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Introduction
Recent successes of machines in sequential decision-making
problems such as Atari and Go have involved exponen-
tial increases in domain-specific experience and computa-
tional power. By contrast, humans are able to rapidly and
accurately identify solutions to novel sequential decision-
making problems—all with a biological computer that uses
less power than a lightbulb. Two critical components of hu-
man intelligence that allow us to think and learn so effi-
ciently are metareasoning and metalearning (Griffiths et al.
2019), that is, thinking about how to think and learning how
to learn. These two ideas have primarily been considered
separately, but we propose that the ability to efficiently form
plans in variable and novel contexts can be achieved by ap-
plying metalearning to metareasoning problems.

Planning as metareasoning
Given an accurate model of the environment and infinite
computational resources, one can always identify an opti-
mal policy by planning—in principle. In practice, however,
constraints on computational resources make exact planning
impossible. Planning algorithms should thus be evaluated
not only by their theoretical ability to find an optimal so-
lution, but also by their empirical performance given some
fixed computational budget. This suggests that planning is
fundamentally a problem of computational resource alloca-
tion. The theory of rational metareasoning frames this as a
sequential decision problem in which an agent attempts to
maximize the sum of the rewards received from executing
external actions minus the cost of the computations used to
select those actions (Horvitz, Cooper, and Heckerman 1989;
Russell and Wefald 1991). This idea is formalized in a met-
alevel Markov decision process (Hay et al. 2012).

A metalevel Markov decision process (MDP) Mmeta =
(B, C, Tmeta, rmeta) is an MDP where the states, B, encode
an agent’s beliefs over task-relevant variables, the actions, C,
are computations, the transition function, Tmeta, describes
how computations update beliefs, and the reward function,
rmeta, describes the costs and benefits of computation. In
particular, rmeta is strictly negative for all computations
except a special operation, ⊥, which terminates the deci-
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sion making process and executes the external action (or
sequence of actions) that is optimal given the final belief
state, bT . The final metalevel reward, rmeta(bT ,⊥), is the
expected utility of that action. In this framework, a planning
algorithm is formalized as a metalevel Markov policy, πmeta,
which selects the next computation to perform based on the
current belief state.

To make things concrete, we consider a process-tracing
task that has been used to study human planning (Call-
away et al. 2018b). In the Mouselab-MDP task (illustrated
in Figure 1A), participants navigate a spider through a tree-
structured MDP in order to maximize total reward. The re-
ward gained at each state is initially occluded, but may be
revealed by clicking. This task is naturally modeled as a
metalevel MDP. A belief state specifies a joint distribution
over the reward function at each state, the distribution at
each state either being the prior or a delta distribution on
the observed value. A computation reveals the reward at a
state, except for⊥which executes a sequence of actions with
maximal expected return given the current belief state. The
transition function specifies the probability that each possi-
ble reward is revealed after a click. Finally, the metalevel re-
ward function penalizes each click with a constant negative
reward and rewards the ⊥ action with the maximal expected
return of any path.

A critical challenge for metareasoning is that the bene-
fit of selecting computations intelligently must not be out-
weighed by the cost of deciding which computations to ex-
ecute. Research in psychology suggests that humans amor-
tize metalevel decision cost through model-free RL (Jain et
al. 2019). However, despite early proposals to apply such a
technique in machines (Harada and Russell 1999), this idea
is yet to be fully explored. In a recent instantiation of this
approach, Callaway et al. (2018a) present a direct policy
search method to learning a metalevel planning policy. How-
ever, because the metalevel policy is optimized separately
for each environment, the upfront cost of learning may still
outweigh the benefits of future computational thrift.

Metalearning to metareason
For a metalevel learning algorithm to be useful, it must be
able to quickly and flexibly adapt to new domains. This is
exactly the problem considered by metalearning (Schmid-
huber, Zhao, and Wiering 1996; Thrun and Pratt 2012). In



general, the target of metalearning is a learning algorithm
that can achieve high performance with minimal experience
on a new task drawn from some family of related tasks.
Here, we focus on metalearning applied to RL, in which a
“task” corresponds to an MDP and “minimal experience”
corresponds to a small number of episodes interacting with
that MDP (Wang et al. 2016; Duan et al. 2017). While
meta-RL increases the sample efficiency of learning to solve
a new MDP (Rakelly et al. 2019; Zintgraf et al. 2019;
Humplik et al. 2019), it does not explicitly reason about
the computational cost of online planning, and therefore
does not by design maximize computational efficiency. Met-
alearning to metareason addresses this deficiency by allow-
ing a metalevel policy to transfer experience across met-
alevel MDPs when deliberating about the sequence of com-
putations to perform.

As a proof of concept, we applied metalearning to metar-
eason to the Mouselab-MDP planning task. We defined a
distribution of metalevel MDPs, pM , in which several di-
mensions were allowed to vary: the height and width of
the decision tree, the cost of revealing a reward, and the
probabilities of each reward in the set {−1, 0, 1}. As a
learning algorithm, we used Bayesian Q-learning with lin-
ear function approximation and Monte Carlo estimates of
return. That is, we assume Q(b, c;w) = w>φ(b, c) and
Gt ∼ Normal(Q(bt, ct;w), σ2), where Gt denotes the cu-
mulative reward from timestep t to the end of the episode
and the features, φ, are taken from Callaway et al. (2018a).
We specified priors p0(w) ∼ Normal(µ,diag(λ−1)) and
p0(σ) ∼ Gamma(a, b), updating these distributions at the
end of each episode based on all previous experience. The
policy uses Thompson sampling over weights for explo-
ration, sampling w̃t ∼ pt(w) and then executing the com-
putation ct = argmaxcQ(bt, c; w̃t).

The prior over the Bayesian regression parameters is a
natural target for metalearning because it describes not only
the starting point in weight space, but also the exploration
policy and the rate at which each weight is updated from
experience. As a metalearning objective, we chose the ex-
pected total reward achieved over the course of 20 episodes
in an MDP sampled from pM . We approximate this objective
by Monte Carlo (sampling 100 environments) and optimize
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Figure 1: Proof of concept. (A) The Mouselab-MDP paradigm.
Rewards are revealed by clicking, prior to selecting a path. (B) Av-
erage performance of the metalearning vs simple learning agent
over a distribution of Mouselab-MDP planning problems. Bands
show 95% CI.

it with Bayesian optimization.
We found that the metalearned prior yielded dramatically

improved performance when compared with an uninforma-
tive baseline prior. However, as shown in Figure 1B, this im-
provement is expressed as strong immediate generalization
to new domains, apparently making fine-tuning unnecessary.
This result may be explained by our use of hand-engineered
features which naturally generalize within this relatively
constrained domain. Thus, in future work we will parame-
terize components of the learner with neural networks, al-
lowing metalearning of metareasoning policies across envi-
ronments with more complex state and action spaces.
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