
EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

NAME
exiftool - Read and write meta information in files

SYNOPSIS
Reading

exiftool [OPTIONS] [-TAG...] [--TAG...] FILE...

Writing
exiftool [OPTIONS] -TAG[+-ˆ<]=[VALUE]... FILE...

Copying
exiftool [OPTIONS] -tagsFromFile SRCFILE [-[DSTTAG<]SRCTAG...] FILE...

Other
exiftool [-ver | -list[w|f|r|wf|g[NUM]|d|x|geo]]

For specific examples, see the EXAMPLES sections below.

This documentation is displayed if exiftool is run without an input FILE when one is expected.

DESCRIPTION
A command-line interface to Image::ExifTool, used for reading and writing meta information in a variety of
file types. FILE is one or more source file names, directory names, or - for the standard input. Metadata is
read from source files and printed in readable form to the console (or written to output text files with -w).

To write or delete metadata, tag values are assigned using -TAG=[VALUE], and/or the -geotag, -csv= or
-json= options. To copy or move metadata, the -tagsFromFile feature is used. By default the original
files are preserved with _original appended to their names — be sure to verify that the new files are
OK before erasing the originals. Once in write mode, exiftool will ignore any read-specific options.

Note: If FILE is a directory name then only supported file types in the directory are processed (in write
mode only writable types are processed). However, files may be specified by name, or the -ext option may
be used to force processing of files with any extension. Hidden files in the directory are also processed.
Adding the -r option causes subdirectories to be processed recursively, but subdirectories with names
beginning with ‘‘.’’ are skipped unless -r. is used.

Below is a list of file types and meta information formats currently supported by ExifTool (r = read, w =
write, c = create):

File Types
------------+-------------+-------------+-------------+------------
360 r/w | DR4 r/w/c | JP2 r/w | ODS r | RW2 r/w
3FR r | DSF r | JPEG r/w | ODT r | RWL r/w
3G2 r/w | DSS r | JSON r | OFR r | RWZ r
3GP r/w | DV r | JXL r/w | OGG r | RM r
7Z r | DVB r/w | K25 r | OGV r | SEQ r
A r | DVR-MS r | KDC r | ONP r | SKETCH r
AA r | DYLIB r | KEY r | OPUS r | SO r
AAC r | EIP r | KVAR r | ORF r/w | SR2 r/w
AAE r | EPS r/w | LA r | ORI r/w | SRF r
AAX r/w | EPUB r | LFP r | OTF r | SRW r/w
ACR r | ERF r/w | LIF r | PAC r | SVG r
AFM r | EXE r | LNK r | PAGES r | SWF r
AI r/w | EXIF r/w/c | LRV r/w | PBM r/w | THM r/w
AIFF r | EXR r | M2TS r | PCAP r | TIFF r/w
APE r | EXV r/w/c | M4A/V r/w | PCAPNG r | TNEF r
ARQ r/w | F4A/V r/w | MACOS r | PCD r | TORRENT r
ARW r/w | FFF r/w | MAX r | PCX r | TTC r
ASF r | FITS r | MEF r/w | PDB r | TTF r
AVI r | FLA r | MIE r/w/c | PDF r/w | TXT r
AVIF r/w | FLAC r | MIFF r | PEF r/w | URL r

perl v5.34.1 2025-12-24 1

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

AZW r | FLIF r/w | MKA r | PFA r | VCF r
BMP r | FLV r | MKS r | PFB r | VNT r
BPG r | FPF r | MKV r | PFM r | VRD r/w/c
BTF r | FPX r | MNG r/w | PGF r | VSD r
C2PA r | GIF r/w | MOBI r | PGM r/w | VSDX r
CHM r | GLV r/w | MODD r | PLIST r | WAV r
COS r | GPR r/w | MOI r | PICT r | WDP r/w
CR2 r/w | GZ r | MOS r/w | PMP r | WEBP r/w
CR3 r/w | HDP r/w | MOV r/w | PNG r/w | WEBM r
CRM r/w | HDR r | MP3 r | PPM r/w | WMA r
CRW r/w | HEIC r/w | MP4 r/w | PPT r | WMV r
CS1 r/w | HEIF r/w | MPC r | PPTX r | WOFF r
CSV r | HTML r | MPG r | PS r/w | WOFF2 r
CUR r | ICC r/w/c | MPO r/w | PSB r/w | WPG r
CZI r | ICO r | MQV r/w | PSD r/w | WTV r
DCM r | ICS r | MRC r | PSP r | WV r
DCP r/w | IDML r | MRW r/w | QTIF r/w | X3F r/w
DCR r | IIQ r/w | MXF r | R3D r | XCF r
DFONT r | IND r/w | NEF r/w | RA r | XISF r
DIVX r | INSP r/w | NKA r | RAF r/w | XLS r
DJVU r | INSV r | NKSC r/w | RAM r | XLSX r
DLL r | INX r | NRW r/w | RAR r | XMP r/w/c
DNG r/w | ISO r | NUMBERS r | RAW r/w | ZIP r
DOC r | ITC r | NXD r | RIFF r |
DOCX r | J2C r | O r | RSRC r |
DPX r | JNG r/w | ODP r | RTF r |

Meta Information
----------------------+----------------------+---------------------
EXIF r/w/c | CIFF r/w | Ricoh RMETA r
GPS r/w/c | AFCP r/w | Picture Info r
IPTC r/w/c | Kodak Meta r/w | Adobe APP14 r
XMP r/w/c | FotoStation r/w | MPF r
MakerNotes r/w/c | PhotoMechanic r/w | Stim r
Photoshop IRB r/w/c | JPEG 2000 r | DPX r
ICC Profile r/w/c | DICOM r | APE r
MIE r/w/c | Flash r | Vorbis r
JFIF r/w/c | FlashPix r | SPIFF r
Ducky APP12 r/w/c | QuickTime r | DjVu r
PDF r/w/c | Matroska r | M2TS r
PNG r/w/c | MXF r | PE/COFF r
Canon VRD r/w/c | PrintIM r | AVCHD r
Nikon Capture r/w/c | FLAC r | ZIP r
GeoTIFF r/w/c | ID3 r | (and more)

OPTIONS
Case is not significant for any command-line option (including tag and group names), except for single-
character options when the corresponding upper-case option exists. Many single-character options have
equivalent long-name versions (shown in brackets), and some options have inverses which are invoked with
a leading double-dash. Unrecognized options are interpreted as tag names (for this reason, multiple single-
character options may NOT be combined into one argument). Contrary to standard practice, options may
appear after source file names on the exiftool command line.

Option Overview
Tag operations

perl v5.34.1 2025-12-24 2

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

-TAG or --TAG Extract or exclude specified tag
-TAG[+-ˆ]=[VALUE] Write new value for tag
-TAG[+-]<=DATFILE Write tag value from contents of file
-[+]TAG[+-]<SRCTAG Copy tag value (see -tagsFromFile)

-tagsFromFile SRCFILE Copy tag values from file
-x TAG (-exclude) Exclude specified tag

Input-output text formatting

-args (-argFormat) Format metadata as exiftool arguments
-b (-binary) Output metadata in binary format
-c FMT (-coordFormat) Set format for GPS coordinates
-charset [[TYPE=]CHARSET] Specify encoding for special characters
-csv[[+]=CSVFILE] Export/import tags in CSV format
-csvDelim STR Set delimiter for CSV file
-d FMT (-dateFormat) Set format for date/time values
-D (-decimal) Show tag ID numbers in decimal
-E,-ex,-ec (-escape(HTML|XML|C))Escape tag values for HTML, XML or C
-f (-forcePrint) Force printing of all specified tags
-g[NUM...] (-groupHeadings) Organize output by tag group
-G[NUM...] (-groupNames) Print group name for each tag
-h (-htmlFormat) Use HTML formatting for output
-H (-hex) Show tag ID numbers in hexadecimal
-htmlDump[OFFSET] Generate HTML-format binary dump
-j[[+]=JSONFILE] (-json) Export/import tags in JSON format
-l (-long) Use long 2-line output format
-L (-latin) Use Windows Latin1 encoding
-lang [LANG] Set current language
-listItem INDEX Extract specific item from a list
-n (--printConv) No print conversion
-p[-] STR (-printFormat) Print output in specified format
-php Export tags as a PHP Array
-plot Output tags as SVG plot file
-s[NUM] (-short) Short output format (-s for tag names)
-S (-veryShort) Very short output format
-sep STR (-separator) Set separator string for list items
-sort Sort output alphabetically
-struct Enable output of structured information
-t (-tab) Output in tab-delimited list format
-T (-table) Output in tabular format
-v[NUM] (-verbose) Print verbose messages
-w[+|!] EXT (-textOut) Write (or overwrite!) output text files
-W[+|!] FMT (-tagOut) Write output text file for each tag
-Wext EXT (-tagOutExt) Write only specified file types with -W
-X (-xmlFormat) Use RDF/XML output format

Processing control

perl v5.34.1 2025-12-24 3

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

-a (-duplicates) Allow duplicate tags to be extracted
-e (--composite) Do not generate composite tags
-ee[NUM] (-extractEmbedded) Extract information from embedded files
-ext[+] EXT (-extension) Process files with specified extension
-F[OFFSET] (-fixBase) Fix the base for maker notes offsets
-fast[NUM] Increase speed when extracting metadata
-fileOrder[NUM] [-]TAG Set file processing order
-i DIR (-ignore) Ignore specified directory name
-if[NUM] EXPR Conditionally process files
-m (-ignoreMinorErrors) Ignore minor errors and warnings
-o OUTFILE (-out) Set output file or directory name
-overwrite_original Overwrite original by renaming tmp file
-overwrite_original_in_place Overwrite original by copying tmp file
-P (-preserve) Preserve file modification date/time
-password PASSWD Password for processing protected files
-progress[NUM][:[TITLE]] Show file progress count
-q (-quiet) Quiet processing
-r[.] (-recurse) Recursively process subdirectories
-scanForXMP Brute force XMP scan
-u (-unknown) Extract unknown tags
-U (-unknown2) Extract unknown binary tags too
-wm MODE (-writeMode) Set mode for writing/creating tags
-z (-zip) Read/write compressed information

Other options

-@ ARGFILE Read command-line arguments from file
-k (-pause) Pause before terminating
-list[w|f|wf|g[NUM]|d|x] List various exiftool capabilities
-ver Print exiftool version number
-- End of options

Special features

-diff FILE2 Compare metadata with another file
-geotag TRKFILE Geotag images from specified GPS log
-globalTimeShift SHIFT Shift all formatted date/time values
-use MODULE Add features from plug-in module

Utilities

-delete_original[!] Delete "_original" backups
-restore_original Restore from "_original" backups

Advanced options

-api OPT[[ˆ]=[VAL]] Set ExifTool API option
-common_args Define common arguments
-config CFGFILE Specify configuration file name
-echo[NUM] TEXT Echo text to stdout or stderr
-efile[NUM][!] TXTFILE Save names of files with errors
-execute[NUM] Execute multiple commands on one line
-fileNUM ALTFILE Load tags from alternate file
-list_dir List directories, not their contents
-srcfile FMT Process a different source file
-stay_open FLAG Keep reading -@ argfile even after EOF
-userParam PARAM[[ˆ]=[VAL]] Set user parameter (API UserParam opt)

perl v5.34.1 2025-12-24 4

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

Option Details
Tag operations

-TAG
Extract information for the specified tag (eg. -CreateDate). Multiple tags may be specified in a
single command. A tag name is the handle by which a piece of information is referenced. See
Image::ExifTool::TagNames for documentation on available tag names. A tag name may include
leading group names separated by colons (eg. -EXIF:CreateDate, or -Doc1:XMP:Creator),
and each group name may be prefixed by a digit to specify family number (eg. -1IPTC:City).
(Note that the API SavePath and SaveFormat options must be used for the family 5 and 6 groups
respectively to be available.) Use the -listg option to list available group names by family.

A special tag name of All may be used to indicate all meta information (ie. -All). This is
particularly useful when a group name is specified to extract all information in a group (but beware
that unless the -a option is also used, some tags in the group may be suppressed by same-named tags
in other groups). The wildcard characters ? and * may be used in a tag name to match any single
character and zero or more characters respectively. These may not be used in a group name, with the
exception that a group name of * (or All) may be used to extract all instances of a tag (as if -a was
used). Note that arguments containing wildcards must be quoted on the command line of most
systems to prevent shell globbing.

A # may be appended to the tag name to disable the print conversion on a per-tag basis (see the -n
option). This may also be used when writing or copying tags.

If no tags are specified, all available information is extracted (as if -All had been specified).

Note: Descriptions, not tag names, are shown by default when extracting information. Use the -s
option to see the tag names instead.

--TAG
Exclude specified tag from extracted information. Same as the -x option. Group names and
wildcards are permitted as described above for -TAG. Once excluded from the output, a tag may not
be re-included by a subsequent option. May also be used following a -tagsFromFile option to
exclude tags from being copied (when redirecting to another tag, it is the source tag that should be
excluded), or to exclude groups from being deleted when deleting all information (eg. -all=
--exif:all deletes all but EXIF information). But note that this will not exclude individual tags
from a group delete (unless a family 2 group is specified, see note 4 below). Instead, individual tags
may be recovered using the -tagsFromFile option (eg. -all= -tagsfromfile @ -artist).

To speed processing when reading XMP, exclusions in XMP groups also bypass processing of the
corresponding XMP property and any contained properties. For example, --xmp-crs:all may
speed processing significantly in cases where a large number of XMP-crs tags exist. To use this
feature to bypass processing of a specific XMP property, the property name must be used instead of
the ExifTool tag name (eg. --xmp-crs:dabs). Also, XMP-all may be used to to indicate any
XMP namespace (eg. --xmp-all:dabs).

-TAG[+-ˆ]=[VALUE]
Write a new value for the specified tag (eg. -comment=wow), or delete the tag if no VALUE is given
(eg. -comment=). += and -= are used to add or remove existing entries from a list, or to shift
date/time values (see Image::ExifTool::Shift.pl and notes 6 and 7 below for more details). += may
also be used to increment numerical values (or decrement if VALUE is negative), and -= may be used
to conditionally delete or replace a tag (see ‘‘WRITING EXAMPLES’’ for examples). ˆ= is used to
write an empty string instead of deleting the tag when no VALUE is given, but otherwise it is
equivalent to =. (Note that the caret must be quoted in the Windows CMD shell.)

TAG may contain one or more leading family 0, 1, 2 or 7 group names, prefixed by optional family
numbers, and separated colons. If no group name is specified, the tag is created in the preferred
group, and updated in any other location where a same-named tag already exists. The preferred
group in JPEG and TIFF-format images is the first group in the following list where TAG is valid: 1)

perl v5.34.1 2025-12-24 5

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

EXIF, 2) IPTC, 3) XMP.

The wildcards * and ? may be used in tag names to assign the same value to multiple tags. When
specified with wildcards, ‘‘Unsafe’’ tags are not written. A tag name of All is equivalent to *
(except that it doesn’t require quoting, while arguments with wildcards do on systems with shell
globbing), and is often used when deleting all metadata (ie. -All=) or an entire group (eg.
-XMP-dc:All=, see note 4 below). Note that not all groups are deletable, and that the JPEG APP14
‘‘Adobe’’ group is not removed by default with -All= because it may affect the appearance of the
image. However, color space information is removed, so the colors may be affected (but this may be
avoided by copying back the tags defined by the ColorSpaceTags shortcut). Use the -listd option for
a complete list of deletable groups, and see note 5 below regarding the ‘‘APP’’ groups. Also, within
an image some groups may be contained within others, and these groups are removed if the
containing group is deleted:

JPEG Image:
- Deleting EXIF or IFD0 also deletes ExifIFD, GlobParamIFD,

GPS, IFD1, InteropIFD, MakerNotes, PrintIM and SubIFD.
- Deleting ExifIFD also deletes InteropIFD and MakerNotes.
- Deleting Photoshop also deletes IPTC.

TIFF Image:
- Deleting EXIF only removes ExifIFD which also deletes

InteropIFD and MakerNotes.

MOV/MP4 Video:
- Deleting ItemList also deletes Keys tags.

Notes:

1) Many tag values may be assigned in a single command. If two assignments affect the same tag,
the latter takes precedence (except for list-type tags, for which both values are written).

2) In general, MakerNotes tags are considered ‘‘Permanent’’, and may be edited but not created or
deleted individually. This avoids many potential problems, including the inevitable compatibility
problems with OEM software which may be very inflexible about the information it expects to find in
the maker notes.

3) Changes to PDF files by ExifTool are reversible (by deleting the update with
-PDF-update:all=) because the original information is never actually deleted from the file. So
ExifTool alone may not be used to securely edit metadata in PDF files.

4) Specifying -GROUP:all= deletes the entire group as a block only if a single family 0 or 1 group
is specified. Otherwise all deletable tags in the specified group(s) are removed individually, and in
this case is it possible to exclude individual tags from a mass delete. For example, -time:all
--Exif:Time:All removes all deletable Time tags except those in the EXIF. This difference also
applies if family 2 is specified when deleting all groups. For example, -2all:all= deletes tags
individually, while -all:all= deletes entire blocks.

5) The ‘‘APP’’ group names (‘‘APP0’’ through ‘‘APP15’’) are used to delete JPEG application segments
which are not associated with another deletable group. For example, specifying -APP14:All= will
NOT delete the APP14 ‘‘Adobe’’ segment because this is accomplished with -Adobe:All. But note
that these unnamed APP segments may not be excluded with --APPxx:all when deleting all
information.

6) When shifting a value, the shift is applied to the original value of the tag, overriding any other
values previously assigned to the tag on the same command line. To shift a date/time value and copy
it to another tag in the same operation, use the -globalTimeShift option.

7) The += operator may not be used to shift a List-type date/time tag (eg. XMP-dc:Date) because +=

perl v5.34.1 2025-12-24 6

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

is used to add elements to the list. Instead, the -globalTimeShift option should be used.

Special feature: Integer values may be specified in hexadecimal with a leading 0x, and simple
rational values may be specified as fractions.

-TAG<=DATFILE or -TAG<=FMT
Set the value of a tag from the contents of file DATFILE. The file name may also be given by a FMT
string where %d, %f and %e represent the directory, file name and extension of the original FILE (see
the -w option for more details). Note that quotes are required around this argument to prevent shell
redirection since it contains a < symbol. If DATFILE/FMT is not provided, the effect is the same as
-TAG=, and the tag is simply deleted. +<= or -<= may also be used to add or delete specific list
entries, to conditionally delete/replace tags, or to shift date/time values.

-tagsFromFile SRCFILE or FMT
Copy tag values from SRCFILE to FILE. Tag names on the command line after this option specify the
tags to be copied, or excluded from the copy. Wildcards are permitted in these tag names. If no tags
are specified, then all possible tags (see note 1 below) from the source file are copied to same-named
tags in the preferred location of the output file (the same as specifying -all). More than one
-tagsFromFile option may be used to copy tags from multiple files.

By default, this option will update any existing and writable same-named tags in the output FILE, but
will create new tags only in their preferred groups. This allows some information to be automatically
transferred to the appropriate group when copying between images of different formats. However, if a
group name is specified for a tag then the information is written only to this group (unless redirected
to another group, see below). If All is used as a group name, then the specified tag(s) are written to
the same family 1 group they had in the source file (ie. the same specific location, like ExifIFD or
XMP-dc). For example, the common operation of copying all writable tags to the same specific
locations in the output FILE is achieved by adding -all:all. A different family may be specified
by adding a leading family number to the group name (eg. -0all:all preserves the same general
location, like EXIF or XMP).

SRCFILE may be the same as FILE to move information around within a single file. In this case, @
may be used to represent the source file (ie. -tagsFromFile @), permitting this feature to be used
for batch processing multiple files. Specified tags are then copied from each file in turn as it is
rewritten. For advanced batch use, the source file name may also be specified using a FMT string in
which %d, %f and %e represent the directory, file name and extension of FILE. (eg. the current FILE
would be represented by %d%f.%e, with the same effect as @). See the -w option for FMT string
examples.

A powerful redirection feature allows a destination tag to be specified for each copied tag. With this
feature, information may be written to a tag with a different name or group. This is done using
"’-DSTTAG<SRCTAG’‘‘ or ’’’-SRCTAG>DSTTAG’" on the command line after -tagsFromFile, and
causes the value of SRCTAG to be copied from SRCFILE and written to DSTTAG in FILE. Has no effect
unless SRCTAG exists in SRCFILE. Note that this argument must be quoted to prevent shell
redirection, and there is no = sign as when assigning new values. Source and/or destination tags may
be prefixed by a group name and/or suffixed by #. Wildcards are allowed in both the source and
destination tag names. A destination group and/or tag name of All or * writes to the same family 1
group and/or tag name as the source (but the family may be specified by adding a leading number to
the group name, eg. 0All writes to the same family 0 group as the source). If no destination group
is specified, the information is written to the preferred group. Whitespace around the > or < is
ignored. As a convenience, -tagsFromFile @ is assumed for any redirected tags which are
specified without a prior -tagsFromFile option. Copied tags may also be added or deleted from a
list, or conditionally deleted/replaced with arguments of the form "’-SRCTAG+<DSTTAG’‘‘ or
’’’-SRCTAG-<DSTTAG’" (but see Note 5 below).

An extension of the redirection feature allows strings involving tag names to be used on the right
hand side of the < symbol with the syntax "’-DSTTAG<STR’", where tag names in STR are prefixed
with a $ symbol. See the -p option and the ‘‘Advanced formatting feature’’ section for more details

perl v5.34.1 2025-12-24 7

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

about this syntax. Strings starting with a = sign must insert a single space after the < to avoid
confusion with the <= operator which sets the tag value from the contents of a file. A single space at
the start of the string is removed if it exists, but all other whitespace in the string is preserved. See
note 8 below about using the redirection feature with list-type stags, shortcuts or when using
wildcards in tag names.

See ‘‘COPYING EXAMPLES’’ for examples using -tagsFromFile.

Notes:

1) Some tags (generally tags which may affect the appearance of the image) are considered ‘‘Unsafe’’
to write, and are only copied if specified explicitly (ie. no wildcards). See the tag name
documentation for more details about ‘‘Unsafe’’ tags.

2) Be aware of the difference between excluding a tag from being copied (--TAG), and deleting a tag
(-TAG=). Excluding a tag prevents it from being copied to the destination image, but deleting will
remove a pre-existing tag from the image.

3) The maker note information is copied as a block, so it isn’t affected like other information by
subsequent tag assignments on the command line, and individual makernote tags may not be
excluded from a block copy. Also, since the PreviewImage referenced from the maker notes may be
rather large, it is not copied, and must be transferred separately if desired.

4) The order of operations is to copy all specified tags at the point of the -tagsFromFile option in the
command line. Any tag assignment to the right of the -tagsFromFile option is made after all tags
are copied. For example, new tag values are set in the order One, Two, Three then Four with this
command:

exiftool -One=1 -tagsFromFile s.jpg -Two -Four=4 -Three d.jpg

This is significant in the case where an overlap exists between the copied and assigned tags because
later operations may override earlier ones.

5) The normal behaviour of copied tags differs from that of assigned tags for list-type tags and
conditional replacements because each copy operation on a tag overrides any previous operations.
While this avoids duplicate list items when copying groups of tags from a file containing redundant
information, it also prevents values of different tags from being copied into the same list when this is
the intent. To accumulate values from different operations into the same list, add a + after the initial
- of the argument or use the -addTagsFromFile option. For example:

exiftool -tagsfromfile @ '-subject<make' '-+subject<model' ...

or

exiftool -addtagsfromfile @ '-subject<make' '-subject<model' ...

Similarly, -+DSTTAG or -addTagsFromFile must be used when conditionally replacing a tag to
prevent overriding earlier conditions.

Other than these differences, the -tagsFromFile and -addTagsFromFile options are equivalent.

6) The -a option (allow duplicate tags) is always in effect when copying tags from SRCFILE, but the
highest priority tag is always copied last so it takes precedence.

7) Structured tags are copied by default when copying tags. See the -struct option for details.

8) With the redirection feature, copying a tag directly (ie. "’-DSTTAG<SRCTAG’‘‘) is not the same as
interpolating its value inside a string (ie. ’’’-DSTTAG<$SRCTAG’") for source tags which are list-type
tags, shortcut tags, or tag names containing wildcards. When copying directly, the values of each
matching source tag are copied individually to the destination tag (as if they were separate
assignments). However, when interpolated inside a string, list items and the values of shortcut tags
are concatenated (with a separator set by the -sep option), and wildcards are not allowed.Another
difference is that a minor warning is generated if a tag doesn’t exist when interpolating its value in a

perl v5.34.1 2025-12-24 8

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

string (with $), but isn’t when copying the tag directly.

Finally, the behaviour is different when a destination tag or group of All is used. When copying
directly, a destination group and/or tag name of All writes to the same family 1 group and/or tag
name as the source. But when interpolated in a string, the identity of the source tags are lost and the
value is written to all possible groups/tags. For example, the string form must be used in the
following command since the intent is to set the value of all existing date/time tags from
CreateDate:

exiftool '-time:all<$createdate' -wm w FILE

-x TAG (-exclude)
Exclude the specified tag. There may be multiple -x options. This has the same effect as --TAG on
the command line. See the --TAG documentation above for a complete description.

Input-output text formatting

Note that trailing spaces are removed from extracted values for most output text formats. The exceptions
are -b, -csv, -j and -X.

-args (-argFormat)
Output information in the form of exiftool arguments, suitable for use with the -@ option when
writing. May be combined with the -G option to include group names. This feature may be used to
effectively copy tags between images, but allows the metadata to be altered by editing the
intermediate file (out.args in this example):

exiftool -args -G1 --filename --directory src.jpg > out.args
exiftool -@ out.args -sep ', ' dst.jpg

Note: Be careful when copying information with this technique since it is easy to write tags which
are normally considered ‘‘Unsafe’’. For instance, the FileName and Directory tags are excluded in
the example above to avoid renaming and moving the destination file. Also note that the second
command above will produce warning messages for any tags which are not writable.

As well, the -sep option should be used as in the second command above to maintain separate list
items when writing metadata back to image files, and the -struct option may be used when
extracting to preserve structured XMP information.

-b, --b (-binary, --binary)
Output requested metadata in binary format without tag names or descriptions (-b or -binary). This
option is mainly used for extracting embedded images or other binary data, but it may also be useful
for some text strings since control characters (such as newlines) are not replaced by ’.’ as they are in
the default output. By default, list items are separated by a newline when extracted with the -b
option and no terminator is added after each tag value, but the list separator may be changed with a
-sep option and a terminator may be set by adding a second -sep option (see the -sep option for
details). May be combined with -j, -php or -X to extract binary data in JSON, PHP or XML format,
but note that ‘‘Unsafe’’ tags are not extracted as binary unless they are specified explicitly or the API
RequestAll option is set to 3 or higher.

With a leading double dash (--b or --binary), tags which contain binary data are suppressed in the
output when reading.

-c FMT (-coordFormat)
Set the print format for GPS coordinates. FMT uses the same syntax as a printf format string. The
specifiers correspond to degrees, minutes and seconds in that order, but minutes and seconds are
optional. For example, the following table gives the output for the same coordinate using various
formats:

perl v5.34.1 2025-12-24 9

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

FMT Output
------------------- ------------------
"%d deg %d' %.2f"\" 54 deg 59' 22.80" (default for reading)
"%d %d %.8f" 54 59 22.80000000 (default for copying)
"%d deg %.4f min" 54 deg 59.3800 min
"%.6f degrees" 54.989667 degrees

Notes:

1) To avoid loss of precision, the default coordinate format is different when copying tags using the
-tagsFromFile option.

2) If the hemisphere is known, a reference direction (N, S, E or W) is appended to each printed
coordinate, but adding a + or - to the format specifier (eg. %+.6f or %-.6f) prints a signed
coordinate instead. (+ adds a leading ‘‘+’’ for positive coordinates, but - does not.)

3) This print formatting may be disabled with the -n option to extract coordinates as signed decimal
degrees.

-charset [[TYPE=]CHARSET]
If TYPE is ExifTool or not specified, this option sets the ExifTool character encoding for output tag
values when reading and input values when writing, with a default of UTF8. If no CHARSET is given,
a list of available character sets is returned. Valid CHARSET values are:

CHARSET Alias(es) Description
---------- --------------- ----------------------------------
UTF8 cp65001, UTF-8 UTF-8 characters (default)
Latin cp1252, Latin1 Windows Latin1 (West European)
Latin2 cp1250 Windows Latin2 (Central European)
Cyrillic cp1251, Russian Windows Cyrillic
Greek cp1253 Windows Greek
Turkish cp1254 Windows Turkish
Hebrew cp1255 Windows Hebrew
Arabic cp1256 Windows Arabic
Baltic cp1257 Windows Baltic
Vietnam cp1258 Windows Vietnamese
Thai cp874 Windows Thai
DOSLatinUS cp437 DOS Latin US
DOSLatin1 cp850 DOS Latin1
DOSCyrillic cp866 DOS Cyrillic
MacRoman cp10000, Roman Macintosh Roman
MacLatin2 cp10029 Macintosh Latin2 (Central Europe)
MacCyrillic cp10007 Macintosh Cyrillic
MacGreek cp10006 Macintosh Greek
MacTurkish cp10081 Macintosh Turkish
MacRomanian cp10010 Macintosh Romanian
MacIceland cp10079 Macintosh Icelandic
MacCroatian cp10082 Macintosh Croatian

TYPE may be FileName to specify the encoding of file names on the command line (ie. FILE
arguments). In Windows, this triggers use of wide-character i/o routines, thus providing support for
Unicode file names. See the ‘‘WINDOWS UNICODE FILE NAMES’’ section below for details.

Other values of TYPE listed below are used to specify the internal encoding of various meta
information formats.

perl v5.34.1 2025-12-24 10

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

TYPE Description Default
--------- --- -------
EXIF Internal encoding of EXIF "ASCII" strings (none)
ID3 Internal encoding of ID3v1 information Latin
IPTC Internal IPTC encoding to assume when Latin

IPTC:CodedCharacterSet is not defined
Photoshop Internal encoding of Photoshop IRB strings Latin
QuickTime Internal encoding of QuickTime strings MacRoman
RIFF Internal encoding of RIFF strings 0

See <https://exiftool.org/faq.html#Q10> for more information about coded character sets, and the
Image::ExifTool Options for more details about the -charset settings.

-csv[[+]=CSVFILE]
Export information in CSV format, or import information if CSVFILE is specified. When importing,
the CSV file must be in exactly the same format as the exported file. The first row of the CSVFILE
must be the ExifTool tag names (with optional group names) for each column of the file, and values
must be separated by commas. A special ‘‘SourceFile’’ column specifies the files associated with
each row of information (and a SourceFile of ‘‘*’’ may be used to define default tags to be imported
for all files, which are then combined with any tags specified for the specific SourceFile processed).
To be clear, the imported CSV file acts as a lookup table to obtain the tags for import based on the
files/directories and tags specified on the command line. The -csvDelim option may be used to
change the input/output field delimiter if something other than a comma is required.

The following examples demonstrate basic use of the -csv option:

generate CSV file with common tags from all images in a directory
exiftool -common -csv dir > out.csv

update metadata for all images in a directory from CSV file
exiftool -csv=a.csv dir

When importing, empty values are ignored unless the -f option is used and the API MissingTagValue
is set to an empty string (in which case the tag is deleted). Also, FileName and Directory columns
are ignored if they exist (ie. ExifTool will not attempt to write these tags with a CSV import), but all
other columns are imported. To force a tag to be deleted, use the -f option and set the value to ‘‘-’’
in the CSV file (or to the MissingTagValue if this API option was used). Multiple databases may be
imported in a single command.

Specific tags may be imported from the CSV database by adding -TAG options to the command after
-csv=CSVFILE, or excluded with --TAG, with exclusions taking priority. Group names and
wildcards in tag names are allowed, but the group name must match exactly the group in the CSV file
(eg. a XMP-dc:Subject column in the CSV file won’t match -XMP:Subject on the command
line. Also, tags from the CSV may be redirected and written to different tags in the target file with
support for advanced-formatting expressions using the same syntax as the -tagsFromFile feature. If
no tags are specified, then all tags except FileName, Directory and excluded tags are imported (in the
same order as the database entries).

When exporting a CSV file, the -g or -G option adds group names to the tag headings. If the -a
option is used to allow duplicate tag names, the duplicate tags are only included in the CSV output if
the column headings are unique. Adding the -G4 option ensures a unique column heading for each
tag. The -b option may be added to output binary data, encoded in base64 if necessary (indicated by
ASCII ‘‘base64:’’ as the first 7 bytes of the value). Values may also be encoded in base64 if the
-charset option is used and the value contains invalid characters.

When exporting specific tags, the CSV columns are arranged in the same order as the specified tags
provided the column headings exactly match the specified tag names, otherwise the columns are
sorted in alphabetical order.

perl v5.34.1 2025-12-24 11

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

When importing from a CSV file, only files specified on the command line are processed. Any extra
entries in the CSV file are ignored.

List-type tags are stored as simple strings in a CSV file, but the -sep option may be used to split them
back into separate items when importing.

Special feature: -csv+=CSVFILE may be used to add items to existing lists in the file. This affects
only list-type tags. Also applies to the -j option.

Note that this and the -plot options are fundamentally different than all other output format options
because they require information from all input files to be buffered in memory before the output is
written. This may result in excessive memory usage when processing a very large number of files
with a single command. Also, when used with -csv, the -w option changes to specify a complete
file name with no filename formatting codes or append mode allowed, and -W may not be used.
When processing a large number of files, it is recommended to either use the JSON (-j) or XML (-X)
output format, or use -p to generate a fixed-column CSV file instead of using the -csv option.

-csvDelim STR
Set the delimiter for separating CSV entries for CSV file input/output via the -csv option. STR may
contain ‘‘\t’’, ‘‘\n’’, ‘‘\r’’ and ‘‘\\’’ to represent TAB, LF, CR and ’\’ respectively. A double quote is not
allowed in the delimiter. Default is ’,’.

-d FMT (-dateFormat)
Set the format for date/time tag values. The FMT string may contain formatting codes beginning with
a percent character (%) to represent the various components of a date/time value. ExifTool
implements 3 format codes internally (see below), but other format codes are system dependent —
consult the strftime man page on your system for details. The default format is equivalent to
‘‘%Y:%m:%d %H:%M:%S’’. This option has no effect on date-only or time-only tags. Requires
POSIX::strptime or Time::Piece for the inversion conversion when writing. Only one -d option may
be used per command.

Additional format codes implemented internally by ExifTool:

1) %z represents the time zone in ‘‘+/-HHMM’’ format. Adding a colon (ie. %:z) adds a colon
separator (eg. ‘‘-05:00’’). If the date/time value doesn’t contain a time zone then %z gives the
system time zone for the specified date/time value.

2) %f represents fractional seconds, and supports an optional width to specify the number of digits
after the decimal point (eg. %3f would give something like ‘‘.437’’). Adding a minus sign drops the
decimal point (eg. %-3f would give ‘‘437’’).

3) %s represents the number of seconds since 00:00 UTC Jan 1, 1970, taking into account the
specified time zone (or system time zone if not specified).

-D (-decimal)
Show tag ID number in decimal when extracting information.

-E, -ex, -ec (-escapeHTML, -escapeXML, -escapeC)
Escape characters in output tag values for HTML (-E), XML (-ex) or C (-ec). For HTML, all
characters with Unicode code points above U+007F are escaped as well as the following 5 characters:
& (&) ’ (') " (") > (>) and < (<). For XML, only these 5 characters are escaped.
The -E option is implied with -h, and -ex is implied with -X. For C, all control characters and the
backslash are escaped. The inverse conversion is applied when writing tags.

-f (-forcePrint)
Force printing of tags even if they don’t exist. This option applies to tags specified on the command
line, or with the -p, -if (unless the API UndefTags option is set), -fileNUM or -tagsFromFile
options. When -f is used, the value of any missing tag is set to a dash (-) by default, but this may be
configured via the API MissingTagValue option. -f is also used to add a ’flags’ attribute to the -listx
output, or to allow tags to be deleted when writing with the -csv=CSVFILE feature.

perl v5.34.1 2025-12-24 12

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

-g[NUM][:NUM...] (-groupHeadings)
Organize output by tag group. NUM specifies a group family number, and may be 0 (general
location), 1 (specific location), 2 (category), 3 (document number), 4 (instance number), 5 (metadata
path), 6 (EXIF/TIFF format), 7 (tag ID) or 8 (file number). -g0 is assumed if a family number is not
specified. May be combined with other options to add group names to the output. Multiple families
may be specified by separating them with colons. By default the resulting group name is simplified
by removing any leading Main: and collapsing adjacent identical group names, but this can be
avoided by placing a colon before the first family number (eg. -g:3:1). Use the -listg option to list
group names for a specified family. The API SavePath and SaveFormat options are automatically
enabled if the respective family 5 or 6 group names are requested. See the API GetGroup
documentation for more information.

-G[NUM][:NUM...] (-groupNames)
Same as -g but print group name for each tag. -G0 is assumed if NUM is not specified. May be
combined with a number of other options to add group names to the output. Note that NUM may be
added wherever -G is mentioned in the documentation. See the -g option above for details.

-h (-htmlFormat)
Use HTML table formatting for output. Implies the -E option. The formatting options -D, -H, -g,
-G, -l and -s may be used in combination with -h to influence the HTML format.

-H (-hex)
Show tag ID number in hexadecimal when extracting information.

-htmlDump[OFFSET]
Generate a dynamic web page containing a hex dump of the EXIF information. This can be a very
powerful tool for low-level analysis of EXIF information. The -htmlDump option is also invoked if
the -v and -h options are used together. The verbose level controls the maximum length of the
blocks dumped. An OFFSET may be given to specify the base for displayed offsets. If not provided,
the EXIF/TIFF base offset is used. Use -htmlDump0 for absolute offsets. Currently only EXIF/TIFF
and JPEG information is dumped, but the -u option can be used to give a raw hex dump of other file
formats.

-j[[+]=JSONFILE] (-json)
Use JSON (JavaScript Object Notation) formatting for console output, or import JSON file if
JSONFILE is specified. This option may be combined with -g to organize the output into objects by
group, or -G to add group names to each tag. List-type tags with multiple items are output as JSON
arrays unless -sep is used. By default XMP structures are flattened into individual tags in the JSON
output, but the original structure may be preserved with the -struct option (this also causes all list-
type XMP tags to be output as JSON arrays, otherwise single-item lists would be output as simple
strings). The -a option is implied when -json is used, but entries with identical JSON names are
suppressed in the output. (-G4 may be used to ensure that all tags have unique JSON names.)

Adding the -D or -H option changes tag values to JSON objects with ‘‘val’’ and ‘‘id’’ fields. Adding
-l adds a ‘‘desc’’ field, and a ‘‘num’’ field if the numerical value is different from the converted
‘‘val’’, and ‘‘fmt’’ and ‘‘hex’’ fields for EXIF metadata if the API SaveFormat and SaveBin options are
set respectively. The length of the ‘‘hex’’ output is limited by the API LimitLongValues setting.
Setting the SaveBin option also causes the original values of Rational tags to be returned in string
form as an extra ‘‘rat’’ field. The -b option may be added to output binary data, encoded in base64 if
necessary (indicated by ASCII ‘‘base64:’’ as the first 7 bytes of the value), and -t may be added to
include tag table information (see -t for details). The JSON output is UTF-8 regardless of any -L or
-charset option setting, but the UTF-8 validation is disabled if a character set other than UTF-8 is
specified.

Note that ExifTool quotes JSON values only if they don’t look like numbers (regardless of the
original storage format or the relevant metadata specification). This may be a problem when reading
the JSON via a strongly typed language. However, the API StructFormat option may be set to
‘‘JSONQ’’ to force quoting of numbers. As well, the -sep option may be used to convert arrays into

perl v5.34.1 2025-12-24 13

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

strings. For example:

exiftool -j -api structformat=jsonq -sep ", " ...

If JSONFILE is specified, the JSON file is imported and the tag definitions from the JSON are used to
set tag values on a per-file basis for each file specified on the command line. A special ‘‘SourceFile’’
entry in each JSON object associates the information with a specific target file. An object with a
missing SourceFile or a SourceFile of ‘‘*’’ defines default tags for all target files which are combined
with any tags specified for the specific SourceFile processed. The imported JSON file must have the
same format as the exported JSON files with the exception that options exporting JSON objects
instead of simple values are not compatible with the import file format (ie. export with -D, -H, -l, or
-T is not compatible, and use -G instead of -g). Additionally, tag names in the input JSON file may
be suffixed with a # to disable print conversion.

Specific tags may be imported from the JSON database by adding -TAG options to the command after
-j=JSONFILE, or excluded with --TAG, with exclusions taking priority. Group names and wildcards
in tag names are allowed, but the group name must match exactly the group in the JSON file (eg. a
XMP-dc:Subject entry in the JSON file won’t match -XMP:Subject on the command line.
Also, tags from JSON may be redirected and written to different tags in the target file with support for
advanced-formatting expressions using the same syntax as the -tagsFromFile feature. If no tags are
specified, then all tags except FileName, Directory and excluded tags are imported (in the same order
as the database entries).

Unlike CSV import, empty values are not ignored, and will cause an empty value to be written if
supported by the specific metadata type. Tags are deleted by using the -f option and setting the tag
value to ‘‘-’’ (or to the MissingTagValue setting if this API option was used). Importing with
-j+=JSONFILE causes new values to be added to existing lists in the target file.

-l (-long)
Use long 2-line Canon-style output format. Adds a description and unconverted value (if it is
different from the converted value) to the XML, JSON or PHP output when -X, -j or -php is used.
May also be combined with -listf, -listr or -listwf to add descriptions of the file types.

-L (-latin)
Use Windows Latin1 encoding (cp1252) for output tag values instead of the default UTF-8. When
writing, -L specifies that input text values are Latin1 instead of UTF-8. Equivalent to -charset
latin.

-lang [LANG]
Set current language for tag descriptions and converted values. LANG is de, fr, ja, etc. Use -lang
with no other arguments to get a list of available languages. The default language is en if -lang is
not specified. Note that tag/group names are always English, independent of the -lang setting, and
translation of warning/error messages has not yet been implemented. May also be combined with
-listx to output descriptions in one language only.

By default, ExifTool uses UTF-8 encoding for special characters, but the -L or -charset option may
be used to invoke other encodings. Note that ExifTool uses Unicode::LineBreak if available to help
preserve the column alignment of the plain text output for languages with a variable-width character
set.

Currently, the language support is not complete, but users are welcome to help improve this by
submitting their own translations. To submit a translation, follow these steps (you must have Perl
installed for this):

1. Download and unpack the latest Image-ExifTool full distribution.

2. ’cd’ into the Image-ExifTool directory.

3. Run this command to make an XML file of the desired tags (eg. EXIF):

perl v5.34.1 2025-12-24 14

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

./exiftool -listx -exif:all > out.xml

4. Copy this text into a file called ’import.pl’ in the exiftool directory:

push @INC, 'lib';
require Image::ExifTool::TagInfoXML;
my $file = shift or die "Expected XML file name\n";
$Image::ExifTool::TagInfoXML::makeMissing = shift;
Image::ExifTool::TagInfoXML::BuildLangModules($file,8);

5. Run the ’import.pl’ script to Import the XML file, generating the ’MISSING’ entries for your
language (eg. Russian):

perl import.pl out.xml ru

6. Edit the generated language module lib/Image/ExifTool/Lang/ru.pm, and search and replace all
’MISSING’ strings in the file with your translations.

7. Email the module (’ru.pm’ in this example) to exiftool@gmail.com

8. Thank you!!

-listItem INDEX
For list-type tags, this causes only the item with the specified index to be extracted. INDEX is 0 for
the first item in the list. Negative indices may also be used to reference items from the end of the list.
Has no effect on single-valued tags. Also applies to tag values when copying from a tag, and in -if,
-p and -fileNUM arguments.

-n (--printConv)
Disable print conversion for all tags. By default, extracted values are converted to a more human-
readable format, but the -n option disables this conversion, revealing the machine-readable values.
For example:

> exiftool -Orientation -S a.jpg
Orientation: Rotate 90 CW
> exiftool -Orientation -S -n a.jpg
Orientation: 6

The print conversion may also be disabled on a per-tag basis by suffixing the tag name with a #
character:

> exiftool -Orientation# -Orientation -S a.jpg
Orientation: 6
Orientation: Rotate 90 CW

These techniques may also be used to disable the inverse print conversion when writing. For
example, the following commands all have the same effect:

> exiftool -Orientation='Rotate 90 CW' a.jpg
> exiftool -Orientation=6 -n a.jpg
> exiftool -Orientation#=6 a.jpg

-p[-] STR or FMTFILE (-printFormat)
Print output in the format specified by the given string or file. The argument is interpreted as a string
unless a file of that name exists, in which case the string is loaded from the contents of the file. Tag
names in the format string or file begin with a $ symbol and may contain leading group names and/or
a trailing # (to disable print conversion). Case is not significant. Braces {} may be used around the
tag name to separate it from subsequent text (and must be used if subsequent text begins with an
alphanumeric character, hyphen, underline, colon or number sign). Use $$ to represent a $ symbol,
and $/ for a newline. When the string argument is used (ie. STR), a newline is added to the end of
the string unless -p- is specified or the -b option is used.

Multiple -p options may be used. Lines beginning with #[HEAD] and #[TAIL] are output before

perl v5.34.1 2025-12-24 15

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

the first processed file and after the last processed file respectively. Lines beginning with #[SECT]
and #[ENDS] are output before and after each section of files. A section is defined as a group of
consecutive files with the same section header (eg. files are grouped by directory if #[SECT]
contains $directory). Lines beginning with #[BODY] and lines not beginning with # are output
for each processed file. Lines beginning with #[IF] are not output, but all BODY lines are skipped
if any tag on an IF line doesn’t exist. Other lines beginning with # are ignored. (To output a line
beginning with #, use #[BODY]#.) For example, this format file:

this is a comment line
#[HEAD]-- Generated by ExifTool $exifToolVersion --
File: $FileName - $DateTimeOriginal
(f/$Aperture, ${ShutterSpeed}s, ISO $EXIF:ISO)
#[TAIL]-- end --

with this command:

exiftool -p test.fmt a.jpg b.jpg

produces output like this:

-- Generated by ExifTool 13.45 --
File: a.jpg - 2003:10:31 15:44:19
(f/5.6, 1/60s, ISO 100)
File: b.jpg - 2006:05:23 11:57:38
(f/8.0, 1/13s, ISO 100)
-- end --

The values of List-type tags with multiple items, Shortcut tags representing multiple tags, and
matching tags when the All group is specified are joined according the -sep option setting when
interpolated in the string. (Note that when All is used as a group name, dupicate tags are included
regardless of the Duplicates option setting.) When All is used as a tag name, a value of 1 is returned
if any tag exists in the specified group, or 0 otherwise (unless the All group is also specified, in
which case the values of all matching tags are joined).

The -p output iterates through the family 3 group names, with each sub-document producing
additional output when combined with the -ee (ExtractEmbedded) option.

If a specified tag does not exist, a minor warning is issued and the line with the missing tag is not
printed. However, the -f option may be used to set the value of missing tags to ’-’ (but this may be
configured via the API MissingTagValue option), or the -m option may be used to ignore minor
warnings and leave the missing values empty. Alternatively, -q -q may be used to simply suppress
the warning messages.

The ‘‘Advanced formatting feature’’ may be used to modify the values of individual tags within the
-p option string.

Note that the API RequestTags option is automatically set for all tags used in the FMTFILE or STR.
This allows all other tags to be ignored using -API IgnoreTags=all, resulting in reduced memory
usage and increased speed.

-php
Format output as a PHP Array. The -g, -G, -D, -H, -l, -sep and -struct options combine with
-php, and duplicate tags are handled in the same way as with the -json option. As well, the -b
option may be added to output binary data, and -t may be added to include tag table information (see
-t for details). Here is a simple example showing how this could be used in a PHP script:

<?php
eval('$array=' . `exiftool -php -q image.jpg`);
print_r($array);
?>

perl v5.34.1 2025-12-24 16

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

-plot
Write output for all specified tags and all input files as a single SVG-formatted plot. When combined
with this feature, the -w option argument is a complete file name with no format codes and the
append feature may not be used. Each tag specified on the command line represents a dataset in the
plot (or more for array values or if the Split plot setting is used). Non-numerical values are ignored.
Each input file may contribute multiple points to a dataset if it contains sub-documents and the -ee
option is used, or if the tag value is a delimited string of numbers (valid delimiters are: space,
comma, semicolon, tab and newline). Line, Scatter and Histogram plot types are available. See the
API Plot Option and <https://exiftool.org/plot.html> for more details and information about the plot
settings.

-s[NUM] (-short)
Short output format. Prints tag names instead of descriptions. Add NUM or up to 3 -s options for
even shorter formats:

-s1 or -s - print tag names instead of descriptions
-s2 or -s -s - no extra spaces to column-align values
-s3 or -s -s -s - print values only (no tag names)

Also effective when combined with -t, -h, -X or -listx options.

-S (-veryShort)
Very short format. The same as -s2 or two -s options. Tag names are printed instead of
descriptions, and no extra spaces are added to column-align values.

-sep STR (-separator)
Specify separator string for items in list-type tags. When reading, the default is to join list items with
‘‘, ’’. When writing, this option causes values assigned to list-type tags to be split into individual
items at each substring matching STR (otherwise they are not split by default). Space characters in
STR match zero or more whitespace characters in the value.

Note that an empty separator ("") is allowed, and will join items with no separator when reading, or
split the value into individual characters when writing.

For pure binary output (-b used without -j, -php or -X), the first -sep option specifies a list-item
separator, and a second -sep option specifies a terminator for the end of the list (or after each value if
not a list). In these strings, \n, \r and \t may be used to represent a newline, carriage return and
tab respectively. By default, binary list items are separated by a newline, and no terminator is added.

-sort, --sort
Sort output by tag description, or by tag name if the -s option is used. When sorting by description,
the sort order will depend on the -lang option setting. Without the -sort option, tags appear in the
order they were specified on the command line, or if not specified, the order they were extracted from
the file. By default, tags are organized by groups when combined with the -g or -G option, but this
grouping may be disabled with --sort.

-struct, --struct
Output structured XMP information instead of flattening to individual tags. This option works well
when combined with the XML (-X) and JSON (-j) output formats. For other output formats, XMP
structures and lists are serialized into the same format as when writing structured information (see
<https://exiftool.org/struct.html> for details). When copying, structured tags are copied by default
unless --struct is used to disable this feature (although flattened tags may still be copied by
specifying them individually unless -struct is used). These options have no effect when assigning
new values since both flattened and structured tags may always be used when writing.

-t (-tab)
Output a tab-delimited list of description/values (useful for database import). May be combined with
-s to print tag names instead of descriptions, or -S to print tag values only, tab-delimited on a single
line. The -t option may be combined with -j, -php or -X to add tag table information (table, tag
id, and index for cases where multiple conditional tags exist with the same ID), which allows the

perl v5.34.1 2025-12-24 17

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

corresponding tag to be located in the -listx output.

-T (-table)
Output tag values in table form. Equivalent to -t -S -q -f.

-v[NUM] (-verbose)
Print verbose messages. NUM specifies the level of verbosity in the range 0-5, with higher numbers
being more verbose. If NUM is not given, then each -v option increases the level of verbosity by 1.
With any level greater than 0, most other options are ignored and normal console output is
suppressed unless specific tags are extracted. Using -v0 causes the console output buffer to be
flushed after each line (which may be useful to avoid delays when piping exiftool output), and prints
the name of each processed file when writing and the new file name when renaming, moving or
copying. Verbose levels above -v0 do not flush after each line. Also see the -progress option.

-w[+|!] EXT or FMT (-textOut)
Write console output to files with names ending in EXT, one for each source file. The output file
name is obtained by replacing the source file extension (including the ’.’) with the specified extension
(and a ’.’ is added to the start of EXT if it doesn’t already contain one). Alternatively, a FMT string
may be used to give more control over the output file name and directory. In the format string, %d,
%f and %e represent the directory, filename and extension of the source file, and %c represents a
copy number which is automatically incremented if the file already exists. %d includes the trailing ’/’
if necessary, but %e does not include the leading ’.’. For example:

-w %d%f.txt # same effect as "-w txt"
-w dir/%f_%e.out # write files to "dir" as "FILE_EXT.out"
-w dir2/%d%f.txt # write to "dir2", keeping dir structure
-w a%c.txt # write to "a.txt" or "a1.txt" or "a2.txt"...

Existing files will not be changed unless an exclamation point is added to the option name (ie. -w! or
-textOut!) to overwrite the file, or a plus sign (ie. -w+ or -textOut+) to append to the existing file.
Both may be used (ie. -w+! or -textOut+!) to overwrite output files that didn’t exist before the
command was run, and append the output from multiple source files. For example, to write one
output file for all source files in each directory:

exiftool -filename -createdate -T -w+! %d/out.txt -r DIR

Capitalized format codes %D, %F, %E and %C provide slightly different alternatives to the lower case
versions. %D does not include the trailing ’/’, %F is the full filename including extension, %E includes
the leading ’.’, and %C increments the count for each processed file (see below).

Notes:

1) In a Windows BAT file the % character is represented by %%, so an argument like %d%f.txt is
written as %%d%%f.txt.

2) If the argument for -w does not contain a valid format code (eg. %f), then it is interpreted as a file
extension, but there are three different ways to create a single output file from multiple source files:

1. Shell redirection
exiftool FILE1 FILE2 ... > out.txt

2. With the -w option and a zero-width format code
exiftool -w+! %0fout.txt FILE1 FILE2 ...

3. With the -W option (see the -W option below)
exiftool -W+! out.txt FILE1 FILE2 ...

3) The -w option changes when used with a multi-file output format (-csv or -plot). With these, the
argument of -w is a complete file name with no formatting codes, and the append feature may not be
used.

perl v5.34.1 2025-12-24 18

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

Advanced features:

A substring of the original file name, directory or extension may be taken by specifying a field width
immediately following the ’%’ character. If the width is negative, the substring is taken from the end.
The substring position (characters to ignore at the start or end of the string) may be given by a second
optional value after a decimal point. For example:

Input File Name Format Specifier Output File Name
---------------- ---------------- ----------------
Picture-123.jpg %7f.txt Picture.txt
Picture-123.jpg %-.4f.out Picture.out
Picture-123.jpg %7f.%-3f Picture.123
Picture-123a.jpg Meta%-3.1f.txt Meta123.txt

(Note that special characters may have a width of greater than one.)

For %d and %D, the field width/position specifiers may be applied to the directory levels instead of
substring position by using a colon instead of a decimal point in the format specifier. For example:

Source Dir Format Result Notes
------------ ------ ---------- ------------------
pics/2012/02 %2:d pics/2012/ take top 2 levels
pics/2012/02 %-:1d pics/2012/ up one directory level
pics/2012/02 %:1d 2012/02/ ignore top level
pics/2012/02 %1:1d 2012/ take 1 level after top
pics/2012/02 %-1:D 02 bottom level folder name
/Users/phil %:2d phil/ ignore top 2 levels

(Note that the root directory counts as one level when an absolute path is used as in the last example
above.)

For %c, these modifiers have a different effects. If a field width is given, the copy number is padded
with zeros to the specified width. A leading ’-’ adds a dash before the copy number, and a ’+’ adds
an underline. By default, the copy number is omitted from the first file of a given name, but this can
be changed by adding a decimal point to the modifier. For example:

-w A%-cZ.txt # AZ.txt, A-1Z.txt, A-2Z.txt ...
-w B%5c.txt # B.txt, B00001.txt, B00002.txt ...
-w C%.c.txt # C0.txt, C1.txt, C2.txt ...
-w D%-.c.txt # D-0.txt, D-1.txt, D-2.txt ...
-w E%-.4c.txt # E-0000.txt, E-0001.txt, E-0002.txt ...
-w F%-.4nc.txt # F-0001.txt, F-0002.txt, F-0003.txt ...
-w G%+c.txt # G.txt, G_1.txt G_2.txt ...
-w H%-lc.txt # H.txt, H-b.txt, H-c.txt ...
-w I.%.3uc.txt # I.AAA.txt, I.AAB.txt, I.AAC.txt ...

A special feature allows the copy number to be incremented for each processed file by using %C
(upper case) instead of %c. This allows a sequential number to be added to output file names, even if
the names are different. For %C, a copy number of zero is not omitted as it is with %c. A leading ’-’
causes the number to be reset at the start of each new directory (in the original directory structure if
the files are being moved), and ’+’ has no effect. The number before the decimal place gives the
starting index, the number after the decimal place gives the field width. To preserve synchronization
with the processed file number, by default the copy number is not incremented to avoid file name
collisions, so any existing same-named file will cause an error. However using a colon instead of a
decimal point causes the number to be incremented to avoid collisions with existing files.

The following examples show the output filenames when used with the command exiftool
rose.jpg star.jpg jet.jpg ...:

perl v5.34.1 2025-12-24 19

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

-w %C%f.txt # 0rose.txt, 1star.txt, 2jet.txt
-w %f-%10C.txt # rose-10.txt, star-11.txt, jet-12.txt
-w %.3C-%f.txt # 000-rose.txt, 001-star.txt, 002-jet.txt
-w %57.4C%f.txt # 0057rose.txt, 0058star.txt, 0059jet.txt

All format codes may be modified by ’l’ or ’u’ to specify lower or upper case respectively (ie. %le
for a lower case file extension). When used to modify %c or %C, the numbers are changed to an
alphabetical base (see example H above). Also, %c and %C may be modified by ’n’ to count using
natural numbers starting from 1, instead of 0 (see example F above).

This same FMT syntax is used with the -o and -tagsFromFile options, although %c and %C are only
valid for output file names.

-W[+|!] FMT (-tagOut)
This enhanced version of the -w option allows a separate output file to be created for each extracted
tag. See the -w option documentation above for details of the basic functionality. Listed here are the
differences between -W and -w:

1) With -W, a new output file is created for each extracted tag.

2) -W supports four additional format codes: %t, %g and %s represent the tag name, group name,
and suggested extension for the output file (based on the format of the data), and %o represents the
value of the OriginalRawFileName or OriginalFileName tag from the input file (including extension).
The %g code may be followed by a single digit to specify the group family number (eg. %g1),
otherwise family 0 is assumed. The substring width/position/case specifiers may be used with these
format codes in exactly the same way as with %f and %e.

3) The argument for -W is interpreted as a file name if it contains no format codes. (For -w, this
would be a file extension.) This change allows a simple file name to be specified, which, when
combined with the append feature, provides a method to write metadata from multiple source files to
a single output file without the need for shell redirection. For example, the following pairs of
commands give the same result:

overwriting existing text file
exiftool test.jpg > out.txt # shell redirection
exiftool test.jpg -W+! out.txt # equivalent -W option

append to existing text file
exiftool test.jpg >> out.txt # shell redirection
exiftool test.jpg -W+ out.txt # equivalent -W option

4) Adding the -v option to -W sends a list of the tags and output file names to the console instead of
giving a verbose dump of the entire file. (Unless appending all output to one file for each source file
by using -W+ with an output file FMT that does not contain %t, %g, %s or %o.)

5) Individual list items are stored in separate files when -W is combined with -b, but note that for
separate files to be created %c or %C must be used in FMT to give the files unique names.

-Wext EXT, --Wext EXT (-tagOutExt)
This option is used to specify the type of output file(s) written by the -W option. An output file is
written only if the suggested extension matches EXT. Multiple -Wext options may be used to write
more than one type of file. Use --Wext to write all but the specified type(s).

-X (-xmlFormat)
Use ExifTool-specific RDF/XML formatting for console output. Implies the -a option, so duplicate
tags are extracted. The formatting options -b, -D, -H, -l, -s, -sep, -struct and -t may be used in
combination with -X to affect the output, but note that the tag ID (-D, -H and -t), binary data (-b)
and structured output (-struct) options are not effective for the short output (-s). Another restriction
of -s is that only one tag with a given group and name may appear in the output. Note that the tag ID
options (-D, -H and -t) will produce non-standard RDF/XML unless the -l option is also used.

perl v5.34.1 2025-12-24 20

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

By default, -X outputs flattened tags, so -struct should be added if required to preserve XMP
structures. List-type tags with multiple values are formatted as an RDF Bag, but they are combined
into a single string when -s or -sep is used. Using -L changes the XML encoding from ‘‘UTF-8’’ to
‘‘windows-1252’’. Other -charset settings change the encoding only if there is a corresponding
standard XML character set. The -b option causes binary data values to be written, encoded in
base64 if necessary. The -t option adds tag table information to the output (see -t for details).

Note: This output is NOT the same as XMP because it uses dynamically-generated property names
corresponding to the ExifTool tag names with ExifTool family 1 group names as namespaces, and not
the standard XMP properties and namespaces. To write XMP instead, use the -o option with an XMP
extension for the output file.

Processing control

-a, --a (-duplicates, --duplicates)
Allow (-a) or suppress (--a) duplicate tag names to be extracted. By default, duplicate tags are
suppressed when reading unless the -ee or -X options are used or the Duplicates option is enabled in
the configuration file. When writing, this option allows multiple Warning messages to be shown.
Duplicate tags are always extracted when copying.

-e (--composite)
Extract existing tags only — don’t generate composite tags.

-ee[NUM] (-extractEmbedded)
Extract information from embedded documents in EPS files, embedded EPS information and JPEG
and Jpeg2000 images in PDF files, embedded MPF images in JPEG and MPO files, streaming metadata
in AVCHD videos, and the resource fork of Mac OS files. Implies the -a option. Use -g3 or -G3 to
identify the originating document for extracted information. Embedded documents containing sub-
documents are indicated with dashes in the family 3 group name. (eg. Doc2-3 is the 3rd sub-
document of the 2nd embedded document.) Note that this option may increase processing time
substantially, especially for PDF files with many embedded images or videos with streaming
metadata.

When used with -ee, the -p option is evaluated for each embedded document as if it were a separate
input file. This allows, for example, generation of GPS track logs from timed metadata in videos.
See <https://exiftool.org/geotag.html#Inverse> for examples.

Setting NUM to 2 causes the H264 video stream in MP4 videos to be parsed until the first
Supplemental Enhancement Information (SEI) message is decoded, or 3 to parse the entire H624
stream and decode all SEI information. For M2TS videos, a setting of 3 causes the entire file to be
parsed in search of unlisted programs which may contain timed GPS.

-ext[+] EXT, --ext EXT (-extension)
Process only files with (-ext) or without (--ext) a specified extension. There may be multiple -ext
and --ext options. A plus sign may be added (ie. -ext+) to add the specified extension to the
normally processed files. EXT may begin with a leading ’.’, which is ignored. Case is not significant.
"*" may be used to process files with any extension (or none at all), as in the last three examples:

exiftool -ext JPG DIR # process only JPG files
exiftool --ext cr2 --ext dng DIR # supported files but CR2/DNG
exiftool -ext+ txt DIR # supported files plus TXT
exiftool -ext "*" DIR # process all files
exiftool -ext "*" --ext xml DIR # process all but XML files
exiftool -ext "*" --ext . DIR # all but those with no ext

Using this option has two main advantages over specifying *.EXT on the command line: 1) It
applies to files in subdirectories when combined with the -r option. 2) The -ext option is case-
insensitive, which is useful when processing files on case-sensitive filesystems.

Note that all files specified on the command line will be processed regardless of extension unless the

perl v5.34.1 2025-12-24 21

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

-ext option is used.

-F[OFFSET] (-fixBase)
Fix the base for maker notes offsets. A common problem with some image editors is that offsets in
the maker notes are not adjusted properly when the file is modified. This may cause the wrong
values to be extracted for some maker note entries when reading the edited file. This option allows
an integer OFFSET to be specified for adjusting the maker notes base offset. If no OFFSET is given,
ExifTool takes its best guess at the correct base. Note that exiftool will automatically fix the offsets
for images which store original offset information (eg. newer Canon models). Offsets are fixed
permanently if -F is used when writing EXIF to an image. eg)

exiftool -F -exif:resolutionunit=inches image.jpg

-fast[NUM]
Increase speed of extracting information. With -fast (or -fast1), ExifTool will not scan to the end of
a JPEG image to check for an AFCP or PreviewImage trailer, or past the first comment in GIF images
or the audio/video data in WAV/AVI files to search for additional metadata. These speed benefits are
small when reading images directly from disk, but can be substantial if piping images through a
network connection. Also bypasses CRC validation when writing PNG images which can be very
slow. For more substantial speed benefits, -fast2 also causes exiftool to avoid extracting any EXIF
MakerNote information, and to stop processing at the IDAT chunk of PNG images and the mdat atom
of QuickTime-format files (but note that some files may store metadata after this). -fast3 avoids
extracting metadata from the file, and returns only pseudo System tags, but still reads the file header
to obtain an educated guess at FileType. -fast4 doesn’t even read the file header, and returns only
System tags and a FileType based on the file extension. -fast5 also disables generation of the
Composite tags (like -e). Has no effect when writing.

Note that a separate -fast setting may be used for evaluation of a -if condition, or when ordering
files with the -fileOrder option. See the -if and -fileOrder options for details.

-fileOrder[NUM] [-]TAG
Set file processing order according to the sorted value of the specified TAG. Without this option, files
are processed in the order returned by the system, which is commonly by file name, but this is
filesystem dependent. For example, to process files in order of date:

exiftool -fileOrder DateTimeOriginal DIR

Additional -fileOrder options may be added for secondary sort keys. Numbers are sorted
numerically, and all other values are sorted alphabetically. Files missing the specified tag are sorted
last. The sort order may be reversed by prefixing the tag name with a - (eg. -fileOrder
-createdate). Print conversion of the sorted values is disabled with the -n option, or a #
appended to the tag name. Other formatting options (eg. -d) have no effect on the sorted values.
Note that the -fileOrder option can incur large performance penalty since it involves an additional
initial processing pass of all files, but this impact may be reduced by specifying a NUM to effectively
set the -fast level for the initial pass. For example, -fileOrder4 may be used if TAG is a pseudo
System tag. If multiple -fileOrder options are used, the extraction is done at the lowest -fast level.
Note that files are sorted across directory boundaries if multiple input directories are specified.

-i DIR (-ignore)
Ignore specified directory name. DIR may be either an individual folder name, or a full path, and is
case sensitive. If a full path is specified, it must match the Directory tag exactly to be ignored. Use
multiple -i options to ignore more than one directory name. A special DIR value of SYMLINKS may
be specified to avoid recursing into directories which are symbolic links when the -r option is used
(note this does not currently work under Windows). As well, a value of HIDDEN may be used to
ignore files with names that start with a ‘‘.’’ (ie. hidden files on Unix systems) when scanning a
directory.

perl v5.34.1 2025-12-24 22

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

-if[NUM] EXPR
Specify a condition to be evaluated before processing each FILE. EXPR is a Perl-like logic expression
containing tag names prefixed by $ symbols. It is evaluated with the tags from each FILE in turn, and
the file is processed only if the expression returns true. Unlike Perl variable names, tag names are not
case sensitive and may contain a hyphen. As well, tag names may have a leading group names
separated by colons, and/or a trailing # character to disable print conversion. The expression
$GROUP:all evaluates to 1 if any tag exists in the specified GROUP, or 0 otherwise (see note 2
below). When multiple -if options are used, all conditions must be satisfied to process the file.
Returns an exit status of 2 if all files fail the condition. Below are a few examples:

extract shutterspeed from all Canon images in a directory
exiftool -shutterspeed -if '$make eq "Canon"' dir

add one hour to all images created on or after Apr. 2, 2006
exiftool -alldates+=1 -if '$CreateDate ge "2006:04:02"' dir

set EXIF ISO value if possible, unless it is set already
exiftool '-exif:iso<iso' -if 'not $exif:iso' dir

find images containing a specific keyword (case insensitive)
exiftool -if '$keywords =˜ /harvey/i' -filename dir

Adding NUM to the -if option causes a separate processing pass to be executed for evaluating EXPR
at a -fast level given by NUM (see the -fast option documentation for details). Without NUM, only
one processing pass is done at the level specified by the -fast option. For example, using -if5 is
possible if EXPR uses only pseudo System tags, and may significantly speed processing if enough
files fail the condition.

The expression has access to the current ExifTool object through $self, and the following special
functions are available to allow short-circuiting of the file processing. Both functions have a return
value of 1. Case is significant for function names.

End() - end processing after this file
EndDir() - end processing of files in the current directory

after this file (not compatible with -fileOrder)

Notes:

1) The -n and -b options also apply to tags used in EXPR.

2) The API RequestTags option is automatically set for all tags used in the -if condition.

3) Tags in the string are interpolated in a similar way to -p before the expression is evaluated. In this
interpolation, $/ is converted to a newline and $$ represents a single $ symbol. So Perl variables, if
used, require a double $, and regular expressions ending in $/ must use $$/ instead.

4) The condition accesses only tags from the file being processed unless the -fileNUM option is used
to read an alternate file and the corresponding family 8 group name is specified for the tag. See the
-fileNUM option details for more information.

5) The -a (Duplicates) option is implied when -if is used without a fast NUM, and the values of
duplicate tags are accessible by specifying a group name in the expression (such as a family 4
instance number, eg. $Copy1:TAG, $Copy2:TAG, etc).

6) A special ‘‘OK’’ UserParam is available to test the success of the previous command when
-execute was used, and may be used like any other tag in the condition (ie. ‘‘$OK’’).

7) The values of undefined tags in the expression are affected by the -f and -m options unless the
API UndefTags option is also set.

8) The condition fails if a Perl error occurs. This could happen for instance if an undefined value (eg.

perl v5.34.1 2025-12-24 23

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

a missing tag) is used improperly.

-m (-ignoreMinorErrors)
Ignore minor errors and warnings. This enables writing to files with minor errors and disables some
validation checks which could result in minor warnings. Generally, minor errors/warnings indicate a
problem which usually won’t result in loss of metadata if ignored. However, there are exceptions, so
ExifTool leaves it up to you to make the final decision. Minor errors and warnings are indicated by
‘‘[minor]’’ at the start of the message. Warnings which affect processing when ignored are indicated
by ‘‘[Minor]’’ (with a capital ‘‘M’’). Note that this causes missing values in -tagsFromFile, -p, -if
and -fileNUM strings to be set to an empty string rather than an undefined value (but this may be
avoided for -if using the API UndefTags option).

-o OUTFILE or FMT (-out)
Set the output file or directory name when writing information. Without this option, when any
‘‘real’’ tags are written the original file is renamed to FILE_original and output is written to
FILE. When writing only FileName and/or Directory ‘‘pseudo’’ tags, -o causes the file to be copied
instead of moved, but directories specified for either of these tags take precedence over that specified
by the -o option.

OUTFILE may be - to write to stdout. The output file name may also be specified using a FMT string
in which %d, %f and %e represent the directory, file name and extension of FILE. Also, %c may be
used to add a copy number. See the -w option for FMT string examples.

The output file is taken to be a directory name if it already exists as a directory or if the name ends
with ’/’. Output directories are created if necessary. Existing files will not be overwritten.
Combining the -overwrite_original option with -o causes the original source file to be erased after
the output file is successfully written.

A special feature of this option allows the creation of certain types of files from scratch, or with the
metadata from another type of file. The following file types may be created using this technique:

XMP, EXIF, EXV, MIE, ICC/ICM, VRD, DR4

The output file type is determined by the extension of OUTFILE (specified as -.EXT when writing to
stdout). The output file is then created from a combination of information in FILE (as if the
-tagsFromFile option was used), and tag values assigned on the command line. If no FILE is
specified, the output file may be created from scratch using only tags assigned on the command line.

-overwrite_original
Overwrite the original FILE (instead of preserving it by adding _original to the file name) when
writing information to an image. Caution: This option should only be used if you already have
separate backup copies of your image files. The overwrite is implemented by renaming a temporary
file to replace the original. This deletes the original file and replaces it with the edited version in a
single operation. When combined with -o, this option causes the original file to be deleted if the
output file was successfully written (ie. the file is moved instead of copied).

-overwrite_original_in_place
Similar to -overwrite_original except that an extra step is added to allow the original file attributes
to be preserved. For example, on a Mac this causes the original file creation date, type, creator, label
color, icon, Finder tags, other extended attributes and hard links to the file to be preserved (but note
that the Mac OS resource fork is always preserved unless specifically deleted with -rsrc:all=).
This is implemented by opening the original file in update mode and replacing its data with a copy of
a temporary file before deleting the temporary. The extra step results in slower performance, so the
-overwrite_original option should be used instead unless necessary.

Note that this option reverts to the behaviour of the -overwrite_original option when also writing
the FileName and/or Directory tags.

perl v5.34.1 2025-12-24 24

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

-P (-preserve)
Preserve the filesystem modification date/time (FileModifyDate) of the original file when
writing. Note that some filesystems store a creation date (ie. FileCreateDate on Windows and
Mac systems) which is not affected by this option. This creation date is preserved on Windows
systems where Win32API::File and Win32::API are available regardless of this setting. For other
systems, the -overwrite_original_in_place option may be used if necessary to preserve the creation
date. The -P option is superseded by any value written to the FileModifyDate tag.

-password PASSWD
Specify password to allow processing of password-protected PDF documents. If a password is
required but not given, a warning is issued and the document is not processed. This option is ignored
if a password is not required.

-progress[NUM][:[TITLE]]
Show the progress when processing files. Without a colon, the -progress option adds a progress
count in brackets after the name of each processed file, giving the current file number and the total
number of files to be processed. Implies the -v0 option, causing the names of processed files to also
be printed when writing. When combined with the -if option, the total count includes all files before
the condition is applied, but files that fail the condition will not have their names printed. If NUM is
specified, the progress is shown every NUM input files.

If followed by a colon (ie. -progress:), the console window title is set according to the specified
TITLE string. If no TITLE is given, a default TITLE string of ‘‘ExifTool %p%%’’ is assumed. In the
string, %f represents the file name, %p is the progress as a percent, %r is the progress as a ratio,
%##b is a progress bar of width ‘‘##’’ (where ‘‘##’’ is an integer specifying the bar width in
characters, or 20 characters by default if ‘‘##’’ is omitted), and %% is a % character. May be
combined with the normal -progress option to also show the progress count in console messages.
(Note: For this feature to function correctly on Mac/Linux, stderr must go to the console.)

-q (-quiet)
Quiet processing. One -q suppresses normal informational messages, and a second -q suppresses
warnings as well. Error messages can not be suppressed, although minor errors may be downgraded
to warnings with the -m option, which may then be suppressed with -q -q.

-r[.] (-recurse)
Recursively process files in subdirectories. Only meaningful if FILE is a directory name.
Subdirectories with names beginning with ‘‘.’’ are not processed unless ‘‘.’’ is added to the option
name (ie. -r. or -recurse.). By default, exiftool will also follow symbolic links to directories if
supported by the system, but this may be disabled with -i SYMLINKS (see the -i option for
details). Combine this with -ext options to control the types of files processed.

-scanForXMP
Scan all files (even unsupported formats) for XMP information unless found already. When
combined with the -fast option, only unsupported file types are scanned. Warning: It can be time
consuming to scan large files.

-u (-unknown)
Extract values of unknown tags. Add another -u to also extract unknown information from binary
data blocks. This option applies to tags with numerical tag ID’s, and causes tag names like
‘‘Exif_0xc5d9’’ to be generated for unknown information. It has no effect on information types
which have human-readable tag ID’s (such as XMP), since unknown tags are extracted automatically
from these formats.

-U (-unknown2)
Extract values of unknown tags as well as unknown information from some binary data blocks. This
is the same as two -u options.

-wm MODE (-writeMode)
Set mode for writing/creating tags. MODE is a string of one or more characters from the list below.
The default write mode is wcg.

perl v5.34.1 2025-12-24 25

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

w - Write existing tags
c - Create new tags
g - create new Groups as necessary

For example, use -wm cg to only create new tags (and avoid editing existing ones).

The level of the group is the SubDirectory level in the metadata structure. For XMP or IPTC this is
the full XMP/IPTC block (the family 0 group), but for EXIF this is the individual IFD (the family 1
group).

-z (-zip)
When reading, causes information to be extracted from .gz and .bz2 compressed images (only one
image per archive; requires gzip and bzip2 to be available). When writing, causes compressed
information to be written if supported by the metadata format (eg. PNG supports compressed textual
metadata, JXL supports compressed EXIF and XML, and MIE supports any compressed metadata),
disables the recommended padding in embedded XMP (saving 2424 bytes when writing XMP in a
file), and writes XMP in shorthand format — the equivalent of setting the API Compress=1 and
Compact=‘‘NoPadding,Shorthand’’.

Other options

-@ ARGFILE
Read command-line arguments from the specified file. The file contains one argument per line (NOT
one option per line — some options require additional arguments, and all arguments must be placed
on separate lines). Blank lines and lines beginning with # are ignored (unless they start with
#[CSTR], in which case the rest of the line is treated as a C string, allowing standard C escape
sequences such as ‘‘\n’’ for a newline). White space at the start of a line is removed. Normal shell
processing of arguments is not performed, which among other things means that arguments should
not be quoted and spaces are treated as any other character. ARGFILE may exist relative to either the
current directory or the exiftool directory unless an absolute pathname is given.

For example, the following ARGFILE will set the value of Copyright to ‘‘Copyright YYYY, Phil
Harvey’’, where ‘‘YYYY’’ is the year of CreateDate:

-d
%Y
-copyright<Copyright $createdate, Phil Harvey

Arguments in ARGFILE behave exactly the same as if they were entered at the location of the -@
option on the command line, with the exception that the -config and -common_args options may
not be used in an ARGFILE.

-k (-pause)
Pause with the message -- press any key -- or -- press RETURN -- (depending on
your system) before terminating. This option is used to prevent the command window from closing
when run as a Windows drag and drop application.

-list, -listw, -listf, -listr, -listwf, -listg[NUM], -listd, -listx, -listgeo
Print a list of all valid tag names (-list), all writable tag names (-listw), all supported file extensions
(-listf), all recognized file extensions (-listr), all writable file extensions (-listwf), all tag groups [in
a specified family] (-listg[NUM]), all deletable tag groups (-listd), an XML database of tag details
including language translations (-listx), or the Geolocation database (-listgeo). The -list, -listw
and -listx options may be followed by an additional argument of the form -GROUP:All to list only
tags in a specific group, where GROUP is one or more family 0-2 group names (excepting EXIF IFD
groups) separated by colons. With -listg, NUM may be given to specify the group family, otherwise
family 0 is assumed. The -l or -v option may be combined with -listf, -listr or -listwf to add file
descriptions to the list. The -lang option may be combined with -listx to output descriptions in a
single language, and the -sort and/or -lang options may be combined with -listgeo (installation of
the alternate database is required for the additional languages). Also, the API GeolocMinPop,
GeolocFeature and GeolocAltNames options apply to the -listgeo output. Here are some examples:

perl v5.34.1 2025-12-24 26

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

-list # list all tag names
-list -EXIF:All # list all EXIF tags
-list -xmp:time:all # list all XMP tags relating to time
-listw -XMP-dc:All # list all writable XMP-dc tags
-listf # list all supported file extensions
-listr # list all recognized file extensions
-listwf # list all writable file extensions
-listg1 # list all groups in family 1
-listd # list all deletable groups
-listx -EXIF:All # list database of EXIF tags in XML format
-listx -XMP:All -s # list short XML database of XMP tags
-listgeo -lang de # list geolocation database in German

When combined with -listx, the -s option shortens the output by omitting the descriptions and
values (as in the last example above), and -f adds ’flags’ and ’struct’ attributes if applicable. The
flags are formatted as a comma-separated list of the following possible values: Avoid, Binary, List,
Mandatory, Permanent, Protected, Unknown and Unsafe (see the Tag Name documentation). For
XMP List tags, the list type (Alt, Bag or Seq) is also given, and flattened structure tags are indicated
by a Flattened flag with ’struct’ giving the ID of the parent structure.

Note that none of the -list options require an input FILE.

-ver Print exiftool version number. The -v option may be added to print addition system information (see
the README file of the full distribution for more details about optional libraries), or -v2 to also list
the Perl include directories.

-- Indicates the end of options. Any remaining arguments are treated as file names, even if they begin
with a dash (-).

Special features

-diff FILE2
Compare metadata in FILE with FILE2. The FILE2 name may include filename formatting codes (see
the -w option). All extracted tags from the files are compared, but the extracted tags may be
controlled by adding -TAG or --TAG options. For example, below is a command to compare all the
same-named files in two different directories, ignoring the System tags:

exiftool DIR1 -diff DIR2/%f.%e --system:all

The -g and -G options may be used to organize the output by the specified family of groups, with
-G1 being the default. The -a option is implied. Adding -v includes a count of the number of tags
that are the same in each group, and -v2 also indicates when zero tags were the same. The following
text formatting options are valid when -diff is used: -c, -charset, -d, -E, -ec, -ex, -L, -lang, -n,
-s, -sep, -struct and -w.

-geotag TRKFILE
Geotag images from the specified GPS track log file. Using the -geotag option is equivalent to
writing a value to the Geotag tag. The GPS position is interpolated from the track at a time
specified by the value written to the Geotime tag. If Geotime is not specified, the value is copied
from SubSecDateTimeOriginal# if it exists, otherwise DateTimeOriginal# (the # is
added to copy the unformatted value, avoiding potential conflicts with the -d option). For example,
the following two commands are equivalent if SubSecDateTimeOriginal exists in the file:

exiftool -geotag trk.log image.jpg
exiftool -geotag trk.log "-Geotime<SubSecDateTimeOriginal#" image.jpg

If the Geotime value does not contain a time zone then the local system timezone is assumed.
Writing Geotime causes the following tags to be written (provided they can be calculated from the
track log, and they are supported by the destination metadata format): GPSLatitude,
GPSLatitudeRef, GPSLongitude, GPSLongitudeRef, GPSAltitude, GPSAltitudeRef, GPSDateStamp,

perl v5.34.1 2025-12-24 27

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

GPSTimeStamp, GPSDateTime, GPSTrack, GPSTrackRef, GPSSpeed, GPSSpeedRef,
GPSImgDirection, GPSImgDirectionRef, GPSMeasureMode, GPSDOP, GPSPitch, GPSRoll,
GPSCoordinates, AmbientTemperature and CameraElevationAngle. By default, in image files tags
are created in EXIF, and updated in XMP only if they already exist. In QuickTime-format files
GPSCoordinates is created in the preferred location (ItemList by default) as well as in XMP.
However, EXIF:Geotime, XMP:Geotime or QuickTime:Geotime may be specified to write
to write only to one group. Also, ItemList:Geotime, Keys:Geotime or
UserData:Geotime may be used to write to a specific location in QuickTime-format files. Note
that GPSPitch and GPSRoll are non-standard, and require user-defined tags in order to be written.

The Geosync tag may be used to specify a time correction which is applied to each Geotime value
for synchronization with GPS time. For example, the following command compensates for image
times which are 1 minute and 20 seconds behind GPS:

exiftool -geosync=+1:20 -geotag a.log DIR

Advanced Geosync features allow a piecewise linear time drift correction and synchronization from
previously geotagged images. See ‘‘geotag.html’’ in the full ExifTool distribution for more
information.

Multiple -geotag options may be used to concatenate GPS track log data. Also, a single -geotag
option may be used to load multiple track log files by using wildcards in the TRKFILE name, but note
that in this case TRKFILE must be quoted on most systems (with the notable exception of Windows)
to prevent filename expansion. For example:

exiftool -geotag "TRACKDIR/*.log" IMAGEDIR

Currently supported track file formats are GPX, NMEA RMC/GGA/GLL, KML, IGC, Garmin XML and
TCX, Magellan PMGNTRK, Honeywell PTNTHPR, Bramor gEO, Winplus Beacon TXT, and GPS/IMU
CSV files. See ‘‘GEOTAGGING EXAMPLES’’ for examples. Also see ‘‘geotag.html’’ in the full
ExifTool distribution and the Image::ExifTool Options for more details and for information about
geotag configuration options.

The API Geolocation option may be set to the value ‘‘geotag’’ to also write the name, province/state
and country of the nearest city while geotagging. See <https://exiftool.org/geolocation.html> for
details.

-globalTimeShift SHIFT
Shift all formatted date/time values by the specified amount when reading. Does not apply to
unformatted (-n) output. SHIFT takes the same form as the date/time shift when writing (see
Image::ExifTool::Shift.pl for details), with a negative shift being indicated with a minus sign (-) at
the start of the SHIFT string. For example:

return all date/times, shifted back by 1 hour
exiftool -globalTimeShift -1 -time:all a.jpg

set the file name from the shifted CreateDate (-1 day) for
all images in a directory
exiftool "-filename<createdate" -globaltimeshift "-0:0:1 0:0:0" \

-d %Y%m%d-%H%M%S.%%e dir

-use MODULE
Add features from specified plug-in MODULE. Currently, the MWG module is the only plug-in
module distributed with exiftool. This module adds read/write support for tags as recommended by
the Metadata Working Group. As a convenience, -use MWG is assumed if the group name prefix
starts with MWG: exactly for any requested tag. See the MWG Tags documentation for more details.
Note that this option is not reversible, and remains in effect until the application terminates, even
across the -execute option.

Utilities

perl v5.34.1 2025-12-24 28

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

-restore_original
-delete_original[!]

These utility options automate the maintenance of the _original files created by exiftool. They
have no effect on files without an _original copy. The -restore_original option restores the
specified files from their original copies by renaming the _original files to replace the edited
versions. For example, the following command restores the originals of all JPG images in directory
DIR:

exiftool -restore_original -ext jpg DIR

The -delete_original option deletes the _original copies of all files specified on the command
line. Without a trailing ! this option prompts for confirmation before continuing. For example, the
following command deletes a.jpg_original if it exists, after asking ‘‘Are you sure?’’:

exiftool -delete_original a.jpg

These options may not be used with other options to read or write tag values in the same command,
but may be combined with options such -ext, -if, -r, -q and -v.

Advanced options

Among other things, the advanced options allow complex processing to be performed from a single
command without the need for additional scripting. This may be particularly useful for implementations
such as Windows drag-and-drop applications. These options may also be used to improve performance in
multi-pass processing by reducing the overhead required to load exiftool for each invocation.

-api [OPT[[ˆ]=[VAL]]]
Set ExifTool API option. OPT is an API option name. The option value is set to 1 if =VAL is omitted.
If VAL is omitted, the option value is set to undef if = is used, or an empty string with ˆ=. If OPT is
not specified a list of available options is returned. The option name is not case senstive, but the
option values are. See Image::ExifTool Options for option details. This overrides API options set via
the config file. Note that the exiftool app sets some API options internally, and attempts to change
these via the command line will have no effect.

-common_args
Specifies that all arguments following this option are common to all executed commands when
-execute is used. This and the -config option are the only options that may not be used inside a -@
ARGFILE. Note that by definition this option and its arguments MUST come after all other options on
the command line.

-config CFGFILE
Load specified configuration file instead of the default ‘‘.ExifTool_config’’. If used, this option must
come before all other arguments on the command line and applies to all -execute’d commands. This
file is used to create user-defined tags as well as set default ExifTool options. The CFGFILE must
exist relative to the current working directory or the exiftool application directory unless an absolute
path is specified. Loading of the default config file may be disabled by setting CFGFILE to an empty
string (ie. ""). See <https://exiftool.org/config.html> and config_files/example.config in the full
ExifTool distribution for details about the configuration file syntax.

-echo[NUM] TEXT
Echo TEXT to stdout (-echo or -echo1) or stderr (-echo2). Text is output as the command line is
parsed, before the processing of any input files. NUM may also be 3 or 4 to output text (to stdout or
stderr respectively) after processing is complete. For -echo3 and -echo4, ‘‘${status}’’ may be used
in the TEXT string to represent the numerical exit status of the command (see ‘‘EXIT STATUS’’).

-efile[NUM][!] TXTFILE
Save the names of files giving errors (NUM missing or 1), files that were unchanged (NUM is 2), files
that fail the -if condition (NUM is 4), files that were updated (NUM is 8), files that were created (NUM
is 16), or any combination thereof by summing NUM (eg. -efile3 is the same has having both -efile
and -efile2 options with the same TXTFILE). By default, file names are appended to any existing
TXTFILE, but TXTFILE is overwritten if an exclamation point is added to the option (eg. -efile!).

perl v5.34.1 2025-12-24 29

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

Saves the name of the file specified by the -srcfile option if applicable.

-execute[NUM]
Execute command for all arguments up to this point on the command line (plus any arguments
specified by -common_args). The result is as if the commands were executed as separate command
lines (with the exception of the -config and -use options which remain in effect for subsequent
commands). Allows multiple commands to be executed from a single command line. NUM is an
optional number that is echoed in the ‘‘{ready}’’ message when using the -stay_open feature. If a
NUM is specified, the -q option no longer suppresses the output ‘‘{readyNUM}’’ message.

-fileNUM ALTFILE
Read tags from an alternate source file. Among other things, this allows tags from different files to
be compared and combined using the -if and -p options. NUM is any string of digits. Tags from
alternate files are accessed via the corresponding family 8 group name (eg. File1:TAG for the
-file1 option, File2:TAG for -file2, etc). ALTFILE may contain filename formatting codes like the
-w option (%d, %f, etc), and/or tag names with a leading $ symbol to access tags from the source
file in the same way as the -p option (so any other dollar symbol in the file name must be doubled,
eg. money$$.jpg). For example, assuming that the OriginalFileName tag has been set in the
edited file, a command to copy Rights from the original file could look like this:

exiftool -file1 '$originalfilename' '-rights<file1:rights' edited.jpg

Subtle note: If a -tagsFromFile option is used, tags in the ALTFILE argument come from the
SRCFILE that applies to the first argument accessing tags from the corresponding FileNUM group.

ALTFILE may also be @ to access tags from the specified FILE, which may be useful when the -srcfile
option is used to process a different source file.

User-defined Composite tags may access tags from alternate files using the appropriate (case-
sensitive) family 8 group name.

The -fast option, if used, also applies to processing of the alternate files.

-list_dir
List directories themselves instead of their contents. This option effectively causes directories to be
treated as normal files when reading and writing. For example, with this option the output of the ls
-la command on Mac/Linux may be approximated by this exiftool command:

exiftool -list_dir -T -ls-l -api systemtags -fast5 .* *

(The -T option formats the output in tab-separated columns, -ls-l is a shortcut tag, the API
SystemTags option is required to extract some necessary tags, and the -fast5 option is added for
speed since only system tags are being extracted.)

-srcfile FMT
Specify a different source file to be processed based on the name of the original FILE. This may be
useful in some special situations for processing related preview images or sidecar files. See the -w
option for a description of the FMT syntax. Note that file name FMT strings for all options are based
on the original FILE specified from the command line, not the name of the source file specified by
-srcfile.

For example, to copy metadata from NEF files to the corresponding JPG previews in a directory where
other JPG images may exist:

exiftool -ext nef -tagsfromfile @ -srcfile %d%f.jpg dir

If more than one -srcfile option is specified, the files are tested in order and the first existing source
file is processed. If none of the source files already exist, then exiftool uses the first -srcfile
specified.

A FMT of @ may be used to represent the original FILE, which may be useful when specifying
multiple -srcfile options (eg. to fall back to processing the original FILE if no sidecar exists).

perl v5.34.1 2025-12-24 30

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

When this option is used, two special UserParam tags (OriginalFileName and OriginalDirectory) are
generated to allow access to the original FILE name and directory.

-stay_open FLAG
If FLAG is 1 or True (case insensitive), causes exiftool keep reading from the -@ ARGFILE even
after reaching the end of file. This feature allows calling applications to pre-load exiftool, thus
avoiding the overhead of loading exiftool for each command. The procedure is as follows:

1) Execute exiftool -stay_open True -@ ARGFILE, where ARGFILE is the name of an
existing (possibly empty) argument file or - to pipe arguments from the standard input.

2) Write exiftool command-line arguments to ARGFILE, one argument per line (see the -@ option for
details).

3) Write -execute\n to ARGFILE, where \n represents a newline sequence. (Note: You may need
to flush your write buffers here if using buffered output.) ExifTool will then execute the command
with the arguments received up to this point, send a ‘‘{ready}’’ message to stdout when done (unless
the -q or -T option is used), and continue trying to read arguments for the next command from
ARGFILE. To aid in command/response synchronization, any number appended to the -execute
option is echoed in the ‘‘{ready}’’ message. For example, -execute613 results in ‘‘{ready613}’’.
When this number is added, -q no longer suppresses the ‘‘{ready}’’ message. (Also, see the -echo3
and -echo4 options for additional ways to pass signals back to your application.)

4) Repeat steps 2 and 3 for each command.

5) Write -stay_open\nFalse\n (or -stay_open\n0\n) to ARGFILE when done. This will
cause exiftool to process any remaining command-line arguments then exit normally.

The input ARGFILE may be changed at any time before step 5 above by writing the following lines to
the currently open ARGFILE:

-stay_open
True
-@
NEWARGFILE

This causes ARGFILE to be closed, and NEWARGFILE to be kept open. (Without the -stay_open
here, exiftool would have returned to reading arguments from ARGFILE after reaching the end of
NEWARGFILE.)

Note: When writing arguments to a disk file there is a delay of up to 0.01 seconds after writing
-execute\n before exiftool starts processing the command. This delay may be avoided by
sending a CONT signal to the exiftool process immediately after writing -execute\n. (There is no
associated delay when writing arguments via a pipe with -@ -, so the signal is not necessary when
using this technique.)

-userParam PARAM[[ˆ]=[VAL]]
Set user parameter. PARAM is an arbitrary user parameter name. This is an interface to the API
UserParam option (see the Image::ExifTool Options documentation), and provides a method to
access user-defined parameters in arguments to the -if, -p and -fileNUM options as if they were any
other tag. Appending a hash tag (#) to PARAM (eg. -userParam MyTag#=yes) also causes the
parameter to be extracted as a normal tag in the UserParam group.
Similar to the -api option, the parameter value is set to 1 if =VAL is omitted, undef if just VAL is
omitted with =, or an empty string if VAL is omitted with ˆ=.

exiftool -p '$test from $filename' -userparam test=Hello FILE

Advanced formatting feature

An advanced formatting feature allows modification of the value of any tag interpolated within a -if, -p or
-fileNUM argument, or a -tagsFromFile redirection string. Tag names within these strings are prefixed by
a $ symbol, and an arbitrary Perl expression may be applied to the tag value by placing braces around the

perl v5.34.1 2025-12-24 31

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

tag name and inserting the expression after the name, separated by a semicolon (ie. ${TAG;EXPR}). The
expression acts on the value of the tag through the default input variable ($_), and has access to the full
ExifTool API through the current ExifTool object ($self) and the tag key ($tag). It may contain any
valid Perl code, including translation (tr///) and substitution (s///) operations, but note that braces
within the expression must be balanced. If the expression does not modify $_ the original tag value is
returned. The example below prints the camera Make with spaces translated to underlines, and multiple
consecutive underlines replaced by a single underline:

exiftool -p '${make;tr/ /_/;s/_ _+/_/g}' image.jpg

An @ may be added after the tag name to make the expression act on individual list items for list-type tags,
simplifying list processing. Set $_ to undef to remove an item from the list. As an example, the following
command returns all subjects not containing the string ‘‘xxx’’:

exiftool -p '${subject@;$_=undef if /xxx/}' image.jpg

A default expression of tr(/\\?*:|"<>\0)()d is assumed if the expression is empty (ie. ${TAG;}).
This removes the characters / \ ? * : | < > and null from the printed value. (These characters are illegal in
Windows file names, so this feature is useful if tag values are used in file names.)

Note that the expression is not evaluated for undefined (non-existant) tags, which may have other values if
either the -m or -f command-line option or the API MissingTagValue option is used.

Helper functions

Note that function names are case sensitive.

DateFmt

Simplifies reformatting of individual date/time values. This function acts on a standard EXIF-formatted
date/time value in $_ and formats it according to the specified format string (see the -d option). To avoid
trying to reformat an already-formatted date/time value, a # must be added to the tag name (as in the
example below) if the -d option is also used. For example:

exiftool -p '${createdate#;DateFmt("%Y-%m-%d_%H%M%S")}' a.jpg

ShiftTime

Shifts EXIF-formatted date/time string by a specified amount. Start with a leading minus sign to shift
backwards in time. See Image::ExifTool::Shift.pl for details about shift syntax. For example, to shift a
date/time value back by one year:

exiftool -p '${createdate;ShiftTime("-1:0:0 0")}' a.jpg

NoDups

Removes duplicate items from a list with a separator specified by the -sep option. This function is most
useful when copying list-type tags. For example, the following command may be used to remove duplicate
Keywords:

exiftool -sep '##' '-keywords<${keywords;NoDups}' a.jpg

The -sep option is necessary to split the string back into individual list items when writing to a list-type
tag.

An optional flag argument may be set to 1 to cause NoDups to set $_ to undef if no duplicates existed,
thus preventing the file from being rewritten unnecessarily:

exiftool -sep '##' '-keywords<${keywords;NoDups(1)}' a.jpg

ExifTool 12.64 adds an API NoDups option which makes the NoDups helper function largely redundant,
with all the functionality except the ability to avoid rewriting the file if there are no duplicates, but with the
advantage the duplicates may be removed when accumulating list items from multiple sources. An
equivalent to the above commands using this feature would be:

exiftool -tagsfromfile @ -keywords -api nodups a.jpg

SetTags

perl v5.34.1 2025-12-24 32

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

Used to set tags in extracted images. With no arguments, copies all tags from the source file to the
embedded image:

exiftool -p '${previewimage;SetTags}' -b a.arw > preview.jpg

Arguments may be added to copy or set specific tags. Arguments take exactly the same form as those on
the command line when copying or writing tags, but without the leading dash. For example:

exiftool -p '${previewimage;SetTags("comment=test","title<filename")}' ...

WINDOWS UNICODE FILE NAMES
In Windows, command-line arguments are specified using the current code page and are recoded
automatically to the system code page. This recoding is not done for arguments in ExifTool arg files, so by
default filenames in arg files use the system code page. Unfortunately, these code pages are not complete
character sets, so not all file names may be represented.

ExifTool 9.79 and later allow the file name encoding to be specified with -charset
filename=CHARSET, where CHARSET is the name of a valid ExifTool character set, preferably UTF8
(see the -charset option for a complete list). Setting this triggers the use of Windows wide-character i/o
routines, thus providing support for most Unicode file names (see note 4). But note that it is not trivial to
pass properly encoded file names on the Windows command line (see <https://exiftool.org/faq.html#Q18>
for details), so placing them in a UTF-8 encoded -@ argfile and using -charset filename=utf8 is
recommended if possible.

A warning is issued if a specified filename contains special characters and the filename character set was
not provided. However, the warning may be disabled by setting -charset filename="", and
ExifTool may still function correctly if the system code page matches the character set used for the file
names.

When a directory name is provided, the file name encoding need not be specified (unless the directory name
contains special characters), and ExifTool will automatically use wide-character routines to scan the
directory.

The filename character set applies to the FILE arguments as well as filename arguments of -@, -geotag,
-o, -p, -srcfile, -tagsFromFile, -csv=, -j= and -TAG<=. However, it does not apply to the -config
filename, which always uses the system character set. The -charset filename= option must come
before the -@ option to be effective, but the order doesn’t matter with respect to other options.

Notes:

1) FileName and Directory tag values still use the same encoding as other tag values, and are converted
to/from the filename character set when writing/reading if specified.

2) Unicode support is not yet implemented for other Windows-based systems like Cygwin.

3) See ‘‘WRITING READ-ONLY FILES’’ below for a note about editing read-only files with Unicode
names.

4) Unicode file names with surrogate pairs (code points over U+FFFF) still cause problems.

WRITING READ-ONLY FILES
In general, ExifTool may be used to write metadata to read-only files provided that the user has write
permission in the directory. However, there are three cases where file write permission is also required:

1) When using the -overwrite_original_in_place option.

2) When writing only pseudo System tags (eg. FileModifyDate).

3) On Windows if the file has Unicode characters in its name, and a) the -overwrite_original option is
used, or b) the _original backup already exists.

Hidden files in Windows behave as read-only files when attempting to write any real tags to the file — an
error is generated when using the -overwrite_original_in_place, otherwise writing should be successful
and the hidden attribute will be removed. But the -if option may be used to avoid processing hidden files
(provided Win32API::File is available):

perl v5.34.1 2025-12-24 33

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

exiftool -if "$fileattributes !˜ /Hidden/" ...

READING EXAMPLES
Note: Beware when cutting and pasting these examples into your terminal! Some characters such as single
and double quotes and hyphens may have been changed into similar-looking yet functionally-different
characters by the text formatter used to display this documentation. Also note that in the Windows cmd
shell double quotes must be used instead of the single quotes used in the examples.

exiftool -a -u -g1 a.jpg
Print all meta information in an image, including duplicate and unknown tags, sorted by group (for
family 1). For performance reasons, this command may not extract all available metadata. (Metadata
in embedded documents, metadata extracted by external utilities, and metadata requiring excessive
processing time may not be extracted). Add -ee3 and -api RequestAll=3 to the command to
extract absolutely everything available.

exiftool -common dir
Print common meta information for all images in dir. -common is a shortcut tag representing
common EXIF meta information.

exiftool -T -createdate -aperture -shutterspeed -iso dir > out.txt
List specified meta information in tab-delimited column form for all images in dir to an output text
file named ‘‘out.txt’’.

exiftool -s -ImageSize -ExposureTime b.jpg
Print ImageSize and ExposureTime tag names and values.

exiftool -l -canon c.jpg d.jpg
Print standard Canon information from two image files.

exiftool -r -w .txt -common pictures
Recursively extract common meta information from files in pictures directory, writing text output
to .txt files with the same names.

exiftool -b -ThumbnailImage image.jpg > thumbnail.jpg
Save thumbnail image from image.jpg to a file called thumbnail.jpg.

exiftool -b -JpgFromRaw -w _JFR.JPG -ext NEF -r .
Recursively extract JPG image from all Nikon NEF files in the current directory, adding _JFR.JPG
for the name of the output JPG files.

exiftool -a -b -W %d%f_%t%-c.%s -preview:all dir
Extract all types of preview images (ThumbnailImage, PreviewImage, JpgFromRaw, etc.) from files
in directory ‘‘dir’’, adding the tag name to the output preview image file names.

exiftool -d '%r %a, %B %e, %Y' -DateTimeOriginal -S -s -ext jpg .
Print formatted date/time for all JPG files in the current directory.

exiftool -IFD1:XResolution -IFD1:YResolution image.jpg
Extract image resolution from EXIF IFD1 information (thumbnail image IFD).

exiftool '-*resolution*' image.jpg
Extract all tags with names containing the word ‘‘Resolution’’ from an image.

exiftool -xmp:author:all -a image.jpg
Extract all author-related XMP information from an image.

exiftool -xmp -b a.jpg > out.xmp
Extract complete XMP data record intact from a.jpg and write it to out.xmp using the special
XMP tag (see the Extra tags in Image::ExifTool::TagNames).

exiftool -p '$filename has date $dateTimeOriginal' -q -f dir
Print one line of output containing the file name and DateTimeOriginal for each image in directory
dir.

perl v5.34.1 2025-12-24 34

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

exiftool -ee3 -p '$gpslatitude, $gpslongitude, $gpstimestamp' a.m2ts
Extract all GPS positions from an AVCHD video.

exiftool -icc_profile -b -w icc image.jpg
Save complete ICC_Profile from an image to an output file with the same name and an extension of
.icc.

exiftool -htmldump -w tmp/%f_%e.html t/images
Generate HTML pages from a hex dump of EXIF information in all images from the t/images
directory. The output HTML files are written to the tmp directory (which is created if it didn’t exist),
with names of the form ’FILENAME_EXT.html’.

exiftool -a -b -ee -embeddedimage -W Image_%.3g3.%s file.pdf
Extract embedded JPG and JP2 images from a PDF file. The output images will have file names like
‘‘Image_#.jpg’’ or ‘‘Image_#.jp2’’, where ‘‘#’’ is the ExifTool family 3 embedded document number
for the image.

WRITING EXAMPLES
Note that quotes are necessary around arguments which contain certain special characters such as >, < or
any white space. These quoting techniques are shell dependent, but the examples below will work for most
Unix shells. With the Windows cmd shell however, double quotes should be used (eg. -Comment=‘‘This is
a new comment’’).

exiftool -tagsfromfile src.jpg -exif:all --subifd:all dst.jpg
Write new comment to a JPG image (replaces any existing comment).

exiftool -comment= -o newdir -ext jpg .
Remove comment from all JPG images in the current directory, writing the modified images to a new
directory.

exiftool -keywords=EXIF -keywords=editor dst.jpg
Replace existing keyword list with two new keywords (EXIF and editor).

exiftool -Keywords+=word -o newfile.jpg src.jpg
Copy a source image to a new file, and add a keyword (word) to the current list of keywords.

exiftool -exposurecompensation+=-0.5 a.jpg
Decrement the value of ExposureCompensation by 0.5 EV. Note that += with a negative value is
used for decrementing because the -= operator is used for conditional deletion (see next example).

exiftool -credit-=xxx dir
Delete Credit information from all files in a directory where the Credit value was xxx.

exiftool -xmp:description-de='kühl' -E dst.jpg
Write alternate language for XMP:Description, using HTML character escaping to input special
characters.

exiftool -all= dst.jpg
Delete all meta information from an image. Note: You should NOT do this to RAW images (except
DNG) since proprietary RAW image formats often contain information in the makernotes that is
necessary for converting the image.

exiftool -all= -comment='lonely' dst.jpg
Delete all meta information from an image and add a comment back in. (Note that the order is
important: -comment='lonely' -all= would also delete the new comment.)

exiftool -all= --jfif:all dst.jpg
Delete all meta information except JFIF group from an image.

exiftool -Photoshop:All= dst.jpg
Delete Photoshop meta information from an image (note that the Photoshop information also
includes IPTC).

perl v5.34.1 2025-12-24 35

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

exiftool -r -XMP-crss:all= DIR
Recursively delete all XMP-crss information from images in a directory.

exiftool '-ThumbnailImage<=thumb.jpg' dst.jpg
Set the thumbnail image from specified file (Note: The quotes are necessary to prevent shell
redirection).

exiftool '-JpgFromRaw<=%d%f_JFR.JPG' -ext NEF -r .
Recursively write JPEG images with filenames ending in _JFR.JPG to the JpgFromRaw tag of like-
named files with extension .NEF in the current directory. (This is the inverse of the -JpgFromRaw
command of the ‘‘READING EXAMPLES’’ section above.)

exiftool -DateTimeOriginal-='0:0:0 1:30:0' dir
Adjust original date/time of all images in directory dir by subtracting one hour and 30 minutes.
(This is equivalent to -DateTimeOriginal-=1.5. See Image::ExifTool::Shift.pl for details.)

exiftool -createdate+=3 -modifydate+=3 a.jpg b.jpg
Add 3 hours to the CreateDate and ModifyDate timestamps of two images.

exiftool -AllDates+=1:30 -if '$make eq ‘‘Canon’’' dir
Shift the values of DateTimeOriginal, CreateDate and ModifyDate forward by 1 hour and 30 minutes
for all Canon images in a directory. (The AllDates tag is provided as a shortcut for these three tags,
allowing them to be accessed via a single tag.)

exiftool -xmp:city=Kingston image1.jpg image2.nef
Write a tag to the XMP group of two images. (Without the xmp: this tag would get written to the
IPTC group since City exists in both, and IPTC is preferred by default.)

exiftool -LightSource-='Unknown (0)' dst.tiff
Delete LightSource tag only if it is unknown with a value of 0.

exiftool -whitebalance-=auto -WhiteBalance=tung dst.jpg
Set WhiteBalance to Tungsten only if it was previously Auto.

exiftool -comment-= -comment='new comment' a.jpg
Write a new comment only if the image doesn’t have one already.

exiftool -o %d%f.xmp dir
Create XMP meta information data files for all images in dir.

exiftool -o test.xmp -owner=Phil -title='XMP File'
Create an XMP data file only from tags defined on the command line.

exiftool '-ICC_Profile<=%d%f.icc' image.jpg
Write ICC_Profile to an image from a .icc file of the same name.

exiftool -hierarchicalkeywords='{keyword=one,children={keyword=B}}'
Write structured XMP information. See <https://exiftool.org/struct.html> for more details.

exiftool -trailer:all= image.jpg
Delete any trailer found after the end of image (EOI) in a JPEG file. A number of digital cameras
store a large PreviewImage after the JPEG EOI, and the file size may be reduced significantly by
deleting this trailer. See the JPEG Tags documentation for a list of recognized JPEG trailers.

COPYING EXAMPLES
These examples demonstrate the ability to copy tag values between files.

exiftool -tagsFromFile src.cr2 dst.jpg
Copy the values of all writable tags from src.cr2 to dst.jpg, writing the information to same-
named tags in the preferred groups.

exiftool -TagsFromFile src.jpg -all:all dst.jpg
Copy the values of all writable tags from src.jpg to dst.jpg, preserving the original tag groups.

perl v5.34.1 2025-12-24 36

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

exiftool -all= -tagsfromfile src.jpg -exif:all dst.jpg
Erase all meta information from dst.jpg image, then copy EXIF tags from src.jpg.

exiftool -exif:all= -tagsfromfile @ -all:all -unsafe bad.jpg
Rebuild all EXIF meta information from scratch in an image. This technique can be used in JPEG
images to repair corrupted EXIF information which otherwise could not be written due to errors. The
Unsafe tag is a shortcut for unsafe EXIF tags in JPEG images which are not normally copied. See
the tag name documentation for more details about unsafe tags.

exiftool -Tagsfromfile a.jpg out.xmp
Copy meta information from a.jpg to an XMP data file. If the XMP data file out.xmp already
exists, it will be updated with the new information. Otherwise the XMP data file will be created.
Only metadata-only files may be created like this (files containing images may be edited but not
created). See ‘‘WRITING EXAMPLES’’ above for another technique to generate XMP files.

exiftool -tagsFromFile a.jpg -XMP:All= -ThumbnailImage= -m b.jpg
Copy all meta information from a.jpg to b.jpg, deleting all XMP information and the thumbnail
image from the destination.

exiftool -TagsFromFile src.jpg -title -author=Phil dst.jpg
Copy title from one image to another and set a new author name.

exiftool -TagsFromFile a.jpg -ISO -TagsFromFile b.jpg -comment dst.jpg
Copy ISO from one image and Comment from another image to a destination image.

exiftool -tagsfromfile src.jpg -exif:all --subifd:all dst.jpg
Copy only the EXIF information from one image to another, excluding SubIFD tags.

exiftool '-FileModifyDate<DateTimeOriginal' dir
Use the original date from the meta information to set the same file’s filesystem modification date for
all images in a directory. (Note that -TagsFromFile @ is assumed if no other -TagsFromFile is
specified when redirecting information as in this example.)

exiftool -TagsFromFile src.jpg '-xmp:all<all' dst.jpg
Copy all possible information from src.jpg and write in XMP format to dst.jpg.

exiftool '-Description<${FileName;s/\.[ˆ.]*$//}' dir
Set the image Description from the file name after removing the extension. This example uses the
‘‘Advanced formatting feature’’ to perform a substitution operation to remove the last dot and
subsequent characters from the file name.

exiftool -@ iptc2xmp.args -iptc:all= a.jpg
Translate IPTC information to XMP with appropriate tag name conversions, and delete the original
IPTC information from an image. This example uses iptc2xmp.args, which is a file included with the
ExifTool distribution that contains the required arguments to convert IPTC information to XMP
format. Also included with the distribution are xmp2iptc.args (which performs the inverse
conversion) and a few more .args files for other conversions between EXIF, IPTC and XMP.

exiftool -tagsfromfile %d%f.CR2 -r -ext JPG dir
Recursively rewrite all JPG images in dir with information copied from the corresponding CR2
images in the same directories.

exiftool '-keywords+<make' image.jpg
Add camera make to list of keywords.

exiftool '-comment<ISO=$exif:iso Exposure=${shutterspeed}' dir
Set the Comment tag of all images in dir from the values of the EXIF:ISO and ShutterSpeed tags.
The resulting comment will be in the form ‘‘ISO=100 Exposure=1/60’’.

exiftool -TagsFromFile src.jpg -icc_profile dst.jpg
Copy ICC_Profile from one image to another.

perl v5.34.1 2025-12-24 37

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

exiftool -TagsFromFile src.jpg -all:all dst.mie
Copy all meta information in its original form from a JPEG image to a MIE file. The MIE file will be
created if it doesn’t exist. This technique can be used to store the metadata of an image so it can be
inserted back into the image (with the inverse command) later in a workflow.

exiftool -o dst.mie -all:all src.jpg
This command performs exactly the same task as the command above, except that the -o option will
not write to an output file that already exists.

exiftool -b -jpgfromraw -w %d%f_%ue.jpg -execute -b -previewimage -w
%d%f_%ue.jpg -execute -tagsfromfile @ -srcfile %d%f_%ue.jpg
-overwrite_original -common_args --ext jpg DIR

[Advanced] Extract JpgFromRaw or PreviewImage from all but JPG files in DIR, saving them with
file names like image_EXT.jpg, then add all meta information from the original files to the
extracted images. Here, the command line is broken into three sections (separated by -execute
options), and each is executed as if it were a separate command. The -common_args option causes
the --ext jpg DIR arguments to be applied to all three commands, and the -srcfile option allows
the extracted JPG image to be the source file for the third command (whereas the RAW files are the
source files for the other two commands).

RENAMING EXAMPLES
By writing the FileName and Directory tags, files are renamed and/or moved to new directories. This
can be particularly useful and powerful for organizing files by date when combined with the -d option.
New directories are created as necessary, but existing files will not be overwritten. The format codes %d,
%f and %e may be used in the new file name to represent the directory, name and extension of the original
file, and %c may be used to add a copy number if the file already exists (see the -w option for details).
Note that if used within a date format string, an extra ’%’ must be added to pass these codes through the
date/time parser. (And further note that in a Windows batch file, all ’%’ characters must also be escaped, so
in this extreme case ’%%%%f’ is necessary to pass a simple ’%f’ through the two levels of parsing.) See
<https://exiftool.org/filename.html> for additional documentation and examples.

exiftool -filename=new.jpg dir/old.jpg
Rename old.jpg to new.jpg in directory dir.

exiftool -directory=%e dir
Move all files from directory dir into directories named by the original file extensions.

exiftool '-Directory<DateTimeOriginal' -d %Y/%m/%d dir
Move all files in dir into a directory hierarchy based on year, month and day of
DateTimeOriginal. eg) This command would move the file dir/image.jpg with a
DateTimeOriginal of 2005:10:12 16:05:56 to 2005/10/12/image.jpg.

exiftool -o . '-Directory<DateTimeOriginal' -d %Y/%m/%d dir
Same effect as above except files are copied instead of moved.

exiftool '-filename<%f_${model;}.%e' dir
Rename all files in dir by adding the camera model name to the file name. The semicolon after the
tag name inside the braces causes characters which are invalid in Windows file names to be deleted
from the tag value (see the ‘‘Advanced formatting feature’’ for an explanation).

exiftool '-FileName<CreateDate' -d %Y%m%d_%H%M%S%%-c.%%e dir
Rename all images in dir according to the CreateDate date and time, adding a copy number
with leading ’-’ if the file already exists (%-c), and preserving the original file extension (%e). Note
the extra ’%’ necessary to escape the filename codes (%c and %e) in the date format string.

exiftool -r '-FileName<CreateDate' -d %Y-%m-%d/%H%M_%%f.%%e dir
Both the directory and the filename may be changed together via the FileName tag if the new
FileName contains a ’/’. The example above recursively renames all images in a directory by
adding a CreateDate timestamp to the start of the filename, then moves them into new directories
named by date.

perl v5.34.1 2025-12-24 38

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

exiftool '-FileName<${CreateDate}_$filenumber.jpg' -d %Y%m%d -ext jpg .
Set the filename of all JPG images in the current directory from the CreateDate and FileNumber tags,
in the form ‘‘20060507_118-1861.jpg’’.

GEOTAGGING EXAMPLES
ExifTool implements geotagging from GPS log files via 3 special tags: Geotag (which for convenience is
also implemented as an exiftool option), Geosync and Geotime. The examples below highlight some
geotagging features. See <https://exiftool.org/geotag.html> for additional documentation. (Note that
geotagging from known GPS coordinates is done by writing the GPS tags directly rather than using the
-geotag option.)

exiftool -geotag track.log a.jpg
Geotag an image (a.jpg) from position information in a GPS track log (track.log). Since the
Geotime tag is not specified, the value of SubSecDateTimeOriginal (preferentially) or
DateTimeOriginal is used for geotagging. Local system time is assumed unless the time contains a
timezone.

exiftool -geotag track.log -geolocate=geotag a.jpg
Geotag an image and also write geolocation information of the nearest city (city name, state/province
and country). Read here for more details about the Geolocation feature:
<https://exiftool.org/geolocation.html#Write>

exiftool -geotag t.log -geotime='2009:04:02 13:41:12-05:00' a.jpg
Geotag an image with the GPS position for a specific time.

exiftool -geotag log.gpx '-xmp:geotime<createdate' dir
Geotag all images in directory dir with XMP tags instead of EXIF tags, based on the image
CreateDate.

exiftool -geotag a.log -geosync=-20 dir
Geotag images in directory dir, accounting for image timestamps which were 20 seconds ahead of
GPS.

exiftool -geotag a.log -geosync=1.jpg -geosync=2.jpg dir
Geotag images using time synchronization from two previously geotagged images (1.jpg and 2.jpg),
synchronizing the image and GPS times using a linear time drift correction.

exiftool -geotag a.log '-geotime<${createdate}+01:00' dir
Geotag images in dir using CreateDate with the specified timezone. If CreateDate already
contained a timezone, then the timezone specified on the command line is ignored.

exiftool -geotag= a.jpg
Delete GPS tags which may have been added by the geotag feature. Note that this does not remove
all GPS tags — to do this instead use -gps:all=.

exiftool -xmp:geotag= a.jpg
Delete XMP GPS tags which were added by the geotag feature.

exiftool -xmp:geotag=track.log a.jpg
Geotag an image with XMP tags, using the time from SubSecDateTimeOriginal or DateTimeOriginal.

exiftool -geotag a.log -geotag b.log -r dir
Combine multiple track logs and geotag an entire directory tree of images.

exiftool -geotag 'tracks/*.log' -r dir
Read all track logs from the tracks directory.

exiftool -p gpx.fmt dir > out.gpx
Generate a GPX track log from all images in directory dir. This example uses the gpx.fmt file
included in the full ExifTool distribution package and assumes that the images in dir have all been
previously geotagged.

perl v5.34.1 2025-12-24 39

EXIFTOOL(1) User Contributed Perl Documentation EXIFTOOL(1)

PIPING EXAMPLES
cat a.jpg | exiftool -

Extract information from stdin.

exiftool image.jpg -thumbnailimage -b | exiftool -
Extract information from an embedded thumbnail image.

cat a.jpg | exiftool -iptc:keywords+=fantastic - > b.jpg
Add an IPTC keyword in a pipeline, saving output to a new file.

curl -s http://a.domain.com/bigfile.jpg | exiftool -fast -
Extract information from an image over the internet using the cURL utility. The -fast option
prevents exiftool from scanning for trailer information, so only the meta information header is
transferred.

exiftool a.jpg -thumbnailimage -b | exiftool -comment=wow - | exiftool
a.jpg -thumbnailimage'<=-'

Add a comment to an embedded thumbnail image. (Why anyone would want to do this I don’t know,
but I’ve included this as an example to illustrate the flexibility of ExifTool.)

INTERRUPTING EXIFTOOL
Interrupting exiftool with a CTRL-C or SIGINT will not result in partially written files or temporary files
remaining on the hard disk. The exiftool application traps SIGINT and defers it until the end of critical
processes if necessary, then does a proper cleanup before exiting.

EXIT STATUS
The exiftool application exits with a status of 0 on success, or 1 if an error occurred, or 2 if all files failed
the -if condition (for any of the commands if -execute was used).

AUTHOR
Copyright 2003-2025, Phil Harvey

This is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

SEE ALSO
Image::ExifTool (3pm), Image::ExifTool::TagNames (3pm), Image::ExifTool::Shortcuts (3pm),
Image::ExifTool::Shift.pl

perl v5.34.1 2025-12-24 40

	EXIFTOOL(1)
	NAME
	SYNOPSIS
	Reading
	Writing
	Copying
	Other

	DESCRIPTION
	OPTIONS
	Option Overview
	Option Details

	WINDOWS UNICODE FILE NAMES
	WRITING READ-ONLY FILES
	READING EXAMPLES
	WRITING EXAMPLES
	COPYING EXAMPLES
	RENAMING EXAMPLES
	GEOTAGGING EXAMPLES
	PIPING EXAMPLES
	INTERRUPTING EXIFTOOL
	EXIT STATUS
	AUTHOR
	SEE ALSO

