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The air traffic

Source: http://flightradar24.com

• 4,300,000,000 passengers – 38,000,000 flights (2018)

• 24,000 airliners

• 72 airliners take off each minute
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Evolution of CO2 emissions

Source: ICAO - Environmental report 2016

• 650,000,000 tonnes of CO2 (2018)

• 3% of the total CO2 emissions

• Paris-New York ' 1 000 kg CO2/passenger

• Doubling of air traffic each 15 years (without any pandemic)
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Perf-AI project

Enhance Aircraft Performance and
Optimisation through utilisation of
Artificial Intelligence

• Led by Safety Line and funded by Clean Sky 2

• Scientific partnership with Inria (Modal team*)

• From November 2018 to October 2020

* Benjamin Guedj, Arthur Talpaert, Vincent Vandewalle and Florent Dewez
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Key element: Flight data

Copyrights: Pedro Aragão, CC BY-SA
3.0 GFDL, via Wikimedia Commons

Copyrights: pjs2005, CC BY-SA 2.0, via
Wikimedia Commons

Many hundred of parameters recorded
at each second by

• the black boxes for analysis in case
of crash;

• the Quick Access Recorder to
improve flight safety and efficiency.
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Key element: Flight data
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Perf-AI goal

Trajectory optimisation
Find a trajectory (altitude, speed,...) being as fuel-efficient as
possible and acceptable by aeronautic experts.

� Altitude
Fuel consumption

Goal
Exploit flight data to propose a new and efficient trajectory
optimisation methodology.
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A classical approach: Optimal control

Let y = (x , u) be a trajectory with states x and controls u.

• Cost function: Total fuel consumption, traveled distance,...

TFC(y) =

∫ T

0
FF
(
y(t)

)
dt

• Constraints: Flight domain, initial and final conditions,...

• Dynamics: ẏ(t) = g
(
t, y(t)

)

−→ System identification†: ẏ(t) = ĝ
(
t, y(t)

)
† C. Rommel, F. Bonnans, P. Martinon, B. Gregorutti. Aircraft Dynamics
Identification for Optimal Control. 7th EUCASS, 2017.
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Limitations of optimal control methods
This approach requires two steps:
• Identification: not always straightforward
• Optimisation: potentially affected by the statistical errors

Sometimes unacceptable for applications !
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Generic methodology
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Visualisation of the idea
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Definitions – Notations (general setting)

• Trajectory: y =
(
y (1), . . . , y (D)

)
∈ C

(
[0,T ],RD)

• Endpoints conditions:

y ∈ D(y0, yT ) ⇐⇒

{
y(0) = y0

y(T ) = yT

• Additionnal constraints:

y ∈ G ⇐⇒ ∀ ` = 1, . . . , L g`
(
y(t)

)
6 0

• Cost function: F : C
(
[0,T ],RD) −→ R

• Reference trajectories: YR := {yR1 , . . . , yRI} ⊂ D(y0, yT ) ∩ G
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Reference trajectories

Figure: 48 reference climbs with the same initial and final states – Here
the altitude is displayed
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Guidelines

Aim
Find an optimised and constrained trajectory with a realistic pattern
without involving the dynamics of the system !

min
y

F (y) s.t.
{

y ∈ G ∩ D(y0, yT )

((((((((ẏ(t) = ĝ
(
t, y(t)

)

Key point
Use differently the data to derive a new problem of type

min
y

{
F (y) + κ penYR

(y)
}

s.t. y ∈ G ∩ D(y0, yT )

Consider a statistical framework and interpret the optimised trajectory as
a Maximum A Posteriori
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(
t, y(t)

)
Key point
Use differently the data to derive a new problem of type

min
y

{
F (y) + κ penYR

(y)
}

s.t. y ∈ G ∩ D(y0, yT )

Consider a statistical framework and interpret the optimised trajectory as
a Maximum A Posteriori

15 -Data-driven trajectory optimisation- Florent Dewez



Guidelines

Aim
Find an optimised and constrained trajectory with a realistic pattern
without involving the dynamics of the system !

min
y

F (y) s.t.
{

y ∈ G ∩ D(y0, yT )

((((((((ẏ(t) = ĝ
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Technical workflow

1. Finite representation of trajectories
Trajectory = Vector in RK

2. Distribution of reference trajectories
Likelihood function −→ Penalised term

3. A priori distribution localised on low cost trajectories
Prior distribution −→ Initial cost

4. Bayes’s rule application
Posterior −→ Penalised cost

5. Computation of the posterior mode
Maximum A Posteriori = Optimised trajectory
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Finite representation of trajectories
• Basis of L2: {ϕk}k , each element being continuous

• Finite dimensional space: Y :=
D∏

d=1
span {ϕk}Kd

k=1

• Finite representation: y (d)(t) =

Kd∑
k=1

c(d)
k ϕk (t)

• Equivalence: Φy = c ⇐⇒ c = Φ−1y , with

c =
(

c(1)
1 , . . . , c(1)

K1
, c(2)

1 , . . . , c(2)
K2
, . . . , c(D)

1 , . . . , c(D)
KD

)T
∈ RK

• Endpoints conditions: There exists a matrix A ∈ R2D×K such that

y ∈ Y ∩ D(y0, yT ) ⇐⇒ Ac =

(
y0
yT

)
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Distribution of YR

• Hypothesis: The reference trajectories are noisy observations of an
efficient trajectory y = Φ−1c ∈ G ∩ D(y0, yT )

• Choice for the noise: Centered Gaussian with intensity depending on
the reference trajectory

• Additional property: The noise should not modify the endpoints

• Modelling: There exists c ∈ RK such that
cRi = c + εi

εi ∼ N (0RK ,Σi ) , with Σi = 1
2ωi

Σ

εi ∈ ker A

" The covariance matrix Σ is here singular !

18 -Data-driven trajectory optimisation- Florent Dewez



Distribution of YR

• Hypothesis: The reference trajectories are noisy observations of an
efficient trajectory y = Φ−1c ∈ G ∩ D(y0, yT )

• Choice for the noise: Centered Gaussian with intensity depending on
the reference trajectory

• Additional property: The noise should not modify the endpoints

• Modelling: There exists c ∈ RK such that
cRi = c + εi

εi ∼ N (0RK ,Σi ) , with Σi = 1
2ωi

Σ

εi ∈ ker A

" The covariance matrix Σ is here singular !

18 -Data-driven trajectory optimisation- Florent Dewez



Distribution of YR

• Advantage: Gaussian hypothesis indicates simply localisation and
degrees of freedom (interpretability !)

• Bonus: Provides also some constraints from the correlations
 Use the fact that the matrices Σ and AT A are simultaneously
diagonalisable to change the basis

• Equivalent modelling: We can find an explicit basis V such that

c̃Ri ,1 = c̃1 + ε̃i,1 −→ Constraints-free

ε̃i,1 ∼ N
(

0Rσ ,
1

2ωi
ΛΣ

)
V T

2 cRi = c̃2 −→ Constraints contained in data

V T
3 A†(y0 yT )T = c̃3 −→ Endpoints constraints

with c̃ = V T c = (V1 V2 V3)T c and ΛΣ diagonal and non-singular
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c ∈ RK ∣∣ c̃2 = V2 cRi , c̃3 = V T
3 A†(y0 yT )T}
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A priori model for the trajectory distribution

• A priori knowledge: Efficient trajectories with respect to the cost F
are the most likely ones

• Reminder: A trajectory depends only on the component c̃1

• Restricted cost function: Let F̃ be the restriction to V of the cost
F̌ = F ◦ Φ−1 defined on RK

• Prior: For κ > 0,

u(c̃1) ∝ exp
(
− κ−1F̃ (c̃1)

)
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Bayes’s rule and MAP
• Posterior: By Bayes’s rule, we have

u(c̃1 | c̃R1,1, . . . , c̃RI ,1) ∝ u(c̃R1,1, . . . , c̃RI ,1 | c̃1) u(c̃1)

• Likelihood: Independence assumption and preceding modelling give

u(c̃R1,1, . . . , c̃RI ,1 | c̃1) =
N∏

i=1
u(c̃Ri ,1 | c̃1)

∝
N∏

i=1
exp

(
− ωi

(
c̃1 − c̃Ri ,1

)T
Λ−1

Σ,1
(
c̃1 − c̃Ri ,1

))

• Maximum A Posteriori: Take the negative of the logarithm
c̃?1 ∈ arg min

c̃1∈Rσ

F̃ (c̃1) + κ

N∑
i=1

ωi
(
c̃1 − c̃Ri ,1

)T
Λ−1

Σ,1
(
c̃1 − c̃Ri ,1

)
c̃?2 = V T

2 cRi

c̃?3 = V T
3 A†(y0 yT )T
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Bayes’s rule and MAP

• Posterior: By Bayes’s rule, we have
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(
c̃1 − c̃Ri ,1

)T
Λ−1

Σ,1
(
c̃1 − c̃Ri ,1

))
• Maximum A Posteriori: Take the negative of the logarithm and

change the basis back to obtain

c? ∈ arg min
c∈V

F̌ (c) + κ

N∑
i=1

ωi
(
c − cRi

)T
Σ†
(
c − cRi

)

21 -Data-driven trajectory optimisation- Florent Dewez



Search space visualisation
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Iterative approach to satisfy constraints

• Additional constraints: The solution y?κ = Φ−1c?κ should belong to
the set G ! Not explicitly taken into account in

c?κ ∈ arg min
c∈V

F̌ (c) + κ

N∑
i=1

ωi
(
c − cRi

)T
Σ†
(
c − cRi

)

• Observation: In the limit cases, we have

κ = 0 κ = +∞
y?κ ∈ G 7 X

min F̌ X 7

• Idea: Tune κ to find a compromise between optimisation and
constraints
−→ Iterative approach (linear search, binary search,...)
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Quadratic case for a convex problem

• Hypothesis: Quadratic instantaneous cost†

F (y) =

∫ T

0
y(t)T Qy(t) + wT y(t) + r dt

• Quadratic optimisation problem:

c? ∈ arg min
c∈V

cT
(

Q̌ + κΣ†
)

c +

(
w̌ − 2κ

N∑
i=1

ωi Σ†cRi

)T
c

• Convex optimisation problem: The above problem is convex if

κ > −λmin
(
V T

1 Q̌V1
)
λmax (Σ)

† F. Dewez, B. Guedj, V. Vandewalle. From industry-wide parameters to
aircraft-centric on-flight inference: improving aeronautics performance prediction with
machine learning. Data-Centric Engineering, 2020.
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PyRotor library

• Python Route trajectory optimiser

• Preceding generic method developed in Python to be used in
a wide range of fields

• Based on well-known librairies (SciPy, NumPy, sklearn,...)

• Developed on GitHub:
https://github.com/bguedj/pyrotor
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Application:
Minimisation of aircraft
fuel consumption during
the climb phase
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Aeronautic setting

• Setting: Climbing phase of an aircraft in a vertical plane

• Cost function: Total fuel consumption

TFC(y) :=

∫ T

0
F̂F
(
y(t)

)
dt

where FF is the fuel flow

• Trajectory: Altitude h, Mach M, engines power N1

∀ t ∈ [0,T ] y(t) :=
(
h(t),M(t),N1(t)

)
• Endpoints conditions:

1. Altitude: from 3,000 ft to 38,000 ft;
2. Mach: from 0.3 to 0.78.

• Additional constraints:
1. Rate of climb smaller than 3,600 ft/min;
2. Mach smaller than 0.82.
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Aeronautic setting

• Data: 2,162 recorded flights; 48 satisfy endpoints conditions (used
to estimate Σ)

• Fuel flow: Fitted to the climb data by a quadratic model
(∼ 500, 000 observations); error: 1.73 %

• Weights ωi : Chosen so that only the five most fuel-efficient
trajectories are involved in the penalised term

• Climb duration: Given by the first time where final endpoints are
reached by the optimised flight

• Basis: Legendre polynomials for each state; overall dimension = 20
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Visualisation

Figure: Altitude

• Fuel savings = 260 ± 86 kg (min = 72 kg, max = 394 kg)

• Percentages = 17 ± 5 % (min = 5%, max = 23%)

• Execution time = 4 ± 0.1 s (Intel Core i7 6 cores, 2.2 GHz)
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Visualisation

Figure: Mach number

• Fuel savings = 260 ± 86 kg (min = 72 kg, max = 394 kg)

• Percentages = 17 ± 5 % (min = 5%, max = 23%)

• Execution time = 4 ± 0.1 s
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Visualisation

Figure: Engines power

• Fuel savings = 260 ± 86 kg (min = 72 kg, max = 394 kg)

• Percentages = 17 ± 5 % (min = 5%, max = 23%)

• Execution time = 4 ± 0.1 s
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On the horizon
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Outlook

Improvements/Extensions

• Different modellings for the reference trajectories

• Clustering step applied to the reference trajectories

• Combination with optimal control methods†

• Other kinds of optimisation problems

† C. Rommel, F.C. Bonnans, P. Martinon, B. Gregorutti. Gaussian mixture penalty for
trajectory optimization problems. Journal of Guidance, Control, and Dynamics 42 (8),
1857–1862, 2019.
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Outlook

Improvements/Extensions

• Different modellings for the reference trajectories

• Clustering step applied to the reference trajectories

• Combination with optimal control methods†

• Other kinds of optimisation problems

New applications

• Health: optimal dose-response, patient path,...

• Sailing: routing, best control for a manoeuvre,...
→ Exploratory project with the Fédération Française de Voile

† C. Rommel, F.C. Bonnans, P. Martinon, B. Gregorutti. Gaussian mixture penalty for
trajectory optimization problems. Journal of Guidance, Control, and Dynamics 42 (8),
1857–1862, 2019.
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The End
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