(rx3). For simplicity, we omit this technicality from this overview and refer to Sec. 4.

2. Send ciphertexts cfse'up, ctye

Setup Phase

Bifcoin
1. Encrypt secret msg
Generate garbled circuit
a 3. sign & post 3. sign & post a
Prover P Verifier V
Deposit BTC
Proving Phase 1. Generate 2. Compute input
proof (1, m,, ;) BiTCO i n labels L(m,)
[4 i L [4
Prover P L(m) L(m) Verifier V
3. Evaluate GCand ———»
decrypt secret msg msg

Withdraw BTC

Figure 4: BABE: Verification of arbitrary computation on Bitcoin using a combination of linear witness
encryption and an interactive protocol that allows the Prover to compute r7 without knowing r.

where r is an additional private random large field element generated by the WE-encryptor. This simple
yet powerful observation has been leveraged to build efficient witness encryption schemes for specific rela-
tions across a wide range of cryptographic settings, both implicitly (e.g. [BL20, FKdP23, CFK24, FHAS24])
and explicitly following [GKPW24] (e.g. [CGPW25, AFP25, BFOQ25, MLLP25]), and has been recently
formalized in [GHK"25]. To adapt this WE scheme for Groth16 verification, we treat one of the proof
elements, 71, as a public input x(of the WE relation so that the Groth16 relation (Eq. (1)) turns into:

e(xg, m2) + e(ms, x1) = 2, (2)

a linear pairing relation in the witness (72, 73) and public inputs (xg, 1, x2). Following the aforemen-
tioned framework for linear pairing equations, the ciphertext is given by:

ct = (rxzo, rey, rry + msg). (3)

But in reality, ¢ := 7 is not available during setup, which means the ciphertext (Eq. (3)) cannot be
entirely computed during setup; the computation must be deferred to the proving phase. In particular, the
Prover must be able to compute 77} from 7} in the proving phase without knowing the private randomness
r of the Verifier.

To achieve this, the Prover and the Verifier will set up a maliciously secure two-party computation
protocol (Fig. 4). This two-party computation takes as the Verifier’s input the private randomness r at
setup and as the Prover’s input the proof element 7 in the proving phase, and either the Prover learns
rmr; without learning 7, or the protocol aborts and the Prover wins.

Concretely, during setup, the Verifier creates a garbled circuit ctgc that hard codes the randomness r
and shares it with the Prover. This garbled circuit computes 7 given input labels for 7 with r private
from the Prover. During the proving phase, when the Prover has the Groth16 proof, the Prover reveals
71 on-chain and obtains the input label L(7;) from the Verifier. If the Verifier responds, then the Prover
can compute r7; by inputting the labels into the garbled circuit. If the Verifier does not respond within a
timeout or does not send the correct labels for the Prover’s 7, the protocol halts and the Prover wins.

Once the Prover has learned rmq, together with ctgesyp = (721,722 + msg) which it obtained from
the Verifier at setup, it has the entire WE ciphertext (Eq. (3)). Now the Prover can use the rest of the proof
(79, 3) to decrypt the secret msg as in linear witness encryption and wins, provided that the proof is
valid.

1.3.3 Garbled Circuit for Scalar Multiplication

In BitVM3, the garbled circuit (GC) allows authentic evaluation of a Groth16 verifier to reveal a secret. In
BABE, the garbled circuit allows evaluation of a scalar multiplication 7; with privacy on r. So the garbled
circuits play totally different roles in the two protocols. But more importantly, computing a single scalar
multiplication is much simpler than computing a Groth16 verifier, which involves multiple pairings. More
specifically, our goal is to design an efficient garbled circuit that

« takes as input labels a Lamport signature on m; = (z,y) €]FIQ) (Bitcoin friendly).

« Outputs 7.

A natural first approach is to leverage Yao’s garbling [Yao82] for the scalar multiplication r7r;. While this
approach offers a substantial ~ 5x improvement over the Groth16 verifier garbled circuit (BitVM3), the
resulting solution would still be on the order of Gbytes. Essentially, the cost comes from the fact that
one has to encode large (F,, where log(p) ~ 254) field operations into binary circuits,’ which introduces
unnecessary overhead.

In this direction, a recent innovation [EL26] advocates an approach to keep most of the operations of
the garbled circuit at the level of the relevant elliptic curve groups. Specifically, the paper introduces a new
garbling primitive that computes vector homomorphic MACs (HMACs) on the BN254 elliptic curve. Such
homomorphic MACs allow free additions of BN254 group elements, analogous to free-XORs for bits. The
main result is an efficient garbling method to compute the components of the vector HMAC of a group
element G, each of which effectively involves adding a fixed group element to G. The construction directly
works over IF,, and builds on the Ishai-Wee partial garbling for branching programs [IW14], which directly
treats IF-elements without decomposing them to binary. Their main observation is that for BN254, a
group addition to a fixed group element can be expressed as a low-degree polynomial f, such that m; +
¢ = fg(x,y) where x,y are the x and y coordinates of 7, (and thus a branching program) and garbled
with [IW14]. Notably, the Ishai-Wee garbled circuit is information-theoretic and free, meaning that the
garbled circuit has zero size, and the only cost comes from the encoded input (i.e. the labels). Crucially,
the Ishai-Wee labels are not Bitcoin-friendly (i.e. Lamport signatures) as is the case for Yao. Therefore,
the proposal suggests a pre-processing garbled circuit to compute the Ishai-Wee labels from the Lamport
signature on 7y.

Building on this work, we develop a highly efficient garbling scheme for BN254 scalar multiplica-
tions. First, using the technique of decomposable randomized encodings [IK00, IK02, AIK04, Ish13] for
linear operations, we decompose the BN254 scalar multiplication problem into the problem of comput-
ing a 254-dimensional vector HMAC. Second, to garble each component, we again rely on DRE for linear
operations rather than the arguably more complex branching programs technique of Ishai-Wee used in
[EL26]. Our core observation is that we can ‘linearize’ the BN254 group addition function fy(z,y) to
J?qg(x, y, 2%, y%, zy), by simply giving low-degree monomials as inputs. Now our f; is a linear function.
Then the operation boils down to an inner-product, amenable to the [Ish13] DRE. The computation of the
low-degree monomials is now deferred to the Yao garbled circuit, which turns out to be of low cost.

Comparing to [EL26], our technique is arguably simpler, allowing for a full security proof derived
directly from the well-established decomposable randomized encodings for linear relations [FKN94, Ish13]
(and a composition theorem within). Our final GC construction (after some optimizations) is about 22 MiB.

1.4 Other Applications

In addition to Bitcoin, several other blockchains (e.g. Cardano) do not natively support verification of
general-purpose proofs. In our system BABE, the bulk of the protocol runs off-chain, and is therefore

SRecall that Yao’s garbling works on binary circuits.

largely blockchain-agnostic. The on-chain component requires only very basic functionality including
hashlocks, timelocks, and signature verification, which most blockchains already support. As a result,
BABE or a system built on top of it, could be deployed across a broad class of chains, unlocking a wide
range of applications beyond Bitcoin.

From a separate perspective, this work speaks to a broader usability bottleneck in cryptography: non-
black-box techniques are often considered impractical because they require “opening up” cryptographic
algorithms and expressing them as circuits, which can incur substantial overhead. A canonical example
comes from zkSNARKs, where proving statements about cryptographic computations requires unrolling
those computations into circuits, something that was historically seen as prohibitive. Over time, however,
modern SNARK constructions and implementations have shown that these efficiency barriers can be over-
come and that doing so can have far-reaching practical impact [BCTV14, OWWB20, BCMS20, BMM 21,
GMN22, KST22, CFH122, GGW24, OKMZ25, WOS*25, GGKS25].

Secure computation (e.g., via garbled circuits) faces a closely related challenge today. Despite sig-
nificant progress, general-purpose garbling still performs poorly on many cryptographic workloads and
other non-black-box computations, which remain expensive in practice. In this work, we focus on a highly
specialized cryptographic task of real-world concern and demonstrate practical performance. Beyond the
immediate application, this suggests a broader takeaway: with the right specialization, non-black-box uses
of cryptography can be made practical for secure computation tasks, potentially enabling new deployments
in a variety of settings.

2 Preliminaries

2.1 Basic Notation

We use A for the security parameter and negl(\) for a negligible function, i.e., a function that is less
than 1/f(\) for any polynomial f. We also define x to be a statistical security parameter. The security
parameters are implicitly taken as input to every algorithm and, for brevity, we omit explicitly writing it.
For events A and B, we let Pr[A] ~, Pr[B] denote that | Pr[A] —Pr[B]| < e. Row vectors will be written in
small bold font, e.g. © = (21, ..., %,) and matrices in capital bold, e.g. A = (a;;); ;. We use the operator
"X for the matrix multiplication and the operator ® for the tensor product. < X is used to imply that
x is being uniformly sampled from a finite set X'. “PPT” stands for Probabilistic Polynomial-Time. Every
algorithm (including the adversaries and simulators) is stateful.

2.2 Bilinear Groups

A Bilinear Group BG, generated as (Fy, G1, G2, G, g1, 92,€) BG(11), is specified by a field F, of
prime order ¢ = 29, three groups Gy, Ga, Gy (the first two we call “source groups” and the third “tar-
get group”), a bilinear map e : G; X G2 — Gr that we call “pairing” and random generators g1, g2 for
G1, Gy respectively. We use the implicit notation, i.e., [z]s := zgs for s € {1,2,T}. Also, we denote the
group operation additively, [z]s + [y]s = [x + y]s, for s € {1,2,T}. The pairing has the property that
e([z]1, [y]2) = zye([1]1, [1]2). In our constructions, we will omit writing explicitly the Bilinear Group in
the algorithms’ inputs, even though it is implicitly taken as input.

2.2.1 Generic Bilinear Group Model

The Generic Group Model (GGM) [Sho97, Mau05] is an idealized model, that formalizes a ‘generic’ ad-
versary. That is, the adversary does not have access to the concrete representation of the group elements
but can only use generic group operations (addition, inverse element, scalar multiplication). This model
captures the ‘algebraic’ attacks that an adversary can perform.

10

In this work, we use the Maurer’s GGM [Mau05], which is extended to Bilinear Groups by [BBG05].
There, the adversary makes oracle queries for each generic group operation they wish to perform and
receives a handle for the resulting group element, instead of the actual element itself. All group elements
resulting from the adversary’s queries are recorded—together with their handles—in three lists Ly, Ly, Lt
for G1, Gy and Gy respectively.

A standard GGM technique in security proofs is the ‘symbolic’ equivalence. We call ‘symbolic’ exper-
iment (and symbolic group representation, respectively) the model where polynomials instead of group
elements are stored and polynomial operations instead of group operations are performed. The formal
variables of the polynomials are the initial elements that the adversary received. For example, a generic
adversary to the discrete logarithm problem is initially receiving [1], [z]; thus, the formal variables are
1, X, and then can perform any generic group operation which is going to be symbolically performed
with the corresponding polynomials in Z,[1, X|.

Master Theorem. We recall the ‘Master Theorem’ [BBG05, Boy08]. The Master Theorem is used to
determine the probability loss between the symbolic group representation and the actual generic group
representation, where the formal variables are instantiated.

Theorem 1 (Master theorem [BBGO05, Boy08]). Let Ly € Z4[X1,..., X", Ly € Z4[Xq,...,Xn]",
Ly € Z,[X1,...,Xp]"" be three lists of n-variate polynomials over Z, of maximum degree dy,, ,dr.,, dr,,,
respectively. Let f € Z4[X1, ..., X,] be an n-variate polynomial of degree d¢ and denote d = max{dr, +
dry,dry,ds}, v = v + v + vp. If f isindependent of (L1, Lo, L), then for any generic adversary A
that makes at most q group oracle queries:

hi[L hi[L
rlA b, 1[1(:1:)]7 — 1] —PrlA4 b, 1[1(33)]7 —1
ha[L ()], hr[f ()] ha[La(x)], hr[r]
where hy, ha, hp denote the corresponding handles, and the probabilities are taken over the choices of x <%
(Zy)" andr <5 Z,.

(q+v+2)2d
2p

P <

I

Here f-dependence on L = (L1, Lo, L7) means that the polynomial f is in the span of the polyno-
mials in the list C(L) := {L; ® Lo} U Ly (intuitively {L; ® Lo} are all the elements in Gy that can be
computed using pairings). Naturally, the opposite case is called f-independence of L.

2.3 Succinct Non-Interactive Arguments of Knowledge (SNARKS)

We recall the definition of SNARKSs. In this work we do not focus on the zero-knowledge property, therefore
we omit it.

Definition 1 (SNARKSs). A SNARK for a family of relations Ram is a tuple of three algorithms (Gen, Prove, Verify):
« Gen(R) — (crs): On input a relation R € Ry generates a common reference string crs.

« Prove(crs, @, w) — m: On input the common reference string crs, a statement x and the corresponding
witness w computes a proof .

« Verify(crs,x,m) — 0/1: On input the common reference string crs, a statement x and a proof 7 the
verification algorithm outputs either 1 for accept or O for reject.

It is further required that the following properties hold.

11

(Perfect) Correctness. For every relation R € Rfanm, and every statement-witness pair (x,w) € R:

crs < Gen(R)

" 1« Prove(crs,m,w) | 1

Pr | Verify(crs,x,m) =1
Knowledge Soundness. For every PPT adversarial Prover P*, there exists a PPT extractor £ such that for
every benign auxiliary input aux € {0, 1}P°YXN) | and every relation R € Ream:

crs « Gen(R)
(z,7*) <= P*(crs,aux) | = negl(\)
w + E(crs, aux)

Verify(crs,x,m) =1

Pri @ w) ¢ R

Succinctness. There exists a universal polynomial p(-) such that, for every security parameter A\ € IN, every
relation R € Rfam, and every statement-witness pair (x,w):

« An honestly generated proof has size p(A + log |w]).

« The Verifier algorithm Verify(crs, , 7) runs in time p(\ + |z| + log |w]).

2.3.1 The Groth16 SNARK

We recall the Groth16 proof system [Gro16], excluding the zero-knowledge property.

Rank-1 constraint satisfiability (R1CS). Groth16 works for relations encoded with the rank-1 con-
straint satisfiability (R1CS). Formally, an R1CS relation is of the form:

’R:{(m;w):(szT)o(szT):szT/\z:(ar:H'w)/\xl:l}

where the relation is characterized by the fixed matrices A, B,C' € Z;*™, the statement = € Zf; is an
¢-sized vector,” the witness w € ZZ“E is an (m — ¢)-sized vector, and z € Z;” is called the ‘extended
witness’, consisting of the witness and the statement. Here "o’ is the Hadamard product. R1CS generalizes
arithmetic circuits.

The Groth16 construction. For the proof system each column of the R1CS matrices A, B, C'is interpo-
lated into polynomials as: a;(X) = 37 a; ;1 L;(X), bi(X) = >0 bijLj(X), c;(X) = 377 ¢i i Li(X)
for each ¢ € [m], where L;(x) the corresponding Lagrange polynomial. Then the relation boils down to
the following polynomial relation:

(Z ziai(X)> (Z zibi(X)> =) zici(X) = ¢(X)V(X)

i=1 =1 i=1

where V(X) =[]/, (X — ") is the vanishing polynomial. This polynomial relation is essentially equiv-
alent to the R1CS satisfiability (we refer to [GGPR13, PHGR13, Gro16] for more details).
The actual Groth16 SNARK is described below.

"In the R1CS encoding, the first entry of x is equal to 1 to rule out the degenerate case of the z = 0 solution.

12

- Gen(R) — crs: Samples uniformly 7, o, 8, 7, § < Z, and outputs:
crs = {{[a]lv [Bl2, V]2, [0]1, [5]%{ ™14 17, }:L:ol {[} }
{[al(o [bi(T)]Q}m 7 { [ﬁaz(7) + abi(7) + (T]1}
|

=1
m
i=0+1

{[Bai(r)—i-ab + ¢i(T }
1
« Prove(crs, x, w,) — m: Sets z = (x||w). Computes the quotient polynomial ¢(X) = > 7"~ 2 i Xt =

o

szilmi(x))(:n‘}(’i}l;Z(X))_ anZICz(X)J and then outputs 7 = (71, 7y, 73), where:
= [a]y + f}zi[ai(T)h (4)
Ty = [mfrizi[bi(ﬂ]z (5)
e i Zi_[ﬁai(r) - azg(f) - ci(f)} . ”Z‘fq [V(gw‘] ©
i=0+1 L =0 1

« Verify(crs,x,m) — 0/1: Outputs 1 iff:

¢ i\ T a0\ T Ci\T
e(7r1,7r2):e([a]1,[5]2)—|—6<in [Baz()+ l;()+ ci(T)

=1

]1 7 m) Fe(ms, [0) @)

Theorem 2 (Groth16 Security [Gro16]). The above protocol is a SNARK, satisfying Perfect Correctness and
Knowledge Soundness in the Generic Bilinear Group Model.
2.4 Extractable Witness Encryption

We recall the definition of Extractable Witness Encryption [GKP™13]. Informally, an extractable witness
encryption scheme for a relation R allows one to encrypt a message under an NP statement x € R such
that anyone can decrypt if they know the corresponding witness w, such that (x, w) € R.2

Definition 2. An Extractable Witness Encryption (WE) scheme for a relation R consists of three algorithms
WE = (Gen, Enc, Dec) such that:

« Gen(R) — crs: Takes as input the relation and outputs a common reference string crs.

« Enc(crs, x, msg) — ct: Takes as input the common reference string crs, a statement x and a message
msg and outputs a ciphertext ct.

« Dec(crs, ct,w) — msg: Takes as input the common reference string, a ciphertext ct and a witness wit
and outputs a message msg.

Furthermore it should satisfy the following properties.

%In this paper, we denote the statement and witness used in a SNARK as &, w, and those used in witness encryption as x, w.

13

Correctness. For every statement-witness pair (x,w) € R and message msg:

crs « Gen(R)

Pr | Dec(crs,ct,w) = msg ¢t « Enc(crs, x, msg)

=1 (8)

Security. An Extractable Witness Encryption for a relation R is secure if for every PPT adversary A, there
exists a PPT Extractor € such that for all benign auxiliary input aux € {0, 1PV if

crs < Gen(R)
(x, msgg, msg;) < A(crs) 1
Pr|b=t : bes {01} | =5 +e (9)
ctp < Enc(crs, x, msgy)
b+ A(cty, aux)

then
Pr[(x,w) € R : w «+ &£(crs, x, aux)] > € — negl(}) (10)

Remark 1 (Extractable WE vs (Plain) WE). Witness Encryption was originally introduced by Garg et al. [GGSW13]
with a weaker security property that, roughly, the scheme is secure if x ¢ R (i.e. there exists no w such that
(x,w) € R). In this work, we make use of the stronger version of extractable witness encryption, that can be
secure even if x € R (but the adversary doesn’t know the witness). Throughout the paper, we, nevertheless,
sometimes abuse the terminology and call it ‘WE’, omitting the ‘extractable’.

2.5 Garbling Schemes

Here we recall the definition of garbling schemes for binary circuits introduced by Yao in 1982 [Yao82] and
further formalized in [LP09, BHR12b].

Definition 3. A garbling scheme for a family of binary circuits Cra is a tuple of PPT algorithms GC =
(Garble, Encode, Eval) such that:

« Garble(C) — (ctgc, ek): Takes as input a circuit C : {0,1}" — {0,1}* € Cram and outputs a garbled
circuit description ctgc and an encoding key ek.

« Encode(ek,) — L,: Takes as input an encoding key ek and a circuit input v € {0, 1}" and outputs
the encoded input L. We also refer to L,, as the ‘input labels’ (or sometimes just ‘labels’).

« Eval(ctgc, Lz): On input the garbled circuit ctge and the labels of the input L,, outputs the circuit
outputy € {0, 1}*

Furthermore, it should satisfy the following properties.

Correctness. We require that for any binary circuit C' € Cgam and any input z € {0, 1}/nP(C)],

(ctgc,ek) < Garble(1*, C)

Pr C(z) = Bval(ctec, Lz) L, + Encode(ek, z)

=1

14

Adaptive Privacy. We require that there exists a PPT simulator Sim = (Simy, Simy) such that for any
PPT adversary A, for every circuit C € Cgam and for every auxiliary information aux € {0, 1}Po();

(ctge, ek) < Garble(C)
Pr | A(ctgc, Ly,aux) =1 : x + A(ctge, aux)
L, < Encode(ek, =)

(ctge, st) < Simy (topo(C))
— Pr | A(ctge, Ly,aux) =1 x < A(ctgc, aux) < negl())
L, <+ Simy(st,z,C(z))

The garbling scheme is called privacy-free if it satisfies only correctness.

In Yao’s garbling scheme the encoding key is {ij’i}?zl p—o.1 and thelabels of vare L, = (L7, ..., Lin,).
Notice that fortuitously the algorithm coincide with a Lémp’ort signature [Lam79] on z. Yao GC can be
simply proven adaptively secure in the random oracle model [BHR12a]. We will make use of the well-
established free-XOR [KS08] and half-gate [ZRE15] optimizations.

2.6 The Bitcoin Ledger

Ledger Model. We model Bitcoin as a distributed ledger functionality Fg1¢ maintaining an append-
only sequence of confirmed transactions (a ledger). We assume a global clock which counts time in rounds
r € N and r < poly(A). Any party can submit a transaction tx to the ledger at any round r by calling
Fe1c.WRITE(tx). For a party P and round r € N, the notation £}, denotes party P’s local view of the
Bitcoin ledger at round 7.

The height of aledger £ is denoted h(L). A ledger of height / is a sequence of blocks £[0], . . ., L[h—1].
and L[: h] denotes the sequence of all blocks in £ less than height h. £||B denotes the ledger formed by
appending the block B to the ledger £. Each block L[i] is a sequence of transactions. By flattening the
blocks, the ledger itself can be viewed as a sequence of transactions. We denote by £; < L, that £, is a
prefix of £,.

We assume the Bitcoin ledger satisfies the two fundamental properties safety and liveness. Infor-
mally, safety ensures that the ledgers of honest parties are consistent with each other, and liveness ensures
that new valid transactions are eventually included in the ledgers of honest parties. Safety is defined as
in [GKL15].

Definition 4 (Ledger Safety). A ledger functionality Fgtc is safe if with probability 1 — negl(\): (i) for any
honest party P and rounds ri < ro, L5 = L7 (self-consistency); and (ii) for any honest parties Py, Py and
any roundr, L'}";l < E’I"DQ or E’ISQ =< ﬁ};l (view-consistency)

To precisely define liveness, we first define the validity of a Bitcoin transaction, beginning with a model
for Bitcoin transactions. We discuss only the features of Bitcoin transactions that are relevant to BABE.

UTXO Model and Taproot Scripts. The ledger’s state is represented as a set of unspent transaction
outputs (UTXOs). Each UTXO is a pair out = (a, lockScript) where a € R is the amount of coins (in
BTC) in that UTXO, and lockScript is a program (the locking script) that determines under which conditions
the UTXO can be spent.

In BABE, we widely use Taproot Trees [WNT20], or Taptrees, which make a UTXO spendable by
satisfying one among multiple locking scripts. We will represent the locking script of such a UTXO as
lockScript = (leafy, ..., leafy_1).

15

Transactions. A transaction is a triple tx = (inputs, tx_witnesses, outputs) where:

« inputs = [iny, ..., in,], where each input references an output of a previous transaction, indexed as
in = (PrevTx,outlndex, leaf) where PrevTx is the previous transaction, outIndex is the index of the
output in the previous transaction, and leaf is the leaf of the Taproot tree to be satisfied.

« outputs = [outy, ... ,out,,| where each output is a pair (a, lockScript) as above;

« tx_witnesses = [wy, ..., w,], where w; is a transaction witness (e.g., signature, data, etc.) intended
to satisfy the corresponding input’s leaf script.

The pair tx = (inputs, outputs) is called the transaction skeleton.
Cryptographic Primitives. We assume the existence of the following cryptographic primitives that are
used by the ledger functionality:

« Signature Scheme: Sig gy with algorithms Sig7.Gen(11) — (sk, pk), Sigze-Sign(sk, tx) — o,
and Sigprc.Verify(pk, tx, o) — 0/1 which is EUF-CMA secure.

« Hash Function: Hashprc(m) — h modeled as a random oracle.

« Lamport One-Time Signature Scheme [Lam79]: LampSig with algorithms LampSig.Gen(1*,¢) —
(Isk, Ipk), LampSig.Sign(Isk, m) — p, and LampSig.Verify(Ipk,m, 1) — 0/1 where ¢ is the num-
ber of bits in the message m. A Lamport signature scheme constructed using Hashppc can be
efficiently verified in Bitcoin script.

0 0
Isk := (22 igj) s ({0,1})\>2X€ (11)
ok (HashBTc(Lg) HashBTc(Lg_1)> (12
HaShBTc(L(l)) e HaShBTc(L%_l)
W= (Lgno . L;nf{l) (13)

LampSig.Verify(lpk,m,p) =1 <= Vi€ {0,...,¢ —1},Hashprc(pi) = Ipk;™ (14)

Locking Scripts. The locking scripts of Bitcoin that are used by BABE are described below:

« Signature Check: CheckSig(pk) — Requires w to contain a digital signature o such that Sig . Verify(pk, tx, o) =
1.

« Relative Timelock: RelTimelock(7) — Requires that at least 7 blocks have elapsed since the out-
put referenced by the input was created. That is, if a transaction with an input of the form in =
(PrevTx, outIndex, (RelTimelock(7))) is included in a block at height h, then PrevTx must have
been included in a block at height at most h — 7.

« Hash Lock: HashLock(h) — Requires that the transaction witness contains a hash pre-image of h,
i.e. w such that Hashprco(w) = h.

« Logical Operations: The above scripts can be combined using logical operator A (AND) and V (OR)
to form more complex locking conditions.

Using the above scripts and logical operator A (AND) and V (OR), we can define more complex locking
scripts, for example:

16

« Lamport Signature: CheckLampSig(Ipk) — Requires that the transaction witness contains a Lamport
signature for the public key Ipk on some message. In BABE, we will use this script to ensure that the
Prover, while posting this transaction, makes a binding commitment to some proof.

)4
CheckLampSig(Ipk) := /\ HashLock (Ipk9) v HashLock(kal)) (15)

« Check Lamport Signatures from Multiple Parties on Same Message: CheckLampSigsMatch(Ipk 4, Ipk)
— Requires that the transaction witness contains a Lamport signature for each public key Ipk 4, Ipk,
both on the same message. In BABE, we will use this script to ensure that the Verifier (who holds only
Isk 5) commits to the same proof that the Prover (who holds Isk 4) committed to. This is guaranteed
because the Verifier, who does not know Isk 4, cannot create a valid Lamport signature under Isk 4 for
any message other than the one committed to by the Prover. The Prover can then use the Verifier’s
commitment to evaluate the garbled circuit.

>N

CheckLampSigsMatch(Ipk 4, Ipk 5, msg) [(HashLock((Ipk 4)?) A HashLock((Ipk)Y))

=1
v (HashLock((Ipk 1)) A HashLock((Ipkj)!))] (16)

Definition 5 (Transaction Validity). A transactiontx = (inputs, tx_witnesses, outputs) is valid with respect
to a ledger L, denoted Valid ¢ (tx), if:

1. All Inputs Unspent: For each in; = (PrevTx, outlndex, leaf) in inputs, the transaction PrevTx exists
inL.

2. All Locking Scripts Satisfied: Each input’s specified leaf script is one of the leaves of the taptree for that
input. That is, for each in; = (PrevTx, outlndex, leaf), leaf € (leafy,...,leafp_1) =
PrevTx.outputsoutindex].lockScript. Moreover, the transaction witness tx_witnesses|i| must satisfy
the script leaf.

3. Value Preservation: The total amount of coins in the outputs is less than or equal to the total amount
of coins in the inputs.

m n
Z outputs[j].a < Z in;.PrevTx.outputs[in;.outIndex|.a (17)
j=1 i=1

A ledger L is valid, denoted Valid(L), if for all transactions tx in L, Validz[.4,q (tx) = 1 (L[: tx] is the ledger
containing all transactions in L', before tx).

Definition 6 (Ledger Validity). If a transaction tx appears in the ledger view L, of any party P at any
round r, then tx is valid with respect to the state L', [: tx] (the ledger containing all transactions in L', before
tx).

Finally, to define liveness, we note that only valid transactions may be included in the ledger. How-
ever, the adversary may delay the inclusion of a valid transaction. The adversary may also include his own
transactions in the ledger which may cause the honest party’s transaction to become invalid thereafter,
e.g. the adversary’s transaction may use the same input as the honest party’s transaction. Thus, liveness is
guaranteed when the adversary is (computationally) unable to exclude a transaction for too many blocks.

17

To make this precise, we extend the definition of unambiguous transactions [GKL15] to unstoppable trans-
actions. Informally, a transaction is unstoppable if no matter where in the next w blocks the adversary
includes the honest party’s transaction, this transaction will remain valid. For example, a transaction that
requires the honest party’s signature will be unstoppable since the adversary cannot forge the honest
party’s signature. In general, the adversary may have access to some state st, which may include certain
signatures, ciphertexts, etc. shared by the honest party.

Definition 7 (u-Unstoppable Transactions). A transaction tx is u-unstoppable with respect to a ledger £
and adversarial state st, if for all PPT adversaries A:

Bi,...,By %.A(/J,st)

Pr |Valid(L||Bi]|...||By) =1 : Yie{l,.. u}:txe By

> 1 —negl(\) (18)

Definition 8 (Ledger Liveness). A ledger functionality Fgtc is u-live (u € IN) if for all adversarial states
st, with probability 1 — negl(\), for any party P calling Fg1c.WRITE(tx) at any round r such that tx is
u-unstoppable with respect to LY, and st, for all honest parties H and rounds r’ with h(L};) > h(L}) + u,
tx € Lh[: h(Lh) + ul.

While the above definition of liveness guarantees inclusion of a transaction within a certain number
of blocks, we use the chain growth property [GKL15] to guarantee that the height of every party’s ledger
grows.

Theorem 3 (7-Chain Growth). Forall's > X, for all honest parties P, Pr [V : h(L*) < h(L%) + 5] <
negl(\).

3 The BirTVM-cORE Primitive

We define the BITVM-CORE primitive (c.f. BiTVM2-core [LAAT25]).” A BITVM-CORE protocol is an inter-
active protocol run between a Prover P and a Verifier V' interacting with the Bitcoin ledger functionality
FeTc. The protocol consists of two phases: a setup phase and a proving phase. In the setup phase, the
Prover and Verifier interact off-chain to agree on the statement « to be proven and a set of Bitcoin trans-
actions 7. A subset of these transactions S are the withdraw transactions because they pay Bitcoin to the
Prover and can be posted by the Prover on Bitcoin if and only if he has a valid witness for the statement.
During setup, the Prover and Verifier obtain and store local state (e.g., ciphertexts, private keys) to be
used in the proving phase. To defend against malicious behavior, both the Prover and Verifier validate
information received from the other party and may abort the setup if they detect invalid information.

During the proving phase, both the Prover and Verifier interact with the Bitcoin ledger. The Prover,
who now knows a witness for the statement to be proven, and the Verifier take turns posting transactions
from 7 to the ledger. In the end, the Prover wins by posting a withdraw transaction from & or the Verifier
wins by preventing the Prover from ever posting a withdraw transaction. Security means that the Prover
must win if he has a valid witness (even if the Verifier is malicious) and the Verifier must win otherwise
(even if the Prover is malicious).

Protocol Syntax. A BiTVM-coRrE protocol for a relation R consists of one PPT algorithm Gen and four
PPT interactive algorithms:

+ Gen(R) — crs: Takes as input the relation and outputs a common reference string crs.

?Compared to BITVM2-corE [LAA T 25], we simplify the definition by considering a single Verifier and excluding the optimistic
path. We discuss extensions in Sec. 8.

18

* Psetyp(crs): Run by the Prover during the setup phase, interacts with the Verifier and the ledger
functionality Fgtc, and outputs a statement x, a set of transactions 7, a subset S C 7T, and the
Prover’s state stp. Alternatively, the Prover may output L to indicate that the setup failed.

+ Vsetup(crs): Run by the Verifier during the setup phase, interacts with the Prover and the ledger
functionality Fgtc, and outputs a statement x, a set of transactions 7, a subset S C 7T, and the
Verifier’s state sty,. Alternatively, the Verifier may output L to indicate that the setup failed.

e Porove(crs,x,T,S,stp, w): Run by the Prover knowing a witness w, interacts with the ledger func-
tionality FgTc, and outputs a bit indicating successful proving.

« Vhrove(crs,x,T,S,sty): Run by the Verifier during the proving phase, interacts with the ledger
functionality Fgtc.

We denote by (Psetup(crs), Vsetup(crs)), the random variable representing the transcript of the setup
phase run interactively by the Prover and Verifier starting at round 7 (r is omitted when not relevant). The
outputs of the Prover and Verifier during setup are denoted respectively by

outp((Psetup(crs), Vsetup(crs))) = (x,T,S,stp) or L (19)
outy ((Psetup(crs), Vsetup(crs))) = (&, 7T, S,sty) or L. (20)

and the union of both outputs is denoted by
out(Psetup(crs), Vsetup(crs)) = (x, T, S, stp, sty) (21)

if neither party aborted, and | otherwise. Similarly, the outputs of each party during the proving phase are
denoted respectively by out p((Pprove(*); Verove(+))) and outy ({ Perove (), Vhrove(+))) where (-) is replaced
by the inputs of the corresponding algorithm.

Robustness ensures that as long as the Prover is honest, accepted that the setup was performed cor-
rectly, and has a valid witness, a malicious Verifier cannot prevent the Prover from succeeding (i.e., the
required withdraw transaction appears on the ledger) except with negligible probability. Thus, the worst
thing a malicious Verifier can do is to cause the Prover to abort the setup, in which case no Bitcoin is ever
lost by any party.

Definition 9 (u-Robustness). For all NP relations R, all PPT adversarial Verifiers V*, all rounds r € N, the
following holds:

(b=1) crs < Gen(R)

(,T,S,stp) « outp({Psetup(crs), V*(crs))) 1—27%
Prf A tXTJEruS S outp((Pprove(crs, x, T, S, stp, w), V*(crs)),) Z _ negl(\) (22)
tx € L)
(z,w) eR

Knowledge soundness ensures that if the Verifier accepts the setup, then a malicious Prover cannot
successfully include the withdraw transaction on Bitcoin unless he knows a valid witness for the chosen
relation. As usual in knowledge soundness, the Prover’s knowledge of the witness is defined by the ex-
istence of an extractor that can extract the witness using the Prover’s inputs and the transcript 7" of its
interactions with the Verifier and Bitcoin.

Definition 10 (Knowledge Soundness). For all NP relations R, all PPT adversarial Provers P*, there exists
a PPT extractor £ such that for every benign auxiliary input aux € {0, 1}p°'y(>‘):

crs < Gen(R)

(x,T,S,sty) < outy ((P*(crs, aux), Vsetup(crs))) S 1= 27k (23)
T <« (P*(crs,aux), Verove(crs, &, T, S, sty)) ~ —negl()\)

dr € N, dtx € S, Jhonest H : tx € L

Pr |(x,&(crs, T,aux)) € R :

19

where £ above has the exact same view as the adversary.

Remark 2. Assuming the existence of strong cryptographic primitives, there are auxiliary information dis-
tributions for which not all SNARKs admit an extractor [BCPR14, BP15]. Following the SNARK literature, we
therefore, formally assume that the adversary should have access only to “benign” auxiliary inputs. Notably,
these results are highly theoretical and do not affect SNARKS’ security in practice.

Together, robustness and knowledge soundness make a BITVM-cORE protocol trustless, solving the
problem stated in Sec. 1. It is trustless because once the Prover and Verifier have mutually accepted that
setup was performed correctly, an honest Prover can withdraw Bitcoin even if the Verifier is malicious,
and an honest Verifier can prevent any malicious Prover from withdrawing Bitcoin.

Since a trivial protocol where the setup always aborts satisfies the above two properties, we also require
that if both parties are honest, then neither party aborts during setup.

Definition 11 (Setup Correctness). For all NP relations R,

out(Psetup(crs), Vsetup(crs)) = L :

Pr crs « Gen(R)

< negl(\)

4 Witness Encryption for Linear Pairing Relation

In this section we present a core building block of our protocol, namely a Witness Encryption (WE) for
Groth16, under the intermediate assumption that one proof element, 71, is known to the Encryptor. Look-
ing ahead, even though this is an unnatural assumption, combined with a garbling scheme it will constitute
the cryptographic core of our full BABE construction.

Our crucial observation is that we can construct a simple and efficient Witness Encryption Scheme
with respect to a Groth16 verification for an (R1CS) relation R, a statement @ and a specific proof element
.

Let any R1CS relation R and a Groth16 proof system for R. Let crs <— Groth16.Gen(R). We define
the following relation:

R = {((crs,m,m);'w) : dmg, w3 s.t. Grothl6.Verify(crs, x, (m,m2,m3)) = 1 A (z,w) € R} (24)

Construction 1 (WE for Groth16 with known 71). Let R be an RICS relation. Below is WE = (Gen, Enc,
Dec), our witness encryption scheme for R’:

Gen(R'): Output crs = Groth16.Gen(R)

Enc(crs, x, m1): Samples r < T, and executes the two sub-algorithms:

« Enceetup(crs, @, msg; r): SetY := e([o]1, [B]2) +e(X, [v]2) and X := Zle T [5ai(T)+alf;(T)+ci(T) X
and output Ctseryp = (7[0]2, RO(rY") + msg)

« Encprove(Crs, m1;7) : Output Ctprove = 771
« Outputs (Ctprove, Ctsetup)

Dec(ct, x): Parsect := (Ctprove; Ctsetup) = (Ct1, (Cta, ct3)). Computeny, o, w3 = Grothl6.Prove(crs, x, w)
and output msg = ct3 — RO(e(cty, m2) — e(ms, cta)).

20

Security of WE. In the following we show that this is effectively a witness encryption scheme for the
relation R, in the sense that the Decryptor cannot learn any information about msg unless she knows a
valid witness w for the R1CS relation R. In more detail, we show that WE is a secure witness encryption
for R’, therefore from a cheating adversary we can extract a valid witness w for the original relation R.

In fact, we prove a stronger notion of security for our scheme, where an adversary adaptively chooses
one part of the statement, 7y, after receiving a (partial) ciphertext, Ctsetyp corresponding to . The type of
adaptivity is not captured by the standard WE definition Def. 2; it is rather idiosyncratic to our scheme,
as our encryption algorithm is explicitly split into two phases (setup and prove). We define this type
of adaptive security for our scheme directly in Def. 12 below. Looking ahead, we will need this type of
upgraded security for our full BABE protocol.

We prove security in the generic bilinear group model (see Sec. 2.2.1) and random oracle model. That
means that the extractor has access to the adversary’s queries to both oracles. The random oracle ensures
that the extractor gets access to the group element that “randomizes” the message (here 7Y’). Otherwise,
from the point of view of the adversary the ciphertext perfectly hides the message msg. So, intuitively, the
only way for the adversary to learn anything from the ciphertext is to query Y and learn the masking
term. But then the extractor gets access to 7Y as well.

From there we use a standard generic group model argument to extract valid proof element 7o, 3.
Finally, we use the extractor of Groth16 to extract the original witness w.

Remark 3. As discussed in Sec. 1.3.2, our construction falls in the framework of witness encryption for general
linear pairing relations introduced in [BC16, GKPW24] and subsequently formalized in [GHK ™ 25]. Despite
that, the security of our scheme (even the non-adaptive version) cannot be directly inferred from these prior
works: [BC16] insists on relations in the standard model (does not capture Groth16), [GKPW24] identifies
the general paradigm for arbitrary relations in the GGM, but provides security proof only for their particu-
lar instantiation and [GHK 25] formalizes the idea under a slightly different abstraction (linearly verifiable
SNARKSs). Consequently, we provide a complete security proof of our WE scheme for our specific relation.

Definition 12 (Adaptive Security of WE for R’). A witness encryption scheme WE = (Setup, (Encsetup,
Encprove), Dec) for R’ is adaptively secure iff: For every PPT adversary A, there exists a PPT Extractor € such
that for all benign auxiliary input aux € {0, 11PN jf

i crs «+ Gen(R) 7
(x, msgy, msg;) < A(crs)
b«s{0,1},7 < T, 1
Pr| o=V : ct’;etup < Enceetup(crs, ¢, msgy;r) | = 3 +€ (25)
T 4= A(Ctls)etup)
Ctprove <— EncCprove(Crs, m1;7)
i b < A(ctprove; aux) |
then
Pri(z,w) € R : w < &(crs, x,aux)] > € — negl(\) (26)

Lemma 1. Our WE construction for R’ satisfies the adaptive security of Def. 12 in the generic bilinear group
and random oracle models.

Proof. Let a PPT adversary A of the above WE adaptive security game: crs < WE.Gen(R'), chooses
(z, msgy, msgy) « A(crs), b s {0,1}, 7 < F}, ctby,, < WE.Enc(crs, z, msgy,;), then chooses 7
.A(ctgetup), Ctprove <~ ENCprove(crs, m1;) and finally outputs b <— A(Ctprove, aux) such that Prjb = '] =
% + € for an arbitrary e.

21

We will construct an extractor £ that on input crs and & (and the aux) outputs a valid witness w, i.e.
w < &(crs, @, aux), such that R(x, w) = 1. Since we are in the generic group and random oracle models,
£ additionally has access to all the corresponding generic group and random oracle queries of A.

First, we show that A queried the random oracle on 7Y with probability at least ¢. Indeed

1
3 +e=Pr[b= V] =Pr[b =V|“rY Queried”] Pr[“rY Queried”]

+Pr[b = b'|“rY not Queried”] Pr[“rY not Queried”]

however if 7Y was not queried by A then RO(rY") information theoretically hides msg; from .A, since

RO(rY) is uniformly random. Consequently Pr[b = ¥'|“rY not Queried”] = 3 which means that

1 1
3 + € =Pr[b = V'|“rY Queried”] Pr[“rY Queried”] + 5 Pr[“rY not Queried”]

1
< Pr[“rY Queried”] + 3
= Pr[“rY Queried”] > ¢

Now in the case where 1Y was queried by A we argue that, unless with negligible probability, £ by
observing the generic group oracle queries of A can extract a valid Groth16 proof 7 = (71, w2, 73), L.e.
Groth16.Verify(crs, x,) = 1. We start from the symbolic group representation (see Sec. 2.2.1). Let t be
the symbolic variable of r, then information-theoretically the monomial Yt can only be obtained from ct;
and cty queries, because no other element that the adversary receives contains the variable t. Therefore:

(Y)r = (agm)t + (a3)td = Y = agm; + a3d

for ay, as chosen by the adversary (9 is the formal variable for 9).
Switching to the actual generic group model:

Y = e(m, [az]2) + e([as]1, [6]2)

unless with probability neglggy () < %}W = negl(\) (this stems mostly from the Groth16 CRS;
nm is the size of the R1CS matrices) determined by the Master Theorem (see Thm. 1). Recall that

l
i bi i
Y i=e(lalr, [8]2) + (Y @ [ﬁa o avm udltl IR
i=1 1
so 1, Ty = [as)2, m3 = —[as]; are valid Groth16 proof elements that £ can compute by simply observing

A’s generic group oracle queries.
Finally, £ invokes the knowledge soundness extractor of Groth16 onm = (71, 72, 73) = (71, [a2]2, —[as]1)
and extracts a valid witness w, unless with a negligible probability neglg,in16-xs(M)-
In summary, the overall probability of success of £ is € — neglggy(A) — neglgrotmisks(A) = € —negl(A).
O

Our adaptive security definition is stronger than the standard WE definition, therefore we get the
following corollary.

Corollary 1. WE is a secure witness encryption scheme for R’ in the generic group and random oracle models.

22

5 Garbled Circuit for BN254 Scalar Multiplication

5.1 Overview

Goal. The objective of this section is to construct a compact garbled circuit for BN254 scalar multipli-
cation with a hard-coded secret scalar. Concretely, the garbling algorithm fixes a secret r € F;, and the
Prover provides a public input point 7 € G (authenticated on-chain via a Lamport signature). The garbled
evaluation outputs the group element f,.(7) = rm.

Input representation. The public input point 7 = (z(7),y(7)) € IF}QO is supplied to the garbled circuit
through labels corresponding to the bit-decomposition of its affine coordinates. The bit-decomposition is
important because it enables verification of the labels on Bitcoin (see Egs. (15) and (16)). From 7, the circuit
derives a small collection of algebraic features

u(m) = (1, x(m), y(r), :L'(7T)2, y(w)2, x(ﬂ)y(w)) € IFS,

and we also work with its bit-decomposition % () € {0,1} where £ = 1 + 5n and n = [log, p]. The
linear map G' € IFgXé reconstructs u(7) from u(r), i.e, u’ (1) = G x u? (7). Details in Sec. 5.2.

Observation: group addition becomes an inner product. A central bottleneck for naively garbling
ro is that scalar multiplication entails many elliptic-curve additions/doublings, which are prohibitively
expensive inside a Boolean garbled circuit. Our first observation, as made by [EL26] is that, for BN254,
addition of an input point 7 € G to a fixed point ¢ € G (both in affine coordinates) can be expressed
as linear functions of the feature vector u(-). More precisely, assuming x(¢) # x(7), Lem. 3 shows that
Jacobian coordinates of ™ + ¢ can be written as

(X,Y.2) = A(¢) x u(n)",

for a matrix A(¢) €]F;’,X6 that depends only on ¢. Since the Prover sees 7 only in bit form, we immediately
lift this to the bit-decomposed domain using G, yielding an equivalent form

(X,Y,Z) = B(¢) xu(r)’ where B(¢) = A(¢) x G € F3*"

Finally, because we will compute 7 + ¢ where J is a bit, we use the bit-gated variant (Lem. 4), which
yields a matrix form D (4, ¢) x w(m)T for dm + ¢ where the coefficient matrix D depends only on (4, ¢).

Decomposable Randomized Encodings (DREs) To garble the resulting linear function D(6, ¢) X
u(m)”, we use a decomposable randomized encoding (DRE) for linear functions [Ish13]. A DRE for a
function f : X; x ... x X,, = Y is a randomized encoding

fla=(z1,...,20),p) = (fi(21,0),- .. folze, p))

with randomness p such that there exists a decoder Dec(f(x, p)) = f(z) but f(z, p) does not reveal any
additional information about x (Defs. 13 and 14). Unlike garbled circuits, decoding a linear DRE requires
no ciphertexts.

High-level plan. At a high level, we linearize the field operations (using the feature vector w), use the
DRE decoding to compute all linear field- and group-level operations (which are expensive in a boolean
circuit), and use the boolean garbled circuit for only low-degree non-linear operations:

23

1. Step 1: Create a DRE for weighted group sum to compute the scalar multiplication 7.
2. Step 2: Create another DRE to compute the DRE used in Step 1.

3. Step 3: Create a boolean garbled circuit for (i) validating the input is a valid Elliptic curve point, (ii)
deriving the feature vector w, and (iii) computing the DRE used in Step 2.

Step 1: DRE for the weighted group sum with public weights. To efficiently do scalar multiplication,

n—1

we take r = Y 7" r;2', the binary expansion of the hard-coded scalar r € IF;. Using the DRE for weighted
summation in abelian groups (Lem. 8), we obtain a DRE for the function
n—1
flromy...,rp1m) = Z 2'(rym) = r.
i=0
The DRE for this function is
f(Toﬂv---,Tnflﬂ) = (roT + Py -+ Tn—1T + pn_1)

where po, ..., pp—1 are sampled uniformly from G; \ {O} subject to Z?:_ol 2'p; = 0.!° This DRE shifts
this weighted summation (here 2°,...,2"~! are the weights) from the circuit to the Prover: the Prover
simply computes the weighted sum of the elements of f to obtain rmy.

Step 2: DRE for producing each r;7 + p; from w (7). This step creates a DRE to compute ;7 + p;
for random masks p; used in Step 1. Here we use Lem. 4 to express ;7 + p; in Jacobian coordinates as a
linear map of w(m):

(X5, Y3, Zi) = D(ri, pi) x u(m)",

for a matrix D(r;, p;) €]nge depending only on the private inputs (7;, p;). Each of the three coordinates
is thus an inner product between a known coefficient vector and the bit-vector w(m). We then apply a DRE
for private affine functions (Lem. 9) to create a DRE for these inner products. The DRE takes the form

~

hi(r, g, w) = {uy - Dj j 1 + si,j,k}i€{07.."n71}’j€{172,3} for ke {l,...,5n+1}

where D; ; . is the (j, k)-th entry of D(r;, p;) as defined above, and w represents all the randomness used
in the DRE, including p; from Step 1 and s; j ; which are uniformly random subject to Zi’f{l sijk =0
foralli € {0,...,n — 1}, j € {1,2,3}. The complete DRE construction is given in Thm. 4.

Step 3: The Boolean Circuit. The garbled circuit is formally defined in Constr. 2.
Garbling: Outputs a Lamport secret key (the encoding key)

0 0 0 0
v (Bho o Lot Lho o Lha
- 1 1 1 1
Lo ... Li,. Lty ... Ll

and the garbled circuit ctgc computed in three steps:

1. Elliptic curve validation: The garbled circuit first verifies that the input point 7 = (x(7), y())
lies on the curve F, i.e., it checks that y(7)? = z(7)% + 3 (mod p).

"Note that in the actual construction, we also need to randomize the representation on Jacobian coordinates. We refer the
reader to Remark 4 and Lem. 5 for more details.

24

2. Binary decomposition: If the validation passes, the circuit computes the binary decomposition
u(m) € {0, 13157 of u(r) = (1, z(7), y(w), z(m)?, y(7)%, x(7)y(n)). These two steps are imple-
Uy ()

mented using a privacy-free Boolean garbled circuit. Let L;"." for k € [¢] be the output labels of
this step.

3. DRE encoding: For each k € {1,...,¢} where { = 1 + 5n, the garbled circuit comes hardwired
with the DRE encoding from Thm. 4. Specifically, the garbled circuit contains an encryption of
hi((r,0),w) under the 0-label L%,k and an encryption of Ay ((r,1),w) under the 1-label L%,k; for

Uk (71')
Evaluation: The evaluator, given the input labels
L= (L2 ot e),

evaluates the Boolean circuits to obtain labels for u(m), and decrypts the appropriate encryptions to obtain
hi(r,ug (7)) for each k. The evaluator then decodes the DRE as follows (Thm. 4):

« Recast hy (7, ug (), w) as {t;jr}icqo,. ,n—1},je{1,2,3}- Then the Prover aggregates shares to cancel
Sn+1
t

the si,j,k-terms: ti7j = Zk:l i,k

« Interpreting (1‘271,@-,2,&,3) as the Jacobian coordinates of a masked point ();, the final output is
obtained by the usual bit-weighted recombination out =). 2'Q;. Since Q; = r;m + p; and
> 2'pi =0, then out = rm.

Intuitively, the heavy work (group operations and most algebra) is pushed to the Prover and to the Ver-
ifier’s offline preprocessing, while the online garbled circuit mainly performs validation, low-level arith-
metic for feature extraction, and symmetric-key decryptions for table selection to output the precomputed
DRE components.

5.2 Elliptic Curve Addition and Notation

Let E/F,, be the BN254 curve in short Weierstrass form
E:y*=23+3 (mod p),

where p is the BN254 base-field prime. Let n = [log, p| denote the bit length of F,, elements (so z (),
y(m) have n bits each). For BN254 we also have n = [log, ¢], the bit length of F;, where ¢ is the BN254
group order.

Let 7 be a point on the curve, represented in affine coordinates 7 := (x(7), y(7)) with x(7),y(7) €
F,. Then we define u(m) = (1,2(n),y(n),z(m)?, y(r)?, 2(7)y(r)) and w(x) € {0,1}* be the binary
decomposition of u(w), where { = 5n + 1. More precisely, if u(m) = (uo,u1,u2, us, us, us) where
up = 1, uy = 2(n), ug = y(7), ug = ()% ug = y(7)?, and us = x(7)y(n), then:

w(m) = (L, u1,0,- -5 ULn—1,U2,05 -+, U201, U305 - - > U3, 1, Ud05 - - - Ud—15 U505 - - - » U5 n—1)
where (u;,...,u;n—1) is the binary decomposition of u; for i € {1,2,3,4,5} (ie., u; = Z?;ol um-Qj).

We use the notation u;(7) and ; () to denote the i‘"* component of u () and w(), respectively.

Further, we define G € IF?,X(HM) such that G x u! (7) = u” (). The matrix G is structured as:
110 0 0 0 O
0/2 0 00O
0j0 2 0 0O
G= 0/j0 0 2 00
0j0 0 0 2 0
0j0 0 0 0 2

25

where 0 denotes a row vector of n zeros, and 2 denotes the row vector (2°,2!,...,2""1) of powers of
2. That is, the first column of G is (1,0, 0,0, 0,0)” (corresponding to the constant term uo = 1), and for
eachi € {1,2,3,4,5}, columns (i — 1)n + 2 through in + 1 contain the powers of 2 (20,21, ... 2" 1) in
row i + 1, with zeros elsewhere. This ensures that G' x @ () reconstructs the field elements from their
binary decomposition.

The following lemmata Lem. 2, Lem. 3, Lem. 4, Lem. 5 formally define the elliptic curve addition and,
further, ¢ + d7 operation in Jacobian coordinates.

Lemma 2. Let m = (x(7m),y(m)) € E(Fp) \ {O} be given in affine coordinates, and let § € {0, 1}. Define
M (5) € F3*6 by
1-6 6 0 000
M@®) =[1-6 06 00 0
5 00000
Then M () x u” () is a Jacobian representation of the point m: when § = 1 it equals (z(),y(n), 1),
and when 0 = 0 it equals (1, 1,0), which represents O under the convention that any (X,Y,0) withY # 0
encodes the point at infinity. Alternatively, N (§) x @' () is also equal to 67, where N (§) = M (§) x G.

The proof of this lemma is straightforward and is left to the reader.

Lemma 3. Let ¢, m € E(E,) \ {O} be two points in affine coordinates such that x(¢) # x(m). Then a
Jacobian representation of ¢ + 7 is given by A(¢) x u” (1) where A(¢) €]FgX6 is a matrix that depends
only on ¢, defined by:

6 2*¢) —2y(9) x(9) 0 0

A(g)=[9(8) 0 —(y(@)*+9) 3z(o)y(e) y(¢) —32*(¢)
—2(¢) 1 0 0 0 0

Equivalently, Jacobian coordinates of ¢ + 7 are also given by B(¢) x u’ (1) where B(¢) €]FE;X(HEm) is
defined as B(¢) = A(¢) X G.
Proof. Let ¢ = (x1,y1) and m = (2, y2) be affine points on

E/F,: y*=a3+3,

and assume 1 # 9. Define

def
Z = 1‘2*5616]1:;.

Consider the following projective (Jacobian-style) representation of ¢ + 7:

def
X3 = (y2—y1)* — (21 +22) 22,

def
Y3 € (y2—y1) (212° — X3) — 1 Z°, (27)
Zs ¥ 7

When Z # 0, the triple (X3 : Y3 : Z3) represents the affine point

X3 Y3
72 73

and one checks that it equals ¢ + 7 (this is the standard affine-addition formula written in projective
coordinates; see, e.g., the explicit projective addition formulas for short Weierstrass curves).
We now expand (27) and simplify using the curve equations

y%zx?—{-?), y%:x%+3.

26

Derivation of Z3. By definition, Z3 = Z = x5 — x1, which is already linear in u (7).

Derivation of X3. First expand:

Xz = (y2 — 1) — (x1 + 22) (w2 — 1)

= (45 — 2u1y2 + 1) — (w1 + 32) (25 — 2w102 + 27)

= y% — 291y + y% — (xi’ — x%xg — atlx% + mg‘)

Substitute y§ = 23 + 3 and y3 = x3 + 3 to obtain cancellation of the 23 and z3 terms:
X3 = (234 3) — 2y190 + (23 4+ 3) — 23 + 2220 + 223 — 23,

hence
X3=6+ x%:pg — 2y1y2 + xlx%. (28)

Derivation of Y3. Start from (27):
V3= (y2 — 1) (212% — X3) —n Z°.
Using Z = x9 — x1, expand and simplify to:
N 2 2 2 2
Y3 = y1ay — 3xiways + 3z123y1 — Y1y + yiya + 3(y1 — y2).

(One can obtain this by a straightforward polynomial expansion and collecting terms.) Now use the curve

relations to eliminate the cubic term: since y3 = z3 + 3, we have 23 = y3 — 3, so

yias = y1(ys — 3) = 1y — 3y
Substituting this gives:

Vs = (1192 — 3y1) — 3222910 + 32123y1 — vy + y192 + 3y1 — 3ue
= —3aiways + 3z123y1 — yiv2 + 20105 — 3y

Finally, rewrite —3y2 as 9y1 — (> + 9)yo plus terms that cancel using 2 = 23 + 3 (equivalently, just
regroup to match the u(m) basis). A clean regrouping yields:

Yi=9y1 — (249 + 3z 2 + yiy2 — 322 (zay2). (29)

Matrix form. Putting together the above, we have that A(¢$) x u” () equals the Jacobian coordinates
of ¢ + ™ where

6 a7 —2u1 z1 0 0
A@)=|(9 0 —@i+9) 3z y1 —3af
—z; 1 0 0 0 0

The alternative form B(¢) x u! () follows immediately from u” (1) = G x w’ () by setting B(¢) =
A(¢) x G. This finishes the proof.
O

27

Lemma 4. Let ¢, m € E(F),) be two points in affine coordinates such that x(¢) # x(m). Then the Jacobian
coordinates of ¢ + o where § € {0,1},!! is given by C (6, ¢) x u” (1) where C(8,$) € F>*6 is a matrix
that depends only on §, ¢, defined by:

66+ (1—0)x(p) d2%(¢) —25y(¢) oz (¢) 0 0
C(5,0) = | 9y(¢) + (1 =8)y(¢) 0 =d(y(¢)* +9) 30x(P)y(d) dy(¢) —3d2*(¢)
—5z(¢) + (1 —) 5 0 0 0 0

Equivalently, Jacobian coordinates of ¢ + 67 are also given by D(5, ¢) x u” (1) where D (6, ¢) €]F3X(1+5n)

is defined as D (0, ¢) = C (6, ¢) x G.

Proof. The proof is analogous to the proof of Lem. 3. The only difference is that we need to consider the
case where § = 1 and = 0 separately. O]

Lemma 5. Given a pointm € E(F,) in Jacobian coordinates (X,Y, Z) (which is not unique) we can obtain
a uniform representation of the same point as diag(A\2, A3, \) x (X, Y, Z)T for A sampled uniformly from F,
where diag(\2, A3, \) is a diagonal matrix with the entries A2, \3, \ on the diagonal. More precisely,

A0 0
diagl\)=[0 X 0
0 0 A

The proof follows from the definitions of Jacobian representation and we skip the details.

5.3 Decomposable Randomized Encodings: Definitions and Preliminaries

Randomized encodings allow us to represent a function f by a simpler function f such that the encoding
f (x; p) (where p is some randomness independent of x) reveals f(z) but nothing else about = beyond
what is revealed by f(z) itself. This section presents the formal framework for decomposable randomized
encodings, following the definitions (some of them verbatim) from Ishai [Ish13].

Definition 13 (Randomlzed encodlng (Definition 3.1, [Ish13])). Let X,Y, Y, R be finite sets and let f :
X — Y. A function f X x R — Y is a randomized encoding of f if it satisfies:

« d-Correctness. There exists a decoder (possibly randomized) Dec : Y — Y such that forallx € X
andp € R,

Pr[Dec(f(z,p)) # f(x)] <&

where randomness is over the choices of p and the decoder. We skip mentioning § when it is a negligible
function of the appropriate parameters.

« e-privacy. There exists a randomized simulator Sim : Y — Y such that forallz € X,

Sim(f(z)) ~. f(map)a

where p < R is uniform and ~. denotes distributions that are statistically close. Again, we skip
mentioning € when it is a negligible function of the relevant parameters.

Additionally, a randomized encoding is said to be efficient if its encoding and decoding complexities are
polynomial in the size of the input. In the literature, various relaxations of the above definition are consid-
ered. For example, one may consider a randomized encoding that is only computationally or statistically
private. However, we focus on the perfect privacy, as it suffices for our purposes.

Next we define the decomposability property and some useful properties of randomized encodings.

"'§7 denotes the point 7 if § = 1 and O if § = 0.

28

Definition 14 (Decomposable randomized encoding (DRE) (Definition 4.1, [Ish13])). For f : X1 X --- X
X, =Y, adecomposable randomized encoding of f is one that has the form

A~ ~

fl(@rs. o mn)p) = (fu(@r,p)s- s ful@n, p))
for some functions fz :X; x R—= Y.

The decomposability property is what makes DRE particularly useful: each input component x; can
be encoded independently (though the encodings may share randomness p), and the evaluation algorithm
can reconstruct f(z1,...,z,) from these individual encodings. This structure is essential for the efficient
garbled circuit constructions we present in the following sections.

Lemma 6 (Concatenation (Lemma 3.3, [Ish13])). Suppose fi(x, p;) is a randomized encoding of f;(z) for
i =1,..., k. Then the function f(z, (p1,. .., pr))) (fi(x, p1), ..., fulz, pr)) is a randomized encoding

def

of f(x) = (f1(z), ..., fe(z)).

Lemma 7 (Composition (Lemma 3.4, [Ish13])). Suppose f(z,p) is a randomized encoding of f(z) and
f'((x,p), p) is a randomized encoding of f(x, p) (viewing the latter as a deterministic function of (x, p)).

A def ~
Then " (z, (p, p')) :eff’((:n, p), p') is a randomized encoding of f(z).

5.4 Decomposable Randomized Encodings Constructions

Building on [FKN94], Ishai [Ish13] presents a simple decomposable encoding for summation in finite
abelian groups. We state a slight generalization to weighted summation here.

Lemma 8 (DRE for weighted group summation (Generalization of Claim 4.2, [Ish13])). Let G be a fi-
nite abelian group and let fo, ., : G" — G be the group summation function fq, . 4. (T1,...,2y) =
S aixit? Let R = {(p1,...,pn) € G" : > a;p; = 0}. Then the function fal,...,an :G" xR — G"
defined by fo,.. an(x1,- - 20), (p1s- s pn)) = (T1 + p1,- -, Tn + pp) is a decomposable encoding of

fal,...,an-

Proof. As in Ishai [Ish13], it is easy to verify that fal,...,an maps an input = (z1,...,2,) to a uniformly
random input 2’ € G" such that f,, . 4,(2') = fa,...a,(x). Thus, we can let Dec = f,,, 4, and let
Sim(y) output a random n-tuple in f.! , (y). O
Remark 4. We will actually use the above lemmaon fq, o, (21,...,Tn) = >y a;x; withinputszy ... 2y

in Jacobian representation which is not unique for every group element. Thus, we randomize the representa-
tions in the DRE. More specifically, fa, ...a, : G" x G" X F;™ — G" defined by

fa1,~~-7an(($17 ceey Qj‘n), (p17 cee ,,On), ()‘17 ceey)\n)) = (dlag()‘%? A?v)‘I)X(x1+p1)T7 cee 7diag()‘7217)‘%7)\n) X ($n+pn)T)

where diag(\2, A3, \;) is the diagonal matrix with A2, \3, \; on the diagonal as defined in Lem. 5.

177

We will also need a DRE for private weights. However, we limit the inputs to be either 0 or 1 as it
suffices for our purposes and keeps the DRE encoding function efficient.

Lemma 9 (DRE for private affine functions). Let G be a finite abelian group and let f : {G x {0,1}}" — G
be the group summation function f((a1,21), ..., (an,xn)) = > oy xia;.”> Let R = {(p1,...,pn) € G":

>, pi = 0}. Then thefunctionf : {Gx{0,1}}"xR — G™ defined by f (((a1, 1), -, (@n,xn)), (P1,-- -, pn)) =
(r1a1 + p1, ..., anTy + prn) is a decomposable encoding of f.

a times

12 . . —_—N—
Where + is the group operationandap =p+ ...+ p.
Where + is the group operation and ax = 0 if z = 0 and a otherwise.

29

Proof. The proof of this claim is identical to the proof of Lem. 8. This is a DRE with respect to the input
blocks (a;, x;). It's decomposable because the i-th output depends only on (a;, ;) and p;. O

5.5 DRE for the Scalar Multiplication

For the BN254 group, we define the function h in Def. 15, and construct a DRE for this function.

Definition 15. Let h : (F, x {0,1})* — G be the function defined by (withn, £ = 5n + 1 as in Sec. 5.2):
h((r,un (), (r,wp(m)) - - - (r, (7)) ¥ 7.

The function h can be expressed as a matrix multiplication with a transition from field to group operations.
The computation proceeds in two stages:

1. Field operations: For each i € {0,...,n — 1}, compute the three Jacobian coordinates of r;m + p;
using matrix multiplication over I,y

diag(A;) x D(r;, p;) x w’ ()

where N (r;) € IFgXZ is the matrix defined in Lem. 2 and rq - - - 7,1 is the bit decomposition of r; i.e.
S.20r =1,
7

2. Group operations: Apply weighted group sum using as the group operation:

n—1

Z 2 (rym +pi) =rw

1=0

where each ;7 is represented by its Jacobian coordinates (X, Y, Z) computed in Step 1 and the operation
Z?:_ol 2¢(-) uses group operations (elliptic curve addition and scalar multiplication in the group G).

Informally, for each 4, the computation IN (r;) x @’ () yields the three field elements (X,Y, Z) € F

representing the Jacobian coordinates of the group element ;7. The final weighted sum 2?2_01 20 (1)
combines these group elements using elliptic curve addition, which operates on all three coordinates si-
multaneously.

Theorem 4. There exists a function h such that h : (F, x {0,1})¢ x (R, A, S) — IF]?;M is a DRE for h as
defined in Def. 15 where R, A, S is appropriately sampled randomness used in the encoding.

Proof. We start by describing the function h in more detail. More specifically, we define the function
il ((T‘, ﬂl(ﬂ—))a (Tv EQ(W)) e (T,ﬂg(ﬂ'))? R7 A7 S) = (ill(?”, ﬂl(ﬂ-)7 R7 A7 S)a L) B((T,ﬂg(ﬂ'), R7 A7 S))
where hy,(r, up (), R, A, S) = {D; jx k() + sijk}ij, where D; = diag(A?, A2, \;) x D(r;, p;) and
i€{0,...,n—1},j€{1,2,3}, k€ {1,...,5n + 1} and D, j 1 is the (j, k)" entry in D;.

Here we set the randomness such that R = {(p1,...,pn) € (G\ {O})™ : > pi = 0}, A =
A1y s An) € (B \ {0} and S = {(si i }i5 g oy € B3 Vi, 5 Y 4y si = O

“The inputs of h are actually from F, x {0, 1} but we repeat the input to highlight the decomposability.

30

Decoding Function. The decoding function Dec :]ane — Goninput vy ... where v, = {t; j 1} jis
either fzk(r, 0,R,A,S) or ﬁk(r, 1, R, A, S) is defined as follows:

1. Foreach i € {0,...,n — 1} and j € {1,2,3}, compute the j-th coordinate of the randomized
Jacobian representation:

4
fij =D tij
k=1
This correctly recovers the j-th coordinate since Zi:l si j.k = 0 by the constraint on S.

2. Foreachi € {0,...,n — 1}, form the point Q; = (7?1-717 7?1327 72‘,3) € IF;’), which represents the group
element diag(\2, A2, \;) x (rim + p;).

REAY ?

3. Apply the weighted group sum to recover rm:

n—1
Z QlQi =Trm
=0

This correctly computes r7 since Z;:ol 2ip; = 0 by the constraint on R.

Next we derive this DRE for h using Lem. 8 and Lem. 9.

Step 1: DRE for weighted group sum using Lem. 8. Letr = Z?:_ol ;2" € F, be the binary decom-
position of . We want to compute rm = Z?gol 2'(r;m). Define the function f : G" — G by:

n—1

flrom, ... rp_1m) = Z 2i(ri7r) =rT

1=0

with weights a; = 2 fori € {0,...,n—1}. By Lem. 8 and Remark 4, there exists a DRE f : G" x Ry — G"
where Ry = {(po, ..., pn-1) € G", (X0, ..., An—1) EF}": S 2ip;i = 0}, where

fA((TOﬂ-7 e 7rn—17r)7 Rl = ((p07 cee ,pn—l)) (>\07 ceey)\n—l))) = (fO(TOﬂ-7 Rl)) ceey fn—l(rn—lﬂ-y Rl)

and for each i, fi(r;m, R1) = diag(A?, A2, \;) x (7w + p;)". The decoding function is Dec; : G" — G
defined by Decy ((yo, - - -, Yn—1)) = >.1—y 2%y;, which correctly computes 7 since 37"~ 2%p; = 0.

Step 2: DRE for diag(\}, A2, \;) x (r;7 + p;)T using Lem. 9. Foreachi € {0,...,n — 1}, we need to
encode the group element r;m + p;. Since r; € {0, 1}, we have:

™+ pi ifri:1
T+ pi = .
Di ifr; =0

For each i, let E; be the event p; = 7. If = F; then we can apply Lem. 4 to express the randomized Jacobian
coordinates of diag(\3, A?, \;) X (r;m + p;)T (setting with ¢ = p; and § = r; in Lem. 4) as a linear function
of u(7). Specifically:

diag(A}, A7, Ai) x D(ri, p;) x ' (7)
which can be written as D; x u! (7) where D; et diag(A2, A2, \;) x D(ry,p;) €]sz(1+5n).

177

31

For each coordinate j € {1,2, 3} (corresponding to X, Y, Z), let D; ; be the j-th row of D;. Then, the
j-th coordinate of the randomized Jacobian coordinates is:

1+5n
Dijxa"(m) =Y Djj- ()
k=1

where D; ; 1, is the k-th entry of the row vector D; ;, and %y, (7) is the k-th component of % (7). Now, for
eachi € {0,...,n— 1} and j € {1, 2,3}, we apply Lem. 9 to encode the function:

iy« (Fp x {0,117 — F,

defined by’ gi,j((Di,jyl, Ul (7T)), R (Dz’,j,1+5m U1+5n(7T))) = ZIIC—;?R Di,j,k . ﬂk(ﬂ) Note that Di,j,k are
known values that depend on ; and the randomness p; and \; from Step 1. The function g; ; takes as input
pairs (D; j i, Uk(m)) where D; j 1, € F, is a field element (the coefficient) and u(7) € {0, 1} is a bit. By
Lem. 9, there exists a DRE g;j : ((F, % {0,1}))1"5" x S; j — F} ™" where S; j = {(sj,1,-- - » Sij,14+5n) €
Fptom S w0 si ik = 0}, defined by:

Gij(Dija,w(m))s -y (Dijitsn, W45n(7))), Sig = (Sig1,- -5 Siji+sn)) =
(Dij1-ui(m) + Sijay - Dijassn - Uiasn () + Sij145n)

The decoding function is Dec; ; : IF;*S" — F,, defined by Dec; ;((y1, ..., Y145n)) = 211;?” Yk, which,

conditioned on the fact that Lem. 4 can be applied (i.e. = E;), correctly computes the correct j-th coordinate
: 14-5n _

since y , 71" s; 51 = 0.

Composition and final DRE. By Lem. 7 and Lem. 6, we can compose the DREs from Step 1 and Step 2
to obtain the final DRE A for h.

Correctness and Security. Our analysis holds conditioned on —F; for each i = 1,...,n. Pr[E;] =

Pr[p; = 7] = ﬁ, thus the correctness and privacy errors of the final DRE are § = € = | G‘"_l. O

5.6 Completing the Garbled Circuit

We wish to design an efficient Garbled Circuit that on public input an (on-chain) Lamport signature on
7 = (x(m),y(m)) outputs r7. Here r € Fy, is a private input known at the time garbling that is considered
hard-coded in the circuit.

Construction 2. The garbled circuit GC for the function f, : G — G, f.(7) = rm will be as follows:
Garble(r) — ctge, ek: Outputs a Lamport secret key

0 0 0 0
v (B0 o By Lo o Lja

1 1 1 1

Lo ... Li, Lby ... L.,

and the garbled circuit ctgc computed in three steps:

1. Elliptic curve validation: The garbled circuit first verifies that the input point m = (z(w), y(m)) lies
on the curve E, i.e., it checks that y(m)? = x(m)? + 3 (mod p).

2. Binarydecomposition: If the validation passes, the circuit computes the binary decompositionw(m) €
{0, 131057 of u(m) = (1, z(n), y(n), z(m)%, y(7)2, 2(m)y(7)). If not, the circuit outputs the binary
decomposition of u(g) = (1,2(9),y(g9),2(9)%, y(9)? z(9)y(g)) where g € Gy is some fixed point in
the curve. These two steps are implemented using a privacy-free Boolean garbled circuit. Evaluating
this circuit outputs the labels L%j“k(w) fork € [4].

32

3. DRE encoding: For each k € {1,...,¢} where{ = 1 + 5n, the garbled circuit comes hardwired with
the DRE encoding from Thm. 4. Specifically:

« For each bit position k € [(] where { = 1 + 5n, the garbler precomputes hi((r,0),w) and
hi((r;1),w).
« The garbled circuit contains an encryption of hy,((r,0),w) under the 0-label L%’k for ().

« The garbled circuit contains an encryption of hy,((r,1),w) under the 1-label LL, foru(m).
Encode(ek, m) — L: Outputs the Lamport signature of

L= (L% ... LI LY ... LU

z,n—1 y,n—1

Eval(ctge, Lx) — rm: The evaluator, given the input labels L, Aevaluates the Boolean circuits to obtain
labels for u(m), and decrypts the appropriate encryptions to obtain hy(r,uy(m)) for each k. The evaluator
then decodes the DRE as follows (Thm. 4):

« We recast hy,(r,ux(m),w) as {tijr}icin),je{1,2,3)- Then the Prover aggregates shares to cancel the
i,k -terms:

V4
tij = E bi k-
k=1

o Interpreting (?@1 , E-,g, tAZ-,g) as the Jacobian coordinates of a masked point Q);, the final output is obtained
by the usual bit-weighted recombination

out = Z 21Q;.
i

Since Q; = r;m + p;and), 2ipi = 0, then out = rm.

Intuitively, the heavy work (group operations and most algebra) is pushed to the Prover and to the Ver-
ifier’s offline preprocessing, while the online garbled circuit mainly performs validation, low-level arith-
metic for feature extraction, and symmetric-key decryptions for table selection to output the precomputed
DRE components.

Theorem 5. Constr. 2 is an adaptively secure garbling scheme (Def. 3) for the function f, : G — G, f.(7) =
rm in the random oracle model.

The proof follows directly from Thm. 4 and the security of Yao’s garbling scheme [LP09].!> For adaptive
security we rely on standard random oracle techniques [BHR12a] (namely equivocal encryption).

Remark 5 (Optimizations for the Randomized Encoding). In practice we integrate the following optimiza-
tions:

« Several entries in the matrix D are 0. In our implementation the inner products only need to grow with
the number of nonzero entries. This reduces garbled circuit size by a factor of 1.87.

« Rather than giving two ciphertexts encrypting hi((r,0), R, S) and hi((r,1), R, S) we just encrypt one
of them and let the appropriate shifts be the output of a Pseudorandom Function (e.g. a random oracle)
on the corresponding label, such that the latter can be computed locally. This reduces garbled circuit
size by a factor of 2.

For the optimization we propose, i.e. instead of letting the circuit compute the ﬁk((r, Uy),w)’s we precompute them and
encrypt them under the corresponding labels, the simulator may just encrypt the simulated Ay ’s for the actual w’s and provide
encryption of 0 for the other bit.

33

Efficiency. We provide a theoretical estimation of our garbled circuit size. Since it is hard to theoretically
estimate the size of the circuit for (1) and (2) of the construction (Elliptic Curve validation and Binary
Decomposition) we postpone this for the experimental evaluation in Sec. 9. However, the main cost stems
from (3), the DRE Encoding. Taking into account our optimizations, the latter consists of:

« Foreachi=0,...,n—1

- 3n + 1 log |F|-sized ciphertexts for the X coordinate.
- 4n + 1 log |F|-sized ciphertexts for the Y coordinate.
- n + 1 log |F|-sized ciphertexts for the Z coordinate.

Here F is the field generated by the E//F,, group, therefore |F| = 254 and n = 254. This gives us:
254 - (8 - 254 + 3) - 254 bits = 15.65 MiB

This is validated empirically in Sec. 9.

6 BABE Protocol

6.1 Honest Setup Protocol

A BIrTVM-coRE protocol (Sec. 3) has two phases: a setup phase and a proving phase. The setup phase
consists of off-chain interaction between the Prover and the Verifier and terminates with some Bitcoin
being locked (Fig. 4). The proving phase consists of on-chain interaction between the Prover and the
Verifier and ends with the Prover posting a transaction to withdraw the locked Bitcoin. To explain the
core aspects of the protocol, we first describe the protocol assuming that the setup is run honestly by both
Prover and Verifier (Algs. 1 and 2), but either party may be malicious in the proving phase. In Sec. 6.2, we
discuss how the Prover and Verifier can verify that the setup was run correctly and abort if it was not.

6.1.1 Setup Phase

The setup phase protocol is described in Alg. 1. The Prover initiates the setup by sending his public key pkp
to the Verifier. The Verifier creates the application-specific statement x to be proven. For example, in the
lending application from Sec. 1, when the borrower is the Prover, the statement is that the borrower repaid
his loan on Ethereum. The Verifier samples a secret msg and creates the witness encryption ciphertext
(Ctsetup in Constr. 1) that doesn’t depend on the proof. He also creates the garbled circuit (Constr. 2) to
compute Ctprove, the remaining part of the ciphertext, generating the encoding key ek and the garbled
circuit ciphertext ctgc. The Verifier hashes the secret msg and the garbled circuit’s encoding key ek to be
used in the hashlock scripts. Then, both parties create a set of transaction skeletons'® 7" shown in Fig. 5.
The Prover pre-signs the transaction skeletons tXchallengeAssert and tXNowithdraw (Ones that the Verifier may
post during the proving phase). Similarly, the Verifier pre-signs the transaction skeletons txassert and
tXwithdraw (Ones that the Prover may post during the proving phase). At the end, the Prover stores the state
stp consisting of his secret keys, the pre-signatures sent by the Verifier, the witness encryption ciphertext
Ctsetup, and the garbled circuit ciphertext ctgc. The Verifier’s state sty consists of his secret keys, and the
pre-signatures sent by the Prover.

Recall: transaction skeleton is transaction without transaction witness.

34

Algorithm 1 Setup algorithms (honest Prover and Verifier)

1: function Gen(R)

2:

return Groth16.Gen(R)

3: end function

4: procedure Psetup(Crs)

5:
6:

(skp,pkp) ¢ Sigprc-Gen(17)
send (pkp) to Verifier

Upon receiving (pky,, Amsg, €pk, Clsetup, Ctac) from Verifier:
(Iskp, Ipkp) < LampSig.Gen(1*)

(T,8) < CreateTxSet(pkp, pky, Ipk p, himsg, €pk)
presigsp < SignTxsp(skp, T)

send (pkp, Ipkp, presigsp) to Verifier

Upon receiving (presigs,,) from Verifier:

Sign tXpeposit and submit to Bitcoin via Ferc.WRITE (txpeposit)
stp < (skp, Iskp, presigsy,, Ctsetup, Ctac)

return (x,7,S,stp)

14: end procedure

15: procedure Vsetyp(crs)

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

26:
27:
28:
29:
30:

Upon receiving (pkp) from Prover:
x + GenStmt(pkp)

(sky, pky,) < SigBTc.Gen(lk)

msg < M, r <$ g

Ctsetup < WE.Enceerp(crs, &, msg, 1)

> Run by Prover
> Sample signing key

> Sample Lamport key
> See Alg. 3
> See Alg. 3

> Run by Verifier

> Application-specific: map Prover to statement
> Sample signing key

> Sample secrets

> WE ciphertext (Constr. 1)

ctec, ek «— Garble(r) > Garbled circuit ciphertext and encoding key (Sec. 5.6)

hmsg < Hashprc(msg)
forje {1,...,2n},b€ {0,1} do
epké’. < Hashprc(ekb)
end for
send (pky,, Amsg, €pK, Ctsetup, Ctec) to Prover

Upon receiving (pkp, Ipk p, presigsp) from Prover:
(T,8) < CreateTxSet(pkp, pky, Ipk p, hmsg, €pk)
presigsy, < SignTxsy (sky, T)

sty < (sky, ek, presigsp)

send (presigs,,) to Prover

return (z,7,S,sty)

31: end procedure

> Hash message for hashlock

> Hash input labels for hashlock

6.1.2 Proving Phase

The proving phase protocol is described in Alg. 2. In the proving phase, the Prover generates a Groth16
proof (71, w2, m3) using the witness for the statement « that was agreed upon during the setup phase. The
proving phase involves the following transactions (shown in Fig. 5) posted on Bitcoin:

1.

2.

Assert: used by the Prover to post the proof element ;.

ChallengeAssert: used by the Verifier to post the input labels for the proof . The Bitcoin script
verifies that the input labels are for the same proof m; that the Prover posted.

If the Prover’s proof is valid:

(a) WronglyChallenged: The Prover evaluates the garbled circuit to compute ctprove = 771, de-
crypts the secret msg (Constr. 1), then posts this transaction. The Bitcoin script requires the

35

Algorithm 2 Prove algorithms

1: procedure Pprove(crs,x,7T,S,stp, w) > Run by Prover
2: Parse stp = (skp, Iskp, presigsy,, Ctsetup) and presigs, = (T\ishdraw)
3: (1, m2, w3) < Grothl6.Prove(crs, x, w)
4: Wassert < LampSig.Sign(Iskp, 71) > Compute Lamport signature
5 Post txassert With transaction witness wassert: call Farc. WRITE (tXAssert)
Upon seeing tXassert and Ao new blocks after txassert in £ p:
P v P . . =
Wwithdraw <= (OWithdraws OWithdraw) WHere Tiitndraw < Sigprc-Sign(skp, Bxwithdraw)
Post txwithdraw With transaction witness wwithdraw: call Farc. WRITE (txwithdraw)
return 1
Upon seeing tXchallengeAssert i L p:
9: Extract input labels L from the transaction witness of tXchallengeAssert
10: Ctprove < EvalGC(ctee, L) > Evaluate garbled circuit (Sec. 5.6)
11: msg < WE.Dec(Ctsetup, Ctprove, T2, 73) > Decrypt message (Constr. 1)
P . . e
12: WwronglyChallenged <— (UWronegChaIIenged7 msg) where OWronglyChallenged <~ Sigprc-Sign(sk p, tXwronglyChallenged)
13: Post tXWronglyChallenged with transaction witness WWronglyChallenged : call fBTC.WR|TE(tXWrong|y(jha||enged)
14: end procedure
15: procedure Verove(crs, @, 7, S, sty) > Run by Verifier
Upon seeing tXassert in Ly/:
. . P P
16: Parse sty = (sky, ek, presigsp) and presigsp = (0 Challengeasserts TNoWithdraw)
17: Extract 7m; and Lamport signature j from the transaction witness of tXassert
18: L + Encode(ek, 1) > Compute input labels (Sec. 5.6)
P 1% 1% . . —
19: WChallengeAssert <— (UChaIIengeAssertv O ChallengeAssert sy My L) where O ChallengeAssert < SIgBTC'SIgn(SkV7 tXChaIIengeAssert)
20: Post tXchallengeAssert With transaction witness wchaliengeassert: call Farc.WRITE(tXchallengeAssert)
Upon seeing tXchallengeAssert and A1 new blocks after tXchallengeAssert in Ly/:
P % % . . =
21: WNoWithdraw = (TNowithdraws TNoWithdraw) WHere InNowithdraw = Sigprc-Sign(sky, , txXNowithdraw)
22: Post tXnowithdraw With transaction witness wnowithdraw: call Farc. WRITE (txnowithdraw)
23: return 1

24: end procedure

Prover to provide the decrypted secret msg.

(b) Withdraw: The Prover posts this transaction to withdraw the locked Bitcoin. This transaction
can only be posted As blocks after he posted Assert. This timelock gives the Verifier enough
time to “stop” a malicious Prover.

4. If the Prover’s proof is invalid:

(a) NoWithdraw: This prevents the Prover from ever posting the Withdraw transaction. This trans-
action can only be posted A; blocks after the Verifier posted ChallengeAssert, which gives the
Prover enough time to post WronglyChallenged if he decrypted the secret msg.

6.1.3 Transaction Graph

The transactions posted during the proving phase form a graph where the outputs of one transaction are
the inputs of another (this graph is shown in Fig. 5). A detailed specification of the transactions is given
in App. A.1. This section describes the locking scripts used and how they ensure the protocol’s security.

Deposit transaction. This locks v amount of Bitcoin. This transaction is posted at the end of the setup
phase. The output of this transaction carries a locking script CheckSig(pkp) A CheckSig(pky) which

36

Algorithm 3 Helper functions for Algs. 1 and 2

1: function CREATETXSET(pk p, pky/, Pk p, Amsg, Pek)

2 Construct transaction skeletons &Deposity &Asserta &ChallengeAssert, &NoWithdraw, &Wronglychallenged, &Withdraw asin App Al
3 T = {&Deposity &Assertq &ChallengeAssert, RNoWithdraw, &Wronglychallenged s &Withdraw}

4 S = {txwithdraw }

5 return (7, S)

6: end function

7: function SIGNTxsp(skp, 7)
8 ob = Sig gy Sign(skp,
UChaIIengeAssert = 218pTrC- |gn(s P»tXChaIIengeAssert)
9 ONowithdraw ‘= Sigp71c-SigN(skp, EXNowithdraw)
. P
10: return (UChaIIengeAsserta UNoWithdraw)

11: end function

12: function SiGNTxsv (sky,, T)

13: O Xesert = Siggrer-Sign(sky,, tassert)

14: OWithdraw := Sigprc-Sign(sky, , Xwithdraw)
v v

15: return (O—Assertv JWithdraw)

16: end function

17: function VERIFYSIGS p(pk,, T, presigsy,)

18: Parse preSigSV = (UXssertv U\Yvkidraw) v
19: Verify Sig g -Verify(pk,,, Dassert, O Assert)
20: Verify SigBTC'verifY(ka7 EXwithdraw, U\‘//Vithdraw)

21: end function

22: function VERIFYSIGSv (pkp, T, presigsp)

. P P
23: Parse presigsp, = (UChauengeAssim TNoWithdraw)
24: Verify S'gBTc ~Verify(pk}>» tXChallengeAssert ; UChaIIengeAssert)
25: Verify Sig . Verify(pkp, tXNowithdraw, O RoWithdraw)

26: end function

means that any transaction spending it must be signed by both the Prover and the Verifier. This ensures
that neither party can unilaterally withdraw the Bitcoin.

Pre-signed transactions. During the setup phase, the Prover and the Verifier pre-sign the set of allowed
transactions that can be posted by the other party during the proving phase. For example, the Verifier pre-
signs the Withdraw transaction that uses Deposit’s output as an input and gives this signature to the Prover
during setup. Since the signatures are on the transaction skeleton, they can be signed during setup without
knowing the transaction witnesses. This ensures the following:

o Unilateral posting: The Prover can post the Withdraw transaction during the proving phase without
having to depend on the Verifier to sign it.

« Output binding: The Prover cannot post any other transaction that uses Deposit’s output as an input
because he does not have the Verifier’s signature for such a transaction.

o Input binding: The pre-signed transaction Withdraw commits to the hash of a specific Assert trans-
action skeleton because it uses an output of Assert as an input. This ensures that the Prover cannot
post the Withdraw transaction unless he first posts the correct Assert transaction.

In general, these properties ensure that only transactions from the set 7 created during the setup phase
can be posted during the proving phase.

37

Deposit Withdraw
1 Out

In Out

CheckSig(pkp) A CheckSig(pky,) R -
v v # v | | (v~ H—Prover
AN
7|
CheckSig(pk p) A CheckSig(pky,) A RelTimelock(A2)
NoWithdraw|
CheckSig(pk ») A CheckSig(pky) _In | Out
> [
IAsseg: CheckSig(pky,)
CheckLampSig(Ipk) n ut ChallengeAssert RelTimelock(A1)
ES) In

- out WronglyChallenged
In

L1 ” Out
CheckSig(pk) A CheckSig(pky,) =
ACheckLampSigsMatch(lpk p , epk) I:I

HashLock(H (msg))

ACheckSig(pk p)

Figure 5: Illustration of the Bitcoin transaction graph. Gray boxes represent transactions. A transaction’s
inputs and outputs are represented by orange and green boxes, respectively, inside the transaction. Num-
bers inside the inputs and outputs represent the amount of Bitcoin. Empty boxes indicate the minimum
amount required to cover the transaction fees. Arrows connect one transaction’s output used as an in-
put by another transaction. The <> shape indicates that the transaction output can be used as input by
any one out of multiple possible transactions. Locking scripts written on an arrow entering a transaction
must be satisfied by the transaction witness. Arrows entering a transaction posted by the Prover are blue
and arrows entering a transaction posted by the Verifier are red. A red CheckSig(pk;,) indicates that the
transaction taking that input is pre-signed by the Verifier during setup. Similarly, a blue CheckSig(pkp)
indicates that the transaction is pre-signed by the Prover during setup.

Timelocks. The Withdraw transaction must take as another input the 0-th output of Assert, which
carries the condition RelTimelock(Ag) in its locking script. This ensures that the Prover cannot post the
Withdraw transaction until Assert is posted on chain and the Bitcoin chain has grown by at least Ay blocks,
which should give enough time for the Verifier to “stop” a malicious Prover. How does the Verifier “stop”
the Prover?

Connector outputs. A connector output is an output of a transaction when there are multiple transac-
tions that could potentially spend it. For example, in Fig. 5, the 0-th output of Assert is a connector output
because it can be spent by either the Withdraw or the NoWithdraw transaction. If the Verifier posts a
NoWithdraw transaction within A blocks of the Assert transaction, he stops the Prover from posting the
Withdraw transaction because one of the inputs of the Withdraw transaction is no longer available.
Another connector output, the output of ChallengeAssert, ensures that it can be spent in one of two
ways. Either the Prover posts the WronglyChallenged transaction, whose HashLock(H (msg)) script re-
quires the Prover to have decrypted the secret msg. Or, the Verifier posts the NoWithdraw transaction
if the Prover doesn’t post the WronglyChallenged transaction within A; blocks of the ChallengeAssert
transaction. Posting NoWithdraw stops the Prover from ever posting the Withdraw transaction.

Commitment using Lamport signatures. The Assert transaction is used by the Prover to post 71 on
chain and the ChallengeAssert transaction is used by the Verifier to post the input labels for the proof 7
on chain. The locking scripts in these transactions’ inputs ensure that the Verifier indeed posts input labels
for the same proof 7; that the Prover posts.

The input of the Assert transaction carries a locking scriptCheckLampSig(Ipkp) which means the
Prover must provide his Lamport signature p on some message 7. The script does not care about the
message 1 itself, but only that the Prover has committed to some message.

Conveniently, the input labels of the garbled circuit are exactly the Lamport signatures of the input 7;

38

under the garbled circuit’s encoding key ek. So, the input of the ChallengeAssert transaction requires the
Verifier to provide a Lamport signature under the public key epk (corresponding to the encoding key ek).
Not only that, the script CheckLampSigsMatch(Ipk p, epk) requires the Verifier to also post a Lamport sig-
nature for the same message under the Prover’s Lamport key Ipk p. This ensures that the Verifier Lamport
signs the same m; that the Prover did, since the Verifier cannot forge a Lamport signature under Ipkp for
any message other than 7, without knowing the Prover’s Lamport secret key. This approach to matching
the labels was first proposed in [Che25].

Putting it all together. Together, the transaction graphs ensure that i) the Prover commits to a proof
element 7, ii) the Verifier posts input labels for the same proof 7y, iii) the Prover can post Withdraw only
if he decrypts msg, and iv) the Verifier can post NoWithdraw otherwise. We prove in Sec. 7 that these
transactions together with the witness encryption and garbled circuit satisfy the BiTVM-CoRE security
properties.

6.2 Verifying Setup Correctness

We augment the setup phase of the protocol to allow the Prover and Verifier to verify that the setup was
run correctly. This verification is done off-chain either party can abort if the verification fails, without
losing any money, because this is done before the Bitcoin is locked.

Verifying setup involves verifying the following:

1. Statement x (deterministic given Prover’s public key pkp)

2. Transactions 7, S (created deterministically given both parties’ Bitcoin public keys, Prover’s Lam-
port public key, hashes of the input labels, and hash of the secret msg)

3. Pre-signatures exchanged between the Prover and the Verifier (verified using the signature verifica-
tion algorithm)

4. Randomness used for encryption/garbling is independent of the proof element 7 (required for the
condition in Lem. 4). This is satisfied in many use-cases, e.g., when the relation requires a certain
transaction to be finalized in Ethereum, the Verifier cannot compute 7 at setup. Otherwise, this can
be achieved by adding some randomness to the Prover’s Groth16 witness.

5. Witness encryption ciphertext Ctsetup
6. Garbled circuit ciphertext ctgc and hashes of the input labels

What remains is to verify that the witness encryption ciphertext ctsetyp and the garbled circuit were
computed correctly with respect to the statement x and the secret msg. This verification, carried out off-
chain, can be achieved using various techniques from the literature, such as zero-knowledge proofs or
cut-and-choose. We adopt cut-and-choose for its relative simplicity and efficiency.

The cut-and-choose setup protocol is shown in Alg. 4 (Prover) and Alg. 5 (Verifier). In this protocol,
the Verifier generates N¢c instances, each with a secret msg;, independent randomness r;, and a garbled
circuit for f;(w) — rjm. The Verifier commits to all instances, then theProver randomly selects a subset
Z C [Ncc] of size Mcc. For every instance i ¢ Z, the Verifier “opens” the instance by revealing the
underlying secrets and the randomness used for both encryption and garbling. The Prover then recomputes
the corresponding ciphertexts and labels to check that they match the Verifier’s commitments. The Prover

finalizes the remaining Mcc instances by storing their ciphertexts. After verifying correctness for Ncc —

~1
M opened instances, the probability that all M¢c finalized instances are faulty is at most pe;y = (AA}CCC))

39

In the proving phase (Alg. 6), the Verifier reveals the input labels for all M finalized instances and the
Prover can withdraw Bitcoin if he successfully decrypts the secret for any one of these M¢c instances—an
event that succeeds except with probability pe;,. In Sec. 9, we explore different parameter choices and the
trade-offs in setup time, off-chain storage, and on-chain cost. We also discuss possible optimizations to
reduce on-chain cost by not posting all input labels on chain.

7 Security Proof

7.1 Security Proof Assuming Honest Setup

To warm up, we prove that the protocol in Algs. 1 and 2 is secure in the proving phase assuming that the
setup is run honestly by both Prover and Verifier. First, we define this honest-setup security.

Definition 16 (Honest-Setup u-Robustness). For all NP relations R, all PPT adversarial Verifiers V*, all
rounds r € IN, the following holds:

crs < Gen(R)

=1 .
(x,T,S,stp,sty) < out(Psetup(crs), Vaetup(crs)) 1—27*
P DS outp({Poros(crs, @, T, 8, stp, w), VViers,a, T, 8.stv))y) |~ —negl(a) @7
txe L)
(x,w) e R

Definition 17 (Honest-Setup Knowledge Soundness). For all NP relations R, all PPT adversarial Provers
P*, there exists a PPT extractor £ such that for every benign auxiliary input aux € {0, 1}PoVX);

crs « Gen(R)
(z,E(crs, =, T,S, (x,T,S,stp,sty) < out(Psetup(crs), Vsetup(crs)) 1—27" (31)
stp,T,aux)) € R = T < (P*(crs,x, T,S,stp,aux), Verove(crs, , T,S,sty)) | = — negl(})

d7 €N, dtx € S, JhonestH : tx € L

Pr

Note that the difference with respect to the BITVM-coRE security definitions (Sec. 3) is that setup is
run by Psetup and Vserup instead of an adversarial Prover P* or Verifier V*. Other than that, we provide
the outputs of the setup phase to the adversarial Prover P* or Verifier V* in the proving phase since they
were not participating in the setup phase. In the case of honest setup, the setup doesn’t abort by definition.

7.1.1 Proof of Honest-Setup u-Robustness

Theorem 6. Assuming Fgtc satisfies safety, uprc-liveness, and (T, s)-chain growth for s > uprc, the
protocol in Algs. 1 and 2 with Ay > 2uprc and As > uprc satisfies honest-setup u-robustness where
u="1"YAs+ uprc).

Proof. For a given NP relation R, let crs < Groth16.Gen(R) and let ¢, 7, S, stp, sty be generated as per
Alg. 1, where § = {tXwithdraw } (see Alg. 3 line 4). Suppose the Prover runs Ppyove as per Alg. 2 starting at
round 7.

We go through the steps of the Ppyoye algorithm and show that with overwhelming probability, txwithdraw €
E?ju, and we calculate the value u.

Alg. 2 line 3: Prover generates (71, 72, m3). By perfect correctness of Groth16 (Thm. 2, Def. 1), this is
a valid proof, i.e., Verify(crs, x, (71, w2, m3)) = 1.

Alg. 2 line 5: Prover calls Fg1c.WRITE(txassert) at round r when L, has height hg. txassert is valid
because it contains a valid Lamport signature for the key Ipkp (Alg. 2 line 4). It is also unstoppable with
respect to the state sty because stys does not contain the Lamport signing key Iskp. Therefore, due to
liveness, txassert € Lp[: h1] where hy < hg + uprc.

40

Case 1: tXChallengeAssert &€ Lp[: h1 + Az — uprc] for all rounds. When h(Lp) = hi + Ay, Prover calls
Ferc-WRITE(txwithdraw) (Alg. 2 line 7). txwithdraw is valid because i) its parents'” txpeposit and tXassert are
in the ledger, ii) its transaction witness contains the Verifier’s pre-signature obtained during the setup and
the Prover’s signature (Alg. 2 line 6), and iii) the timelock on its input (1) has expired. Moreover, tXwithdraw
is uprc-unstoppable when Ay > 2uprc because i) tXyopayout is not valid because if tXchallengeAssert
was included by the adversary at height > h; + As — uprc, the timelock on input (1) of tXnowithdraw
would not expire by height h1 + Ag + uprc, and ii) the adversary (not knowing skp) cannot produce
a transaction witness for any other transaction spending either input of txwithdraw- Therefore, due to
liveness, tXwithdraw € EP[: hg] where ho < h1 + Ag + uprc.

Case 2: tXChallengeAssert € L p[h3] for some hz < hi + Ay — uprc at some round.

1. Upon seeing tXchallengeAssert in £ p, Prover extracts the input labels posted by the Verifier in tXchallengeAssert
(Alg. 2 line 9). For tXchallengeAssert to be valid, its transaction witness must satisfy the script
CheckLampSigsMatch(Ipkp, ek) which requires a valid Lamport signature under the Prover’s key
Ipkp and a valid Lamport signature under the Verifier’s key ek for the same message. Since the
adversary does not know Iskp, he cannot produce a valid Lamport signature under Ipkp for any
message other than 7. Therefore, the extracted labels satisfy L < Encode(ek, 7).

2. Prover evaluates the garbled circuit (Alg. 2 line 10) and due to correctness of the garbled circuit
(Def. 3), Eval(ctgc, L) = Encprove(crs, m1;7) (Constr. 1).

3. Prover decrypts the message (Alg. 2 line 11) and due to correctness of the witness encryption scheme,
the Prover learns msg.

4. Prover constructs the transaction witness for the WronglyChallenged transaction (Alg. 2 line 12).
This transaction is valid because i) its parent tXchallengeAssert is in the ledger, and ii) its transaction
witness contains the message msg. This transaction is u ppc-unstoppable when Ay > uprc because
the adversary does not know skp and the timelock A; on its input (0) does not expire in u blocks.
Therefore, due to liveness, tXwronglyChallenged € £ p|: ha] where hy < h3 4+ uprc.

5. This guarantees that for all A > hy, tXnowithdraw & Lp[:] because input (1) of tXnowithdraw 1S 1O
longer available. This holds in particular for h = hy; + As.

6. The Prover calls Fgrc.WRITE(txwithdraw) When (L p) = hq + As. Following the same arguments

as in Case 1, this transaction is valid and unstoppable, therefore by liveness, txwithdraw € ﬁgg : ho)
where hy < h1 + Ag + upre.

Due to the chain growth property (Thm. 3), txwithdraw € E}"f“ where u = 771 (Ag + uprc).

7.1.2 Proof of Honest-Setup Knowledge Soundness

To prove knowledge soundness, we first combine the witness encryption scheme Constr. 1 and the garbled
circuit Constr. 2 and prove that no adversary given the ciphertexts of both and the input labels of the
garbled circuit can decrypt the message without knowing a valid witness for the relation R.

'7 A transaction tx is a parent of another transaction tx’ one of the inputs of tx’ is an output of tx.

41

Lemma 10. Let Gen, Encsetup, Encprove, Dec (Constr. 1) be an adaptively secure witness encryption scheme
(Def. 12) and let Garble, Encode, Eval (Constr. 2) be adaptively private (Def. 3). Then in the random oracle
model, for all NP relations R, for all PPT adversaries A, there exists a PPT extractor £ such that if

crs < Gen(R)

x < A(crs)

msg <s$ M

r < Fy

Ctsetup <— EnCeetup(crs, , msg;)

Pr |Hashppo(msg') = hmsg : Ctac, ek < Garble(r) =€
hmsg — HaShBTC(mSg)

epk? < Hashpro(ek)) Vi€ {1,...,2n},b€ {0,1}
T A(Ctsetupa ctGes hmsg; epk)

L + Encode(ek, 1)

msg’ « A(L)

then
Pr{(z,w) € R:w « &(crs, x, Ctsetup, Ctae, Amsg, €Pk, L)] > € — negl(\)

Proof. We reduce the lemma to the adaptive privacy of the garbling scheme (Def. 3) and to the adaptive
security of witness encryption (Def. 12) via a hybrid argument.

Games. Call the game in the lemma statement G. The adversary wins G¢ when Hashprc(msg’) =
hmsg, Where msg’ is the adversary’s output and hmsg = Hashprc(msg). Let the success probability of the
adversary in G be pg = €.

Game G (garbled circuit replaced by simulator): same as G except we replace the real garbling by
the simulator. Let C' be the circuit from the construction (on input 7 it outputs ctprove = 771). Run
ctge < Simy(topo(C)), sample epk < ({0, 1}>‘)2n, and set L < Sima (771, msg). The simulator Sim;
is assumed to pass state to Simy. The win condition remains Hash gy (msg’) = hmsg. The simulator also
programs the random oracle Hash ¢ such that if 7 is represented as (x € {0,1}",y € {0,1}"), then for
all j = 1,...,n,epk;’ = Hashprco(L;) and epk;’, ; = Hashpro(Lnj)-

crs < Groth16.Gen(R)

x < A(crs)

msg s M

T $]F:;

Ctsetup < Enceetup(Crs, &, msg;r)
p1 = Pr [Hashprc(msg’) = hmsg : hmsg < Hashpro(msg)

ctge < Sim;(topo(C))

epk < ({O7 1}’\)2n

71 < A(Ctsetup, Ctce, Amsg, €pk)
L+ Sim2(7r1, 7’7['1)

msg’ < A(L)

Go =~ (1 (indistinguishability by garbling). By the adaptive privacy of the garbling scheme (Def. 3)
and the programmability of the random oracle, for every PPT adversary the difference in the probability
that the adversary’s output satisfies the win condition is at most negl(\). Thus [py — p1| < negl(}), so
p1 > € — negl(A).

42

Game G (garbling replaced by actual circuit evaluation). Instead of giving the adversary the garbled
circuit ctgc, encoding public key epk, and the input labels L, the adversary chooses the proof element 7
and is directly given the evaluation of the garbled circuit, i.e., Ctprove = 77.

i crs < Groth16.Gen(R)

x < As(crs)

msg s M

T $$]FZ;

p2 = Pr |Hashpro(msg') = hmsg © Clsetup < Encsetup(Crs, @, msg;)
hmsg — HashBTc(msg)

T — A (Ctsetupa hmsg)

Ctprove — Encprove(crs, m1;7)
msg’ < Az (Ctprove)

G1 ~ (9. Since the adversary knows the circuit topology topo(C), it can run Sim; to simulate ctgc and
it can also sample epk randomly as was done in game (. Given r7y, the adversary can also run Sims to
simulate the labels L. Therefore, there exists a PPT A5 such that po = py.

Game (3 is the adaptive witness encryption security game from Def. 12.

i crs <— Groth16.Gen(R)

(x, msgy, msg;) < As(crs)
b+«s{0,1}

r s Fy

Clsetup < Encsetup(crsv T, msgy;)
T £ -AS(Ctsetup)

Ctprove <= Encprove(Crs, m1;7)
b« -/43 (Ctprove)

p3=Pr|b=10":

Step 3: Reduction from G to G3 (WE game). Given a PPT adversary Ay that wins Game G with
probability po > € —negl()), we construct a PPT adversary A3 for Game (3. In the random oracle model,
Ajs and the WE challenger share the same random oracle Hashg7¢.

Construction of A3 from As.

(i) On input crs: Run « < Ajz(crs). Sample msg,, msg; <$ M uniformly. Output (x, msg,, msg;) to
the WE challenger.

(i) On input Cteeryp: The challenger has computed Ctsetup < Encsetup(crs, &, msgy;) for unknown
b € {0,1}. In G, A; receives (Ctsetup; hmsg) With hmsg = Hashprc(msg); here the message is
msg;, so the correct hash is Hashprc(msgy,), but we do not know b. Guess the challenge bit: set
h = Hashprc(msgg). Run 71 < A (Ctsetup, 2) and output 7; to the challenger.

(iii) Oninput Ctprove: Runmsg’ < As(Ctprove). In G2, when Ay wins it outputs msg’ with Hash g (msg’) =
h = Hashprc(msgg). Set b’ := 0 if Hashpro(msg') = Hashpro(msg), b’ <= {0,1} otherwise.
Output b’ to the challenger.

Analysis.
1. Case b = 0: When b = 0, we set h = Hashprc(msg), so the view of Az matches Gy. With
probability ps, Ao outputs msg’ with Hashgrc(msg’) = h, in which case A3z outputs b = 0 = b.
With probability 1 — p, A outputs msg’ with Hash g (msg’) # h, in which case Pr[b/ = b] = 1.
Thus, Pr[t/ = b[b=0] = po + 1(1 —po) = 3 + 22.

43

2. Case b = 1: When b = 1, we set h = Hashpgpc(msgg), but the encrypted message is msg;. Since
Hashprc is a random oracle and msg, and msg; are chosen independently, Pr[Hashgrc(msg’) =
h] = negl(\). When Hash gy (msg’) # h, Pr[t = b] = 3. Thus, Pr[t/ = b|b = 1] = (1—negl(}\))3.

Putting the cases together, we get Pr[b/ = b] = 3 (1 + 22) + 2(1 — negl())) = 5 + 2 — negl(\).

Step 4: Extraction. By the adaptive security of witness encryption, there exists a PPT extractor £’ such
that

Pr[((crs, @, m), w) € R': w « &'(crs, @, m)] > € — negl()) > % —negl(A) < € — negl(A),

A witness for R’ is also a witness for R (see Eq. (24)). The lemma’s extractor £ has the view of the lemma’s
adversary A, which includes crs, x, 71, and thus can run £’ and succeed with probability ¢ — negl()\). [

Theorem 7. Assuming Fgtc satisfies safety, uprc-liveness, and (T, s)-chain growth for s > uprc, the
protocol in Algs. 1 and 2 with Ay > Ay 4 2uprc satisfies honest-setup knowledge soundness.

Proof. For a given NP relation R, let crs <— Groth16.Gen(R) and let «, 7, S, stp, sty be generated as per
Alg. 1, where S = {txwithdraw } (see Alg. 3 line 4). Suppose the Verifier runs Vprove as per Alg. 2. Suppose
that at some round r and some honest party H, txwithdraw = L[]

For txwithdraw to be valid, its ancestors tXassert and tXchallengeAssert must be in the ledger. Suppose
tXAssert = L7[ho]. Due to the timelock on input (1) of txwithdraws tXAssert must have been included at least
Ay blocks earlier, i.e., hg < h — As.

The Verifier, upon seeing txassert € Ly [ho] at some round, called Fgtc.WRITE(tXChallengeAssert)
(Alg. 2 line 20). This transaction is valid because its transaction witness contains both parties’ signatures,
the Prover’s Lamport signature and the Verifier’s Lamport signature for the same message 71 (Alg. 2 line 19).
This transaction is unstoppable because the adversary does not know ek or sky,. Due to liveness, tXchallengeAssert €
Ly [: hi] where hy < ho + uprc.

When h(L,,) = h1+Aq, the Verifier calls Fgtc.WRITE(tXnowithdraw) (Alg. 2 line 22). This transaction
is valid because its transaction witness contains the Prover’s pre-signature obtained during the setup and
the Verifier’s signature (Alg. 2 line 21), and the timelock A; on its input (1) has expired.

Case 1: tXNoWithdraw € ‘CH[hQ] for ho = h1 + A1 +upre < h+ A1+ 2uprc — Asg. Since Ay > Aq +
2uprc, ho < h. This is a contradiction because if txXnowithdraw € Ly [: h2], and txnowithdraw € Ly [t R,
then the ledger £; is invalid because both transactions contain a common input.

Case 2: txnowithdraw ¢ Lp[: he] for ha = hi + A1 + uprc. Due to liveness, this must mean that
tXNoWithdraw i not uprc-unstoppable with respect to the ledger £y, [h1 + A;] and the adversary’s state
st = (crs,x, T, S, stp, aux) for some auxiliary input aux. In particular, the adversary must have created a
sequence of blocks such that txnowithdraw is invalid when placed in one of the blocks. Since the timelock
A1 has already expired, the adversary must have created a sequence of blocks containing a valid trans-
action tx’ which shares an input with txnowithdraw- The adversary cannot create any other transaction
spending output (0) of txassert (Which is input (0) of txnowithdraw) Decause i) given As > Ay + uprc,
the timelock Ag will not expire by height Ay + A; + uprc and ii) the adversary does not know sk,
and so cannot produce a valid signature for any transaction other than txwithdraw- The adversary cannot
create any other transaction spending the output of txchallengeAssert (Which is input (1) of tXnowithdraw)
through the leaf CheckSig(pky) A RelTimelock(A;) because the adversary does not know sky,. There-
fore, the adversary can stop txnowithdraw Only by spending the output of tXchallengeAssert through the leaf
HashLock(Hashprc(msg)) A CheckSig(pkp). The transaction witness of such a transaction must contain

44

msg’ such that Hashpprc(msg’) = Hashpre(msg). Subsequently, from Lem. 10, there exists an extractor
€ who has the same view as P* and can extract w such that (x, w) € R with probability close to 1.
O

Theorem 8. Assuming Fgtc satisfies safety, uprc-liveness, and (7, s)-chain growth for s > uprc, the
protocol in Algs. 1 and 2 with A1 > 2uprc and Ay > Ay + 2upro satisfies honest-setup knowledge
soundness and honest-setup u-robustness where u = 7~ (Aa + uprc).

Proof. From Thm. 7 and Thm. 6. O

8 Extensions and Optimizations

8.1 Multiple Verifiers and Provers

In this paper, we defined BiTVM-CORE as a two-party protocol. The BiTVM-coRE definition and the BABE
protocol can be easily extended to capture multiple Verifiers (as in BITVM2-core [LAA25]) so that sound-
ness holds as long as at least one Verifier is honest. Similarly, BABE can support multiple Provers so that
the first Prover to generate a valid proof for his statement can withdraw the Bitcoin.

8.2 Optimistic Path

Leveraging techniques from BitVM2 [LAA™25], BABE can incorporate an optimistic path that bypasses
the full proving phase when the Verifier can independently confirm the statement. For instance, if the
statement is “Bob repaid his loan on Ethereum”, the Verifier can directly check the finalized repayment
transaction on the Ethereum blockchain. In such situations, neither a proof from the Prover nor the pub-
lication of input labels by the Verifier is necessary on Bitcoin, thus significantly reducing on-chain costs.

9 Evaluation

9.1 Honest Setup

We begin with the metrics in Fig. 2 for the honest-setup protocol. We also justify the values used for
BitVM3 in Fig. 2.

On-chain cost. The BABE on-chain cost in Fig. 2 is based on the dispute-path transactions Assert,
ChallengeAssert, and WronglyChallenged that are directly responsible for the on-chain proof verification,
using the vSizes reported in Tab. 1. This is the basis for the $56.90 on-chain cost entry reported for BABE
in Fig. 2. We estimate USD cost using 1 sat ~ 0.000955 USD (i.e., 1 BTC ~ 95,500 USD).

Table 1: On-chain cost for the honest-setup experiment in Fig. 2

Transaction vSize (vB) Fee (sat) Feerate (sat/vB) USD
Assert 9,240 20,611 2.23 19.68
ChallengeAssert 17,400 38,673 2.22 36.93
WronglyChallenged 149 302 2.02 0.29

The BitVM3 on-chain cost entry in Fig. 2 is based on the corresponding dispute-path transactions
from a previously published BitVM3 on-chain experiment, normalized to the same fee rate as the BABE
experiment.

45

Off-chain runtime breakdown. The setup time (174.90 ms) and decryption time (126.53 ms) reported
for BABE in Fig. 2 are single-instance point estimates, according to our measurements. The detailed break-
down numbers below come from a representative run whose totals differ from these point estimates by at
most ~ 1.5%. To justify where this time goes, we decompose the dominant off-chain paths into protocol
subroutines that correspond to steps in Algs. 1 and 2 and the constructions in Constr. 1 and Sec. 5.6.

On the setup path, the benchmark totals 177.398 ms and is dominated by generation of the DRE-
selection tables used for the DRE encoding step in Sec. 5.6. (136.896 ms, 77.17%).

The remaining setup components are the privacy-free Boolean gadget at 16.808 ms (9.47%), that vali-
dates the curve point and derives the feature bits (Sec. 5.6). plus 18.029 ms (10.16%) of garbling overhead
and 5.665 ms (3.19%) of non-garbling work (WE setup, Lamport-key hashes, and message commitments).

On the decryption path, the benchmark totals 125.834 ms and is dominated by evaluation of the gar-
bled circuit (Alg. 2 and Sec. 5.6). (111.538 ms, 88.64%), plus 8.888 ms (7.06%) of overhead from label

conversions/packing.

Off-chain storage (ciphertext size). The BABE storage entry in Fig. 2 is the serialized size of the per-
instance off-chain setup artifact that the Prover retains through the protocol (cf. Sec. 6): the witness-
encryption setup ciphertext ctseryp from Constr. 1, the garbled-circuit ciphertext ctgc from Constr. 2 (used
to derive ctprove), and the associated hashes/commitments referenced by the Bitcoin scripts. Using com-
pressed canonical serialization of the implementation artifact, this totals 22.16 MiB, according to our cal-
culations.

The witness-encryption ciphertexts (Ctsetup, Ctprove) contribute 480 B. The garbled-circuit ciphertext
ctgc dominates and splits into 6.35 MiB for the Boolean-Yao gadgets that validate 7; and derive the feature
vector u(7y) (Sec. 5) and 15.77 MiB for the DRE-selection tables implementing the DRE encoding (Def. 14
and Thm. 4); the remaining ~ 38 KB are Lamport-key hashes and message commitments plus serialization
overhead.

The 15.77 MiB DRE term matches the sparsity-aware estimate: for n = 254 (Sec. 5), the DRE encoding
step stores

n((Bn+1)+ @n+1)+ (n+1)) = n(8n+3) = 516,890

serialized field elements (Jacobian X,Y, Z with (3n + 1, 4n + 1, n + 1) field elements per bit). With
32-byte canonical serialization per field element, this is

516,890 x 32 = 16,540,480 B ~ 15.77 MiB.

BitVM3 reference point (ciphertext size). The BitVM3 storage entry in Fig. 2 follows from the re-
ported 2.7 billion non-free gates [Bit25b]; using half-gates garbling and interpreting this count as half-
gates (one 16-byte ciphertext per non-free gate), this yields 2.7 x 10° x 16 B ~ 41,200 MiB.

9.2 Cut-and-Choose Setup Verification
We use cut-and-choose to verify setup correctness against a malicious setup generator. We refer to Algs. 4

and 5 and App. B for the protocol definition.

Off-chain setup cost. Tab. 2 reports setup cost between two protocol roles (Prover and Verifier) exe-
cuted on a single machine for different (Ncc, Mcc) choices; timings exclude network latency. We addi-
tionally report peak RAM usage and a breakdown of garbling and evaluation components.'

'8These components correspond to the generation and use of the full protocol ciphertexts: in each cut-and-choose instance the
Verifier produces the witness-encryption setup ciphertext ctsetup (Constr. 1) and the garbled-circuit ciphertext ctgc (Constr. 2);

46

Table 2: BABE cut-and-choose setup cost for different parameter choices.

Ncc Mcc Setuptime Peak GarblingEvaluation

RAM (s) (s)

usage

(GB)
78 10 0:06 1.27 1.44 1.45
95 9 0:06 1.21 1.85 1.32
124 8 0:07 1.29 2.54 1.18
181 7 0:09 1.05 3.57 1.05
307 6 0:14 1.12 6.32 0.86
669 5 0:28 1.46 13.22 0.74
2,268 4 1:37 1.83 49.15 0.59

18,756 3 12:31 3.93 383.87 0.41

Ncc: total cut-and-choose instances. Mcc: finalized instances for evaluation. Setup time is wall-clock time for cut-and-choose
setup (timings exclude network latency). Setup time includes both Prover and Verifier computation. Garbling time is measured
on the garbler node for all Ncc instances (not summed across both roles). Evaluation time is total decoding time for all finalized
instances using the on-chain input labels (Sec. 5.6). Peak RAM usage is the maximum RAM used during execution. Hardware:
CPU: AMD Ryzen 7 7840U(16 CPU);.

Parameter choices and statistical security. We choose the (Ncc, Mcc) pairs in Tab. 2 so that the

~1
soundness error of the cut-and-choose setup (Z\]\/.[fcc(é) is at most 2740, In this step, the Verifier opens

Ncc — Mcc randomly chosen instances and retains Mcc unopened instances as finalized. Soundness can
fail only if all opened instances are correct while all M¢c finalized instances are incorrect.

Comparison to BitVM3. As an open-sourced reference point for garbled-circuit-based Groth16 verifi-
cation, we additionally report cut-and-choose setup costs for BitVM3 [Bit25b]. To make the comparison
parameter-aligned, we use the same (Ncc, Mcc) pairs as in Tab. 2 and report setup time and the gar-
bling/evaluation breakdown. Other garbled-circuit-based approaches do not provide public implementa-
tions and benchmarks at comparable levels of detail. We use (Ncc, Mcc) = (181, 7) as the main operating
point for BitVM3, since the garbling time at this point is not very large while the on-chain footprint remains
acceptable. We discuss augmenting BitVM3 with zk-SNARK-soldering in Sec. 9.3.

Operating points. For BitVM3, we primarily use (Ncc, Mcc) = (181, 7); for BABE we use Mcc = 4
in the end-to-end evaluation (cf. Tabs. 2 and 6).

On-chain implication. In our end-to-end on-chain evaluation we focus on Mcc = 4. Cut-and-choose
only guarantees that at least one of the 4 instances is correct with high probability but the Prover doesn’t
know which one. Hence in the baseline, four sets of input labels must be posted on chain. This directly
drives the on-chain footprint and motivates soldering.

9.3 Soldering (zk-SNARK-soldering)

zk-SNARK-soldering is an optimization that reduces the number of distinct on-chain input-label sets from
Mcc down to one, by binding finalized instances to a base instance and proving correctness of this binding

the evaluation component measures the Prover’s evaluation of ctgc on the on-chain input labels (Sec. 5.6) to derive the proving
ciphertext ctprove (Sec. 6.1.2).

47

Table 3: BitVM3 cut-and-choose setup cost for different parameter choices (same (Ncc, Mcc) grid as
Tab. 2).

Ncc Mcc Setup time Garbling Evaluation

78 10 1:28:54 0:44:27 0:03:45
95 9 1:47:58 0:53:59 0:03:45
124 8 2:19:06 1:09:33 0:03:45
181 7 3:24:24 1:42:12 0:03:45
307 6 5:43:24 2:51:42 0:03:45
669 5 12:23:06 6:11:33 0:03:45
2,268 4 41:02:00 20:31:00 0:03:45

Times are in h:mm:ss format. Garbling time is from [Bit25b]; setup time is estimated as twice the garbling time. Evaluation time
is expected to be negligible relative to garbling. Hardware: CPU: AMD Ryzen 7 7840U(16 CPU);.

with a soldering zk-SNARK proof. Our prototype uses the SP1 zkVM as the proving backend, but the stack
is interchangeable and could be replaced by any zk-SNARK or zk-STARK system.

Soldering idea (informal). Let Z denote the set of finalized instances and let b = min(Z) be a base
instance. Let {L; j 0, L; j1 ?21 denote the garbler’s per-wire label pairs for instance ¢ (2n is the number of
input bits, with n as in Sec. 5). For each i € 7\ {b}, define the per-wire, per-bit deltas A; ; 3 := L; j 3® Ly j 3
for § € {0,1},7 € [2n]. The soldering zk-SNARK proof attests that these deltas are consistent with the
commitments fixed during cut-and-choose, enabling derivation of all finalized per-wire label pairs from the
base instance’s labels. Equivalently, the proof certifies that there exists a single collection of per-wire label
pairs for the base instance and for all other finalized instances, and that the deltas {A; ; g} are exactly the
XOR differences between these labels. This check is performed by verifying a single soldering zk-SNARK
proof, and any verification failure aborts the protocol.

Soldering reduces on-chain cost because only the base instance’s tag set is posted on-chain. All other
finalized instances’ per-wire label pairs can be derived off-chain from the base labels and the proven deltas
{A; g}, so the on-chain footprint no longer scales with Mcc.

We focus on Mcc = 4 because soldering introduces additional zk-SNARK proving time during setup.
In particular, approaches that treat each finalized instance separately lead to overhead that grows with
Mcc. We therefore focus on the Mcc = 4 operating point in the end-to-end evaluation, and use Mcc = 5
only as a reference point when discussing scaling.

We report soldering times for Mcc € {5,6,7} (BitVM3) and Mcc € {4,5,6} (BABE) in Tabs. 4 and 5,
and compare the baseline and zk-SNARK-soldering configurations at Mcc = 4 in Tab. 6.

BitVM3 with zk-SNARK-soldering. We can also augment BitVM3 with zk-SNARK-soldering to reduce
the on-chain input-label footprint from Mcc sets to one. The soldering overhead depends on Mcc and the
number of input labels, but is independent of the specific garbled circuit; thus the BABE soldering times in
Tab. 5 serve as a lower bound, while the BitVM3 soldering times in Tab. 4 apply directly to BitVM3. Total
setup time for BitVM3 with zk-SNARK-soldering is the sum of the C&C setup time from Tab. 3 and the
corresponding soldering overhead.

Implementation. All reported measurements are obtained from our prototype implementation.

43

Table 4: BitVM3 soldering overhead (1019 labels) as a function of the number of finalized instances.

Mcc Soldering time (s)

5 1529.11
6 1740.24
7 1977.10

Soldering time is the time to generate a zk-SNARK proof attesting to the correctness of input-label bindings across Mcc
finalized instances. Hardware: CPU: AMD Ryzen 7 7840U(16 CPU);.

Table 5: BABE soldering overhead (508 labels) as a function of the number of finalized instances.

Mcc Soldering time (s)

4 745.50
5 865.59
6 969.37

Soldering time is the time to generate a zk-SNARK proof attesting to the correctness of input-label bindings across Mcc
finalized instances. Hardware: CPU: AMD Ryzen 7 7840U(16 CPU);.

Table 6: Off-chain timings at the operating point Mcc = 4.

Configuration Setup time Evaluation
for Verifier time (s)
(s)
C&C baseline 49.15 0.59
C&C + zk-SNARK-soldering 49.15 + 0.59
745.50s

9.4 Verifiable Shamir Secret Sharing

C&C + VSSS (general idea). As a possible improvement over the C&C baseline, we consider com-
pressing the on-chain input-label footprint using verifiable Shamir secret sharing (VSSS), inspired by
Glock [Eag25] and the “efficient verifiable cut-and-choose” design notes [Lab25, BOB25b]. In the setup
phase, the Verifier secret-shares the Prover input labels across instances and publishes commitments to the
shares, while binding each instance to the committed values (e.g., via hashes and nonce commitments). In
the proving phase, the Prover interpolates from the committed shares to reconstruct the input labels for
the Mcc finalized instances and proceeds as in the baseline. Conceptually, this targets the same bottle-
neck as zk-SNARK-soldering—reducing the number of distinct on-chain input-label sets from Mcc down
to one—but replaces zk proving with interpolation and commitment checks.

BitVM3 baseline at (Ncc, Mcc) = (181,7). We continue to use (Ncc, Mcc) = (181,7) as the main
BitVM3 operating point (cf. Tab. 3). At this point, the reported BitVM3 setup time is 3:24:24 (with
garbling time 1:42:12).!? To isolate what VSSS adds, we report below the incremental VSSS overhead as
a function of (Ncc, Mcc).

!“See the caption of Tab. 3 for how setup time is estimated from garbling time.

49

VSSS overhead across parameter sets. Tab. 7 reports the incremental overhead of adding the VSSS
layer on top of cut-and-choose for different (Ncc, Mcc) choices.

These measurements come from a draft prototype intended to estimate the overhead under a mock-
on-chain design (no end-to-end transaction integration). At the smallest operating point (Ncc, Mcc) =
(78,10), the measured setup-time overhead is 32.96 s. Considering that N¢c garbling of BABE will take
less than a second, we can estimate that the setup time will be around 40 seconds.

Table 7: Incremental overhead of VSSS over cut-and-choose for different parameter choices (prototype
measurements).

Ncc Mcc Setup time overhead (s) Peak RAM (GB)

78 10 32.96 0.98
95 9 40.86 1.20
124 8 53.84 1.57
181 7 83.93 2.31
307 6 159.23 3.92
669) 332.61 8.56

Measurements run the VSSS layer standalone with the corresponding (Ncc, Mcc) parameters and 508 input bits. Setup time
overhead is wall-clock time for setup between two roles (Prover and Verifier) executed on a single machine (timings exclude
network latency). Hardware: CPU: AMD Ryzen 7 7840U(16 CPU);.

On-chain integration note. An end-to-end on-chain integration for VSSS still requires a concrete
transaction design that ties the committed shares to the on-chain protocol logic (e.g., via adaptor signatures
(ad-sig) and nonce commitments). As a result, we do not yet report on-chain costs for VSSS. Nevertheless,
relative to prior BitVM3-centric experiments [BOB25b] we expect substantially lower on-chain footprint,
since BABE requires far fewer evaluator input labels than BitVM3.

Acknowledgements

We thank the Babylon Labs team members for performing the on-chain experiments and for designing
the illustrations. We thank Liam Eagen and Ying Tong Lai for early discussions about [EL26]. We thank
Ertem Nusret Tas for reviewing the security proofs of the paper. The work of first and second authors
is supported in part by the AFOSR Award FA9550-24-1-0156, and research grants from the Bakar Fund,
the Stellar Development Foundation, Supra Inc., and Byzantine Research Inc. The work of the fifth author
is partially supported by the Stanford Input-Output Global Research Hub. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of these institutes.

References

[AAL*24] Lukas Aumayr, Zeta Avarikioti, Robin Linus, Matteo Maffei, Andrea Pelosi, Christos Stefo, and
Alexei Zamyatin. BitVM: Quasi-turing complete computation on Bitcoin. Cryptology ePrint
Archive, Report 2024/1995, 2024. 4

[AFP25] Amit Agarwal, Rex Fernando, and Benny Pinkas. Efficiently-thresholdizable batched iden-
tity based encryption, with applications. In Yael Tauman Kalai and Seny F. Kamara, editors,
CRYPTO 2025, Part III, volume 16002 of LNCS, pages 69-100. Springer, Cham, August 2025. 8

50

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC°. In 45th FOCS,
pages 166—175. IEEE Computer Society Press, October 2004. 9

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with con-
stant size ciphertext. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages
440-456. Springer, Berlin, Heidelberg, May 2005. 11

[BC16] Olivier Blazy and Céline Chevalier. Structure-preserving smooth projective hashing. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASTACRYPT 2016, Part II, volume 10032 of LNCS,
pages 339-369. Springer, Berlin, Heidelberg, December 2016. 7, 21

[BCMS20] Benedikt Biinz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Recursive proof
composition from accumulation schemes. In Rafael Pass and Krzysztof Pietrzak, editors,
TCC 2020, Part II, volume 12551 of LNCS, pages 1-18. Springer, Cham, November 2020. 10

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable
one-way functions. In David B. Shmoys, editor, 46th ACM STOC, pages 505-514. ACM Press,
May / June 2014. 20

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge
via cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 276-294. Springer, Berlin, Heidelberg, August 2014. 10

[BFOQ25] Jan Bormet, Sebastian Faust, Hussien Othman, and Ziyan Qu. BEAT-MEV: Epochless approach
to batched threshold encryption for MEV prevention. In Lujo Bauer and Giancarlo Pellegrino,
editors, USENIX Security 2025, pages 3457-3476. USENIX Association, August 2025. 8

[BHR12a] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In Xiaoyun Wang and Kazue Sako, editors,
ASIACRYPT 2012, volume 7658 of LNCS, pages 134-153. Springer, Berlin, Heidelberg, December
2012. 15, 33

[BHR12b] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting
Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 2012, pages 784-796. ACM Press,
October 2012. 14

[Bit25a] Bitlayer. Bitvm bridge testnet | bitlayer. https://docs.bitlayer.org/docs/BitVMBridge/
Multi-Chain/testnet/, 2025. Last accessed: 2024-01-08’. 1

[Bit25b] BitVM. Garbled snark verifier. https://github.com/BitVM/garbled-snark-verifier, 2025. GitHub
repository. Last accessed: 2026-01-11. 6, 46, 47, 48

[BL20] Fabrice Benhamouda and Huijia Lin. Mr NISC: Multiparty reusable non-interactive secure com-
putation. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS,
pages 349-378. Springer, Cham, November 2020. 8

[BMM™21] Benedikt Biinz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. Proofs for in-
y y yag Y,
ner pairing products and applications. In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part III, volume 13092 of LNCS, pages 65-97. Springer, Cham, December 2021.
10

51

https://docs.bitlayer.org/docs/BitVMBridge/Multi-Chain/testnet/
https://docs.bitlayer.org/docs/BitVMBridge/Multi-Chain/testnet/
https://github.com/BitVM/garbled-snark-verifier

[BNO6]

[BOB25a]

[BOB25b]

[Boy08]

[BP15]

[Cat25]

[CFHT22]

[CFK24]

Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order.
In Bart Preneel and Stafford Tavares, editors, SAC 2005, volume 3897 of LNCS, pages 319-331.
Springer, Berlin, Heidelberg, August 2006. 6

BOB. Bob | bridge. https://app.gobob.xyz/en/bridge, 2025. Last accessed: 2024-01-08’. 1

BOB. BOB lowers onchain costs for BitVM3 via cut-and-choose implementation to $10.91.
https://gobob.xyz/blog/bob-lowers-onchain-costs-for-bitvm3, December 2025. BOB Blog. Last
accessed: 2026-01-12. 49, 50

Xavier Boyen. The uber-assumption family (invited talk). In Steven D. Galbraith and Ken-
neth G. Paterson, editors, PAIRING 2008, volume 5209 of LNCS, pages 39-56. Springer, Berlin,
Heidelberg, September 2008. 11

Elette Boyle and Rafael Pass. Limits of extractability assumptions with distributional auxiliary
input. In Tetsu Iwata and Jung Hee Cheon, editors, ASTACRYPT 2015, Part II, volume 9453 of
LNCS, pages 236-261. Springer, Berlin, Heidelberg, November / December 2015. 20

Catalyst. Bitcoin prism. https://github.com/catalystsystem/bitcoinprism-evm, 2025. GitHub
repository. Last accessed: 2026-01-14. 4

Matteo Campanelli, Dario Fiore, Semin Han, Jihye Kim, Dimitris Kolonelos, and Hyunok Oh.
Succinct zero-knowledge batch proofs for set accumulators. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 455-469. ACM Press, November 2022.
10

Matteo Campanelli, Dario Fiore, and Hamidreza Khoshakhlagh. Witness encryption for suc-
cinct functional commitments and applications. In Qiang Tang and Vanessa Teague, editors,
PKC 2024, Part II, volume 14602 of LNCS, pages 132-167. Springer, Cham, April 2024. 8

[CGPW25] Arka Rai Choudhuri, Sanjam Garg, Guru-Vamsi Policharla, and Mingyuan Wang. Practical

[Che25]

[Cit25]

[DLT*24]

[Dry17]

[Eag25]

[EL26]

mempool privacy via one-time setup batched threshold encryption. In Lujo Bauer and Giancarlo
Pellegrino, editors, USENIX Security 2025, pages 3477-3495. USENIX Association, August 2025.
8

Weikeng Chen. SoK: BitVM with succinct on-chain cost. Cryptology ePrint Archive, Report
2025/1253, 2025. 5, 39

Citrea. Citrea bridge | citrea. https://citrea.xyz/bridge, 2025. Last accessed: 2024-01-08’. 1

Xinshu Dong, Orfeas Stefanos Thyfronitis Litos, Ertem Nusret Tas, David Tse, Robin Linus
Woll, Lei Yang, and Mingchao Yu. Remote staking with economic safety. CoRR, abs/2408.01896,
2024. 5

Thaddeus Dryja. Discreet log contracts. https://static1.squarespace.com/static/
6675a0d5fc9e317c60db9b37/t/66e4597b7f23866561a64a95/1726241147904/discreet+log+
contracts+paper.pdf, 2017. Last accessed: 2026-01-12. 6

Liam Eagen. Glock: Garbled locks for Bitcoin. Cryptology ePrint Archive, Report 2025/1485,
2025. 5, 6, 49

Liam Eagen and Ying Tong Lai. Argo MAC: Garbling with elliptic curve MACs. Cryptology
ePrint Archive, Paper 2026/049, 2026. 1, 9, 23, 50

52

https://app.gobob.xyz/en/bridge
https://gobob.xyz/blog/bob-lowers-onchain-costs-for-bitvm3
https://github.com/catalystsystem/bitcoinprism-evm
https://citrea.xyz/bridge
https://static1.squarespace.com/static/6675a0d5fc9e317c60db9b37/t/66e4597b7f23866561a64a95/1726241147904/discreet+log+contracts+paper.pdf
https://static1.squarespace.com/static/6675a0d5fc9e317c60db9b37/t/66e4597b7f23866561a64a95/1726241147904/discreet+log+contracts+paper.pdf
https://static1.squarespace.com/static/6675a0d5fc9e317c60db9b37/t/66e4597b7f23866561a64a95/1726241147904/discreet+log+contracts+paper.pdf

[FBFL25] Ariel Futoransky, Fadi Barbara, Ramses Fernandez, and Gabriel Larotonda. OHMG: One hot
modular garbling. Cryptology ePrint Archive, Report 2025/2338, 2025. 6

[FHAS24] Nils Fleischhacker, Mathias Hall-Andersen, and Mark Simkin. Extractable witness encryption
for KZG commitments and efficient laconic OT. In Kai-Min Chung and Yu Sasaki, editors,
ASIACRYPT 2024, Part II, volume 15485 of LNCS, pages 423—-453. Springer, Singapore, December
2024. 8

[FKdP23] Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo commitments: Registration-
based encryption and key-value map commitments for large spaces. In Jian Guo and Ron
Steinfeld, editors, ASIACRYPT 2023, Part V, volume 14442 of LNCS, pages 166—200. Springer,
Singapore, December 2023. 8

[FKN94] Uri Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation. In Proceedings
of the 26th Annual ACM Symposium on Theory of Computing, STOC ’94, pages 554-563, New
York, NY, USA, 1994. ACM. 9, 29

[GGKS25] Sanjam Garg, Aarushi Goel, Dimitris Kolonelos, and Rohit Sinha. Jigsaw: Doubly private smart
contracts. Cryptology ePrint Archive, Report 2025/1147, 2025. 10

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EU-
ROCRYPT 2013, volume 7881 of LNCS, pages 626—645. Springer, Berlin, Heidelberg, May 2013.
12

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its ap-
plications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC,
pages 467-476. ACM Press, June 2013. 6, 14

[GGW24] Sanjam Garg, Aarushi Goel, and Mingyuan Wang. How to prove statements obliviously? In
Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part X, volume 14929 of LNCS, pages
449-487. Springer, Cham, August 2024. 10

[GHK™"25] Sanjam Garg, Mohammad Hajiabadi, Dimitris Kolonelos, Abhiram Kothapalli, and Guru-Vamsi
Policharla. A framework for witness encryption from linearly verifiable SNARKSs and applica-
tions. In Yael Tauman Kalai and Seny F. Kamara, editors, CRYPTO 2025, Part III, volume 16002
of LNCS, pages 504—539. Springer, Cham, August 2025. 8, 21

[GIKMO00] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy in private
information retrieval schemes. J. Comput. Syst. Sci., 60(3):592-629, 2000. 5

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin backbone protocol: Analysis
and applications. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II,
volume 9057 of LNCS, pages 281-310. Springer, Berlin, Heidelberg, April 2015. 15, 18

[GKP'13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. How to run Turing machines on encrypted data. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 536-553. Springer, Berlin, Heidelberg,
August 2013. 6, 13

[GKPW24] Sanjam Garg, Dimitris Kolonelos, Guru-Vamsi Policharla, and Mingyuan Wang. Threshold
encryption with silent setup. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024,
Part VII, volume 14926 of LNCS, pages 352-386. Springer, Cham, August 2024. 1, 7, 8, 21

53

[GMN22]

[Gro16]

[Her18]

[Hio22]

[IKO0O]

[IK02]

[Ish13]

[IW14]

[KS08]

[KST22]

[LAAT25]

[Lab25]

[Lam79]

Nicolas Gailly, Mary Maller, and Anca Nitulescu. SnarkPack: Practical SNARK aggregation. In
Ittay Eyal and Juan A. Garay, editors, FC 2022, volume 13411 of LNCS, pages 203-229. Springer,
Cham, May 2022. 10

Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and
Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305-326.
Springer, Berlin, Heidelberg, May 2016. 6, 12, 13

Maurice Herlihy. Atomic cross-chain swaps. arXiv preprint arXiv:1801.09515, 2018. Last ac-
cessed: 2026-01-12. 5

Leona Hioki. Trustless bitcoin bridge creation with witness encryption. https://ethresear.ch/
t/trustless-bitcoin-bridge-creation-with-witness-encryption/11953, February 2022. Ethereum
Research. Last accessed: 2026-01-11. 7

Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with ap-
plications to round-efficient secure computation. In 41st FOCS, pages 294-304. IEEE Computer
Society Press, November 2000. 9

Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect ran-
domizing polynomials. In Peter Widmayer, Francisco Triguero Ruiz, Rafael Morales Bueno,
Matthew Hennessy, Stephan Eidenbenz, and Ricardo Conejo, editors, ICALP 2002, volume 2380
of LNCS, pages 244-256. Springer, Berlin, Heidelberg, July 2002. 9

Yuval Ishai. Randomization techniques for secure computation. In Manoj Prabhakaran and
Amit Sahai, editors, Secure Multi-Party Computation, volume 10 of Cryptology and Information
Security Series, pages 222-248. 10S Press, 2013. 9, 23, 28, 29

Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their applications. In Javier Esparza,
Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, ICALP 2014, Part I, volume
8572 of LNCS, pages 650-662. Springer, Berlin, Heidelberg, July 2014. 9

Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and
applications. In Luca Aceto, Ivan Damgard, Leslie Ann Goldberg, Magnus M. Halldérsson,
Anna Ingo6lfsdottir, and Igor Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS,
pages 486-498. Springer, Berlin, Heidelberg, July 2008. 6, 15

Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-knowledge argu-
ments from folding schemes. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022,
Part IV, volume 13510 of LNCS, pages 359-388. Springer, Cham, August 2022. 10

Robin Linus, Lukas Aumayr, Zeta Avarikioti, Matteo Maffei, Andrea Pelosi, Orfeas Thyfronitis
Litos, Christos Stefo, David Tse, and Alexei Zamyatin. Bridging Bitcoin to second layers via
BitVM2. Cryptology ePrint Archive, Report 2025/1158, 2025. To appear in Usenix Security 2026.
1,4,5,6, 18, 45

Alpen Labs. Efficient verifiable cut and choose for glock. https://hackmd.io/@alpen/
B1QfSSO5gg, 2025. HackMD. Last accessed: 2026-01-12. 49

Leslie Lamport. Constructing digital signatures from a one-way function. Technical Report
SRI-CSL-98, SRI International Computer Science Laboratory, October 1979. 5, 15, 16

54

https://ethresear.ch/t/trustless-bitcoin-bridge-creation-with-witness-encryption/11953
https://ethresear.ch/t/trustless-bitcoin-bridge-creation-with-witness-encryption/11953
https://hackmd.io/@alpen/B1QfSSO5gg
https://hackmd.io/@alpen/B1QfSSO5gg

[Lin23]

[Lin24]

[LP07]

[LP09]

[Mau05]

[MLLP25]

[Nako9]

Robin Linus. Bitvm: Compute anything on bitcoin. https://bitvm.org/bitvm.pdf, December
2023. Last accessed: 2024-01-08’. 4

Robin Linus. Bitvm 3s - garbled circuits for efficient computation on bitcoin. https://bitvm.org/
bitvm3.pdf, 2024. Last accessed: 2024-01-08’. 1, 5

Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of
LNCS, pages 52-78. Springer, Berlin, Heidelberg, May 2007. 6

Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party compu-
tation. Journal of Cryptology, 22(2):161-188, April 2009. 14, 33

Ueli M. Maurer. Abstract models of computation in cryptography (invited paper). In Nigel P.
Smart, editor, 10th IMA International Conference on Cryptography and Coding, volume 3796 of
LNCS, pages 1-12. Springer, Berlin, Heidelberg, December 2005. 10, 11

Varun Madathil, Arthur Lazzaretti, Zeyu Liu, and Charalampos Papamanthou. TACITA:
Threshold aggregation without client interaction. Cryptology ePrint Archive, Report 2025/1579,
2025. 8

Satoshi Nakamoto. Bitcoin open source implementation of p2p currency. https://satoshi.
nakamotoinstitute.org/posts/p2pfoundation/1/, 2009. Last accessed: 2024-01-08’. 4

[OKMZ25] Michele Orru, George Kadianakis, Mary Maller, and Greg Zaverucha. Beyond the circuit: How

to minimize foreign arithmetic in ZKP circuits. CiC, 2(1):23, 2025. 10

[OWWB20] Alex Ozdemir, Riad S. Wahby, Barry Whitehat, and Dan Boneh. Scaling verifiable computa-

[PD16]

[PHGR13]

[Rub24]

[SGB24]

[Sho97]

[Wik20]

tion using efficient set accumulators. In Srdjan Capkun and Franziska Roesner, editors, USENIX
Security 2020, pages 2075-2092. USENIX Association, August 2020. 10

Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant
payments. https://lightning.network/lightning-network-paper.pdf, 2016. Last accessed: 2026-
01-12. 5

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238-252. IEEE
Computer Society Press, May 2013. 12

Jeremy Rubin. Delbrag. https://rubin.io/public/pdfs/delbrag.pdf, 2024. Last accessed: 2024-01-
08’. 1,5

Istvan Andras Seres, Noemi Glaeser, and Joseph Bonneau. Short paper: Naysayer proofs. In
Jeremy Clark and Elaine Shi, editors, FC 2024, Part II, volume 14745 of LNCS, pages 22-32.
Springer, Cham, March 2024. 5

Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256—-266. Springer, Berlin, Heidelberg, May
1997. 10

Bitcoin Wiki. Atomic swap. https://en.bitcoin.it/wiki/Atomic_swap, 2020. Last accessed: 2026-
01-12. 5

55

https://bitvm.org/bitvm.pdf
https://bitvm.org/bitvm3.pdf
https://bitvm.org/bitvm3.pdf
https://satoshi.nakamotoinstitute.org/posts/p2pfoundation/1/
https://satoshi.nakamotoinstitute.org/posts/p2pfoundation/1/
https://lightning.network/lightning-network-paper.pdf
https://rubin.io/public/pdfs/delbrag.pdf
https://en.bitcoin.it/wiki/Atomic_swap

[Wik21] Bitcoin Wiki. Hash time locked contracts. https://en.bitcoin.it/wiki/Hash_Time_Locked_
Contracts, 2021. Last accessed: 2026-01-12. 5

[WNT20] Pieter Wuille, Jonas Nick, and Anthony Towns. Bip 0341, taproot: Segwit version 1 spending
rules. https://en.bitcoin.it/wiki/BIP_0341, January 2020. Last accessed: 2024-01-08’. 15

[WOS*25] Anna P. Y. Woo, Alex Ozdemir, Chad Sharp, Thomas Pornin, and Paul Grubbs. Efficient proofs
of possession for legacy signatures. In Marina Blanton, William Enck, and Cristina Nita-Rotaru,
editors, 2025 IEEE Symposium on Security and Privacy, pages 3291-3308. IEEE Computer Society
Press, May 2025. 10

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS,
pages 160-164. IEEE Computer Society Press, November 1982. 5, 9, 14

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220-250. Springer, Berlin, Heidelberg,
April 2015. 6, 15

A Honest-Setup BABE Protocol Details

A.1 Transactions

The detailed specifications of the transactions are given in this section. Each transaction specifies the
inputs, outputs, the locking scripts for each input and output, and the transaction witnesses.

A.1.1 Notation

We follow the transaction model of Sec. 2.6: a transaction is tx = (inputs, tx_witnesses, outputs). Each
input is of the form in = (PrevTx, outlndex, leaf), where PrevTx is the previous transaction, outlndex is
the index of the output in that transaction, and leaf is the leaf of the Taproot tree to be satisfied for that
input. Each output is out = (a, lockScript) where a is the value in that UTXO and lockScript is the locking
script. The i-th witness in tx_witnesses is the data (e.g., signatures, hash preimages) supplied to satisfy the
i-th input’s leaf script.

In the tables below, * denotes that the corresponding field can be any value of the appropriate type.
For example, in an input (x, *, *), the first component can be any previous transaction, the second any
output index, and the third any leaf (i.e., any UTXO and any leaf thereof). When a component is not , it
is fixed: e.g., (tXassert, 0, leaf) means the input references the 0-th output of the Assert transaction and the
spender must satisfy the leaf leaf.

Output locking scripts are often written as (leafy, ..., leafx_1). This denotes a Taproot tree (taptree):
the UTXO can be spent by satisfying one of the leaves leaf ;. A transaction that spends such an output must
specify which leaf it is satisfying and supply a witness that satisfies that leaf’s script. The locking scripts
CheckSig, RelTimelock, HashLock, CheckLampSig, CheckLampSigsMatch, and their combinations are as
defined in Sec. 2.6.

A.1.2 Example: The Assert Transaction

We illustrate the notation and the role of inputs, outputs, and witnesses using the Assert transaction as an
example.

56

https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/BIP_0341

Inputs and input script. The Assert transaction has a single input: (x, *, (CheckLampSig(Ipkp))). The
first two components are *: the input may reference any UTXO (any previous transaction and any output
index). The third component fixes the leaf to be satisfied: (CheckLampSig(Ipkp)). So the UTXO being
spent must have a locking script that is a Taproot tree containing the leaf CheckLampSig(lpkp) (e.g., a tree
that includes this leaf among others). In practice, this is typically another UTXO set up so that its taptree
includes this leaf. To spend it, the Prover must provide a witness that satisfies CheckLampSig(Ipkp), i.e.,
a Lamport signature under Ipk p on some message (see Eq. (15)).

Witness. The Tx Witness for input (0) is y1,. .., ti2n. These are the 2n components of the Lamport
signature x on the message (e.g., the proof element 7; n is the bit length of I, as in Sec. 5): for each bit of
the message, the signer reveals the corresponding preimage from the Lamport key. This witness satisfies
CheckLampSig(lpk p) and thus binds the Prover to a single message when posting the Assert transaction.

Outputs and their scripts. The Assert transaction has two outputs, both with amount 0.

« Output (0) has locking script (RelTimelock(A2) ACheckSig(pk p) ACheckSig(pky,), CheckSig(pkp)A
CheckSig(pky/)). This is a Taproot tree with two leaves. The UTXO can be spent by satisfying exactly
one of them:

1. First leaf RelTimelock(Ag) A CheckSig(pkp) A CheckSig(pky): the spending transaction
must be included at least Ay blocks after the Assert transaction, and the witness must contain
signatures op, oy on the transaction skeleton under pkp and pky,. This path is used by the
Withdraw transaction.

2. Second leaf CheckSig(pkp) A CheckSig(pky,): the witness must contain o p and oy (no time-
lock). This path is used by the NoWithdraw transaction.

Therefore, output (0) of Assert can be spent either (i) after Ay blocks with both parties” Schnorr
signatures, or (ii) immediately with both parties’ Schnorr signatures.

« Output (1) has locking script (CheckLampSigsMatch(Ipk p, Ipky-) ACheckSig(pky,) ACheckSig(pkp)).
There is a single leaf, so this output can be spent only one way: the witness must satisfy CheckLampSigsMatch(Ipkp, |
(Lamport signatures under Ipkp and Ipk;, on the same message; see Eq. (16)) and provide oy, op.
This path is used by the ChallengeAssert transaction.

Deposit Transaction

Inputs (0) (%, %, %)
Outputs (0) (v, (CheckSig(pkp) A CheckSig(pky/)))
Tx Witness (0) *

Assert Transaction

Inputs (0) (*, %, (CheckLampSig(Ipkp))) (see Eq. (15))
Outputs (0) (0, (RelTimelock(A2) A CheckSig(pkp) A CheckSig(pky), CheckSig(pkp) A
CheckSig(pky)))

(1) (0, (CheckLampSigsMatch(lpk p, Ipky,) A CheckSig(pk;) A CheckSig(pkp))) (see Eq. (16))

Tx Wit- (0) pig, ..., e
ness

57

ChallengeAssert Transaction

Inputs (0) (txAssert; 1, (CheckLampSigsMatch(Ipkp, Ipky,) A CheckSig(pky,) A CheckSig(pkp))) (see
Eq. (16))
Outputs (0) (0, (RelTimelock(A1) A CheckSig(pky,), HashLock(Hash g7 (msg)) A CheckSig(pkp)))
Tx Wit- (0)Li,...,Le, 1y, he,0v,0p
ness
NoWithdraw Transaction
Inputs (0) (txassert, 0, CheckSig(pkp) A CheckSig(pky/))
(1) (tXchallengeAssert, 0, RelTimelock(A1) A CheckSig(pky,))
Outputs (0) (0, (CheckSig(pky)))
Ix Wit- (0)op,oy
ness

(1) oy

WronglyChallenged Transaction
Inputs (0) (tXChallengeAssert, 0, HashLock(Amsg) A CheckSig(pkp))
Outputs (0) (0, (CheckSig(pkp)))

Tx Wit- (0)op, msg
ness

Withdraw Transaction

0) (txpeposit; 0, CheckSig(pkp) A CheckSig(pky,))
1) (tXassert, 0, RelTimelock(Az) A CheckSig(pkp) A CheckSig(pky/))
(

v, (CheckSig(pkp)))

0)op,ov

Inputs (0)

(1)
Outputs (0)
x Wit- (0)

ness
(1) op,0v

B Protocol for Malicious Security

The setup protocol using cut-and-choose, which achieves the BITVM-cORE properties in Defs. 9 to 11, is
shown in Algs. 4 and 5.
The corresponding proving phase is shown in Alg. 6.

58

Algorithm 4 Setup algorithms for malicious security (Prover)

1: procedure Psetup,mal(Crs) > Run by Prover
2: (skp,pkp) Siggre-Gen(1?) > Sample signing key
3: send (pkp) to Verifier

Upon receiving (pkv7 { himsg. i, €PK;, Pctugryp i j\]:clc) from Verifier:
Sample 7 as a uniformly random subset of [Ncc] of size Mcc

5: send 7 to Verifier

Upon receiving ({msgi, T4, seedi}iE[NCd\I , { Ctsetup;» Ctacss eki}i€I> from Verifier:

6 x <+ GenStmt(pkp)
7: for i € [Nec] \ Z do > If any verification fails, abort
8: Verify WE.Enceetup(crs, &, msg;, 1) = Clsetup; > Constr. 1
9: Verify (ctecy, ek;) = Garble(r;; seed;) > Sec. 5.6
10: Verify hmsg,; = Hashprc(msg;)
11: forje {1,...,m},be {0,1} do
12: Verify ((epk;)? = Hashprc (eki)})
13: end for
14: Verify hete,y,i = RO(Ctsetup;)
15: end for
16: (Iskp, Ipk) < LampSig.Gen(1*) > Sample Lamport key
17: (T,S8) < CreateTxSetMalicious (pkp, pky, Ipk p, {epk; }, 7 » {hmsg.i}ic7) > Alg. 7
18: presigsp < SignTxsp(skp, T) > Alg. 3

19: send (pkp, Ipk p, presigs) to Verifier

Upon receiving (presigs,) from Verifier:

20: VerifySigsp (pky,, T, presigs,,) > Alg. 3; if fails, abort
21: Sign tXpeposit and submit to Bitcoin via Fgrc.WRITE (txpeposit)
22: stp < (skp, Iskp, presigsy,, {Ctsetup;, Cthi}ieI)

23: return (¢, T,S,stp)
24: end procedure

59

Algorithm 5 Setup algorithms for malicious security (Verifier)

1: procedure Vsetup mal(crs)
Upon receiving (pkp) from Prover:

2: x + GenStmt(pkp)

3: (sky, pky) < Siggro-Gen(1t)

4: fori=1,..., Ncc do

5: msg; < M, r; < F,

6: Ctsetup; — WE.Enceetup(crs, @, msg;, r;)

7: seed; +s {0,1}*

8: ctecs, eks < Garble(r;; seed;)

9: hmsg,i < Hashprc(msg;)
10: forje{l,...,m},b€ {0,1} do
11: (epk;)s + Hashprc((eki)h)
12: end for
13: h’Ctsetupyi — RO(Ctsetupi)
14: end for
15: send (pkv, {hmsg,i, epk;, Pctup,i j\]:clc) to Prover

Upon receiving Z from Prover:

16: send ({msgi7 T seedi}ie[ch\I , { Ctsetup;» Ctacs, eki}iez) to Prover

Upon receiving (pkp, Ipkp, presigsp) from Prover:
17: VerifySigsy, (pkp, T, presigsp)

> Run by Verifier

> Application-specific: map Prover to statement
> Sample signing key

> Generate ciphertexts for cut-and-choose

> Sample secrets

> WE ciphertext (Constr. 1)

> Seed for Garble

> GC ciphertext and encoding key (Sec. 5.6)

> Hash message for hashlock

> Hash input labels for hashlock

> Alg. 3; if fails, abort

18: (T, 8) + CreateTxSetMalicious (pkp, pky, Ipkp, {epk; };c 7 {hmsgi}icz) > Alg. 7

19: presigs,, < SignTxsy, (sky, T)
20: sty < (sky, {eki},c7 , presigsp)
21: send (presigs,,) to Prover

22: return (z,7,S,sty)

23: end procedure

> Alg. 3

60

Algorithm 6 Prove algorithms

1:
2:
3:
4.
5

9:
10:
11:
12:

13:

procedure Prrove mal(crs, @, T, S, stp, w) > Run by Prover

Parse stp = (skp, Iskp, presigsy,, {Ctsetup;, ctcci}?icf) and presigsy = (Cwithdraw)

(1, w2, w3) + Grothl6.Prove(crs, x, w)

Wassert — LampSig.Sign(Iskp, 71) > Compute Lamport signature
Post txassert With transaction witness wassert: call Farc.WRITE (txXAssert)

Upon seeing tXassert and Ao new blocks after txassert in L£p:

Wwithdraw <~ (UVI\D/ithdraw7 UV‘\/lithdraw) where U\I/\D/ithdraw « SigBTC"Sign(SkP7&Withd"aw)
Post txwithdraw With transaction witness wwithdraw: call Farc. WRITE (txwithdraw)
return 1

Upon seeing tXCha”engeAss%} in Lp:
Extract input labels {L; };_S¢ from the transaction witness of tXchallengeAssert

Fori=1,..., Mcc: Ctpove; + EvalGC(ctec;, Li) > Evaluate garbled circuits (Sec. 5.6)

Fori=1,..., Mcc: msg; < WE.Dec(Ctsetup;, Ctprove;, T2, T3) > Decrypt secrets (Constr. 1)
. . P P

Find g such that WwronglyChallenged — (JWronglyChallengedv msgz) where JWronegChalIenged —

Sig pre-Sign(sk p, tXwronglyChallenged) is @ valid transaction witness

Post tXWronglyChallenged with transaction witness WwronglyChallenged * call -FBTC-WR|TE(tXWronglyChaI|enged)

14: end procedure

15: procedure Vorove mai(crs, &, T, S, sty) > Run by Verifier

16:
17:
18:
19:
20:

21:
22:
23:

Upon seeing tXassert in Ly
_ Mcc : : _ (~P P
Parse StV - (SkV7 {eki}izl) prGSIgSP) and preSIgsP - (UChaIIengeAssern UNoWithdraW)
Extract 7m1 and Lamport signature 1 from the transaction witness of tXassert
Fori=1,...,Mcc: L; + Encode(ek;, 1) > Compute input labels (Sec. 5.6)
P \% Mcc 1% . . s
WchallengeAssert <~ (UChaIIengeAsserh UChaIIengeAssert? Hy {Li}izl) where UChaIIengeAssert — SIgBTC"SIgn(SkV> tXChaIIengeAssert)
Post tXchallengeAssert With transaction witness wehaliengeassert: call Farc. WRITE(tXchallengeAssert)

Upon seeing tXchallengeAssert and A1 new blocks after txchallengeAssert in Ly :

P \4 Vv . . —
WNoWithdraw 4= (TNowithdraw s TNoWithdraw) WHere ONowithdraw < Sig g7 -Sign(sky, , BxXNowithdraw)
Post tXnowithdraw With transaction witness wnowithdraw: call Farc. WRITE (tXnowithdraw)
return 1

24: end procedure

Algorithm 7 Locking scripts for the protocol with malicious security (Algs. 4 and 5)

1: function CREATETXSETMALICIOUS(pK p, Pky/, Ipk p, {Aimsg,i; €pk; }

2:

w

4

5:
6:
7.
8:

Mecc
i=1
Define scripts:

ChallengeAssertScript := A" [(/\f”iclC HashLock((epk;)9) A HashLock(ka?))

j=1
\% (/\i\icf HashLock((epk;)}) A HashLock(ka}))] > Replaces CheckLampSigsMatch in Alg. 3
WronglyChallengedScript := \/iviclc (HashLock(hmsg,:)) > Replaces HashLock(hmsg) in Alg. 3

Construct transaction skeletons &Deposit: tXAssert, tXChaIIengeAssert, &NoWithdraw; &Wronglychallenged; tXWithdraw as in Sec. 6.1.3
T = {&Deposit, &Assert, &ChallengeAssert, &NoWithdraw, &WronglyChallenged, &Withdraw}

S = {txwithdraw }

return (7,S)

end function

61

	Introduction
	Motivating Example
	Verifying Proofs on Bitcoin
	BitVM and BitVM2
	BitVM3

	New Verification Protocol: BABE
	Witness Encryption
	Witness encryption for linear pairings
	Garbled Circuit for Scalar Multiplication

	Other Applications

	Preliminaries
	Basic Notation
	Bilinear Groups
	Generic Bilinear Group Model

	Succinct Non-Interactive Arguments of Knowledge (SNARKs)
	The Groth16 SNARK

	Extractable Witness Encryption
	Garbling Schemes
	The Bitcoin Ledger

	The BitVM-core Primitive
	Witness Encryption for Linear Pairing Relation
	Garbled Circuit for BN254 Scalar Multiplication
	Overview
	Elliptic Curve Addition and Notation
	Decomposable Randomized Encodings: Definitions and Preliminaries
	Decomposable Randomized Encodings Constructions
	DRE for the Scalar Multiplication
	Completing the Garbled Circuit

	BABE Protocol
	Honest Setup Protocol
	Setup Phase
	Proving Phase
	Transaction Graph

	Verifying Setup Correctness

	Security Proof
	Security Proof Assuming Honest Setup
	Proof of Honest-Setup u-Robustness
	Proof of Honest-Setup Knowledge Soundness

	Extensions and Optimizations
	Multiple Verifiers and Provers
	Optimistic Path

	Evaluation
	Honest Setup
	Cut-and-Choose Setup Verification
	Soldering (zk-SNARK-soldering)
	Verifiable Shamir Secret Sharing

	Honest-Setup BABE Protocol Details
	Transactions
	Notation
	Example: The Assert Transaction

	Protocol for Malicious Security

