Skip to content

EverMemOS is an open-source, enterprise-grade intelligent memory system. Our mission is to build AI memory that never forgets, making every conversation built on previous understanding.

License

Notifications You must be signed in to change notification settings

EverMind-AI/EverMemOS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

EverMemOS
EverMemOS

Let every interaction be driven by understanding Β· Enterprise-Grade Intelligent Memory System

arXiv Python License Docker Release Stars


πŸš€ Quick Start β€’ πŸ“– Documentation β€’ 🎯 Demos β€’ 🀝 Contributing β€’ πŸ’¬ Discord


Introduction

πŸ’¬ More than memory β€” it's foresight.

EverMemOS enables AI to not only remember what happened, but understand the meaning behind memories and use them to guide decisions. Achieving 93% reasoning accuracy on the LoCoMo benchmark, EverMemOS provides long-term memory capabilities for conversational AI agents through structured extraction, intelligent retrieval, and progressive profile building.

EverMemOS Architecture Overview

How it works: EverMemOS extracts structured memories from conversations (Encoding), organizes them into episodes and profiles (Consolidation), and intelligently retrieves relevant context when needed (Retrieval).

πŸ“„ Paper β€’ πŸ“š Vision & Overview β€’ πŸ—οΈ Architecture β€’ πŸ“– Full Documentation

Latest: v1.2.0 with API enhancements + DB efficiency improvements (Changelog)


Why EverMemOS?

  • 🎯 93% Accuracy - Best-in-class performance on LoCoMo benchmark
  • πŸš€ Production Ready - Enterprise-grade with Milvus vector DB, Elasticsearch, MongoDB, and Redis
  • πŸ”§ Easy Integration - Simple REST API, works with any LLM
  • πŸ“Š Multi-Modal Memory - Episodes, facts, preferences, relations
  • πŸ” Smart Retrieval - BM25, embeddings, or agentic search

EverMemOS Benchmark Results
EverMemOS outperforms existing memory systems across all major benchmarks


Quick Start

Prerequisites

  • Python 3.10+ β€’ Docker 20.10+ β€’ uv package manager β€’ 4GB RAM

Verify Prerequisites:

# Verify you have the required versions
python --version  # Should be 3.10+
docker --version  # Should be 20.10+

Installation

# 1. Clone and navigate
git clone https://github.com/EverMind-AI/EverMemOS.git
cd EverMemOS

# 2. Start Docker services
docker-compose up -d

# 3. Install uv and dependencies
curl -LsSf https://astral.sh/uv/install.sh | sh
uv sync

# 4. Configure API keys
cp env.template .env
# Edit .env and set:
#   - LLM_API_KEY (for memory extraction)
#   - VECTORIZE_API_KEY (for embedding/rerank)

# 5. Start server
uv run python src/run.py --port 8001

# 6. Verify installation
curl http://localhost:8001/health
# Expected response: {"status": "healthy", ...}

βœ… Server running at http://localhost:8001 β€’ Full Setup Guide


Basic Usage

Store and retrieve memories with simple Python code:

import requests

API_BASE = "http://localhost:8001/api/v1"

# 1. Store a conversation memory
requests.post(f"{API_BASE}/memories", json={
    "message_id": "msg_001",
    "create_time": "2025-02-01T10:00:00+00:00",
    "sender": "user_001",
    "content": "I love playing soccer on weekends"
})

# 2. Search for relevant memories
response = requests.get(f"{API_BASE}/memories/search", json={
    "query": "What sports does the user like?",
    "user_id": "user_001",
    "memory_types": ["episodic_memory"],
    "retrieve_method": "hybrid"
})

result = response.json().get("result", {})
for memory_group in result.get("memories", []):
    print(f"Memory: {memory_group}")

Try it now: uv run python src/bootstrap.py demo/simple_demo.py (Demo Guide)

πŸ“– More Examples β€’ πŸ“š API Reference β€’ 🎯 Interactive Demos


Advanced Techniques


Evaluation & Benchmarking

EverMemOS achieves 93% overall accuracy on the LoCoMo benchmark, outperforming comparable memory systems.

Benchmark Results

EverMemOS Benchmark Results

Supported Benchmarks

  • LoCoMo - Long-context memory benchmark with single/multi-hop reasoning
  • LongMemEval - Multi-session conversation evaluation
  • PersonaMem - Persona-based memory evaluation

Quick Start

# Install evaluation dependencies
uv sync --group evaluation

# Run smoke test (quick verification)
uv run python -m evaluation.cli --dataset locomo --system evermemos --smoke

# Run full evaluation
uv run python -m evaluation.cli --dataset locomo --system evermemos

# View results
cat evaluation/results/locomo-evermemos/report.txt

πŸ“Š Full Evaluation Guide β€’ πŸ“ˆ Complete Results


Contributing

We welcome contributions! Here's how you can help:

Community: GitHub Discussions β€’ Reddit β€’ X/Twitter

πŸ“– Read our Contribution Guidelines for code standards and Git workflow.


License & Citation

Licensed under Apache 2.0 β€’ Citation Info β€’ Acknowledgments


If this project helps you, please give us a ⭐

Made with ❀️ by the EverMemOS Team

About

EverMemOS is an open-source, enterprise-grade intelligent memory system. Our mission is to build AI memory that never forgets, making every conversation built on previous understanding.

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 5

Languages