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Abstract—We approach the BioCreative VI Track 1 task of
biological entity identification by focusing on named entity
recognition (NER) and linking tagged entities to standard
database identifiers. For this task, we apply recent neural NER
techniques of combining bi-directional long short term memory
(BLSTM) network layers with conditional random fields (CRFs)
to the biomedical domain. We then use context words, dictionary
lookups, and external biological knowledge bases to match
tagged biological entities with corresponding identifiers. Our
system predicts cell types and cell lines, cellular components,
organisms and species, proteins and genes, small molecules, and
tissues and organs.
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1. INTRODUCTION

In Track 1 of the BioCreative VI tasks, we are asked to
automatically identify biological entities in biomedical text and
link them to their standard database identifiers (e.g., UniProt
ID for proteins and genes, ChEBI ID for small molecules, etc).
Given biological entities annotated with identifiers in figure
captions from 570 full-length articles as training data, we need
to recognize and link biological entities in figure captions from
196 unseen articles to identifiers. Precision, recall, and F-
measure at the caption, document, and corpus level for
different entities are calculated. Additionally, there are also
distinct scores for strict versus overlapping entity boundary
matches, and for measuring across all annotations (i.e.,
including entities linked to a generic term such as “protein”
and entities linked to a standard database identifier) versus just
normalized entities (i.e., only entities linked to an identifier). It
is useful to work with figure captions because sentences in
captions describe figure objects, which are often the biological
entities of interest. Also, extracting textual information from
figure captions allows us to potentially link the textual data
with figure data. Having methods to automatically extract and
ground entities would be beneficial to the progression of
research in scientific communities.

We train a CRF-based model [4] using NERSuite [3] as an
NER baseline and compare it to the neural model. Although we
are exploring different neural NER architectures, time
constraints dictate that we use the LSTM-CRF architecture
described in [5] as the NER model in our task submission. Our
entity grounding component is based on dictionary and API
lookups, and we apply some heuristics to more accurately
segment entities for grounding.
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II. PREPROCESSING

We do as little preprocessing as possible to keep this
component of the pipeline simple, generalizable, and easy to
re-assemble into the BioC output format. For each caption
paragraph, we use the NTLK (http://www.nltk.org/) sentence
tokenizer to extract individual sentences, and then split each
sentence on whitespace into “words” that we attach annotations
to in the CoNLL format. Note that although we refer to the
tokens divided by whitespace in a sentence as “words”, these
“words” can contain varying amounts of punctuation and are
not necessarily well-formed English words. If the last byte in a
sentence is “.”, “?”, or “!”, we separate it into an additional
“word”. NERSuite takes a file with one sentence per line as
input, while the neural NER model takes data in the CoNLL
format as input. Both models output a tag for each “word” in
the IOB format [7]. Our simple data tokenization into “words”
and “word”-level tags means that there could potentially be
multiple ground truth entities and entity types in one model-
tagged entity or extraneous characters in model-tagged entities.
If there are multiple annotations for a “word”, we take the first
annotation of an entity the word belongs to as the ground truth,
and ignore all subsequent annotations that include this “word”.
We take sentences from a random 80% of the 570 articles to
form the training set, sentences from 10% of the articles to
form the development set, and sentences from the remaining
10% of the articles to form the test set.
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TABLE 1. DISTRIBUTION OF ANNOTATED ENTITY TYPES IN TRAINING,
DEVELOPMENT, AND TEST SETS
Entity type Training set Dev set Test set
. 39,190 4,312 4,945
gene_or_protein (54.41%) (50.73%) (57.71%)
small_molecule 8,602 1,324 857
- (11.94%) (15.58%) (10.00%)
cellular_component 3,970 330 617
- (8.29%) (6.24%) (7.20%)
cell_type_or_line 8,116 966 937
- (11.27%) (11.36%) (10.94%)
tissue_or_organ 4,638 538 651
- - (6.44%) (6.33%) (7.60%)
organism_or_species 3,511 830 >61
- - (7.65%) (9.76%) (6.55%)
Total 72,027 8,500 8,568
(100.00%) (100.00%) (100.00%)

Table 1 shows that a little more than half of the annotated
entities across the training, development, and test sets are
gene_or_protein.



III. NAMED ENTITY RECOGNITION

A. NERSuite

We train a CRF-based baseline using NERSuite, so that we
may compare the effects of our neural NER approach with a
more standard CRF model. NERSuite is a toolkit that uses
features derived from a tokenizer, part-of-speech tagger,
lemmatizer, chunker, and optionally, dictionaries, as input into
a CRF model. For our baseline model, we use all of the
standard features except dictionaries to train NERSuite on our
training and development set; we report results on the test set.

B. BLSTM-BLSTM-CRF

1) Related work: In recent years, a popular model for NER
has been to derive character embeddings from a BLSTM or
CNN model, combine the character embeddings with word
embeddings and feed the concatenated result into another
BLSTM layer. Some works additionally include a CRF layer
that takes the output of the BLSTM layer as input. Chiu et
al. [2] feed character embeddings and additional character
features into a convolutional neural network (CNN) layer, and
then concatenate the extracted character representation with
word embeddings and additional word features to feed into a
BLSTM layer. The BLSTM output is then forwarded to output
layers to predict the best sequence of tags for a sentence.
Lample et al. [5] concatenate word embeddings and BLSTM-
extracted character embeddings to feed into a BLSTM layer,
and then feed the BLSTM output to a CRF layer. Ma and
Hovy [6] input character embeddings into a CNN layer, and
then concatenate the extracted character representation with
word embeddings to forward to a BLSTM and then CRF
layer.

In our submitted model, we use the architecture shown in
Fig. 1 and described in [5].
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Fig. 1. This figure is taken from [5]. We apply their network with minor
changes to the BioCreative dataset.

2) Word embeddings: Many previous works report that
using pretrained word embeddings instead of randomly
initializing word embeddings can significantly help increase
NER scores. In our model, we use word embeddings
pretrained on a combination of all abstracts from PubMed, all
full-text from PubMed Central (a collection of open access

documents from PubMed), and a Wikipedia dump'. We
observe that these pretrained word embeddings boost the
scores across all biological entity types significantly.

3) Character-based representation: To derive a character-
based representation of words, we randomly initialize a 25-
dimension vector for each character and input it to a BLSTM
layer with a 25-dimension hidden layer. We assume, similarly
to [5], that the hidden layer values of the last character in a
word encode the character-level context of the entire word in a
forward LSTM pass. Thus, we concatenate the hidden values
of the last character in a word in the forward LSTM pass with
the hidden values of the first character in a word in the
backward LSTM pass to create the character-based
representation of the word.

4) BLSTM-CRF with final word representation: To create
an informative word representation, we concatenate the word
embedding of a word with the character-based representation
of the word. The final word representation is then input into a
dropout layer, where half of the values from the word
representation are dropped in training. Next, the word
representations are input into a BLSTM layer with a hidden
dimension of size 200. Similarly to the character-based
BLSTM, we concatenate the hidden values of the last word in
a sentence in the forward LSTM pass with the hidden values
of the first word in a sentence in the backward LSTM pass to
form the layer output. We then pass the output to a hidden
layer to shrink the vector dimension back down to size 200,
and use another hidden layer to shrink the vector to a
dimension equal to the number of unique NER tags in the
training data using the IOBES annotation scheme. In our
training data, there are 25 such unique NER tags. The NER
model internally uses the IOBES scheme, which also keeps
track of singleton annotations and the end tokens of
annotations; the final model output uses the IOB scheme.
Lastly, we pass the 25-dimensional output vector to a CRF
layer, where the CRF will use the BLSTM output vector and
transition scores between a pair of tags to maximize the
probability of the groundtruth tag sequence in training.

5) Parameters: The pretrained word embeddings are 200-
dimensional vectors, so we use a 200-dimensional hidden
layer in the word BLSTM. Lample et al. [5] use 100-
dimensional vectors trained on news corpora and a 100-
dimensional hidden layer in the word BLSTM. The first
hidden layer uses a tanh activation function, and the second
hidden layer uses a sigmoid activation function. We use
stochastic gradient descent with a learning rate of 0.01 as the
optimization function.

IV. POSTPROCESSING

Before passing on tagged entities to be linked to identifiers,
we strip all punctuation in the string "N\"#$%'()*+,-
J5<=>2@[\]*_*{|}~" recursively from the beginning of the
tagged entity. We also strip all punctuation in the string

! The details of the pretrained word embeddings are at

http:/bio.nlplab.org/.



"N'"#S(O)*+,- 5 <=>2@[\]*_*{|}~" from the end of the tagged
entity. This does not completely remove all extraneous
characters from tagged entities, nor does it remove only
extraneous characters, but it works as a simple heuristic’. We
attempt to find multiple proteins or genes that exist within a
larger entity tagged as a protein or gene, but otherwise we do
not further address the problems of multiple entities or entity
types in a tagged entity in this work.

V. GROUNDING

A. Contextual dictionary

For annotated entities that are part of a larger word in the
original sentence (e.g., “Tau” in “EcrTgTaumouse”), the words
around the entity (“EcrTg” and “mouse” in the previous
example) can be useful context words for linking to a standard
identifier. We create a dictionary that maps all annotated
entities that occur in the 570 training documents to the list of
identifiers that entities have been linked to. Additionally, for
each (entity, identifier) pair, we create a list of all the context
“words” that are known to be associated. For example, for the
entity “Tau”, we could have the associated identifiers: “NCBI
gene:17762” and “NCBI gene:4137”. We further note that
when “Tau” is linked to “NCBI gene:17762”, the context
words “EcrTg” and “mouse” are used. When “Tau” is linked to
“NCBI:4137”, the context words “EcrTg” and “human” are
used. We do not weight context words based on how often they
occur for an (entity, identifier) pair; this is left for future work.
For each tagged entity that our NER model finds, we first
check if the entity is in this contextual dictionary. If so, we link
the entity to the known identifier that shares the most
contextual words with the sentence the entity belongs to.
Taking our example above, if the sentence were “Tau
composition in ECrTgTau and control mouse lines
investigated,” the identifier “NCBI gene:17762” would have
more context words in common with the words in the sentence
and thus be assigned. Our intuition is that context words are
strong indicators of species and other differentiating factors
between identifiers of entities with the same surface forms.

B. Searching external knowledge bases

Table 2 shows the knowledge bases, API sources, and
generic labels associated with each entity type. If we do not
find a tagged entity in the contextual dictionary, we try to
search for it in the appropriate external knowledge base. All
searches for the submitted model were done on Aug. 22,2017.

For proteins and genes, we use UniProt’s official APP to
search for entity identifiers. We use NCBI’s Entrez tool to
search the “taxonomy” database for identifiers for organisms
and species [8]. For the rest of the entities, we use AmiGO,
which is a collection of tools for searching the Gene Ontology
database as well as knowledge bases for a few other ontologies
[1]. We assign the first identifier match found in the
appropriate knowledge base through the API source. If no
matches are returned, and if the entity type is not

2 These punctuation strings are the ones we used in the submitted

model, but have since been revised.

3 http://www.uniprot.org/help/api

gene_or_protein, we assign the entity to its generic label.

C. Further heuristics for proteins and genes

Proteins and genes have the most number of samples out of
all the annotated biological entity types and also numerous
variations in surface forms. For example, proteins “Tau”,
“MAPT”, “MAPTL”, and “MTBT1” are all synonyms. In
contrast, the cellular component “ribosome” has synonyms
“ribosomal RNA”, “free ribosome”, and “membrane bound
ribosome”, which are more similar to each other in surface
form. We manually review some examples of proteins and
genes in the training data and devise the following heuristic:

e If the complete tagged entity is not found through
searching the UniProt API:

o If there is whitespace in the tagged entity,
split on the whitespace

o Else if there is a forward slash “/” in the
tagged entity, split on the “/”

o Else if there is a dash “-” in the tagged entity,
split on the “-”
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o Else if there is a semicolon *;

[73¢ 1)

entity, split on the ;

in the tagged

e Search each split entity through the UniProt API. If
identifiers are found, link the entity to the first found
identifier. If no identifiers are found or if there are no
whitespace, “/”, “-”, or “;” characters in the entire

entity, just assign the generic label “protein”.

TABLE II. SOURCES OF INFORMATION ACROSS ENTITY TYPES
. Knowledge Generic
Entity type base API source labels
gene_or_protein UniProt UniProt protein
small_molecule ChEBI AmiGO molecule
cellular_component GO AmiGO subcellular
cell_type_or_line CL AmiGO cell
tissue_or_organ Uberon AmiGO tissue
. . Entrez (db: .
organism_or_species NCBI taxon taxonomy) organism

TABLE III. PRECISION, RECALL, AND F; SCORES ACROSS ENTITIES FOR
DIFFERENT NER MODELS
NERSuite BLSTM-BLSTM-CRF
Entity type
P R F, P R F,
gene_or_protein 76.09 | 79.83 | 77.91 | 86.52 | 88.37 | 87.43
small_molecule 72.77 | 60.13 | 65.85 | 77.07 | 66.28 | 71.27
cellular_component 73.57 | 70.07 | 71.78 | 79.30 | 65.80 | 71.92
cell_type_or_line 67.60 | 62.59 | 65.00 | 76.85 | 65.53 | 70.74
tissue_or_organ 68.34 | 49.26 | 57.25 | 70.58 | 58.22 | 63.80
organism_or_species 61.89 | 65.08 | 63.44 | 72.59 | 75.04 | 73.79
overall 73.36 | 71.90 | 72.62 | 82.25 | 78.87 | 80.53




TABLE IV.

PRECISION, RECALL, AND F; SCORES ACROSS ENTITIES FOR SUBMITTED BIOLOGICAL ENTITY IDENTIFICATION MODEL

Strict span match
for all annotations

Strict span match
for norm.

Span overlap match
for all annotations

Span overlap match
for norm.

Micro-averaged
scores for

Macro-averaged
scores across
captions for

Entity types annotations only annotations only normalized IDs normalized IDs
P R F, P R F, P R F, P R F, P R F, P R F,;
gene_or_protein 50.87 | 61.31 | 55.60 | 52.96 | 59.61 | 56.09 | 68.55 | 82.63 | 74.94 | 61.51 | 69.24 | 65.15 ]| 16.98 | 22.43 | 19.33 | 23.24 | 30.37 | 16.69
small_molecule 56.23 | 45.09 | 50.04 | 65.90 | 32.22 | 43.28 | 68.31 | 54.78 | 60.80 | 70.54 | 34.49 | 46.33 | 65.42 | 39.37 | 49.16 | 77.23 | 47.70 | 34.11
cellular_component | 54.77 | 43.94 | 48.76 | 61.24 | 41.03 | 49.14 | 62.89 | 50.46 | 55.99 | 65.13 | 43.64 | 52.26 | 54.98 | 44.97 | 49.47 | 67.25 | 53.98 | 35.05
cell_type_or_line 65.31 | 65.03 | 65.17 | 82.23 | 55.15 | 66.02 | 76.63 | 76.30 | 76.47 | 86.58 | 58.06 | 69.51 | 78.42 | 55.69 | 65.13 | 85.58 | 60.15 | 55.51
tissue_or_organ 57.24 | 55.87 | 56.55 | 61.46 | 46.67 | 53.05 | 67.05 | 65.44 | 66.24 | 66.74 | 50.68 | 57.61 | 58.38 | 44.21 | 50.32 ] 69.90 | 54.63 | 37.92
organism_or_species | 74.62 | 71.52 | 73.04 | 85.52 | 69.50 | 76.68 | 81.36 | 77.98 | 79.63 | 87.82 | 71.37 | 78.74 | 77.23 | 69.10 | 72.94 | 82.48 | 74.69 | 65.46

VI. RESULTS AND CONCLUSIONS

A. NER results

Table 3 shows the results of the NERSuite model and the
results of the BLSTM-BLSTM-CRF model. Both models were
trained on the training and development sets and scores are
reported for the test set. The BLSTM-BLSTM-CRF model
using word embeddings pretrained on the biomedical domain
does significantly better than the NERSuite model across all
entity types. Our earlier experiments showed that for certain
entity types, the BLSTM-BLSTM-CRF model with randomly
initialized word embeddings performs comparably or worse
than a CRF model when trained on the BioCreative data. This
result emphasizes the significance of word embeddings
pretrained on domain-specific data. We are in the process of
experimenting with other neural architectures and are seeing
promising results. Given that neural models often rely on a
large amount of data to generate accurate results, and
biomedical NER annotations need to be done by experts, we
think distant supervision techniques may be especially helpful.
Our manual error analysis indicates that better tokenization
schemes might help the model better detect the boundaries of
an entity. Also, our model tags entities at the word level, but
the task evaluates entities at the byte level, so a model that tags
at the byte level may be more suitable.

B. Submission results

In Table 4, we list the scores under various evaluation
conditions for the unseen test set. The first four conditions
evaluate the NER model, and the last two conditions evaluate
grounding tagged entities to identifiers. As expected, the scores
are higher when evaluating span overlap entity matches versus
strict span entity matches. Interestingly, all entity types have
higher F; scores when evaluating span overlap match for all
annotations versus for normalized annotations only. This
indicates that our NER model is better at detecting non-
normalized entities across entity types.

In this work, we focus on experimenting with state-of-the-
art NER techniques applied to the biomedical domain. We do
not spend a comparable effort on grounding techniques, though
we are working to improve them. We observe that the

grounding method in our submitted model performs the best on
organism_or_species and cell type or line, does ok on
small_molecule, cellular component, and tissue_or_organ,
and performs poorly on gene or protein. One reason the
normalization performance of gene or protein entities is poor
is because we use a limited context to ground entities. Similar
genes and proteins of difference species often have the same
surface forms, and the only way to accurately ground the genes
and proteins is to infer the species from the textual context.
Another explanation for the poor normalization performance is
that genes and proteins have the most variations in surface
forms; there are relatively fewer ways to refer to organisms and
species, for example. From a manual evaluation of our
grounding method, we observe that better organism modeling
would help improve the normalization scores. Also, the simple
heuristics for segmentation seem to help us more accurately
extract short protein and gene entities, but we often make more
errors grounding shorter proteins and genes. For future work,
we would explore using more contextual evidence to assign
entity identifiers.
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