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Motivation
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air traffic

e 4,300,000,000 passengers — 38,000,000 flights (2018)
e 24,000 airliners

e 72 airliners take off each minute
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Evolution of CO, emissions

Potential
contribution
of fuel burn
reduction
scenarios

Range of
Potential GHG

Reductions
with Alt Fuels

International Aviation Net 3.16 CO2 (Mt)

0 H
2005 2010 2020 2030 2040 2050

650,000,000 tonnes of CO, (2018)
3% of the total CO, emissions

Paris-New York ~ 1 000 kg CO,/passenger

Doubling of air traffic each 15 years (without any pandemic)

rd
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Perf-Al project

Enhance Aircraft Performance and

—~
Perf ) Al
Optimisation through utilisation of

" Artificial Intelligence
Clean Sky2

e Led by Safety Line and funded by Clean Sky 2

e Scientific partnership with Inria (Modal team™)

e From November 2018 to October 2020

* Benjamin Guedj, Arthur Talpaert, Vincent Vandewalle and Florent Dewez

rd
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Key element: Flight data

Many hundred of parameters recorded
at each second by

Copyrights: Pedro Aragio, CC BY-SA
3.0 GFDL, via Wikimedia Commons ° the black boxes for analys|s In case

of crash:

e the Quick Access Recorder to
improve flight safety and efficiency.

Copyrights: pjs2005, CC BY-SA 2.0, via
Wikimedia Commons
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Key element: Flight data

ALTITUDE AOA FFL FR2 G5 GW IAS  LEVEL_OFF MACH NI N2 PITCH SAT
1200 342430  1.06640625 4144.0 4144.0 450.0 144080.0 27175 1 0.7859999999999999 98.875 99.0  3.69140625 -53.4654464917
1201 34252.0  1.06640625 4144.0 4144.0 450.0 144080.0 27175 1 0.7859999999999999 98.875 99.0  3.69140625 -53.4654464917
1202 342620 1.06640625 4144.0 4128.0 450.0 144080.0 27175 1 0.787 98.875 99.0  3.69140625 -53.5255699099
1203 342710  1.06640625 4144.0 4128.0 450.0 144080.0 272.0 1 0.787 98.875 98.875 3.69140625 -53.5255699099
1204 342800 1.06640625 4144.0 4128.0 450.0 144080.0 27175 1 0.787 98.875 98.875 3.69140625 -53.5255699099
1205 34289.0  1.06640625 4144.0 4128.0 450.0 144080.0 27175 1 0.787 98.875 98.875 3.69140625 -53.748629457
1206 34299.0  1.06640625 4128.0 4112.0 450.0 144080.0 27175 1 0.7879999999999999 98.875 98.875 3.69140625 -53.80873524850001
1207 34308.0 1.06640625 4128.0 4128.0 450.0 144080.0 271.75 1 0.7879999999999999 99.0 9.0  3.69140625 -53.80873524850001
1208 34317.0 106640625 4128.0 4112.0 450.0 144080.0 2715 1 0.7879999999999999 99.0  99.0  3.69140625 -53.80873524850001
1209 34327.0  1.06640625 4128.0 4112.0 450.0 144080.0 2715 1 0.7879999999999999 99.0  99.0  3.69140625 -54.0317336876
10
100 | — ATUOE — g
30000 -
25000 -
20000
15000 -
B
o »
%0 %0 o 00 1000 1200 2300 E) %0 o 00 100 1200 1900
Time (s) Time [s]
ool wscnm — rrieen
o 00
o5 5000
0s 5000
o4 00
Time (5] Time [s]

7 -Data-driven trajectory optimisation- Florent Dewez zLa—



Perf-Al goal

Trajectory optimisation

Find a trajectory (altitude, speed,...) being as fuel-efficient as
possible and acceptable by aeronautic experts.

e Altitude
- - - Fuel consumption

Exploit flight data to propose a new and efficient trajectory
optimisation methodology.
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A classical approach: Optimal control

Let y = (x, u) be a trajectory with states x and controls u.

e Cost function: Total fuel consumption, traveled distance,...

-
TFC(y) :/ FF(y(t)) dt
0
e Constraints: Flight domain, initial and final conditions,...

e Dynamics: y(t) = g(t, y(t))

7
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A classical approach: Optimal control

Let y = (x, u) be a trajectory with states x and controls u.

e Cost function: Total fuel consumption, traveled distance,...

-
TFC(y) :/ FF(y(t)) dt
0
e Constraints: Flight domain, initial and final conditions,...

e Dynamics: y(t) = g(t,y(t)) +(t)

— System identification®: y(t) = g(t,y(t))

1 C. Rommel, F. Bonnans, P. Martinon, B. Gregorutti. Aircraft Dynamics
Identification for Optimal Control. 7th EUCASS, 2017.

rd
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Limitations of optimal control methods
This approach requires two steps:

e ldentification: not always straightforward

e Optimisation: potentially affected by the statistical errors
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Limitations of optimal control methods
This approach requires two steps:

e ldentification: not always straightforward

e Optimisation: potentially affected by the statistical errors

Sometimes unacceptable for applications !

Aircraft
model I
Flight I Flight
Data Optlmlzer Instructions ' Management
I System
1 1
1 1
I 1
1 Flight and '
. wheather info. ]
Time 1 %
1 T L
Many days before flight... 20 minutes before flight... In flight
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Consommatian totale [kg]

1200

)

Visualisation of the idea

Modzle

Trsjectoires.
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Consommation totale [kg]
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Visualisation of the idea

Consommation totale [kg]

1200 !

)

+ Trajectoires observées

Modele pénalisé
Modzle
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Definitions — Notations (general setting)

Trajectory: y = (y,...,yP) € C([o, T],RP)

Endpoints conditions:

y(0) =0

y € D(yo,y7) = { ST = yr

Additionnal constraints:

yeg = vé=1,...,L gg(y(t))<0

Cost function: F : C([0, T],R?) — R

Reference trajectories: Yg := {yr,,-.-,¥r } C D(yo,y7) NG

rd
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Reference trajectories

ALTITUDE (1)

[ 20 00 00
Time [s]

Figure: 48 reference climbs with the same initial and final states — Here
the altitude is displayed

lrezia—~
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Guidelines

Find an optimised and constrained trajectory with a realistic pattern
without involving the dynamics of the system !

{ y € GND(yo,y7)
s.t.

() =3{t7())

min F(y)

7
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Guidelines

Find an optimised and constrained trajectory with a realistic pattern
without involving the dynamics of the system !

A Dlyo,
min F(y) st {yeg (o, y7)

y y(t) =2(ty(T))

Use differently the data to derive a new problem of type

min { F(y) + rpeny, (v)} st ¥ €GN D(yo,y7)
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Guidelines

Find an optimised and constrained trajectory with a realistic pattern
without involving the dynamics of the system !

{ y € GND(yo,y7)
s.t.

Use differently the data to derive a new problem of type

min F(y)

min { F(y) + rpeny, (v)} st ¥ €GN D(yo,y7)

Consider a statistical framework and interpret the optimised trajectory as
a Maximum A Posteriori

rd
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Technical workflow

. Finite representation of trajectories

Trajectory = Vector in RX

2. Distribution of reference trajectories
Likelihood function — Penalised term

3. A priori distribution localised on low cost trajectories
Prior distribution — Initial cost

4. Bayes's rule application
Posterior — Penalised cost

5. Computation of the posterior mode

Maximum A Posteriori = Optimised trajectory

rd
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Finite representation of trajectories
Basis of L2 {¢k}k, each element being continuous

D
e Finite dimensional space: ) := H span {(pk}fil
d—=1

Kq
o Finite representation: y(?)(t) = Z C,((d) i(t)
k=1

Equivalence: dy = ¢ <= c=®"1y, with

;
1 1 2 5 b b
c= (cf),...,q((l), c§)7...,c}(<2)’,_.’ ¢! )7~~-,C;(<D))  RK

Endpoints conditions: There exists a matrix A € R?P?*K sych that

y € YN D(yo,y1) = AC=<;,/: )

rd
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Distribution of Yg

Hypothesis: The reference trajectories are noisy observations of an
efficient trajectory y = ®~1c € G N D(yo, y1)

Choice for the noise: Centered Gaussian with intensity depending on
the reference trajectory

Additional property: The noise should not modify the endpoints

Modelling: There exists ¢ € R¥ such that

Cr, = C+eg;
e ~ N (O, T;), with I = ;L%

€i € ker A
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Distribution of Yg

Hypothesis: The reference trajectories are noisy observations of an
efficient trajectory y = ®~1c € G N D(yo, y1)

e Choice for the noise: Centered Gaussian with intensity depending on
the reference trajectory

e Additional property: The noise should not modify the endpoints

e Modelling: There exists ¢ € R¥ such that

Cr, = C+eg;
e ~ N (O, T;), with I = ;L%

€i € ker A

/\ The covariance matrix X is here singular !
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Distribution of Yg

e Advantage: Gaussian hypothesis indicates simply localisation and
degrees of freedom (interpretability !)

e Bonus: Provides also some constraints from the correlations
~+ Use the fact that the matrices ¥ and AT A are simultaneously
diagonalisable to change the basis

7
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Distribution of Yg

e Advantage: Gaussian hypothesis indicates simply localisation and
degrees of freedom (interpretability !)

e Bonus: Provides also some constraints from the correlations
~+ Use the fact that the matrices ¥ and AT A are simultaneously
diagonalisable to change the basis

e Equivalent modelling: We can find an explicit basis V such that

Cr1=C+¢Ei1

- 1
gia~N (O]R“a — /\z)
2&),'

\/2T CR, = EQ
VAT (o yr)T =75

with ¢ = VTc = (V4 Vo V5)7c and As diagonal and non-singular
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Distribution of Yg

e Advantage: Gaussian hypothesis indicates simply localisation and
degrees of freedom (interpretability !)

e Bonus: Provides also some constraints from the correlations
~+ Use the fact that the matrices ¥ and AT A are simultaneously
diagonalisable to change the basis

e Equivalent modelling: We can find an explicit basis V such that

CRi1=0C+Ei1 — Constraints-free
- 1
gi1~N | Ogo, o As
1
V2T CR = C —— Constraints contained in data
Vi A (o yr)T =6 — Endpoints constraints

with ¢ = VTc = (V4 Vo V5)7c and As diagonal and non-singular

rd
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Distribution of Yg

e Advantage: Gaussian hypothesis indicates simply localisation and
degrees of freedom (interpretability !)

e Bonus: Provides also some constraints from the correlations
~+ Use the fact that the matrices ¥ and AT A are simultaneously
diagonalisable to change the basis

e Equivalent modelling: We can find an explicit basis V such that

CRi1=0C+Ei1 — Constraints-free
- 1
gi1~N | Ogo, o As
1
V2T CR = C —— Constraints contained in data
Vi A (o yr)T =6 — Endpoints constraints

with ¢ = VTc = (V4 Vo V5)7c and As diagonal and non-singular

— V= {C € RK |EQ =V CR: , G = V3TAT(y0 yT)T}

rd
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A priori model for the trajectory distribution

A priori knowledge: Efficient trajectories with respect to the cost F
are the most likely ones

Reminder: A trajectory depends only on the component ¢;

Bestricted cost function: Let F be the restriction to )V of the cost
F = F o &1 defined on R¥

e Prior: For k > 0,

u(¢y) o exp ( - H_IF(EI))

7
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Bayes’s rule and MAP

e Posterior: By Bayes's rule, we have

U(E]_ |ER171, .- 7ER/71) X u(ERl,l, .. 7ER,,1 |E]_) U(El)
e Likelihood: Independence assumption and preceding modelling give

N
u(@r1s- -5 Cral@) = [Ju(Er @)
i=1

N
X Hexp ( — Wj (El — ’ER,.,l)T/\E’ll (El — ER,—,l))
i=1

7
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Bayes’s rule and MAP

e Posterior: By Bayes's rule, we have
U(El |ER171, .- 7ER,,1) X u(ERhl, .. 7ER,,1 |El) U(El)
e Likelihood: Independence assumption and preceding modelling give

N
u(@r1s- -5 Cral@) = [Ju(Er @)
i=1

N
X Hexp ( — Wj (El — ERi,l)T/\E’ll (El — ER,—,l))
i=1

e Maximum A Posteriori: Take the negative of the logarithm
N

- . o~ NTal1~ ~

¢f € argmin F(¢p) + me; (¢1—Cr1) /\Ll1 (¢1—Cr1)
GER? i=1

E; = V2T CR;

G =VAMW yr)'
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Bayes’s rule and MAP

e Posterior: By Bayes's rule, we have
U(El |ZR1’1, N 7E,th) X U(ERl,].) e ;ER,,l |El) u(El)

o Likelihood: Independence assumption and preceding modelling give

N
u(@ro,- - eral@) = [Ju(Eral@)
i=1

N
X Hexp ( — Wj (El — ER,.,l)T/\ill (El — ’CVR,.’l))
i=1

e Maximum A Posteriori: Take the negative of the logarithm and

change the basis back to obtain
N

c* € argmin F(c) + ﬁZw,- (c— CRI.)TZT (c—cr)
ceV i—1

rd
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Search space visualisation

Reference trajectories
Constrained domain
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Iterative approach to satisfy constraints

o Additional constraints: The solution y* = ®~1c* should belong to
the set G | Not explicitly taken into account in

N

cr € argen;in F(c)+w ;w; (c—cr) Tyt (c—cr)
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Iterative approach to satisfy constraints

o Additional constraints: The solution y* = ®~1c* should belong to
the set G | Not explicitly taken into account in

N

¢ € argmin F(c) + nZw,- (c— CR,)TZT (c—cr)
ceV i—1

o Observation: In the limit cases, we have

‘ k=0 Kk = 400
yi€g X v
min F v X
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Iterative approach to satisfy constraints

o Additional constraints: The solution y* = ®~1c* should belong to
the set G | Not explicitly taken into account in

N

¢ € argmin F(c) + nZw,- (c— CR,)TZT (c—cr)
ceV i—1

o Observation: In the limit cases, we have

‘ k=0 K = 400
yi€g X v
min F v X

e Idea: Tune k to find a compromise between optimisation and
constraints
— Iterative approach (linear search, binary search,...)

rd

7
23 -Data-driven trajectory optimisation- Florent Dewez hw



Quadratic case for a convex problem

e Hypothesis: Quadratic instantaneous cost!

;
F(y) =/0 y() T Qy(t) +w'y(t) + rdt

e Quadratic optimisation problem:

T

N
c*eargmincT(C—i—chT)c—i— W—2nZw,~ZTcRi c
cey i—1

e Convex optimisation problem: The above problem is convex if

K= =Amin (Vi QV1) Aax(E)

t F. Dewez, B. Guedj, V. Vandewalle. From industry-wide parameters to
aircraft-centric on-flight inference: improving aeronautics performance prediction with
machine learning. Data-Centric Engineering, 2020.

rd
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PyRotor library

Python Route trajectory optimiser

Preceding generic method developed in Python to be used in
a wide range of fields

Based on well-known librairies (SciPy, NumPy, sklearn,...)

Developed on GitHub:
https://github.com /bguedj/pyrotor
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https://github.com/bguedj/pyrotor

Application:
Minimisation of aircraft
fuel consumption during
the climb phase

v d

lrezia—~
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Aeronautic setting
Setting: Climbing phase of an aircraft in a vertical plane

e Cost function: Total fuel consumption

-
TFC(y) ::/ FF(y(t)) dt
0
where FF is the fuel flow
e Trajectory: Altitude h, Mach M, engines power N1
Vee[0, Tl y(t):= (h(t),M(t),N1(t))

e Endpoints conditions:

1. Altitude: from 3,000 ft to 38,000 ft;
2. Mach: from 0.3 to 0.78.

e Additional constraints:

1. Rate of climb smaller than 3,600 ft/min;
2. Mach smaller than 0.82.

7
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Aeronautic setting

Data: 2,162 recorded flights; 48 satisfy endpoints conditions (used
to estimate X)

e Fuel flow: Fitted to the climb data by a quadratic model
(~ 500,000 observations); error: 1.73 %

e Weights w;: Chosen so that only the five most fuel-efficient
trajectories are involved in the penalised term

e Climb duration: Given by the first time where final endpoints are
reached by the optimised flight

e Basis: Legendre polynomials for each state; overall dimension = 20

7
28 -Data-driven trajectory optimisation- Florent Dewez hz‘a’.



Visualisation

ALTITUDE [m]

200 00 800 1000 1200
Time [s]

Figure: Altitude
e Fuel savings = 260 + 86 kg (min = 72 kg, max = 394 kg)
e Percentages = 17 + 5 % (min = 5%, max = 23%)
e Execution time = 4 4 0.1 s (Intel Core i7 6 cores, 2.2 GHz)

rd
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Visualisation

MACH [1]

0 200 400 600 800 1000 HhD
Time [s]

Figure: Mach number
e Fuel savings = 260 £ 86 kg (min = 72 kg, max = 394 kg)
e Percentages = 17 + 5 % (min = 5%, max = 23%)
e Execution time =4 £ 0.1s

rd
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Visualisation

N1 [%]

400 600 800 1000 1200
Time [s]

Figure: Engines power
e Fuel savings = 260 £ 86 kg (min = 72 kg, max = 394 kg)
e Percentages = 17 + 5 % (min = 5%, max = 23%)
e Execution time =4 £ 0.1s

rd
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On the horizon
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Outlook

Improvements/Extensions

e Different modellings for the reference trajectories
e Clustering step applied to the reference trajectories
e Combination with optimal control methods’

e Other kinds of optimisation problems

1 C. Rommel, F.C. Bonnans, P. Martinon, B. Gregorutti. Gaussian mixture penalty for
trajectory optimization problems. Journal of Guidance, Control, and Dynamics 42 (8),
1857-1862, 2019.

rd
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Outlook

Improvements/Extensions
e Different modellings for the reference trajectories
e Clustering step applied to the reference trajectories
e Combination with optimal control methods’

e Other kinds of optimisation problems

New applications
e Health: optimal dose-response, patient path,...

e Sailing: routing, best control for a manoeuvre, ...
— Exploratory project with the Fédération Francaise de Voile

1 C. Rommel, F.C. Bonnans, P. Martinon, B. Gregorutti. Gaussian mixture penalty for
trajectory optimization problems. Journal of Guidance, Control, and Dynamics 42 (8),
1857-1862, 2019.

rd
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