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Abstract—We approach the BioCreative VI Track 1 task of 
biological entity identification by focusing on named entity 
recognition (NER) and linking tagged entities to standard 
database identifiers. For this task, we apply recent neural NER 
techniques of combining bi-directional long short term memory 
(BLSTM) network layers with conditional random fields (CRFs) 
to the biomedical domain. We then use context words, dictionary 
lookups, and external biological knowledge bases to match 
tagged biological entities with corresponding identifiers. Our 
system predicts cell types and cell lines, cellular components, 
organisms and species, proteins and genes, small molecules, and 
tissues and organs. 
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I.   INTRODUCTION 
In Track 1 of the BioCreative VI tasks, we are asked to 

automatically identify biological entities in biomedical text and 
link them to their standard database identifiers (e.g., UniProt 
ID for proteins and genes, ChEBI ID for small molecules, etc). 
Given biological entities annotated with identifiers in figure 
captions from 570 full-length articles as training data, we need 
to recognize and link biological entities in figure captions from 
196 unseen articles to identifiers. Precision, recall, and F-
measure at the caption, document, and corpus level for 
different entities are calculated. Additionally, there are also 
distinct scores for strict versus overlapping entity boundary 
matches, and for measuring across all annotations (i.e., 
including entities linked to a generic term such as “protein” 
and entities linked to a standard database identifier) versus just 
normalized entities (i.e., only entities linked to an identifier). It 
is useful to work with figure captions because sentences in 
captions describe figure objects, which are often the biological 
entities of interest. Also, extracting textual information from 
figure captions allows us to potentially link the textual data 
with figure data. Having methods to automatically extract and 
ground entities would be beneficial to the progression of 
research in scientific communities. 

We train a CRF-based model [4] using NERSuite [3] as an 
NER baseline and compare it to the neural model. Although we 
are exploring different neural NER architectures, time 
constraints dictate that we use the LSTM-CRF architecture 
described in [5] as the NER model in our task submission. Our 
entity grounding component is based on dictionary and API 
lookups, and we apply some heuristics to more accurately 
segment entities for grounding. 

II.   PREPROCESSING 
We do as little preprocessing as possible to keep this 

component of the pipeline simple, generalizable, and easy to 
re-assemble into the BioC output format. For each caption 
paragraph, we use the NTLK (http://www.nltk.org/) sentence 
tokenizer to extract individual sentences, and then split each 
sentence on whitespace into “words” that we attach annotations 
to in the CoNLL format. Note that although we refer to the 
tokens divided by whitespace in a sentence as “words”, these 
“words” can contain varying amounts of punctuation and are 
not necessarily well-formed English words. If the last byte in a 
sentence is “.”, “?”, or “!”, we separate it into an additional 
“word”. NERSuite takes a file with one sentence per line as 
input, while the neural NER model takes data in the CoNLL 
format as input. Both models output a tag for each “word” in 
the IOB format [7]. Our simple data tokenization into “words” 
and “word”-level tags means that there could potentially be 
multiple ground truth entities and entity types in one model-
tagged entity or extraneous characters in model-tagged entities. 
If there are multiple annotations for a “word”, we take the first 
annotation of an entity the word belongs to as the ground truth, 
and ignore all subsequent annotations that include this “word”. 
We take sentences from a random 80% of the 570 articles to 
form the training set, sentences from 10% of the articles to 
form the development set, and sentences from the remaining 
10% of the articles to form the test set.  

TABLE I.    DISTRIBUTION OF ANNOTATED ENTITY TYPES IN TRAINING, 
DEVELOPMENT, AND TEST SETS 

Entity type Training set Dev set Test set 

gene_or_protein 39,190 
(54.41%) 

4,312 
(50.73%) 

4,945 
(57.71%) 

small_molecule 8,602 
(11.94%) 

1,324 
(15.58%) 

857 
(10.00%) 

cellular_component 5,970 
(8.29%) 

530 
(6.24%) 

617 
(7.20%) 

cell_type_or_line 8,116 
(11.27%) 

966 
(11.36%) 

937 
(10.94%) 

tissue_or_organ 4,638 
(6.44%) 

538 
(6.33%) 

651 
(7.60%) 

organism_or_species 5,511 
(7.65%) 

830 
(9.76%) 

561 
(6.55%) 

Total 72,027 
(100.00%) 

8,500 
(100.00%) 

8,568 
(100.00%) 

 

Table 1 shows that a little more than half of the annotated 
entities across the training, development, and test sets are 
gene_or_protein.  
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III.  NAMED ENTITY RECOGNITION 

A.   NERSuite 
We train a CRF-based baseline using NERSuite, so that we 

may compare the effects of our neural NER approach with a 
more standard CRF model. NERSuite is a toolkit that uses 
features derived from a tokenizer, part-of-speech tagger, 
lemmatizer, chunker, and optionally, dictionaries, as input into 
a CRF model. For our baseline model, we use all of the 
standard features except dictionaries to train NERSuite on our 
training and development set; we report results on the test set. 

B.   BLSTM-BLSTM-CRF 
1)  Related work: In recent years, a popular model for NER 

has been to derive character embeddings from a BLSTM or 
CNN model, combine the character embeddings with word 
embeddings and feed the concatenated result into another 
BLSTM layer. Some works additionally include a CRF layer 
that takes the output of the BLSTM layer as input. Chiu et 
al. [2] feed character embeddings and additional character 
features into a convolutional neural network (CNN) layer, and 
then concatenate the extracted character representation with 
word embeddings and additional word features to feed into a 
BLSTM layer. The BLSTM output is then forwarded to output 
layers to predict the best sequence of tags for a sentence. 
Lample et al. [5] concatenate word embeddings and BLSTM-
extracted character embeddings to feed into a BLSTM layer, 
and then feed the BLSTM output to a CRF layer. Ma and 
Hovy [6] input character embeddings into a CNN layer, and 
then concatenate the extracted character representation with 
word embeddings to forward to a BLSTM and then CRF 
layer. 

In our submitted model, we use the architecture shown in 
Fig. 1 and described in [5]. 

 

Fig. 1.   This figure is taken from [5]. We apply their network with minor 
changes to the BioCreative dataset. 

2)  Word embeddings: Many previous works report that 
using pretrained word embeddings instead of randomly 
initializing word embeddings can significantly help increase 
NER scores. In our model, we use word embeddings 
pretrained on a combination of all abstracts from PubMed, all 
full-text from PubMed Central (a collection of open access 

documents from PubMed), and a Wikipedia dump 1 . We 
observe that these pretrained word embeddings boost the 
scores across all biological entity types significantly. 

3)  Character-based representation: To derive a character-
based representation of words, we randomly initialize a 25-
dimension vector for each character and input it to a BLSTM 
layer with a 25-dimension hidden layer. We assume, similarly 
to [5], that the hidden layer values of the last character in a 
word encode the character-level context of the entire word in a 
forward LSTM pass. Thus, we concatenate the hidden values 
of the last character in a word in the forward LSTM pass with 
the hidden values of the first character in a word in the 
backward LSTM pass to create the character-based 
representation of the word. 

4)  BLSTM-CRF with final word representation: To create 
an informative word representation, we concatenate the word 
embedding of a word with the character-based representation 
of the word. The final word representation is then input into a 
dropout layer, where half of the values from the word 
representation are dropped in training. Next, the word 
representations are input into a BLSTM layer with a hidden 
dimension of size 200. Similarly to the character-based 
BLSTM, we concatenate the hidden values of the last word in 
a sentence in the forward LSTM pass with the hidden values 
of the first word in a sentence in the backward LSTM pass to 
form the layer output. We then pass the output to a hidden 
layer to shrink the vector dimension back down to size 200, 
and use another hidden layer to shrink the vector to a 
dimension equal to the number of unique NER tags in the 
training data using the IOBES annotation scheme. In our 
training data, there are 25 such unique NER tags. The NER 
model internally uses the IOBES scheme, which also keeps 
track of singleton annotations and the end tokens of 
annotations; the final model output uses the IOB scheme. 
Lastly, we pass the 25-dimensional output vector to a CRF 
layer, where the CRF will use the BLSTM output vector and 
transition scores between a pair of tags to maximize the 
probability of the groundtruth tag sequence in training. 

5)  Parameters: The pretrained word embeddings are 200-
dimensional vectors, so we use a 200-dimensional hidden 
layer in the word BLSTM. Lample et al. [5] use 100-
dimensional vectors trained on news corpora and a 100-
dimensional hidden layer in the word BLSTM. The first 
hidden layer uses a tanh activation function, and the second 
hidden layer uses a sigmoid activation function. We use 
stochastic gradient descent with a learning rate of 0.01 as the 
optimization function. 

IV.  POSTPROCESSING 
Before passing on tagged entities to be linked to identifiers, 

we strip all punctuation in the string "!\"#$%'()*+,-
./:;<=>?@[\\]^_`{|}~" recursively from the beginning of the 
tagged entity. We also strip all punctuation in the string 
 

1    The details of the pretrained word embeddings are at 
http:/bio.nlplab.org/. 



 

"!\"#$()*+,-./:;<=>?@[\\]^_`{|}~" from the end of the tagged 
entity. This does not completely remove all extraneous 
characters from tagged entities, nor does it remove only 
extraneous characters, but it works as a simple heuristic2. We 
attempt to find multiple proteins or genes that exist within a 
larger entity tagged as a protein or gene, but otherwise we do 
not further address the problems of multiple entities or entity 
types in a tagged entity in this work. 

V.   GROUNDING 

A.   Contextual dictionary 
For annotated entities that are part of a larger word in the 

original sentence (e.g., “Tau” in “EcrTgTaumouse”), the words 
around the entity (“EcrTg” and “mouse” in the previous 
example) can be useful context words for linking to a standard 
identifier. We create a dictionary that maps all annotated 
entities that occur in the 570 training documents to the list of  
identifiers that entities have been linked to. Additionally, for 
each (entity, identifier) pair, we create a list of all the context 
“words” that are known to be associated. For example, for the 
entity “Tau”, we could have the associated identifiers: “NCBI 
gene:17762” and “NCBI gene:4137”. We further note that 
when “Tau” is linked to “NCBI gene:17762”, the context 
words “EcrTg” and “mouse” are used. When “Tau” is linked to 
“NCBI:4137”, the context words “EcrTg” and “human” are 
used. We do not weight context words based on how often they 
occur for an (entity, identifier) pair; this is left for future work. 
For each tagged entity that our NER model finds, we first 
check if the entity is in this contextual dictionary. If so, we link 
the entity to the known identifier that shares the most 
contextual words with the sentence the entity belongs to. 
Taking our example above, if the sentence were “Tau 
composition in ECrTgTau and control mouse lines 
investigated,” the identifier “NCBI gene:17762” would have 
more context words in common with the words in the sentence 
and thus be assigned. Our intuition is that context words are 
strong indicators of species and other differentiating factors 
between identifiers of entities with the same surface forms.  

B.   Searching external knowledge bases 
Table 2 shows the knowledge bases, API sources, and 

generic labels associated with each entity type. If we do not 
find a tagged entity in the contextual dictionary, we try to 
search for it in the appropriate external knowledge base. All 
searches for the submitted model were done on Aug.  22, 2017.  

For proteins and genes, we use UniProt’s official API3 to 
search for entity identifiers. We use NCBI’s Entrez tool to 
search the “taxonomy” database for identifiers for organisms 
and species [8]. For the rest of the entities, we use AmiGO, 
which is  a collection of tools for searching the Gene Ontology 
database as well as knowledge bases for a few other ontologies 
[1]. We assign the first identifier match found in the 
appropriate knowledge base through the API source. If no 
matches are returned, and if the entity type is not  

 
2    These punctuation strings are the ones we used in the submitted 

model, but have since been revised.  
3    http://www.uniprot.org/help/api 

gene_or_protein, we assign the entity to its generic label. 

C.   Further heuristics for proteins and genes 
Proteins and genes have the most number of samples out of 

all the annotated biological entity types and also numerous 
variations in surface forms. For example, proteins “Tau”, 
“MAPT”, “MAPTL”, and “MTBT1” are all synonyms. In 
contrast, the cellular component “ribosome” has synonyms 
“ribosomal RNA”, “free ribosome”, and “membrane bound 
ribosome”, which are more similar to each other in surface 
form. We manually review some examples of proteins and 
genes in the training data and devise the following heuristic: 

•   If the complete tagged entity is not found through 
searching the UniProt API: 

o   If there is whitespace in the tagged entity, 
split on the whitespace 

o   Else if there is a forward slash “/” in the 
tagged entity, split on the “/” 

o   Else if there is a dash “-” in the tagged entity, 
split on the “-” 

o   Else if there is a semicolon “;” in the tagged 
entity, split on the “;” 

•   Search each split entity through the UniProt API. If 
identifiers are found, link the entity to the first found 
identifier. If no identifiers are found or if there are no 
whitespace, “/”, “-”, or “;” characters in the entire 
entity, just assign the generic label “protein”.  

TABLE II.    SOURCES OF INFORMATION ACROSS ENTITY TYPES 

Entity type Knowledge 
base API source Generic 

labels 
gene_or_protein UniProt UniProt protein 

small_molecule ChEBI AmiGO molecule 

cellular_component GO AmiGO subcellular 

cell_type_or_line CL AmiGO cell 

tissue_or_organ Uberon AmiGO tissue 

organism_or_species NCBI taxon Entrez (db: 
taxonomy) organism 

 

TABLE III.    PRECISION, RECALL, AND F1 SCORES ACROSS ENTITIES FOR 
DIFFERENT NER MODELS 

Entity type 
NERSuite BLSTM-BLSTM-CRF 

P R F1 P R F1 

gene_or_protein 76.09 79.83 77.91 86.52 88.37 87.43 

small_molecule 72.77 60.13 65.85 77.07 66.28 71.27 

cellular_component 73.57 70.07 71.78 79.30 65.80 71.92 

cell_type_or_line 67.60 62.59 65.00 76.85 65.53 70.74 

tissue_or_organ 68.34 49.26 57.25 70.58 58.22 63.80 

organism_or_species 61.89 65.08 63.44 72.59 75.04 73.79 

overall 73.36 71.90 72.62 82.25 78.87 80.53 



 

TABLE IV.    PRECISION, RECALL, AND F1 SCORES ACROSS ENTITIES FOR SUBMITTED BIOLOGICAL ENTITY IDENTIFICATION MODEL

 

VI.  RESULTS AND CONCLUSIONS 

A.   NER results 
Table 3 shows the results of the NERSuite model and the 

results of the BLSTM-BLSTM-CRF model. Both models were 
trained on the training and development sets and scores are 
reported for the test set. The BLSTM-BLSTM-CRF model 
using word embeddings pretrained on the biomedical domain 
does significantly better than the NERSuite model across all 
entity types. Our earlier experiments showed that for certain 
entity types, the BLSTM-BLSTM-CRF model with randomly 
initialized word embeddings performs comparably or worse 
than a CRF model when trained on the BioCreative data. This 
result emphasizes the significance of word embeddings 
pretrained on domain-specific data. We are in the process of 
experimenting with other neural architectures and are seeing 
promising results. Given that neural models often rely on a 
large amount of data to generate accurate results, and 
biomedical NER annotations need to be done by experts, we 
think distant supervision techniques may be especially helpful. 
Our manual error analysis indicates that better tokenization 
schemes might help the model better detect the boundaries of 
an entity. Also, our model tags entities at the word level, but 
the task evaluates entities at the byte level, so a model that tags 
at the byte level may be more suitable. 

B.   Submission results 
In Table 4, we list the scores under various evaluation 

conditions for the unseen test set.  The first four conditions 
evaluate the NER model, and the last two conditions evaluate 
grounding tagged entities to identifiers. As expected, the scores 
are higher when evaluating span overlap entity matches versus 
strict span entity matches. Interestingly, all entity types have 
higher F1 scores when evaluating span overlap match for all 
annotations versus for normalized annotations only. This 
indicates that our NER model is better at detecting non-
normalized entities across entity types. 

In this work, we focus on experimenting with state-of-the-
art NER techniques applied to the biomedical domain. We do 
not spend a comparable effort on grounding techniques, though 
we are working to improve them. We observe that the  

 

grounding method in our submitted model performs the best on 
organism_or_species and cell_type_or_line, does ok on 
small_molecule, cellular_component, and tissue_or_organ, 
and performs poorly on gene_or_protein. One reason the 
normalization performance of gene_or_protein entities is poor 
is because we use a limited context to ground entities. Similar 
genes and proteins of difference species often have the same 
surface forms, and the only way to accurately ground the genes 
and proteins is to infer the species from the textual context. 
Another explanation for the poor normalization performance is 
that genes and proteins have the most variations in surface 
forms; there are relatively fewer ways to refer to organisms and 
species, for example. From a manual evaluation of our 
grounding method, we observe that better organism modeling 
would help  improve the normalization scores. Also, the simple 
heuristics for segmentation seem to help us more accurately 
extract short protein and gene entities, but we often make more  
errors grounding shorter proteins and genes. For future work, 
we would explore using more contextual evidence to assign 
entity identifiers. 
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Entity types 

Strict span match 
for all annotations 

Strict span match 
for norm. 

annotations only 

Span overlap match 
for all annotations 

Span overlap match 
for norm. 

annotations only 

Micro-averaged 
scores for 

normalized IDs 

Macro-averaged 
scores across 
captions for 

normalized IDs  
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