Skip to content

damUPJS/dam

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

71 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data Analytics Meetings UPJŠ

V tomto adresári nájdete:

Stretnutia v akademickom roku 2020/2021:

P.č. Dátum Téma Prednášajúci
01 23.09.2020 Serve Your ML Models in AWS Using Python (ONLINE MLMU) Video Václav Košař
02 21.10.2020 Sentiment Analysis for Social Media (ONLINE MLMU) Video Jan Rus
03 04.11.2020 Reinforcement learning 1: deep Q networks (ONLINE MLMU) Video Michal Chovanec
04 02.12.2020 Mining and predicting processes (ONLINE MLMU) Video Ondrej Brichta
05 13.01.2021 Thoth: Reinforcement learning-based dependency resolution (ONLINE MLMU) Video Fridolin Pokorny
06 28.01.2021 AI Research in Seznam.cz (ONLINE MLMU) Video Xenia Shakurova, Ondrej Filip, O. Bednar & M. Soukup, Jan Vrsovsky
07 08.04.2021 MLOps and DataOps techniques using Databricks (ONLINE MLMU) Video Marton Hubay, Priyan Chandrapala, Nikolay Vaklinov
08 21.04.2021 MLOps: Building feature stores and ML production pipelines (ONLINE MLMU) Yury Kasimov, Joao Da Silva, Jiří Koutný
09 26.05.2021 Key factors of successful MLOps (ONLINE MLMU) Video Wioletta Stobieniecka, Michal Marusan, Dorian Hodorogea
10 07.06.2021 D<AI>DALOS – From Automation to Intelligence: The Long History of AI (ONLINE MLMU) Video Nathan Ensmenger
11 24.06.2021 D<AI>DALOS – Post-Human Creativity: The Use of AI in Art (ONLINE MLMU) Video Filippo Lorenzin, Garrett Lynch, Paul Mouginot, Iskra Velitchkova

Stretnutia v akademickom roku 2019/2020:

P.č. Dátum Téma Prednášajúci
01 25.09.2019 3D Human Body Reconstruction using Generative Adversarial Networks Gergely Magyar, Filip Hendrichovský, Mária Virčíková
02 09.10.2019 Physics-inspired approach to efficient and automated gap filling in massive spatial data Milan Žukovič
03 16.10.2019 An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling Reading Group
04 23.10.2019 Business & AI Tomáš Bel
05 30.10.2019 Attention Augmented Convolutional Networks Reading Group
06 06.11.2019 Computer vision applications of Deep Learning Stanislav Hrivňak, Ondrej Palkoci
07 13.11.2019 Densely Connected Convolutional Networks Reading Group
08 20.11.2019 Time series - a different beast Róbert Tóth
09 27.11.2019 Anomaly Detection : A Survey (p.1 - p.30) Reading Group on Anomaly Detection
10 04.12.2019 Data analysis for cybersecurity and new challenges Ladislav Bačo
11 11.12.2019 Anomaly Detection : A Survey (p.31 - end) Reading Group on Anomaly Detection
12 08.01.2020 Neural Turing Machines Reading Group
13 23.01.2020 The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks Reading Group
14 06.02.2020 Outlier Exposure with Confidence Control for Out-of-Distribution Detection Reading Group
15 12.02.2020 Text detection and recognition in natural scene images - a real challenge Peter Bugata, Dávid Hudák
16 20.02.2020 NISP: Pruning Networks using Neuron Importance Score Propagation Reading Group
17 26.02.2020 Formal concept analysis (FCA) and its basic tools Ondrej Krídlo
18 05.03.2020 Normalizing Flows for Probabilistic Modeling and Inference Reading Group
19 31.03.2020 Gestalt principles in Data Visualisation (ONLINE MLMU) Video Anastázie Sedláková
20 21.04.2020 Optimization for Machine Learning: From Theory to Practice and Back (ONLINE MLMU) Video Filip Hanzely
21 19.05.2020 Understanding machine learning with statistical physics (ONLINE MLMU) Video Lenka Zdeborová
22 03.06.2020 Large-scale forecasting & Free text clustering (ONLINE MLMU) Video Michał Kurcewicz, Tetyana Holets
23 18.06.2020 AI technology works differently from our brains (ONLINE MLMU) Video Danko Nikolić
24 30.06.2020 Under the Hood of Smart Quarantine: Data and Memory Maps (ONLINE MLMU) Video Petr Bednařík, Ondřej Tomas, Vojta Tůma

Stretnutia z akademického roka 2018/2019:

Na stretnutiach Deep Learning Reading Group sa čítala kniha dostupná na nasledijúcom linku: http://www.deeplearningbook.org/

P.č. Dátum Téma Prednášajúci
01 19.09.2018 New Age of Artificial Intelligence Marián Dvorský
02 03.10.2018 Spectral Clustering Erik Bruoth
03 10.10.2018 Applications of spectral clustering Erik Bruoth
04 17.10.2018 Practical Machine Learning Peter Štrauch
05 24.10.2018 Save the vineyard: Part 1 Stanislav Hrivňak
06 07.11.2018 Save the vineyard: Part 2 Stanislav Hrivňak
07 14.11.2018 Spectral bandits for smooth graph functions Tomáš Kocák
08 21.11.2018 Machine learning in astronomy: why and how? Michal Čokina
09 28.11.2018 3D modeling of the countryside Ján Kaňuk
10 05.12.2018 From fighting cancer to recognising landmarks Daniel Kuchta
11 12.12.2018 Marriage of neuroscience and robotics Keerthi Doreswami
12 19.12.2018 Neurónové siete a geomagnetické búrky Gabriela Andrejková
13 20.02.2019 The power of graphs in speeding up online learning and decision making Michal Valko
14 25.02.2019 Automation of Data Science Tomas Horvath
15 20.03.2019 Way from convolution neural network to artificial inteligence Juraj Kundrik
16 10.04.2019 The Doctor in the Machine + Hack Kosice 2019 Report Jozef Kiseľák
17 09.05.2019 Deep Learning for Natural Language Processing Peter Bednar
18 30.05.2019 MLMU KE: Introduction to Deep Reinforcement Learning Slavo Matasovsky
19 19.06.2019 Depth separation for neural networks Tomáš Kocák

About

Data Analytics Meetings UPJS

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •