FontlLab /’t e
Studio

NEXT-GENERATION PROFESSIONAL FONT EDITOR —
POSTSCRIPT, TRUETYPE, UNICODE, OPENTYPE
USER’S MANUAL FOR MACINTOSH

Copyright ©1992-2006 by Fontlab, Ltd. All rights reserved.

Cover illustration: Pawet Jonca, pejot.com

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of the publisher. Any software referred to herein is furnished
under license and may only be used or copied in accordance with the terms of such license.

FontlLab, FontLab logo, ScanFont, TypeTool, SigMaker, AsiaFont Studio, FontAuditand
VectorPaint are either registered trademarks or trademarks of FontLab, Ltd. in the United
States and/or other countries.

Apple, the Apple Logo, Mac, Mac OS, Macintosh and TrueType are trademarks of Apple
Computer, Inc., registered in the United States and other countries.

Adobe, PostScript, Photoshop, Type Manager, lllustrator, Macromedia, Fontographer, Flash
and Freehand are trademarks of Adobe Systems Incorporated, which may be registered in
certain jurisdictions.

Windows, Windows 95, Windows 98, Windows XP and Windows NT are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

IBM is a registered trademark of International Business Machines Corpoation.

Other brand or product names are the trademarks or registered trademarks of their respective
holders.

THIS PUBLICATION AND THE INFORMATION HEREIN IS FURNISHED AS IS, IS SUBJECT TO
CHANGE WITHOUT NOTICE, AND SHOULD NOT BE CONSTRUED AS A COMM ITMENT BY
FONTLAB, LTD.

FONTLAB, LTD. ASSUMES NO RESPONSIBILITY OR LIABILITY FOR ANY ERRORS OR
INACCURACIES, MAKES NO WARRANTY OF ANY KIND (EXPRESS, IMPLIED OR STATUTORY) WITH
RESPECT TO THIS PUBLICATION, AND EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF
MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSES AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS.

User manual release 5.1 [5/2006]

https://pejot.com

Contents

CONTENTS

INTRODUCTION

Major new features of FontLab Studio 5
Other key features of FontLab Studio

About this Manual

System Requirements

FONTLAB STUDIO USER INTERFACE
Basic Terms
Getting Started

Customizing FontLab Studio’s User Interface
Customizing Toolbars
Customizing Menus
Customization of the Keyboard
Faster Method to Customize Toolbars
Links to External Programs

FontLab Studio Windows
Font Window
Glyph Window
Metrics Window
Metrics Panel

Panels

FontLab Studio Options
General Options
Font Window
Glyph Window
Metrics Window
FontAudit
Opening Type 1
Opening OpenType & TrueType
Generating Type 1
Generating OpenType & TrueType
Trace Options

17
19
20

21
23

EDITING FONTS

Opening Fonts
Most Recently Used Fonts
Opening Fonts with Drag-Drop
Font Formats

Creating a New Font
The Font Window

Glyph Naming and Character Encoding

Characters, Codes and Glyphs
Names Mode

Unicode Ranges

Codepages

Advanced Glyph Naming and Encoding

Using the Font Window
Navigating
Selecting
Context Menu

Moving Glyphs

Saving the Font
Autosave

Copying and Pasting Glyphs
The Paste Special Command
Copying Glyphs to Another Font
Appending Glyphs to the Font
Copying Composite Glyphs
Duplicating Unicode codepoints

Deleting Glyphs
Creating New Glyphs
Marking Glyphs
Searching for Glyphs
Renaming Glyphs
Reencoding the Font

Unicode-Related Operations
Generating Unicode codepoints
Generating Names
Removing Unicode Information

The Font Map Panel
Managing Double-Byte Codepages

Notes

111

112

115
115
116

117
118

124
125
133
139
141
145

156
157
158
159

162

164
166

167
169
170
171
172
173

174
175
176
178
180
182

185
185
188
189

190
192

193

Sorting Glyphs

Working with Multiple Fonts
Windows List
Fonts Panel
Merging Fonts
Saving and Opening a Project
Saving and Opening a Workspace

Applying Modifications
Blending Fonts

THE FONT HEADER

Font Info Dialog Box
Command Bar
Copying Font Info

Font Names
Basic Identification and Names
Accessing MyFonts.com Database
OpenType-Specific Names
How to Make a Font Family
Non-English and Special Names
Copyright Information
Font Embedding
Designer Information
License Information

Font Identification
Version Information
Basic Font Identification
PANOSE™ Identification
Other Identification Systems

Metrics and Dimensions
Font UPM Value
Basic Font Dimensions
Advanced Vertical Metrics
Superscript and Subscript

Encoding and Unicode

Supported Codepages
Custom [cmap] encodings
Supported Unicode Ranges

Hinting Settings
Alignment Zones
Type 1 Standard Stems
Global Hinting Parameters
Type 1 Autohinting Parameters

Format-Specific Options
Type 1 Export Options

194

195
196
197
200
202
203

204
205

209

210
212
213

214
215
217
219
220
226
230
231
233
234

235
235
236
238
240

242
242
243
245
248

249

250
252
253

254
255
257
259
261

262
263

TrueType Export Options
TrueType Mapping Settings
Device-Dependent Metrics

Font Smoothing Control

[head] Table Settings

Basic PCLT options

PCLT Identification

PCLT Metrics and Font Description
PCLT Codepages

Binary and custom tables

PRINTING AND PROOFING FONTS

Printing
Printing Font Table
Printing Glyph List
Printing Font Sample
Printing Font Waterfall
Printing Glyph Sample
Printing Glyph Waterfall
Printing Kerning Table

Quick Test

Other Proofing Methods
Preview panel
OpenType Features panel
Hinting Tools

GENERATING FONTS

Relevant Font Formats
OpenType PS
Macintosh TrueType
Windows TrueType / OpenType TT
Macintosh Type 1
Windows Type 1

Before You Generate
Font Info
Character Set
Glyphs
Hints
Kerning
OpenType Layout Features

Relevant Generation Options
Generating Type 1
OpenType PS
OpenType TT

Generating for Windows/Mac

Generating for Mac

264
265
266
267
269
270
271
272
273
275

277

278
279
281
282
284
286
288
289

291

292
292
293
294

295

296
296
297
298
299
300

301
301
303
304
304
305
305

306

306
307
309

311
312

Font Suitcases
Building Font Suitcases
Family Info

Options for Converting Fon ts

Testing Fonts

THE GLYPH WINDOW

Glyph Window Contents
The Glyphs Bar

Selecting a Glyph for Editing
Creating Glyphs

Changing the View in the Glyph Window
Quick Zoom Selection

Tools and Operations
Edit Mode

Editing Layers
Easier Way to Control Editing Layers

Outline Layer
Contours
Outline Appearance
FontAudit
Moving Nodes
Using the Keyboard
Non-node editing
Changing Connection Type
Deleting Nodes
Deleting Lines and Curves
Eraser Tool
Inserting Nodes
Using the Drawing Tool
Adding Points to a Contour
Converting Segments
Breaking and Joining Outlines
Node Commands
Node Properties
Previewing Glyphs

VectorPaint Mode
Freehand Select Tool
Pen (Contour) Tool
Brush Tool
VectorPaint Options
Line Tool
Polygon Tool
Ellipse and Rectangle Tools
Text Tool

313
314
320

323
325

327

328
331

333
334

335
337

339
341

343
346

347
350
358
362
366
369
370
372
373
373
374
375
377
379
380
381
382
384
386

395
397
398
399
401
403
404
405
406

Selections 407

Using the Magic Wand Tool 408
Moving the Selection 409
Selection Commands 410
Selection Properties Panel 412
Copying the Selection 413
Transforming the Selection 415
Find and Replace Outline Operation 421
Building an Outline from Blocks 424
Contour-related Commands 429
Creating Contours 431
Merging and Intersecting Contours 436
Converting Contours 438
Outline Optimization 439
Grid Layer 440
Guidelines Layer 441
Editing Guidelines 442
Guidelines Popup Menu 444
Guidelines Tracking 445
Guidelines Properties Panel 446
Meter Mode 447
Setting Guidelines, Anchors and Sidebearings 449
Mask Layer 450
Editing Mask 451
Mask Operations 452
Assigning a Mask 453
Global Mask Layer 455
Background Layer 456
Background Positioning 459
Tracing Background 460
Shape Groups and Neighbors 463
Shape Groups 463
Neighbors 465
Editing Groups and Neighbors 466
Outline Operations 467
Envelope 468
Reversing a Contour’s Direction 470
Rearranging Contours 471
Simplifying Path 472
Moving Nodes 473
Interpolation 474
Metrics 478
Editing Metrics 479
Baseline Properties Panel 482

Metrics Properties Panel 483

Vertical Metrics

Hints and Links Layer
Links
Editing Hints
Hints Tracking
Editing Links
Hint and Link Popup Menu
Hint Commands
Autohinting Options
Hint Properties Panel
Link Properties Panel

Alignment Zones

Sketch Mode
Visualization of the Sketch Outline
Moving Points
Changing Point Type
Removing Points
Inserting Points
Reversing Contours
Selecting Points
Moving the Selection
Transforming the Selection
Selection Operations
Breaking and Joining the Sketch Outline
Converting Sketch to Outline

Working with Composite Glyphs
Adding a Component
Decomposing
Component Positioning
Component Properties

Anchors Layer
Moving Anchors
Removing Anchors
Renaming Anchors
Changing Anchor Color
Anchor Properties
Using Anchors to Build Composites
Using the Anchors Panel

Creating Composites and Ligatures
Aliases Table

Using the Smart Shapes Panel

Importing and Exporting Glyphs
Exporting Glyphs
Preparing Artwork in Adobe Illustrator
Importing Glyphs
Manual and Automatic Scaling

484

486
487
488
490
491
492
493
494
496
496

497

498
500
501
501
501
502
502
503
505
505
505
506
506

507
508
509
510
512

513
514
514
514
514
515
516
520

523
526

527

530
531
532
533
534

10

Printing a Glyph

EDITING METRICS

What are Font Metrics?
Horizontal Glyph Metrics
Kerning
Vertical Glyph Metrics
Metrics Files

Metrics Window
Editing Modes
Metrics Ruler
Metrics Panel
Metrics Table
Context Menu
Metrics Window Toolbar

Selecting a String for Previewing or Editing
Selecting a Predefined Sample String
Editing a Sample String
Entering Text in Text Mode
Using Drag-Drop
Navigating in the Sample String
Activating and Browsing Glyphs
Selecting Preview Size
Right-to-Left Mode
Flipped Mode
Previewing Outline and Nodes
Customizing Colors

Editing Underline and Strikethrough

Editing Metrics
Manual Metrics Editing
Using the Keyboard
Using the Metrics Panel
Using the Metrics Table
The Measurement Line
Automatic Metrics Generation

Quick Save and Quick Open

Editing Kerning
Manual Kerning Editing
Using the Keyboard
Using the Metrics Panel
Using the Metrics Table
Using the Kerning Dialog
Adding Kerning Pairs
Automatic Kerning Generation
Resetting Kerning

Adjusting Metrics and Kerning

535

537

538
539
540
542
543

544
546
547
548
549
549
550

551
552
553
556
557
557
558
559
560
560
561
562

563

565
567
568
569
571
575
576

578

579
580
580
581
582
585
587
588
590

591

Class-Based Kerning 593

Class-Based Kerning and OpenType Fonts 594
Classes Panel 595
Class Definition 597
Defining the Class 598
Key Glyph 600
Rearranging Classes and Glyphs 601
Editing Class-Based Kerning 602
Generating Kerning Classes Automatically 604
Kerning Exceptions 606
Class Kerning Modes 607
Previewing Class-based Kerning 608
Kerning Classes and OpenType Kerning 609
Kerning Assistance 611
Metrics Assistance 617
Editing Metrics Class Properties in Classes Panel 620
Opening Metrics Files 621
Saving Metrics Files 623
Printing 624
ACTIONS 625
The Actions Dialog Box 626
Actions 629
Contour Transformation 630
Hints and Guidelines Transformation 638
Metrics Transformation 640
Effects 643
Action Set Dialog Box 651
Action Set Range 652
Action Set 655
Using the Preview Window 656
Saving and Opening an Action Set 657
Transforming Fonts 658
HINTING 661
Font Scaling, PPM 662
Coordinate Rounding, Gridfitting 664
TrueType and Type 1 Hints 665
Type 1 Hints 666
Font-Level Type 1 Hints 667
Alignment Zones 668
Standard Stem Widths 674

11

12

Additional Control Data
Flex Hints

Stem Hint Programming

Type 1 Hinting Tool

Inserting and Removing Replacement Points

Adding and removing hints
Editing Hints
Autoreplacing

Preview Pixels

Preview Panel

Some Examples
TrueType Instructions

Font Parameters
Visual TrueType Hints

TrueType Hinting Tool
Toolbar
Layers

Options Panel
TrueType Preview Panel
Program Panel

Alignment Instructions
Alignment Zones
Editing TrueType Alignment Zones
AlignTop and AlignBottom Instructions
Hinting Alignment Zones
Align Instruction

Links
Standard Stems
Single Links
Double Links

Interpolation

Delta Instructions
Middle Delta Instructions
Final Delta Instructions

Removing Instructions
Standard Stems
General Options
Context Menu

Hinting Sidebearings

677
679

680

683
686
687
688
689
689
690

695
696

698
699

700
702
704

705
706
708

711
711
712
714
715
716

719
720
721
726

730

732
733
738

739
740
745
746
752

Hinting Composite Glyphs
Automatic TrueType Hinting

Working With Bitmaps
Importing Bitmaps
Editing Bitmaps
Highlight Differences
Exporting Bitmaps

Hinting Strategies
Middle Delta or Final Delta
Single Link or Double Link
Hinting White Space
Hinting Serifs
Hinting Diagonals
Hinting Symmetrical Characters
Interpolate or Not

Hinting Multiple Master Fonts
Hinting for ClearType

MULTIPLE MASTER FONTS

Multiple Master Fonts Theory
Design Axes and Dynamic Range
Standard Axes
Design Coordinates and Weight Vectors
Extrapolation
Anisotropic Interpolation
The Axis Graph

Multiple Master Fonts in Studio
Creation of MM Fonts in FontLab Studio
Defining an Axis
Selecting a Master
Using an Axis Panel
Previewing the Intermediate Design
Designing Masters
Match Masters Operation
Rearranging Masters
Multiple Master Metrics
Editing Axis Settings
Removing an Axis
Multiple Master and Font Info
Editing the Axis Graph
Generating a Single-Master Font
Expanding the Master
Hinting Multiple Master Fonts
Generating a Multiple Master Type 1 Font

753
754

755
756
757
759
760

761
761
763
765
767
768
769
770

772
773

775

776
779
781
784
786
787
788

789
790
791
793
795
799
800
808
809
811
812
813
814
817
820
822
823
824

13

14

OPENTYPE FONTS

Font Features
Features and Lookups

Scripts and Languages

OpenType Font Formats
What Format to Prefer
OpenType Tables

Feature Definition Language
Language Syntax

OpenType and FontLab Studio
Importing OpenType Fonts

OpenType Panels
OpenType Panel
Adding and Removing Features
Reordering Features
Entering the Glyph and Class Names
Renaming Glyphs and Classes
Compiling the Feature Definitions
The Output Panel
OpenType Features Sample Panel
Converting the Kerning
Feature Development Process

Substitution Lookups
Single Substitution
Ligature Substitution
Alternate Substitution
Context Dependent Substitutions

Positioning Lookups
Glyph Geometry
Value Record
Single Positioning
Pair Positioning

Known Features

OpenType Glyph Properties
Caret Positioning

Generating OpenType Fonts
FontLab Studio and VOLT

MACRO PROGRAMMING
The Python Programming Language
Installing Python

825

826
829

830

831

832
832

833
834

845
847

851
851
854
854
855
856
857
859
860
862
863

864
865
867
869
870

874
875
876
877
878

881

885
886

887
890

893
894
895

Macro Toolbar
Assign to Keyboard

Integrating into Menus
Macro Tool

Edit Macro Panel
Naming the Programs
First Steps

FontLab Studio Python Classes
FontLab
Font
Glyph
Modules

INDEX

896
897

898
900

901

903
904

906
906
908
910
912

913

15

Introduction

The year 2005 marked an unusual anniversary: 30 years of digital font
technology. In 1975, at the ATypl conference in Warsaw, Peter Karow from
the Hamburg-based company URW introduced Ikarus, the world’s first
digital type design system that worked with outline fonts. Ten years later,
Adobe created PostScript and the Type 1 font format, which both became
standards in publishing. In the early 1990s, Apple introduced the TrueType
font format and the Unicode Consortium published the Unicode Standard.
Both initiatives laid the foundations for multilingual text processing and
were subsequently implemented in Microsoft Windows and Mac OS. The
turn of the millennium brought about OpenType, a significant initiative
that unified PostScript, TrueType and Unicode, and added a sophisticated
system of advanced typographic features.

The development of the digital font technology makes it easier for end-
users to do text processing, typesetting and layout without sacrificing the
typographic quality and logical correctness of the text. But nothing gets lost
in Nature: using fonts is getting easier but developing them is more
complex. Apart from just drawing letters, a type designer needs to know
about encoding, hinting, layout features and various parameters that need
to be set inside of a font.

FontLab Studio 5 is the next-generation a digital font editor from
Fontlab Ltd. that allows the designer to create professional-level fonts from
start to end.

18

FontLab Studio 5 is a versatile font editor for all sorts of users. The
majority of the large font foundries and many smaller font houses use
FontLab for designing new typefaces, creating the final font products, or
both. Linguists, historians, publishers, librarians, scholars, educators,
software companies, graphic designers and even Greek Orthodox
monasteries use FontLab to create new typefaces and to extend, convert,
re-encode and otherwise modify existing fonts. If FontLab Studio is “too
much” for you, Fontlab Ltd. has simpler and more affordable products
such as the basic font editor TypeTool, the beloved classic DTP font editor
Fontographer or the universal font converter TransType.

Major new features of FontLab Studio 5

Better glyph design: true tangent points, in-context glyph design with
Neighbors and Shape groups, color-customized and streamlined glyph
window

Revolutionary new metrics and kerning editing: multiline preview,
better class kerning, smart autogeneration of classes

Better bitmap and pixel font support: import BDF files and make pixel
fonts, built-in autotracing

Unicode 4.1 support: SMP codepoints, auto-generate over 2,500
accented characters from built-in definitions, new Unicode glyph
template images (from Monotype Imaging)

Improved OpenType support with better VOLT integration, roundtrip
editing of complex-script fonts, font merging, glyph suffix renaming

Better font proofing with five new printing modes and the Quick Test
feature that tests fonts with system rendering

Open and save enhancements: open installed fonts, preview fonts
before opening, generate multiple fonts in one step, open Ikarus® files

Redesigned preferences; save, open and exchange preference profiles
and UI workspaces

Better autohinting with Flex Type 1 hints
Improved Python scripting, Python 2.4 support

Completely customizable menus and toolbars

19

Other key features of FontLab Studio

¢ Outline editor with more than 20 tools and 200-level undo/redo

¢ Open, edit and generate OpenType PS, TrueType / OpenType TT and
PostScript Type 1 formats with up to 6,400 characters

e Open, edit and generate Multiple Master fonts
¢ Import and export of individual glyphs in EPS format

¢ Class-based Multiple Master-compatible metric and kerning editing
with autospacing and autokerning

e OpenType feature editing and testing

¢ Import, edit and generate OpenType Layout features

e Import and export font metrics in PFM and AFM format

¢ Professional-level manual and automatic Type 1 and TrueType hinting
e Automatic transformation of glyphs with more than 25 filters

e Library of predefined Smart Shapes

e Automatic testing of glyph outlines with our unique FontAudit
technology

e Integrated Python scripting language

¢ Unique Sketch mode with easy drawing tools

e VectorPaint tools

e Support of 4 encoding modes and an unlimited number of encodings
¢ Easy-to-use completely customisable drag/drop-based user interface
e Popup menus and property panels everywhere

e Sample printing of fonts, sample strings and individual glyphs

e Automatic Multiple Master-compatible font blending

e Smooth outline preview

About this Manual

This manual covers the Macintosh version of FontLab Studio 5.0.

The following chapters describe all of Studio's features in full detail. They
are organized to cover all the functions in their usual sequence.

FontLab Studio User Interface

This chapter covers the basic definitions of the FontLab Studio user
interface and its customization and gives a short description of all the
Studio editing windows and panels. All FontLab Studio options are
discussed here as well.

Editing Fonts

This chapter explains how to modify fonts, copy characters, change
encoding tables, select characters for editing, and edit font info fields.

The Font Header

This chapter provides a detailed description of the Font Header data and
the FontLab Studio tools intended to manage it.

Printing And Proofing Fonts

This chapter provides a detailed description of how to print from the Font,
Glyph and Metrics windows. Other font proofing methods are also
described in this chapter.

Generating Fonts

This chapter explains how to export fonts in different formats, what export
options must be set.

The Glyph Window

FontLab Studio includes powerful outline-editing tools that are described
in this chapter.

21

22

Editing Metrics

If you want to create a professional-looking font you have to edit the font’s
metric data. The glyphs’ widths, sidebearings, and kerning can be edited in
FontLab Studio automatically or manually. This chapter shows you how.

Actions

From scale to drop shadow, from autohinting to autospacing — more than
25 transformation filters can help you instantly expand your font
collection. This chapter gives detailed descriptions of all the actions and
their usage in FontLab Studio.

Hinting

To make your Type 1 or TrueType fonts look great everywhere you have to
set hints. FontLab Studio includes hinting tools that were previously

available only in high-end proprietary font editing systems. Hinting can be
a complicated process, so read this chapter carefully to get the best results.

Multiple Master Fonts

Opening, editing and exporting Multiple Master fonts; adding and
removing design axes; editing the Design Map Graph — everything you ever
wanted to know about multiple master fonts is in this chapter.

OpenType Fonts

This chapter covers FontLab Studio tools, panels and features that deal
with creation and editing of OpenType font features: ligatures, small caps,
fractions, alternative glyphs, etc.

Macro Programming

This chapter includes a short description and demonstration of the Python
programming language and its integration into the FontLab Studio user
interface. Python can be used to create custom tools and operations within
FontLab Studio. A brief description of the FontLab Studio classes exported
to Python is provided.

System Requirements

The Macintosh version of FontLab Studio requires one of the following
hardware and software configurations:

A Power PC based computer with Mac OS X v 10.2 or later installed.

At least 15Mb of free space on the hard disk drive and at least 64 MB RAM.
FontLab Studio will start on 64 MB RAM but you will need more RAM to
open bigger fonts.

23

FontLab Studio
User Interface

Before we start talking about fonts and the FontLab Studio font-editing
features let’s spend some time learning the FontLab Studio user interface.
For the most part it is a standard Macintosh interface so if you know how
to navigate in Mac OS you will feel comfortable with FontLab Studio. In
other parts it is unique and that is where we will focus.

Most of the interface elements in FontLab Studio 5 are completely
customizable and from this chapter you will learn how to change the
FontLab Studio interface so it will best fit your needs.

Please note that further in the book we will refer to menu commands,
toolbar buttons and keyboard shortcuts as they appear in the default
FontLab Studio environment under Mac OS X v 10.3, prior to any
modifications you may make. All screenshots for the book illustration were
also made under Mac OS X v 10.3.

26

Basic Terms

We cannot go any further without defining a few terms that are critical to
understanding FontLab Studio and fonts in general.

Character

The minimal unit of the written language — a part of the alphabet, a
symbol.

Any picture that can be recognized as having the same meaning represents
the same character:

AA G AR
All the pictures above mean the character ‘A’

Please note that sometimes pictures that look the same represent different
characters:

A Latin ‘A’
A Cyrillic ‘A’
A Greek ‘Alpha’

Characters have codes that are used to store text data on a computer.

Glyph

The basic element of the font, literally — an image that is printed. All glyphs
are unique, even if they represent the same character.

Glyphs are used to represent characters. Please note that many different
glyphs may be used to represent the same character, even in the same font:

ttt™

Font

An organized collection of glyphs and font header information. Usually
glyphs that are united in a font have some similarities in design and other
properties.

In the past, a “font” was defined as a single size of the characters of a
particular typeface. Now, since fonts are scalable, the term “font” covers all
possible sizes of the same typeface design.

Encoding

When text is printed an important process takes place: character to glyph
mapping. The source text (in computer form) is a list of codes that
represents a list of characters. A font (see above) is a collection of glyphs.
So there must be some way to relate characters to glyphs so that when the
computer’s operating system encounters a certain character it knows which
glyph to print. This “mapping” (or “vector”) is called the encoding.
Sometimes the encoding information resides within the font itself as part
of the header and other times it is in a separate file.

Font Family

It is important to know the difference between a font and a font family. A
font family is a set of fonts that represents some design idea. “Times” is a
font family (sometimes called typeface). “Times Bold Italic” is a font.

A font family may include from one to a few dozen fonts.

27

28

Glyph name

The only identification of a glyph (other than its visual appearance) is its
name. A Western glyph name consists of Latin characters, digits and
punctuation. It is highly recommended you name glyphs in accordance
with the following rules:

1. No spaces.
2. No digits at the beginning.

3. Only‘’ And ‘_’ punctuation marks are allowed in the name.

Menu

When we refer to menu items in the main FontLab Studio menu, we will
use the following notation:

[top menu item] > [sub-item]
For example:

Edit > Copy means: click the word Edit on the menu bar and select the
Copy command from the menu:

En

Undo #Z
Redo wY
Cut HEX
Copy [. #C
Paste EV
Insert 1t 38V
Delete

Duplicate #D
Select All HA
Deselect #U
Invert Selection |

Find... 3EF
Find Qutline... F3
Properties e

Folders and Paths

Recent applications from Fontlab Ltd. use a new folder structure for
storing their data files such as encoding or codepage definitions, glyph
generation recipes, text samples for metrics and kerning, mapping tables,
Python macros etc. FontLab Studio 5 looks for data files in four different
folders.

Shared default data folder
typically, Macintosh HD/Library/Application Support/FontLab

This folder holds files that are commonly used by all recent Fontlab Ltd.
applications: FontLab Studio 5, TransType SE/Pro, FogLamp, SigMaker 2,
with more to come. In each respective subfolder, codepage definitions,
encoding definitions, glyph-to-Unicode mapping files and some special
data files are stored. Only Fontlab Ltd. applications and applications from
registered Fontlab Ltd. developer partners should place their files there.
This is to rule out conflicts between the user’s customized files and default
files.

Shared user data folder

typically
Macintosh HD/Users/Your Username/Library/Application Support/FontLab

This folder has exactly the same structure as the folder discussed above
and can store any files customized by the user. Any file placed in the
respective location within that folder will override the corresponding file
placed in the shared Fontlab Ltd. Please put your customized files in this
folder.

The location of the folder can be modified in Preferences> General Options
> Folders and paths:

'21 Override default search paths

Files used by all FontLab products:

SUsersjifontlab/Documents fFontlab

L

Switch the Override default search paths option on and choose your
custom folder. To return to the factory settings just switch this option off.

29

30

Application default data folder
typically Macintosh HD/Library/Application Support/FontLab/Studio 5

This folder holds files that are only used by FontLab Studio 5. In each
respective subfolder, metrics, kerning and other text strings, additional
encodings, Python macros and modules are stored. Only FontLab Studio 5
application should place its files there. This is to rule out conflicts between
the user’s customized files and default files.

Application user data folder

typically
Macintosh HD/Users/Your Username/Library/Application Support/FontLab/
Studio 5

This folder has exactly the same structure as the folder discussed above
and can store any files customized by the user. Any file placed in the
respective location within that folder will override the corresponding file
placed in the shared folders. Please put your customized files in this folder.

This folder also contains fonts saved with the FontLab autosave feature.

The location of the folder can be modified in Preferences > General
Options > Folders and paths:

FontLab Studio 5 files:

SUzerzffontlab/Documents fFontlabf5tudiao 5

L

Restart program to apply changes to location of the FontLab files

Switch the Override default search paths option on and choose your
custom folder. To return to the factory settings just switch this option off.

Please refer to the "Macro Programming" chapter for information about
placing macros and modules in the appropriate folders.

When we refer to one of the folders, we will use the following syntax:
[main folder]/[subfolder name]

Where [main folder] can be one of the following: [Shared default data folder],
[Shared user data folder], [Application default data folder], [Application user
data folder], and [subfolder name] is the name of the particular subfolder
within that folder.

For reasons of brevity, we will sometimes write:

[Shared] which will mean either [Shared default data folder] or [Shared user
data folder]

[Application] which will mean either [Application default data folder] or
[Application user data folder]

This means that a particular file can be stored in either of the two locations
(default or user). Remember that files in user locations always override
files in default locations by their internal names but not file names.

Mouse

Click the mouse on some Position the mouse cursor on the object and click the
object mouse button

Ctrl-click some object Position the cursor on the object, hold down the CTRL

key on the keyboard and click the mouse button. If you
have a mouse with two buttons, you may use the right
mouse button instead of pressing the CTRL key.

Right-click some object Position the cursor on the object and click the right
mouse button. If you have a mouse with one button,
press the CTRL key before clicking.

Drag some object Position the cursor on the object, press the mouse
button and move the mouse to move the object.
Release the mouse button when you'’re done.

Context Menu
Most windows and panels in FontLab Studio have attached context menus.

To open the context menu, CtrL-click (or right-click) an empty area or
some object in the window or panel.

31

32

Getting Started

When you run FontLab Studio 5 for the first time (to run FontLab Studio

double-click on its icon ﬂ) you will see a welcome screen for a few
seconds and then the FontLab Studio window:

E @ FontLab Studio File Edit View Contour Glyph Tools Window 4) Tue 7:51PM
jcema sudovoaa| 7z =Ezasass/==
|| A Cuvetool v G Toplevel v TestngMacra v b M| B o @

Fontlab Studin 5
Python is installed

=

| FontLab on the Web |

Like almost all Macintosh programs FontLab Studio has a menu, a few
toolbars and a status bar at the bottom.

The usual location of toolbars is at the top of the screen, but if you want to
put them somewhere else, just drag them there:

a Standard

DEEHT & 2B o o~ | L&

The status bar can be placed only at the bottom (default) or at the top of
the screen. Some tool specific toolbars are floating only and cannot be
docked to the sides of the screen.

You can easily choose which toolbars you want to see: use the Toolbars

command in the View menu or Ctrr-click on a toolbar docking panel and

you’ll get exactly the same menu:

Window

. Status Bar =
+ Standard
v Panels

v Tools
Paint
Contour

Show Layers
Lock Layers
Hints & Guides
Background
Mask

Multiple Master
Mark

Metrics Tools
Metrics Commands

Alto hide
Customize...

33

34

Following is a list of common toolbars with a few comments about each:

Status Bar Status bar at the bottom of the window

Standard Contains basic commands like file open and save, copy/paste,
undo/redo and print

Panels Controls the appearance of FontLab Studio panels — shared

windows used to control most professional FontLab Studio
features

Show Layers

Controls the appearance of basic Editing layers. It is analogous to
the View>Show Layers menu

Tools Probably the most important toolbar — gives access to editing
tools that you will use to work in the Glyph window
Macro The Macro toolbar gives quick access to pre-written macro

programs that can automate various font-editing tasks. It is
unavailable if the Python system is absent.

Lock Layers

Allows one to lock/unlock the Editing layers. It is analogous to
the View>Lock Layers menu

Contour

Contains commands from the Contour menu

Hints & Guides

Contains commands from the Tools>Hints & Guides menu

Background

Contains commands from the Tools>Background menu

Mask

Contains commands from the Tools>Mask menu

Multiple Master

Contains commands from the Tools>Multiple Master menu

Mark

Contains commands from the Mark submenu of the Font
window’s context menu.

You may notice a few italic terms. We will describe them later. Specifically,
panels and Glyph window will be described in a few pages; Editing layers
in the “Glyph Window” chapter; and macro programs in “Macro
Programming” chapter.

OK, we are almost ready to open a sample font, but before we do let’s talk
about customization of the FontLab Studio user interface.

Customizing FontLab Studio’s
User Interface

As you may infer from the title of this section most of the FontLab Studio
user interface (which means menus, toolbars and keyboard shortcuts) is
customizable. We believe our default interface is the easiest to use, but if
for some reason you don’t like it, you are free to make any changes you
want. If you don’t want to change anything in the FontLab Studio user
interface, you can fast forward to the next section.

The general idea of customization is simple: there is a long list of
commands that you can use and three kinds of controls: menus, toolbars
and keyboard shortcuts. Through customization you can assign any
command to a menu item, button on a toolbar or combination of keys
pressed on a keyboard. In addition you can organize commands in popup
menus or toolbars.

Most of the customization commands are concentrated in the Customize
dialog that you can open with the Customize command from the Tools
menu or the same command located in the context menu which appears if
you CtrL-click on a toolbar dock area:

Customizds.

The Customize dialog box consists of several lists:

Commands List of all the available commands grouped into several categories

Menus Customization of menus

Toolbars Customization of toolbars. There is an option to create new toolbars.

While the Customize dialog box is open all toolbars are in “editable” mode,
so you can simply drag-drop buttons between different toolbars.

35

36

Customizing Toolbars

To see the list of toolbars, switch the Customize dialog to the Toolbars
mode:

Customize

Searchs?

To move a button within a toolbar just press the mouse button on it;
drag it to the new location and drop it. If you drag the button slightly
further to the right, a separator bar will be added between it and the
previous button:

() Standard

NS EO|4

K g

To move a button to another toolbar, just drag-drop it there.

To remove a button from a toolbar, drag it out of the toolbar:

a8 Standard

NS @O [F]
k-

) ou

To create a new custom toolbar, click on the * button below the list
of toolbars. The toolbar named “New Toolbar” will appear in the list.

To delete the toolbar which you do not need anymore, select it in the
list and click on the @ button.

To add buttons to existing toolbars, use the list of all FontLab Studio

commands:

Category: = Window

‘4] Search:

I Command

| Keystroke

% Cascade

Close All
T New Clyph Window
T New Metrics Window
FH| Panels Axis
T Panels Classes
= Panels Edit Macro
(=] Panels Editing Layers
| Panels Font Map
TiE] Panels Fonts
=] Panels Masters
1] Panels OpenType
Panels Output
2| Panels Preview
Panels Smart Shapes

" Panels Transformation

Closes all fonts

=

In the Category popup menu select a group of commands and use the list
of commands as a source of toolbar buttons: just drag the commands from

the list onto toolbars.

37

Customizing Menus

To see the list of menus, switch the Customize dialog to the Menus
mode:

Customize

| + Toolbars ! E

T —
Search:

If you want to create a new menu, just click on the * button below the
list of menus. A new menu appears and you can start adding commands to
it by drag-dropping them from the list at the left.

You may drag-drop commands and whole submenus from one menu to
another, rename menus or commands, delete menus or commands.

To add separator, use the ¥— button.

With the Customize dialog not only can you customize the main menu, but
also most of the context menus which appear when you Ctri-click (or
right-click) FontLab Studio windows. Choose a context menu in the Select
menu popup:

|Select menu: ¥ Main Menup., =2
f I+ Application Men Glyph Window

[+ File Font Window

[+ Edit Preview Window

[Wiew Preview Text

[» Contaur Metrics Editor

A menu appears on screen and you can customize it by dragging
commands from the list at the left.

Note: Some FontLab Studio’s commands appearing in context
popup menus will not work when placed in the main menu.

38

Customization of the Keyboard

While in the Customize dialog box you can select the command, which
you want to customize. Choose the commands category in the Category
popup menu and the command itself in the list below.

Click on the &l button below the list or just double-click the command and
the Edit Keystrokes dialog will appear:

Edit keystrokes

Command: About Fontlab Studio
Tells about Fontlab Studio

Assigned keystrokes:

MNew keystroke:

| Cancel (oK 3

In the Assigned keystrokes list you will see the list of keyboard
shortcuts currently defined for that command.

The * button at the right of the list allows removal of one of the existing
shortcuts.

To define a new keyboard shortcut, position the cursor on the editing
field below the New Keystroke: label:

MNew keystroke:

39

When the caret is in position just press the combination of keys that you
want to assign. A description of that combination will appear in the editing
field and you can click the Assign ¥ button to assign that combination
to the currently selected command.

Click OK to close the dialog and save changes to keyboard shortcuts.

Note: Some FontLab Studio’s commands appearing in context
popup menus cannot be evoked by keyboard.

To print a list of all FontLab Studio commands with their shortcuts,
press the Print button.

Press the Reset All button in the Customize dialog to reset all changes
back to FontLab Studio defaults.

Now you know everything about the customization of menus, toolbars and
the keyboard, so you can click the Close button at the bottom of the
Customize dialog box to exit the customization mode.

< Important note: in the following manual we will describe all commands,
buttons and keyboard shortcuts as they come with FontLab Studio,
without any customizations. If you changed the interface but want to
follow the manual, reset all changes with the Reset All button in the
Customize dialog box.

Faster Method to Customize Toolbars

You can customize toolbars without opening the Customize
dialog box by pressing and holding the Commanb key on the keyboard
and dragging buttons between toolbars.

Links to External Programs

Some applications available from Fontlab Ltd. have a common
communication interface that allows them to easily exchange font related
data. We call programs that can accept data from other programs FontLab
Server Applications. Similarly, programs that can send data to FontLab
servers will be referred to as FontLab Client Applications or plugins. And
programs that combine server and client capabilities are called FontLab
Client/Server Applications.

FontLab Studio itself can work as server and sometimes as client as well.
For example, it can accept bitmap and outline data from BitFonter (our
bitmap font editor) or send outlines to BitFonter for rasterization.

To make FontLab Studio communicate with plugins installed locally and to
have instant access to them from the FontLab Studio menu, you have show
FontLab Studio where they are.

Use the Tools>External Tools>Tools command to find other applications
that can work together with a FontLab Studio server. The Plugins
Settings dialog box appears:

Plugins Settings

Installed Plugins:

[Cancel) (oK)

41

42

There is a list of the installed plugins in the dialog and it is empty by
default. Click this button: 2 to add a link to the program that you
know to be a plugin. Select the plugin application in the standard Open
File dialog box and press Open. The application name will appear in the
list.

An easier way is to let FontLab Studio find the plugins itself. Press the %
button at the right of the list and FontLab Studio will automatically search
for plugins on the available disks.

The | T | button at the right of the list allows removal of the link to the
plugin selected in the list.

Press the Reset All *_ button to clear the list of plugins.

After you press the OK button the plugins added to the list will appear in
the Tools>External Tools menu to let you quickly launch them when
needed.

FontLab Studio Windows

There are only three types of Windows in FontLab Studio:

Font Window Represents one of the opened fonts

Glyph Window Used to edit glyphs

Metrics Window Used to edit glyph metrics and kerning.

In this chapter we will provide only very basic information about the main
windows. Please refer to the “Editing Fonts”, “Glyph Window” and “Editing
Metrics” chapters to get detailed information about the windows and their
features.

43

44

Font Window

As an exercise let's create a font in order to demonstrate the FontLab
Studio Windows. Use the New command in the File menu or click this

button L1 on the Standard toolbar:

a Standard

D& EHE & 28 o o &

You will see the Font window:

Font - Untitled
[4] = Default Encoding m w04 TS
— | - —— [— [-— [breve Wotacced — [ring | —— hungaruogonek | caron Motlessil —— | — [— [— |oO
= . o - -
c 1 []
!
=== === === === == il -—- [fraction| fi Tl Lslash | |slash | Zcaron [zcaron | space |esclam guotedbipumbers
7 i 1]
ST | el A 5 ! #
dollar |percent ampersaquotesinparenlefparent icasteris| lus _|comma |hyphen | period | slash | zero one two | three | four five
1
$ & CIy|[*|+].|-|.|s|0ol1]|2]|3|4]|5
six | =seven | eight | nine | colon semicold less | equal |greaterguestion at =] c D E ES G
| | s I e s e i) B|C|D|E|[F |G
4
H | J K L] N 1] E: Q R g i u L “ i v
HIT L1 K [1 MINIOIPINIR | < | TLH I W LY 1Y 4

As you can see, this window has a caption with a few buttons and options
and a big table of cells that represent characters and glyphs. Each cell has a
caption that contains glyph identification information: name, Unicode
index or some other data:

ak

@

Cells can also contain little icons that show properties of glyphs, but more
about that later.

There are no glyphs in the font that we just created, but the Font window
nevertheless shows some pictures in the glyph cells. These are template
images that show which character should be placed in the cell. FontLab
Studio has templates for thousands of characters, so you will usually know
where to place new characters.

We'll discuss navigation in the Font window later, in the “Editing Fonts”
chapter, so let’s talk about the Font window command bar, which is located
either at the bottom or at the top of the window:

Size W || o ||| Name w* || Mames mode || Default Encoding v

= 5 Name [%] = Default Encoding | f_ﬂ E W B o

You can switch between the top and the bottom location of the command
bar by clicking on this button [B in the top-right corner of the Font
Window.

On the command bar you can easily find a button = on the left, which is a
duplicate of the File > Font Info command, which is described later in this
manual.

Right of the button there is a popup menu, which allows you to change the
information that appears in the character cell’s captions:

E==14 i
Z&: Name -,! TR e

Next is a popup menu that allows you to change the encoding table of the
current font:

= | fa
£ Imported @ rE——— -

We will talk about encodings later, but you could choose a couple different
ones from the popup menu and see how the Font window changes.

At the right of the encoding list there are four buttons that allow a choice of
encoding modes. Again, a detailed description of this follows. Just a few
words here: any glyph in the font may be identified by a name, Unicode
index or just its order in the glyph table.

Four buttons in the command bar in the top position allow you to choose
one of four modes: Names, Unicode Ranges, Codepages or Index.

'unnfl W B [ER

45

46

In the bottom position, there is a popup menu that you can use to choose
the mode:

Unicode rarges

Codepages
Index

The last button in the top position controls the saving of custom encoding
file and can be also reached via Glyph > Glyph Names > Save Encoding.

That’s all about the Font window for now so let’s open the Glyph window.

Glyph Window

To open a Glyph window for editing individual glyphs you need to
create one. Remember, we started with a new font that doesn’t have any
glyphs. To create a glyph, double-click on any cell in the Font window.
You will see that the gray cell (which means there is no glyph defined) is
replaced by a white one, which represents a glyph that is defined, but
contains no image. When you draw or paste something into it, the white
cell will show a small picture of the glyph.

After the glyph cell is created we are ready to open the Glyph window.
Select the glyph cell (just click on it with the mouse button) and double-
click it to open the Glyph window. It will immediately appear on screen:
[866 Glyph - A from unnamed font

o 10 T8 & &

_____ G BT i 00 s00 FELT
it b o i b B0

[O}=

= 3

ﬂ .

Hla)(x[100%~ () alr

| 4

Instead of double-clicking, you can also use several other methods to
open the Glyph window:

1. Crre-click the glyph cell and select the Open Glyph Window command
in the context menu.

2. Select the glyph and choose New Glyph Window in the Window menu.
3. Select the glyph and press 2] on the Panels toolbar

4, And finally, select the glyph cell and just press the RETURN (or ENTER)
key on the keyboard.

47

48

If you have more than one glyph in your font (which is normal when you
open an existing font) and have a glyph window already open when you
double-click another glyph in the Font window (or use the RETURN key) a
new glyph will appear in the original glyph window. If you need to open
many glyph windows simultaneously use menus or just hold down the Cmp
key when you double-click the new glyph cell.

You may have as many open glyph windows as you want, just close those
you don’t need so as not have all your workspace covered with glyph
windows. You may use the CMp-W shortcut to close windows. If the
current window is the Font window closing it will close the font.

Glyph Window Contents

All windows in FontLab Studio have a similar layout: control panel on the
top and main area covering most of the window. The glyph window is no
exception: the top-docked control area (which can be docked to the bottom
location also) contains zoom selection tools — a popup menu and a few
toolbar buttons:

o0 &) a 2
These tools are used only to select the zoom mode of the Glyph window
and to choose the Zoom in and Zoom out commands.

To get more screen space for the editing field you may hide the zoom
toolbar if you click on this button in the top-right area of the glyph
window:

The main area of the window has scroll bars to change the view of the
glyph, and vertical and horizontal ruler bars.

You can switch the ruler bars on and off with the Rulers option in the View
menu. A quicker way is to Ctrr-click the ruler and choose the option in the
context menu:

Zoom Bar !

Remove Hints 3
Remove Guidelines ke

Add New Horizontal Link
Add Mew Vertical Link

At the very bottom-right corner of the Glyph window you will find a little
expand button that, when clicked on, opens the Glyphs bar:

=

@ BIC D E|FIGH

This is nothing more than a slice of the Font window, making it easier to
access cells in the font window while the glyph window is maximized for
precise editing work.

At the bottom-left corner of the glyph window you will find two more
buttons, Lock and Meter:

The Lock button controls quick access to the font glyph — when it is in the

“unlocked” state (8] you can use the keyboard to directly access the glyphs.
I.e. when you press a key the corresponding glyph will automatically open
in the glyph window.

49

50

The Meter button (1] controls the appearance of the Meter panel, which
usually sits at the right end of the glyph window toolbar and shows the
current coordinates and other parameters of the cursor:

233 23 - 42
g a2z M a2z % & o 0

To the right of the meter button you will find a zoom selection menu:
100%™

If you click on it you will get the zoom menu that has same options that you
may find in the zoom toolbar. This menu is useful if zoom toolbar is not
visible.

We will return to a more detailed description of the glyph window
properties in the “Glyph Window” chapter.

Finally, let’s quickly preview the last window in FontLab Studio: the
Metrics window.

Metrics Window

The Metrics window is used to adjust glyph metrics — glyph sidebearings
and kerning.

To open the Metrics window select some glyphs in the Font window
and click on the New Metrics Window command in the Window menu.

You will see a new window:

866 Metrics - Arial

Ki

—
a

Fontsw | Kemning | Siza: 72 w ah ! Options | Tools W PGRST | e

+

Glyphs that are currently selected in the Font window or the glyph that is
in the active Glyph window will appear in the Metrics window.

The Metrics window has a main editing field, a command area and two
local toolbars.

To choose a string of characters to preview or modify use the string
selection control:

HARMEURGEVOME Y

To the right of the button there is an options (- button. Click it to get
access to the list of strings where you can customize it.

One powerful option in this dialog box is support for a second preview
string. The second string appears below the main preview string and can be
used to compare different characters. The second string is not directly
editable in the Metrics window.

51

52

Metrics Window Toolbars

The Metrics window contains two local toolbars and a command area.

A Metrics window toolbar with controls for importing and exporting
metrics files, automating metrics or kerning generation and other
commands:

PR RN R AN S-SR]

By default the toolbar is docked to the top of the window, but you can drag
it to the bottom or leave it floating around.

A Metrics Tools toolbar with four buttons that allow you to select one of the
metrics tools:

By default this toolbar is vertically aligned and docked to the left
side of the window. You can drag it anywhere or dock to any side.

| 3

A local command area that is used to select a mode for the Metrics window
and a string for metrics or kerning editing:

Fonts ¥ || Keming W || Size: 72 % || .| | Options % | Tools | PGRST L) E

The local command area of the Metrics window may be located in the
bottom (default) or top area of the window. When the local command area
is in the top location, it includes controls to modify metrics or kerning;:

72 |[§) |PCRST RS

s 52 L HM =13 ||, e |697 |,

The content of this properties area depends on the current mode of the
Metrics window.

Metrics Modes
The metrics window works in four modes: text, preview, metrics and
kerning.

In Text mode you can enter and edit text in the main editing area of the
Metrics window. It works very similar to any standard text editor:

g 772 @) [PcRsT B8
i
i 607 813 697 543 7z

RYG RO

Preview mode is used to preview text with kerning applied and check it
at different sizes. Also the position and width of the underline and middle-
stroke line can be adjusted in this mode:

r w72 (@) PoRsT 8
& B =5 0=t |6 [e]

i f07 L a7 543 0z

Av

_PGRST

53

In Metrics mode you can change the glyph sidebearings using either
visual or digital controls:

72 @) [PoRsT '

wei[48 (2] w0 (36 |[2] w818 |

<

M| 607 813 697 548 702
*| e
@ o
= -+

In Metrics mode the string of glyphs is previewed without kerning.

In Kerning mode you can edit pair kerning:

1 T[72 @) PGrsT

-—_.
[

™ pairs #: 816 - Kerning: -390 :
i}

Ay

- PGRsl

Metrics Panel

The Metrics Panel is a horizontally oriented table that may appear above or
below the editing area:

HE| H A 1 e Tl - G E v

| ez 73 as1 £E0 46 £97 £1e £30 06
| 3 1 g | g 52 I 48 28
| 0 n £4 7 13 % 23 -1
ke I I I I I I I | s |

You may control the appearance of the Metrics Panel using the Panel
command in the Options local menu (when the local command area is at
the bottom) or with the Panel button on the Metrics window toolbar: =,

Click on this button in the top-right area of the panel to move it
top or bottom:

eight @

soo
33

When the Metrics Panel is visible, the properties area of the command area
(if it is at the top) disappears.

55

56

Panels

Some FontLab Studio operations are accessible through Panels — small
windows that are located in front of the main Font, Glyph and Metrics

windows:
O Editing tayers [© Classes
(T oo 1 s
Frw m@ B hr Oy XA
g &8 class111 ‘Mame _E_Unicod _E_Wthh __i_<--_ "
= B B Al layers cpspl | " |onesuperior 00B3 335 42
1 outline fnom _t|oneoldstyle F731 324 35
™ ™ [Guidelines fdnﬁ;nz i |oneinferior 2081 335 42
T =t rac
™ Hints a3 _1|uniFenc FEDC 380 31
™ ™ mask jo Lt |uniFeaa FE44 500 121
M Grid fracd L+ |uniF656 FES6 335 42
™ | ™ vertical metrics fracs ' |unire6z Fe62 335 42
B 1] Global mask fracé
g (o = Glyph metrics frac? fracl: onesuperior oneoldstyle aneinferior
1 frack UniFEDC uniFG44 UniFESE uniFEEE
Components
e Inum1l
@ Anchors and carets
==t Inum2 i
i @Alignment Zones numrl =
Shape groups -
: MNeighbors DpeTyRe L.]
=i Background + - o 7 glyphs in this class Accept
Use the Window>Panels menu or the Panels toolbar to open panels:

Editing Layers
v Transformation

Edit Macro

OpenType

Qutput

Preview

Classes

Fonts

Font Map

Smart Shapes

Below is the list of all the panels available in FontLab Studio. They are
described in full detail in the sections that are related to their functions, so
this is only a short reference:

Editing Layers

o«

Control of all editing layers, “show”, “snap”, “lock”
operations

Transformation Panel for digital outline transformations

Edit Macro Editor for Python macro programs

OpenType Editor for OpenType features

Output Text output panel. Other panels and macro programs may
output text here.

Preview Preview, OpenType Sample and Anchor preview panels.

Classes Classes — named lists of characters

Fonts List of all opened fonts grouped by family name

Font Map A picture representation of big Unicode fonts

Smart Shapes

Collection of outline smart shapes

Axis Selector of intermediate (or extrapolated) design in a
Multiple Master font
Masters Selector of master in a Multiple Master font

All panels are described in full detail in the following chapters when we
discuss the features that they serve.

All the panels can stick to either side of the screen and to each other, so you
can easily arrange them to create the most comfortable environment.. To
make a panel stick just drag it close to the screen or another panel’s

edge.

To prevent the panel from sticking, hold down the Cmp key while
dragging the panel’s caption or switch off the option in Preferences >

General Options:

@ Panels can stick to each other

Every time you exit FontLab Studio the positions of all toolbars and panels
are stored in the CurrentWorkspace.rc file, so when you run FontLab
Studio the next time, the environment will be restored.

57

https://CurrentWorkspace.rc

58

You can manually save the current workspace (the user interface layout)
into a file with the command Window > Workspace > Export Workspace.

Save the file into the Workspaces folder within your Application user data
folder. The workspace will appear in the Window > Workspace menu. You
can save several workspaces and quickly switch between different Ul
arrangements. You can also share your workspaces with different users.

To reset your current workspace to the default (factory) state or to launch
FontLab Studio with a different workspace, hold Ctrr while starting the
application. A dialog box will appear:

Reset Workspace

With this operation you will reset all settings for windows
and panels. If you want, you can also reset all Ul
customization to defaults or to one of predefined
combinations.

@ Do not change Ul customization {toolbars, shortcuts, menus)
) Reset Ul to default state

: Reset Ul to the following predefinied state:

ahrens_general
CurrentWorkspace
fontlab_default
hudson.general
twardoch_glyphedits

| Cancel) fReset-t:f'le-UI)

and you will be able to choose to start FontLab Studio with the current or
the default UI, or to load one of the workspaces.

I FontLab Studio Options

Most of the features, behavior, import and export algorithms of FontLab
Studio are customizable in the Preferences dialog box. In FontLab Studio 5
the Preferences dialog box has been significantly expanded. There are more
options, so there are more choices. We encourage you to experiment with
the settings and adapt them to your preferences. However, note that the
authors have carefully chosen the factory settings so if you don’t feel like
poking around the Preferences, in most cases you will be fine with the
defaults.

To open the Preferences dialog box, select the Preferences command in
the Application menu:

Preferences

I» General Options User interface LI
I» Font window
I Glyph window

@Automaticalw open Output panel if message is waiting
Metrics window

I FontAudit Sample text to show in File Open and Generate dialogs
Opening Type 1 "ABRasg123

I» Opening OpenType & TrueType

I Generating Type 1 ™ Panels can stick to each other

I» Generating OpenType & TrueType

Trace Options ™ Show toaltips

(B
]

i [Apply) ([Cancel -(OK ‘l

The dialog structure is quite simple. There is a list of pages combined in
categories on the left, the contents of the currently selected page on the
right and some buttons on the bottom. You will notice that the structure of
this dialog bears resemblance to the structure of the Font Info dialog.

59

To select a page use the list on the left:

[General Options

[Font window

[+ Glyph window
Metrics window

[FontAudit
Opening Type 1

[+ Opening OpenType & TrueType

[+ Cenerating Type 1

[Generating OpenType & TrueType
Trace Options

Expand one of the categories to see all the pages:

— General Options
Fonts
Folders and paths
Open and Save
EPS and bitmap background
Multiple Master
Unicode and OpenType
Python scripting
[Font window

Select a page and you will see its contents appear at the right of the list:

User interface g

@Automaticaﬂy open Qutput panel if message is waiting

| Sample text to show in File Open and Generate dialogs:

| ABRaeg123

@ Panels can stick to each other

| E Show tooltips

. c . LI J
You can browse pages continuously by clicking on ' — ' buttons.

Alternately you may use the CTRL+TAB and CTRL+SHIFT+TAB key
combinations to browse pages.

60

Other buttons and their meaning are described in the table:

= Import options Allows you to select a profile file that holds a particular

— configuration of all options and loads that profile. You can
create different profiles for different occasions and load
them when needed — for example, separately for each
format or foundry that you work with

] Export options Exports current options to a profile file. In a workgroup

S environment, you can export a profile file and give it to your
colleague who then can load it and generate fonts in the
same environment. When sending technical problem
reports to Fontlab Ltd., please always export your options
into a profile file and attach that file with your report

s Reset options Resets all preferences to the factory defaults

Apply Applies the changes without closing the dialog box. Many
interface changes become visible immediately in the
corresponding windows

Cancel Closes the dialog box without applying changes

OK Applies the changes and closes the dialog box.

61

62

General Options

@.Aummaﬂca]ly open Qutput panel if message is waiting

Sample text to show in File Open and Generate dialogs:

ABRaeg 123

@. Panels can stick to each other

E Show tooltips

Automatically open Python macros, OpenType compilation operations and some

Output panel...

other elements of FontLab Studio write out text outputs into
the Output panel. With the option enabled, the Output panel
will appear every time a new message appears. With the
option disables, the Output panel will stay always hidden if
you close it

Sample text...

The font previews in the Open and Generate dialog boxes use
the string specified here to preview the font

Panels can stick to
each other

Allows all the panels stick to either side of the screen and to
each other, so you can easily arrange them to create the most
comfortable environment.

Show tooltips

Allows you to switch on and off the button tooltips.

Fonts

Python and OpenType editors: Courier New

Output panel: Geneva

Rulers: .TiniMumbers, 5.0 & x
Metrics/kerning table: Lucida Grande, 9.0 i i
Point coordinates: Tlnll‘Ju_m bers, 7.0 é i
Python and Allows you to choose a custom font for use in the Edit Macro
OpenType editors panel and the OpenType panel
Output panel Allows you to choose a custom font for use in the Output panel
Rulers Allows you to choose a custom font for use in the rulers of the

Glyph window

Metrics/kerning Allows you to choose a custom font for use in the tables of the
table Metrics window

Point coordinates Allows you to choose a custom font for point coordinates in
the Glyph window.

To change the font, click on the A button and choose the font and the

size in the dialog box. Press the * button to set the corresponding field
to factory defaults.

Folders and Paths

Please refer to the “Folders and paths” section in the "FontLab User
Interface" chapter for information about these settings.

63

64

Open and Save

If you want to protect yourself from system or program crashes you can use
the Autosave function that will periodically save the current font.

" | Autosave fonts every 10 minutes

@ Create backup files

Use the check box to activate Autosave and enter the time interval (in
minutes) at which you want to save the font. The font will be saved into the
Autosave folder (within the Application user data folder) and will be named
using the following structure:

flsX.save.vfb, where fls are the first letters of Font Name and the X is some
unique value.

If Autosave was active and you have a system or program crash, you can
open your last saved font from the Autosave directory.

When you manually save your font and the Create backup files option is
enabled, FontLab Studio will save the previous version of your font in the
same folder as the currently saved .vfb file but will use the .bak file
extension instead. If you would like to go back and open the previous
(backup) version of your .vfb file, use File > Open, navigate to the folder in
that you saved your file and open it.

EPS and Bitmap Background

" Fit EPS files to (Ascender - Descender) height

Bitmap height for the Create Bitmap command: "200

Fit EPS files to When enabled, pasted and imported EPS/AI outlines will be

(Ascender- automatically scaled to fit between the Ascender and

Descender) height Descender lines of the font. When disabled, pasted and
imported EPS/AI outlines will be pasted without scaling, with
the assumption that 1 pt in the EPS/AI drawing corresponds
to 1 font unit in FontLab Studio.

Bitmap height for Allows you to set the bitmap size in pixels that will be created

the Create Bitmap when the user chooses Tools > Background > Create. Higher

command values will give you a more high-fidelity bitmap rendition of
your glyph but will result in larger .vfb files.

Tip: Tweaking this value can be useful if you want to create
pixel fonts. Set the value to a lower one, choose Tools >
Background > Create, then Tools > Mask > Swap Outline
with Mask, and finally Tools > Background > Trace Pixels.

Please refer to the “Importing and Exporting Glyphs” section of the “Glyph
Window” chapter for more information about using the first option.

Multiple Master

E Enable Multiple Master extrapolation

With this option enabled, you can use the preview or generate MM
instances beyond the original boundaries set by the masters. If you're
working with a Multiple Master font, choose Tools > Multiple Master >
Generate Instance and enter -200 as the instance position in the Weight
axis to generate an ultra-light variant of your font.

65

66

Unicode and OpenType

Eﬂu:ld all glyph classes to OpenType feature definition code

W Do not add metrics classes

Default Unicode-Mame mapping table:

IStandan:l Table

Add all glyph
classes to OT
feature definition
code

With this option enabled, classes defined in the Classes panel

are automatically and implicitly added to the OpenType panel
when OpenType feature definitions are compiled. Disable this
option if you defined your classes explicitly in the lower-right

portion of the OpenType panel

Do not add metrics
classes

With this option enabled when the above option is enabled,
the metric classes (those with names starting with a period)
are not added to the OpenType feature definition code. The
metric classes are typically used only with the Metrics
Assistance feature and are not referenced by OpenType
features or class kerning. Disable the option if your feature
definition language references any metrics classes that you
defined in the Classes panel

Default Unicode-
Name mapping
table

This allows you to choose the Unicode-to-glyphname mapping
file that FontLab Studio uses to generate Unicodes based on
glyph names or vice versa. Change this if you created your
own .NAM file and prefer to use that one over the default one.

Refer to the “Generating Unicode codepoints” section of the
"Editing Fonts" chapter for details.

Font Window

The options on the Font Window page control display aspects of the Font
Window and define how certain commands work.

!21 Show Unicode indexes in captions in Unicode mode
E Double-click opens Glyph Window

" | Double-click opens a new window

@. Enable drag-and-drop
Create Glyphs command generates them if possible

| All generated ligatures are right-to-left

K

Sorting glyphs that are out of encoding: Unnamed;unencoded. first

@ Only show glyph windows from active font

= Kerning information is copied with the glyph

Show Unicode This option sets Unicode indexes in captions as the default
indexes in captions choice for the Unicode mode
in Unicode mode

Double-click opens If enabled, double-click on a glyph cell in the Font Window
Glyph Window opens a Glyph Window. If disabled, double-click does not
yield any action

Double-click opens If this option is enabled, each double-click on a cell on a glyph

a new window cell in the Font Window opens a new Glyph Window. If
disabled and there is already a Glyph Window open, the glyph
that the user double-click on will be displayed in the existing
Glyph Window. Holding down the CMD key inverts the
bahavior. This option works only if the previous option is
enabled

Enable drag-and- When enabled, drag-and-drop operations work in the Font

drop Window. Drag-and-drop in the Index mode physically
rearranges glyphs in your font. Drag-and-drop in other modes
of the Font Window is used to assign new code positions to
existing glyphs. Drag-and-drop between fonts can be used to
append (if in Index mode) or copy (other modes) glyphs
between fonts

67

68

Create Glyphs

This option controls what happens if the user double-clicks on

command generatesan empty glyph cell in the Font Window, or chooses Glyph >

them if possible

Create Glyphs or Glyph > Create Glyphs If Empty. When
disabled, the resulted glyphs will be always blank (no
outlines). If enabled, FontLab Studio will attempt to generate
a glyph. Refer to the section about Generating Glyphs for
more details

All generated
ligatures are right-
to-left

This option controls the way FontLab Studio generates
ligatures if the previous option is enabled and the user double-
clicks on an empty glyph cell that is intended for a ligature
glyph. If enabled, the ligatures generated that way will be
right-to-left, i.e. the first component of the generated ligature
will be right-most. This does not affect the way ligatures are
generated when Glyph > Generate Glyphs is called explicitly

Sorting glyphs that

Controls the way glyphs are displayed in the Font Window

are out of encoding that are shown outside of the “yellow area”, that is, the glyphs

that do not belong to the currently selected encoding,
codepage or Unicode range

Only show glyph
windows from
active font

When multiple fonts are opened, the screen can quickly get
cluttered. With this option enabled, FontLab Studio will only
display Glyph Windows from the currently active font while it
will hide other open Glyph Windows. Disable this option if
you want to compare Glyph Windows from different fonts
side-by-side

Kerning informationThis option controls the behavior of FontLab Studio if the user

is copied with the
glyph

copies any glyphs in the Font Window using the clipboard. If
enabled, all kerning pairs associated with the glyph will be
copied. If disabled, the kerning pairs will not be copied.
Disable this if you only want to copy-and-paste the glyph
shapes but not the associated kerning.

Glyph Cell

These options control the appearance details of glyph cells in the Font

Window.

Each cell should have dimensions of 32 x 32 T.! pixels

|21 Cive each cell a caption

Ceneva, 9

e

™ Show information marks in glyph cells

W Hinting

|21. Multiple Master mask compatibility

!21 Show class key mark

Eﬁ. Show note icons

M smooth glyph thumbnails

v Highlight conflicts between name and Unicode index

Each cell should
have dimensions
of...

Controls the default size of the glyph cells in all Font
Windows. Note that when the local control area of the Font
Window is placed at the bottom, you can use the
Increase/Decrease cell size buttons to temporarily change
the size of the glyph cells in the currently active font

Give each cell a
caption

Shows/hides the caption of the glyph cell (the small
rectangular bar shown at the top each glyph cell) and allows
you to choose a font that should be used there

Show information

Shows/hides the small colored information marks in the

marks in glyph cells corners of the glyph cells. Refer to the "Font Window" section

for more information about their meaning

Show note icons

Glyphs can have notes associated with them. With this option
enabled, if a glyph includes a note, a small icon will appear in
the corner of the glyph cell

69

70

Smooth glyph Turns on and off the anti-aliasing of the rendered glyph
thumbnails previews (thumbnails) in the glyph cells

Highlight conflicts The default Unicode-Name mapping table (see pages 66 and

between name and 88) determines the “ideal” (recommended) mapping between

Unicode index glyph names and Unicodes. In your font, glyph names can be
mapped to other Unicodes than those recommended, or glyph
may have no Unicode codepoints assigned although they
should. With this option enabled, FontLab Studio will show
the caption background of the glyph cell in red color for all
such problematic cases. To automatically correct the problem,
use Glyph > Glyph Names > Generate Unicode.

Templates

This section regards two different sorts of templates used in FontLab
Studio.

New font template: a .vfb file that can be used as basis for all new fonts
that are created in FontLab Studio. If you regularly create new fonts for the
same foundry, you can save any of your fonts as a new font template. You
may want to set an encoding, fill in the designer and vendor information
but perhaps clean font naming and all the glyphs. Later, when creating new
fonts in FontLab Studio, the new font template will be automatically
opened so all the values that are specific to your foundry are already filled-
in.

Glyph template images: the dark gray bitmap images that appear in
Font Window glyph cells if a glyph in the font is empty. The glyph template
images can be used as an orientation during your type design process. For
example, if you open a Western font, switch to the Unicodes mode and
choose the Cyrillic range, you will see what your Cyrillic glyphs should
roughly look like.

FontLab Studio 5 ships with a very extensive set of pre-installed default
glyph template images. These are based on the Andale Mono WTG font
(courtesy of Monotype Imaging, http://www.monotypeimaging.com/) and
cover the entire Unicode 3.2 character set. Note that the default glyph
template images are low-resolution, monospaced and in a “sanserif” style.
They should not be used as direct source of information about the
typographically correct shape of glyphs — but only as an orientation.

http://www.monotypeimaging.com/
http://www.monotypeimaging.com/

_ | Use following template font to initialize new fonts:

E Show glyph template images in empty cells

f*) Use default glyph template images
Andale Maona font by Maonotype Imaging, wisit wweaefonts. cam

) Use bitmap font for glyph template images (.dat or .bdf)

") Use installed font for glyph template images

™ put glyph template images in Background layer when creating new glyphs

Use template font When enabled, allows you to choose any .vfb file as a new font
to initialize new template when the user chooses File > New. When disabled, a

fonts blank .vfb file is created

Show glyph When enabled, glyph template images are shown in empty
template images in glyph cells. You can also choose if the default or a custom set
empty cells of glyph template images is used. You can use any font

installed on the system or a bitmap font file. For bitmap font
files, .bdf files are supported as well as .dat files that can be
created with BitFonter

Put glyph template When enabled, whenever you create a new glyph, the
images in corresponding glyph template image will be placed as a
Background layer bitmap in the Background layer.

when creating new

glyphs

71

72

Glyph Window

This section controls the behavior of the Glyph Window.

 Editing behavior

Show meter panel when Meter tool is activated

Show crosshair cursor

Remove hints and guides by moving out of the window
Double-click on background to change its properties
Mask layer has its own metrics

Selection in the Glyph window is undoable

Tap on Cmd key toggles Edit tool

EEEEE

[Appearance

[» Outline drawing

[Advanced

Editing behavior:

Show meter panel
when Meter tool is
activated

If enabled, the Meter panel is shown when the user activates
the Meter tool

Show crosshair
cursor

If enabled, a crosshair cursor is shown whenever the user
moves any nodes

Remove hints and
guides by moving
out of the window

When enabled, the user can remove hints and guidelines by
moving them out of the window

Double-click on
background to
change its
properties

When enabled, the user can double-click on the bitmap placed
on the Background layer to position or scale it. When
disabled, this is only possible via Tools > Background > Move
and Scale

Mask layer has its
own metrics

When enabled, the Mask layer has its own advance width
information. When disabled, the Mask layer always has the
advance width of the Outline layer

Selection in the
Glyph window is
undoable

While editing a glyph, the user often selects some contours or
nodes. With this option enabled, the step of selection is stored
as a separate undo step so can be undone separately from
other editing actions

Tap on Cmd key
toggles Edit tool

When enabled, the user can click the CMD key to temporarily
enable the Edit tool if a different tool is currently active, and
click the CmD key again to revert back to that tool.

Appearance options:

Small nodes

Nodes may be small or large:
...—\.._____'.H_,..—\.._“_\
I‘_"‘-\-..___...:-'—'_"_\.

Node shape shows
point and
connection type

When enabled, each node symbol will indicate both the type of
the adjacent contour and the connection type. When disabled,
each node symbol will only indicate the type of preceding
contour while the connection type will be indicated with a
separate small symbol next to the node.

Enable this option to see tangent points shown as such.
Disable this option to revert to the FontLab 4.x behavior.

Refer to the “Node Type” section of the “Glyph Window”
chapter for more information about node symbols

Black/white nodes

When disabled, node symbols are displayed using color as in
FontLab 3.x. When enabled, node symbols are displayed using
color as in Fontographer

Show node position

One node may be selected as the current node. It will be
highlighted and its position will appear on screen:

[44E, 211)

To deselect the node, click anywhere in the empty space of the
editing field or click the Esc key

Node position is on
top of the outline

Position of the node (see above) may appear below or above
the path:

—APEETS ——2Th BT

73

74

Highlight first node When this option is on, start and end nodes of the open
of an open contour contour are highlighted with a small diagonal cross:

D

)-f'—m_,.f-'—xx

Bezier control When this option is on and Show Layers>Control Vectors is
points are visible in off, the control points become visible when the curve is
selection selected:

+ o
Show selected When enabled, Multiple Master fonts will highlight selected
nodes in inactive nodes in all masters. When disabled, only selected nodes in
masters the active master will be highlighted

Connect selected When this option is active, nodes that are selected in the
nodes in all masters current master are connected by straight line segments to
nodes in all visible masters

Show anchor names When enabled, anchor names are displayed in the Glyph
Window. When disabled, they are only visible in the
Properties panel

Show nodes on When enabled, nodes on the mask layer will be shown even if
mask layer the user is in the Outline layer

Show arrow on Activate this option to see small arrows on every closepath
closepath line:

Show measurement Shows/hides the measurement line: the red horizontal line
line that can be used for calculating sidebearings.

Outline drawing options:

Smooth outline

Allows one to select between non-anti-aliased and anti-aliased
rendering of the outline:

X_\._f_‘\x
}ﬁ'_"n_,.f-"—“-xx

Mask and inactive

If enabled, the Mask layer and inactive masters in a MM font

masters are smooth are also anti-aliased

too

Show contour
direction

An outline consists of several contours and each contour is
directional. The direction of the contour is marked with a
small arrow:

———
g =

Leave echo while
editing

When editing contours the original contours shape/position is
shown gray:

Fill open contours

When this option is off, the open contour appears unfilled in
fill outline (preview) mode:

."_\-"‘-..,__._.;-'"_'_\""\

75

76

Advanced options:

Move selected
nodes individually

When enabled, the user can individually move nodes even if
several nodes are selected. When disabled, all selected nodes
move the same way

All BCPs are fixed

When using non-node editing and you drag any location on a
curve, its control vectors may change direction. You can CTRL-
click on the node and enable Connection > Fixed to fix the
direction of the control vectors for that particular node.

With the option All BCPs are fixed, you can fix the direction
of all control vectors in a font for the purposes of non-node
editing

When curve is
selected keyboard
adjusts BCPs

When enabled, you can select a curve segment and use the
arrow keys to move the BCPs

Align to all contour
points if snap to
contour is on

When disabled, View > Snap to Layers > Outline makes
nodes snap only to other nodes. When enabled, the nodes
snap to all locations on a contour, not just nodes

Edit/Delete
command breaks
contour

When disabled, the Edit > Cut command breaks (opens) a
contour but Edit > Delete only removes nodes but leaves the
contour closed. When enabled, both Cut and Delete break the
contour

Keep smooth
connection smooth
at all times

Enable this to prevent smooth node connections to turn into
sharp connections when blending is used

VectorPaint tools

With this option FontLab Studio will provide separate set of

have separate view the view setting for the Vector Paint mode.

settings

Dimensions

These settings control visual dimensions in the Glyph Window:

Visual ascender and descender: 100 & -40 % of UPM

Duplicate offser: 100 = 100

Copy/Paste offset: -0 ® |0

Grid step: [To0 |« [100 |

Snap-to distance: |3

Shift+arrow keys increment: | 10

Visual ascender
and descender

When you select 100% as the zoom value in the Glyph
Window, FontLab Studio needs to choose a scaling factor to fit
the font unit space in the Glyph Window. This is done by
always fitting the Visual ascender is to the top of the Glyph
Window and fitting the Visual descender to the bottom of the
window. If you think that the 100% zoom level shows you a too
small portion of your glyph (because for example your font
has extremely long ascenders and descenders), you can
increase these values. This is only a visual setting and does not
modify and metric information in the font

Duplicate offset

This setting controls the distance (in font units) by which
outlines are duplicated

Copy/Paste offset

This setting controls the distance (in font units) by which
outlines are moved when the user does copy-paste

Grid step

This setting controls the grid step in font units. You can
show/hide the grid and enable snapping to grid from the View
menu

Snap-to distance

If any of the editing layers has the “snap-to” property turned
on, moving a node will cause it to snap to the objects on that
particular layer if the distance between the node and the
object is not larger than the distance (in pixels) specified here.
Tip: Enabling “snap to grid” and increasing the snap-to
distance may be helpful when designing pixel fonts

Shift+arrow keys
increment

This setting defines the distance (in font units) by which
objects are moved when SHIFT+ARROW keys are used.

77

Colors

Grid:]
Guidelines: [NN Global guidelines: NN
Horizontal metrics: [Vertical metrics: [N
Background bitmap:]
Mask: [N Global mask: [
Shape group: [___] Neighbors: [N
Components: [0 Path direction mark: [__]
Outline: [NN BCV opacity: ? X%

Outline echo: [
L 1] Mask background: []

Outline background:

In FontLab Studio, the color of practically each element of the Glyph
Window can be customized — so for example, you can edit white outlines
on a black background. You can also control the opacity of the control
vectors here.

Tracking

| Hints tracking

Tracking offset: 5] % of UPM

_ | Guidelines tracking

Hints tracking When enabled and you move a hint by a distance less than the
Tracking offset setting, all nodes that are on the hint will be
moved with it. Use it to keep an outline on the hint when you
modify the hint’s width

Guidelines tracking When enabled and you move a guideline by a distance less
than the Tracking offset setting, all nodes that are on the
guideline will be moved with it

Track global When enabled and you move a global guideline by a distance

guidelines less than the Tracking offset setting, all nodes that are on the
global guideline will be moved with it. Note: this may affect all
glyphs in your font.

79

80

Shape Groups and Neighbors

The shape groups layer displays a number of semi-transparent glyphs
stacked behind, or above-and-below the outline of the current glyph. The
neighbors layer shows glyphs left and right of the current outline. The
composition of shape groups and neighbors changes automatically for each
glyph that you edit. This composition can be fully customized:

@Appw kerning to neighbors

Meighbors are filled if outline is filled '

ar

If glyph is in Mask mode: = show outline e
Shape group is filled if outline is filled _:] [Edit Groups)
If glyph is in Mask mode: “show outline ﬂ

Shape group opacity: 25 %

Shift glyphs in the shape group: 0 ' x 0 % of UPM

Use glyph metrics

' Center glyphs horizonally

@ Double-click to edit neighbor or shape group glyph

Apply kerning to
neighbors

When enabled, the neighbors will be positioned taking
kerning pair values into account

Filling neighbors

These settings control when the neighbors should be filled

Mask layer view

These settings control the behavior of neighbors if the user
is in the Mask layer

Filling shape groups

These settings control when the shape groups should be
filled

Edit Groups button

Click on the button to open the shape groups definition file
in a text editor (e.g. TextEdit). After you finished editing the
shape groups definition file, save it in the text editor, switch
back to FontLab Studio and click on Apply in the Options
dialog box to load the new shape groups

Mask layer view

These settings control the behavior of shape groups if the
user is in the Mask layer

Shape group opacity

This controls the opacity (transparency) level of the shape
groups

Shift glyphs in the
shape group

With the settings 0 x 0, all shapes in the shape group are
shown stacked behind the current glyph. Increase the first
value to position the shape group on the sides of the current
glyph. Increase the second value to position the shape group
above and below the current glyph

Use glyph metrics

When activated, the shapes within a shape group will be
positioned next to each other using their advance widths

Center glyphs
horizontally

When disabled, all shapes in the shape group are aligned by
their left sidebearing. When enabled, all shapes in the shape
group are centered

Double-click to edit
neighbor or shape

group glyph

When enabled, you can quickly switch between editing of
each glyph in a shape group by double-clicking on the
shapes.

81

82

Sort items in the kerning/metrics table: By encoding |+

Metrics Window

These settings control the behavior of the Metrics window:

@ Automatic line feed
[Highlight all key glyphs in kerning and metric classes
@Highiight all kerning pairs

@Appiv text template when item is selected in the table

Background: |:|
Foreground: | NI Dependant pairs: [N

Font to use in the preview combo box:

s

™ Move focus to sample string when Metrics window is opened

a

Automatic line
feed

When disabled, all glyphs in the Metrics Window are displayed
as a long line of text unless a line break is inserted explicitly by
the user (\n). When enabled, the Metrics Window has an
automatic line feed so glyphs are moved to the next line to fit
within the current size of the Metrics Window

Highlight all key
glyphs...

When enabled, all glyphs that are defined as key glyphs in the
Classes panel are highlighted

Highlight all
kerning pairs

When enabled, all glyph combinations that have kerning pairs
defined will be highlighted in the Metrics Window using a short
horizontal line below the glyphs. When disabled, the line will
not be shown

Apply text
template...

When the user clicks on a kerning pair on the Metrics Table,
FontLab Studio automatically displays a text template that
presents the kerning pair in context of other glyphs — if this
option is enabled. When disabled, FontLab Studio will not
display the additional text

Keep existing

If the “Class kerning” setting is active in Metrics Window and

exceptions... this option is disabled, modifying a pair of dependent glyphs
that had an exception defined will remove that exception. If
enabled, the exceptions will be kept

Background Changes the background color of the Metrics Window

Foreground Changes the color of the glyphs displayed in the Metrics

Window

Dependant pairs

Changes the color of the glyphs displayed in the Metrics
Window that are dependant glyphs in classes

Font to use in the
preview combo
box

Customize the font to use in the preview combo box

Move focus to
sample string
when Metrics

window is opened

Disable it to preventing the text cursor jump the sample string
when Metrics window is opened

Sort items in the
kerning/metrics
table

Controls the sorting order by which the items in the Metrics
Table are displayed.

83

84

FontAudit

If you turn the FontAudit layer on in View > Show Layers, this built-in
glyph checker will on the fly detect potential errors in your glyph geometry
and highlight the problems with red arrows. These options control which
potential problems FontAudit should check against.

Empty lines and curves

Vectors on closepaths

Flat curves

Collinear vectors

Inflections on curves

"Weak” extremum points
"Normal” extremum points
Incorrect smooth connection
Cusp and self-intersecting curves
Semi-horizontal and vertical vectors
Contour is not closed

Object is too short

a

AEAEARAREEEREEE

Empty lines and
curves

Lines or curves that have no length (I.e. two nodes on top of
each other.)

Vectors on
closepaths

Unnecessary vectors that should be removed. In Type 1 fonts
this error can cause problems with rasterization

Flat curves

Curves that can be replaced with a straight vector without loss
of quality (I.e. a “curve” that is really a straight line.)

Collinear vectors

Two sequential vectors are collinear; therefore the first vector
can be removed (Straight lines with extra nodes in the
middle.)

Inflections on
curves

Detects curves that have inflections. It is better to replace such
curves with a combination of two curves

Curve with an inflection

"Weak" extremum
points

There are “invisible” extreme points on curves. This error can
cause problems with rasterization of the glyph

o

Curve with an invisible extreme point

"Normal”
extremum points

Curves need nodes at extreme points

Incorrect smooth
connection

A vector and curve or two curves are connected very close to a
smooth connection, but not precisely. I.e. what looks like it
should be a smooth connection is labeled as a sharp
connection.

Cusp and self-
intersecting
curves

Cusp curve Self-intersecting curve

Semi-horizontal
and vertical
vectors

The direction of the vector is close to vertical or horizontal but
is not parallel to one of the axes (i.e. not exactly horizontal or
vertical)

Contour is not
closed

Contour appears to be closed (visually) but is defined as open.
Use the Fix button on the error reporting dialog box to
automatically correct this situation

Object is too
short

Curve or line is short enough to be deleted.

85

86

Optimize

These settings allow you to fine-tune the parameters of the Optimize
command (Contour > Optimize or as part of Tools > Actions).

Outline simplification level: Process normally 5 !

. I
Auto-alignment level; Process normally Iy !

Outline The degree to which Optimize will attempt to simplify the
simplification outline by removing nodes that are potentially redundant
level

Auto-alignment The degree to which Optimize will attempt to align nodes for
level segments that are not exactly horizontal or vertical.

Opening Type 1

These settings control what happens when you open a Type 1 font or a
Multiple Master font in FontLab Studio.

" Decompose all composite glyphs
@ Generate Unicode indexes for all glyphs

" Generate basic OpenType features for Type 1 fonts with Standard encoding

FontLab will try to generate cpsp, frac, liga, and ordn features if imported font contains
necessary glyphs. This feature works only with standard Latin fonts.

__| Find matching encoding table if possible

If the option Decompose all composite glyphs is on, FontLab Studio will
decompose all composite glyphs in the imported font. Composite glyphs
have no unique outline themselves, but “borrow” outlines from other font
glyphs. Good examples of composite glyphs are accented glyphs, like ‘A’, ‘&’
or ‘it’. In each of these the composite character is composed of a character
glyph outline and an accent glyph outline from elsewhere in the font.
FontLab Studio has all the necessary tools and operations to work with
composite glyphs, so it's usually not necessary to decompose them on
import. But if you want to significantly modify the glyphs and do not want
to worry about composites you can use this option. Of course you can
always decompose or recompose the glyphs later using FontLab Studio
commands.

The option Generate Unicode indexes for all glyphs should be usually
on. We strongly recommend keeping it that way if you plan to convert your
Type 1 font to TrueType or OpenType format. TrueType and OpenType
formats uses Unicode indexes to access characters, so having the indexes
set properly is paramount. However, if you do not plan to make a TrueType
font you may switch this option off. As in the case of the first option, you
can always make Unicode indexes later.

87

88

How FontLab Makes Unicode Indexes

FontLab Studio uses a file STANDARD.NAM that is a mappindile that contains a list of PostScript
names and corresponding Unicode indexes.

When you import a Type 1 font and the option Generate Unicode indexes for all characters is on
FontLab takes the name of every imported character and looks for it in the names database. If it
locates the name there it takes theassociated Unicode index and adds it to the character’s list of
indexes.

Note 1: The Names' database has more than 4000 records and includes almost all known names for
all European, Cyrillic, Arabic and Hebrew languages and for most symbol and dingbats fonts.

Note 2: The names' database is a text file that can be edited. You can add new records to this file at
any time. Be very careful when you edit this file because incorrect records may make e xported fonts
unusable in some environments.

Note 3: It is possible to link more than one Unicode index to a name. If FontLab Studio finds several
indexes linked to the name, it will assign all themdexes to the character. (Refer to the Encoding
Modes section for a description of the multiUnicode indexing method.) For glyph names preceded
with “I" in the mapping file, FontLab Studio will generate Unicode indexes based on these glyph
names but will not generate glyph names for the Unicode indexes if the user chooses Glyph > Glyph
Names > Generate Names. In that operation, only glyph names without exclamation marks are
considered.

Note 4: The default mapping file can be changed using Preferences > General Options > Unicode
and OpenType > Default Unicode-Name mapping table.

Generate basic When enabled and the user opens a Type 1 font that is
OpenType encoded using the Adobe StandardEncoding, FontLab Studio
features... will generate a basic set of pre-defined OpenType Layout

features. This can be useful for quick conversions of Type 1
fonts into OpenType, or as a starting point for writing your
own OpenType Layout feature definitions

Find matching When enabled, FontLab Studio will try to match one of the
encoding table if encodings available from the popup menu in the Names mode
possible to the encoding that the font uses. If FontLab Studio cannot

match the encoding, the opened Type 1 font will show the
encoding “Imported”.

Opening OpenType & TrueType

These settings control what happens when you open a TrueType /
OpenType TT (.ttf) or an OpenType PS (.otf) font in FontLab Studio.
"1 Scale the font to 1000 UPM
- Decompose composites
" Store custom TrueType/OpenType tables

' Read on.lv non-English name records T]

Ei Read OpenType layout tables (GPOS, GSUB, GDEF)
!21 Store binary OpenType layout tables
@ Interpret OpenType layout tables
v Import kerning from the "kern" feature
!zj Generate missing glyph names using layout tables

@ Interpret GX/AAT mort & morx tables

Scale the font to Typically TrueType fonts have UPM (Units Per eM — the size

1000 UPM of the grid on which all glyph coordinates are defined) equal to
2048. Type 1 fonts have UPM equal to 1000. You can change
the UPM value at any time using the FontLab commands, but
if you turn this option on, UPM will be converted during the

font import
Decompose When enabled, all composite glyphs will be automatically
composites decomposed. Refer to the previous section for more

information about automatic decomposition. Note: When
FontLab opens TrueType / OpenType TT fonts with rotated or
slanted components, it will always decompose them

Store custom Some TrueType fonts have additional tables that are not a part

TrueType/ of the TrueType or OpenType specification, or that FontLab

OpenType tables Studio cannot interpret. If you want to read these tables and
have them written in an unchanged form into the generated
font, enable this option.

To view the stored custom tables, go to Font Info > Binary
and custom tables.

This feature is very useful if you are working with additional
tools, like Microsoft VOLT or VTT programs. If the “Store
custom TrueType/OpenType tables” option is active, FontLab
will not change or destroy tables that these tools include in
TrueType fonts. Please refer to the “OpenType Fonts” chapter
for more discussion on this.

89

90

Reading Name Records

' v Read only non-English mame records
| Do not read OpenType name records |
Read all OpenType name records

All font naming (family and style names, copyright and version strings etc.)
in OpenType and TrueType fonts are stored in the “name” table. In most
cases, the “name” table contains separate sets of names for the Macintosh
and Windows platforms, sometimes also non-English names are stored
separately.

When FontLab Studio opens an OpenType or TrueType font, it interprets
the “name” table, extracts the most important names and in any case,
presents them to the user in a “friendly” manner in the Names and
Copyright section of the Font Info dialog.

However, if several language versions of the same name entry (e.g. style
name) are found in the font, FontLab Studio will only present the English
names in the Style name field. If different names are stored for the
Macintosh and Windows platform, FontLab Studio will pick one of them.
In such cases, the user may with to also store and edit the “native” form of
the “name” table. The “native” form of the “name” table can be then viewed
and edited in Font Info > Names and Copyright > Additional OpenType
names.

With the setting Read only non-English name records names
(recommended for Western fonts) the Additional OpenType names
page will only contain non-English names while the English names will be
presented in the “friendly” manner.

The setting Do not read OpenType name records discards all non-
English name entries so the Additional OpenType names page will be
empty. English names will be presented in the “friendly” manner.

With the setting Read all OpenType name records (recommended for
non-Western or multilingual fonts) the Additional OpenType names
page will contain all names found in the original font’s “name” table. In
addition, the English names will be also presented in the “friendly”
manner.

Read OpenType Please refer to the “OpenType Fonts” chapter for detailed
layout tables description of this and the subsequent options.

TrueType/OpenType TT

These settings only apply when you open a TrueType / OpenType TT (.ttf)
font but not an OpenType PS (.otf) font.

: Convert TrueType curves into PostScript curves
@ Store TrueType native hinting
E Import embedded bitmaps

" | Autohint font

Convert TrueType In FontLab Studio, you can work with PostScript Bezier curves

curves into or TrueType quadratic curves. If you open a TrueType /

PostScript curves OpenType TT font and plan to generate the font in the same
format, disable this option to keep the original outlines to
avoid conversion errors. But if you plan to generate your font
as a Type 1 or OpenType PS font, you can enable this option to
convert the outlines on import. In any case, you can always
convert the outlines in either direction at any time during
editing

Store TrueType Leave this option on if you want to store the original TrueType

native hinting instructions and outlines. FontLab Studio will keep the stored
TrueType data until you change the glyph’s outline or hints. If
you open a TrueType font to rearrange glyphs or to add some
new glyphs we highly recommend storing the original
TrueType hinting data

Import embedded If this option is on, FontLab will Studio read all embedded

bitmaps bitmaps defined for the source TrueType font. You can edit
them using the TrueType hinting tool and optionally include
them in the generated TrueType font. Embedded bitmaps may
help to improve font readability at low point sizes and in some
cases can be used instead of TrueType hinting

Autohint font To prepare an imported TrueType font for Type 1 editing and
export, you may ask FontLab to automatically make Type 1
hints for all the glyphs. FontLab will use the current Type 1
hinting settings and will make hints for TrueType or Type 1
outlines depending on the conversion setting (Convert
TrueType curves into PostScript curves).

91

92

Generating Type 1

These settings control some technical parameters of fonts that you
generate in the Type 1 or Multiple Master format.

Make PFM file

Encoding options:

¥ Make AFM and INF files

Export Unicode codepage if codepage mode ... |+ !

| Export only encoded glyphs
Font Window must be in Names mode

!21 Automatically sort glyphs

" | Open Type 1 Export Terminal

E Use WinAscent and WinDescent as font vertical size

™ Autohint unhinted glyphs

[| Export [FSType (font embedding) parameter

Generate bitmaps for size(s): 10, 12

Use bitmap rasterizer: FreeType (built-in) 4 1

Make PFM file

Switch this option on to create a PFM (Printer Font Metrics)
file when exporting a Type 1 font. PFM files are used in
Windows to install Type 1 fonts. They contain metrics, kerning
and, partially, font header information. On Windows, you
cannot install a Type 1 font without a PFM file. If you have
Adobe Type Manager 4.1, it can automatically generate a PFM
file based on an AFM and INF file but in general, we
recommend leaving this option on at all times

Make AFM and INF
files

Switch this option on to make AFM (Adobe Font Metrics) and
INF (font INFormation) files when exporting a Type 1 font.
These files are text files and contain descriptions of the font
metrics, kerning and header (font names, weight, width,
encoding and other information). It is possible to install a
Type 1 font with Adobe Type Manager if you don’t have the
PFM file but do have the AFM and INF files, because ATM will
automatically build the PFM file using data from the AFM and
INF files.

The AFM file is necessary to install a Type 1 font (in ASCII
form, with “.pfa” extension) in most Unix-based operating
systems.

To install an exported Type 1 font in Windows you must have
the PFM or at least AFM+INTF files. We recommend making all
these files when you finally produce a font so that your font
will be compatible with various environments.

Encoding Options

The dialog has a list of possible encoding options when a Type 1 font is
generated:

Always write custom encoding
Always write Standard Encoding

v Export Unicode codepage if codepage mode is active
Select encoding automatically

When you generate a Type 1 font, the most important encoding choice is to
choose between one of two encoding forms:

¢ Standard Encoding
e custom encoding

Standard Encoding is a special Type 1 encoding created by Adobe
Systems. Instead of enumerating all the code positions in the font, the
Standard Encoding font leaves the actual encoding to the system font
driver, and on the other hand, the system font driver knows what
characters can be expected in the font. StandardEncoding is the
recommended choice if your font is a typical Western Roman font. If you
generate a Mac Type 1 font (on FontLab Studio for Mac) with Standard
Encoding, Mac OS will “know” that the font is a standard Western Roman
font and will automatically match the font’s encoding to the system Mac
Roman codepage. Similarly, when you generate a Windows Type 1 font
with Standard Encoding, Windows will know that the font is a standard
Western Roman font and will automatically match the font’s encoding to
the system Windows 1252 Western (ANSI) codepage. Also, if the user of
such fonts create documents in some applications (e.g. QuarkXPress for
Mac and Windows), the applications will automatically re-encode the
documents when moving between platforms.

Custom encoding is any Type 1 encoding that is explicitly specified in
the font. If the primary character set of your Type 1 is not Western Roman
but Central European, Cyrillic, Greek, or Arabic, you need to select the
appropriate encoding in the Names mode encoding selector in Font
Window, and generate the font with custom encoding.

93

94

How Windows ATM Interprets a StandardEncoding

When a Type 1 fonthas StandardEncoding ATM assumes that this font includes all the glyphs from
the first 128-glyph range (digits, alphabet and basic punctuation) and the European glyphs (128 -255
range). The first 128 glyphs are called the “fop zone". The 128-255 range is called the “ bottom zone".
The Adobe StandardEncoding includes very few glyphs from the bottom zone compared to the
number of glyphs in the WinANSI (actual Windows encoding) encoding. When a Type 1 font in
StandardEncoding is installed with ATM, ATM uses a sgecial encoding instead of the “real”
StandardEncoding as it is documented in the Type 1 format specification. This special Windows
encoding is called the Default Encoding in FontLab. So if you create a StandardEncoding font and
want to see how it will work in Windows, select the Default Encoding in FontLab.

Here is an explanation of the possible encoding export options:

Select encoding This is the recommended setting. Generates the font

automatically with Standard Encoding if the Font Window is in Names
mode and the encoding selector shows one of the following:
“Adobe Standard Encoding”, “Default Encoding”, “MS
Windows 1252 Western (ANSI)” or “Mac OS Roman”.
Otherwise, a custom encoding will be generated

Always write FontLab Studio will always generate a custom encoding —

custom encoding even for Western Roman fonts — with the encoding
currently selected in the Font window Names mode. Note:
Western Roman Type 1 fonts generated with custom
encoding may not work as expected

Always write Always generates the font with the Standard Encoding

Standard Encoding regardless of what is selected in the Font window Names
mode

Export Unicode Exports a custom encoding based on the currently selected

codepage if codepage codepage if the Font window is in Codepages mode.
mode is active

We recommend setting the Select encoding automatically option as the
default, because it covers most exporting situations very well.

Export only When enabled, all glyphs that are outside of the encoded
encoded glyphs “yellow area” will not be included in the generated font.

Tip: This can be used to quickly generate a series of Type 1
fonts from a large multilingual .vfb file that includes an
extensive character set.

Automatically sort This option allows FontLab to sort glyphs accordingly to the
glyphs selected encoding on export. It is recommended to leave this
option enabled.

If the Open Type 1 Export Terminal option is switched on and you
generate a Type 1 or Multiple Master font, the following dialog box

appears:
Type 1 Export Terminal

In this dialog box you can change text dictionaries data exported in the Type 1 font. Please,
refer to the Type 1 Font Format specification for the detailed description of the data fields you
can enter here.

Wrong data entered here will make font unusable!
Please, be extremely carefull

Select a data section: = Open Dictionaries s !

%!PS—AdobeFont-1.0: ArialMT 001,000

%% CreationDate: Fri Mov 25 11:01:51 2005

%%V Musage: 120000 150000

11 dict begin

fFontinfo 15 dict dup begin

Jvarsion (001.000) readonly def

fMotice (Typeface © The Monotype Corperation plc, Data ® The Monotype
Corporation plc/Type Solutions Inc. 1990-1332. All Rights Reserved) readonly
def

fFulllame (Arial) readonly def

fFamilyhame (Arial) readonly def

fltalicAngle 0 def

JisFixedPitch false def

=

fUnderlinePosition —106 cef 2
{UnderlineThickness 73 def X
| Discard Changes 3y (Cancel Export '_. (Accept Changes \}

As you can see, this dialog box previews and allows you to edit text data

contained in the “open” and “private” sections of the exporting Type 1 font
file. Use the Select a data section control to choose the part of the Type
1 font file that you want to edit and modify the text in the edit field below.

Note that there is no external control of changes you make in the export
terminal. Use it only if you really know what you are doing or you may
create a font which will not only be unusable, but can even crash your

operating system.
Refer to the Type 1 font format specification
http://partners.adobe.com/asn/developer/pdfs/tn/T1_SPEC.PDF

for information about the contents of the Type 1 font file.

95

http://partners.adobe.com/asn/developer/pdfs/tn/T1_SPEC.PDF
http://partners.adobe.com/asn/developer/pdfs/tn/T1_SPEC.PDF

96

Use WinAscent
and WinDescent
as font vertical
size

When disabled, the Type 1 font will be generated with the
vertical metrics information based on Font Info > Metrics and
Dimensions > Key dimensions > Ascender / Descender.

When enabled, the Type 1 font will be generated with the
vertical metrics information based on Font Info > Metrics and
Dimensions > TrueType-specific metrics > WinAscent /
WinDescent. This can be used to generate a Type 1 and a
TrueType / OpenType TT font that both have identical vertical
metrics.

Note: We recommend disabling this option

Autohint unhinted
glyphs

When enabled, all glyphs that include no hints will be
autohinted

Export FSType
(font embedding)
parameter

When enabled, the embedding information (Font Info >
Names and Copyright > Embedding) will be written in the
Type 1 font. Note that this is a custom extension to the Type 1
font format and is not supported by all devices so we
recommend keeping this option disabled.

Type 1 Autohinting

™ rRemove all existing hints before autohinting

When this option is enabled and a glyph is autohinted, existing hints will

be removed.

When disabled, the automatically generated hints will be added to the
existing hints. Note that this may cause some unwanted interferences.

Macintosh Type 1 Bitmaps

Any Type 1 font on the Macintosh must have at least one accompanying
bitmap font in suitcase. FontLab Studio will automatically build bitmap
fonts of the requested sizes when you export to Macintosh Type 1 format
and it can do so using one of three methods:

1. FreeType rasterizer built into FontLab Studio. This is the default
choice:

Generate bitmaps for size(s): .10, 12

Use bitmap rasterizer: FreeType (built=in) T‘

2. Adobe rasterizer also built into FontLab Studio. We highly recommend
you to select it in the Use bitmap rasterizer pop-up menu. It’s the
best way to automatically make professional-quality Macintosh Type 1
fonts that will work smoothly everywhere.

3. Mac OS X rasterizer is Apple’s ATSUI rasterizer.

97

98

Generating OpenType & TrueType

These settings control some technical parameters of fonts that you
generate in the TrueType / OpenType TT (.ttf) or OpenType PS (.otf)
format:

[-] Automatically reorder glyphs

;ﬁ\ppend Openfvpe name recordlslmlthe names exp... T]

" !lgnore Unicode indexes in the font
™ Use the OpenType names as menu names on Macintosh

" | Write stored custom TrueType/OpenType tables

Iﬂ Export OpenType layout tables
@ Compile feature definitions

" | Contextual substitutions in invalid legacy format
Use this option only if you know what you are doing

@ Cenerate GDEF table
" | Export VOLT data

Automatically If this option is enabled, FontLab Studio will try to reorder

reorder glyphs glyphs to match the Mac cmap encoding table. Technically,
this is a requirement of the Apple TrueType specification but
it is not required on Mac OS X or Windows.

Writing Name Records

v Append OpenType name records to the names exparted by default
Do not export OpenType name records

Export only OpenType name records - ignore default names

All font naming (family and style names, copyright and version strings etc.)
in OpenType and TrueType fonts are stored in the “name” table. In most
cases, the “name” table contains separate sets of names for the Macintosh
and Windows platforms, sometimes also non-English names are stored
separately.

In the Font Info dialog, naming entries are stored in the “native” form of
the OpenType “name” table (Font Info > Names and Copyright >
Additional OpenType names) as well as in a “friendly” form (all the other
sections of the Names and Copyright section of the Font Info dialog).

With the setting Do not export OpenType name records, the generated
font will obtain its naming only from the “friendly” portions of the Font
Info dialog, i.e. the Basic set of font names page, the OpenType-specific
names page, the Copyright information page etc. The Additional OpenType
names page will be ignored.

With the setting Append OpenType name records to the names
exported by default (recommended), the generated font will obtain its
naming from the “friendly” portions but the information from the
Additional OpenType names page will be appended.

With the setting Export only OpenType name records - ignore default
names, only the “native” naming defined on the Additional OpenType
names page will be written into the font and the “friendly” information will
be ignored. This is a setting suitable for complicated multilingual, esp.
Asian fonts.

99

100

Encoding Options

Ignore Unicode When disabled (recommended), the font will be generated in
indexes in the Unicode mode. The Unicode indexes assigned to the glyphs
font will be used as base for the encoding.

When enabled, the encoding selected in the Names mode will
be used as source of the encoding of the generated font instead
of the Unicode indexes assigned to glyphs.

There are two possible methods of making TrueType Unicode mapping
tables. Unicode mode (This works when Ignore Unicode indexes in the
font is disabled) and Names mode (when the option is enabled).

The Unicode mode is preferred and recommended. In Unicode
mode FontLab uses the Unicode indexes that you assigned to the glyphs
while moving glyphs in the Unicode mode of the Font window or by
entering Unicode indexes in the Rename Glyph dialog box. In the Names
mode FontLab will encode all glyphs in the encoding currently selected in
the Font window (“yellow” glyphs) and put them in the first 256 range of
the TrueType Unicode table. FontLab will put all other glyphs into the
unencoded zone of the Unicode table (starting from the code E000h).

The Unicode TrueType exporting mode is usually used to export fonts that
were imported from TrueType font files and already have Unicode
information. The Names mode is useful when you convert a Type 1 font to
the TrueType format and do not want to worry about assigning Unicode
indexes.

The general rule is simple: if you work with the Font window in Names
mode use the Names TrueType exporting mode. If you work in Unicode
mode use the Unicode exporting mode. Actually, FontLab will show a
warning message if you try to export a font in Unicode mode while you are
in the Names mode of the Font window and vice versa.

What is the “First 256 Glyphs Range”?

When we talk about the “first 256 glyphs” we do not mean those with Unicode indexes in the 0000h
- 00FFh range. We mean those that Windows will see as having codes 00h-FFh when the default
Windows codepage is selected. In most cases the default codepage is the 1252 Latin 1 codepage.

So even if you export a TrueType font in the Names mode the Unicode indexes for the encoded
glyph will be selected from the Windows 1252 codepage.

We recommend opening a Windows TrueType font, switching to the Codepages mode of the Font
window and selecting codepage 1252 to better understand what the “standard” Windows glyphs
are.

Windows Symbol Encoding

If you want to have full control over glyph codes and you want to occupy all 256 glyph cells of the
first-byte range, you should create your font using the Windows Symbol codepage. The Symbol
codepage begins from Unicode index FO00h and continues to FOFFh. All glyphs in this range are
mapped to the 0000h-000FFh range. So the glyph with code FO41h will be seen in Wi ndows as ‘A’
and so on.

To make a font using the Symbol codepage you have two options:

1. Switch the Font window to the Codepages mode; select the Windows Symbol codepage; and
place all glyphs in the codepage. Export the font in TrueType format in Unicode mode.

2. Switch the Font window to the Names mode; select any encoding vector; place glyphs as you
want in the “yellow” area; and export the font in Names mode (Use Unicode indexes as the
base for TrueType encoding should be off).

In either case select Symbol Microsoft Glyph Setin the Codepages page of the Font Info dialog
box. Without this the font will not be exported as Symbol and you will not have access to the glyphs
atall.

The Problem of Glyph 183, “middledot”

The glyph cell with decimal code 183 has different behaviors in Windows 95 and Windows NT. In
Windows 95 it is mapped to the Unicode index 22C5h, but in Windows NT it is mapped to 00B7h. So,
when FontLab exports your font in the Names mode, it automatically assigns both Unicode indexes

to this glyph to make the font compatible with both operating systems.

Use the OpenType When enabled (recommended), the family name and style

names as menu name for the Macintosh platform will be taken from the
names on OpenType-specific font names page rather than the Basic
Macintosh set of font names page. With this setting, Mac OS applications

may group all font styles into one large font family.

When disabled, the naming defined on the Basic set of font
names page will be used as naming records for both
Macintosh and Windows

Write stored When enabled, stored custom TrueType/OpenType tables will
custom be written into the generated font. To view the stored custom
TrueType/OpenTy tables, go to Font Info > Binary and custom tables

pe tables

Export OpenType Please refer to the “OpenType Fonts” chapter for a discussion
layout tables of these settings.

101

102

Digital Signature

This section controls settings for digital signatures that can be included in
the OpenType (TT or PS) fonts that you generate. Please refer to

http://www.microsoft.com/typography/developers/dsig/default.aspx

for more information about digital signatures.

™ Cenerate digital signature (D5IG table)

Path to the certificate file {.spc or .cer):

Path to the private key file (.pvk):

|

|

E‘l Request private key password every time

") Use the following password:

" | Generate the time stamp

Generate digital
signature

When enabled, a DSIG table will be generated that includes an
digital signature. Note that you need to own a valid
Authenticode code signing digital certification to be able to
digitally sign fonts. You should point FontLab Studio to your
certificate file and private key file that you will receive from
your certification authority. It is a good idea to store the
private key file in a safe location, e.g. on a floppy disk or USB
key, although you can use any location.

This option is off by default.
Please refer to the link above for more information

Request private
key password
every time

When selected, FontLab Studio will ask you for the password
for your private key every time you generate a font

Use the following
password

When selected, FontLab Studio will remember the password
for your private key

Generate the
time stamp

When selected, a time stamp will be generated.

Please refer to the link above for more information.

http://www.microsoft.com/typography/developers/dsig/default.aspx
http://www.microsoft.com/typography/developers/dsig/default.aspx

TrueType/OpenType TT (.ttf)

These settings only apply to fonts that you generate in the TrueType /
OpenType TT (.ttf) format:

@ Export hinted TrueType fonts

'21 Write stored TrueType native hinting

E Export visual TrueType hints

W Autohint unhinted glyphs

'25. Export embedded bitmaps

| Copy HDMX data from base to composite glyph

@ Export "mort” table if possible

¥ 05/2 table version 3 1 05/2 table version 2

Export hinted
TrueType fonts

FontLab will export TrueType instructions of any type
(original, manually edited or automatically generated) only if
this option is on.

To create a completely unhinted TrueType font switch off this
option (may be useful for pixel fonts)

Write stored
TrueType native
hinting

If this option is on and the original TrueType instructions
were stored when the font was opened, then FontLab will try
to restore the original instructions where possible. If you want
to discard all the original TrueType instructions, switch this
option off

Export visual
TrueType hints

FontLab Studio will compile the visual TrueType instructions
only if this option is on

Autohint unhinted
glyphs

If this option is on, FontLab will try to automatically generate
TrueType instructions for all unhinted glyphs.

How FontLab Autohints TrueType Fonts on Export

When autohinting is allowed and FontLab finds a glyph that has no TrueType hints of any kind
(original hints imported from the TrueType font file or manually edited visual hints) it begins to
make TrueType hints automatically. If this glyph has Type 1 hinting information, then FontLab
converts this information to visual TrueType instructions and converts the instructions to the
TrueType hinting code. If Type 1 hints are not p resent then FontLab automatically gene rates Type 1
hints as the first step, then converts the Type 1 hints into TrueType visual instructions and converts
the visual instructions into TrueType native instructions.

103

104

Export embedded
bitmaps

If this option is on, FontLab Studio will export embedded
bitmaps if they are present. If you don’t want to save bitmaps
in the font, switch this option off

Copy HDMX data
from base to
composite glyph

If this option is active, FontLab Studio will copy HDMX data
(device and point-size specific font metrics) from the base
component of the composite glyph to the composite glyph if
their metrics are the same

Export "mort”
table if possible

FontLab Studio will attempt to generate the AAT “mort” table
and include it in the generated font

0S/2 table Allows you to select the version of the “OS/2” table in the
generated font. Select table version 2 for maximum
compatibility of your font with older systems

Use CacheTT Please refer to section about Device-Dependent Metrics of the

program to “Font Header” chapter for information.

generate device
metrics tables

TrueType Autohintin g

This section controls the way FontLab Studio performs TrueType

autohinting.

!21 Generate triple hints

[Direct links to center of the glyph where possible

@ Interpolate positions of the cusp points

'21 Generate delta instructions if possible

!21. Add link to the right sidebearing point

Ei. Interpolate positions of double links

Single link attachement precision (7 is default value): 7

Please refer to the “Autohinting Options” section of the “Hinting” chapter
for detailed description of these options.

OpenType TT Encoding

These settings control some advanced re-encoding features for fonts that
you generate in the TrueType / OpenType TT (.ttf) format. These settings
do not apply to OpenType PS fonts.

Use following codepage for first 256 glyphs:

Do not reencode first 256 characters _”

: Export only first 256 glyphs of the selected codepage

Use following codepage to build cmap(1,0) table:
[Mac OS Roman (default)] e !

[Put MS Char Set value into fsSelection field

Use following
codepage for first
256 glyphs

FontLab can optionally reencode the first 256 glyphs of the
font, letting you create a “single-codepage” font for some
codepages. This is very similar to using the Glyph > Glyph
Names > Reencode glyphs command before export.

The list located below this label contains several choices:

v Do not reencode first 256 chalacters
MS Windows 1252 Western (ANSI)
MS Windows 1250 Central European
MS Windows 1251 Cyrillic
MS Windows 1253 Greek
MS Windows 1254 Turkish
MS Windows 1255 Hebrew
MS Windows 1256 Arabic

v

The first option, “Do not reencode the first 256 characters”
means that reencoding is off. All other options in the list let
you select a remapping table to perform reencoding

Export only first
256 glyphs

This option is enabled only if you choose one of the remapping
codepages in the list above.

When this option is on FontLab will export only glyphs whose
codes are in the 0-255 range

105

106

Use following
codepage to build
cmap table

This is a “hack” used in older operating systems (Windows
95/98) to improve handling of single-codepage non-Latin
fonts. It is not required and not recommended, but if you
find that you need to use this hack to get your font to work in
an old OS, just switch on this option and re-export the font

Put MS Char Set
value into
fsSelection field

Encoding information is stored in TrueType and OpenType
fonts in a “cmap” table. Every Windows TrueType font
contains at least two of these tables. One is the Unicode table
and it “assigns” Unicode information to Glyphs. The other is a
single-byte table that is used by older versions of the Mac OS
and by some non-Unicode-compatible Windows programs.

Use the control to select the codepage that will be used to
build this table. There are two special options: Mac OS Roman
(which is the codepage used on the Mac and the default
choice) or Current codepage in the Font Window, which
means that FontLab will use the encoding (yellow zone)
currently selected in the Font window.

OpenType PS (.otf)

These settings only apply to fonts that you generate in the OpenType PS

(.otf) format.

!31 Decompose all composites

Ei. Use subroutines to compress outlines in the CFF table

'21 Autohint unhinted glyphs

@ Use PostScript FontMame as FullName on Windows

Decompose all
composites

When enabled, all composite glyphs in the font will be
decomposed. Recommended for maximum compatibility.

When disabled, the composite glyphs will be exported as such

Use subroutines
to compress
outlines in the
CFF table

Allow to automatically generate outline subroutines if font is
generated as CFF-flavored. Outline subroutines store
repetitive parts of outlines and allow to reuse with references
from outline definition code

Autohint unhinted
glyphs

When enabled, all glyphs that contain no hints will be
autohinted

Use the PostScript
FontName as Full
Name on Windows

When enabled, the PostScript Font Name record will be
copied to the Full Name record for the Windows platform. It is
recommended to keep it enabled on all the time as this is a
requirement of the OpenType specification.

Kerning

These settings control what types of kerning are written into TrueType /
OpenType TT (.ttf) and OpenType PS (.otf) fonts:

@ Export "kern” table

__ Expand class kerning while building [kern] table

yi
¥ [,ener

Ll

@ Generate "kern” feature if it is not defined

Export "kern"

table

When enabled, a plain “kern” table will be included in the font
with the kerning information from the Metrics Window.

When disabled, the “kern” table will not be included.

It is highly recommend to enable this option for TrueType /
OpenType TT fonts. For OpenType PS fonts, the OpenType
specification does not envision the “kern” table to be part of
OpenType PS fonts but it is possible to include the table
nonetheless. Mac OS X and Adobe applications will read and
use this table.

If the plain “kern” table is not included in the OpenType TT
font and the font is used in a non-OpenType-savvy
application, no kerning will be available.

If the plain “kern” table is not included in the OpenType PS
font and the font is used in a non-OpenType-savvy
application, the Adobe font driver will automatically build a
kern table on the fly by using the Western subset of the
OpenType GPOS “kern” feature kerning

Expand class
kerning

When enabled, the plain “kern” table kerning will include
plain kerning generated from the kerning information
available in the Metrics window combined with the class
information from the Classes panel. This may result in a very
large number of kerning pairs

107

108

Generate only
pairs with glyphs
in following
codepage

With this setting, you can subset the expanded kerning. Only
kerning pairs for glyphs included in the specified codepage
will be included in the expanded plain “kern” kerning

Limit total
number of pairs
in the table

With this setting, you can limit the number of kerning pairs
included in the expanded plain “kern” kerning table to a
certain number. The kerning pairs with lesser absolute value
will be removed until the overall number of kerning pairs is
not larger than the limit specified here

Generate "kern"
feature if it is not
defined

FontLab Studio checks if a “kern” OpenType feature is
specified in the OpenType panel. If found, the “kern” feature
will be included as GPOS OpenType kerning.

This option controls what happens if the “kern” feature is not
defined in the OpenType panel.

With this option enabled, FontLab Studio will automatically
generate the “kern” OpenType feature based on the kerning
specified in the Metrics Window and the class information
specified in the Classes panel.

With this option disabled, no “kern” feature will be written
into the font if the feature is not specified in the OpenType
panel.

Trace Options

Easy trace options

How tight a fit should the generated contour be? Normal Iy

Advanced trace options

Trace tolerance (distance from the outline to the bitmap edge):

< less [k
L

more = 1

Curve fit quality (allowed error of curve's approximation):

< less eomfil
g

more > 1.0

Straighten angle (allowed error of straight lines generation):

—

< less

—r more = 3
N

E Tracer may generate curves

ETracer should generate extreme points on curves

How tight a fit
should the
contour be?

This setting includes some presets for the advanced trace
options

Trace tolerance

Allows you to change the distance between the generated
outline and the edge of the original bitmap

Curve fit quality

Allows you to change the accuracy of curve fitting in the
generated outline

Straighten angle

Defines the angle between two lines less than which the
autotracer will replace several lines with one line

Tracer may
generate curves

This option (active by default) allows the autotracer to
generate curves

Tracer should
generate extreme
points on curves

This option (active by default) forces the autotracer to insert
nodes at the extreme points of curves.

109

Editing Fonts

In this chapter we will discuss the editing of fonts. A font is a collection of
glyphs with similar design and some encoding and header information.
The information includes font identification names, copyright data,
character encoding information and other data that is necessary for font
usage. Generating fonts is not discussed in this chapter. Refer to the
“Generating Fonts” chapter for this information.

112

Opening Fonts

With FontLab Studio you can create new fonts or open existing fonts for
modification. When you open an existing font, however, please be sure that
modifying it does not violate copyright laws: some fonts are copyrighted as
software so it is not legal to change them in any font editor. Carefully read
the license agreement that comes with every font.

You can find two (one serif and one sans-serif) royalty-free, non-
copyrighted fonts that you can use as a basis for your own fonts or
characters in the Samples folder or on our website
(http://www.fontlab.com/).

To open a font for editing, select the File > Open command, or click
the &2 button on the toolbar.

http://www.fontlab.com/
http://www.fontlab.com/

You will see the standard Open File dialog box in which you can select a
font file to open. In this dialog box, you will see all the fonts that can be

opened: Mac Suitcase (without extension or .dfont), Mac Type 1,
TrueType/OpenType TT (.ttf), Windows Type 1 and Windows Multiple

Master (.pfb), Unix/ASCII Type 1 (.pfa), OpenType PS (.otf), Ikarus files
(.ik), FontLab 2.5 font files (.vfa), FontLab 3.x/4.x/Studio 5 font files (.vfb),
as well as FontLab Studio Project files (.flw).

Open
(«]v] =} [TestFonts E3
| TestFonts » # ACaslonP__ Regular.otf @ g))
=1 ARIALUNLTTF The r;mx'rf..‘ brows o
] BakiCof x junps over the la
"1 BaltiCBol.otf .
1 BaltiClta.otf Sy dog
] BPirates. TTF
A Caslon.otf
o/
DECORC__.ptrr
: FLCaslon.dfant
¥ FOODLTTF i
“ Georgia.otf b
Show files: " All Font Files) (Options...)
Font name: DecorC
(" New Folder "} |;__' Cancel | @
2

If you want to list only fonts in a particular format, select that format in the

Show Files popup menu:

+ All Font Files

Mac Type 1

Win Type 1
Win TrueType/OpenType TT
OpenType PS

FontLab
FontLab 2.5
FontLab Studio Project

113

114

When you select a font file in the files area, you will see the font name
below and preview at the right.

You can open many fonts with a single operation: just select all of them in
the list with SHirT-click or Cmp-click.

You can set the opening options here by clicking on the Options button.
Please refer to the “FontLab Studio Options” section for a detailed
discussion of the opening options.

You can use File > Open to open fonts located in the system font folders.
But the quicker way is to use File > Open Installed. This will show a dialog
box that displays all fonts installed on your system — choose one and click
on OK to open the font.

Open Installed Font

Select the font:

[Font Name [File Name [size
| FLChiantiONXEd FLChiantiONXBd-Reg.ttf 54K
_"ﬂ FLChiantiONXBd-Italic FLChiantiONXBd-1ta.ttf 53K
| FLChiantiSC FLChiantiSC-Reg.ttf 94K
&| FLChiantiSC-Bold FLChiantiSC-Bol. ttf 80K

| Futura-CondensedExtraBold Futura.dfont 307
Al Futura-CondensedMedium Futura.dfont 307

utura-Medium Futura.dfont 307
4] Futura-Mediumitalic Futura.dfont 307
%| GE18030Bitmap NISC18030.tif &M
I adgetRegular Gadget 85K
%| CeezaPro Geeza Pro.ttf 104
%| GeazaPro-Rald Ceeza Pro Rold rif ROK
The quick brown fox
/Library/Fonts/AmericanTypewriter.dfont

{ Cancel :. —ok—3

Most Recently Used Fonts

All fonts that you recently opened in FontLab Studio are added to the list of
the most recently used font. This list is used in the File menu:

Page Setup...
Print... P

Caslon.otf

Arial test.vfb

Apple Chancery.dfont
Caflisch5criptPro-Light.otf

Next time you want them, just select the font file in the File menu and
FontLab Studio will open it.

Opening Fonts with Drag-Drop

An easy way to open fonts in FontLab Studio is to drag-drop font files from
Finder. Even if FontLab Studio is not running, you can drag-drop files onto
its icon on the desktop or in the Dock to run FontLab Studio with those
fonts open.

71006 [TestFonts =
[« »][z =0 [-] Qselecion | TS
25 FontLab Studio _‘ ACaslonP._egular.otf -
“O8 7 TestFonts 7 ARIALUNLTTF
|

B BaltiC.otf
B BaltiCBol.otf
E BaltiClta.otf

7| BPirates.TTF
A Caslon.otf
DECORC__.afm
DECORC__.inf
DECORC__.PFB
© DECORC__.pfm
| FLCaslon.dfont
I_[% FOODLTTF

TestFonts)

™
L
'Y

3 of 20 selected, 3.35 GB available

I.?\\‘.' = |4

115

116

Font Formats

The .vfb file format used in FontLab Studio 5 is fully backwards-
compatible, so FontLab Studio 5 can open any .vfb file created in
FontLab 3.x and 4.x. The format is also cross-platform-compatible so
.vib files saved from the Windows version can be opened in the Macintosh
version and vice versa. In addition, the format is largely upward-
compatible. This means that a .vfb file saved from FontLab Studio 5 can
be opened in FontLab 3.x or 4.x, as well as other Fontlab Ltd. products
such as TransType or TypeTool. Only those elements of the format that
were supported by the old version will be retained and some information
may change slightly. However, the most important elements of the font
such as key Font Info entries, glyph outlines and kerning pairs will be
retained.

For example, .vfb files saved from FontLab Studio 5 for Windows can be
opened in FontLab 4.6 for Macintosh and vice versa, with as much as
possible information retained.

FontLab Studio 5 also opens .vfa files saved from FontLab 2.5 (but not 2.0).
If you have fonts saved in a proprietary format of another application and
would like to open these fonts in FontLab Studio, the best way is usually to
create a Windows-compatible Type 1 font from your other application and
open the Type 1 font in FontLab Studio. If you wish to move your .fog files
created in Fontographer 3.5 or 4.1 to FontLab Studio, you can use our
FogLamp product that converts Fontographer .fog files into FontLab
Studio-compatible .vfb files, retaining not only outline information but also
mask layers, guidelines, background bitmaps etc.

Creating a New Font

If you want to create a new font from scratch, you select the New command
from the File menu. FontLab Studio will create an empty font that will not
have any characters and will open an empty Font Window.

You can use an existing .vfb file as a new font template for all new fonts
that are created. You can do this in Preferences > Font Window
>Templates:

@ Use following template font to initialize new fonts:

. fUsers/fontlab/Desktop/TestFonts/mm.vwfb

L

Enable the option and select the .vfb file to use as the new font template by

pressing the & button. Whenever you create a new font, the selected new
font template will open. Remember that after the new font template opens,
you should choose File > Save As and save the file under a different name.

When you have created a new font, it is a good idea to first go to File >
Font Info > Names and Copyright, fill in the Family Name and the Style
Name (even if they are temporary). Then press Build Names (you can fill in
the remaining Font Info entries later). Then click on OK, choose File >
Save As and save the new font in the .vfb format under a new filename in a
folder of your choice.

Now you can start to create your glyphs (in the Font Window), design them
(in the Glyph Window), letterspace them (in the Metrics Window). Also,
you should fill in the important Font Info fields (see the “Font Header”
chapter for details). When this is done, you can generate your font in the
font format of your choice, e.g. OpenType PS (.otf), install it on your
system and test it.

117

The Font Window

The Font Window is used to display an entire font. It opens automatically
when you open an existing font for editing or choose to create a new font.

In FontLab Studio you can open many fonts at once and every font will
have its own Font Window. The Font Window is a representation of the
font, so when you close this window the font will also close.

You can do a lot of things using the Font Window — from browsing a font
for a desired character to rearranging and remapping the font to editing
the Font info fields. The following sections of this chapter will tell you how
to use this window.

[& O O Font - FreeFontPro [/\...Users/fontlab/Desktop/TestFonts\freefontpro.vfb]

= Eth eth | Lslazh | Islash [Scaron [searon | Yacute |yacute | HT LF Tharn | tharn CR__[Zcaton |zoaron| B
- D -
pla|e|+[5]g|Y]y blb ARS
DLE DCi DC2 DC3 DC4 |onehalf prequatonesupettht-eequathreesupbwosupebrokenb minus multip! RS us
1" |1 T 13 B2 | =
v | % | ! X
| _space |exclarn quetedbinumbers dollar |percentampersaguotesinparenlefparenrigasterisl luz |eornma |hyphen | peried | slach
" o i *
L 18 (% &) (]) AFBEIC IR
zero ane two | three | four five six_ | seven | eight | nine | colon sernicol] less | equal |greater questior|
0 12|34 |5 |6 |78 |9z)|<|=|>][7F
o = o o
at E c] E F [t} H | o K L [} N a
@ BIC|D|E|F|G|H|I]|J|K|L|M|N|O
o = - - - - - - - - -
E: "] R g T u ¥ W bl i1 2 bracketlbackslasbracketrasciicirqundersc
PIQIRIS|TIUIVIWIXIY[Z|[|\N]|]T|A]|_
- - = - = = - = - 4
grave | a b 3 d & f a h i i k 1 ™ n o :
|[sze w) aa) 0 Name ¥ Names mode][Wac0S Roman ¥ Gyph: A [0041] Selected: 1 /10 7

The Font Window consists of the command bar at the bottom, and a glyph
table, where a single cell represents each glyph:

&

A

Each cell has a caption at the top that shows some identification
information — it may be the name of the glyph, its code in various forms or
some other character information.

Tip: You can change the font size used to display the caption in
Preferences > Font Window > Glyph Cell.

The Font Window command bar has two alternate forms — it can be placed
either at the top or at the bottom of the Font Window.

Size w | o || Name ¥ || Mames mode W || Default Encading i

==
)

Name 4] = Default Encoding i) | U3 A

You can switch between the top and the bottom location of the command
bar by clicking on this button |2 /in the top-right corner of the Font

Window.

The left popup menu located on the Font Window command bar (if in
top position) or the Caption popup menu (in the bottom position) lets you
select one of the caption modes:

% MName T]

Depending on the selection, a different text string will appear in the

caption:

None The caption is not shown

Name The glyphname (the so-called PostScript name of the glyph)
Unicode The Unicode codepoint assigned to the glyph, in hexadecimal form
Index The glyph index, i.e. the physical location of the glyph in the font
Width The glyph’s advance width

Left SB The glyph’s left sidebearing

Right SB The glyph’s right sidebearing

Decimal The local character code in decimal form

Hex The local character code in hexadecimal form

Octal The local character code in octal form

ANSI The ANSI character that corresponds to the local character code
Macro A custom entry that can be shown using a special Python macro

(defined in the init.py file inside of the Macros/System folder). By
default, the entry option shows the number of components in

composite characters but the user can write his own macro to display

other information here.

119

120

The glyph cells may have different colors. By default, the background of the
glyph cell may be grey or white, and the caption may be white, red or
yellow. Additional colors may appear if the user used the Mark command
to color-mark the glyph cells.

A grey cell background means an empty glyph. This means that the
glyph does not exist in the font and that the glyph cell is displaying a glyph
placeholder. The placeholder usually consists of a glyph template image.

FontLab Studio 5 ships with a very extensive set of pre-installed default
glyph template images. These are based on the Andale Mono WTG font
(courtesy of Monotype Imaging, http://www.monotypeimaging.com/) and
cover the entire Unicode 3.2 character set. Note that the default glyph
template images are low-resolution, monospaced and in a “sanserif” style.
They should not be used as direct source of information about the
typographically correct shape of glyphs — but only as an orientation.

0042

B

You can select another set of glyph template images in Preferences > Font
Window > Templates page — refer to the “FontLab Studio Options”
section for details.

A white cell background means that a glyph exists in the font.

If the glyph cell background is white and there is no image in it, we speak
of a blank glyph. A blank glyph means that the glyph exists in the font but
does not contain any outlines or components. If the white cell includes a
pale grey image, it means that the glyph there is a bitmap background in
the glyph but no outline or components.

If the cell includes a black image, it means that the glyph exists and is
non-blank, i.e. it contains an outline or a component.

A yellow caption of a glyph cell means that the glyph is part of the
currently selected encoding, codepage or Unicode range, or, as we say, is
“in the yellow zone” (see next section). Glyphs that are not part of the
current encoding have a grey caption.

http://www.monotypeimaging.com/
http://www.monotypeimaging.com/

A strong red caption with yellow text of a cell means that the character
has some naming conflict: one name is used for different glyphs or the
glyph’s Unicode codepoint does not correspond to its name. You should
usually correct either the glyph name or the Unicode codepoint for glyphs
with red captions.

The small marks that appear in the glyph cell mean:

Left-Top Blue mark Glyph has more than one Unicode codepoint
assigned

Right-Top Yellow-red or Glyph has compatible mask layer
yellow-green

mark
Left-bottom Green or red Glyph has hint replacement program or
‘H’ mark overlapping Type 1 hints. A Green mark means

that the program is correct.

The red “H” mark means that you should
correct the hint replacement program

Right-bottom Brown or blue Glyph has TrueType hints, either original (blue
‘T” mark mark) or manually set visual (brown mark)

Middle-bottom Red rectangular Glyph is a key glyph in the kerning class.
mark

Some characters may be marked with a different color for the caption and
background:

| K N [O | P | & | R | %
JK|L|mNO[P|Q|R|S

Marking is very useful when you need to show visible differences among
characters for easy identification. Read more about that later in the
“Marking Glyphs” section.

When you modify a glyph in any way, a black bar below their caption
appears. The black bar indicates glyphs modified since the last save. When
you save a font, all black bars disappear.

0 [E [F
DIE|F

The “E” glyph has been modified.

121

122

Font Window Command Bar

On the Font Window command bar in the top position you see one
button on the left and five buttons in the right area:

==
i

Name [§] ' Default Encoding ® E N EE
You can switch between the top and the bottom location of the command
bar by clicking on this button |2 /in the top-right corner of the Font
Window.

The left button = opens the Font Info dialog box for the current font.
This is the same as choosing the Font Info command in the File menu.

The first four buttons on the right allow you to select one of the encoding
modes:

wte Switch to the Names mode

ki Switch to the Unicode Ranges mode

| Switch to the Codepages mode

[Switch to the Glyph Index mode

RECD
The last button “= in the Font Window command bar is used to save
current encoding to the .enc file. This command can be reached via
Glyph > Glyph Names > Save Encoding but it is not always available.

The Font Window command bar is not fixed to the top edge of the window.
You can switch between the top and the bottom location of the command
bar by clicking on this button |2/ in the top-right corner of the Font
Window.

In the bottom position of the Font Window command bar, the bar does
not have the Font Info button.

Size il ! Name ¥ || Mames mode W || Default Encading i

It does however contain a Size popup menu that allows you to temporarily
change the size of the glyph cells in the current Font Window. Possible
sizes vary from 16x16 up to 128x128 pixels. Smaller cells occupy less space
but hide details. If you select the smallest size (16x16) you will not be able
to see the additional marks which are visible in cells at larger sizes.

You can also use the next two buttons to decrease () or increase (‘M) the
glyph cell size in the current Font Window.

A sample of the different cell sizes:

&

&

= B] LA LA

16x16 24x24 32x32 48x48 64x64

To permanently change the size of glyph cells in all Font Windows, go to
Preferences > Font Window > Glyph cell > Each cell should have
dimensions of, and set the size of the glyph cells.

As mentioned previously, the Caption popup menu allows you to choose
the caption text. The next popup menu allows you to switch between the
different modes, and is equivalent to the four buttons in the top position:

!Mames mode W

= Mames
Unicode ranges
Codepages
Index

The third popup menu is equivalent for the Encoding menu in the top
position of the command bar, and is discussed later. The current glyph
name and Unicode codepoint as well as the total quantity of glyphs are
shown in the right part of the command bar in the bottom position.

123

124

Glyph Naming
and Character Encoding

Support for almost all known character indexing methods is one of the key
FontLab Studio features.

Here’s how it works:

A font is just a big collection of glyphs that are used to represent many
characters (more about that in the following section). On an average screen
the Font Window can show just a few hundred character cells, so we need
to have some method to browse the font “through” the Font Window. And
on the other hand, different font formats use different methods to encode
characters.

In FontLab Studio you can choose one of four so-called Encoding modes
that allow you to select a subset of the glyph collection and show it in the
top part of the Font Window for easier access. Four buttons in the Font
window top command bar or the Mode popup menu in the bottom
command bar are used for the encoding modes selection in FontLab
Studio.

In the following sections you will find more information about encoding
modes, Unicode and name-based identification and the character-glyph
model.

Characters, Codes and Glyphs

A font is a collection of glyphs that usually have a common design. In
addition to storing each glyph, a font has some header information that
stores general information about the font such as the family name, the
style name, the copyright string, the ascender and descender values, and
others. For more discussion about the font header information see the
“Font Header” chapter.

Simply speaking, text in digital form is a collection of character codes (or
“codepoints”) — integer numbers. When you enter text into a computer,
the computer turns the keystrokes that you press on the keyboard into
integer number and assigns a number (character code) to each character
that you enter. When the computer needs to show some text on screen or
print it, it accesses a font and turns the character codes into visual shapes.

A character encoding standard is (simply speaking) a table that defines
the relation between characters and the codes that are used to represent
these characters in the computer.

Character Encodings Standards

There are many other character encoding standards (sometimes called
codepages) used in the world to help use different languages — in fact, the
huge amount makes the use of the word “standard” questionable.

The main difference between the encoding standards is the size of the code.
There are one-byte, double-byte and multi-byte mapping standards. With a
one-byte mapping standard, each character in the text is encoded using
exactly one byte (8 bits of information). This means that only 256 different
characters can be encoded in a particular one-byte encoding standard.

A double-byte mapping standard uses two bytes (16 bits) for every character.
So it’s possible to map 65,536 characters. Multi-byte mapping standards use
from one to four bytes for every character — expanding the code space to
billions of characters.

The biggest problem of single-byte encoding standards (codepages) is the
limited capacity. With only 256 slots (available codepoints), usually only
characters from one alphabet (writing system) can be encoded. It is not
possible to encode e.g. Latin and Cyrillic text in the same codepage.

125

126

Pie¢ flakonow wody ,, 9x3emnnaps”.
actual text

Pie¢ flakonéw wody ,, Yeclédé du”

text encoded as Windows 1250 (Central European)

Pixox flakonyw wody ,,Ox3eMnaps”
text encoded as Windows 1251 (Cyrillic)

256 character codes are not even sufficient to encode various accented
(diacritic) characters from different languages that use the Roman alphabet.
This is why separate codepages were created for Western European
languages (English, German, French etc.), Central and Eastern European
languages (Polish, Czech, Hungarian etc.), Baltic languages (Latvian,
Lithuanian, Estonian etc.) and so on. In addition, different companies
assigned character codes differently. For example the letter & (adieresis) is
represented using the character code 228 in the Windows Western codepage
used by Microsoft and using the character code 138 in the Mac OS Roman
codepage used by Apple. The confusion becomes evident if you realize that
the same code (138) in the Windows Western codepage is used to represent
the S (Scaron) that... does not have its own codepoint at all in MacOS
Roman. On the Macintosh, it is only available in the MacOS Central
European codepage, under the code 225.

The Unicode Standard

Fortunately, one predominant character encoding standard has gained
popularity in the past years: the Unicode Standard (or short, Unicode). It
assigns unique character codes (codepoints) to practically all characters
used by humanity. & has the character code 00E4 (in hexadecimal notation,
which corresponds to 228 in decimal notation but for Unicode codepoints,
usually the hexadecimal notation is used) and 8 uses the codepoint 0160 (352
in decimal).

a =~ 97 0x0061 § — 1103 0x044F

14

a - 225 o0xeeEl N - 1488 0x05D0

3 - 261 ox0105 @ > 9787 0x263B
9

a - 945 0x03B1 ;f:% — 32244 Ox7DF4

Unicode is a character coding system designed to support the interchange,
processing, and display of the written texts of the diverse languages of the
modern world. In addition it supports classical and historical texts of many
written languages. Modern operating systems such as Mac OS X or
Windows 2000/XP use the Unicode Standard as the default way to store
text. Similarly, modern font formats such as OpenType and TrueType use
Unicode to store character information.

Unicode can use up to four bytes to encode a character, it is theoretically
possible to encode 4,294,967,296 characters, although the Unicode
Consortium agreed that no more than 1,114,109 codepoints will ever be
assigned. In the current (as of September 2005) version 4.1 of the Unicode
Standard, a total of 97,786 codepoints have been assigned (less than 9% of
the possible space). The vast majority of the codepoints are Asian (CJK:
Chinese, Japanese, Korean) characters.

65,535 codepoints are encoded in the so-called Basic Multilingual Plane
(BMP). The codepoints in the BMP are two-byte, so four hexadecimal
digits are used to write the codepoint (e.g. 0160). In addition, more
characters are encoded in supplementary planes. They use 5- or 6-digit
codepoints, e.g. 1D56C.

Visit the Unicode Consortium official Web site for more information:

http://www.unicode.org

127

http://www.unicode.org
http://www.unicode.org/

128

The Character and Glyph Model

People recognize and process characters by their shapes. Thus, people
normally closely associate a character and its shape. Information
technology, in contrast, makes distinctions between the concepts of a
character’s meaning (the “character”) and its shape (the “glyph”). In
information technology, characters are abstract information elements used
for data coding and interchange while glyphs are presentation elements
used for displaying and printing the data.

Unfortunately, different literature and different standards define the
border between characters and glyphs differently. For the purpose of font
technology, a glyph is a single element of the glyph collection stored within
a digital font file while a character is a text encoding codepoint used in text
processing. Glyphs are used to visualize characters. Each font has a
different glyph for the same character, for example all the glyphs:
AANRAAAAAareusedto visually represent the same character ‘A’
(Unicode codepoint 0041).

In short: characters are codes, glyphs are images.

Even within the same font, there is no 1:1 relation between characters and
glyphs. The same glyph can be used to represent two characters, the Latin
letter A (Unicode codepoint 0041) and the Cyrillic letter A (Unicode
codepoint 0410).

0041 0410

A A

On the other hand, multiple glyphs can be used to represent the same
character — an OpenType font can include alternate glyphs.

A A.3lt1 h.alt2 Aspashl Aawash2 Aswashd A.swiashd hswiashs A.awash?

Al A|A|A &2 A A A A

Characters and Glyphs in FontLab Studio

When a text editor displays text on screen using a font, a process of
character-to-glyph mapping must occur. The application sends a request to
the font rasterizer for a rendering of a character code. The font rasterizer
looks up the character code in the character mapping table that is
included in the font. The mapping table maps character codes to glyph
indexes of individual glyphs. Then, the rasterizer located the glyph using its
glyph index in the glyph collection of the font. Finally, the rasterizer
produces the image of the glyph at a specified size and sends it back to the
application.

Find glyph in font _1 | U I l/_
O I I I e aSSﬁciatg)d with 006D 55 Produce
sooton each code 106C 6E image of
ore tex the glyph
as codes l m n ©avP

79

78—

0068006FOE6DOOES 0 L

As discussed earlier, captions of glyph cells in FontLab Studio may display
various kinds of information. The following ones represent important
properties of glyphs that are all involved (one way or the other) in the
character-to-glyph mapping process.

The glyph index represents the physical location of the glyph in the font’s
collection of glyphs. The glyph with the index 0 is physically the first glyph
in the font. Some applications such as Adobe InDesign display the physical
order of glyphs in a Glyph Palette so it is wise to keep control of the glyph
order.

The glyphname is a short text identifier for the glyph. For example, the
glyphname for the character a is a, and for the character a is adieresis.

It is a good idea to assign meaningful glyph names to all glyphs in your font
regardless of the font format. They are mandatory in Type 1, Multiple
Master and OpenType PS fonts. Theoretically, they can be omitted in
TrueType or OpenType TT fonts it is a good idea to use them everywhere.

129

In most situations, FontLab Studio automatically assigns glyphnames to
glyphs when you create a new glyph so you don’t need to worry about them
too much. However, many user interface elements of FontLab Studio use
glyphnames as the primary way to refer to glyphs, for example the Classes
panel or the Metrics Table in the Metrics Window. Therefore, you should
get used to thinking about glyphs in terms of glyphnames.

Certain conventions must be obeyed when devising glyphnames for custom
and non-standard glyphs (e.g. swashes or ligatures), and they will be
discussed later in this chapter.

The Unicode codepoint is a hexadecimal number associated with a
glyph. Hexadecimal (short: hex) numbers are written using the digits 0-9
and the letters A-F (usually uppercase). A Unicode codepoint can have 4 to
6 hex digits. Typically, each glyph has one Unicode codepoint. However,
fonts may include glyphs with no Unicode codepoint assigned (so-called
unencoded glyphs) or glyphs with more than one Unicode codepoints
assigned (so-called double-encoded glyphs).

The glyph Properties panel (Edit > Properties) displays the glyphname
and the Unicode codepoint of the glyph that is currently active in FontLab
Studio (either selected in the Font Window or opened in a Glyph Window).

& Glyph Properties

Font: FreeFontPro

WTE A ring

v [

UM "nocs

In addition to the Unicode codepoint, each glyph usually has an additional
local character code that is depending on the encoding or codepage
currently selected in the Font Window.

The rule of thumb is: the encoding of OpenType fonts depends on the

Unicode codepoints assigned to the glyphs. The encoding of Type 1
fonts depends on the local character codes of each glyph.

130

Font Window Modes

The Font Window can be presented in four modes that can be used to browse
the font’s glyph collection using certain criteria. In some cases, the Font
Window mode also influences the encoding of the final generated font —
particularly for Type 1 fonts. The four modes of the Font Window are the
following:

1.

Names mode. This mode lists encoding tables. Each encoding table
is an ordered list of glyph names and may also include local character
codes that correspond to some of the glyphs.

An encoding table performs one of two functions: it serves as a Type 1
encoding table that is used to determine the character encoding in
Type 1 fonts, or it can serve as a glyph arrangement table. The
latter is used by type designers to visually arrange glyphs in the design
stage, usually of an OpenType font, and is not directly used as the
source of the font’s encoding (as OpenType fonts are based on
Unicode).

Since an encoding table is based on glyph names, it can reference both
encoded glyphs (i.e. those with at least one Unicode codepoint
assigned) and unencoded glyphs (those without Unicode
codepoints).

Codepages mode. This mode lists codepages. Each codepage is a
mapping of local character codes to Unicode codepoints. The codepage
can use one- or two-byte local character codes. Two-byte codepages are
used to reference characters in Far-East fonts: Chinese, Japanese,
Korean or Traditional Vietnamese.

A codepage selected in the Codepages mode can be used as the source
of encoding of a Type 1 font, or as the source of encoding of a Mac
TrueType mapping table, but generally, the selection does not
influence the encoding of an OpenType or TrueType font.

A codepage can only reference encoded glyphs (i.e. those with at
least one Unicode codepoint assigned).

131

132

Unicode Ranges mode. This mode lists Unicode Ranges. Since the
Unicode Standard is a huge code space, it is divided into a number of
blocks, so-called ranges to help users navigate between the codepoints.
Usually, a range is designed to cover a single writing system (script),
such as Cyrillic, Armenian or Thai.

The selection in this mode does not in any way influence the actual
encoding of an OpenType or TrueType font.

A Unicode range can only reference encoded glyphs (i.e. those with
at least one Unicode codepoint assigned).

Index mode. This is the simplest glyph identification mode: all
glyphs are shown in the exact physical sequence as they are stored in
the font file.

Glyph indexes are used to reference glyphs in Python scripting, they
are used internally in TrueType and OpenType tables to reference
glyphs, and they are sometimes exposed to the users, e.g. in the glyph
palette in Adobe InDesign.

The Index mode shows all glyphs in the font, both encoded and
unencoded.

Names Mode

To switch the Font window to the Names mode, click the " button
on the Font Window command bar (top position) or choose the Names
mode from the Mode popup menu (bottom position).

The Encoding popup menu (top and bottom position) shows the encoding
table currently assigned to the font. When you open the popup menu, you
will see many encodings that are installed and available in FontLab Studio.
In the bottom position of the Font Window command bar the encodings
are shown in groups.

An encoding table performs one of two functions:

e Type 1 encoding table
e glyph arrangement table

As a Type 1 encoding table, an encoding table is used as the source of
the character encoding in Type 1 fonts or (in some rare cases) TrueType
fonts.

As a glyph arrangement table, type designers use an encoding table to
visually arrange glyphs in a particular order during the design process of a
font (Type 1, TrueType or OpenType). Such a glyph arrangement table can
be used as a “visual map” for the font family so the designer knows what
glyphs need to be designed in all members of the family — this way, you will
not miss an important glyph.

There is no visual distinction in the Encodings list between Type 1
encoding tables and glyph arrangement tables. Any encoding table can
theoretically serve either function. In order, in FontLab Studio the same
user interface element (the encoding tables) serve two different purposes.

133

134

An encoding table is either just a sequential list of glyph names or maps
local character codes to glyph names. FontLab Studio will look up the
glyphs in the current font that have glyph names specified in the encoding
table and will present the glyphs visually in the sequence specified by the
encoding table. If the encoding table is used as a Type 1 encoding table, the
same mapping will be written to the Type 1 font and used as its encoding.

41 42 43 20 20 space | exclam
5A 5D 6F 55 | 21 exclam «
56 57 58 59 |:| 22 quotedbl quotedbl
5A 5B 5C 5D ' | 23 numbersign # numbersign
5E 5F 60 | 24 dollar $ dollar
.| 25 percent Y
41 A ©» percent
42 B A A
B B
Source text Encoding table Font
as sequence CTTTonTTrT T
of codes Identification of characters in the font

We will now discuss the most common encoding tables included in
FontLab Studio.

Type 1 Encoding Tab les

Type 1 encoding tables are used as source for the character encoding in
Type 1 fonts as well as Multiple Master fonts (whenever we speak of Type 1
encoding, the same applies to Multiple Master).

Type 1 fonts have two fundamentally different kinds of encoding:
Standard Encoding and custom encoding.

The rule of thumb is that a Western Roman Type 1 font should be encoded
using Standard Encoding, and a non-Western Type 1 font (e.g. Central
European, Cyrillic, Greek) should use custom encoding.

With the default settings of FontLab Studio, if any encoding from the
Type 1 Western/Roman group is active in the Font Window, the Type 1
font will be generated using Standard Encoding. If a different encoding is
active, the font will be generated using custom encoding that will exactly
reflect the active encoding table.

Type 1 Western/Roman group

If Preferences > Generating Type 1 > Encoding Options is set to Select
encoding automatically or Export Unicode codepage..., then FontLab
Studio will generate a Standard Encoding-encoded Type 1 font if one of the
encodings from this group is active. Please refer to the “FontLab Studio
Options” section for more discussion on this. Use any of these encodings
when you are working on a typical Western Roman Type 1 font. If you are
working on a Western Roman Type 1 font that will be generated as
Windows Type 1 and as Mac Type 1, use MacOS Roman as your encoding
since this will give you the entire character set that is required to be
present in your font.

Adobe The “native” representation of the Adobe Standard Encoding
Standard Encoding

Default Encoding The simulation of what a Standard Encoding-encoded Type 1
font will appear to the user if installed on the current operating
system

MS Windows 1252 The simulation of what a Standard Encoding-encoded Type 1
Western (ANSI) font will appear to the user if installed on Microsoft Windows

MacOS Roman The simulation of what a Standard Encoding-encoded Type 1
font will appear to the user if installed on Mac OS. Use this
when you are working on a typical Western Roman Type 1 font.

135

136

Type 1 non-Western groups

If any of the encodings from these groups is active, the Type 1 font will be
generated with custom encoding if Preferences > Generating Type 1 >
Encoding options is set to any value except Always write Standard
Encoding.

These encodings can be used as the source of encoding for single-codepage
non-Western Type 1 fonts, e.g. Mac Cyrillic or Windows Greek. If you're
creating a non-Western Type 1 font, make sure to select the appropriate
encoding here, and also set the matching character set in File > Font Info
> Encoding and Unicode > Microsoft Character Set and Mac script and
FOND ID. Only a combination of the correct encoding in the Font Window
and the correct character set setting in Font Info will give you a working
non-Western Type 1 font.

Example encodings in this group:

MS Windows 1251 Encoding for a Windows Cyrillic Type 1 font
Cyrillic

MacOS Cyrillic Encoding for a Mac Cyrillic Type 1 font

Adobe Symbol Encoding for fonts that include mathematical and symbol
characters, defined by Adobe.

“Imported” Encoding

If Preferences > Opening Type 1 > Find matching encoding table if
possible is enabled, when FontLab Studio opens a custom-encoded Type 1
font, it will try to match the font’s encoding to known custom encodings. If
the encoding cannot be matched, “Imported” is shown. The “Imported”
encoding will also appear if the user opens a .vfb file that uses an encoding
not present on this user’s machine.

The user can choose Glyph > Glyph Names > Save Encoding to save the
imported encoding into a new .enc file so next time, FontLab Studio will
match the encoding correctly.

Glyph Arrangement Tables

Type designers use any encoding table as a glyph arrangement table,
i.e. to visually arrange glyphs in a particular order during the design
process of a font (Type 1, TrueType or OpenType). Such a glyph
arrangement table can be used as a “visual map” for the font family so the
designer knows what glyphs need to be designed in all members of the
family — this way, you will not miss an important glyph.

For example, if your font contains several glyphs representing the ‘A’
character, like “A.smcp” (for use with the small caps feature), “A.titl” (for
use with the titling alternates feature), “A.swsh” (for use with the swash
feature), “A.subs” (for use with the subscript feature), it could be a good
idea to have them appear close to each other in the Font Window:

= | 5 |Name ﬂ = |.f-‘-. Glyph Definition Encoding j
Azmep A Arweh | Asubs

A A Al L

You can easily build a glyph arrangement table yourself — this is explained
in the next section.

Remember that if you choose any glyph arrangement table in the Names
mode, the glyphs will be displayed in FontLab Studio in the order that you
specified, but the physical arrangement (sequence) of the glyphs in the font
is still determined by the Glyph Indexes. To view the Glyph Indexes
sequence, switch Font Window to the Index mode. You can automatically
sort glyphs according to your glyph arrangement table by choosing Glyph >
Sort Glyphs > By Encoding.

137

138

Also remember that when you create OpenType or TrueType fonts, the
encoding table in the Names mode serves as a glyph arrangement table and
not as a source of encoding

Normally, OpenType and TrueType are based on Unicode, so the Unicode
codepoints that you assign to each glyph are the source of the character
encoding. To make sure the encoding of your OpenType or TrueType font
is correct, switch to the Unicode Ranges or Codepages mode. You can
automatically assign Unicode codepoints to your glyphs by using Glyph >
Glyph Names > Generate Unicode.

Note: Type 1 encoding tables can be also used as source for TrueType

encoding if Preferences > Generating OpenType and TrueType > Ignore
Unicode indexes in the font is enabled. This may be useful if you need to
generate a single-codepage non-Western TrueType font for old systems
such as Windows 3.1 or Windows 95, but in most cases, it’s recommended
to keep the said option disabled and use Unicode encoding rather than
Type 1 encoding tables as source of TrueType.

When you activate a different encoding in the Font Window, you will see
that the characters in the Font Window are rearranged. Some characters
will move below “the yellow zone”. Remember that only characters that are
“in the yellow zone” are covered by the currently selected encoding.

Unicode Ranges

In Unicode the standard character space is divided into planes (defined by
the first byte of the three-byte codes). Each plane (indexes 0 — 65,535) is
divided into ranges. Each range typically covers characters that belong to
one alphabet or have common properties, like the Cyrillic range or the
Hebrew or the Extended Latin.

Ranges may be of various lengths — from a few characters to several
thousand characters (in the case of Kanji characters).

In FontLab Studio you can select any Unicode range and view your font as
organized by the range. All characters with Unicode codepoints in the
selected range will be arranged in order in the yellow zone at the top of the
Font window.

In order to simplify working with Unicode ranges in FontLab Studio all the
“official” ranges in the Unicode standard are subdivided into subranges.
You can work with the whole range or select one of the subranges. For
example, you can select the whole Cyrillic range that includes all currently
used and historic Cyrillic characters, or you can select just the historic
letters or only the Russian alphabet.

139

140

To select a range in the Font Window:

1.

Switch the Font Window to the Unicode Ranges mode by clicking the
Ranges Wi button.

The encoding selection popup menu will show the names of all
available Unicode ranges and subranges:

i=' €0 Controls and Basic Latin . E!
|C0 Contro's and Basic Latin G
C0O contrisls
ASCI

C1l Controls and Latin-1 Supplemeant
|50 8859-1 (aka Latinl)
[Latin Extended -4
[Latin Extended-B
Latin extended -B
African letters for clicks
Croatian digraphs matching Serbian
Finyin diacritic-vowel combinaticns
Additions
B o e e .|
Range names are aligned to the left of the list box and the subranges'
names are indented to the right.

Select the range or subrange that you want to work with and you will
see the Font Window change so that only characters from the selected
range are in the yellow (encoded) area.

The definitions of the Unicode ranges and subranges may be changed.
They are placed in a text file that you can edit in any text editor. You can

add your own ranges or subranges that, for example, may include only one
character whose placement is very important to you.

Codepages

Codepages are tables that map character codes (one byte long) to the
Unicode indexes. Depending on the size of the page, these tables may have
256 or 65,536 records, one for each possible character code. Long
codepages are called double-byte codepages and are primarily used to
represent codes used in Chinese, Japanese, Korean or Vietnamese
languages.

Codepages are necessary because we need to somehow encode text written
in different languages in the one-byte code space. So when we have a text
file encoded according to some codepage, we use the codepage table to find
which characters were used in this text. We may have two different texts
with the same code 192 (decimal), but in one case it may mean the Russian
‘A’ and in the other case it may mean ‘A’ (Agrave).

Codepages are used not only to identify characters, but also to simplify text
sorting, conversion of lowercase to uppercase characters, spell-checking
and in many other applications where it is necessary to know which
characters are used in the text.

141

Because the Unicode character identification standard covers most
languages it is usually used as the destination information in the codepage
tables. Here is an example of fragments from two different codepages that
map the same codes to different Unicode codepoints:

MS Windows 1252 Western MS Windows 1251 Cyrillic

0xCO 0x00CO 0xCO 0x0410
0xC1 0x00C1 0xC1 0x0411
0xC2 0x00C2 0xC2 0x0412
0xC3 0x00C3 0xC3 0x0413
0xC4 0x00C4 0xC4 0x0414
0xC5 0x00C5 0xC5 0x0415
0xC6 0x00C6 0xC6 0x0416
0xC7 0x00C7 0xC7 0x0417
0xC8 0x00C8 0xC8 0x0418
0xC9 0x00C9 0xC9 0x0419
0xCA 0x00CA OxCA 0x04T1A
0xCB 0x00CB OxCB 0x041B
0xCC 0x00CC 0xCC 0x041C

Many different codepages have been defined for many languages and
different operating systems. FontLab Studio 4.6 includes descriptions for
300+ codepages — all the known Windows, OS/2, MS DOS, Mac OS
codepages plus a few others like the Polytonal Greek, Russian KOI-8 and
NeXT Step codepages.

In FontLab Studio a codepage is a filter through which you can “look” at
your font to see how it will work in different environments. For example,
you might include many Unicode characters in your font and see how it
would work if it was installed in OS/2 with the Arabic language selected.
This gives you the opportunity to easily create fonts that will be properly
encoded and will always work correctly.

142

To select a codepage in the Font Window:

1. Switch the Font Window to the Codepages mode by clicking the
Codepages * button.

2. The encoding selection popup menu will show the names of all
available codepages:

{E' MacOS Roman f!
IMac OS5 FEoman m
MacOS Apple Corporate PUA

MacOS Arabic

MacOS Central Europe

MacOS Chinese Simplified (ELUC-CH-
MacOS Chinese Traditional (Big5-hasec
MacOs Chinese Traditional (ELJC-TW-
MacO5 Croatian

MacOS Cyrillic

MacOS Devanagari

MacOS Dingbats

IMacOS Farsi

hdm m T T emm e

ry

Mac OS codepages come first, MS Windows codepages follow. All other
codepages are sorted according to their names.

Since all codepages are divided into groups they are available in
submenus of the Encoding menu if the Font window command bar is
in bottom location.

3. Select the codepage that you want from the list and you will see the
Font Window change. All the characters that are in the codepage
appear “in the yellow zone”. All other characters are in the “white” area
below. Select the MS Windows 1252 Western (ANSI) codepage and you
will see how your font will look in the Windows standard (Latin 1)
codepage.

All codepages in FontLab Studio are defined in editable text files, so you
can change any codepage if you think it is wrong (please let us know!) or
you can define your own codepage. We do not recommend changing any of
the codepages supplied with FontLab Studio. They are extensively tested
and are based on the documents from the companies who supply them.

143

144

Put your custom codepage definitions (.cpg files) into the [Shared user data
folder]/Codepage folder (typically Macintosh HD/Users/Your Username/
Library/Application Support/FontLab/Codepage) if you want to make the
codepages available to all recent Fontlab Ltd. applications, or in the
[Application user data]/Codepage folder (typically Macintosh HD/Users/
Your Username/Library/Application Support/FontLab/Studio 5/
Codepage) if you want to make the codepages available within FontLab
Studio only. Refer to Preferences > General Options > Folders and
paths for the actual locations of these folders. All custom .cpg files should
be located in one of these folders.

Double-byte

If your font contains many characters from one of the Far-East languages
you may need to use double-byte codepages. If you select one of these
codepages, you will see an additional control to the right of the codepage
selection list in the toolbar:

:=* 1S Windows 950 Chinese Ti (3] T ... %]
211 | 5212 | 520E | 5216 | 524A% | 5308 | 5321 | 5320 [5

MR A% e EE

o o o
10E [3404 | 5411 [3400 | 5403 | 3403 | 540E | 3406

¥ & M % S kE

or on the Font window bottom command bar:

Peges mode W || M5 Windows 950 Chinese™| AG e

This control allows you to select a “page” of the codepage. Theoretically, we
may have 256 pages of 256 codes each, which give us 65,636 codes. In
practice none of the known codepages has that many codes and usually less
than half of that number.

Advanced Glyph Naming and Encoding

Custom Glyph Naming

General provisions

Theoretically, the OpenType specification permits the designer not to
supply any glyph names at all (at least in case of OpenType TT fonts).
However, realistically, it is essential to create fonts with glyph names that
fulfill the recommendations detailed below.

When fonts are embedded in electronic documents or sent to a printer,
under some circumstances only the information about the glyphs (their
glyph indexes, names and outlines) are retained, while the encoding
information (the associated Unicode codepoints) is lost. The electronic
document “looks right” but the underlying text streams are obscured or not
available. In such cases, meaningfully constructed glyph names can be
used as a help to rebuild or at least approximate the original text. A
practical example: the user creates a text document that uses an OpenType
PS font. The document is printed to a PostScript file. Since PostScript does
not support OpenType PS, the font is embedded in the print stream as
Type 1. The OpenType information such as layout tables or Unicode
codepoints is lost. If Acrobat Distiller is used to convert the PostScript file
to a PDF document, the application first tries to locate the original
OpenType PS font on the user’s system: if the font is found, Distiller is able
to use its original Unicode codepoints and embed them in the PDF
document. But if the original OpenType PS font is not available to Distiller
(for example because the PS-to-PDF conversion happens on a different
machine), Distiller embeds the Type 1 font found in the PostScript stream,
with no Unicode information. Now, when the text in the PDF document is
being searched, copy-pasted or otherwise extracted by an application such
as Acrobat or Google, the application can attempt to rebuild the Unicode
codepoints basing on glyph names included in the embedded Type 1 font.
For Latin or Cyrillic scripts, the recreated text will likely be a very close
match of the original; for Thai or Hindi, the text recreated that way will
probably be only a crude approximation, with letters arranged in incorrect
sequence, and some information missing. But yet, some is often better than
nothing.

145

Users of the Unicode Standard familiar with the character-glyph model
know that the relationship between glyphs and characters is not a simple
one-to-one mapping.

A glyph in a font can represent the default form of a character. Such glyph
needs to have the Unicode codepoint of the represented character
assigned. For example, the glyph with the glyph index 4 representing the

character $ (U+0024, poLLAR siGn) has the Unicode codepoint 0024 assigned
in the Unicode field of the Properties panel. The glyph’s name is dollar.

A glyph in a font can also represent a variant form of a character. For
example, a font can include a glyph that represents the default form of the

character @ (U+0061, LATIN SMALL LETTER A) as well as glyphs that depict

stylistic variants of that character: a small-cap variant, a swash variant, etc.
The glyph that represents the default form should have the name a and the
Unicode codepoint 0061 assigned in the Properties panel. The variant
glyphs should different names constructed according to guidelines outlined
below. An appropriate OpenType Layout feature should allow the font
user to produce the particular variant on the screen — the use of an
application and operating system that supports OpenType Layout features
is a prerequisite. To allow the user access to the variant glyphs in
applications that support Unicode but do not support OpenType Layout
features, each of the glyphs may have a PUA (Private Use Area) Unicode
codepoint assigned — but they may also remain unencoded.

A glyph in a font can represent the default form of more than one
character. Here, several cases need to be differentiated.

Adobe Systems: OpenType, Advanced Typography. http://store.adobe.com/type/opentype/#adv

146

http://store.adobe.com/type/opentype/#adv

First, several characters can have identical appearance, so the same glyph
could serve as the default representation of each of those characters. In
such case, the Unicode codepoints of all the represented characters are
entered in the Unicode field of the Properties panel, separated by spaces.
For example, the glyph with the glyph index 66 with the shape of the letter

a could represent two characters: U+0061 (LATIN SMALL LETTER A) and U+0430

(CYRILLIC SMALL LETTER A). In this case, the Unicode field in the Properties
panel would have the entry 0061 0430. The glyph name is a. Generally
however, assigning multiple Unicode codepoints to one glyph is not
recommended, in particular when creating OpenType PS fonts. The
designer should rather duplicate the glyphs, assigning no more than one
Unicode index to each of them (note that one of the glyphs can refer to the
other one as a component).

Another case is that one glyph represents several Unicode characters at a
time. For example, the glyph

”

represents an accented character LATIN CAPITAL LETTER E WITH ACUTE AND DOT
BeELOw (used in African languages such as Yoruba). This character does not
have its own codepoint in the Unicode Standard so it needs to be encoded
as a series of characters. It is encoded as E, followed by dot below, followed
by acute (U+0045 U+0323 U+0301). Another example is the glyph

which is a ligature of f followed by f followed by k (U+0066 U+0066 U+006B).
In such cases, again, the appropriate OpenType Layout features must be
used to produce the glyphs. The glyph name should be constructed
accordingly and the glyph may have a pua Unicode codepoint assigned.

The following sections present a summary of the Adobe/FontLab glyph
naming guidelines. These guidelines unify recommendations by Adobe
Systems and those by Fontlab Ltd.

147

148

Glyph name limitations

A glyph name must not be longer than 31 characters. The glyph name
consists of a base name, optionally followed by a period (.), which is then
followed by a suffix. Both the base name and the suffix may only include:
uppercase English letters (A-Z), lowercase English letters (a-z), European
digits (0-9), and underscore (_). Other characters such as spaces are not
permitted! A glyph name must start with a letter or the underscore
character — with the exception of the special glyph name “.notdef” that

starts with the period. For example, “twocents”, “a1”, and “_” are valid glyph
names, while “2cents” and “.twocents” are not.

Simple glyph names
Review the Adobe Glyph List for New Fonts (AGLFN):

http://partners.adobe.com/public/developer/en/opentype/aglfn13.txt

If your glyph represents a character listed in AGLFN, use the glyph name
listed there. Instead of using arbitrary names (e.g. “middot™), use
standardized names listed in AGLFN (“periodcentered”).

Review the Unicode Standard code charts. If your glyph represents a
default form of a character encoded in the Unicode Standard but not listed
in AGLFN:

a) for BMP codepoints (codepoints less than FFFF), use the name “uniXXXx”,
that is lowercase “uni” followed by a four-digit Unicode codepoint written
using uppercase hexadecimal digits. Note that “uni” must be lowercase and
XXXX must use uppercase letters for hexadecimal digits, so “uni01EB” is a
valid glyph name but “uniO1eb” or “Uni01Eb” are not.

b) for smp codepoints, use the name “uXXXXX” or “uXXXXxX”, that is

lowercase “u” followed by 5 or 6 uppercase hexadecimal digits representing
the codepoint.

Glyph names with suffix

If your glyph represents an alternate form of a character that is encoded in
the Unicode Standard or is listed in AGLFN, use the glyph name of the basic
form as the base name, followed by a period, followed by a suffix.

For the suffix, use the tag of the OpenType Layout feature that you would
most likely access that glyph through.

http://partners.adobe.com/public/developer/en/opentype/aglfn13.txt
http://partners.adobe.com/public/developer/en/opentype/aglfn13.txt

For example, for a small-caps A, use “A.smcp”, for a stylistic alternate R use
“R.salt”, for a swash Q use “Q.swsh”, for a superior m use “m.sups”, for a
tabular 5 use “five.tnum” etc. If there are multiple OpenType Layout
features that can be used to access a glyph, pick the one that is the most
prominent. If a combination of features should be used to access your
glyph, order the appropriate feature tags alphabetically and concatenate
them using the underscore glyph (“_"). For example, for a proportional old
style 2 use “two.onum_pnum”, for a swash small-cap E use
“Egrave.smcp_swsh”.

Compound glyph names

If your glyph represents a “compound character”, i.e. a ligature or an
accented character that does not have a precomposed Unicode codepoint,
and if the character is not explicitly listed in AGLFN or the Unicode
Standard, construct the compound glyph name as follows.

For each element of the compound character, take the base name (or the
entire glyph name if there is no suffix). Concatenate these using
underscore to make the compound base name.

For each element of the compound glyph that has a suffix, concatenate the
suffixes using underscore to make the compound suffix. You may eliminate
duplicate suffix elements.

“© _»

For example, for a ligature of the glyphs “c” and “t”, use “c_t” as glyph
name. For a ligature of the glyphs “f”, “f” and “i”, use “f_f_i” as glyph name.

)

For a ligature of “longs” and “i” use “longs_i” as glyph name. For a ligature of
the glyphs “F.smcp”, “F.smcp” and “l.smcp”, use “F_F_l.smcp” as glyph name.
For a ligature of the glyphs “R.salt” and “s.sups”, use “R_s.salt_sups” as glyph
name. For the African E character use the glyph name

“E_dotbelowcomb_acutecomb”.

If each element of a compound glyph name represents a BMP character, you
can use an alternative way of building the base name, which can potentially
produce a shorter glyph name. The glyph name starts with “uni” and must
be followed by unseparated groups of four uppercase hexadecimal digits
representing the Bmp codepoint of each element. So instead of
“E_dotbelowcomb_acutecomb”, you can use the name “uni004503230301”.

Remember that a glyph name should be no longer than 31 characters, so
you may need to abbreviate the name if needed.

149

150

Symbol glyph names

If a glyph does not represent a Unicode character, but rather is an
ornament, a non-textual symbol etc., you can use a glyph name of your
liking (but adhering to the limitations outlined earlier). If you assign pua
codepoints to these glyphs, you can create the glyph names using the
“uniXXXX” scheme, where XXXX represents the pua codepoint.

Additional naming guidelines

Refer to the Adobe guidelines for additional guidelines on making glyph
names, especially for creating complex glyph names that involve “uniXxxx”
and “uXXXXX” glyph names as elements:

http://partners.adobe.com/public/developer/opentype/index_glyph.html

Assigning Unicode codepoints

Refer to the Unicode Standard code charts and assign proper Unicode
codepoints to the glyphs discussed in the section Simple glyph names
earlier.

As discussed above, if the more than one Unicode character share the same
glyph shape, two approaches are theoretically possible:

a) create multiple glyphs with identical content but different names, and
assign one Unicode codepoint per glyph; for example, create a
“periodcentered” glyph and encode it as U+00B7, and create a “uni2219” glyph
and encode it as U+2219. One of the glyphs can refer to the other one as a
component. This is the approach recommended by Fontlab Ltd. for
OpenType fonts, in particular for OpenType PS fonts.

b) alternatively, either assign multiple Unicode codepoints to your glyph;
for example, for “periodcentered”, assign U+00B7 and U+2219.

http://partners.adobe.com/public/developer/opentype/index_glyph.html
http://partners.adobe.com/public/developer/opentype/index_glyph.html

Private Use Area codepoints

For glyphs discussed in 0 — 0, you may assign custom codepoints from the
Unicode Private Use Area (PuA): from U+E000 to U+F8FF. However, you also
may choose to leave these glyphs unencoded (not assign any codepoints).

For some applications (e.g. Microsoft Word 2003 for Windows), assigning
PUA codepoints may be the only way to display such glyphs in your font, so
it is practical to assign PuA codepoints. On the other hand, pua codepoints
are completely custom, so there is no way that exchangeability of
documents can be guaranteed. Also, the text that is set using pua
codepoints is “garbled” (spelling, hyphenation, search & replace won'’t
work). So this is only a short-sighted interim measure.

Some font developers (e.g. Adobe) assign pua codepoints to glyphs that do
not have proper Unicode codepoints, while others (Microsoft, Bitstream,
Linotype, Tiro Typeworks) leave the glyphs unencoded.

151

152

Custom Encoding Tables

Encoding tables are a useful mechanism to filter and view your glyphs in different arrangements.
You can put a large number of glyphs into one font, assign a unique name to each character, and
supply several encoding tables, allowing you to select different sets of characters in the font when
you use different encodings.

For example, in symbol fonts the Greek charactersake places that are usually occupied by Latin
characters. With the encoding tables you can include both sets of characters. Just assign the correct
names (like alpha for the ‘A’ character and A for the ‘A’ character) and later you can choose the
symbol encoding to work with the Greek version of your font or choose Roman encoding to use the
Latin characters.

In FontLab Studio you can include up t0 6,400 glyphs in a font. If you need a font editor that
supports more glyphs (up t065,535), Fontlab Ltd. offers AsiaFont Studioa multibyte font editor that
is the “bigger brother” of FontLab Studio.

All encodings are stored in text files that can be edited in any text processor.

To create a custom encoding file:

1. Copy the .encfile located in the[Shared default data folder/Encoding/T1 non-Western
folder to use as the basis for your new encoding file.

2. Open the copied file in any text editor (Macintosh TextEdit will do) and then edit it, following
the same structure that you find in the original file.

3. Change the name of the encoding and the encoding index in the first line of the file. The first
line should have the following stricture:

%%FONTLAB STUDIO ENCODING: 7; Adobe Symbol Encoding

“%%FONTLAB STUDIO ENCODING: ” is the prefix of the file used to detect properly made
encoding files and must not be changed. Note the space between “’ and the encoding index.

‘7' is the index of the encoding vector. You must not change the encoding vector indexes of any
of the encoding vectors or they will become unusable. If you make your own encodings the
indexes of your files should not be used in any of the other files. The actual value of thenidex is
not important, so you can assign indexes like 1001 or 10001.

The last part of the first line, Adobe Symbol Encoding ”, is the name of the encoding vector. It
starts at the first nonspace character after ’;". Pick a name on your own and type it there e.g A
Glyph Definition Encoding” - use plain English letters, digits or simple punctuation such as [1()
but avoid too many special characters in the encoding name. Do not use ampersand (&).

4. Change the name of the group in the second line of the file:
%%GROUP:My Custom Encodings
The group name will become the submenu title in the Encoding popup menu. Note that there

is no space after the "' character. We recommend using your foundry name or your personal
name in the encoding group name.

5. Edit the contents of the encoding table, e.g.:

%%FONTLAB STUDIO ENCODING: 1001; A Glyph Definition Encoding
%%GROUP:My Custom Encodings

A.smcp

Atitl

A.swsh

A.subs

If the encoding table will be used as source of Type 1 encoding, each glyphname should be
followed by a space, followed by a decimal character code, e.g

%%FONTLAB STUDIO ENCODING: 1001; A Glyph Definition Encoding
%%GROUP:My Custom Encodings

A 65

B 66

ce67

D68

6. Save this encoding file with a different file name but be sure to use the .enc file extension. Put
the .encfile in the [Shared user data folderl/Encodingfolder (typically
Macintosh HD/Users/Your Username/ Library/Application Support/FontLab/Encoding) if you
want to make the encoding available to all recent Fontlab Ltd. applications, or in the
[Application user data folder]/Encodingfolder (typically Macintosh
HD/Users/Your Username/Library/ Application Support/FontLab/Studio 5/Encoding) if you
want to make the encoding available within FontLab Studio only. Refer to Preferences >
General Options > Folders and paths for the actual locations of these folders. Al | custom .enc
files should be located in this folder!

Restart FontLab Studio to see the new encoding will appear in theEncoding selection popup menu.

153

154

Custom Unicode Ranges

The Unicode ranges definition file is located in the Macintosh HD/Library/Application
Support/FontLab/Data folder and has the name URANGES.DAT. To view this file, open it in a text
editor. You will see the following text:

%%FONTLAB STUDIO UNICODE RANGES
0x0000,0x007F,CO Controls and Basic Latin
0x0000,0x001F, CO controls

0x0020,0x007F, ASCII

0x0080,0x00FF,C1 Controls and Latin-1 Supplement
0x00AO0,0x00FF, 1SO 8859-1 (aka Latin1)
0x0100,0x017F,Latin Extended-A

0x0100,0x017F, European Latin
0x0180,0x024F,Latin Extended-B

The first line of this file is an identification line. It should not be changed or FontLab Studio will not
accept this file as a valid Unicode range definition file.

All other strings have the same structure:

<first index of the range>, <last index>,<range’s name>

Note that there is no space before a name range’s name but there are four spaces before a
subrange’s name. Using this simple method you canrident ranges’ names as you wish.

We do not recommend you to replace the existing URANGES.DAT file. Put your owrtopy of the file
in the [Application user data folder]/Datafolder (typically Macintosh HD/Users/Your Username/
Library/ApplicationSupport/FontLab/Studio 5/Data). Refer to Preferences > General Options >
Folders and paths for the actual location of the Aoplication user data folder.

Custom Codepage Definitions

Codepage definition files (extension CPG) are text files that have the following structure:

%%FONTLAB STUDIO CODEPAGE: 0xFFFF; MS Windows 1251 Cyrillic
%%GROUP:MS Windows

%%UN2/UN2
0x00 0x0000
0x01 0x0001
0x02 0x0002
0x03 0x0003

The first line of this file is an identification line that is used to set the codepage name and tell
FontLab Studio that this file is a properly composed codepage definition file. This line must be
started by the text:

%%FONTLAB STUDIO CODEPAGE: OXFFFF;
The name of the codepage follows.

The second line identifies the codepage group name. The group name will become the submenu
title in the Codepage popup menu. Note that there is no space after the ' character.

All other strings starting with ‘%’ are comments and are not interpreted by FontLab Studio.

The following strings are formed as pairs of two integer numbers in decimal or hex (starting with
“0x") form. The first number is the code of the charater and should be in the 0-255 range. The
second number is the Unicode codepoint of the character and should be in the-®85535 (0-FFFFh)
range. The special Unicode codepoint OxFFFF is used to define codes that are not mapped to any
character.

155

Using the Font Window

The glyph chart in the Font window is a visual representation of all the
glyphs in the font. To modify the font you have to learn how to use the
glyph chart: navigate, select glyphs and select commands.

156

Navigating

One of the glyphs in the Font window is the “current” glyph. It is specially
highlighted:

You can see the current glyph name and its Unicode codepoint in the
bottom command bar:

Glyph: A [0041] Selected: 1/ 1030

To view different parts of the font in the Font window you can either
use the vertical scroll bar or the auto-scroll mode: if you place the mouse
anywhere in the chart; press the mouse button; and move the mouse
cursor above the top or bottom of the chart it will scroll up or down
accordingly selecting the glyphs.

You can also use the SpAcE key to scroll the Font window. Press the space
key, press the mouse button and drag the mouse to scroll the window
vertically. If you have a wheel on your mouse you can use it to scroll the
Font window vertically.

Alternatively you can use the keyboard keys to navigate in the font chart:

Arrow keys Moves the current glyph highlight one cell right, left, up
or down, according to the key used

Ctrl+Right arrow Moves 2 cells right

Ctrl+Left arrow Moves 2 cells left

Page Up and Page Down Moves the glyph highlight one screen up or down

Home Moves the glyph highlight to the leftmost glyph on the
current row

End Moves the glyph highlight to the rightmost glyph on the
current row

Ctrl+Home Moves the glyph highlight to the first glyph on the chart

Ctrl+End Moves the glyph highlight to the last glyph on the chart

157

158

Selecting

In addition to the current glyph you can select sets of glyphs in the font
chart. These selections behave similarly to selected text in a text editor —
you can copy selected glyphs to another place in the font or to a different
font; you can apply different effects to the selection; etc. Selected glyphs
have inverted colors. The last selected glyph is the current glyph:

(IEECSN LR 0045

D s

0052 0032 0054 0050 | O0SE

Y Z

[HEry - [

VoW

To select one or more cells, press the mouse button on the first or last
cell of your selection and drag the cursor across the cells you want to select.
You will see the selection highlighted. If you drag the cursor outside the
visible part of the chart, it will scroll accordingly. To cancel your
selection, click on any glyph cell.

Alternative: Using the navigating keys on the keyboard, set the current
cell highlight on the first (or last) cell of a selection, then press the SHiFT
key. Move the current cell highlight (as described earlier) to select the cells.

Selection does not have to be continuous. If you press the Cmp key, you can
select and deselect cells in any order and combination.

Context Menu

Most commands available in the Font window can be selected from the
context menu.

To open the context menu, Ctrr-click or press the right mouse button
anywhere in the chart area or just push the Spack key once.

Here is a sample of the Font window context menu:

Width [
Action...
Marlk |23
IETTEN select Encoding
_ Select Modified Glyphs
Open Glyph Window Add SUFRY ta Nan
Properties...
Macro [—

159

160

Here is what the commands mean:

Width Allows you to easily select one of the predefined widths of the
Font window. The width is defined in cells.

Copy Copies the selected glyphs onto the Clipboard. Same as the Copy
command from the Edit menu

Paste Places glyphs from the Clipboard into the font starting from the

first selected cell. Same as the Paste command from the Edit
menu

Append Glyphs

Appends glyphs from the Clipboard to the current font

Delete Deletes the selected glyphs. Same as the Delete command from
the Edit menu

Action Opens the Actions dialog box. Refer to the “Actions” chapter for
more detailed information about actions. Same as the Action
command from the Tools menu

Add Note Adds a Note to the current glyph

Rename Opens a rename dialog box

Mark Marks the selected glyph(s) a color. Allows you to select one of the
five predefined colors, one of 255 custom colors, or remove the
marking

More Submenu with more commands (described below)

Open Glyph Creates a new Glyph window and opens the current glyph in it

Window

Properties Opens the glyph properties panel for the current glyph or selected

glyphs.

Contents of the More submenu:

Select Encoding Selects the current encoding — the yellow zone at the top of the
font chart

Select Modified Selects all glyphs which were modified since the last font save
Glyphs

Add Suffix to Opens the Glyphname Suffix dialog box allowing to rename

Name selected glyphs by adding suffixes, or replace existing suffixes.
Glyphname suffixes are useful when working with OpenType
Layout features

Current Glyph is Selects and marks the current glyph as the “default glyph” that
Default is used in Type 1 fonts to represent glyphs that are not present
in the font

Remove Unicode Removes the Unicode codepoints in the selected glyphs

Save Encoding Saves the currently selected encoding to an .enc file.

161

Moving Glyphs

You can change the positions of glyphs in the font chart just by moving
them to a new place. Note that moving glyphs is an undoable operation.

To move glyphs in the font chart:

1. Select the glyphs that you want to move.

2. Position the mouse cursor on the selected glyphs.
3. Press the mouse button.

4. Drag the glyphs to the new position. Release the button to finish
moving,.

If you move glyphs over the cells of existing glyphs, you will see a dialog
box prompting you to choose whether to replace the existing glyphs or save
them by moving them to the end of the encoding:

You have dropped glyphs at the places used by
the glyphs with names listed below

: 0

maamoa

@ Keep replaced symbols under new names

(cancel) (_Replace}

Leave Keep replaced symbols under new names checked to save the
glyphs (I.e. put the new glyphs in the cells and move the existing glyphs to
cells at the end of the encoding) or clear it to replace them (I.e. delete the
existing glyphs).

162

Note that even if source selection is not continuous the destination
selection will be continuous:

0041 0042 0043 QEeeELil 0045 0046 0047 el 0049 0044 O04B

A B CIBlE F G K

Nansen Tans s Tanen Tames Tamern Tansr Tansr Tramean Tan=d Tansa Tan== T -

If you are working in the Codepages or Names mode, when you move
glyphs they get new names but keep their old Unicode codepoints. You

must assign proper codepoints later.

If you are working in the Index mode, moving glyphs is used to manually
rearrange their physical sequence in the font. When you move glyphs they

will not replace the glyphs at the destination location but instead the

moved glyphs will be inserted in front of the existing glyphs. The names
and Unicode codepoints of the moved glyphs are retained in this case. To
rearrange the physical sequence automatically, use Glyph > Sort Glyphs.

163

164

Saving the Font

Most of the font-modification operations are not undoable, so we
recommend you save your work regularly.

To save a font that you have opened from an existing font file (in
FontLab Studio format) or imported (from other format), use the File >
Save command or click on the Save || button on the Standard toolbar.

To save all opened fonts click the File > Save all command or this
button on the Standard toolbar: .

Font(s) will be saved in FontLab Studio format (.vfb extension) to the
folder where the original font was opened.

If this option in the General Options > Open & Save page of the
Preferences dialog box is active:

@ Create backup files

FontLab Studio will save the previous version of your font in the same
folder as the currently saved .vfb file but will use the .bak file extension
instead. If you would like to go back and open the previous (backup)
version of your .vfb file, use File > Open, navigate to the folder in that you
saved your file and open it.

If you are working with a new font or you want to select the
destination folder or change the name of the file, use the File > Save As
command.

Please note that you cannot save fonts with more than 6,400 glyphs. If you
try to save a bigger font you will see a warning message that will
recommend splitting a font into smaller parts. If you want to work with
bigger fonts consider using our AsiaFont Studio product. More information
about it is available at this page:

http://www.fontlab.com/asiafontstudio/

http://www.fontlab.com/asiafontstudio/
http://www.fontlab.com/asiafontstudio/

After you select File > Save As in the menu, you will see the standard File

Save dialog box:

Save
Save As: freefontpro.vfb B
[«]»] fEi{ﬂ}] [TestFonts I-¢"]
==l Fontlab Studio
= BRR=
(" New Folder) (" Cancel) @
b

Choose the destination folder, enter the file name and click Save to save

your font in FontLab format (.vfb).

See the “Generating Fonts” chapter to know how to save fonts in other

formats.

165

166

Autosave

If you want to protect yourself from system or program crashes you can use
the Autosave function that will periodically save the current font.

To activate and customize this feature, open the Preferences dialog
box and select the General Options > Open & Save page.

You will see the Autosave controls:
" | Autosave fonts every 10 minutes

Use the check box to activate Autosave and enter the time interval (in
minutes) at which you want to save the font.

Font will be saved into the Autosave folder within the Application user data
folder, typically Macintosh HD/Users/Your Username/Library/
Application Support/FontLab/Studio 5 and will be named using the
following structure:

flsX.save.vfb, where fls are the first letters of Font Name and the X is some
unique value.

If Autosave was active and you have a system or program crash, you can
open your last saved font from the Autosave folder.

Copying and Pasting Glyphs

To copy selected glyphs, select the Copy command from the Edit menu.
Note that this copies not only the glyph outline, but also the glyph
information, such as its name. The selected glyphs will be placed in the
Macintosh Clipboard and can be pasted into the same font or into
another font by the Paste command from the same menu. Glyphs from the
Clipboard will be placed starting from the first selected glyph in the
destination font. If the destination position is occupied by existing glyphs a
warning dialog box appears:

You have dropped glyphs at the places used by
the glyphs with names listed below

: 0

maamoa

@ Keep replaced symbols under new names

(cancel) (_Replace}

Leave Keep replaced symbols under new names checked to save the
glyphs (I.e. put the new glyphs in the cells and move the existing glyphs to
cells at the end of the encoding) or clear it to replace them (I.e. delete the
existing glyphs).

167

168

If you select the Cut command instead of the Copy command the glyphs
will be copied to the Clipboard but will be deleted from the source
positions.

If you prefer to use the drag-drop method to copy glyphs within a font
window you may do this with the help of the Cmp key. To make a copy of a
glyph, select it (you may select many glyphs at once); position the mouse
cursor on the selection; press the mouse button; press the Cmp key; and
drag the selection to the place where you want it to be copied. It is
important to have the Cmp key pressed when you release the mouse
button.

The Paste Special Command

When the common Paste command is used all the glyphs’ layers are pasted
from the Clipboard including guidelines, bitmap background, mask etc. To
get more control over the pasting procedure use the Paste Special
command in the Edit menu. The Paste Special dialog appears:

Paste Special

Select one or more glyph layers you want to paste:

Outline

Left sidebearing
Right sidebearing
Adv. width

Left Kerning
Right Kerning

OO EERE

Mask
Cuidelines -
Sketch v

" Use the measurement line while copying sidebearings

_lignore destination selection, map glyphs by name

(Cancel) (0K }

to let you choose what glyph information you are pasting. Check the
checkboxes in the list for information that you want to be pasted.

Check Use the measurement line while copying sidebearings to
calculate glyphs' sidebearings on the basis of the measurement line. Read
more about this line in the "Glyph Window" chapter.

If you want to replace glyphs with the same names just switch the Ignore
destination selection, map glyphs by name option.

Click OK to finish pasting glyphs.

When pasting with this special command the destination selection does not
have to be continuous, i.e. you can select cells to be replaced in any order
and combination. The selection is ignored if you choose to map glyphs by
their names.

169

170

Copying Glyphs to Another Font

You can use two methods to copy glyphs from one font to another:

1) Use the Copy and Paste (Paste Special) commands from the Edit
menu as described, or

2) Drag them to the other font and drop them there. The drag-drop
method is easier and more visual.

Appending Glyphs to the Font

Instead of the Edit > Paste command you can use the Append command
from the Font window context menu to add glyphs from the Clipboard to
the font.

When FontLab Studio appends glyphs, it respects the glyph names and
Unicode codepoints, so on the first attempt glyphs will be placed in the
expected code positions in the font.

Here is an example. Your first font contains Latin glyphs but has no Cyrillic
glyphs. A second font is a Cyrillic font with the matching style and you
want to add Cyrillic support to the first font.

1. Select the Cyrillic glyphs in the second font (this will be easy if you
select the 1251-Cyrillic codepage or the Cyrillic Unicode range) and
copy them to the Clipboard.

2. Return to the first font; CtrL-click the Font window; and click on the
Append Glyphs command in the context menu:

Width b

Copy
Paste

Append Glyphs
Delete

3. The Cyrillic glyphs will be appended to the font with their correct
Unicode codepoints and names, so you will not have to re-map the
font.

agrave | sacute [acircum| atilde [adieres] aring [e [ccedilla] sgrave] cacure ecircum|¢d|¢r¢ { igrave [inaute ||c|rcum|1|d|¢r¢ i ath [neilde [agrave
a o 5
<l m In|o
minz |. lafii10 03 0 0 fiil0 0 fil00Fafiil 00 Fafiil 00 Fafiilga

mmmnmom

2 \ - -

e|e|e

JafiilO0Eafiloogafiil 00

afiil00gafii

HIO a

171

172

Copying Composite Glyphs

If you copy composite glyphs (instead of having their own outlines
composite glyphs are built from references to other glyph outlines) to
another font, FontLab Studio will try to not decompose (replace references
to glyph with actual glyph copies) them. Instead it will try to find matching
components in the glyph set that was copied or, if some components are
not present there — in the destination font.

If FontLab Studio can completely restore composites in the destination
font it will even keep TrueType hinting programs for these glyphs.

Drag-Drop of the Composite Glyphs

If you prefer to use the drag-drop method to copy composite glyphs you
have one additional option: when you drop a composite glyph and FontLab
Studio finds that one or more of its components were not selected to copy
and do not present in the destination font, it shows a message asking you if
you want to copy all the missing components. If your answer is Copy, then
FontLab Studio will automatically append all the necessary components to
the destination font so that all the composites stay unchanged. Otherwise
FontLab Studio will decompose glyphs.

Note: The described behavior is possible only when both the source and

destination fonts have the same Font UPM value.

Duplicating Unicode codepoints

In FontLab Studio you may assign more than one (up to 63, actually)
Unicode codepoints to a glyph. Visually this means that a glyph that has
several Unicode indexes will appear several times when one of the Unicode
modes (Ranges or Codepages modes) is selected in the Font window. All
copies of the glyph are marked by a small blue mark in the left-top corner
of the glyph cells.

To make a duplicate of a glyph, select it (you may select many glyphs at
once); position the mouse cursor on the selection; press the mouse button;
press the CommanD and OptioN keys; and drag the selection to the place
where you want it to be duplicated. It is important to have the CommanD
and OprtION keys pressed when you release the mouse button.

You can later correct Unicode codepoints assigned to the glyph by using
the Rename Glyph dialog or the Glyph Properties panel (described later).

173

174

Deleting Glyphs

To remove glyphs from the font
1. Select the glyphs that you want to remove.

2. Select the Delete command from the Edit menu or from the popup
menu. Or, press the BAcksPAcE (or DELETE) key on the keyboard.

3. A dialog box appears asking you if you are sure that you want to delete.

Note 1: Deleting glyphs from the font is not undoable, so save your work
before deleting glyphs.

Note 2: If you are in Unicode mode and deleting glyphs with the blue
mark in the top-left corner, they may be removed without any questions
because they are just one of the indexes of a multi-Unicode glyph.

Creating New Glyphs

If you want to create a new glyph in an empty place in the font (a grey cell
in the Font window), double-click the cell.

If you want to create a group of new glyphs with a single command, select
the cells and use the Glyph > Create Glyphs command.

If the selected cells are occupied by existing glyphs a warning dialog box
appears as when you paste from the Clipboard.

If you are creating glyphs “in the yellow zone”, names and Unicode
codepoints are assigned to the newly created glyphs according to the
selected encoding table.

You also can use the Glyph > Create Glyphs If Empty command to create
new glyphs only in the cells that are not occupied by existing glyphs. This
command is available only for the encoded glyph cells.

By default, the newly created glyphs will be blank and will have a default
advance width. If Preferences > Font window > Create Glyphs
command generates them if possible is enabled, FontLab Studio will
attempt to generate the glyphs that are being created. For example, if your
font includes the basic English letters and some diacritic marks, and you
try to create some Western or Central European accented glyphs, they will
be automatically generated so the appropriate components will be placed
into the glyph. See the section on Generate Glyphs command.

If Preferences > Font Window > Templates > Put glyph template
images in Background layer when creating new glyphs is enabled,
FontLab Studio will automatically place the grey glyph template images
into the bitmap Background layer. You can use these as reference for
drawing your glyphs or autotrace them using one of the Tools >
Background commands

175

176

Marking Glyphs

Sometimes you need to visually differentiate groups of glyphs to easily
examine and select them.

With marking you can add color to a glyph cell in the Font window. There
are five predefined colors: red, blue, green, magenta and cyan and a
command for selecting a custom color.

Marking is useful when you want to add structure to a font — for example,
make a visual difference between digits, uppercase and lowercase glyphs. If
you want to use this information internally (in macros), we recommend
you use glyph classes (described in the “OpenType Fonts” chapter), but if
you only want to have visual differentiation, marking is OK:

0020| 0021 | ooga 0023'0024 0025|0026 O02T | 0025 | 0023 | 0024 | 0026 | 002G | 0020 | O02E | O02F
o 0

n 1 #*

: # LS % | & (1) N I P I
o 1] Ju] o Ju]

0030 | 003 | 0032 | 003% | 0034 | 0035 | Q036 | 0037 | 0038 | 0033 | 003A | 0036 | 003C | 0030 | 003E | 003F

v o]
0070 | 0071 | Q072 | DOF3 | 0074 | Q0TS | GOTE | 0077 | OOTE | 007S | OOTA | OOTE | 0OTC | 007D | OOFE | 0OTF

i‘gqrstutvwxyz{|}bimg

Ju] o o

To mark the glyphs, select them in the Font window; Ctrr-click; and select
the marking color in the Mark submenu of the context menu:

[

More
Red

Open Glyph Window Blue
Properties... Green
Magenta
Cyan

Macro

Custom...
T —

To remove marking, select the marked glyphs; Ctri-click; and select None
in the Mark menu.

To mark the selected glyphs with a custom color, select the Custom
command in the Mark submenu of the context menu. You will see the
following dialog:

Mark

™ Mark glyphs

&
W

Mark value; 1

(Cancelll { OK \}

Enable the checkbox and use the slider to select your custom color or enter
its numeric value in the edit box. Click OK to mark the glyphs.

To simplify repetitive marking operations you can open the Mark toolbar
in the View > Toolbars menu:

8 Mark

H BH B B N

To remove the color mark, click on the “None” button within the Mark
submenu/toolbar, or uncheck the checkbox in the Custom Mark dialog.

177

178

Searching for Glyphs

Sometimes you need to find a particular glyph in your font, especially in
large fonts. Select the Find command in the Edit menu or press CMp+F or
CMD+BACKSPACE on the keyboard. You will see a dialog box:

Find Glyph

‘Name I%) begins with 3] |

| Create unexisting glyph i | Cancel) r Ok ‘}

To find a glyph:

1. Inthe left-top popup menu select the method by which you want to
search for the glyph:

Name Searches for the glyphname

Code Searches for the decimal local character code of the glyph in
the current encoding or codepage

ANSI character Searches for the glyph that is mapped to one of the ANSI
glyphs in the selected codepage or encoding

Unicode index Searches for glyphs with Unicode codepoint attributes given

Width Searches for glyphs with the width in the selected range

Bottom, Top Searches for glyphs whose bottom or top line falls in the
specified range

Components Searches for glyphs that have the specified number of
components

Glyph index Searches for glyphs with their index attributes given.

2. Inthe popup menu to the right of the method select the comparison
factor: begins with, equals to, less than, more than, etc.

3. In the right-top editing field enter the information (depending on your
selection) that will be used to find the glyph.

4. The names of all the glyphs that match the criterion will appear in the
list.

Find Glyph
‘Name %) [begins with %)
A 0041 m
AE 00Ce
AEacute 01FC
AEacute.small
AEsmall A
Aacute oocl v
Total: 28
| Create unexisting glyph v [Cancel) (aK),a

Select the glyph name that you want (its preview appears in the
preview panel) and press OK, or enter more information to narrow
your search.

Use the buttons at the bottom of the dialog box for additional
features:

to select all found glyphs in the Font window

to mark all found glyphs in the Font window in red.

These features are very useful for managing big fonts. For example: open
the Find Glyph dialog box; change it to Names mode and enter ‘A’ as the
search pattern. In a standard Latin font it will list all glyphs that begin with
the uppercase A:

A

Aacute
Acircumflex
Adieresis
AE

Agrave
Aring

Atilde

If you mark or select them, you can easily create a glyph group that you can
use in advanced features, like class-based kerning or OpenType features.

179

I Renaming Glyphs

Usually it is not necessary to manually rename glyphs because their names
and Unicode codepoints are assigned automatically when you move glyphs
in the Font window. But if you want to see the information and correct it,
select the Rename Glyph command from the Glyph menu. Or just press
Cmp+)\ on the keyboard.

You will see a dialog box:
Rename Clyph

Current glyph name and Unicode index(es):

e S

Uy 0053

New glyph name and Unicode index(es):

HAE S, new

| v

Ux ‘oos3 NE:

Options:
| Replace existing glyphs with the same name or Unicode index
w7 Keep replaced glyphs with the new name or Unicode index
__ Rename glyph in all classes

Rename glyph in OpenType code

Rename Next Glyph | Cancell_.- { OK :}

In the top part of the dialog box you see the current name and Unicode
codepoint (indexes) of the glyph. In the middle there are two edit fields
where you may change the information. Below them lie the options
controls.

To change a glyph’s name enter a new name in the Name field. If this
glyph has a properly assigned Unicode codepoint and you want to find the
name mapped to that index in FontLab Studio’s database press the Auto
button to the right of the edit field and FontLab Studio will fill in the Name
field for you.

180

If the option Replace existing glyphs with the same name or Unicode
codepoint option is not checked then, if you enter a name that is already
assigned to one of the font’s glyphs, the OK button will be disabled and you
will not be able to assign that name. Switch the option on to allow FontLab
Studio to replace glyphs. Use the next option to control how FontLab
Studio does the replacement.

Use the Unicode edit field to change a glyph’s Unicode codepoints. You
may enter more than one Unicode codepoint separated by a space. Use the
Auto button to find the Unicode codepoints mapped to a glyph’s name in
FontLab Studio’s database.

Rename glyph in all classes — this option will automatically change the
glyph name in all classes that contain the glyph being renamed.

Rename glyph in OpenType code — this option will automatically change
the glyph name in all OpenType features that contain the glyph being
renamed.

Press the OK button to assign a new name to the glyph. You will see that
the glyph moves to a new place in the Font window depending on the
currently selected encoding vector, Unicode range or codepage.

If you want to rename more glyphs, press the Rename Next Glyph button.
A new name will be assigned to the current glyph (as if you had pressed the
OK button) and data from the next glyph will appear for editing.

To just change the existing glyph name suffix, choose More > Add Suffix
to Name from the Font Window context menu, choose a new suffix and
enable Replace existing new suffix.

To rename glyph names in an OpenType Layout feature definition code,
click on the Rename glyph in OT code button on the OpenType panel.

181

Reencoding the Font

In FontLab Studio you can assign names from the encoding vector to
glyphs that are sorted in the Font Window according to a different
encoding vector. Or you can assign Unicode codepoints from one codepage
to the currently selected (different) codepage if the Font window is in
Codepages mode.

In this operation FontLab Studio takes encoded glyphs (glyphs that are in
the yellow zone of the Font window’s glyph chart) one by one and assigns
names or Unicode codepoints from the encoding vector (or codepage) that
you select.

To reencode glyphs, select the Names or Codepages mode in the Font
window. Select the Names mode to assign new names and the Codepages
mode to assign new Unicode codepoints. Then select the Reencode Glyphs
command from the Glyph > Glyph Names menu.

Depending on the selected mode you will see one of the following dialog
boxes:

Reencode Font

Current codepage: MS Windows 1252 Western (ANSI)
Select destination codepage:

MS Windows 1252 Western (ANSI) Q
M5 Windows 1250 Central European

M5 Windows 1251 Cyrillic

MS Windows 1253 Greek

MS Windows 1254 Turkish

MS Windows 1255 Hebrew

MS Windows 1256 Arabic i
MS Windows 1257 Ralric

Clyph names will be automatically recalculated during this
operation.

) Move glyphs to the new codepage

_) Copy glyphs

W Re-generate all glyph names

[Cancel) \(oK)

Codepage version of the Reencode Font dialog box

182

Reencode Font

Current encoding: MacQS Roman

Select destination enceding:

Imported
FreeFont

[TIRO-prod] Euro-Latin basic

[TIRO-prod] Euro-Latin typographic

[TIRO-prod] Euro-Latin/Cyrillic basic

[TIRO-prod] Euro-Latin/Cyrillic typographic
[TIRO-prod] Euro-Latin/GreekM basic i

[TIRO-nrad] Furn-1 atin/GreekM rvnoaranhic

Unicode indexes will be automatically recalculated during this

operation.

=) Automatically generate names for conflicting glyphs

") Exchange names of the conflicting glyphs

] Re-generate all glyph names

o)

Cancel |

Encoding version of the Reencode Font dialog box

Select the codepage or encoding table to which you want to reencode the
glyphs and set the options necessary to control the reencoding process:

Codepages mode:

Move glyphs to the new
codepage

Removes currently assigned Unicode codepoints and
assigns new ones. Visually this means that glyphs are
moved to their new places

Copy glyphs

Add new Unicode codepoints. Visually this means that
glyphs having more than one Unicode codepoint
assigned are copied to their new places

Re-generate all Names

All glyphs will get their names based on Unicode.

Encoding mode:

Automatically generate
names for conflicting

glyphs

If a glyph with the same name as one of the reencoding
glyphs needs to be changed a new name will
automatically be generated

Exchange names of the
conflicting glyphs

If a glyph with the name that needs to be assigned
already exists, it will get the name of the reencoded
glyph, so visually the glyphs will be exchanged

Re-generate all Names

All glyphs will get their names based on Unicode.

183

184

Some Examples

Situation 1: You want to make a TrueType font that will have a non-windows codepage in
Windows, say, one of the DOS codepages:

1. Select the desired new codepage in the Codepages mode of the Font window
Place all glyphs as necessary.

Save this “properly encoded” version of the font.

Select the Reencode Glyphs command.

Choose the Windows Symbol codepage and the “Move” option. PressOK.

. See the results in the Font window.

on AW

Do not forget to set the Symbol glyph set inthe Font Info before exporting this font.

Situation 2: You imported a Type 1 font with non-standard encoding and want to save it with
standard encoding to be sure that it will work in all Windows.

1. Select the Reencode Glyphs command.
2. Choose the Default Encoding and “Generate Names” options. Pres€OK.
3. Seetheresults in the Font window.

Unicode-Related Operations

Several commands in the Glyph > Glyph Names menu work with the font’s
Unicode information.

Generating Unicode codepoints

To automatically generate Unicode indexes for all the glyphs in the font,
select the Generate Unicode command from the Glyph > Glyph Names
menu.

You will see the dialog box:

Generate Unicode

With this command you will automatically generate
Unicode indexes for all glyphs in the font using the
glyphs' names as the source of information.

Please, select one of the mapping files in the list below:

Standard Table =)

| Use this table as default
@ Try to keep existing Unicode indexes
: Apply only to selected glyphs

Assign PUA indexes to unencoded glyphs

(" Ccancel) (oK \}

This dialog lets you choose the mapping file. The structure of a mapping
file is described below, but its purpose is simple: to map Unicode
codepoints to a set of predefined names.

185

186

Set the options helping to control the process:

Use this table as default The selected mapping file will become the default one.
You will not need to select it again the next time the
dialog opens

Try to keep existing If this option is on glyphs having Unicode codepoints

Unicode indexes assigned will keep them untouched

Apply only to selected If this option is on FontLab Studio will apply the

glyphs operation to the selected cells only

Assign PUA indexes to If this option is on FontLab Studio will assign to

unencoded glyphs unencoded glyphs Unicode indexes from Private Use
Area.

You select the appropriate file and click OK. Then FontLab Studio will:

1. Remove all Unicode data if Try to keep existing Unicode indexes is
off.

2. Search the selected name-Unicode database for each glyph’s name.

3. Ifthe name is in the database it adds the Unicode codepoint linked
with this name to the glyph’s list of Unicode codepoints.

4, Because the database may link more than one Unicode codepoint with
a name, steps 2 and 3 are processed whenever a glyph’s name is found
in the database.

Structure of the Name-Unicode Database

The database that links Unicode codepoints and glyph names is nothing more than a text file,
standard.nam or agl.nam, located in theMacintosh HD/Library/Application Support/
FontLab/Mapping folder that has the following structure:

%%FONTLAB STUDIO NAMETABLE[: Database_name]
0x0000 .notdef

0x0002 nonmarkingreturn

0x0020 visiblespace

0x0020 space

The first line of this file is a signature that is used to show that this file is a properly defined database
file. This line may contain the datakase name like in agl.nam:

%%FONTLAB STUDIO NAMETABLE: Adobe Glyph List
The lines that follow the signature have a very simple structure:
<Unicode codepoint> <name>

The Unicode codepoint may be in decimal or hex (started with ‘0x’) form. The name should not have
any spaces. Names are case sensitive.

One Unicode codepoint may be linked with more than one name and several Unicode codepoints
may be linked with one name.

If the name is preceded with the V', it means that Unicode may be generated from the name but
none of the marked names may be generated when the Unicode codepoint is known. This is
necessary when none of the glyph’s names is included in the list of standard names supported by
Adobe (Adobe Glyph List). This feature makes it possible to generate correct Unicode codepoints
for incorrectly named glyphs but will never assign incorrect names.

You can extend these files in any text editor, but we strongly reco mmend not changing them.

3w

187

188

Generating Names

This operation is the opposite of the one described in the previous section.
If you select the Generate Names command in the Glyph > Glyph Names
menu, FontLab Studio will use the name-Unicode database to
automatically find names for glyphs whose Unicode codepoints are in the
database.

Note that if more than one name is linked to the Unicode codepoint,
FontLab Studio will use the one that is first in the database.

If some of the glyphs don’t have any Unicode codepoints, FontLab Studio
will try to keep their names unchanged. Use the following option in the
dialog box to control this feature:

@ Try to keep existing glyph names

You may generate names for selected glyphs if you use the following
option:

@ Apply only to selected glyphs

Removing Unicode Information

If you want to reset the Unicode information in your font, select the Clear
Unicode command from the Glyph > Glyph Names menu. All Unicode
information will be removed from all glyphs in the font. This operation
cannot be applied to selection.

You may selectively remove Unicode codepoints from glyphs
selected in the Font window:

1. Select the glyphs.

2. Crrer-click the selection and choose the Remove Unicode command
from the More submenu of the context menu:

Mark [2 |

Select Encoding
Select Modified Glyphs

Open Glyph Window Add Suffix to Name...

Properties...
Current Glyph is Default

Macro 2 = ode

FontLab Studio will remove the Unicode codepoints from all selected
glyphs.

189

The Font Map Panel

When you work with really big Unicode-encoded fonts, you may need to
have an overview of your whole font. FontLab Studio has a special panel,
called the Font Map, which can represent the entire Unicode code space as
a set of 256 x 256 pictures where every pixel represents a double-byte code
and every picture is a plain.

Every pixel row in this picture represents a Unicode page — 256 Unicode
codepoints which begin with the same code. For example, codes A700-
ATFF will form one row.

Every pixel in the row represents an individual code.

To open the Font Map panel, use the Font Map command in the Window
> Panels menu. You will see a panel that consists of the code picture,
toolbar and status bar:

a8 Font Map

* r_'

conEs] B30 40 B0 60 TO 0 W A0 BM L0 DO ED FO 100
1

|
i
i

1
i
i
]

g F0 EQ DO 0 B0 A0 A0 T 30 k0 B0 40 30 zo GREHEH

Uni: 0000 Plane:

|4

The picture represents Plain 0 of the whole Unicode codespace: codes 0000-
FFFF.

190

The buttons on the toolbar mean:

% Turns on zoom mode

Changes the Font Map to double-byte codepage mode

_..
+ Updates the contents of the Font Map

By clicking the ®, button on the toolbar you can zoom in on part of the
Font Map:

8 Font Map

I“Il:lI“IzI“I“I“IE‘I‘|I$I“I‘IIﬂII:Ii“IEIzll:I

==

In this mode it is much easier to manage individual codes. To scroll a

zoomed Font Map, press the mouse button and drag the cursor beyond the
Map borders.

If you click the Font Map, you will see the current Unicode codepoint
appear on the status bar below the Map picture. The current code is
highlighted with a cross hair.

Double click any code in the Map to jump to the glyph that is mapped
toit.

To switch to another plane of the codespace, use the Plane control in the
status bar:

Plane: 0 1 :
Font Map automatically tracks changes you make to the font. If you are not
sure that it is correctly updated (this may happen with some macro

programs), click on the # button to manually update the Map.

191

192

Managing Double-Byte Codepages

If you are working on a CJKV (the acronym for Chinese, Japanese, Korean
and Vietnamese) font, you may want to look at your font in a double-byte
codepage.

Open the Font Map panel and in the Font window of your font select one of
the double-byte codepages.

You will see this button i enabled in the Font Map toolbar. Click it and
you will see the Font Map rearrange to represent your font with the applied
double-byte codepage. In this mode every row represents 256 glyphs that
are “assigned” to the specific first byte.

In the following picture you can see a Traditional Chinese font in Unicode
mode (in the left picture) and in Codepage 950 mode (right):

Unicode mode Codepage 950

In the codepage mode green pixels represent codes in the codepage that
are covered by one of the glyphs in the font. Cyan pixels mean codes in
the codepage that are not covered by any glyphs in the font.

Notes

Sometimes you may need to add a description or some other information
to a glyph. In FontLab Studio you can do that using the Notes function.

A Note is a small text box that you can attach to the glyph. It is visible in
the Font window and in the Glyph window.

To add a note to a glyph in the Font window: select it with one click; then
Crre-click and select the Add Note command in the context menu.

You will see a Note window:

Enter the text of the note and click the Close button in the title bar to
accept changes and close the window. There are also keyboard shortcuts:
CMmD+RETURN closes the note saving the changes; Esc closes the note
without saving the changes.

If you have entered something in the note box you will see the note icon
appear in the glyph cell:

001

=F

A

The cell is also marked as changed but not saved.

To open and edit the note, double-click the note icon. You will see the
note window with the text of the note.

To remove the note, open it for editing, remove the text and click the
Close button.

You can make the note icons invisible in the Font Window > Glyph Cell
section of the Preferences dialog.

193

194

Sorting Glyphs

Sometimes you may want to sort the glyphs in a font file in some order
other than their current order. There are two common reasons to do this:

1. You may need to sort glyphs to optimize a font’s performance — if you
place glyphs that are used most often at the beginning of the glyph
collection in some cases it may improve performance.

2. You may need to sort glyphs according to some logical sequence. Some
programs (for example, Adobe InDesign) have a “glyph insert” feature
that shows the collection of glyphs sorted exactly as it is in the font file.

Please note that sorting of the glyphs has no effect on glyph encoding or
names.

To sort the glyphs choose one of the commands in the Sort Glyphs
submenu of the Glyph menu:

Glyph Names |
By Mame

By Unicode
By Encoding

This is the list of sorting options:

By Name Glyphs are sorted alphabetically by their names in ascending order

By Unicode Glyphs are sorted by the assigned Unicode codepoints in
ascending order. Glyphs that don’t have Unicode codepoints are
stored at the end of the glyph collection

By Encoding Glyphs are sorted according to the encoding table currently
selected in the Names mode. This option allows you to customize
the sorting order using the definition encoding tables.

To preview the result of sorting, switch the Font window to the Index mode
by clicking this button: E# in the Font Window command bar.

Working with Multiple Fonts

In FontLab Studio you can open many fonts at once. Since every font has
its own Font window sometimes the FontLab Studio workspace becomes so
crowded with windows that finding a particular font is not easy. This
section will explain how to use FontLab Studio tools that are specially
designed to help you manage many open fonts simultaneously.

To open many fonts you can use the standard File > Open command,
then select many font files using Cmp and SHirr-click in the File Open
dialog box. You can also select font files in Finder and drag them onto the
FontLab Studio icon — all of them will be opened.

When you open 10-15 fonts the FontLab Studio window might look like
this:

" @ Fontlab Studio File Edit View Contour Glyph Tools Window O = Sat317PM |
DEEA BB > 8 |FFH o = = =

for testing/freefont-otf-20020220\FreeMono.otf

k HD/Documents for testing,/freefc tf-20020220) ot
M5 Windows 1252 Western (ANS) (3] e U5 Em
i e T N B e T

=

-~ [o020 | 0021 | 0022 | 0025 | 0024 | 0025 | 0026 | 0027 | ov2e | 0025 |0024 | 0028 | 002C | 0020

Ll (el [a]s]sla] [(h]*]+].]-

0073 | 0034 | 0035 | 0036 | 0037 | 0036 | 0039 | 003A | D36 | 0O3C | 0030 | GOSE | 003 | 0040 G042 | 0043 | 0044

3|4/5|6|7]|8 C|D

o o o
0044 | 004B | 004C | 004D | 004E | 004F 0054 | o0sE

J/KILIMNOP Q| R|S|T U|V|W X Y| Z|I t
0061 | 0062 | 0063 | 0064 | 0065 | 0066 | 0067 | 0068 | 0063 | 006A | 006E | O06C | 00SD | O0SE | 00&F | 0070 | 0071 | 0072 i
albjc|d/e|[f|glh|i|jlk|lm [oozo |
s Bl Bl el ol "
oa7e | oovs oA | oa7e | aoc | omme [oove | | 206 | — | 201 o192 | 20 -
tlu|viwi x|y | z|{|I]|} ~ € 2 | F | = 2]
e D T R e E N N TR ES N A E R [G S N
< | @ Z A A A N I R R B - B I Y z

o o
O0AZ | 00A% | 00A4 | 0045 | Q0Ae | O0A7 | O0A | 00AD | GOAA | 00AR | ODAC | 00AD | OUAE | ODAF | 0060 | GOBT | G082 | 008% | 0084 | 00ES
©|8 |« | 2|3
[05¢0 | BoCT | 6602 [003 |

Fe7% Too7a o7 Toore |

GOC3 | DOCA | OB | 0OCC

TE5Ta To1e3 T aere | aoee | on

2 4] ! a | || T Lf &%
—— 016 | 2015 [Zotc | 2010 | o7z | 2015 | z014 | 02o¢ | 2122 | O161 | 2034 [0155 | — | 617 [01v8 | GoAD
A} n " o ™ & >4 v
4 |] = W s | | e z |
b= |~ | S Bl Y
004z | 00A% | 00A | 00AS | 0046 | 00AT | 00AS | 00AS | D0AA | 00AB | GOAC | 00AD | 0OAE | D0AF | 00B0 | oET | o2 | 008% | 00e4 | ooes | goee | ooet

¢lela|le|i]|s| o2« | |®@]| |°

0055 | DOBA | OO | DOBC | DOBD | OOBE | GOBF | 0OCD | OOCT | DOCZ | G0C3 | 0OC4 | 0OCS | DOCE | 0OC7 | OOCE | 0OCS | DOCA | GOCE | GOCC | DOCD | OOCE

Use mouse button to select one or more glyphs |a 0041 S 17631

which is not the best way to work. Add to this picture a few open Glyph and
Metrics windows and you will see why workspace management is
necessary.

195

196

Windows List

The easiest way to manage open windows is to use the Window menu. It
contains some very useful commands:

Cascade Organizes open windows in a cascade like in the picture above

Tile horizontally Organizes windows like tiles on a rectangular floor
Tile vertically

Windows... Opens the windows management dialog box.

Choose the Windows command and you will see a dialog box:

W.ind oWs

Font - Serpentine Light [/\...Volumes/Work HD/Documents for IT- { Activate J
Font - Serpentine Light [/\...Volumes /Work HD /Documents for
Font - Serpentine Bold [/\...Volumes /Work HD/Documents for
Font - Serpentine Medium [/\...Volumes/Work HD/Documents
Font - Serpentine Bold [/\...Volumes /Work HD/Documents for
Font - Serpentine Medium [/\...Volumes /Work HD/Documents

{ Cascade |

n.jHorizontaI Tile)

Font - Nimbus Mono L Bold [/\...Velumes /Work HD/Documents i m)
Font - Nimbus Mono L Regular [/Y...Volumes /Work HD/ — -
Font - Nimbus Sans L Bold Italic [/Y.. Volumes /Work HD/ " Minimize)
Font - Nimbus Roman No9 L Medium Italic [/\...Volumes /Work —_—
Font - Nimbus Roman No9 L Medium [/\...Volumes /Waork HD/ 3

Font - Nimbus Sans L Bold [/\...Volumes /Work HD/Documents K Close /

Font - Nimbus Mono L Bold Oblique [/\...Volumes/Work HD/
Font - Nimbus Sans L Regular Italic [/\...Volumes /Work HD/

Font - Nimbus Roman No9 L Regular Italic [/...Volumes /Work i (T}
3 3

Ennt — Mimhine Samc | Banular T Valumec Marel KD

Most of the dialog box is covered by the list of open windows. Select one of
the windows in the list and click the Activate button to activate that
window and move it to the top.

To close one or more windows, select them in the list and click the Close
button.

Select two or more windows in the list and click Cascade, Tile
Horizontally or Tile Vertically to perform one of the operations only with
the selected windows. All other windows will be automatically minimized.

Use the Minimize button to minimize selected windows.

Fonts Panel

The Windows dialog box is very powerful, but it works only on windows,
without paying any attention to the contents of the windows — fonts.

To organize your open fonts, use the Fonts panel. Select the Fonts
command in the Window>Panels menu. When you click on this command

you will see the panel:

(&) Fonts

El ﬁ “-:n kT +;ﬁ ?TE

= Antique Olive Std Bold Cond
F Antique Olive 5td Bold Condensed [AntiqueOliveStd-BoldCond.otf]
= Antique Olive Std Compact
F Antique Olive 5td Compact [AntiqueQliveStd-Compact.otf]
= Antique Olive Std
F Antigue Olive Std Roman [AntiqueOliveStd-Roman.otf]
F Antique Olive Std Italic [AntiqueOliveStd-Italic.otf]
F Antique Olive 5td Bold [AntiqueQliveStd-Bold. otf]
= Antique Olive Std Black
F Antiqgue Olive 5td Black [AntiqueDliveStd-Black.otf]
<= Antique Olive Std Light
F Antigue Olive Std Light [AntiqueOliveStd-Light.otf]
= Antique Olive Std Nord
[B Antique Olive Std Nord [AntiqueOliveStd-Nord.otf]
F Antiqgue Olive Std Nord Italic [AntiqueOliveStd-Marditalic.otf]

Total Fonts: 9 Grouped by Family Name

The Fonts panel contains a small toolbar in the top area and a list of open
fonts. All open fonts are automatically arranged in font families using the
Family Name entry in the font header (see the “Font Header” chapter).

197

198

You can choose to group fonts using the OpenType Family Name entry:

8

Fonts

= B asc? B = @ ::IE ™

= Antigue Olive Std

F

MTATTMTATMAT

Antigue Olive Std Mord [AntigueOlivestd-Nord.otf]

Antigue Olive Std Bold Condensed [AntigueOlivestd-BoldCond.otf]
Antigue Olive Std Roman [AntiqueOlivestd-Roman.otf]

Antigue Olive Std Italic [AntigueOliveStd-ltalic.otf)

Antigue Olive Std Compact [AntigueQlivestd-Compact.otf]
Antigue Olive Std Bold [AntigueQlive5td-Bold. otf]

Antigue Olive Std Black [AntiqueOliveStd-EBlack.otf]

Antigue Olive Std Light [AntiqueOliveStd-Light.otf]

Antigue Olive Std Mord Italic [AntigueOliveStd-Norditalic.otf]

Total Fonts: 9 Grouped by OT Family Name

Use the popup menu in the toolbar to select how to arrange fonts in
families:

Group By Family :
¥ Group By OT Family

Double-click a font name in the list to activate the Font window containing
that font. All other operations are accessible from the toolbar:

82| Opens the Font Info editor for the font selected in the list

™ Closes the selected window. If you have unsaved changes FontLab Studio will
issue a warning message

s+ Merges fonts — adds glyphs from the font selected in the list to the currently
active font (contained in the active Font window)

k. ™ Opens a menu with macro programs that can be applied to the font selected
in the list

= Opens the FontLab Studio project file

T Savesthe project file

T Allows you to arrange fonts in families using the Family Name or OT Family

Name entry.

When you open some glyphs for editing, you will see names of those glyphs
appear in the Fonts panel:

 Antigue Olive Std

= [B Antigue Olive 5td Nord [AntiqueDliveStd-Nord.vfb]
G T
G two.superior
G guestion

Each glyph name is a reference to the glyph window opened with that
glyph. You can use these references to bring glyph window with some glyph
to the front (just double-click on the glyph name) or to close it (select it
and click on the close button on the Fonts panel toolbar).

When you open some Metrics windows, you will see they also appear in the
Fonts panel:

= Antigue Olive Std

= [E Antigue Olive 5td Nord [AntiqueDlive5td-Nord.vfb]
M [HAMBEURGEWOMS)
M [the quick brown f...]
G T
G two.superior

199

200

Merging Fonts

You can merge fonts — append all the glyphs from one font to another —
with the Merge Fonts command in the Tools menu or in the Fonts panel.
Merging fonts is very useful when you have several fonts that cover
different scripts and want to combine them into one big Unicode font.
Smaller fonts are easier to manage and open/save.

During this process FontLab Studio will try to keep hinting information,
composite glyphs and kerning pairs. FontLab Studio will also try to keep
the Unicode codepoints and names of the appended glyphs.

To merge fonts in the Fonts panel:

1. Open the two fonts you want to merge.
2. Open the Fonts panel.

3. Activate the font to which you want to append glyphs — double-click
the font name in the Fonts panel.

4. Inthe Fonts panel select the font from which you want to append
glyphs.
5. Click the Append button w+ in the Fonts panel toolbar.

If copied glyphs have names that already exist in the destination font,
FontLab Studio will replace existing glyphs.

To merge fonts with the menu command:

1. Open the two fonts you want to merge.
2. Activate the font to which you want to append glyphs.

3. Select the Merge Fonts command from the Tools menu. The Merge
Fonts dialog box appears:

Merge Fonts

Select the source font in the list below:

FLChiantiSC

You have selected font FLChiantiSC as a source font.

ABCABCI23

If a glyph already exists in the target font:

Rename the existing glyph T‘

M Mark appended and renamed glyphs

(" cancel) (0K)

4. Inthe font list select the font from which you want to append glyphs.

5. Set the desired action for the cases when glyphs have names that
already exist in the destination font. You may choose to overwrite
existing glyphs, or rename source or destination glyphs, or to not copy
duplicate glyphs at all.

6. Click on the OK button to merge fonts.

201

202

Saving and Opening a Project

To keep your font project intact FontLab Studio offers some project
management functions.

A Project is a set of fonts opened in FontLab Studio and information about
the position and size of their font windows.

To save a project, use the "B button in the Fonts panel toolbar. FontLab
Studio will open a standard File Save dialog box where you can select a
name and path for the project file. FontLab Studio project files have the

extension “.flw”.

FontLab Studio project files are automatically generated macro programs
in the Python scripting language. They are text files that you can edit with
any text editor if you wish. (Recommended only for the knowledgeable and
brave.)

To open a project file, use the ‘& button in the Fonts panel toolbar or
simply drag-drop the .flw file onto the FontLab Studio icon.

Saving and Opening a Workspace

A Workspace is the information about visual interface items customizable
in FontLab Studio: panels, menus, toolbars and keyboard shortcuts.

To save a workspace, use the Export Workspace command in the
Window > Workspace menu. FontLab Studio will open a standard File
Save dialog box where you can select a name for the workspace file. The
default destination for the workspace files is the [Application user data
folder]/Workspaces folder (typically Macintosh HD/Users/Your
Username/Library/Application Support/FontLab/Studio 5/Workspaces).
FontLab Studio workspace files have the extension “.rc”.

To open a workspace file, use the same Window > Workspace menu
where all workspaces that were stored in the above mentioned folder are
listed.

Before opening the saved workspace FontLab Studio will ask you whether
you want to save the current user interface configuration.

To reset your current workspace to the default (factory) state or to
launch FontLab Studio with a different workspace, hold CtrL while
starting the application.

203

204

Applying Modifications

You can find many modification commands in the Contour, Glyph and
Tools menus that can be applied to the open glyph in the Glyph window
(see the “Glyph Window” chapter), but most of them are applicable to the
glyph(s) selected in the Font window.

To apply a modification command, select the glyphs in the Font window
and choose the appropriate command in the Contour, Tools or Glyph
menu. For example, to convert glyphs from TrueType outlines to Type 1
outlines, select the glyphs that you want to convert and choose the Contour
> Convert > Curves To PostScript command. If more than 128 glyphs
were selected for transformation, you will see the warning message:

Do you want to continue and transform glyphs?

You will apply selected action to the 159 glyphs, This operation is
not undoable.

No | { Yes "}

Click Yes and FontLab Studio will apply the command to all selected
glyphs.
You can find descriptions of all modification commands in the chapter

“Glyph Window”. Please also refer to the “Actions” chapter for related
information.

Blending Fonts

With FontLab Studio you can automatically blend two fonts and generate
an intermediate version of them:

ABCabcl23

First font

ABCabci23

Second Font

ABCabcl123

Resulting font (50% blend)

The font blending process is completely automatic, it analyses the shapes
of glyphs and tries to find the best way to morph one to another. Best
example of blend feature is to make a font that has weight intermediate to
two existing weights.

205

206

You must have at least two fonts open to use the Blend fonts operation. To
activate the Blend feature, select the Blend fonts command from the Tools
menu. A dialog box appears:

Blend Fonts

Select the first font:

ArialMT

ABCabc123

Select the second font:

ar

Arial-BoldMT [E2|
G" Blend fonts : Build the Multiple Master font

Destination font:

New font

r

%) All existing source glyphs Blend amount: 50 -
@ Uniform

.@ Do not interpolate compatible outlines

'Cancel_\ f ok]

The dialog box is divided into three sections. The first two sections let you
specify the fonts to blend. To select the first or second font choose the font
name in the list. The Preview panel will show a sample of the font. You
cannot select the same font in both sections; FontLab Studio will take care
of that.

The bottom section lets you specify blend options.

® Blend fonts) Build the Multiple Master font

You have two main choices: to make a single master font that will contain
the result of the source fonts blend or to make a Multiple Master font that
will have the two source fonts as the masters. Here we will describe only
single-master mode. Please refer to the “Multiple Master Fonts” chapter
for information about using the Blend feature to make Multiple Master
fonts.

In the Destination font popup menu you can select the font in which to
store the blended glyphs. Choose “New font” to put the generated glyphs
into a new font.

Further down there are two options:

f® All existing source glyphs

) selected destination glyphs

Select the second option if you want to blend only glyphs that are selected
in the destination font.

To the right there are controls to specify the blend amount:

Blend amount: 50 ; 50 :

E Uniform

Enter the blend percentage in the editing field. If you want to blend fonts
nonproportionally along the X and Y axes, uncheck the Uniform check box
and enter the blend amount for the two directions.

To not let FontLab Studio add nodes to compatible contours leave the Do
not interpolate compatible outlines option switched on.

Switch on the Remember source and destination fonts option if you
have more than one font open and are going to repeat the operation later.

Click OK and wait while FontLab Studio blends the fonts. After the process
is finished you will find the new glyphs in the new font or in the destination
font. The outlines of the two source glyphs will be stored in the Mask layer
of each glyph and the blending result in the outline layer.

207

Those glyphs that had compatible outlines and do not get additional nodes
during the blend operation will be marked with green color in the Font
window. Those glyphs that had no their own outlines (composite glyphs)
will be marked with green too.

In some cases it is not possible to blend two outlines. This happens when
two source glyphs have different numbers of contours, like O and 8. If
some glyphs were not blended, FontLab Studio will show a warning
message and those glyphs will have an empty outline layer and will be
marked with red color.

208

The Font Header

Perhaps the most important information you need to define for a font is its
header or font info data. This information is mainly used to properly
register the font in the operating system and in any program that uses it.

It is very important to carefully define all font parameters. Even the best-
designed font is useless if it cannot be installed.

Font Info Dialog Box

The control center where you define font parameters is called the Font Info

Dialog box and is accessible from the File menu:

Font Info...

or with the button on any Font window:

e e

= E

The Font Info dialog box consists of three parts:

Font Info - FreeFontPro

[» Names and Copyright

I» Version and Identification

I» Metrics and Dimensions

I» Encoding and Unicode

[» Hinting Settings
PostSeript-specific settings

I» TrueType-specific settings
Binary and custom tables
Font note

Apply and change font: | € |

Basic set of font names

Family Name:
Weight:

Width:

Style Name:
PS Font Name:
Full Name:
Menu Name:

FOND Name:

(Co pY... w)

FreeFontPro

@ 400 I Fontis italic

MNormal

@ !_'Fontis bold

More Styles w

IMedium (normal)

Regular E]

Build Style Name

FreeFontPro

FreeFontPro

FreeFontPro

? Build Names g

FreeFontPro

[A MyFonts.com

(Caneel) (Apply) (—GK—)

At the left there is a page selection control where you can choose one of the
sections in order to edit part of the Font Info information:

= Wames and Copyright
OpenType-specific names
Additional OpenType names
Copyright information
Embedding
Designer information
License information

When you select one of the pages, it immediately appears to the right of the
list:

Basic set of font names L

Family Name: _FreeFontPro

Weight: Mormal @ 400 Font is italic

=T Font is bold
Width: Medium (normal)] ontis bo

—

More Styles =

Use the arrow buttons in the top-right area of the page to browse all
available pages:

€ 3

Alternately you may use the CTRL+TAB and CTRL+SHIFT+TAB key
combinations to browse pages.

211

212

Command Bar

In the bottom area of the dialog box you find the command bar:

Apply and change font: | ¢ /(2| | -| (Copy..) (Cancel) (Apply) € 0K)

The Left part of the bar allows you to select a font for header information
editing without closing the Font Info dialog box. Use the arrow buttons to
browse fonts:

€ 3

or click this button " to select a font from the list:

T,

FreeMonoBold
FreeMono
» FreeFontPro

To the right you find four buttons:

Copy... Allows you to copy font header information between fonts

Cancel Cancels any changes and closes the dialog box

Apply Accepts changes but lets you continue, so you can see the results of
your changes in the Font, Glyph or Metrics windows

OK Accepts changes you made to font info and closes the dialog box.

Copying Font Info

If you want to copy font info from one font to another, you can do it with
the Font Info dialog box.

1. Open both fonts.

2. Activate the font to which you want to copy information.
3. Open the Font Info dialog box.

4. Click on the Copy button:

(Copy...)
5. Inthe dialog box select the font from/to which you want to copy
information:
Copy Font Info Data
Copy Font Info data TO current font T‘

Select the font to copy font Info data FROM:

FreeMonoBold
FreeMono

fey Copy only the current page

 Copy all Font Info data

(cancel) (0K ‘}

Using the options above and below the list you can copy only the
information TO/FROM the current page or the whole font info. Make a
selection and click OK to complete.

213

214

Font Names

- Names and Copyright
OpenType-specific names
Additional OpenType names
Copyright information
Embedding
Designer information
License information

The names section includes the most important font-registration information.

All programs use the information on this page to refer to a font. Be sure to
enter all the values very carefully and use the automatic features where
available.

Basic Identification and Names

Family Name:
Weight:

Width:

Style Name:

| PS Font Name:
Full Name:
Menu Name:

FOND Name:

FreeFontPro

‘Mormal 1 E! 400 | " Font is italic
| Font is bold
Medium (normal) @ =
More Styles
Regular f?! Build Style Name

FreeFontPro

.FreeFontPro

FreeFontPro

-FreeFontPro

? Build Names | | @) A MyFonts.com

Family Name

[name: 1] (this mark is the ID of the name in the TrueType and
OpenType specification:
http://microsoft.com/typography/otspec/name.htm)

The name of the typeface to which the font belongs. All fonts that
are from the same typeface must have the same Family Name field.
The Family Name is used as the root of the Font Name so we
recommend that you fill in this field first

Weight

Weight of the font. You may enter a custom value in this field or
select one of the predefined weight names in the menu. Values in
this menu are sorted by increased weight value. Choose Normal or
leave this field empty if you do not care about the font’s weight

Weight Value

Numeric weight value of the font. This number defines the font
weight and is used by the operating systems to organize fonts to
font families. FontLab Studio will fill it automatically when you
select some Weight in the popup menu, but if you want you can
customize it

Width

The average width of the font’s characters. Enter a custom value or
select one of the predefined width values from the drop-down
menu. Leave this field empty or select Normal width if you do not
care about the font’s width

Font is Italic

[0S/2: fsSelection] Switch on this check box if you are creating an
italic font

215

http://microsoft.com/typography/otspec/name.htm
http://microsoft.com/typography/otspec/name.htm

216

Font is bold

[0S/2: fsSelection] The Font is defined as bold. Usually this
checkbox is related to the Weight setting, but it is not required. For
example, if you are making a family containing Light and Normal
styles, you may need to mark the Normal style as Bold so you will
not need to split these styles into two separate families

More styles

Press this button to open a popup menu where you can select one of
the additional font styles. Only TrueType fonts use this information,
but we recommend you always set it properly to simplify future font
identification

Style Name

[name: 2] Contains complete style information about the font. We
recommend that you fill in the Weight, Width and Italic data, to
automatically generate this field using the Build Style Name button
and edit this field if necessary

Build Style
Name

Press this button to automatically generate the Style Name field.
Style names are based on the Width, Weight and Italic information

Font Name

[name: 6] PostScript name. This name will be used by a PostScript
print driver to reference the font. Do not include spaces in this
name

Full Name

[name: 4] More detailed font name. It may include spaces as well as
any other characters — this is the name that is exposed to users
when the font is installed in Windows

Menu Name

The name used to access the font in applications. This name must
not include style information (bold, italic or similar). The length of
this field is limited to 31 characters for TrueType or single-master
Type 1 fonts and to 7 characters for Multiple Master fonts

FOND Name

This name is used by the Mac OS to organize fonts into font
families. Windows does not use it. We recommend you fill in this
name if you plan to port your font to Mac by FontLab Studio for
Mac or TransType

Build Names

Press this button to automatically generate the Font Name and Full
Name fields. If you are creating a new font we recommend that you
fill in the Family Name field, generate or manually fill in the Style
Name field and press this button to create the Font and Full names.
If necessary you can edit the names later.

To ensure that all names were made properly, press the Validate Names

button: E !

Accessing MyFonts.com Database

The last button on the Basic names page is Check at MyFonts.com:

MyFonts.com

Note: Accessing to MyFonts.com database is possible in Mac OS X starting
from v 10.4. If you start FontLab Studio on previous versions of Mac OS
this button is unavailable.

Click on this button to browse the huge database of fonts that is located on
the MyFonts.com servers to see if your font name has already been used:

MyFonts.com

Family name to check: Caslon (" Check)
ID___ [Type [Name : 0
12582 PS LTC Caslon Bold Italic

12583 PS LTC Caslon Long ltalic

11023 TT Adobe Caslon ltalic

11040 TT Adobe Caslon ltalic Alternate

11560 TT Adobe Caslon ltalic Oldstyle Figures

11024 TT Adobe Caslon Semibold

11030 TT Adobe Caslon Semibold Alternate

11559 TT Adobe Caslon Semibold Small Caps

11025 | TT Adobe Caslon Semibold Italic

11041 TT Adobe Caslon Semibold Italic Alternate +

11027 1T Adnha Caclon Bald Italic b

Adobe Caslon

THE QUICK BROWN FOX JUM

The quick brown fox jumps over the lazy dog | Preview |

[Cancel) f 0K)

In the topmost editing field you may enter the font name that you want to
check for similarities. Click the Check button to send a request to the
myfonts.com database.

217

https://myfonts.com
https://MyFonts.com
https://MyFonts.com
https://MyFonts.com
https://MyFonts.com

218

If you have an Internet connection, MyFonts.com replies with a list of font
names (if any) that include the name you entered. Select one of the fonts
and click on the Preview button (or just double-click the font name) to see
a sample of the font in the sample box below the list.

The sample picture is downloaded from MyFonts.com, so it may take some
time (depending on the speed of your Internet connection).

You can modify the contents of the sample string in the editing field below
the sample window. By default it has the standard “Quick brown fox...”
sentence but you can enter anything there.

presented in full detail:
6 ﬂﬂ z N_lmbLs .Sans I: R-egul-ar : ‘i‘ést D-ri\.-re :-MVF}Jr_mts =

| ————
%_imhus Sans L Regular : T... ‘ —|

“How about a Japanese look? Type jopanese!”

MYFONTS @

[FERTTTY WhatTheFont | €Ds | Specials | Starlets | My Account | Help

Test Drive

Up to family: Nimbus Sans | Style Details | Character Map | Test Drive

Nimbus Sans L View pricing and availability
Regular ::> Add to Album

48 points | ¢] Type your text here {_Change Sample Text |

\Er Text Here

About Us — Testimonlals — Sell Your Fonts — Become an Affillate — Site Map — Sign In

MyFonts.com, Inc. 245 First Street 1710 Floor Cambridge MA 02142 USA
MyFonts and MyFonts.com are registered trademarks of MyFonts.com, Inc
whatTheFont and Starlets are tragemarks of MyFonts.com, Inc.
Copyright © 15%5-2005 MyFonts.com, Inc. PRIVACY POLICY

|

There is also a Buy Me button — click it if you want to buy the font.

https://MyFonts.com
https://MyFonts.com

OpenType-Specific Names

OT Family Name: FreeFontPro

OT Style Name: Regular

Mac Name: FreeFontPro

? Build OpenType Names ¥ Remove Names

The OpenType format adds several new name records that are needed to
use OpenType fonts on PC and Macintosh:

OT Family “Preferred Family Name” [name: 16] —This name is used to create a

Name family containing more than 4 styles. You need to use the same
Preferred Family Name in all fonts that you want to put into a “big”
family and make the Preferred Style Name different for each of
these fonts.

The Preferred Family name appears in the font menu as the “font
name”.

Please note that this information is used only by new applications
that can handle OpenType fonts. Adobe InDesign or other new
Adobe programs are good examples

OT Style Name “Preferred Style Name” [name: 17]— Used to complement Preferred
Family Name and defines a font style in a big font family. This is the
name that appears in the submenu of the fonts list:

Adobe Garamond # Regular

Ttalic

Semibold
Semibold Ttalic
Bold

Bold Italic

You need to include the Preferred Family Name and Preferred Style
Name on this page only if they are different from the Family and
Style names you defined on the Basic Names page

Mac Name Macintosh compatible full name [name: 16] — If you want the name
of the font to appear differently than the Full Name (defined on the
Basic Names page), you can insert the Compatible Full Name.

Note: You don’t need to fill in the OT Family name and OT Style Name
fields if they are the same as the Family Name and Style Name on the main
naming page of Font Info. Enter names there only if the names are
different.

219

How to Make a Font Family

Fonts on Windows may only include only 4 styles in a family. These styles
are: Regular, Bold, Italic and Bold Italic.

If you have more than four styles in your Type 1 or TrueType typeface for
Windows you must create several families. You may put all condensed
styles into a Condensed or Narrow sub-family (like Arial Narrow, Arial
Narrow Bold, Arial Narrow Italic), all black styles into a Black sub-family
(Arial Black, Arial Black Italic) and all “normal” styles in the “Normal” sub-
family (Arial, Arial Italic, Arial Bold and Arial Bold Italic).

Mac Type 1 fonts and OpenType fonts (TT or PS) on Mac OS and within
OpenType-savvy applications can contain an arbitrary number of styles
within one family. To make OpenType fonts (TT or PS) cross-platform
compatible, you have two choices. Either create only families with up to 4
styles (as described above) or maintain two sets of naming within the font
family: a set of “brief” families for Windows, with no more than 4 styles per
family, and one “long” family for Mac OS and OpenType applications.

Brief families on Windows with no more than 4 styles per family:

Font:
FreeFontPro
FreeFontPro
(} FreeFontPro Black —

(} FreeFontPro Cond Eold
0 FreeFontPro Cond Blac___l |Bold Italic

Font: Font style:

FreeFontPro Cond Eold

0 FreeFontPro -~

(} FreeFontPro Black —_
FreeFomtPro Cond

0 FreeFontPro Cond Blac___l |Bold Italic

220

The same family viewed as a long family on Mac OS and in OpenType-
savvy applications:

00,0 |
J Charact;\l\ Paragraph = ™. EE)
|FreanntPru Hlkegular H

Cond

The B A o
.ﬁi-.:V A.j * Regular

IT [100% T colditaic
A% fopt | colg oot

i Black talic
Cond Black

CEnglish: USA 4] a{|enesmmmpy

[T|7] FrmT*

In FontLab Studio, the Fonts panel (Window > Panels > Fonts) can be
used to preview both sorts of naming.

Brief family naming:

= FreeFantPro
F FreeFontPro Bold ltalic [freefontpro-bolditalic.vfb]
F FreeFontPro Bold [freefontpro-bald.vib)
F FreeFontPro [freefontpro-reg.vfb]
F FreeFontPro Italic [freefontpro-italic.vfb]
= FreeFontPro Black
F FreeFontPro Black [freefontpro-black.vfb]
F FreeFontPro Black Italic [freefontpro-blackitalic.vib)]
= FreeFontPro Cond Black
F FreeFontPro Cond Black [freefontpro-condblack.vfh)
= FreeFontPro Cond
F FreeFontPro Cond Bold [freefontpro-condbold.vfb)
F FreeFontPro Cond [freefontpro-cond.vib)]

Long (OpenType) family naming:

= FreeFontPro

F FreeFontPro Bold ltalic [freefontpro-bolditalic.vfb]
FreeFontPro Bold [freefontpro-bold.vib)
FreeFontPro [freefontpro-reg.vib]
FreeFontPro Black [freefontpro-black.vfb]
FreeFontPro Italic [freefontpro-italic.vfb]
FreeFontPro Black Italic [freefontpro-blackitalic.vfb]
FreeFontPro Cond Black [freefontpro-condblack.vfh)
FreeFontPro Cond Bold [freefontpro-condbold.vfb]
FreeFontPro Cond [freefontpro-cond.vib]

MTATMT AT

221

222

You can use the flyout menu of the Fonts panel to switch the views between
these two sets of naming:

== 3

Group By Family ;
¥ Group By OT Family

In FontLab Studio’s Font Info dialog (from the File menu), there are two
pages that are relevant for font family naming: Basic set of font names
(the first page of the Names and Copyright section) and OpenType-
specific font names.

In an OpenType font, the “brief” (Windows) family naming should be
devised on the Basic set of font names page:

Basic set of font names €2

Brief family naming

Family Name: FreeFontPro Cond
4

Fant: Font style: |
Rieefontiid Cond | e Weight: Bold [3 700 I Font is italic
() FreeFontPro | | Regular | i &
| €} FreeFontPro Black | Italic | T et —— e MFontis bold
st = Wl Cvse O]
} FreeFontPro Cond Bla Bold [talic T

More Styles -

Style Name: Bold B ' Build Style Name |

PS Font Name: FreeFontProCond-Bold

while the “long” (OpenType/Mac) family naming should be devised on the
OpenType-specific names page:

| Character "/ 0 Long family naming
|F.'eeFontP.'o - lC:Jr.d gold :!
—— —————Cand }
Itali a :
= 5 OT Family Name: FreeFontPro
Regular
Bold

fb i » OT Style Name: Cond Bold

| Black Mac Name: FreeFontPro Cond Bold
o

[English: USA I-¢-] R i

Below is an example of how family names should be devised using FontLab
Studio’s Font Info dialog.

1.

Start by giving an identical Family Name (here: FreeFont Pro) to all
styles in your family.

Family Name: LabFontPro

Weight: E] [Font is italic

._|Font is bold
Width: @ -

More Styles

Select a Weight and a Width that best matches the true design of each
style. For light fonts, avoid the “Thin”, “UltraLight” and “ExtraLight”
settings and choose “Light” instead.

Family Name: LabFontPro All (Multiple Master)

Weight: Bold E] 7g Ultra-condensed
Extra-condensed

Width: Condensed
| Semi-condensed

Medium (normal)

Semi-expanded

Style Name: ' e
Expanded |
PS Font Name: | Extra-expanded |
Ultra-expanded —
Full Name: T ————————————

If your style is italic or oblique, check the “Font is italic” mark, but
leave “Font is bold” unchecked at this stage.

@Fon*is italic

I Font is bold

Click on the “Build Style Name” button to automatically build a style
name.

Style Name: Condensed Bold [z) ' Build Style Name |
A

223

5. Abbreviate excessively long style names (e.g. replace “Condensed” with
“Cond”). The style name must be unique within the family, so if
FontLab builds the same style name for two different fonts, revise one
of them.

Family Name: LlabFontPro

Weight: Bold f3) 700 Fontis italic
[Font is bold
Width: Condensed E] Skl
More Styles +
Style Name: Condensed Bold E] Build Style Name

PS Font Name: LabFontPro-CondensedBald

Full Name: LlabFontPro Condensed Bold

Menu Name: LabFontPro

FOND Name: LabFontPro Condensed Bold

| ———————
P Build I*_ames E [MyFonts.com

6. Click on the “Verify names” button to check the technical correctness
of your names.

7. Switch between styles and repeat the previous steps analogically for all
styles in your family.

Apply and change font: | € E ‘

8. Go to the “OpenType-specific font names” page and click on “Build
OpenType Names”. Repeat for all styles in the family.

OT Family Name: LabFontPro

OT Style Name: Condensed Bold

Mac Name: LabFontPro Condensed Bold

" Build OpenT'&ue Names | | % Remove Names

224

9. Go back to the “Basic set of font names” page and apply the
brief family naming: Enter the brief family name into the Family Name
field and into the Menu Name field. Enable “Font is bold” whenever a
font is supposed to be “bold style” within the brief family. Revise the
“Style Name” field so it only contains one of the following: “Regular”,
“Italic”, “Bold” or “Bold Italic”. Leave other settings unchanged.

Family Name: _LabFontPro Cond

Weight: Bold m 700 | [Fontis italic

'™ Font is bold
Width: Condensed E! ™ Font is bo

More Styles |

Style Name: | Bold i Build Style Name

| PS Font Name: _LabFontProCond—BoId

Full Name: LabFontPro Cond Bold

Menu Name: | LabFontPro Cond

FOMND NMame: LabFontPro Cond Bold

Build Names @ [MyFonts.com |

10. Repeat this for all styles in your family and you should be done.

225

226

Non-English and Special Names

==
[P |
: +|

0

ww o o nNER Rz
(PR NP TP G P G AT s
=N = = =

|X]
[P0 |EID |UD

0
1033
0
1033
0
1033
0
1033

(Text .
FreeFontPro B

FreeFontPro

Regular

Regular

Copyright (c) FontLab, Ltd. Inc., 2003. All rights
Copyright (c) FontLab, Ltd. Inc., 2003. All rights
FontLab,Ltd.Inc.: FreeFontPro: 2003
FontLab.Ltd.Inc.. FreeFontPro: 2003

1 Font Family name

Platform:

()

Encoding: Language:

"1 Macintosh ﬂ 0 Roman m 0 English @

FreeFontPro

The TrueType and OpenType specifications let you put many names into
the font. Most of them can be defined on specialised pages of the Font Info
dialog box (Basic Names, OpenType names, Copyright, etc.) but these
names are in English. If you need to have non-English names or names
that are not covered by the FontLab Studio FontInfo pages you may use
this Non-English or special font names page.

Please refer to the OpenType specification to get full information about
TrueType and OpenType names:

http://www.microsoft.com/typography/otspec/name.htm

http://www.microsoft.com/typography/otspec/name.htm
http://www.microsoft.com/typography/otspec/name.htm

Most of the page is covered by the names list:

= L R e

[PID [EID [LID |Text .

B o N FreeFontPro U
3 1 1033 FreeFontPro

1 0 0 Regular

3 1 1033 Regular

1 |0 |0 Copyright (c) FontLab, Ltd. Inc., 2003, All rights

3 1 1033 Copyright (c) FontLab, Ltd. Inc., 2003, All rights

1 |0 (0 FontLab.Ltd.Inc.; FreeFontPro: 2003

3 1 1033 FontLab.Ltd.Inc.; FreeFontPro: 2003

The Columns of the list are:

NID Name ID — code of the name (this is what we put in the [name: x] comment
on ‘X’ place).

PID Platform ID — platform identified. Could be 0, 1, 2 or 3.

EID, Encoding and Language IDs — see the OpenType name table specification

LID

Text Content of the name table record. May include Unicode characters after the

£,

Click on the caption of the column to sort name records by one of the

values.

Below the list is a set of controls that let you define records.

Above the list there is a toolbar that you can use to modify the names table;
add or remove name records; or import custom name records from the
“English” data:

FI-;

-

Import names from the basic set of names defined in other pages of
the Names section

4+ | Add aname record
- Remove the currently selected name record
| Remove all custom name records.

227

228

To add a new name record, click on the | = | button on a toolbar, select
name record options using the controls below the list and type in the name
record content. To enter non-ANSI characters use “\[unicode index]” or
“\[code]” notation where [unicode index] is the Unicode index of the
character if the name record is for the Unicode (0 or 1) platform and [code]
is the character code in the Mac Roman codepage if the name record is for
the Macintosh platform. For example you may enter “\0411” for the Cyrillic
“beh”.

Note that you can use the same notation in FontLab Studio’s Metrics
window or Preview panel, so if you open a Unicode font you may test the
name records there.

To remove a record, select it in the list and click on the | ~ | button. Click
on the | % button to remove all name records.

You can use the OpenType pages of the Preferences dialog box to control
the import and export of the additional name records:

Opening OpenType PS, OpenType TT and TrueType

Read only non-English name records ﬂ

Generating OpenType PS, OpenType TT and TrueType

.Append OpenType name records to the names exp... | » 1

Import options:

Read only non-English This is the default choice — FontLab Studio will read

name records only those additional records that cannot be
interpreted to “standard” name records, which have
dedicated pages in the Font Info dialog box

Do not read OpenType With this selection any record that cannot be
name records interpreted by the default algorithm is ignored

Read all OpenType name All name records are imported as additional OpenType
records records and are placed in the page.

Export options:

Append OpenType name This is the default choice: FontLab Studio will export
records to the names English names and then add only those additional
exported by default OpenType names that aren’t already covered

Do not export OpenType With this option FontLab Studio will not export any
name records additional name records

Export only OpenType When this option is selected, only additional name
name records - ignore records are exported, all other names (from other
default names pages in the Names section) are ignored.

Final note: please, use this page carefully — FontLab Studio doesn’t verify
information that you put into additional name records. Be sure that you
read and understand the name table specification.

229

230

Copyright Information

Created by: Fontlab, Ltd. Inc.

e 2003

@

Copyright: Copyright (c) Fontlak, Ltd, Inc., 2003, All rights reserved.

Trademark: FreeFontProis a trademark of Fontlab, Ltd. Inc.,

? Build Copyright and Trademark records

Notice:
Description:

On the copyright page you can enter information about the creators of the
font. If you have created a new font you should enter your copyright notice
here. If you have edited an existing font that was not your creation you
must not remove the information contained on this page, or you may
violate copyright laws.

Created by

Name of the company or person that created the font. If you are
creating a new font enter your name or the name of your company
here

Creation year

Year when the font was created. This is used by FontLab Studio to
automatically fill in the Copyright field and is exported in
TrueType fonts as the Creation year entry

Copyright

[name: 0] Copyright message. Must include the © sign or the
word “Copyright”, the name of the company or person that owns
the copyright and the copyright year. In Type 1 fonts this
information is stored in the Notice entry and in TrueType fonts in
the Copyright entry

Trademark

[name: 7] Font trademark — used to save font’s trademark notice

Build Copyright
and Trademark
Records

Press this button to create the standard Copyright record based
on the Created By and Creation Year fields

Notice

[name: 10] Additional information that you want to include in
Font Info. Exported in Type 1 fonts as the Copyright entry and in
TrueType fonts as the Description entry.

Font Embedding

. Embedding settings (fsType):

Everything is allowed (installable mode)

@. Allow subsetting

" Bitmap embedding only

"1 Make current selections a default choice

These settings control how the font may be embedded into documents.
Embedding is a feature of the Windows operating system and some
applications that allow programs to include fonts into documents to
guarantee that they will be reproduced correctly. However, this feature
may cause problems with font piracy. It is not very hard to extract
embedded fonts from a document, so the TrueType font format includes a
special setting that can control font embedding.

There are four types of font embedding:

Everything is allowed After the document is opened the font works as if it
was installed in the system

Embedding is not allowed Embedding is not allowed for this font

Only printing and The font may be embedded, but editing of the
previewing document it contains is not allowed
is allowed

Editing of the document The font may be embedded and the document that
is allowed contains the font may be viewed, printed and edited.

Additional options Allow subsetting and Bitmap embedding only are
available.

231

232

Copyright Note

We decided to allow modification of the embedding setting only because
we are sure that the users of FontLab Studio are professionals who respect
others' rights to intellectual property. We assume that you will change the
embedding setting only in your own fonts.

You are not allowed to change this setting in fonts that were created by
somebody else. Even if according to the font license you can modify the
font for your own use, you must not “increase” the embedding rights for a
font. So if embedding is not allowed leave it as it is.

Designer Information

Designer: Somebody at Fontlab

Designer URL: http:/ /www.fontlab.com

Vendor URL: http://www.fontlab.com £

This page stores information about the font’s designer. Do not modify this
data if you open an existing font to modify for personal use.

Designer [name: 9] Name of font designer

Designer URL [name: 12] A new entry implemented only in TrueType format. It
is the WWW link to the designer of the font

Vendor URL [name: 11] This TrueType-only entry shows the WWW link to the
site of the font vendor.

Use the buttons ® to the right of the Designer URL and Vendor URL
controls to open pages in a Web browser window. This requires an Internet
connection.

233

License Information

License: NOTIFICATION OF LICENSE AGREEMENT

This typeface is the property of Monotype Typography and its
use by you is covered under the terms of a license agreement.
You have obtained this typeface software either directly from
Monotype or together with software distributed by one of
Monotype's licensees,

[This software is a valuable asset of Monotype. Unless you have

License URL: http://www.agfgamonotype.com/html/type/license.html o

License and License URL records are relatively new and have appeared
only in OpenType specification version 1.3.

License [name: 13] License description — contains information about how
the font can be used

License URL [name: 14] URL where additional license information can be
found.

Use the button to the right of the License URL control #® to open the page
in a Web browser window. This requires an Internet connection.

234

Font Identification

= Version and Identification
Identification settings
Panose identification
IBM and MS identification

Sometimes the operating system or a DTP application needs to know what
the font looks like. It may be necessary, for example, to properly substitute
for a missing font with the closest look-alike.

FontLab Studio supports all the font-identification settings that are used in
Type 1 or TrueType fonts.

Version Information

Version: 2 Revision: 38

&)
-

[4 |

Complete Version record: 002.098

TrueType Version record:

Version 2.098 2003 _?

Version Version of the font.

Revision Revision of the font. Version and revision numbers are combined
and build a complete version record that appears in Type 1 font
headers

TrueType [name: 5] TrueType font version records have a different format.

Version Record You may enter the TrueType version record here or just press the
Recalc button at the right of the field to fill this record
automatically. You must have the Names and Copyright pages
filled in to use the automatic features on this page. Press the
Apply button at the bottom of the dialog box to enter the new
Font Info values into the font’s header.

235

236

Basic Font Identification

.TrueType Unique D record:
-l-:ontLab,Ltd.Inc.: FreeFontPro: 2003 »

Type 1 Unigue ID number:
Type 1 XUID numbers:
TrueType vendor code: PYRS fi! " Use it as default
Pyrus
Font creation date: 4/24/2003 .

7:04 PM l ? Now

TrueType Unique This field is necessary to identify TrueType fonts. Usually it
ID Record includes the creator’s name, font family name and creation year.
The format of this field is freeform, but we recommend that you

use the 2 button to fill this field automatically

Type 1 Unique ID An integer number identifying the font. Unique ID numbers

Record must be registered with Adobe Systems. However, you may
leave 0 in this field or enter a value from the users Unique ID
zone (4000000 to 4999999). If you enter this value and plan to
export Type 1 fonts, be sure not to have more than one font with
the same Unique ID value because that may cause a problem
with PostScript printers or Adobe Type Manager software

Type 1 XUID More advanced identification codes for Type 1 fonts. This

Numbers number is used only in PostScript Level 2 printers. Please, refer
to Adobe documentation for more information concerning the
XUID field

TrueType Vendor An up-to-four letter length code that is assigned to most

Code TrueType producers to identify their fonts. An uppercase
vendor code must be registered with Microsoft or Apple. All
registered Vendor codes known at the time of FontLab Studio’s
release are placed in the drop-down list box. If you want to
identify yourself without registering you may enter a lowercase
four-letter vendor code.

Below the vendor selection list you can see the full name of the
registered vendor. Click the name to open the vendor’s page in a
Web browser

Use it as default Check this option to use the current vendor code as the default
in all new fonts. You may make your own code the default so
you will not have to enter it every time.

Vendor.dat File

FontLab Studio stores information about registered vendorsn the vendor.dat file located in the
Macintosh HD/Library/Application Support/FontLak/Data folder. This is a text file with a simple
structure:

2REB 2Rebels

39BC Finley's Barcode Fonts
3ip Three Islands Press

918 RavenType

As you can seg, it is just a vendor code followed by vendor name. A single space is used as a
separator.

If you want to change the file or add a new entry, just open it in any text editor (such as TextEdit)
and make changes.

237

238

PANOSE™ Identification

' Select PANOSE Family Kind: | Latin Text &3
Record: Value:
Serif Style 2] " rRounded e !

PANOSE numbers:

In the PANOSE identification system 10 numbers describe a font. Each
number represents one identification category. The most important
category (represented by the first number) defines the “kind” of font — is it
a normal Roman font, a hand-written font, a decorative or symbol font.
The meaning of all the other categories depends on this setting.

In all categories the first two values (0 and 1) mean Any and No Fit. Any
means that the value of this category is not important. No Fit means that
the category value for this font is not among the available values.

To set the PANOSE identification numbers, first select the font family kind.

After that, select the category in the Record popup menu and the value in
the Value popup menu.

Here is a table of the categories and possible values for the Latin
Text family:

Serif Style

Cove, Obtuse Cove, Square Cove, Obtuse Square Cove, Square, Thin,
Oval, Exaggerated, Triangle, Normal Sans, Obtuse Sans,
Perpendicular Sans, Flared, Rounded

Weight

Very Light, Light, Thin, Book, Medium, Demi, Bold, Heavy, Black,
Extra Black

Proportion

Old Style, Modern, Even Width, Extended, Condensed, Very
Extended, Very Condensed, Monospaced

Contrast

None, Very Low, Low, Medium Low, Medium, Medium High, High,
Very High

Stroke
Variation

No Variation, Gradual/Diagonal, Gradual/Transitional,
Gradual/Vertical, Gradual/Horizontal, Rapid/Vertical,
Rapid/Horizontal, Instant/Vertical, Instant/Horizontal

Arm Style

Straight Arms/Horizontal, Straight Arms/Wedge, Straight
Arms/Vertical, Straight Arms/Single Serif, Straight Arms/Double
Serif, Non-Straight Arms/Horizontal, Non-Straight Arms/Wedge,
Non-Straight Arms/Vertical, Non-Straight Arms/Single Serif, Non-
Straight Arms/Double Serif

Letterform

Normal/Contact, Normal/Weighted, Normal/Boxed,
Normal/Flattened, Normal/Rounded, Normal/Off Center,
Normal/Square, Oblique/Contact, Oblique/Weighted,
Oblique/Boxed, Oblique/Flattened, Oblique/Rounded, Oblique/Off
Center, Oblique/Square

Midline

Standard/Trimmed, Standard/Pointed, Standard/Serifed,
High/Trimmed, High/Pointed, High/Serifed, Constant/Trimmed,
Constant/Pointed, Constant/Serifed, Low/Trimmed, Low/Pointed,
Low/Serifed

X-height

Constant/Small, Constant/Standard, Constant/Large,
Ducking/Small, Ducking/Standard, Ducking/Large

A detailed description of the PANOSE categories and values (the so-called
Gray Book) may be found at:

http://www.w3.org/Printing/stevahn.html

239

http://www.w3.org/Printing/stevahn.html

240

Other Identification Systems

| IBM Class: IBM Subclass:
Scripts B | Monotone Unjoined _:]

Other |dentification Systems

PCLID: -1 ~ Undefined ﬂ
VPID: -1 " "Undefined = !
MS ID: = Swiss T! | Automatically link all ID values

IBM Identification

The IBM Identification system uses a different approach from the one used
in the PANOSE system. This system is based on the font’s appearance. In
the IBM system two numbers that designate the font category and sub-
category identify each font. A font’s design is compared to one of the
“standard” and well-known designs.

To set IBM Identification information select a Category that matches
your font from the IBM Class list. Then select a sub-category in the IBM
Subclass list.

A detailed description of the IBM Font Identification system may be found
in the TrueType font format specification on the Microsoft Typography
Web site at:

http://www.microsoft.com/typography/tt/tt.htm

http://www.microsoft.com/typography/tt/tt.htm
http://www.microsoft.com/typography/tt/tt.htm

PCL and Ventura Publisher Identification

These identification systems are relatively old ones and are rarely used in
modern DTP applications. However, to keep compatibility with all possible
usage of your font we recommend setting these options. They are used only
with Type 1 fonts and are exported only in the INF file.

Both systems are based on font appearance so they are close to the IBM
identification system. And both systems are one-level, so you just have to
select a well-known font that is close in appearance to your font. To
simplify this when the Automatically link all ID values check box is active
and you select one of the values FontLab Studio will select the similar value
in the other popup menu. For example, if you select Helvetica in the PCL ID
popup menu, Swiss will be selected in the VP ID popup menu.

If you want you may enter PCL ID and VP ID indexes manually using the
edit fields at the left of the popup menus. Please refer to the technical
specifications for detailed descriptions of these identification systems.

Microsoft Identification

This is the simplest identification system. Just select one of the common
font categories (Roman, Swiss, Modern, Script and Decorative) and you are
done. This is the only identification system that is implemented in the PFM
files that are used by Windows to work with Type 1 fonts, so we strongly
recommend selecting the proper value in this list box.

Note: If you are building a Type 1 font for Windows, take this field very

seriously. Do not leave “Decorative” in this option if the font is not
decorative — this will affect the font spacing.

241

242

Metrics and Dimensions

== Metrics and Dimensions
Key dimensions
TrueType-specific metrics
Subscript and Superscript

This page is used to set font dimensions that are used mostly to properly
align text lines.

Font UPM Value

Font's UPM size: 1000 ’E!

" Scale all glyphs according to UPM size change

The most important field on this page is the Font UPM. Let’s explain what
UPM is and why it is so important.

The UPM (Units Per eM) is the basis of all font dimensions. The UPM is
the number of font units that defines the font height and the coordinate
grid on which the glyphs are drawn.

The bigger the UPM is the more coordinate space you have, so you can set
more precise positions of points. For technical reasons in FontLab Studio
the UPM is limited to 10000 units, but we strongly recommend you work
with one of the standard UPMs. In Type 1 fonts the standard UPM is 1000
units and in TrueType fonts the UPM may be set to any value, but the
recommended value is 2048 units.

If you change the UPM value in the Dimensions page of the Font Info
dialog box this doesn’t necessarily mean that the size of the characters will
change. For example, if you change the UPM from 1000 to 2000 all the
glyphs will now be half as big as they were before — because they are still
dimensioned at 1000 UPM. You have to scale all the characters to fit them
in the new UPM setting manually or you can switch on the Scale all
characters according to UPM change check box and all the font data will
be scaled automatically.

Basic Font Dimensions

Set dimensions for the master. 5ine 5t 5

Ascender: "735] Descender: -—251
Caps Helght- 673 x height: [484 = H
| Copy values to TrueType metrics U
ltalic angle: i - Slant angle: |

4 Copy Slant angle to Italic angle
Slant is based on FontMatrix and works only in T1 fonts.

Underline: .—100 . Thickness: _50
__Font is monospaced
This option is synchronized with the Panose identification
Font BBox: (-239, -319) - (1162, 1025)

The page has several editing fields with numbers and a sample window
where an appropriate character is displayed to help set correct values.

Other fields on this page mean:

Ascender Position of the font’s ascender line. Usually this is the height of the
lowercase ‘b’ character

Descender Position of the font’s descender line. Usually this is the position of the
bottom line of the ‘p’ character

Caps height Height of the font’s uppercase characters. Usually the height of the
‘H’ character

x height Height of the lowercase characters. Usually the height of the ‘x’
character

Italic angle Actual italic or oblique angle for the font. The italic angle is measured
in the counterclockwise direction, so the default value is -12°

Slant angle Type 1 fonts can be artificially slanted to get an “oblique” appearance
while keeping the actual outlines upright. Enter a slant angle value
(in degrees) here and check the result in the Preview panel

Underline This is the position of the middle of the underline line in your font

Thickness This is the thickness of the underline line.

243

244

If you press the Recalculate dimensions button, FontLab Studio will
automatically recalculate all the dimension values.

Ascender, Descender and Type 1 fonts
If you are making a Type 1 font you should set the Ascender and Descender values very carefully. In

Type 1 fonts these values are used very directly to calculate interline spacing. It is usually necessary
to set the Ascender value higher than actual height of the “ascender” ‘b’ character, to have some

additional space between lines.

Advanced Vertical Metrics

" Calculate values automatically (recommended)

f® Set custom values Current TT UPM size is:|
[05/2] TypoAscender: ? [hhea] Ascender: -5?2
TypoDescender: W Descender: T
TypoLineGap: ‘52] LineGap: [26

WinAscent: 372

WinDescent: -277 7 Recalculate

Strikeout position: 230 | Strikeout thickness: -50
Recalculate

Average width: 0

Leave zerao in this field to calculate value automatically

In TrueType font files vertical metrics can be stored in the OS/2 and hhea
tables. Different programs and operating systems use vertical metrics from
these tables. Windows usually uses data stored in the OS/2 table while the
Mac OS uses only data located in the hhea table.

It is important to correctly define all vertical metrics if you want your font
to align properly. In most cases FontLab Studio can calculate vertical
metrics according to the system recommendations, but in some cases you
may want to customize these values.

We recommend you generally leave these values untouched in an existing
OpenType font. Of course, if you perform heavy modification of the font
you will need to update the advanced vertical metrics.

If you want FontLab Studio to automatically calculate all vertical metrics,
select the option Calculate values automatically.

If you want to customize values, select the Set Custom values option and
edit data in the fields below. Note that if you choose Set Custom values but
leave all data unchanged, FontLab Studio will restore the original vertical
metrics data from the imported font and the new updated font will align
exactly as the original one.

245

Here is a description of each value:

Typo Ascender

This is the typographically-correct ascender value. It is the
topmost line of lowercase characters, usually, the topmost line
of the ‘b’ character

Typo Descender

The same as Typo Ascender, but for the lowest line. Usually it
is equal to the bottom line of the character ‘p’

Typo Line Gap

“Typographically” correct line gap value (distance between
bottom line of the upper line of text and top line of the lower
line of text)

WinAscent

[0S/2] This value defines the topmost line of all important
characters in the font. “Important” characters are all non-
exceptional characters. For example, if most of the characters
have the topmost position at 900 font units and one, not often
used character, has it at 1300 font units, it’s a good idea to set
WinAscent at 900 units. Note that in most cases portions of
the characters that are above the WinAscent value will not
appear on the screen or print on some printers. Please note
that WinAscent is NOT a typography ascender, usually
measured as the topmost line of lowercase characters. It is
mostly a technical parameter used by the rasterizer to allocate
vertical space to render characters

WinDescent

[0S/2] The same as WinAscent, but for the lowest line of all
“normal” characters

Ascender

[hhea] This value is used by the Mac OS in about the same
situation as Windows uses the WinAscent value from the OS/2
table — to define the topmost position of all important glyphs

Descender

[hhea] In short: the Macintosh version of the Windows
WinDescent parameter. If there are any pixels below this line
the glyph will be squashed in the vertical direction to match
metrics defined by the Ascender and Descender parameters

Line Gap

[hhea] This value is used by the Mac OS to compensate
Ascender and Descender values and calculate the correct
distance between baselines of the text. Refer to the formulas
below to see how baseline-to-baseline distance is calculated.

246

Baseline-to-baseline distance calculation

Windows:

Windows Metric OpenType Metric

ascent WinAscent

descent WinDescent

internal leading WinAscent + WinDescent — UPM

external leading MAX(0, LineGap - ((WinAscent + WinDescent) - (Ascender -
Descender)))

BTBD = ascent + descent + external leading

It should be clear that the "external leading" can never be less than zero.
Pixels above the ascent or below the descent will be clipped from the
character; this is true for all output devices.

Macintosh:

Macintosh Metric OpenType Metric

ascender Ascender
descender Descender
leading LineGap

BTBD = ascender + descender + leading

247

248

Superscript and Subscript

X pos Y pos X size Y size
Subscript: 0 | 75 650 600
|Superscript: 0 | 350 650 600

TrueType and OpenType font format allows you to specify position and size
of the superscript and subscript characters:

X'y,

Subscript Position and size of the subscript characters in font units

Superscript Position and size of the superscript characters in font units.

Encoding and Unicode

- Encoding and Unicode
Custom [cmap] encodings
Unicode ranges

As we mentioned earlier, fonts may have very many characters and support
a lot of different languages. To tell the operating system what codepages
the current font can support, you set the codepages information.

TrueType and Type 1 fonts use different methods to identify what
codepages a font supports. In TrueType fonts you can identify all the
supported codepages by setting bits in a special field of the font header. In
Type 1 fonts you select only one codepage (actually, encoding vector) and it
must be compatible with the actual font encoding.

249

Supported Codepages

Available codepages: Supported codepages:

1253 Greek O b 1252 Latin 1

1255 Hebrew 1250 Latin 2: Eastern Europe
1256 Arabic \ 1251 Cyrillic

1258 Windows Vietnamese 1254 Turkish

874 Thai *] 1257 Windows Baltic

932 JIS/)lapan Macintosh Character Set
936 Simplified Chinese

949 Korean Wansung 3

950 Traditional Chinese - ?

Character Set Information

Microsoft Character Set: | Western (Latin 1) CP1252 [ANS| Tl
PFM Default character: E1
Mac script and FOND ID: Roman —H "5282 I

The operating system needs to know which codepages a TrueType font can
support. To set this information you select all the codepages that this font
can “cover” from the list of standard codepages that are available to the
operating system.

To select the supported codepages automatically press the -~ Auto button.
FontLab Studio will analyse the Unicode information available in the font
and will automatically detect which codepages this font can support.

To add a codepage to the list of supported codepages select a codepage in
the left list and press the .*_ Add button.

To remove a codepage from the list of supported codepages select a

codepage in the right list and press the _*_ Del button.

To reset the list of supported codepages, press the . *_ Reset button.

The Meaning of Supported Codepages in Windows
In Mac OS prior to 8.5 and Windows 3.1x this information is not used.

In Mac OS starting from 8.5, Windows 95 and Windows NT a font that has more than one standard
(Mac OS Roman or 1252 Latin 1) codepage supported will appear as afont available for different
scripts. So, if, for example, you set Latin 1 and Cyrillic codepages for a font with the name MyFont, in
Windows 95 (and NT) it will appear as MyFont (Western) and MyFont (Cyrillic).

250

Type 1 Character Set

Type 1 fonts do not have such extensive support for multiple codepages.
The character names they use to identify characters are mapped to codes
through the encoding vector. There is one parameter that is used to tell
Adobe Type Manager (used to support Type 1 fonts in Windows) how to
interpret the encoding vector. This is the Microsoft Character set.

Some of the values for Microsoft Character set:

ANSI The Font has all the characters necessary to represent the standard
Windows Latin 1 character set. No reencoding is necessary

Symbol The font is symbolic with a custom encoding vector. It should appear as
Symbol in Windows applications and the font’s own encoding vector
should be used to access characters

ShiftJIS This is a Japanese font that includes Kanji characters

OEM The font has MS DOS characters. This setting is rarely used in Type 1
fonts

Bitstream This is a normal text font, but it has its own encoding that should be
used to access characters. This setting is highly recommended for all
text fonts with a non-standard encoding vector

Arabic The font has Arabic encoding.

Other values cover more codepages that may be supported by the font.
Choose the codepage that is the default for your font.

The Macintosh Script and FOND ID

A Macintosh script is used to calculate the correct value of the FOND ID
parameter used in Macintosh font suitcases to differentiate fonts. The
Script is necessary to properly identify a font in multiple-language non-
Unicode programs.

You can use the list of all the possible Macintosh Scripts to automatically
calculate the FOND ID in the correct range (FontLab will generate a
random value) or you can manually enter the FOND ID and FontLab will
automatically select the script related to that value.

You may change this field later when exporting your font in any of the
Macintosh formats. And certainly this field is not needed when saving the
font for Windows.

251

252

Custom [cmap] encodings

!27 Use custom [cmap] encoding

PID |EID |LID |[Format [Contents
1 0 0 5] [Font window] =
3 1 Bl [Unicode] L=
0 3 4 [Unicode] -
Platform: Encoding: Language:
1 Macintosh '$] 0 Roman (3] 0English [+
Format: [6] Trimmed table mapping = |
Contents: [Font window] K3

When you are generating a TrueType/OpenType TT or a OpenType PS
font, it is override FontLab Studio’s default encoding options and use a
custom “cmap” table editor instead. On this page, if the option Use custom
[cmap] encoding is enabled, the user can specify how each subtable of the
“cmap” table should be built.

Please refer to the OpenType specification for the cmap table for detailed
explanation of the platform and format settings:

http://www.microsoft.com/OpenType/OTSpec/cmap.htm

Use the _*_ button to add a custom cmap subtable, and the |~ button to
remove one. The - adds a set of three cmap subtables: (1,0) for Mac OS
Classic, (3,1) for Windows Unicode and (0,3) for Mac Unicode. This is a
typical configuration of the cmap table for an OpenType font.

In the Contents popup menu, you can select [Unicode] to write the
mapping according to Unicode indexes specified in FontLab Studio, or
choose a custom codepage mapping. Selecting [Font window] chooses the
Codepage that is currently shown in the Font Window codepage mode.

http://www.microsoft.com/OpenType/OTSpec/cmap.htm
http://www.microsoft.com/OpenType/OTSpec/cmap.htm

Supported Unicode Ranges

Basic Latin m
Latin-1 Supplement

Latin Extended-A

Latin Extended-B

IPA Extensions

Spacing Modifier Letters
Combining Diacritical Marks
Creek

Cyrillic

Armenian

Hebrew

Arabic

v (%

ORI ERCD R R

TrueType and OpenType fonts must declare Unicode ranges that the font
can Support so that the operating system can decide which characters the
font can be used to represent. In TrueType format this information is
stored as the ulCodePageRangel and ulUnicodeRange fields in the OS/2
table.

The Supported Unicode ranges dialog is relatively simple: you can see a list
of all Unicode ranges with a check box to the left of each name. If the check
box is checked it means that range is supported.

Buttons to the right of the list mean:

% Uncheck all ranges

|

Automatically check ranges using information about Unicode indexes
. assigned to fonts characters.

253

254

Hinting Settings

- Hinting Settings
Standard stems (T1 hinting)
Additional hinting parameters
T1 Autohinting

Information in this section is related to hinting, which is described in full
detail in the “Hinting” chapter. The information below is copied there also,
so if you're not interested in hinting right now, you can skip this section.

Alignment Zones

There are two list boxes where alignment zones can be set: the Primary
zones list and the Secondary zones list:

Set alignment for the master:

) set local alignment zones) Set family alignment zones

Primary zones: Secondary zones:

=20, 0 -281, -272 # Auto zones
410, 414
417, 435
450, 462
666, 683
708, 723

20 [Jo | [#])[=] [-281][-272] [#][=

Copy family zones

In Type 1 terminology primary zones are called BlueValues and secondary
zones OtherBlues.

BlueValues include one bottom alignment zone, the so-called baseline
zone, and up to 6 top alignment zones. The baseline zone is used to control
bottom overshoots that have to be aligned to the baseline.

OtherBlues includes up to 5 bottom alignment zones.
To add a new alignment zone, press the Add button below the list.

To edit the position of the zone, select the zone you want to edit in the
list and edit it in the edit fields below the list.

To remove an alignment zone, select the zone you want to remove
from the list and press the Del button below that list.

You can see a preview of the zones by switching on the Alignment
Zones layer = in the Glyph Window and pressing the Apply button in the
FontInfo dialog box. You will see the alignment zones in the Glyph Window
in light blue.

255

256

Press the Auto zones button to automatically calculate alignment zones in
the Primary zones list box.

How FontLab Studio Calculates Alignment Zones

To calculate alignment zones in the BlueValues list, FontLab Studio finds characters with overshoots
and characters that are flat in the position of the overshoot. Then it measures the top and bottom
vertical positions of these characters and detects a zone. Examples of such characters are: ‘o’ and ‘x’,
‘O"and ‘H’, ‘p’ and ‘g’, and so on. FontLab Studio tries to find many different characters from
different languages, so it is usually able to locate some examples.

Alignment zones are also used in TrueType manual and automatic hinting.

Family Al ignment Zones

To support the common appearance of fonts that belong to the same font
family the Type 1 hinting system allows so-called FamilyBlues, alignment
zones that are used in the whole font family.

To set family alignment zones switch on the Set family alignment
zones check box. Then edit the alignment zones as usual. To return to
editing “local” alignment zones switch on the Set local alighment zones
check box.

Type 1 Standard Stems

Set stems for the master:
V stems: 72 92 | |72 e |
H stems: 36 ET i

" ForceBold ? Auto stems

When ForceBold is active Type 1 font is looking
bold even an small PPMs

Standard stem widths are also controlled through the Alignment page of
the Font Info dialog box. To edit standard stems open the Font Info dialog
box and select the Alignment page.

There are controls for both vertical and horizontal standard stem widths.
All available horizontal stems appear in the horizontal lists. You can select
any stem just as you would in normal, vertical list controls.

To add a stem to the list of the standard stems press _* | at the right
side of the stems' list.

To edit a standard stem width, select it using the mouse button and
edit its value in the edit field to the right of the list.

To remove a stem from the list, select it and press the _~_ button.

Note that FontLab Studio will sort stem widths starting from the second in
ascending order when you close the Font Info dialog box.

ForceBold — when this option is switched on, Type 1 rendering algorithm
makes the font looking “bold”

The quiclk brown fox ForceBold is OFF
The quick brown fox ForceBold is ON

257

258

StdHW, StdVW, StemSnapH and StemSnapV Parameters

From the Type 1 font specification you may know that in Type 1 fonts two types of standard stem
widths are used: Standard Width and Stem Snap Width. There is one standard width for each
direction and up to 10 stem snap values. In FontLab Studio these values are united in tle stem list.
StdHW and StdVW are taken from the first records in the stem lists. StemSnapH and StemSnapV
records are the remaining records in the stems' list.

FontLab Studio also has a faster way to append stems to the list of
standard stem widths. Any vertical or horizontal hint may be used as a
source of stem width information. Just point the Edit tool at the hint,
Ctri-click and select the Define a Stem command in the popup menu. If
this command is not accessible, it means that this stem is already in the

list.

To automatically calculate standard stem widths press the Auto
stems button.

How FontLab Studio Calculates Standard Stems

FontLab Studio can calculate standard stem widths only if some characters in the font have Type 1
hints.

1. It builds a table of all hints that are used in the font, sorts this table by frequency of usage and
selects the most frequently used hints.

2. All selected hints are then compared with these most frequently occurring stem widths and
hints with widths that are close together are combined into a single record.

3. Thelistis then sorted again.
4. The most frequently used elements are then selected and used as standard stems.

Global Hinting Parameters

| Set values for the master:

FB threshold: 0.5

Blue Scale: asitis ﬂ is equal to: "0.04?958"

BlueShift: |7
BlueFuzz: .1

@Aulomalically generate Flex hints in T1 and OT-PS fonts

Some additional data may be set to control the hinting process:

FB threshold ForceBold threshold — this parameter is used only in Multiple
Master font and controls when the Force Bold parameter is ON in an
intermediate design

BlueScale Controls PPM when overshoot depression is switched off
BlueShift Gives more precise control over overshoot description (see below)
BlueFuzz Expands alignment zones in both directions

You can set all these values in the right part of the Alignment page of the
Font Info dialog box.

BlueScale is the PPM size at which overshoot suppression is switched off. If
PPM is less than BlueScale, then overshoot suppression is applied. If it is equal
to or exceeds BlueScale, overshoot suppression works only if the distance from
the aligned point to the base line of the alignment zone is less than the
BlueShift value and the scaled distance is less then half of a pixel.

259

260

The BlueScale value is stored in Type 1 fonts in a very strange format, but in
the Alignment page you can set it using one of three different ways: directly, in
the form that the Type 1 specification describes (i.e. it looks like a floating
point number), as a PPM size, or as a point size on a device with 300 DPI
resolution. Use the BlueScale: popup menu to select the BlueScale editing
method and edit it in the is equal to edit field.

BlueScale Formulas
The “actual” value of the BlueScale value is calculated as:

(PPM-163333)
800.0

The BlueFuzz value allows you to expand the action range of the
alignment zones in both directions. Thus if you have defined a zone like
(700-715), and BlueFuzz is equal to 2, then the actual zone used will be
(698-717). This is usually used when you are not sure that you correctly set
all the alignment zones or when the characters are not all precisely aligned.
The normal value of this parameter is 0 but by default it is set to 1.

BlueScale =

TrueType hinting algorithms do not use BlueScale, BlueFuzz and BlueShift
values.

Type 1 Autohinting Parameters

You can customize the autohinting algorithm for PostScript font:

Min width Max width Min length Aspect ratio

Horizontal: 20 250 60 2
Vertical: 20 250 60 =

All values are relative to UPM = 1000 units

Width limits Declares the minimum and maximum width of hints that the
autohinting algorithm is allowed to create

Min. length Declares the minimum length of the nearest vertical (or
nearest horizontal) vectors (or curve control vectors) that can
be a candidate for building a hint

Minimal length/ Declares a critical correlation between the width of a
width aspect ratio candidate for the hint and the length of the vector that builds
that candidate

Note that all values are set for a 1000 UPM font and are automatically
scaled by FontLab according to the real UPM value.

261

262

Format-Specific Options

PostScript-specific settings
= TrueType-specific settings
Mapping
Device metrics
Font smoothing
Font flags: [head] table
= PCLT table
Font identification
Font metrics
Codepages

This section covers options that are specific to Type 1 and
TrueType/OpenType fonts. For both destination formats you may choose
font-specific export options that will be used instead of globally set
FontLab Studio options. In addition, for TrueType fonts you can customize
some settings that are necessary for high-quality rendering.

Type 1 Export Options

"1 Use default export options

[IMake PFM file | Make AFM and INF files
"1 Use WinAscent and WinDescent as font vertical size

Encoding options:

Always write custom encoding f

-e
!

W Automatically sort glyphs
" Open Type 1 Export Terminal

" Export [F5Type (font embedding) parameter Reset to default

" Use subroutines to compress outlines in the CFF table

Use this page to customize font export options for the current font. This
page copies Preferences/Generating Type | settings, so you may refer there
for the detailed description.

Switch on the Use default export options parameter to use default export
options that are not font-specific.

263

TrueType Export Options

[Use default export options

1 Export hinted TrueType font Keep existing TrueType instructions

1 Export visual TrueType hints | Autohint unhinted glyphs

| Export embedded bitmaps @ Automatically reorder glyphs

Copy HDMX data from base to composite glyph

Append OpenType name records to the names exp... T‘

_lignore Unicode indexes in the font
| Use following codepage to build cmap(1,0) table:
[Mac 05 Roman (default)] &

@ Export "kern” table Reset to default

Autohinting Options...

Use this page to customize font export options for the current font. This
page copies Preferences/Generating OpenType & TrueType settings, so you
may refer there for the detailed description.

Switch on the Use default export options parameter to use default export
options that are not font-specific.

264

TrueType Mapping Settings
@Automatically add ".null", "CR" and "space” characters

If the Automatically add... option is on, then FontLab Studio will analyse
the font and add characters that are necessary for complete font
compatibility. In Windows only two characters are really necessary: the
“notdef” and “space” characters. On the Mac a couple additional
characters are required: “CR” and “NULL”. Note that FontLab Studio will
generate these characters only if they do not exist in the font, so you can
create them manually and control their appearance. We recommend
leaving this option on, especially if you are developing Macintosh fonts.

265

266

Device-Dependent Metrics

[hdmx] table PPMs (use '," and '-' to define ranges, like this: 11-13, 15, 16):
9-13, 15-17, 19, 21, 24, 27, 23, 32—33, 37, 42, 48, 50,-54, S8, 67, 75

Note that these values will not be used if you try to keep existing TrueType hints.

E Create [vdmx] table
(it is necessary if this font has vertical delta instructions)

The [hdmx] control lets you customize the sizes for which FontLab Studio
will generate records in the hdmx TrueType table. This table is used to pre-
calculate pixel metrics of font glyphs so it will not be necessary to run a
hinting program to get the correct width.

If you don’t want FontLab Studio to generate a hdmx table for your font,
empty this editing field.

Use a colon to separate entries and -’ to define ranges of PPM.

Use the Create VDMX Table control to ask FontLab Studio to
automatically calculate a VDMX (Vertical Device Metrics) table. This is
necessary if some characters in the font are hinted in the vertical direction,
so that at some resolutions they can extend above or below the scaled
Win/Mac Ascender or Win/Mac Descender values and unwanted dropouts
do not appear. We strongly recommend you always have this option
switched on.

Font Smoothing Control

PPM Ranges:
0 = 8 5 o __| Apply instructions to the range
9 - 16 G — @Applv smoothing to the range
17 - SG Jiey

>
From: 0 To: &

To improve the appearance of TrueType fonts on the screen the latest
versions of the Mac OS and Windows operating systems use a special
technique called font smoothing. With this technique edges of the
characters are rendered using shades of gray:

Visually this decreases the dither of the characters’ edges so that text is
easier to read. This technique may be combined with gridfitting methods
that optimize the character’s appearance by adjusting its outline.

The font smoothing options let you control when to use one or both of
these techniques.

In the list box you see PPM (Pixels Per eM — font size measured in screen
pixels) ranges with one or two letters describing the applied technique.

S means that smoothing will be applied; G means that gridfitting will be
applied; SG means that both techniques will be combined to achieve the
best results.

267

268

To set options for a range, select the range and change its settings
using the controls in the dialog box. Use the check boxes to select the
rendering technique and the edit controls below the list to change the PPM
range.

To define a new range, select one of the existing ranges and press the

"% Split button. The range will be split into two ranges and you will be able
to set different options for them.

To merge two ranges select a range and press the *** Merge button. The
selected range will be merged with the range that is above it.

To reset the font smoothing settings press the > Auto button and

they will be calculated as advised by the TrueType specification.

You can see the results of these settings in the TrueType hinting Preview window when the
TrueType hinting tool is active. Refer to the “Hinting” chapter for more information.

[head] Table Settings

LowestRecPPeM: 9

fontDirectionHint:

These entries are specific for TrueType rendering. We do not recommend
you modify them if you are not sure of what you are doing.

LowestRecPPem

This parameter controls the lowest PPM at which the TrueType
rasterizer is allowed to apply instructions

FontDirectionHint

This [head] table parameter defines font direction, which may
have the following values:

0: Fully mixed directional glyphs

1: Only strongly left to right

2: Like 1 but also contains neutrals
-1: Only strongly right to left

-2: Like -1 but also contains neutrals.

A neutral character has no inherent directionality. Spaces and
punctuation are examples of neutral characters.

269

270

Basic PCLT options

" Export the PCLT table

The PCLT table is used when a TrueType font is printing on a PCL printer.
PCL (Printer Control Language) is a page-definition and printer-control
language developed by Hewlett Packard and is used in their printers.

This table is recommended for TrueType fonts, but only if you understand
all the options and parameters.

The first page includes only one option: Export the PCLT table, which
controls table export. Note that you can define table parameters but not
export the table — all values will be saved to your FontLab Studio font file
(VFB).

Extra information on many of PCLT fields can be found in the HP PCL 5
Printer Language Technical Reference Manual available from Hewlett-
Packard Boise Printer Division.

Our description of various PCLT fields is partially copied from the PCLT
table specification available online at:

http://www.microsoft.com/typography/otspec/pclt.htm

http://www.microsoft.com/typography/otspec/pclt.htm
http://www.microsoft.com/typography/otspec/pclt.htm

PCLT Identification

@ MNative format

. Converted format

Vendor code: [

Unigue code: 0 . Copy T1LUID

Typeface family code: 0

TypeFamily vendor code: *reserved* T‘

Native/Converted Only original font vendors can select Native format. If you are

format

modifying an imported font, select Converted format

Vendor code

Single-character code of the font vendor — assigned by
Hewlett-Packard Boise Printer Division to major font vendors.
Below is a list of registered font vendors:

A Adobe Systems

B Bitstream Inc.

C Agfa Corporation

H Bigelow & Holmes

L Linotype Company

M Monotype Typography Ltd.

Unique code

Font’s unique code — 24-bit integer. Using the Copy T1 UID
button you can copy the Type 1 Unique ID value into this field

Typeface family
code

This is a family code assigned by HP Boise Division. Refer to
HP manuals for more information

TypeFamily vendorThis is another vendor code assigned by the HP Boise Division.

code

Choose one of values in the list.

271

272

PCLT Metrics and Font Description

Width: Normal - !
Posture: = Upright = 1
Structure: Solid (normal, black) = |
StrokeWeight: 0 Book, text, regu'l-ar, etc. _:]
SerifStyle: = Sans Serif Square _:] ? Recalculate
) Sans Serif/Moncline () Serif/Contrasting
WidthType: 0 Normal = |
Pitch: 0
x Height: 0 CapHeight: 0 - ? Recalculate
Width The appearance width. Select one of the options in the list
Posture The slant of the glyphs. Could be upright, italic/oblique or
reversed italic
Structure The structure of the glyph’s interior. Select one of the options
in the list
StrokeWeight Weight of the font. This value is related to the Weight
parameter on the basic names page
SerifStyle Style of the glyph’s serifs. This is related to the PANOSE
settings.
Use the Recalc button to calculate values automatically using
information from other pages
WidthType PCL appearance width value. Select one of the options in the
list
Pitch The width of the space in font units
xHeight The height of the optical line describing the height of the
lowercase x in font units. This might not be the same as the
measured height of the lowercase x
CapHeight The height of the optical line describing the top of the

uppercase H in font units. This might not be the same as the
measured height of the uppercase H.

PCLT Codepages

Typeface: P Recalculate
File name:
Character Set: | Undefined _:]

Character Complement: Q000000000000000

Typeface This 16-byte ASCII string appears in the "font print" of PCL
printers. Care should be taken to insure that the base string for
all typefaces of a family are consistent, and that the designators
for bold, italic, etc. are standardized.

Times New
Times New Bd
Times New It
Times New BdIt

File name This 6-byte field is composed of 3 parts. The first 3 bytes are an
industry standard typeface family string. The fourth byte is a
treatment character, such as R, B, I. The last two characters are
either zeroes for an unbound font or a two-character
mnemonic for a symbol set if a symbol set is found.

Examples:

TNRROO Times New (text weight, upright)
TNRIOO Times New ltalic

Character Set Symbol set values are assigned by HP Boise Division. Unbound
fonts, or "typefaces" should have a symbol set value of 0. See
the PCL 5 Printer Language Technical Reference Manual or
the PCL 5 Comparison Guide for the most recent published list
of codes.

In most cases all you need to do is to select one of pre-defined
values in the list to the right of the manual field. See below for
more information

Character This 8-byte field identifies the symbol collections provided by

Complement the font, each bit identifies a symbol collection and is
independently interpreted. Symbol set bound fonts should
have this field set to all F's (except bit 0).

273

274

File Name Treatment Flags:

R Text, normal, book, etc.

| Italic, oblique, slanted, etc.

B Bold

J Bold Italic, Bold Oblique

D Demibold

E Demibold ltalic, Demibold Oblique

K Black

G Black Italic, Black Oblique

L Light

P Light Italic, Light Oblique

C Condensed

A Condensed Italic, Condensed Oblique
F Bold Condensed

H Bold Condensed lItalic, Bold Condensed Oblique
S Semibold (lighter than demibold)

T Semibold Italic, Semibold Oblique

Character Set Table

FontLab Studio stores the list of predefined character set codes with descriptions in a special text
file named pclset.dat located in the Macintosh HD/Library/Application Support/FontLab/Data
folder.

This file has a simple structure:

-- Undefined

19M Adobe Symbol

0V Arabic (McKay's)

Every line contains a Character set code followed, after a single space, by a description of the
character set. You can open this file in any text editor, like TextEdit, and make any changes you
want.

Binary and custom tables

Tag |Comment
--0T Stored binary OpenType layout tables
BASE Baseline data

OpenType and TrueType fonts may contain tables that are unknown to
FontLab Studio. These can be registered OpenType tables that FontLab
cannot interpret (e.g. BASE or JSTF), AAT tables (e.g. morx or gvar),
binary “native” copies of some tables that the user may want to retain (e.g.
the OpenType Layout tables or native TrueType hinting) or tables
generated by some private tools.

If the option Store custom TrueType/OpenType tables is enabled in
Preferences > Opening OpenType & TrueType, FontLab Studio will
store in the .vfb file the tables that it cannot interpret. If the option Store
binary OpenType layout tables is enabled, FontLab Studio will also store
the OpenType layout tables GPOS, GDEF and GSUB in their binary form —
although it can interpret these tables at least to a large extent. Finally, if
the option Store TrueType native hinting is enabled, FontLab Studio will
store the original TrueType instructions.

The Binary and custom tables page shows all stored OpenType and
TrueType tables. If stored OpenType Layout tables are present in the .vfb
file, the tag “—OT” is shown in the Tag column. If stored TrueType native
hinting is present, the tag “—TT” is shown. For all other tables, the actual
table tag will be displayed. In the Comment field, FontLab Studio shows a
description of the table if possible (known).

You can use the | = | button to remove any stored tables from the .vfb file.
Note that if you generate the font in the TrueType / OpenType TT or
OpenType PS format, the stored tables will only be written if appropriate
options are set.

275

Printing and
Proofing Fonts

FontLab Studio 5 has several new tools for visual proofing and printing of
your fonts. Several new printing modes allow you to print font content in
different ways with various options. You can print all or selected glyphs
with all character information, sample strings, detailed glyph printouts as
well as a kerning table. A new Quick Test feature that proofs the font using
the system renderer has also been added. At the end of this section, a
summary of additional methods of visual proofing is presented.

Printing

To see the printing modes available, choose File > Print. You will see the

following dialog box:

Printing

Font table aa il
FontTable Cells in the row: 16 i !
ft Cell caption: = Unicode ﬂ

print glyph index in every cell

Font Waterfall
Glyph Sample

[~ene
| and

Clyph waterfall
[+

(" Cancel) € Print)

On the left side of the dialog box, you can choose one of the available
printing modes: Font Table, Glyph List, Font Sample, Font Waterfall,

Glyph Sample, Glyph Waterfall and Kerning Table.

278

Printing Font Table

To print the font table of the current font

1. Select the Print command in the File menu or click on the &l button
in the Standard toolbar. You will see a dialog box that asks you to select
one of the printing modes:

Printing

Font table €2

konc Table Cells in the row: | 16 4

Cell caption: _Unicode ﬂ

Glyph List

[The
qul ek
Briawn

Font Sample

print glyph index in every cell

2. Select the “Font Table” item in the list at the left to print a font chart
containing samples of all font glyphs.

3. Choose how many cells you want to be printed in one row. The fewer
cells will be printed in a row the larger will be each cell and the more
pages you will get printed.

4. Choose information for the cells caption. This option is similar to the

caption popup menu in the Font window.

5. Select whether to print glyph index in every cell or not and click Print.
You will see the standard Mac OS Print dialog box that will ask you to
choose a printer and modify the printer settings:

Print
Printer: | XERODD0f0a1b033 R4
Presets: = Standard _:]
Copies & Pages T! =
Copies: |1 ™ Collated
Pages: @ Al
T From: |1 Tt 3
(7 (Pre\riew'_' (Save AsPDF...) (Fax..) (Cancel) (ﬂ_}

279

280

In this dialog you can choose the range of pages you want to print.

When you press the Print button, FontLab Studio will print a font table
containing samples for all font glyphs.

If you print a Multiple Master font the glyphs will appear according to the
current font’s WeightVector.

Printout of the font chart:

FONTLAB FONT PRINTOUT

: 0RE0T 10:44:28
NeoGothic Pags 1101
|ushkesped mrlom | quoledtl | runibarsig doler preent | ampamsendquokssing| paralat | poranright| ostnsk | paus comna (hyphan paiod | slesh
P # 8| % &) Cl)Y >+, -]]/
| 7| 3 Bl E B T B o | 1| 1} 13|) 15| E
|z e Lo threa | for five sx seen aighi |nine ool | samimion) kess agual greaker | quasion
01123456 |7|8[9:|:|<]|=>]7
[17 18] i) | Fil I FH o 5 E Faj| FL] Ex] E] 7]
o A B [3 n E F [H H 1 1 H L [T N
@|A/B|C|I[D|E|F|[G|H|I|J|K|J]LIM|N|O
1| ETl| 3| 56| ar} 6| ET) 0| [l a3 43| ai 15| =) 5 =3
" [I 5 I u [w X I z | Evackatenf bactsiash] Brackamgt s iamn) i
PIQIR|S|T|U[VIWI X|Y|[Z|L[|N|T]*]_
[a0 5| G 5| 53 E] 5E) £ Gl £ E|] &l a] (]

Printing Glyph List
To print the glyph list of the current font

1. Select the Print command in the File menu or click on the g button
in the Standard toolbar and select the “Glyph List” item at the left of
the Printing dialog box:

Printing

Glyph list i 1

Font Table '?‘ Print all glyphs in the font
) Print only selected glyphs

Glyph List

2. At the right choose whether to print all font glyphs or only the selected
glyphs and click Print. You will see the standard Mac OS Print dialog
box.

Note that some information is colored; so printing on a color printer will
have some benefits.

Printout of the glyph list:

NeOGOthiC 10/28/01 20:08:25
Page 1/1
a b
Indax: 66, Unicode: 0061 Index: 67, Unicoda: 0062
Modes: 18, Contours: Nodes: 16, Contours: 2
a BBax: (46, -13) - (403, 485) BBox: (81, -12) - 438, 670
LSB: 46, RSB: 47, Width: 450 1 LSB: 81, RSl Vidth: 529
Isb: 337, rsb: 52, width: 60 Isb: 80, rsb: 48, width: 391

c d

Index: 68, Unicode: 0083 Index: 69, Unicode: 0064

Modes: 11, Contours; 1 Modes: 15, Contours: 2
C BBox: (49, -13) - (427, 485) BBox: (61, -15) - (470, 666)

LSB: 49, RS LSB: 61, RS|

Isb: 56, rsb: 345, width: 66 Isb: 67, rsb. 65, w

e
Index: 70, Unicode: 0085

Modes: 12, Contours: 2
e BBox: (49, - 9,

LSB: 49, RSB: 24, Widih: 493
Isb: 56, msbr 44, width: 393

As you can see, this is the same information that is displayed in the Glyph
properties panel.

281

Printing Font Sample

To print the current font sample

1. Select the Print command in the File menu or click on the g button
in the Standard toolbar and select the “Font Sample” item at the left of
the Printing dialog box:

Font sample L

Text to print:

The quiék brown fox jumps over the lazy dog

The quick brown fox

Text size: 48_ El @Word wrap | Print right-to-left

E Fill outlines
™ Apply kerning [_! Print kerning values
" Print metrics data

! Print underline

2. At the right type the text you want to be printed and set the size of text.
Note that metrics information is printed only when larger sizes are
selected.

3. Set other printing options:

Word wrap If this option is on FontLab Studio will wrap words when
printing

Print right-to-left If this option is on FontLab Studio will print text in the
reverse order

Fill outlines If this option is on characters will be printed filled

Apply kerning If this option is on and the kerning is defined for the font
the text will be printed kerned

Print kerning If this option is on and the kerning is defined FontLab
values Studio will print kerning values

282

Print metrics If this option is on and the text size is large enough the
data values of the glyph width and sidebearings will be printed

Print underline If this option is on the text will be printed underlined.

4. Click Print. You will see the standard Mac OS Print dialog box.

Printout of the font sample with default printing options:

FONTLAB FONT SAMPLE Adobe Systems Incorporated

Font: BellMT-SemiBoldltalic 00115005 125603

String: The quick brown fox jumps over the lazy dog
Page 1/1

The quick brown fox jumps
over the lazy dog

283

284

Printing Font Waterfall

To print the current font waterfall sample

1.

4,

Select the Print command in the File menu or click on the g button

in the Standard toolbar and select the “Font Waterfall” item at the left
of the Printing dialog box:

Font waterfall € || >

Text to print:

Theqwckbrown fox jumps over the lazy dog

The quick brown fox

List of point sizes to print:
5-36, 38, 40, 42, 48, 56, 64, 72 { Reset)

1 Print right-to-left
@Apply kerning

_| Print point size at the beginning of every line

At the right type the text you want to be printed and edit the list of
point sizes if needed. Click on the Reset button to restore the default
list of sizes.

Set other printing options:

Print right-to-left If this option is on FontLab Studio will print text in the
reverse order

Apply kerning If this option is on and the kerning is defined for the font
the text will be printed kerned

Print point sizes If this option is on FontLab Studio will print size values
at the beginning
of every line

Click Print. You will see the standard Mac OS Print dialog box.

Printout of the font waterfall with default printing options:

Font: BellMT-SemiBoldltalic 09115105 125521

String: The quick brown fox jumps over the lazy dog

Sizes: 5-36, 38, 40, 42, 48, 56, 64, 72 Page 112

dog.
i e lazy dog
 fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

The auick brown foxr tumbs over the lazv doo

285

286

Printing Glyph Sample

To print the glyph sample

1.

2.

Select the Print command in the File menu or click on the g button
in the Standard toolbar and select the “Glyph Sample” item at the left

of the Printing dialog box:
Glyph sample
{®) Print single glyph
) Print all glyphs in a text string

Select glyph to print:

a (4

| Choose glyph...

Printing options:

Eﬁ Nodes " | Node coordinates
| Glyph metrics

"I Hints

C1Fill outline

[
{3
2

*a .__—.gﬁ';

@ Fit glyph to page vertically (using visual ascender and descender)

€ |3

At the right select the single glyph that you want to be printed or type

the names of glyphs proceeded by slash. You also may use glyph

Unicode codepoints proceeded by backslash. You can use the Choose

Glyph button to open the Find Glyphs dialog box.

3. Set other printing options:

Nodes

If this option is on FontLab Studio will print squares
visually representing nodes

Node coordinates

If this option is on FontLab Studio will also print
coordinates for each node in font units. Node
coordinates cannot be printed without printing nodes

Glyph metrics

If this option is on FontLab Studio will print lines
representing glyph metrics

Hints If this option is on and hints are present they will be
printed
Fill outline If this option is on glyph outlines will be printed filled

Fit glyph to page
vertically

If this option is selected each glyph will be printed
scaled to fit the page vertically and centered
horizontally

Use current Glyph
window zoom

If this option is on each glyph will be printed at the size
of the currently opened Glyph window. This option
cannot be selected if there are no opened Glyph
windows.

4. Click Print. You will see the standard Mac OS Print dialog box.

Use combinations of different options to see the printing result which

better meets your needs.

Printout of the glyph sample with default printing options:

FONTLAB GLYPH SAMPLE

Adobe Systems Incorporated

Font: BellMT-SemiBoldItalic 0e/18/08 128683

Glyph: A

Page 1/1

287

288

Printing Glyph Waterfall

To print the glyph waterfall sample

1.

a.

Select the Print command in the File menu or click on the g button
in the Standard toolbar and select the “Glyph Waterfall” item at the left
of the Printing dialog box:

Glyph waterfall i i
Select glyph to print:
s "

[Choose glyph...)

List of point sizes to print:
5-3k, 38, 40, 42, 48, 5, &4, 72 | Reset)

At the right select the single glyph that you want to be printed. Use the
Choose Glyph button to open the Find Glyphs dialog box and find a
particular glyph for print.

Edit the list of point sizes if needed. Click on the Reset button to
restore the default list of point sizes.

Click Print. You will see the standard Mac OS Print dialog box.

Printout of the glyph waterfall:

FONTLAB GLYPH WATERFALL Adobe Systems Incorporated
Font: BellMT-SemiBoldltalic 09/15/05 12:56:08
Glyph: A

Sizes: 5-36, 38, 40, 42, 48, 56, 64, 72 page 1/1

WLMAAAdﬂAAAAAAAAAAAAAAAAAAAAAAAAAA

Printing Kerning Table

To print the kerning table

1.

Select the Print command in the File menu or click on the &l button
in the Standard toolbar, click on the =) button in the left pane of the
dialog box and select the “Kerning Table” item at the left of the
Printing dialog box:

Kerning table €|
Pairs filter:

All pairs T‘
Sort pairs by:

First glyph = !

W print glyph shapes
! Print right-to-left

’f Print class information Ei Print class content

At the right choose the options of the printout. The Pairs filter selector
is similar to the one in the Kerning Table in Metrics Window. You can
choose to print all pairs or only those where one or both glyphs are
either selected or in encoding, i.e. “in the yellow zone”.

Choose how to Sort pairs by in the printout (by the glyph name of the
first or second glyph in the pair, or by the kerning value).

Enable Print glyph shapes to print the actual glyphs. If disabled, only
glyph names and values will be printed.

Print right-to-left allows you to print the pairs so that the first glyph
in the pair is always on the left of the second glyph.

If your font uses class kerning, Print class information and Print class
content allow to include basic or full information about the classes.

Click Print. You will see the standard Mac OS Print dialog box.

289

Printout of the kerning table with default printing options:

Font: BellMT-SemiBoldltalic oerIes 128820
Total pairs to print: 411 Page 1/11
AC A G 25 BU B Udieresis 25
AG A G 25 C o3 period -13
A o 12 D comma 13
AO !
AQ A Q 12 D. D period 25
AV A v -3 DA D A 75

290

Quick Test

FontLab Studio has a new feature allowing you to test your fonts quickly.
You can generate and temporarily install your font with one command and
then see how it works in real text-editing environment.

To test the open font, just select the OpenType TT or OpenType PS
command in the Tools > Quick Test As menu. FontLab Studio will
generate the font in the selected font format (using the current generation
Preferences), temporarily install it in your system, and present the
following window:

Test Font

w24 85 content v £ € Close)

1"#$%&S () +,-./0123456789:;<=>?

@ABCDEFGHIJKLMNOPQRSTUVWX

YZ[\]"‘ “abedefghijklmnopqrstuvwxyz{| }~£,
L TE %eS(EZ " e—

TMSWEZYE ¢ LY | §7 0N

@-*4 23 ‘ny, 1“»%‘/&% MUUMCEEEEHI

IBNOOOOOX@UUUUYPEH&HMJEQ%&EM

110106666+eunllypy

This is a simple text editor allowing you to type with your font, change the
text size and print the content.

Type or paste the sample text in the editing field. Use the Content popup
menu to see the characters of the particular codepage or entire character
set of the font, i.e. all glyphs that have a Unicode codepoint assigned.

You can also type in your custom text. Note that since this dialog uses the
system font rendering, you will see the OpenType layout features that are
applied by the operating system by default.

You can print the display text from this dialog.

To finish testing the font and close the window, click on the Close button.

291

292

Other Proofing Methods

In addition to the proofing features described above that allow you to
produce printouts, FontLab Studio offers additional methods for visual
proofing of your fonts on screen. They are discussed more extensively in
other sections of this manual but here follows a quick summary.

Preview panel

The Preview panel (Windows > Panels > Preview) allows you to preview
sample strings with a variety of options. It can be docked at the top or
bottom of the screen, or positioned on a second monitor. With the panel,
you can type arbitrary strings that will be previewed using your current
font, or choose the strings from a popup menu. Extended characters can be
inserted by typing /glyphname or \XXXX or \uXXXX for Unicode codepoints.

Tip: SC Unipad (http://www.unipad.org/) is an excellent Unicode text

editor that can quickly convert between true Unicode characters and the
\uXXXX notation. To produce multilingual previews, type your text in
SC Unipad, convert to \uXXXX and paste the result into FontLab Studio.

A new feature in FontLab Studio 5 is the ability to preview multiline text:
insert \n anywhere within the preview string to enforce line wrap.

: (&) Preview
6penT;,u;pe i-'eatures Preview ? .&nchars
-Harﬁhurg.e_fans“\ﬁ;l:he qu.i_c”}-zut;rnwn f-ax.j.umps- E! - 1"|"' o E -m- Pl

QNS Qnteag (oo Roteammnt
OGS (NS (N Qe

The text in the preview panel can be shown in reversed colors (white on
black), flipped vertically, flipped horizontally, previewed right-to-left or in
vertical orientation.

http://www.unipad.org/

OpenType Features panel

The OpenType Features panel is available as a second page of the
Preview panel and provides visual proofing capabilities for OpenType
Layout features included in the font. It is a great tool for quick previewing
of your OpenType feature definition code, especially for Western
typographic features. You can check whether your features are in a correct
order (to avoid unwanted effects with interaction of different features),
customize the preview size, optionally display the glyph metrics and
present the glyphs in right-to-left order.

a Preview

OpenType Features ; Prew:iew [.Anchurs.

Script: latn _:! Language: DFLT _:| T o+ i .;-.;.51!7

— - Y i N .
cpsp M official style 1234 mm
@ kern
(] aale Souree
; arnm -
= csc
= | otticial style
@ onum
__ case
ﬁ e F Result
™ pnum
__ tnum -
sups
< ofhcial Style 12
1 hist | P T S SIS e e e S e e A e
@ dlig -

Currently, the OpenType Features panel does not support all lookup types
and does not allow you to apply features selectively to single characters or
words. It also does not support special shaping rules for complex scripts.
To preview OpenType Layout features for complex scripts, use the Quick
Test feature discussed earlier.

293

294

Hinting Tools

The Type 1 Hinting and TrueType Hinting tools (Tools > Hints &
Guides) provide accurate bitmap previews of your Type 1, OpenType and
TrueType fonts as they will appear on screen. The tools call the font
rasterizers present in the system to produce the previews so the accuracy is
guaranteed. The hinting preview panels allow you to toggle between
different screen sizes, zoom in individual glyphs and select various
rendering modes.

(&) Type 1 Preview
The quick brown fox jumps over IE1 [
The qu.ick brown fox Jumps aver
e » RRRRE RRRRRRRRRRRRRRRRRRRRRRRR
12}
T cpaek Brcoen e angas oy
Tha quick bacem fox fazeps crar

The quick boown fo fumps ow
The quick brawn foor jumnps over

12 The quick brown fou jumps over
The quick brown foi jumps over
The quick brown fox jumps over
The quidk brown fox fumps over
The quick brown fox jumps over

The quick browen fox jumps over

Generating Fonts

In this chapter, we will discuss the most important aspects of generating
workable fonts in the most popular formats. Please note that all
recommendations and guidelines in this chapter only address typical and
common cases. There can be exceptions and special situations. For those,
you need to refer to the specific sections of the manual, and to the
appropriate font format specifications.

This chapter also assumes that you have read the rest of the manual.

296

Relevant Font Formats

The following lists the most relevant font formats and lists some of their
advantages and disadvantages.

OpenType PS
J
Also known as: OpenType-CFF, PostScript-flavored OpenType, OTF

Filename extension: .otf

Pros: Works on Windows, Linux, Mac OS 8.6, 9, and OS X. Uses the Bezier
curves that are preferred by designers and used in drawing apps such as
Illustrator and Freehand so letterforms can be drawn precisely and
outlines need not be converted. May contain up to 65,535 glyphs, supports
Unicode and can contain OpenType Layout features.

Suitable for Western Roman fonts, non-Latin fonts, multilingual fonts and
advanced typography. May include class kerning allowing for moderately-
sized kerning tables. Uses Type 1 hinting that is relatively easy to create.
Can include embedding rights information defining whether or not the font
may be attached to electronic documents.

Cons: Type 1 hinting does not allow precise control in small screen sizes.
Can theoretically contain bitmaps, but they are not displayed. Since this is
a relatively new format, there are problems with old some applications
(some styles are not displayed in menus, kerning for non-Western
characters does not work.) The multilingual and advanced typography
features only work with new OpenType-savvy applications, otherwise just
the basic character set is available. Two alternative family namings within
each font must be devised: one where a family contains an arbitrary
number of styles, and second “brief family” where one family does not
contain more than four styles. Does not work on Mac OS 8.

Macintosh TrueType

FFIL

Also known as: sfnt-based TrueType, TrueType suitcase
File extension: no

Pros: Works on all Macintosh systems, not cross-platform. May contain
up to 65,535 glyphs, supports Unicode.

Suitable for Western Roman fonts, non-Latin fonts, multilingual fonts and
advanced typography. TrueType hinting allows precise control in small
screen sizes, can also contain bitmaps (in the same suitcase file). Can
include embedding rights information defining whether or not the font
may be attached to electronic documents.

Cons: Does not work on Windows. May cause output problems on ten-
year-old PostScript output and printing devices. The designer usually
needs to convert the outlines from Bezier curves which may introduce very
slight changes in the shape. When converted back to Bezier curves (e.g. in
Illustrator), the resulting curves have superfluous points. Manual
TrueType hinting is laborious to create. One family cannot contain more
than four styles.

297

298

Windows TrueType / OpenType TT
1) 0]

Also known as: Data-fork TrueType, Windows TrueType, TrueType-
flavored OpenType, TTF

File extension: .ttf, also possible: .otf

Pros: Works on Windows, Linux and Mac OS X. May contain up to 65,535
glyphs, supports Unicode and can contain OpenType Layout features.

Suitable for Western Roman fonts, non-Latin fonts, multilingual fonts and
advanced typography. May include class kerning allowing for moderately-
sized kerning tables. TrueType hinting allows precise control in small
screen sizes, can also contain bitmaps. Can include embedding rights
information defining whether or not the font may be attached to electronic
documents.

Cons: Does not work on Mac OS 8/9. May cause output problems on ten-
year-old PostScript output and printing devices. The designer usually
needs to convert the outlines from Bezier curves which may introduce very
slight changes in the shape. When converted back to Bezier curves (e.g. in
Illustrator), the resulting curves have superfluous points. Manual
TrueType hinting is laborious to create. The multilingual and advanced
typography features only work with new OpenType-savvy applications,
otherwise just the basic character set is available. For font families,
requires two versions of the family name within each font: the first may
contain any number of styles; the second “brief family” may contain only
four styles.

Macintosh Type 1

LWFN

Also known as: Macintosh PostScript, LaserWriter font
File extension: no

Pros: Works on all Macintosh systems, not cross-platform. Works in all
PostScript commercial output and printing devices. Uses the same curve
system (Bezier) as drawing applications such as Illustrator and Freehand,
so letterforms are easy to edit when converted to curves. Type 1 hinting is
comparatively easy to create. Can contain bitmaps for small screen sizes.
One family can contain more than four styles.

Cons: Does not work on Windows, not cross-platform. Contains two parts,
the outline file and the bitmap font (suitcase), both of which must be in the
same folder. Does not contain class kerning so kerning tables are large.
Type 1 hinting does not allow precise control for very small screen sizes.
Cannot include more than 256 encoded characters and lacks advanced
layout features such as ligatures, making the format unsuitable for
multilingual or non-Latin fonts.

Recommendation: Draw fonts with Beziers as Type 1. When complete,
make a duplicate FontLab master .vfb file and make TT conversions to it.
Generate either a TrueType or a Type 1 font suitcase for older systems (pre-
X Mac OS). We recommend producing fonts in the OpenType format
unless you have Mac customers running a pre-X Mac OS.

299

300

Windows Type 1
al
Also known as: Windows PostScript, PC PostScript, PC Type 1

File extension: .pfb, with supplementary files .afm, .inf, .pfm

Pros: Works on Windows and Linux. Works in all PostScript commercial
output and printing devices. Uses the same curve system (Bezier) as
drawing applications such as Illustrator and Freehand, so letterforms are
easy to edit when converted to curves. Type 1 hinting is comparatively easy
to create.

Cons: Does not work on Mac OS 9 or X, not cross-platform. Contains two
parts, the outline file (.pfb) and the metrics font (.pfm), both of which must
be in the same folder. Does not contain class kerning so kerning tables are
large. Type 1 hinting does not allow precise control for very small screen
sizes. Cannot include more than 256 encoded characters and lacks
advanced layout features such as ligatures, making the format unsuitable
for multilingual or non-Latin fonts. Cannot contain bitmaps for small
screen sizes. One family cannot contain more than four styles.

Recommendation: Draw fonts with Beziers as Type 1. When complete,
make a duplicate FontLab master .vfb file and make TT conversions to it.
Generate either a TrueType / OpenType TT or an OpenType PS font for the
newest systems (Windows and Mac OS X).

Before You Generate

Before you generate your font, make sure the most relevant aspects of the
font are complete. Open all fonts that belong to your family in FontLab
Studio.

Font Info

Open Window > Panels > Fonts and look at the family naming. Unless you
are creating Mac Type 1 fonts, each brief family listed in the Fonts panel
should contain no more than 4 styles. If you plan to create OpenType fonts
(PS or TT), use the Group fonts by button to switch from the Group By
Family view to the Group By OT Family view. In this view, all fonts should
be grouped under one family.

Open File > Font Info and walk through all fonts of your family using the
Next font and Previous font buttons. On the Names and Copyright page,
make sure that all text boxes and popup menus are filled in and that the
Font is bold and Font is italic checkboxes are checked accordingly. Use
the Validate Names button for each font to check against potentially wrong
names.

If you are making an OpenType font, check the OpenType-specific names
page as well.

Check the pages Copyright information, Embedding, Designer
information and License information. All information should be filled in
there (although for Type 1 fonts, actually only a subset of the entries will be
included in the generated fonts).

In Version and Identification, put a reasonable version number into the
top fields and click on the green Auto button. Increase your minor version
number if you revised your font. On the Basic identification settings, click
on the green Auto button and on the Now button. Leave the Type 1 number
fields empty, select your vendor ID from the TrueType vendor code
popup menu. If you don’t have one, register one at Microsoft Typography.

On the Panose identification page, click on the Auto button and
customize the entries as good as you can. The more precise the info the
better, but it’s not crucial.

301

302

On the Metrics and Dimensions page, font UPM size can be 1000 for all
formats. Don’t worry about things like 2048 for TrueType.

On the TrueType-specific metrics page, click on both Recalculate
buttons. Then go to Key dimensions and check Copy values to TrueType
metrics. Make sure your Ascender and Descender values are uniform for
all fonts in your family; use average values if your styles de facto have
different ascenders or descenders. The Ascender value should be positive,
the Descender value should be negative (preceded with a minus sign) in the
fields. Make sure the sum of the absolute values of Ascender and
Descender are equal to the font UPM size, e.g. if your Ascender is 720 and
your UPM size is 1000, your Descender should be -280.

Go again to the TrueType-specific metrics page and make sure the values of
0S/2 WinAscent and 0S/2 WinDescent are uniform across your family,
average if necessary. The value of all 0S/2 Typo values should be uniform
as well. TypoLineGap should be between 5% and 20% of your UPM size

and uniform across all styles.

The hhea Ascender and hhea Descender should have the values equal to
WinAscent and WinDescent, and the hhea LineGap should be 0.
Alternatively, the hhea Ascender, hhea Descender and hhea LineGap
should be equal to the corresponding Typo fields.

You can usually leave the other Font Info settings that were not mentioned
above at their factory settings.

Character Set

Switch to Names mode in Font Window and select some encodings to see
whether all glyphs in a desired encoding that you wish to cover by your font
are included in the font. If you are making a text font, it should at least
cover all glyphs from the MacOS Roman and the MS Windows 1252
Western (ANSI) encodings.

You may want to create a custom Encoding file (.enc) that will work as your
font family “map” and will include all glyphs that you want to include in
the font.

Switch to Codepages mode and check several codepages. If you are making
a text font, it should at least cover all glyphs from the MacOS Roman and
the MS Windows 1252 Western (ANSI) encodings.

Remember that the Names mode uses glyph names and the Codepages
mode uses Unicode codepoints to reference the glyphs. Your font should
have both the glyph names and the Unicode codepoints conform to
published recommendations.

If any glyphs are present “in the yellow zone” in the Codepages mode but
are missing from the “yellow zone” of the corresponding Encoding, your
glyph names may be incorrect. Choose Glyph > Glyph Names > Generate
Names to fix this problem.

If any glyphs are present “in the yellow zone” in the Encoding mode but are
missing from the “yellow zone” of the corresponding Codepage, your
Unicode codepoints may be incorrect. Choose Glyph > Glyph Names >
Generate Unicode to fix this problem.

Any glyph cells with white background and red captions indicate that
either the glyphname or the Unicode codepoint is incorrect. Fix them
manually or automatically using the commands mentioned above.

It is recommended that all fonts in your family have the same character set.

In Font Info, on the Encoding and Unicode page, press on the green Auto
button. If you’re making non-Western single-codepage Type 1 fonts or a
Symbol-encoded TrueType font, select the appropriate character sets from
Microsoft Character Set and Mac script and FOND ID popup menus.

On the Unicode ranges page, click on the green Auto button.

303

304

Glyphs

Select all glyphs in the Font Window (Edit > Select All). Choose Contour >
Correct Connections.

If you're making an OpenType PS or Type 1 font, choose Contour >
Convert > Curves to PostScript (if it is enabled). Choose Contour > Paths
> Set PS Direction.

If you're making an OpenType TT, choose Contour > Convert > Curves
to TrueType (if it is enabled). Choose Contour > Paths > Set TT
Direction.

Note: You can automate most of the above operations through Tools >

Action Set.

Open the first glyph of your font in a Glyph Window, enable View > Show
Layers > FontAudit and walk through all your glyphs. Review and fix
potential problems reported by FontAudit.

Hints

If you have manually hinted your glyphs, skip this.

If you're making an OpenType PS or Type 1 font, choose Tools > Hints
& Guides > Autohinting, then Tools > Hints & Guides > Autoreplacing.

Go to File > Font Info > Hinting Settings and click on Auto zones. In
Standard stems (T1 hinting) click on Auto stems.

You can now review your hinting manually or just leave it as is — FontLab
Studio will take care of the rest as good as it can.

Kerning

Open Window > Panels > Classes and choose Clean Up Classes from the

flyout menu.
Open the Metrics Window and review your kerning.

Open Tools > Kerning Assistance and click on the Check for overlap
button and then on Update [kern] feature.

OpenType Layout Features

Open Window > Panels > OpenType and click on the Compile button.

Observe the Output panel for possible error messages and debug your
feature definitions if necessary.

305

I Relevant Generation Options

In Preferences dialog box use the following settings.

Generating Type 1

Preferences
I» General Options Generating PostScript Type 1 €| >
I» Font window
¥ Slyphiwindow ¥ Make PFM file ¥ Make AFM and INF files
Metrics window
B FontAudit Encoding options:
Opening Type 1 Select encoding automatically 5 |

[Opening OpenType & TrueType
- Generating Type 1
Type 1 autohinting
I» Generating OpenType & TrueType ™ Automatically sort glyphs
Trace Options

" Export only encoded glyphs
Font Window must be in Names maode

__ Open Type 1 Export Terminal
"l Use WinAscent and WinDescent as font vertical size
Ei. Autohint unhinted glyphs

Export [FSType (font embedding) parameter

Generate bitmaps for size(s): "10, 12] Use: Built-in |

(&
(=

i (apply) (Cancel) (OK ‘7

If you plan to create a Type 1 and an OpenType TT font from the same
source, you may enable Use WinAscent and WinDescent as font vertical
size.

306

OpenType PS

I» Ceneral Options
I» Font window
[+ Glyph window
Metrics window
[» FontAudit
Opening Type 1
[Opening OpenType & TrueType
- Generating Type 1
Type 1 autohinting
= Generating OpenType & TrueType
Digital signature
TrueType/OpenType TT (.uf)
TrueType Autohinting
OpenType TT Encoding
OpenType PS (.otf)
Kerning
Trace Options

=

IE

x

Preferences
Generating OpenType PS, OpenType TT and TrueType LI ¢

| Automatically reorder glyphs

Append OpenType name records to the names exp.. ﬂ

__Ignore Unicode indexes in the font
@ Use the OpenType names as menu names on Macintosh

I Write stored custom TrueType/OpenType tables

@. Export OpenType layout tables
™ Compile feature definitions
| Contextual substitutions in invalid legacy format
Use this option only if you know what you are doing
@ Generate GDEF table
! Export VOLT data

_ Apply 3 (cancel) E oK)

If you plan to do additional work in Microsoft VOLT, enable Export VOLT
data. If you opened an existing OpenType font that has stored binary
OpenType tables and prefer to use these, disable Compile feature

definitions.

> General Options
I» Font window
I» Glyph window
Metrics window
[» FontAudit
Opening Type 1
[Opening OpenType & TrueType
- Generating Type 1
Type 1 autohinting
- Generating OpenType & TrueType
Digital signature
TrueType/OpenType TT (.ttf)
TrueType Autohinting
OpenType TT Encoding
OpenType PS (.otf)
Kerning
Trace Options

&,
(]

| =

Preferences
Generating OpenType PS (.otf) €| >
\21 Decompose all composites
@. Use subroutines to compress outlines in the CFF table
@ Autohint unhinted glyphs
M Use PostScript FontName as FullName on Windows
Apply | \ Cancel) (Ok)

307

308

> Ceneral Options
» Font window
I Clyph window
Metrics window
[» FontAudit
Opening Type 1
[» Opening OpenType & TrueType
- Generating Type 1
Type 1 autohinting
= Generating OpenType & TrueType
Digital sighature
TrueType/OpenType TT (tf)
TrueType Autohinting
OpenType TT Encoding
OpenType PS (Lotf)
Kerning
Trace Options

X

|
(&=

Preferences
Kerning

E’] Export "kern” table
@ Expand class kerning while building [kern] table
™ Generate only pairs with glyphs in following codepage:
MacOS Roman 7:!

@L\mlt total number of pairs in the table to 4000

Ei Generate "kern” feature if it is not defined

[Apply) [Cancel) (oK _\

You may consider disabling Export "kern” table if you are creating
OpenType PS fonts. This will be more conformant to the OpenType
specification but will result in the lack of kerning for accented characters in
Mac OS X. You can also use Tools > Kerning Assistance before generating
your font to manually expand the kerning table into plain kerning.

Also make sure that Preferences > General Options > Unicode and
OpenType > Add all glyph classes to OpenType... is enabled.

OpenType TT

I» Ceneral Options
I» Font window
[+ Glyph window
Metrics window
[» FontAudit
Opening Type 1
[Opening OpenType & TrueType
- Generating Type 1
Type 1 autohinting
= Generating OpenType & TrueType
Digital signature
TrueType/OpenType TT (.uf)
TrueType Autohinting
OpenType TT Encoding
OpenType PS (.otf)
Kerning
Trace Options

=

IE

x

Preferences
Generating OpenType PS, OpenType TT and TrueType LI ¢

| Automatically reorder glyphs

Append OpenType name records to the names exp.. ﬂ

__Ignore Unicode indexes in the font
@ Use the OpenType names as menu names on Macintosh

I Write stored custom TrueType/OpenType tables

@. Export OpenType layout tables
™ Compile feature definitions
| Contextual substitutions in invalid legacy format
Use this option only if you know what you are doing
@ Generate GDEF table
! Export VOLT data

_ Apply 3 (cancel) E oK)

If you plan to do additional work in Microsoft VOLT, enable Export VOLT
data. If you opened an existing OpenType font that has stored binary
OpenType tables and prefer to use these, disable Compile feature

definitions.

I» General Options
I» Font window
I» Glyph window
Metrics window
> FontAudit
Opening Type 1
I Opening OpenType & TrueType
- Generating Type 1
Type 1 autohinting
- Generating OpenType & TrueType
Digital signature
TrueType/OpenType TT (.ttf)
TrueType Autohinting
OpenType TT Encoding
OpenType PS (.otf)
Kerning
Trace Options

(@
[E]

x

Preferences
Generating OpenType TT/TrueType (ttf) €| >

MExport hinted TrueType fonts
Mwme stored TrueType native hinting
@ Export visual TrueType hints
™ Autohint unhinted glyphs
MExport embedded bitmaps
" Copy HDMX data from base to composite glyph
@ Export "mort” table if possible
® 05,2 table version 3) 05/2 table version 2

" Apply) (Cancel) EOK)

You may use the CacheTT program to generate your shipping fonts.

309

310

Preferences

[» General Options Generating OpenType TT/TrueType encoding i 1
[Font window
I Glyph Windjw Use following codepage for first 256 glyphs:
Metrics window : : =
b FontAudit Do not reencode first 256 characters ?
Opening Type 1 : Export only first 256 glyphs of the selected codepage
[Opening OpenType & TrueType
w Generating Type 1 Use following codepage to build cmap(1,0) table:
Type 1 autohinting [Mac OS Roman (default)] L]
= Generating OpenType & TrueType
Digital sighature ! Put MS Char Set value into fsSelection field
TrueType/OpenType TT (.uf)
TrueType Autohinting
OpenType TT Encoding
OpenType PS (.otf)
Kerning
Trace Options
@ x _ Apply bl (_ Cancel) (oK }
Preferences
[» General Options Kerning i i
I» Font window
» Glypl window 4 Export "kern” table
Metrics window
I FontAudit # Expand class kerning while building [kern] table
Opening Type 1 ¥ Generate only pairs with glyphs in following codepage:
[Opening OpenType & TrueType ST -
- Generating Type 1 MacO5:Roman _"
Type 1 autohinting # Limit total number of pairs in the table to: 4000
- Generating OpenType & TrueType
Digital signature
TrueType/OpenType TT (.ttf) @ Generate "kern” feature if it is not defined
TrueType Autohinting
OpenType TT Encoding
OpenType PS (.otf)
Kerning
Trace Options
=8 i (Apply) (Cancel) € 0K)

You may want to tweak the kerning settings or use Tools > Kerning
Assistance before generating your font to manually expand the kerning
table into plain kerning.

Also make sure that Preferences > General Options > Unicode and
OpenType > Add all glyph classes to OpenType... is enabled.

Generating for Windows/Mac

To export a font in Windows Type 1, TrueType/OpenType TT or
OpenType PS format use the File>Generate Font command. You will
see the Generate Font dialog box:

Generate Font

Save As: freefontpro.ttf FE\
Where: ' [@ Desktop 5 1
Font Format: Win TrueType/OpenType TT TI [Options._.. b
" lnstall font

[Cancel) (Save ‘}

The top part of the dialog box is standard and there you choose a
destination folder and enter a file name for the font file. By default
FontLab Studio will choose the folder where you saved fonts last time.

Below the standard part of the dialog box is format selection popup menu.
Choose the destination font format there:

¥ Win TrueType/OpenType TT
OpenType PS
Win Type 1
ASCIIJUNIX Type 1
FontLab

Below the format selection popup menu is the Options button (that opens
the Preferences dialog box described earlier) and a checkbox Install font
that temporarily installs the generated font.

Check the export options in the Preferences dialog and press the Save
button to export the font, or Cancel — to return back to font editing.

311

312

Generating for Mac

As far as Mac OS X now supports Win TrueType/ OpenType TT and
OpenType PS fonts you may choose these formats available in the
Generate Font dialog box described in the previous section. We will
describe here the font suitcase generating procedure.

Font Suitcases

On the Macintosh fonts that belong to a font family are physically
combined into a single file, called a font suitcase. The suitcase contains
information about the font family in general and refers to the records that
describe the fonts’ style, encoding, metrics and kerning information and
some other data that is necessary for the Mac OS to use the font.

When Type 1 fonts are used on Macintosh, files that contain actual Type 1
font-definition data are stored in a separate file that is referenced from the
font suitcase.

Suitcases in Mac OS X may be stored in a data fork of a file which usually
has .dfont extension in this case.

FontLab Studio has a special dialog to compose and export Macintosh
suitcases — the Export Macintosh Suitcase dialog. You can group
several open fonts to collect them in a new destination suitcase or to add
them to an existing one.

To build a proper suitcase, one must fill in the fonts’ Font Info fields
properly (described in full detail in the “Before you generate” section).

313

314

Building Font Suitcases

To save a font in traditional suitcase-based Mac Type 1 or TrueType format
use the File > Generate Suitcase command. You will see a special suitcase

managing dialog box:
Save Macintosh Suitcase

~u

+ v - X &

= .4) FreeFontPro

= @ Plain
al re

R

]
-]

Q00

Select destination format: Macintosh Type 1 _ﬂ

| Options... b [Cancel',l (oK }

The Export Macintosh Suitcase dialog box consists of 4 parts: a toolbar
on the top, a list in the middle, an options area and three buttons at the
bottom. In the simplest case you can just press the OK button and get a
font, but usually some management is needed.

By default the list already contains a suitcase that will be generated from
the font that was active when you select the File > Generate Mac Suitcase
command. Click on the triangle on the left of the suitcase icon to see its
contents. If you feel the style is not what you’ve expected, click Cancel and
check the fonts’ Font Info fields carefully.

The toolbar contains the following buttons:

+ ~ Opens the menu allowing you to add open fonts to the list

= Deletes the selected font suitcase from the list or font from the suitcase

x Completely clears the contents of the list

Opens the standard File Open dialog allowing you to open suitcases from the
disk

Opens the FOND Info dialog box for the selected suitcase or the Font Info
dialog box for the selected font.

What you can do with these commands?

To add all fonts that have been opened with FontLab Studio in their Font
windows click on the * 7 button and select the Add all command from
the menu:

R - x5
Add all
Add possible
FreeFontPro-Bold

FreeFontPro-Bolditalic
FreeFontPro-Italic

FontLab checks the FOND Name field in every open font and creates
suitcases one for every different FOND name. If several fonts have this
field the same they will be combined in one suitcase with this name.

If the list of suitcases is not empty (and it is so after you select the File >
Generate Mac Suitcase command), you have the possibility to add only
those fonts that are compatible with this suitcase in the list: choose the Add
possible command from the Add pulldown menu.

To remove all the fonts from the list click on the | * | button.

To remove a suitcase or a particular font in a suitcase select it in the

list and click on the | = | button. If you remove the last font from the
suitcase, then the suitcase is removed too.

315

316

To add new fonts to existing suitcase, first clear the list with the | *
button, and then click on the & button. The standard File Open dialog box
appears where you may choose the suitcase from the disk. Press the Open
button in the dialog and the selected suitcase will appear in the list. Click
on the [Add./button and select the font that you want to be added to the
opened suitcase. If the Font Info fields of the added font are filled properly
it will appear in the corresponding style of the font suitcase. You have the
possibility to drag-drop individual fonts between the styles in a suitcase.

Export Options

Before generating a Macintosh suitcase you have to choose the font
format. Select Macintosh TrueType or Type 1 in the popup menu:

Select destination format: | « Macintosh Type 1 I-?i
Macintosh TrueType

When Type 1 is selected additional option is available:

Select destination format: Macintosh Type 1 T‘

| Adobe® TypeReunion® compatible

If this option is checked, FontLab will generate a font suitcase compatible
with Adobe® TypeReunion®, which lets the font’s styles appear in the
hierarchical menu of the font menu:

Book Antiqua . y Regular
Bookman 0ld Style p| Italic
Century Gothic p| Bold)
Century Schoolbook p.__Bold Italic

Note: To build ATR-compatible font families make the FOND

Name and the FOND ID fields of all the included fonts different.

On Macintosh Type 1 fonts have to be generated with at least one
accompanying bitmap font in a ‘NFNT’ resource. You can define the point
sizes that will be generated in Preferences > Generating Type 1:

Cenerate bitmaps for size(s): .10, 12

Use bitmap rasterizer: FreeType (built-in) ﬂ

You may select a rasterizer for generating bitmaps. Choose among the
build-in FreeType and Adobe rasterizers or ATSUI (Apple Type Services
for Unicode Imaging).

When TrueType is selected another additional option is available:

Select destination format: Macintosh TrueType T‘

: Write resources in Data Fork

If this option is checked, FontLab will write a font suitcase as data-fork-
based file supported by Mac OS X only. Leave this option unchecked if you
want your font to be compatible with Classic.

Other font exporting options are available in the Preferences dialog box
that appears when you click on the Options button at the bottom of the
Generate Mac Suitcase dialog box.

After you finished managing suitcases in the list press the OK button and
select the destination for the fonts in the standard Save dialog. Name the
suitcase file if needed and press the Save button to generate fonts.

317

318

Building ATR-compatible Suitcases

You sometimes may need to create Mac PostScript Type 1 fonts in suitcases
that are linked in a smart way, as follows: The Regular suitcase contains
four styles (regular, italic, bold and bold-italic style). The Italic suitcase
contains two styles (italic and bold-italic). The Bold suitcase contains two
styles (bold and bold-italic). Finally, the BoldItalic suitcase only contains
bold-italic style.

Such suitcases are often referred to as being Adobe Type Reunion-
compatible. The process of creating such suitcases in Mac versions of
FontLab Studio, TypeTool or AsiaFont Studio is as follows:

1. Open the font files that represent four styles (e.g. plain, bold, italic, and
bold-italic) of your typeface family.

2. Choose File > Font Info, and go to the Names page for each of the
fonts. Set different FOND names for each of them. You may click on
the Build Names button with the OprioN key pressed.

3. Gotothe Encoding and Unicode pages of the fonts and make sure
the FOND IDs are different for each of them. To let FontLab Studio
generate IDs randomly, switch to some different script and then back
to the script you need.

4. Make the Font window representing the plain style active. Select File >
Generate Suitcase.

5. Clickonthe * 7 button, select the Add all command from the menu
and get four suitcase style folders filled with fonts:

= .4} FamilyName

= @ ran
A

i @ Bold
4
A

= @ nhaiic
A 1

b @ Bold rtalic

Select destination format: Macintosh Type 1

__ Adobe® TypeReunion® compatible

Note that the Adobe TypeReunion compatible option becomes
available.

Switch the Adobe TypeReunion compatible option on and get four
suitcases in the list:

ard .Aj FamilyName
T @ Plain
12
A
@ Eold
@ nalic
@ Bold nalic
.A':ﬁ FamilyName Bold
.,4_‘,: FamilyName Bold Italic
.A'Ii FamilyName Italic

VWY YV VYW

Eﬁ Adobe® TypeReunion® compatible
Note that the names of the suitcases are different: "FamilyName",
"FamilyName Bold", "FamilyName Italic" and "FamilyName Bold
Ttalic".

Click OK to export.

319

Family Info

To view and edit the font family information select the suitcase in

the list and click on the |& button. The FOND Info dialog box appears:
FOND Info
FOND name: FreeFontPro N
FOND ID: 2583 Script: | Roman)
Ascent: 735 | Fixed width font
Descent: _251 | [Don't use family fractional widths

[Use integer extra width

Leading: g2
2 4 Ignore FractEnable

Max Width: 1200 | Don't adjust characters spacing

E Font name needs coordinating

™ Font family creates the outline style by changing PaintType

™ Font family disallows simulating the outline style

E Font family does not allow simulation of the bold style

[Font family simulates the bold style by increasing point size

™ Font family disallows simulating the italic style

[Font family disallows automatic simulation of the condense style
1 Font family disallows automatic simulation of the extend style
[Font family should have no additional intercharacter spacing

{: Cancel ,u (—GH

320

Besides the FOND name you may edit parameters in the following groups:

Font family properties:

FOND ID and Script

FOND resource identifier (or family ID number) lying in
the range of the particular script. Changing the script in
the popup menu to the right will automatically change
FOND ID and vice versa

Fixed width font

If this option is switched on, the font will be treated by the
Macintosh system as one with characters of fixed width
(monospaced). Otherwise, the font is treated as
proportional

Don’t use family
fractional widths

If this option is switched on, the system will not use the
global family widths table

Use integer extra
widths

If this option is switched on, the system will use the family
style extra widths table (Family Style Property Table)

Ignore FractEnable

If this option is switched on, the system will use the family
style extra widths table (Family Style Property Table) even
if the option Don’t use family fractional widths is
switched off

Don’t adjust
characters spacing

This option represents the 11th bit of the family flags,
which is usually set to zero.

Font metrics:

Ascent The maximum height above the baseline reached by
characters in this family fonts

Descent The maximum depth below the baseline reached by
characters in this family of fonts. The depth is usually a
negative number

Leading Maximum leading for the family. The leading value is usually
set to zero

MaxWidth Maximum character width for the family.

321

322

Style mapping flags (Font Class):

Font name needs This option is switched on if the font name needs
coordinating coordinating

Font family creates the When this option is switched on, the Qutline style of
outline style by changing the family will be created by changing PaintType, a
PaintType PostScript variable, to 2

Font family doesn’t allow This option is switched on if the font family disallows
simulation of the outline simulating the Outline style by smearing the glyph and
style whiting out the middle

Font family doesn’t allow This option is switched on if the font family disallows
simulation of the bold simulating the Bold style by smearing the glyphs
style

Font family simulates the This option is switched on if the font family simulates
bold style by increasing the Bold style by increasing the point size
point size

Font family doesn’t allow This option is switched on if the font family disallows
simulation of the italic simulating the Italic style
style

Font family doesn’t allow This option is switched on if the font family disallows
simulation of the automatic simulation of the style Condensed
condensed style

Font family doesn’t allow This option is switched on if the font family disallows
simulation of the automatic simulation of the style Extended
extended style

Font family should have This option is switched on if the font family should have
no additional no additional spacing other than the space character.
intercharacter spacing

To get full information about the parameters represented in the FOND Info
dialog, refer to Inside Macintosh: Text:Font Manager:
http://developer.apple.com/techpubs/mac/Text/Text-181.html

http://developer.apple.com/techpubs/mac/Text/Text-181.html
http://developer.apple.com/techpubs/mac/Text/Text-181.html

Options for Converting Fonts

We recommend selecting different options for converting fonts between
different formats. In addition to the font generating options, we also
suggest particular opening options that will produce the best results in

specific situations:

Source Destination Opening options Generating options

TrueType / TrueType /
OTTT OTTT

Keep instructions, do not All hinting options — on, do
convert curves, do not scale not reencode, export

to 1000, do not decompose, bitmaps

do not autohint, read all

records, read OT, store

binary OT, store custom, do

not interpret OT, import

bitmaps

TrueType / Type 1
OoTTT

Keep instructions, convert Write PFM, AFM and INF

curves, scale to 1000, do files, Select encoding

autohint, do not decompose, automatically, Automatically

do not read records, read sort glyphs — on. Before

OT, interpret OT export, switch the Font
window to the Names mode
and select the desired
encoding vector

TrueType/ OT PS
OTTT

Keep instructions, convert Autohinting on, Decompose
curves, scale to 1000, do on

autohint, do not decompose,

store custom tables, read all

records, read OT, store

binary OT, do not interpret

oT
OTPS Type 1 Do not decompose, Write PFM, AFM and INF
Generate Unicode files, Select encoding
automatically, Autohinting
off

OT PS OT PS

Do not decompose, read all Autohinting off, Decompose
records, read OT, store off

binary OT, store custom, do

not interpret

OTPS TrueType /
OTTT

Do not decompose, read all All hinting options — on, do
records, read OT, store not reencode first 256
binary OT, store custom, do glyphs

323

324

not interpret

Type 1 Type 1 Do not decompose,
Generate Unicode

Write PFM, AFM and INF
files, Select encoding
automatically

Type 1 OTPS Do not decompose,
Generate Unicode,
Generate basic OT

Autohinting off, do not
reencode, Decompose on

Type 1 TrueType/ Do not decompose,
OTTT Generate Unicode,
Generate basic OT

All hinting options — on

Of course you can choose other options, but when you just want to convert
a font from one format to another these recommended combinations of
opening and generating options will usually give you fonts that will work

fine in most environments.

Testing Fonts

We recommend using available font validation software. Many good
font validation software packages are available for free or included in the
system.

FontQA

A quality assurance application framework written in Python that runs
within FontLab Studio for Mac OS or Windows. It includes various tests to
be run before you generate your font.

http://www.fontga.com/
Microsoft Font Validator

A free testing application for OpenType (PS or TT) fonts, published by
Microsoft. Runs on Microsoft Windows.

http://www.microsoft.com/typography/FontValidator.mspx
Apple ftxvalidator

A free command line validator for OpenType (PS or TT) fonts, published by
Apple. Runs on Mac OS X. Font Book in Mac OS X 10.4 also validates fonts
when installing them.

http://developer.apple.com/fonts/0OSXTools.html
Adobe FDK for OpenType

A free set of tools that includes several validation applications for
OpenType (PS or TT) fonts, published by Adobe. Runs on Mac OS X or
Windows.

http://partners.adobe.com/public/developer/opentype/afdko/topic.html

325

http://www.fontqa.com/
http://www.microsoft.com/typography/FontValidator.mspx
http://developer.apple.com/fonts/OSXTools.html
http://partners.adobe.com/public/developer/opentype/afdko/topic.html
http://www.fontqa.com/
http://www.microsoft.com/typography/FontValidator.mspx
http://developer.apple.com/fonts/OSXTools.html
http://partners.adobe.com/public/developer/opentype/afdko/topic.html

326

We also recommend extensive application testing of your fonts. Many text
editing or layout applications are available in demo or trial versions and
can be used for testing. We recommend testing the fonts on screen and in
print for at least following applications:

e Microsoft Word 2004 for Mac OS X

e Microsoft Word XP or newer for Windows XP

e Microsoft WordPad and Microsoft Notepad on Windows XP
e Microsoft PowerPoint XP or newer for Windows XP

¢ Adobe InDesign CS or newer for Windows and Mac OS X

o Adobe Illustrator or Adobe Photoshop (any version)

e QuarkXPress 4.1/5.0 and 6.5 for Mac OS

¢ Apple TextEdit and Apple Keynote on Mac OS X

The Glyph Window

The Glyph Window is a standard tool in all FontLab Studio based
applications. It is a universal and very powerful contour-editing module
that also allows you to perform many font-specific operations.

Glyph Window Contents

Open the Glyph Window by double-clicking any character sample in the
Font Window or Metrics Window.

806 Glyph - D from Adobe Caslon Pro

|a (100 B @ & | 5 B on; 5 oo L

_ Ll :.-.-||||I|||||é|n|0|lll|||||é|b|n||||:'.-'-:'.l:=-: 1:-':' Ll DOm
(=)
|wije

:-::";ﬂ

G
o]

li

o A
=a)(=)(100~ € . T———— it b

@ A B CE FIGIH I]|] K LM
The Glyph Window

The Glyph Window has the following parts:

e Toolbar area

¢ Control marks area
e Editing Field

e Top and left rulers
e Left-Top box

e Scroll Bars

¢ Glyphs Bar

¢ Glyphs Bar expand button
e Note icon

e Lock button

e Meter panel button
¢ Glyph mark area

328

The Zoom Toolbar contains zoom selection tools — a popup menu and a
pair of buttons:

o100) a &

These tools are used only to select the zoom mode of the Glyph window
and to choose the Zoom in and Zoom out commands.

You can drag the Zoom toolbar to any place on your screen or you can dock
it at the top or bottom area of the Glyph Window. To show and hide the
Zoom toolbar, use this button in the top-right area of the Glyph window:

Some editing tools (which we discuss later) may have their own toolbars
that may also be docked to the sides of the Glyph Window or they can be
left floating around:

Type 1 Hinting

There is a marks panel in the right-top area of the toolbar.

oo m

This panel duplicates some of the information that appears in the character
cell of the Font Window so that you can instantly get important
information about the current glyph.

329

330

Three icons may appear in this area:

i The glyph has either imported or visual TrueType hints

i The glyph has a Type 1 hint replacement program

iix The glyph has a Mask layer that is “compatible” with the outline.

Glyph marks area may also be located on top of the horizontal ruler. In any
case, it will be somewhere in the top-right area of the Glyph window.

Below the default (top) location of the Zoom toolbar and at the left of the
window you may see rulers that are used to preview positions of various
structures in the glyph space. You may switch the rulers on and off with the
View > Rulers command or using the context menu that appears if you
Crre-click one of the rulers.

In the bottom-right corner of the Glyph Window you will find a little

button [, Click it and you will see the Glyphs Bar — a small subset of the
Font Window that lets you quickly browse the font or select characters for
editing.

The following describes the functionality of the Glyphs Bar.

The Glyphs Bar

To open the Glyphs Bar you click on the Glyphs Bar expand button (=] or
press the TaB key when the Glyph Window is active.

at A E C 1] E F G H | J |

@P¥B/C D EF GHI|J|K]

Once the Glyphs Bar is open it has focus and is slightly highlighted.

Glyphs bar may be located on the bottom or on the top of the Glyph
window. Click on this icon to switch its location: #

To customize the Glyphs Bar’s appearance, Ctri-click it and select
one of the options in the popup menu:

Show caption To show or not show the cell’s caption

Name, Unicode, Choice of information to show in the caption. Options are the

Index, Width, same as the choices in the Font Window

Decimal, Hex,

Octal, ANSI

Show Marks To show or not show additional glyph information in every cell.
Same as “Show additional information in the characters cells”
Font Window Option

Add Note To add a note to a glyph’s cell.

To select a glyph for editing, double-click the glyph cell. Or, if the
Glyphs Bar is active, choose the cell with the left and right arrow keys and
click the RETURN key.

331

332

If you hold down the SHrFt key while using the left and right arrow keys
glyphs are opened instantly.

The fastest way to open a glyph is to use the keyboard:

1. Open the Glyphs Bar with the Tas key.

2. Press the key of the character that you want to open on the keyboard.
3. Click the Tas key again to close the Glyphs Bar.

You may close the Glyphs Bar at any time by clicking the Glyphs Bar
collapse button (2] or pressing the Tas key.

Selecting a Glyph for Editing

In addition to using the Glyphs Bar you can open a glyph in the Glyph
Window using any of the following methods:

¢ Double click the glyph’s cell in the Font Window to open it.

If you already have an open Glyph Window with a glyph from the same
font, the new glyph will be opened in the same Glyph Window (where the
previous glyph was shown). Hold the Cmp key down when you double-
click on the glyph cell to open it in a separate Glyph Window. Note that if
this method doesn’t work it usually means that it is switched off in the
Font Window’s options in the Preferences dialog box.

You can force FontLab Studio to always open a glyph for editing in
a new Glyph Window. Use the Double-click opens a new window
option in Preferences > Font Window to activate this feature.

e Ctrr-click in the Font Window and select the Open Glyph Window
command to open the glyph in a separate Glyph Window.

¢ The lock button (&) allows direct keyboard access to glyphs in your
font. If the button shows a closed lock, single-letter keystrokes are used
for keyboard shortcuts such as Z for zoom in. If the button shows an
open lock, pressing single keys on the keyboard takes you to the
corresponding glyph in your font; so pressing Z will open the “z” glyph
for editing (SurrT+Z will open the uppercase “Z”). To access an
extended character, quickly type its glyph name. For example, to
open the “4” glyph, type ApIERESIS on your keyboard. Note that usually,
just typing ap1 will do if there is only one glyph in the font with the name

that starts with that string. Use Surrt for uppercase names.

e Click the mouse button on the glyph selected in the Font Window and
drag it into any Glyph Window.

¢ Select the Find command in the Edit menu and find the glyph that you
want to open.

e If you have a wheel on your mouse, hold down the Cmp key and scroll
the wheel to move to the previous or next glyph.

333

334

Creating Glyphs

If you want to create a new glyph in an empty place in the font (a gray cell
in the Font window), double-click the cell.

If you want to create a group of new glyphs with a single command, select
the cells and use the Glyph > Create Glyphs command.

See also the “Creating New Glyphs” section in the “Editing Fonts” chapter.

Changing the View in the
Glyph Window

Use the zoom level and scroll bars to change the view in the editing field of
the Glyph Window. By using the scroll bars you can scroll the viewing field
of a symbol. With the zoom level you can define how the glyph unit
coordinates are converted to screen coordinates and vice versa. If you
choose a higher zoom level you will see more details of the glyph and you
can do the editing operations more precisely. However, in the larger zoom
levels only part of the glyph will be visible so you will have to use the scroll
bars to see the different parts of the glyph.

There are fixed zoom levels and custom zoom levels. You can select one of
the fixed zoom levels in the Zoom popup menu located in the upper part of

the Glyph Window: || & 10%) When you choose a fixed zoom level
FontLab Studio will return to this glyph mode on every Zoom Out
command (or when you press CMD+0).

You can also use the Zoom menu in the bottom of the window, it will show
the same selection of the zoom levels and is very useful when the Zoom
toolbar is hidden:

To magnify part of the glyph, select the Zoom tool (% button on the
toolbar, the + key or CMp+spack on the keyboard) and declare a custom
zoom level using a marquee. This zoom level is temporary and you can
always return to the previously selected fixed zoom level by clicking on the

2 button (or by clicking on the — key or CMD+0).

335

336

Alternative keyboard shortcuts are:

Mac Windows

CMD+SPACE CTRL+SPACE Zoom in

CMD+OPTION+SPACE, CTRL+ALT+SPACE Zoom out
then click

SPACE and drag Scroll (hand cursor appears)

After you select the zoom tool, move the mouse pointer to one of the
corners of the rectangular area that you want to zoom on and click the
mouse button. Then, holding the button down, define the zoom-in area by
dragging the cursor to form a rectangle. Release the button and the new
custom zoom level will be selected.

If your mouse has a wheel, use it to scroll the Glyph Window vertically,
press the SHIFT key to scroll it horizontally, press the OprtioN key to zoom
in and out, and press the Cmp key to go to the next or previous glyph.

Quick Zoom Selection

You can quickly change the zoom level of the Glyph Window by selecting
the Zoom In or Zoom Out command from the View menu. Alternatively
you can click the Z key for zooming in or the X key for zooming out.

This command increases or decreases the zoom level by a factor of two. If
the mouse cursor is in the editing area of the Glyph Window the new zoom
level will be centered around the cursor position.

These keys are active even when you drag something with one of the
editing tools.

337

338

Vertical Alignment Options

When you select 100% as the zoom value, FontLab Studio needs to choose a
scaling factor to fit the font unit space in the Glyph Window. Two vertical
levels in the font space define this scaling: Visual Ascender and Visual
Descender:

Visual Ascender

Editing Field

Visual Descender

When you select 100% zoom, it means that Visual Ascender is fitted to the
top of the editing field and Visual Descender to the bottom.

The same values are used to build the icons that you see in the Font
Window or panels like the Classes panel.

To set Visual metrics, use the Glyph Window > Dimensions page of
the Preferences dialog box (Application menu):

Visual ascender and descender; 100 & -40 % of UPM

Values are measured in percentage of the font UPM size, so —20% is —200 if
UPM size is 1000 and —410 if UPM size is 2048.

Tools and Operations

FontLab Studio’s Glyph Window may work in several modes. The four
most important modes are:

n | Edit mode The main mode used to draw new glyphs, move everything in
the glyph, from guidelines to nodes to glyph margins
Sketch mode Used to draw new outlines in an alternative manner, using
only on-curve points (remotely similar to Ikarus®)
#| VectorPaint A set of tools used to create new glyphs or modify existing
mode glyphs using vector drawing tools that simulate natural
bitmap tools
& | Meter mode Used to measure contours, distances or angles.

Other modes include TrueType and Type 1 hinting and eight additional
operations:

Free Transform

Scales, rotates or skews the selected portion of the outline

i} Interpolate Nodes Manually modify the outline by moving a few nodes,
other nodes intelligently follow
& | Move and Scale Sets the size and position of the bitmap background layer
Background
r< | Envelope Modifies the outline as if it was stretched on rubber
3. Simplify Path Manually approximate a segment of the outline with a
curve, can be used to remove nodes without much change
in the shape of the outlines
¢+ | Move Node Precise positioning of outline points
7| Reverse Path Manually reverse direction of single contours
- Set Startpoints Manually change the startpoints of contours and
rearrange contours
i Type 1 hinting Type 1 hinting

TrueType hinting

Manual TrueType hinting.

339

340

When the Glyph Window is switched to one of these modes, you may see
additional toolbars, panels and dialogs. They are shown and hidden
automatically, depending on the mode and most of them hide when the
Glyph Window is deactivated.

Use the buttons on the Tools and other toolbars or keyboard shortcuts to
switch modes. The four most important modes are:

OPTION +1 Edit mode

OPTION +2 Sketch mode

OpTION +3 VectorPaint mode

OpPTION +4 Meter mode

Though the Tools toolbar contains a button only for Meter mode you can
easily customize it (Tools > Customize) or even create the custom special
toolbar containing buttons for switching modes:

& Modes

LA

Edit Mode

The Edit mode is the most important in FontLab Studio. In this mode you
can modify the contents of all the editing layers.

All operations performed with the edit tool can be undone with the Undo
command of the Edit menu, or just by clicking the Undo button [*>| on the

toolbar at the top of the Glyph Window. You can undo up to 200
operations. All undone operations can be redone with the Redo command

of the Edit menu or with the Redo button | ™| on the toolbar.

In Edit mode you can use eleven different Edit Tools. You can easily choose
one of the tools using the Tools toolbar:

8 Tools

Moo rrrOO|2ETHBR

:

Note that the Tools toolbar also contains buttons of other modes.

Alternatively you may use the keys from 1 to 9 to quickly select edit tools:

x 1 Edit Main tool, used to drag objects on the editing layers
and perform other operations. In the following
chapters we will assume that this tool is active in the

Edit mode

< 2 Eraser This tool is used to quickly remove unnecessary
nodes

|3 Knife Tool to insert nodes and break outlines

|4 Magic Wand Tool to quickly select contours (just click anywhere

near the contour and it is selected). Note that this
tool is not available in the Tools toolbar by default

*r| 5, Add Corner, Tools to create new contours or insert nodes
P 6, Add Curve,

7 Add Tangent
o
+2 8 Bezier Drawing Tool to draw the contour with the Bezier curves
& Rotate, Tools to quickly transform outlines.
¥ Scale,

Slant

341

Temporary Activating the Edit Tool

There are two methods to temporary activate the Edit tool while you are
using any other tools: Cmp-hold and Cmp-Click-Click.

First mode is active by default and means that you can press and hold the
Cmp key while using most tools to temporary activate the Edit tool.

To switch to the Click-Click mode, use the Glyph Window page of the
Preferences dialog box:

— Editing behavior
~ | Tap on Cmd key toggles Edit tool

When this option is active, you can temporary activate the Edit tool | *
from any other tool. Just click on the Cmp key on the keyboard. Second
click on the Cmp key will return the tool you were using before.

Snap-to Distance

In the following sections we will discuss how to use the Edit tools to modify
the outline and other editing layers. All other tools will be explicitly named.

When you need to select a node or any other object on any of the layers,
you need to click it with the mouse. You don’t need to click the object
precisely, but you must be within a certain distance, which is called the
“snap-to distance”.

ﬁﬁ\ Snap-to zone around a node

Snap-to is used when you select an object for which the feature is allowed.
By default the snap-to distance is set to 3 screen pixels, but you can change
it on the Glyph Window > Dimensions page of the Preferences dialog
box:

Snap-to distance: 3

342

I Editing Layers

In FontLab Studio every glyph contains several editing layers. Some of
them are used when the font is exported; others are FontLab Studio-only
and are used to help you work with the glyph. Below is the list of all the
layers that you can see in the Glyph Window. Later we will describe them

in full detail.
) Outline Main layer containing the glyph’s outline
Grid Regular grid which helps to align the outline
Guidelines Horizontal, vertical and/or diagonal guidelines
Hints Type 1 hints — pairs of vertical or horizontal lines set at a
fixed distance
Mask Outline template
Background Bitmap background
= Alignment Special zones that define the overshoot positions in the font
zones

Glyph metrics

Glyph metrics — left and right sidebearings and a baseline

= Vertical Vertical font metrics, such as ascender, descender or cap
metrics height
Global Mask Global (font-wide) mask

o= Anchors and
carets

Anchors are special named marks and carets that define
stop positions in ligatures

Li:i Shape Group

Shapes of glyphs from the same group

Neighbors

Shapes of glyphs defined as neighbors of the current glyph.

You can control the layers’ appearance and features with the View menu:

Show layers Lists all layers (and a few other options) and lets you switch them
on or off. You cannot switch off (hide) the outline layer

Lock layers Lists the layers that you can lock to protect from accidental
modification. E.g. if the Outline layer is locked you will not be

343

344

able to add, move or delete any nodes or change any curves

Snap to layers Controls which layers have the “snap to” feature activated.

An alternative way to control the editing layers features is the special
Editing Layers panel, which you can put on the screen with the Window >
Panels > Editing Layers command (or with this button = on the Panels
toolbar):

§ E{!iting_ l__a',.rers

QOutline =
Metrics

Guides

Hints

Mask

A REE

@ Auto select layer

In this panel you can select a layer for editing (just click on the layer
name) and control layers appearance using the check boxes to the layer
names.

to expand the Editing layers panel:
(&) Editing Layers

o me =

(i &

EAII layers

OQutline
Cuidelines
Hints

Maszk

Crid
EVer‘tical metrics
] Global mask

Clyph metrics

LI REEE] [

I e U] E
EI S

Components
Anchors and carets

Alignment zones
_ Shape groups
MNeighbors
Background

IO =

The left column ® of checkboxes controls the layers’ appearance in the
Glyph Window.

The middle column & controls the “snap to” feature and is equivalent to
the View > Snap to Layers menu

The right column & lets you lock layers and is equivalent to the View >
Lock Layers menu.

Please note that you must open the Glyph Window to make it possible to
open the Editing Layers panel.

With the panel you can easily control all the layers at once using the check
boxes in the top row:

11 [] Al layers

If you frequently need to switch some layers on and off you can use the
View>Toolbars menu to open the Show Layers toolbar:

0 Show Layers

E O EEL=0 2 2 n i @ @ IR

The same operation is possible with the Lock layers toolbar:

0 Lock Layers

=

T fada fE Ak S

In the following sections we will describe all the editing layers and their
modification and control.

345

346

Easier Way to Control Editing Layers

The Editing Layers panel may be opened in the simple mode:

3 Editing Layers

Outline -
Metrics

Guides

Hints

Mask

€ EREE

Auto select layer

:lﬂ

(which is described in the previous section). In simple mode you have a
list of five layers and you can control their lock and show status.

To activate the layer, just select it in the list. When you do it, this layer
becomes unlocked and all other layers are locked. If activated layer was
hidden, it will appear until it is deactivated.

Use check boxes to the left of the layer names to control layer appearance.

For example, to edit the glyph metrics, just select the “Metrics” in the
list. Glyph and font metrics layers will appear in the glyph window and will
be available to edit while all other layers (outline, hints, guides and mask)
will be locked.

To edit the Mask layer, just select “Mask” in the list. The outline layer
will be shown as a mask (and will be locked), hints will disappear and the
mask layer will be set to front and open for editing.

Use the Auto select layer option to let FontLab Studio to automatically
switch to the layer that you begin to edit in the Glyph window. If this
option is off and some layer is active, all other layers are "locked" so to edit
them you need to activate the layer in the Editing Layers panel. If option is
on, all layers are "unlocked" and editable.

Use the panel in the expanded mode to have more control over all layers.

Outline Layer

The Outline layer is the most important of all the layers. It stores
information about the glyph shape while all the other Studio editing layers
and most of the tools are designed to help you create good outlines. Before
we turn to the outline editing tools let’s talk about outline structure.

Units of Measurement

The coordinates of any object in the font are presented in a standard
measurement system. One unit of this system is called a font unit. The
scale of font units used in a particular font is the Units Per eM (UPM) size.
The program that scales the font knows the UPM size of the font and can
use it to properly scale it. To get a text string of the same visible size a font
that has a larger UPM size must be scaled with a smaller scale factor.

Usually Type 1 and OpenType PS fonts have a UPM size of 1000 font units.
Therefore, to get a text string with a height of 100 pixels (assuming that we
use a raster output device) we would scale this font with a scale factor of
10%.

TrueType fonts can have practically any UPM size. They often have a UPM
size of 1000 or 2048 units. If a font has the UPM size of 2048, to get a text
string of 100 pixels we would scale this font with a scale factor of 4.9%.

347

348

A more “graphical” font parameter is the font height. The font height
(measured in font units) is the measurement of the font that is used to
align strings in text. It is important not to confuse UPM size and font
height. UPM size is just a scaling base, and, for example, all Type 1 fonts
have the same UPM size of 1000. Font height depends on the font design
and may be different:

The font height can be defined as the distance from the bottom of a letter
that is partially located below the baseline, like the ‘p’ character, and the
topmost point of an uppercase character, like ‘H’, or a tall lowercase
character, like ‘b’. Sometimes a font contains special glyphs that can be
taller than ‘b’, like an integral sign, but usually these glyphs are not
counted when font height is measured.

Note: When a font is shown on screen on printed, the UPM size is always

scaled to the chosen point size.

Let’s say that your UPM size is1 000 units and that your uppercase H letter is 700 units high. If you
set some text in your font at1 0 pt size, the 10 pt will correspond to the UPM size, thatis 1000
units. This means that your uppercase H letter will be 7 pt high. In a different font, the uppercase
letter H can be 800 units high so set at 10 pt, the letter H will be 8 pt high. This is why point size of
typeset text is not really related to any “graphic” element of the typeface.

Therefore, if you would like to make your letter H to appear visually larger when set at a specific
point size, you need to increase the ratio of the size of the letter in units to the UPM size. With the
letter H being 700 units high and the font having the UPM size of 1000, the ratiois 700/1000 =
0.7 or 70%. To increase this ratio, you have two possibiliiies: you can either increase the size of the
letter H in units (i.e. rescale the glyph) or you can reduce the UPM size. The visual effect will be
identical. Let’s say you wish to visually increase your letterforms so the letter H i8 pt high (rather
than 7 pt) when the font size is 10 pt. Your desired ratio of the height of the letter H to the UPM
size will be 0. 8. So you can eitherincrease the size of the letter H so it is 800 units high and keep
the UPM size of 1000, or you cankeep the height of the letter H at 700 units, but reduce the UPM
sizeto 875, since800/1000 = 700/875. Note that the change of the UPM size is not practical
for all font formats. You can use an UPM size of8 75 (or any other) with TrueType and OpenType TT
fonts safely, and to a brge extent, with OpenType PS fonts. However, Type 1 fonts work best with

the UPM size of 1000.

Reference Points

By default all coordinates are measured relative to the zero point of the
glyph. This is located at intersection of the baseline and the left sidebearing
line:

Reference point

Zero point

As an alternative, distances may be measured relative to the reference
point, which may be positioned by the Edit tool to any point in the glyph
space. Often a reference point is very useful when you are working on a
symmetrical shape.

To set the precise position of the reference point, you can just Cmp-click on
it. You will see the reference point properties dialog box and will be able to
enter the horizontal and vertical position of the reference point.

By default the reference point is located on the position of the zero point.

349

350

Contours

The most important and most complex information in a font is the glyph’s
shape. All glyphs are defined as a series of contours. All contours consist of
a series of segments: straight lines and curves. Nodes — that is outline
points — define all segments.

Open and Closed Contours

Contours may be open or closed:

(OO

All known font formats require contours to be closed, but during outline
editing it may be useful to have some contours in an open form and later
connect them to each other to build final closed contours.

In FontLab Studio it is very easy to open closed contours or to close open
contours. It is also possible to customize the appearance of the open
contours: they may be automatically filled (they are automatically closed
by an invisible straight line that connects their starting and ending points)
or not and their starting and finishing point may be optionally highlighted.

Filled and Unfilled Contours

Contours can be of two types: black or white. They can also be of two
directions: clockwise or counterclockwise. The basic rule that applies to
Type 1 fonts is simple: clockwise-directed contours are white and
counterclockwise contours are black. A simpler form of the rule, known as
the rule of the left hand, is: if you face along the direction of a contour,
black (fill) will be on your left side.

Directed contour ——_ |

Filled interior zone

In the TrueType specification the opposite is the case, so a contour is filled
on the right hand side. However, not all TrueType rasterizers require
glyphs to follow this rule, so it is recommended, but not necessarily
required, that you reverse contour directions when you are converting
Type 1 fonts to TrueType.

351

352

Startpoint and Closepath

All contours have a startpoint (start point). The startpoint is the first node
of the contour. The last node of the closed contour is automatically
connected to the startpoint with a straight line, which is called closepath.
The color of the startpoint in the Glyph Window is blue.

Optionally, a contour-direction mark may appear on a startpoint:

N

[
You can switch this direction mark off with the option in the Preferences
> Glyph Window:

'21 Show contour direction
Also you may want to see arrows on all closepath lines.

Use the following option:

| Show arrow on closepath

If this option is active, closepath appears as an arrow:

You can customize the appearance of the color direction mark on the
Preferences > Glyph Window > Colors page:

Path direction mark: |

This feature allows you to make the direction marks almost invisible, but
still know the direction of the contours.

Curves and Lines

Segments are of three types: straight segments, PostScript curve segments
or TrueType curve segments. Straight segments (sometimes called vectors)
are straight lines that connect two sequential nodes. PostScript curves (also
called Type 1 curves) are Bezier curves (31 order, cubic B-splines). To
modify the form of the curves two additional sub-nodes are used:

Bezier Control Point
ezier Control Poin \ / End Point

Bezier Curve

/
/
! \ Control Vector
| |

<+— End Point

These sub-nodes are called Bezier control points (BCPs) and the vectors
that connect the control points with the curve’s ends are called control
vectors. In the Glyph Window straight segments end in square (in black-
white mode) or red (in color mode) dots and curves end with round or
green dots. Note that the contour direction plays a role here: it is always
the shape or color of the final node of a segment that tells you about the
type of the segment.

TrueType curves are 2nd-order curves (quadratic B-splines) that have one
control point, called the “off-curve” point:

Control (off-curve) point

- End (on-curve) point
L / ()p

End (on-curve) point

353

354

Some TrueType curves may appear linked together and form a long curve
with off-curve points only. In such curves, the intermediate on-curve
points do not exist explicitly, but are implied by the rasterizer:

Off-curve points

TrueType curves end with points that look exactly like straight segment
points. Off-curve points of the TrueType curves have a “plus” (in black-
white mode) or light-blue (in color mode) appearance.

Connections

The type of connection between segments is very important if you want to
keep the contour smooth at appropriate nodes. There are two types of
connections: sharp and smooth.

At a sharp connection, the two connected segments (curve and curve or
straight segment and curve) are absolutely free in their angle relative to
each other at the connecting node.

At a smooth connection, the direction of the straight segment and the
control vector of a curve or the control vectors of two sequential curves are
kept collinear (lie on the same straight line). I.e. the angle between the two
segments at the node is fixed at 180 degrees.

|
4

Smooth connection Y
\ / 7/
/

/

Sharp connection \

/7

"
It is very important to maintain the smoothness of the glyph’s contours at
the appropriate places. Small corners (sharp connections that are invisible
when glyphs are small) become visible (and ugly) when you print large text.
Furthermore, rasterizing programs that convert outline glyphs into bitmap
images on paper do not like outlines where sharp connections are present
in places where the outline should be smooth.

Note: A quick way to change the connection type is to double-click on a
node. More detailed control is available on the Properties panel. Use
Contour > Correct Connections to automatically fix incorrect sharp
connections, that is sharp connections that can be turned into smooth
connections without any change in the shape of the contour. Contour >
Optimize will do some additional clean up to your contours but may
slightly change the shape.

355

356

Node Type

FontLab Studio has several types of nodes that are represented by different
node symbols. The node symbol unifies two essential kinds of
information: the type of segments that the node connects (straight segment
or curve segment) and the type of connection (sharp or smooth).

Curve node. (Green) round node symbol indicates a smooth
' connection between two curve segments.

‘ Tangent node. (Violet) triangular node symbol icon indicates a
= smooth connection between a curve segment and a straight
segment.

Corner node. (Red) square node symbol indicates a sharp
connection between any types of segments.

A blue node indicates the startpoint. To display the nodes similar to
Fontographer, in black-and-white only, enable Preferences > Glyph
window > Appearance > Black/white nodes. To display the additional
color information as in older FontLab versions, disable that option.

Note: Corner nodes may exist between any types of segments (straight or

curve). If possible, you should convert a corner node between two curve
segments into a curve node, and a corner node between a curve segment
and a straight segment into a tangent node (see the section “Connections”
above). A smooth connection between two straight segments does not exist
— it is always a sharp connection; also, it usually constitutes a “collinear
vector” and should be simplified into just one segment.

To visually emphasize the connection type (smooth or sharp) of all nodes,
you can enable the Connections layer: View > Show Layers >
Connections. If enabled, additional connection symbols appear next to
each node. A small “x” next to the node indicates a sharp connection; a
small “0” next to the node indicates a smooth connection.

In older FontLab versions the node symbols indicated only the type of the
incoming segment (in contour direction order). A square node symbol
indicated that the incoming segment was straight, a round node symbol
that it was a curve segment. The connection type was always indicated by
the additional “x” or “0” symbol next to the node. To restore this behavior
in FontLab Studio, disable the option Node shape shows point and
connection type in Preferences > Glyph window > Appearance.

357

358

Outline Appearance

You can view an outline in contoured or filled mode. These modes are
equivalent for all editing operations, but the filled mode is a little bit
slower. However, in the filled mode you always see how the glyph will look
in the resulting font. Switch between modes with the "8 button on the
Show layers toolbar or with the View > Show Layers > Fill Outline
command.

— _
Outline mode Fill Outline mode

Smoothed Contour

By default a contour is rendered with black color and sometimes this may
result in jaggies:

X—x_:"_'*«x

Optionally you can smooth the contour appearance on screen, which will
result in a much smoother outline appearance:

3'5_"1-__..-~"'_"'\/(

To smooth contours, use the Glyph Window page of the Preferences
dialog box:
= Outline drawing

W Smooth outline
W Mask and inactive masters are smooth too

You can use the Apply button in the bottom-right of the Preferences dialog
box to check the result of the changes you make in the Glyph Window
options.

Note: If your computer is slow and a contour is complex, smoothing the
outlines may degrade the performance of the editing tools. Turn it off in
this case.

High-quality Preview

No matter which mode is active you can quickly view a high-quality
preview of the outline by pressing the **’ key on the keyboard (usually the
key between SHrrT and z). Until you release the key you will see a high-
quality preview of the outline. Note that you can use the ‘,” and ‘.” keys to
browse characters without releasing the **’ key.

Outline Preview Options

You can choose other options in the View > Show Layers menu
for previewing the contour layer:

~ | Nodes To show nodes or not

| Control vectors To show curve control vectors or not

3 Connection mode To show connection mode marks

% | Positions To show the coordinates of each node.

You will see the positions of nodes only when the nodes are visible. All
other contour presentation modes may be combined in any way.

A few more notes about outline appearance:

Selected parts of an outline appear red in color. Selected nodes are marked

as red rectangles and they are visible even if non-selected nodes are
hidden.

359

360

Many options related to outline appearance can be customized on the
Appearance and Outline Drawing sections of the Glyph Window page of
the Preferences dialog box described in the “FontLab Studio Options”
section.

Here is a list of some available options and a description of the features
they control:

Small nodes Nodes may be small or large:
...—\.._____'.H_,..—\.._“_\
I"_""\-\..___._.-"'_'_\""\.\.

Node shape shows Activate this option to show node type. Otherwise only the
point and type of the segment and a connection type will be visible (this
connection type is how it was in FontLab 4.x)

Black/white nodes Nodes may be colored or black/white:

QO

Show node position One node may be selected as the current node. It will be
highlighted and its position will appear on screen:

[44E, 211)

To deselect the node, click anywhere in the empty space of
the editing field or click the Esc key

Node position is on Position of the node (see above) may appear below or above
top of the outline the path:

— AP —ITh BT

Highlight first node When this option is on, start and end nodes of the open
of an open contour contour are highlighted with a small diagonal cross:

e

h,.f—h\;

Bezier control When this option is on and Show Layers>Control Vectors is
points are visible in off, the control points become visible when the curve is
selection selected:

+ o
Show arrow on Activate this option to see small arrows on every closepath
closepath line:
Smooth outline Allows one to select between standard and smoothed

rendering of the outline:

X_\._f_‘\x
H—Hh,.f—xx

Show contour An outline consists of several contours and each contour is
direction directional. The direction of the contour is marked with a
small arrow:
——
g st

Leave echo while When editing contours the original contours shape/position
editing is shown gray:

Fill open contours When this option is off, the open contour appears unfilled in
fill outline (preview) mode:

D

361

362

FontAudit

FontAudit is a set of algorithms that analyses a glyph’s outline to find
errors that may decrease glyph rasterization quality.

To switch on FontAudit, press the | ® button on the Show Layers
toolbar.

If FontAudit finds what it thinks is an error, it shows an error mark in the
editing field of the Glyph Window:

FontAudit error mark

To see a description of the error, activate the Edit tool (|*)); position the
mouse cursor on the mark; and click the mouse button.

You will see a FontAudit error message:

FontAudit

Flat curve

This curve is flat and can be replaced
by a vector without any loss of guality.

“ Cancel [Fix all))

This message has two buttons, Fix and Fix All, which you can use to try to
automatically fix an error (Fix button) or all errors in the glyph (Fix All).
Sometimes correcting one error causes others and when you press the Fix
(or Fix All) button you will see even more errors, so use this feature
carefully.

You can customize the FontAudit algorithms using the FontAudit page of
the Preferences dialog box:

£}

Empty lines and curves

Vectors on closepaths

Flat curves

Collinear vectors

Inflections on curves

"Weak” extremum points
"Normal” extremum points
Incorrect smooth connection
Cusp and self-intersecting curves
Semi-horizontal and vertical vectors
Contour is not closed

Object is too short

ARRRRRERRRRE

363

364

Here is a short description of each test and the error that it detects:

Empty lines and
curves

Lines or curves that have no length (I.e. two nodes on top
of each other.)

Vectors on closepaths

Unnecessary straight segments that should be removed. In
Type 1 fonts this error can cause problems with rasterization

Flat curves

Curves that can be replaced with a straight segment without
loss of quality (I.e. a “curve” that is really a straight line.)

Collinear vectors

Two sequential straight segments are collinear; therefore
the first straight segment can be removed (Straight lines
with extra nodes in the middle.)

Inflections on curves

Detects curves that have inflections. It is better to replace
such curves with a combination of two curves

Curve with an inflection

"Weak" extremum
points

There are “invisible” extreme points on curves. This error
can cause problems with rasterization of the glyph

== o®

?

Curve with an invisible extreme point

"Normal” extremum
points

Curves need nodes at extreme points

Incorrect smooth
connection

A straight segment and curve or two curves are connected
very close to a smooth connection, but not precisely. I.e.
what looks like it should be a smooth connection is labeled
as a sharp connection.

Cusp and self-
intersecting curves

. .

Cusp curve Self-intersecting curve

Semi-horizontal and
vertical vectors

The direction of the straight segment is close to vertical or
horizontal but is not parallel to one of the axes (i.e. not
exactly horizontal or vertical)

Contour is not closed

Contour appears to be closed (visually) but is defined as
open. Use Fix button on the error reporting dialog box to
automatically correct this situation

Object is too short

Curve or line is short enough to be deleted.

You can switch off any of the FontAudit tests by switching off their check
box in the FontAudit options page.

As you can see, FontAudit testing can detect errors that are invisible
without your having to do a tough, lengthy analysis. On the other hand,
some errors are in fact warnings and do not necessarily impair the glyph's
outline quality.

365

366

Moving Nodes

The most important editing operation is the modification of the contours
that build each glyph. You can modify contours in three ways: moving
nodes, editing segments using non-node editing, and selecting several
nodes and moving them together.

To move individual nodes:

1.

If nodes are hidden, make the node that you want to edit visible: switch
nodes on with the View > Show Layers > Nodes command or click
near the node to make it visible. If you missed and an incorrect node is
highlighted, use the PAGE Down and PAGE UP keys to move to the
correct node:

[44E, 211)

Drag the node to the new place. It will stick to the objects in other
layers if they are visible and snap-to those layers was activated (View >
Snap to Layers menu).

Hold down the SHiFt key to constrain the direction of the node’s
movement in 45-degree increments and to snap the cursor to the
original node’s position.

Options

If you are moving a node that is connecting two Bezier (PostScript) curves
you have the following options:

1. If the connection of the curves is smooth, press the SHiFT key before
clicking the node to constrain movement to a line between the curves’
control points:

2. Ifthe connection is sharp, press the Oprion key at any time while

dragging the node to move it without the adjacent control points:

¥

)

3. If the connection is smooth, press the OptiON key before moving the
connecting node to keep the connection’s curvature optimised. Hold
down the Cmp key to involve all 4 control points in the process:

%-J'—l—

+

367

368

4. When you are editing control points of a Bezier curve press the SHIFT
key before clicking the button to keep the direction of the control
vector unchanged.

z
a

5. If you are moving a control point of a curve with a sharp connection,
press the OptioN key to temporarily change the connection type to
smooth, so that the adjacent control vector will be collinear

Do not forget that you can press the ‘*’ key (usually the key between SHIFT
and z) at any time to get an instant high-quality preview of the glyph
outline as it will print:

[O¥
o Bo

Normal outline High-quality preview

Outline Echo

If you want to see how the outline looked before you moved a node, switch
on the Echo mode. Open the Glyph Window page of the Preferences
dialog box and switch on this option:

’21 Leave echo while editing

This is how editing field will look when echo mode is on:

(<

Using the Keyboard

You can use the keyboard to move nodes and to select a node for editing:

Arrow keys Every click moves current node by one font unit
Shift+Arrow keys Every click moves a node by 10 font units

Cmd+Arrow keys Every click moves a node by 100 font units

Page Up Selects the previous node for editing

Page Down Selects the next node for editing

Tab Alternates between the node and Bezier control vectors
Esc Drops the selection of the current node.

Note: You can make a line or a curve a current object and arrow
operations will move it as a whole. Just left-click on a curve or a line with
the Edit tool and it will be highlighted by a pair of short lines:

/N\

369

Non-node editing

Sometimes you may want to modify a contour in a more flexible way than
by moving nodes. For example, to adjust the shape of a curve in node
editing you would usually make the control points of a curve visible and
move them to modify the curve. A more intuitive way would be to “grab”
the curve somewhere between the nodes and move this imaginary “inside”
point. The curve’s shape changes accordingly. We call this method “non-
node editing”. This means that you can move not just nodes, but every
point of a glyph’s contour. You can even switch off nodes and still be able
to edit the contour as you wish.

To modify a curve or straight segment using the non-node
editing method:

1. Move the mouse cursor onto the place on the segment that you want to
move.

2. Press the mouse button. You will see a small color point that will show
you the temporary point that you are moving.

3. Drag the mouse and observe how the shape of the curve changes. After
a few experiments (which can be undone) you will have enough
experience to use this method of editing.

370

Several notes that you should remember:

1. In non-node editing, guiding objects are not sticky. So, temporary
points do not snap to the grid, guidelines, hints or anything else.

2. Ifyou choose a temporary point near one of the ends of a curve, you
will move that end, not just change the curve’s shape. This is a useful
method to locate a curve’s endpoints.

3. When you press the mouse button to begin non-node editing you will
see that the endpoints of the curve as well as the control vectors
appear, simplifying the editing of this segment.

4. Ifyou want to highlight the line or curve but don’t want to modify it,
hold down the Cmp key while clicking on the line or curve.

If you drag a “point” on a curve, its control vectors may change direction:

R

+

To fix the direction of the control vectors, hold down the OptioN key and
double-click the node. You will see the connection mark turn yellow.
ortioN+double-click it again to remove the fixed state. Alternatively you
can CtrL-click the node and use the Fixed BCP Direction option to control
this feature.

You can also fix the direction of all control vectors when you edit a curve
using non-nodes editing. Open the Preferences dialog box (the Application
> Preferences menu), select the Glyph Window page and use the following
option:

™ All BCPs are fixed
&
v Highlight the first node of the open contour

371

372

Changing Connection Type

The type of connection between segments is very important in maintaining
the smoothness of contours. Connections can be of two types: smooth and
sharp.

Layers toolbar.

If a connection is smooth the direction of the adjacent curve control
vectors or of the curve control vector and line is collinear and the contour
is smooth at the connection.

To change the type of connection

1. Make the node visible.
2.1 Double-click the node with the left button

2.2 Crri-click the node and select the connection type in the popup menu:
~ Fixed BCP Direction
Connection

L ' Smooth

Properties

Macro |
e ——

Deleting Nodes

To delete nodes using the Edit tool:
1. Begin moving the node by dragging it.

2. While dragging, Ctrr-click the mouse button. The node will be
removed.

1. Move the mouse cursor onto the node and Crrr-click the mouse
button.

2. In the popup menu choose the Delete node command.

Note: If you Ctre-click while editing the curve using the non-node editing
method or while you are moving the control points of a curve the curve will
not be removed. Instead it will change to a straight line.

Deleting Lines and Curves

You can delete a whole line or curve with the Knife tool. Activate the Knife
tool with the ¢/ button on the Tools toolbar or click ‘3’ on the keyboard.
Press the OptioN key and click on the line you want to delete. Note that
with this method you will break the outline:

&

#

—
'

i \
]

Another way to delete a line or a curve is to click on it with the Edit tool
and then select the Delete command in the Edit menu (the DEL or
BacksPACE key). This method works differently depending on the following
option in the Glyph Window page:

W Edit/Delete command breaks contour

373

374

Eraser Tool

The eraser tool |’ can be used to quickly remove nodes. Sometimes this is
necessary, for example, with contours from an auto-tracing program. The
eraser tool can work in two modes: like a standard eraser or as a rectangle
eraser.

In the first mode, all nodes that are inside the eraser mouse cursor are
deleted. In the second mode, you define a rectangle by clicking and
dragging (as when you select nodes with the Edit tool or change the zoom
of a Glyph Window) and all the nodes inside the rectangle are removed.

The first (eraser-like) mode is the default for the Erase tool. To switch to
the rectangle mode, hold down the Cmb key.

Inserting Nodes

To insert a new node on a segment with the Edit tool:

Activate the Edit tool | * |.

Position the mouse cursor on the segment where you want to insert the
node.

Activate the so-called position tool by pressing the right mouse button
on a vector or curve. The mouse cursor will turn into a “target” with
its coordinates shown.

Drag the mouse cursor along the primitive (it will stick) to “take aim”
precisely and click the left mouse button where you want the node to
be inserted.

Using the Knife tool to insert nodes:

1.
2,

Activate the Knife tool |«
Click on the point on the contour where you want to insert a node.

Press the mouse button anywhere on the empty area of the editing field
and drag the mouse to form a “knife line”. After you release the mouse
button new nodes will be inserted at all points where this line crossed
the outline. Hold down the SHiFT key to constrain the direction of the
“knife line” to 45-degree increments.

If the “knife” line will cross two lines you may find a part of the glyph
to “cut off”. Hold the OpTtION key to limit Knife tool to insert new nodes
only.

While the Edit tool is active press and hold the Cmp and OpTION keys.

Position the mouse cursor on the point where you want to insert the
node and click the mouse button. The mouse cursor will turn into the
knife and the new node will appear in that place.

375

Using the Add Corner, Add Curve and Add Tangent tools:
1. Activate one of the tools.

2. Click on any outline point. The Corner tool will add a straight line, the
Curve tool will add a smooth connection and curve and the Tangent
tool will add a sharp connection and curve.

Note: You can insert nodes on the closing straight segment that
automatically connects the first and last nodes of a contour. If you insert
nodes on the first half of a closing straight segment (closer to the ending
node of a contour), then the new node will be added to the contour. If you
insert the node on the last half of the closing straight segment, then it will
be inserted before the startpoint and become a startpoint.

376

Using the Drawing Tool

The easiest way to create a new contour is to use the Drawing tool: o

You can create a new contour or you can continue any existing contour. If
you want to add new nodes to the existing contour, just activate its first or
next node:

Sl

The last node of the open contour is activated

1.

To add a point, just click the mouse button.

g &

If you want to create a line point, just release the button. If you
want to define a curve, drag the mouse to set the position of the
curve control vector:

To adjust the position of the curve control vector without
moving the control vector of the previous curve, hold Oprion and drag:

You can press and release the OprioN key while you drag the mouse —
when OPTION is released you are defining the positions of the control
vector that belongs to the previous curve and the control vector of the
next curve. When OpTION is pressed, you are not moving the previous
curve’s control vector.

377

4. When you are adding a new node, you can hold the Cmp key to not
move the curve control vector but move the node itself.

5. Finally, you can use the SHIFT key at any time to constrain the
direction of the line (if you are holding the Cmp key) or a curve
control vector.

To close the contour, just click on its starting node and drag the mouse
to set the direction of the control vectors.

378

Adding Points to a Contour

In addition to the Drawing tool you can use three more tools to create a
new contour or to add points to an existing contour. These tools are: Add
Corner, Add Curve and Add Tangent.

To create a new contour:

1. Activate one of the tools.

2. Click anywhere in the empty area of the glyph window to create the
first point of a new contour. Drag the mouse to put new node into
correct position. Release the mouse button.

3. Click again in the empty area to add a corner line, curve or smoothly
connected curve (with Add Corner, Add Curve or Add Tangent tools
respectively).

4. Continue the procedure until your newly defined contour is complete.
To close contour, drag the last node onto the first node.

5. You can switch to the Drawing tool | "* at any time and use it to add

new points to a contour you are creating.

Note: A new node is added to the contour if the last node of the contour is
highlighted. If it is not highlighted a new contour is started.

To highlight a node click it. To deselect it, press the Esc key on the
keyboard.

You can move outline nodes with the Add ... tools. Note that if you click on
the contour (not on the node), a new node is inserted. The type of node
depends on the tool you are using. To prevent adding a new node, hold
down the OptION key when you click on the contour.

379

380

Converting Segments

Sometimes you may want to convert a curve to a straight segment or vice
versa. To convert a curve to a straight segment “delete” (press CTRL
while dragging) one of the control points of the curve, or “delete” (press
CtrL while dragging) the curve while you are in the non-node editing
mode.

To convert a straight segment (normal or closing) to a curve drag
an inside point of the straight segment while holding down the OptION key.

To convert a curve to a 1/4 part of an ellipse (the curve’s control
vectors will be treated as an ellipse axis), press the Oprion key and click on
the curve.

You can also convert curves and straight segments with the popup
menu. CtrL-click the end node of the segment and select the Convert
PS/TT command in the popup menu. With this command a line segment is
converted to a Bezier curve, a Bezier curve to a TrueType curve and a
TrueType curve to one or more Bezier curves.

The last way to convert segments is to use the selection menu:

1. Surrr-click any point on the curve or line segment.
2. Crri-click the highlighted (red) segment. A popup menu appears.

3. Choose one of the commands in the Convert submenu: To curves (to
convert to a Bezier curve) or To lines (to convert to straight line
segments).

Breaking and Joining Contours

To break the contour with the edit tool hold down Cmp and OpTION and
click the node where you want to break the contour.

To break the contour with the Knife tool just click on the node.

When a contour is broken its first and last nodes are highlighted by
diagonal crosses:

!

s

}

You can use the Knife tool to “cut out” part of the contour:
L—'—'_':_._,_,—-

— .
I |

e -

1. Activate the Knife tool.
2. Press the mouse button and drag the cursor to define the “cutting line”.

3. Release the button. Note that you can only cut part of a single contour,
like in the sample picture above.

Note: Deleting a selection with the Edit > Delete command breaks
contours too. To keep them closed, uncheck the Delete command breaks
contour option on the Glyph Window page of the Preferences dialog box.

To join two contours you need to move the starting or ending node of
one contour to the starting or ending node of another contour.

Hold down the OptiON key to prevent the contours from joining.

381

382

Node Commands

If you Ctri-click a node you will see a popup menu with many useful

commands:

Cancel

Make Node First
Convert PST
Delete Node
Duplicate Node
Retract BCPs
Add Anchor...

Reverse Contour

Break Contour

Connection
Properties

Macro

v Fixed BCP Direction
»

Delete Contour
Subtract Contour
Select Contour
Make Parallel Path

Below is a description of all the commands in this menu:

Make node first

Starts the current contour from the selected node (i.e. makes it
the startpoint). This command is useful when you need to join
contours since you can only connect starting and finishing nodes

Convert PS/TT

Cycles the node type from line to Bezier curve to TrueType curve

Delete node

Removes the node

Duplicate node

Adds a zero-length straight segment to the node. I.e. puts a new
node on top of an old one. This command is useful when you are
editing Multiple Master fonts

Retract BCPs

Removes the control vectors of the node, making it sharp

Break contour

Breaks the contour at the selected node

Make corner

Makes a 90 degree corner (this operation is not always available)

Fixed BCP Makes the connection fixed. You can use it instead of
Direction Orti0ON-+double-clicking the node
Connection Popup menu with connection settings. You can use it instead of

double-clicking node

Reverse contour Reverses the contour direction

OO

Contour Set of commands related to the contour to which the selected

node belongs (described below)

Properties Opens the Node properties panel.

Contour commands:

Close contour Makes open contour closed

Delete contour Removes the contour

OO

Subtract contour “Subtracts contour” from the outline

OC

Select contour Reverses the selection state of the contour

Make Parallel Opens the Parallel Path dialog (described later).

Path

383

384

Node Properties

Cmp-click the node or Ctrr-click and choose the Properties command in
the menu

Properties

You will see the Node properties panel:

@ Node Properties

Bezier curve #9/22 [1]

" | S N

|E_'E]] BCPs

In this property panel you can control the position of the node, the
alignment type, the selection status of the node and the position of the
control points of the curves.

The figures in the first line are the index of the segment, the node index
and the contour’s number.

To change the position of a node:

1. Select the origin point you want to use and set the coordinates of the
node. By default the origin is the glyph’s origin point | # || With the radio

buttons you can select the previous | # |or next | # | node as the origin
point.

2. Modify the coordinates of the node in the edit boxes. You can use the
spin buttons to increase or decrease the coordinates. The new
coordinates will be applied to the node when you press the RETURN key
on the keyboard or move the focus from one edit control to another or
when you close the property panel by clicking on a free space in the
edit field.

To change the selection state of a node: modify the state in the
Selected check box.

To change the connection mode for a node use these check boxes:

[~

To edit the position of the curve’s control vectors: switch on the
BCPs check box (it will be gray if you are editing a node between two
straight segments) and modify the relative position of the previous or next
control point that belongs to that node.

Use the buttons with arrows > to edit the previous or next node.

Tip: when you are editing node positions in the Properties panel, press the
RETURN key to accept changes and move the focus to the editing field of the
Glyph Window. There you can use the keyboard to move the selected node
and the PAGE DowN/PAGE Up keys to select another node for modification.
You will see the node properties change in the Properties panel as you
move the node by keyboard or mouse. Click OprioN+RETURN to put the
focus on the Properties panel to set the node position more precisely.

385

386

Previewing Glyphs

Sometimes you need to get a high-quality preview of the glyphs you’re
editing. You can preview any glyph in its Glyph window with the **’ key
(usually the key between Surrt and z), but it doesn’t give you a feeling of
how this glyph will look in a line of text or in multiple sizes.

To get a better preview, use the Preview panel. Open it with the Preview
command in the Window > Panels menu or by clicking the = button on
the Panels toolbar.

You will see a panel containing three pages: OpenType Features, Preview
and Anchors. The OpenType Features and Anchors pages will be described
later, so activate the Preview panel now:

: (5] Preview

OpenType Fentures- Preview | Anchors

“hamburgevons 'T!. e T * - B @ F

hamburgevon:

High-quality rendering provided by the FreeType library is used to show
glyphs in the preview panel, so the visual resolution is higher than the pixel
resolution of your screen and is close to what you can get on some printers.

In preview mode the preview panel shows the glyph string in the top area
of the window:

hamburgevons m

You can type any text in this area or you can drag-drop glyphs selected
in the Font Window or in the Classes panel.

To preview a glyph that cannot be easily encoded by a single
keyboard character, enter the slash character and then the name of the
glyph:

fexclamdownnfasterizsk/brevefring m s T

T
|

To enter Unicode characters, type the Unicode index (in hexadecimal form,
exactly 4 characters) after the backslash:

i
4

& o P

Y O0OEEY O0EFY OOFDYQ0FLY0O0F2 m L1
h-E ~ N\

To enter line break, type "\n". You will get two lines of text in the preview.

T E-a 0

To choose one of the predefined sample strings, open the list with the
button to the right of the sample string:

SHE VERSE ASHORE

B __hamburgevons | |

ABCabe | v ABCabc
ABCabcl23
abcdefghijkim
nopgrsiuvwxyz
12345678907 7"

You can scroll the sample string in the Preview panel — just click and
drag to scroll the window or Ctrr-click to reset to the initial position.

387

388

Preview Modes

The height of the sample string is determined automatically and depends
on the vertical size of the preview panel. You can choose other sizes in the
Size popup menu:

A=
Auto
Custom...

24
v 36

==

96
128
256

The Preview panel can work in two modes: string preview and waterfall
preview. You can switch to the waterfall mode in the Preview Options

menu:

E e o m

Waterfall

Glyph Grouf

Show Metrics
Vertical Orientation

Right-to-Left
—

Note that the waterfall preview is possible only when the Glyph Window is
active.

With the Show Metrics command in the Preview Options menu you can
activate metrics preview mode:

the quilt

In this mode you can see a preview of every glyph and its width.

If you are working with Arabic or Hebrew script you may need to preview a
sample string in right-to-left mode. Use the Right-to-Left command in the
Preview Options menu to activate this mode:

iug eht

The Glyph Group command will show you the current glyph (for example,
"h") along with other glyphs from the same shapes group:

hknum

The following three buttons allow you to flip previewed glyphs vertically,
horizontally or to see the preview inverted:

& m P

Vertical and horizontal mirrors will help you to observe glyphs but not
meaningful words:

theqmckbromﬂfnxjumpsov' ! e e E -m- Wl

fMe qu(

389

390

Vertical P review

The Vertical Orientation command in the Preview Options menu turns

the preview into vertical preview mode:

(& Preview

OpenType Features Preview | Anchars .

[the quick brown fox jun m e T v gk 2 | P
Show Metrics

v
¥ Vertical Orientation

| " Right-to-Left
—

c

The vertical font metrics or the vertical glyph metrics (if defined) are used
to vertically align glyphs. Right-to-left preview mode still works when the
Preview panel is vertically oriented, so you can align glyphs to the left or to

the right to check the balance of their sidebearings.

Waterfall Preview

When you are working on a glyph, you may need to see it in many sizes at
once. Open the glyph in the Glyph Window and switch the Preview panel to
the waterfall mode with Waterfall command in the Preview Options
menu.

You will see multiple sizes of the glyph previewed:

" usﬁBBHBBBBBBBBBBBBBB B B B

EE72 910111212 14 15 16 17 12 19 20 21 22 23 o4 25 ZE 27

Size is measured as PPM, which means Pixel Per eM. This is a resolution-
independent way of defining the pixel height of the glyphs. For standard
Mac screens, the point size (which you enter to define text size in text
editors or page layout programs) is equal to the PPM.

With the Preview Options dialog box (***) you can choose which PPMs you
want to preview:

List of point sizes to preview in waterfall mode:

'5-36, 38, 40, 42, 48 " (" Reset

You can choose what sizes you need to see in the waterfall preview mode.
Enter the sizes separated by ‘,” or use ‘-’ to define size ranges. Click the
Reset button to select the default PPM ranges.

391

Waterfall preview also works in vertical mode with left-to-right or right-to-
left writing mode:

T

[ER-]

mm&mmmmwm“”

=
=
[T T)
& B O

=
o
-
o

e
w0
-
o

K
=
B
=

r
@
]
o

mmwmmmmewW

@
£
i
-

You may print the Waterfall preview of the font if you click on the £
button on the Standard toolbar. Refer to the “Printing and Proofing Fonts”
chapter for further details.

392

Preview Options

To edit the contents of the sample strings list, click on this button:

You will see a dialog box that contains all the strings that appear in the list
plus a few other options:

Preview Options

Contents of the preview text combo box:

BCOEFyn GHIJ\nKLMMNOY n PORSTUV WY Z[4]
the quick brown fox jumps over the lazy dog
ABCabcl2s

hamburgevons

HAMBURGEY OMS

SHE VERSE ASHORE

AS AGREES RUMAS

GORGEOUS MAME

HAHHAAOHADOAD

HEHHBOHECQCED

HCHHCOHCOOCO

¢ Open...)

Font to use in the preview combo box: | Select...)

List of point sizes to preview in waterfall mode:

'5-36, 38, 40, 42, 48 T (Reset)

Cancel | (Apply (OK)

By clicking the Open button you can select the text file that will be used to
preview sample strings. This text will replace the contents of the
preview.txt file in your [Application user data]/Data folder.

393

394

This option:

Font to use in the preview combo box: .FL Chianti LM ¥BEd [Select... |

allows you to choose the system font that is used to show text in the sample
string. You may need to change this font if you are working with non-Latin
fonts:

Kupnnnuua 3 .. 7-3- & 30

Kupunnnuua

VectorPaint Mode

VectorPaint is FontLab’s unique set of tools that allow you to paint vector
contours with tools that look and feel like bitmap tools. You can choose
brushes, pens, freeform selections and even enter text. The idea of
VectorPaint is that all the tools produce contours that combine with the
existing glyph contours using our unique contour-processing technology.

When you click on one of the tools on the Tools or Paint toolbar you enter
the VectorPaint mode. To open the Paint toolbar select it the View >
Toolbars menu:

&) Faint

PO NET @/

The keyboard shortcut for the mode is OptION-3.

The type of interaction between existing and new contours depends on the
selected color mode. This process is very fast and is completely transparent
to you, so if you switch on the preview mode (where the glyph appears
filled), the illusion of bitmap-like editing of a contour-based glyph image is
very realistic.

All the paint tools can work in 4 different color modes:

Transparent Newly created vector objects that are generated by the
application of VectorPaint tools do not interact with the
existing glyph’s contour and appear selected for easy editing

| Automatic The color of the brush depends on the point where you begin
drawing. If you begin in a white area, a white brush will be
selected, if in black, a black brush will be selected. Use this
color mode to easily extend white or black areas of the glyph

Il Black Generated contours are added to existing contours, expanding
the black area of the glyph. It looks like a black brush applied
to a black picture

]| White New contours are subtracted from existing contours,
simulating a white brush.

395

396

Here is an example of a brush stroke applied with Transparent, Black and

White “colors™:

€«

Note: VectorPaint tools have an option to automatically activate the Free
Transform operation when any of the painting operations is completed.
This option allows you to instantly move, scale, rotate or slant the newly

created shape.

Here is a list of all available VectorPaint tools with a short description of

each:

o) Freehand

Used to select non-rectangular areas of a glyph. It selects not the

Select nodes, like the Edit tool, but actually cuts lines and curves and

selects black areas that can be moved or otherwise transformed

| Pen Used to create new contours or modify existing ones. It is not
really a “paint” tool, because it deals with contours, but it is a very
natural and flexible tool used to adjust the result of the
application of VectorPaint tools

<% Brush Exactly that — a brush. It can be round or calligraphic. A
calligraphic brush can be of any size and slant angle

~,| Line Used to draw straight lines with a selected brush

[<| Polygon Has two modes: point-by-point polygon drawing with easy
combination of straight segments and curves, or point-by-point
definition of a polygon that will be drawn by using the selected
brush

| Ellipse Used to draw ellipses or circles

[Rectangle Used to draw rectangles or squares

T Text Used to enter text (vector based) using any TrueType font

installed in the system.

Freehand Select Tool

This tool works like a precision knife. You can cut part of a contour, and it
will be automatically selected so you can transform it, delete it or copy it.

To select part of a glyph with the freehand select tool:

1. Select the freehand select tool (¥°]) in the Paint toolbar.

2. Position the cursor on the point where you want to start the selection
and press the mouse button.

3. Drag the mouse to extend the selection polygon in freehand mode, or
click the mouse button to extend the selection polygon by straight
segments.

4. Crrr-click to finish the selection.

When you finish the selection, you will see that the selection polygon was
applied like a knife and you have a new contour (or several contours) that
is separated from the glyph. The new contours are selected so you can use
the Edit tool to move them or transform the selection. Of course, you can
use any Edit menu command with this selection.

397

398

Pen (Contour) Tool

With the Contour tool || you can create new contours or modify existing
contours in a more artistic manner than with the Edit tool. When you use
the Contour tool, you can draw new contours just as you do on paper.
FontLab Studio will trace your drawing and replace it with a series of
curves and lines.

How to create a new contour

If you begin a contour in a free area (where the cursor has its ordinary
shape), you will define a new contour. If you want to begin a new contour
but its startpoint is on an existing contour press the Cmp key to force
FontLab Studio to create a new contour.

How to modify an existing contour

When you move the cursor of the Contour tool onto an existing contour or
node, it changes. If you begin drawing (without holding down the Cmp key)
the new contour will be inserted into the existing one. If the finishing point
of your drawing is on an existing contour also, and the starting and
finishing points are on the same contour, then the new drawing will replace
the part of the existing contour that lies between the starting and finishing
points.

How to draw a single curve

Hold the SHirt key down when you release the mouse button after drawing
a new line. Your drawing will be approximated by a single curve. This is a
good way to draw a new contour step-by-step.

Brush Tool

The Brush tool |¥| works like the usual bitmap brush that you find in any
bitmap-editing program. You begin a brush stroke by pressing the mouse
button. Draw the stroke by dragging the mouse and finish drawing it by
releasing the mouse button.

To change the color of the brush, use the color selection buttons on
the Paint toolbar:

1| for the “empty” color

for the “auto” color

Il for the “black” color

[]| for the “white” color

Other brush options are accessible in the VectorPaint options menu:
— | B3
v @ Round brush

Flat brush

-+ 20 units
v ® 40 units
@ 30 units
@ 120 units

E Options...

You can paint with round or calligraphic brushes of different widths:

/" Calligraphic-style brush

@ Round brush

+ 20 unit wide line

#® 40 unit wide line

@ 80 unit wide line

@ 120 unit wide line

399

You can also specify a brush stroke shape. Press the =%/ button and select a
shape in the popup menu:

== Smooth Right

&= Smooth Left

- Point Right

&= Point Left

& S5imple Curved

mm Simple Flat

®» Shaped

= |nflated

El Options...

This is an example of different brush strokes:

400

VectorPaint Options

You can also change the brush properties in the Paint Options dialog box.
To open the Paint Options dialog box, choose the Options command

in the Brush options menu (|*%)) or Brush style menu (=%)). You will see
following dialog box:

Paint Options

Brush options:

Width: 40 Angle: 5 Roundness: 100
Cap: C & & ®=
Join: @ = D& SN

Body: . v

Polygon tool options:
f# Normal (contour) polygon) Brush trace
Other options:

= Automatically activate Transform operation after any paint action
| Reverse auto color

Cancel) 0K }

In the Paint Options dialog box you can enter the width of the brush and
change the slant angle of a calligraphic brush. Additionally, you can select
how the brush strokes are started and finished. Choose the brush’s starting
and finishing shape by activating one of the radio buttons.

You can also select the style of the connection between two sequential
segments of brush strokes. It can be sharp, smooth or flat. Select one in the
dialog box. Icons near the radio buttons give an explanation of the styles of
connections.

Last field in the Brush options area lets you to select the shape of the brush
stroke.

Other options relate to the Polygon tool (described later) and the options
for automatic activation of the Free Transform operation and reversing of
the "auto" color.

401

402

To choose one of the Polygon tool modes use the options in the Polygon
tool field. If you choose Normal (contour) Polygon the polygon tool will
create a simple contour that can include straight segments and curves. If
you choose the Brush trace option the current brush will be applied to the
created polygon’s contour. In the Brush trace mode you cannot draw
curves while defining a new polygon.

If you mark the Automatically Activate Transform Operation check box
and select the Transparent painting color the Free Transform operation
will be activated and applied to the contour that you created after the
completion of any paint operation.

The last option, Reverse auto color, changes the behavior of the "auto"
color brush mode. If you begin drawing in a white area, a black brush will
be selected, if in black, a white brush will be selected.

The following option on the Glyph Window page of the Preferences dialog
box

VaectorPaint tools have separate view settings

allows you to have different view settings (View > Show Layers set) when
you enter the VectorPaint mode. To use this option, first turn it on; then
enter VectorPaint mode for the first time and switch editing layers to
create the most comfortable environment. For example, in Edit mode you
may use an unfilled outline with all nodes switched on. In VectorPaint
mode you may switch on the Fill Outline mode and switch off all nodes.
Now when you enter VectorPaint mode the next time, the editing layers
will be switched automatically to your preferred environment.

Line Tool

The Line tool || allows you to apply brushes to straight-line segments.

To draw a line segment:

1. Position the mouse cursor on the beginning point and press the mouse
button.

2. Move the mouse to the end point and release the button. Hold down
the SHrFT key to constrain the direction of the line to 15-degree
increments.

403

404

Polygon Tool

The Polygon tool =/ can be used in two modes: as a tool to draw a polygon
consisting of lines and curves or as a tool to draw an outline of a polygon
with a selected brush. The second mode can be treated as a series of
applications of the line tool. The mode of the polygon tool can be selected
in the Paint Options dialog box.

To draw a polygon using the Polygon tool:

1.

5.
6.

Select the Polygon tool & /in the Paint toolbar. Be sure that the
Polygon tool is in the polygon mode.

Move the mouse cursor to the first point of the polygon and click the
mouse button.

Move the mouse cursor to the position of the next polygon point. To
add a line segment, click the mouse button. To add a curve segment,
click the Tas key, press the mouse button and drag the mouse to define
the control vector of a curve. Hold down the SHiFt key to constrain the
direction of the control vectors to 15-degree increments.

If the polygon in its present state is finished by a curve, the next
segment that the polygon tool will try to add will be a curve. To switch
between adding a straight segment or a curve, use the Tas key on the
keyboard.

Repeat steps 3 and 4 for all points of the polygon.

Crri-click the mouse button to finish creating the polygon.

The Brush Trace mode of the polygon tool works just like the normal
(contour) mode.

Ellipse and Rectangle Tools

The Ellipse |©| and Rectangle 2 tools are very similar. The only difference
is in the result.

To draw an ellipse or rectangle:

1.
2.

Select the tool that you want to use.

Position the mouse cursor on the spot where you want to place one of
the rectangle corners (or on one of the corners of the rectangle that
surrounds the ellipse). If you hold down the OptioN key the mouse
cursor will become the center of a rectangle or ellipse.

Press the mouse button and drag the mouse to define the rectangle (or
ellipse).

Hold down the SHrFT key to draw a square or a circle.

Release the button to finish creating the rectangle (or ellipse).

405

406

Text Tool

With the Text tool you can add text to a glyph. Carefully select the color
mode when planning to use the text tool. It is usually best to use the
“Empty” color because in that mode the text stroke will not interact with
the existing contour and you will be able to adjust its position using the
Edit tool or the Free Transform operation.

Select the Automatic Activation of Transform Operation option in the
Paint Options dialog box. With this option on the Free Transform
operation will be activated immediately after entering the text string,
allowing you to modify its size or position.

To enter a string of text:

1.
2.

Select the Text tool . T |in the Paint toolbar.

Position the mouse cursor (with the crosshair and the “suggested
rectangle” of the future string) on the place in the editing field where
you want to add the string.

Click the mouse button.

In the dialog box, enter the character string. Use the Font button to
select the font that will be used.

Enter Text

Sam_pq

Apple Chancery at 300 units

Font... | | Cancel {(oK _\)

Below the sample string you will see the name of the current font and
the size of the text string. The size is presented in font units. You can
change the string size in the Font dialog box. The size of the placed text
will be 10 times the selected point size. For instance, if you select a 24
pt. font you will get a string that will be 240 units in height.

Press OK to enter the string or Cancel to abort this operation.

Selections

Many operations can be applied not only to single nodes or segments but
also to several nodes together. For example, you may want to move many
nodes or delete part of a contour. First, select the nodes that you want to
process.

To select nodes with the selection rectangle:

1. Make sure that the Edit tool | * |is active.

2. Press the mouse button anywhere in the empty area and drag the
mouse to surround the nodes with a rectangle. Hold down the Surrr
key to reverse the selection state of the nodes.

To select or deselect individual nodes just shift-click them.
To select the contour segment (line or curve) — shift click on it.

To select the whole contour double click the contour (not the node)
with the mouse button or press the Cmp key and click anywhere on the
empty area close to the contour. Hold down the SHiFT key to reverse the
selection state of the contour’s nodes.

To select all the contours in a glyph use the Edit > Select all
command.

To deselect all nodes click somewhere in the free space of the editing
field or use the Edit > Deselect command.

To reverse the selection state of all nodes in the glyph use the Edit >
Invert Selection command.

If the option in Preferences > Glyph Window

'31 Bezier control points are visible in selection

is on, then all the control points of the selected nodes will be visible even if
the View > Show Layers > Control Vectors option is off.

407

408

Using the Magic Wand Tool

With the Magic Wand you can easily and precisely select contours. It is
especially useful when you are working with glyphs that have many
contours, such as Far-Eastern ideographs:

[Tt

To select the contour with the Magic Wand tool just activate the tool (press
"4" on the keyboard) and click anywhere near the contour. You don’t need
to be precise — FontLab Studio will automatically locate the closest
contour.

To reverse the selection state of the contour, hold down the Surrr key and
click anywhere near it:

You can also select a contour and all contours that are inside it. Just hold
the OptION key when you using the Magic Wand tool:

Moving the Selection

You can move the selected part of the contour by mouse — drag any
selected part of the contour or use the arrow keys. If you press the arrow
key then the selection will move in that direction by one font unit. Hold
down SHIFT or CMD while pressing the arrow keys to accelerate the
movement of the selection.

If the option on the Glyph Window page of the Preferences dialog box

— Advanced
| Move selected nodes individually

is on, then dragging node won’t move the whole selection but only this
node.

You can change the value of SHirFT-arrow increments on the Glyph Window
> Dimensions page of the Preferences dialog box:

Shift+arrow keys increment: 10

409

Selection Commands

When a part of the glyph is selected, Ctrr-click it to get access to the popup
menu:

Cancel

Cut

Copy
Delete

Free Transform
Retract BCPs
Align Paints
Reverse Contours

Convert 2
Connection 2
Properties

Macro 2

Some commands are just copies of the Edit menu commands, but others
are much more interesting:

Cut Copies the selection to the Clipboard and removes it

Copy Copies the selection to the Clipboard and leaves original
untouched

Delete Removes the selection

Free Transform Activates the Free Transform operation

Retract BCPs Removes the control vectors of the selected nodes, making them
sharp
Align Points Aligns the selected nodes vertically or horizontally

Reverse Contours Reverses the contour’s direction

Convert Converts all selected segments to lines, Bezier curves or off-
curve points

410

Connection Changes the connection mode of the selected nodes. If the mode
is changed to smooth, all connections are forced to be smooth:

Properties Opens the Selection properties panel.

There are some differences between the Cut and Delete commands. First
of all Delete doesn't put anything on the Clipboard. But the main
difference is that the Delete command removes nodes with their adjacent
curves:

0—

/ 7

I I |
i Lo NNy

Selection Result of Cut Result of Delete
If you switch on the option

Edit/Delete command breaks contour

on the Glyph Window page of the Preferences dialog box the result of the
Delete command will be the following:

I
|
|
|
|
|
|
X

411

412

Selection Properties Panel

To make the Selection Properties panel visible, choose the Properties
command in the selection context popup menu or use the OPTION-RETURN
keyboard shortcut.

The Selection Properties panel is very simple:

7 Selection Properties

26 nodes selected

Contours selected: 1
i (104, -25]) i (1399,

Deselect

It contains the following information about the selection: the number of
selected nodes, the number of selected contours, and the selection
bounding box’s bottom-left and top-right corner coordinates.

You can click on the Deselect button to discard the selection and get the
Glyph Properties panel instead.

Copying the Selection

Sometimes you need to copy glyphs or parts of glyphs to another place in
the font or even into a different font. With FontLab Studio you can put any
part of a glyph or an entire glyph (with hints, guides, etc.) into the
Clipboard and paste it into a different place.

To copy parts of the glyph’s outline use the commands from the Edit menu
or the buttons on the Standard toolbar:

Cut To copy a selected part of the glyph onto the Clipboard and delete
it from the glyph
Copy To copy a selected part of the glyph onto the Clipboard
Paste E‘ To add a contour part copied to the Clipboard into the current
glyph as a new contour
I I
O
Insert To replace the current selection with the Clipboard contents
Delete To remove the selected part of a glyph’s contour
Duplicate To insert a copy of the selection into the current glyph as a new

contour

413

414

When you use the Paste command, the selection is pasted without offset
from the original location. If needed you can set the amount of shift in the
Preferences > Glyph Window > Dimensions dialog box:

Copy/Paste offser: 0 % |0

On the same page you can adjust the amount of shift during the Duplicate
operation:

Duplicate offser: 100 -x HIDD 1

Because the Clipboard is used as a buffer for copying contours you can
paste glyphs and their parts not only to the current font but also to any
glyph of any font of any application that is compatible with FontLab Studio
(ScanFont 3.0, for example).

Transforming the Selection

Sometimes you need to scale, rotate or slant a whole or part of a glyph
outline. In FontLab Studio you can do this using several methods:

1. Using the Transformation panel
2. Using the Transform tools

3. Using the Free Transform operation

Note: To avoid naming confusions, former Tools > Transform and Tools >
Transform Range features have been renamed to Action and Action Sets,
respectively. Starting from FontLab Studio 5, the user interface uses the
terms Transform and Transformation to refer to geometric transforma-
tions such as rotation or scaling that can be applied to glyph outlines.
Actions refer to operations that may affect outlines but also other font
elements such as metrics or hints.

Using the Transformation Panel

The Transformation panel allows you to apply several simple
transformations to the selected area or to the whole glyph. To open the
Transformation panel you can select a Transformation command in the
Window > Panels menu:

- 8 Transformation

+1| Rotate:

[
iEmmiEk

[
27| Center:
b | Center of select... % !

2|2 | Apply

415

416

To transform the glyph or the selected area:

Select the type of the transformation by clicking on one of the buttons in
the left and the transformation options in the right area:

=
|

Shift Shift (x, y):
] <Ho T

Enter a distance to move the selection in font units

0 I Rotate Rotate:

Zeropoint | 4)
Enter the rotation angle (degrees, counterclockwise) and select a
center of rotation:

« Zero point
Center of selection
Bottorn left comer .
Reference point

Scale Scale (x, v):
100 |5 (100 il

: Unifarm
Center:
Zero point | t]

Enter the scaling factor and select a center point of transformation.
Use the Uniform option to scale proportionally

Slant Slant:
u]

(4 ¥

Center:

Center of select... |3

Enter the slant angle (degrees, positive value slants to the right) and
select a center point

b Mirror Mirror axis:

0o |Ehe
¥ €
Center:
Zero point

ql-|

Enter the direction of the mirror axis and select the center point of
the transformation. Use the buttons to mirror horizontally or
vertically quickly.

Press the Apply button or RETURN key to apply the transformation to the
selected area.

Pressing the L'} button will align all selected nodes horizontally or
vertically.

If you press the #* button the Actions dialog box will open (see the
“Actions” chapter below). Pressing this button is the same as choOsing the
Tools > Action command. If you press the 4 button the previous
transformation action will be repeated. It is the same as choosing the Tools
> Repeat Action command.

417

418

Using Transform Tools

In the Edit mode you have access to three transform tools (in the Tools
toolbar):

+ | Rotate Rotates the contour

= Scale Scales the contour

+7| Slant Slants the contour vertically or horizontally.

To transform the outline:

1. Select part of the outline you want to transform or undo all selections
to transform the entire glyph outline.

2. Activate one of the transform tools.

3. Position the mouse cursor at the center of transformation, press the
mouse button and drag the mouse to make the transformation.
Remember that you can press the *’ key (usually the key between
SHrrt and z) at any time to get a high-quality preview of the
transformed glyph.

4. Use the Surrr and Cmb keys to constrain the transformation.

5. Release the mouse button to complete the transformation of the
outline.

Using the Free Transform Operation

To activate the Free Transform operation select the Free Transform
command from the Contour > Transform menu or click on the 3| button

in the Tools toolbar.

Or you can double-click on any selected (red) segment to activate the Free

Transform operation.

When this operation is activated, you will see a transformation rectangle
surrounding the selected area. If nothing is selected, the entire glyph will
be subject to transformation.

B B fF 6
<
g
\ *—1 1
_.-' \
e tetonl® r

Slant handle

Rotate handle

Center handle

Scale handles

So, what do all these handles mean, and how can they be used?

To move a selection:

1. Position the mouse cursor somewhere inside the transformation
rectangle but not on the center handle.

2. Press the mouse button and drag the rectangle to its new place.

3. Release the button. The selection will be moved.

To scale or skew a selection:

1. Position the mouse cursor on one of the scale handles O.

2. Press the mouse button and drag the mouse. You will see that the
transformation rectangle is scaled. Hold down the SHiFT key on the

keyboard to constrain the scale proportionally.

3. Release the button when you are done. The selection will be modified.

419

420

To rotate a selection:

1. Move the mouse cursor onto the rotation handle .

2. Press the mouse button and drag the mouse. The transformation
rectangle will rotate around its center. Hold down the SurFt key to
constrain the rotation angle to 15-degree increments. You can also use
the rotation handle for slant — just press the Cmp key to alternate
between rotate or slant.

3. Release the button to accept the rotation.

To move the center of rotation just drag the center handle # by the
mouse to its new position.

To slant a selection:

1. Move the mouse cursor onto the slant handle &.

2. Press the mouse button and drag the mouse. The transformation
rectangle will be slanted. Hold down the SHiFt key to constrain the
slant angle to 15-degree increments. You can also use the slant handle
for rotation — just press the Cmp key to alternate between rotate or
slant.

3. Toslant in vertical direction, hold the Cmp key and drag the rotate
handle:

4. Release the button to accept the slanting.

Double-click in the editing field or press RETURN to accept the completed
transformation or press the Esc key to reject it.

You can use the arrow keys while the Transform operation is active to
move the selection by one font unit in the direction of the key you clicked.
SHiFT+arrow keys move the selection by 10 font units at each key click.
Cmp+arrow keys move the selection by 100 font units at each key click.

Find and Replace Outline Operation

In FontLab Studio you can perform a unique outline find/replace
operation that allows you to replace an identical part of an outline that
occurs in many glyphs with an alternative form. It is also very useful in
analysing an outline for correctness.

Here is a typical situation where you could use the Edit > Find Outline
command:

Original glyph Modification

It is relatively easy to make the change above in a single glyph, but what if
you want to do the same thing in all glyphs of the same font that have
serifs?

1. Select the element that you want to find:

Lo

2. Copy the selection to the Clipboard with the Edit > Copy command.

3. Modify the original shape as needed and select the new version of the
serif:

421

4, Using the Edit > Find Outline command open the Find Outline dialog

box:
Find Qutline

Find what: Replace with:
B B FindNext—)
e el Replace 3
=i e [Replace & Find |

[Close

" Local search only ¢ fit L

The left panel shows the outline that FontLab Studio will look for and
the right pane shows the outline it will use as the replacement.

The two buttons to the right of each pane mean:

[Place the Clipboard contents into the pane

=5 Place the current selection into the pane.

In our sample you need to place the Clipboard contents (original
outline) into the left pane (click on the button) and the selection
into the right pane (Ifl) button.

422

5. Click the Find Next button to find the next appearance of the source
outline in one of the glyphs. The first such glyph located will appear in
the Glyph Window and the outline that is found will be selected:

6. Click Replace to replace the old outline with the new one or click
Replace & Find to replace and find the next location of the outline.

7. Check Local search only to limit the search area to the current glyph
only. If this option is unchecked, FontLab Studio will look for the
outline in all glyphs of the font.

Use the buttons at the bottom of the dialog box for additional
features:

to select all glyphs with the found outline in the Font window

+ tomarkall glyphs with the found outline in the Font window in red.

Using these buttons doesn't replace contours, but only finds glyphs.

423

424

Building an Outline from Blocks

Now you know how to select parts of an outline and copy it, so let's do a
few experiments to show how to use this knowledge.

Suppose that we have an ‘T’ character and we want to create an ‘H’
character.

1. Open the T in the Glyph Window (double-click the ‘T’ cell in the Font
Window, use the Glyphs Bar in the Glyph Window or just browse the
font with the arrow buttons).

2. Cut the character in the middle. Activate the Knife tool, press the
mouse button at the left of the character, hold the OprtioN key on the
keyboard and drag the mouse cursor to the right to define a cutting
line. Release the mouse button:

—_ — —_ —
/
E g

__J_.-f"

— — — =

3. Click on each inserted node to break the contour:
—_

A

Select the bottom half of the ‘T’. Activate the Edit tool and Cmb-click
near the bottom area of the glyph:

 ———

—_
‘.l"rlk'
o —g

Copy it to the Clipboard with the Edit > Copy command.

Go to the ‘H’ character. Use the Glyph > Create Glyphs command to
remove the contents of all editing layers.

Open the Preferences > Glyph Window > Dimensions dialog
box and set the Copy > Paste offset to zero and Duplicate offset to
400x 0:
Duplicate offset: 400 X EJ
0

Copy/Paste offset: -0 1 X

Click OK to close the Preferences dialog box and use the Edit > Paste
command to place a copy of the ‘T’ bottom:

b

= -8

Use the Edit > Duplicate command to make a second copy:

il S i

425

10. Duplicate it again and drag it to a place above the first segment:

o

o

o7
— —g

'u.___! — e L

Use the contour snap function to position the segment. Activate the
contour snap with the View > Snap to Layers > Outline. We also
recommend that you activate the feature that will snap a point which
you are moving to all outline nodes, by X and Y direction
independently. Use the Preferences > Glyph Window dialog box:

v Align to all contour peints if Snap to Outline is on

11. Use the Contour > Transform > Flip Vertical command to flip the
selected segment:

o

|
|
|
|
|
|
H

426

12. Duplicate the top segment and locate the copy above the bottom-right

segment.
% S é._ﬂ E———
| |
k] |
| |
| |
| |
ﬁl—r’ '\-—._I I_—r’ '\-—._I I—

13. Click on an empty area of the Glyph window:

14. Activate the Add Corner tool | " click somewhere and drag the line to
connect the left line of the top-left and bottom-left segments:

________]

427

15. Then click on any other starting or ending node of the contour
segments and use the Add Corner tool to connect them

e S — ,__:|
|
|
|
|
|

|
|
|
|
|
|
#

!d—r" '*-—._! !d—r" '*-—._! I—

You’ll notice it takes more time to read the instructions than to actually
perform the procedure.

428

Contour-related Commands

You can find the commands described below in the Contour menu:

3]

Flip Horizontal

Makes a mirror transformation in the horizontal direction.
This operation is applicable to a selection or to a whole
outline if nothing is selected

]

Flip Vertical

Makes a mirror transformation in the vertical direction.
This operation is applicable to a selection or to a whole
outline if nothing is selected

Merge Contours

Combines all overlapping parts of the outline. This
operation and the two following operations are applied to
all contours that have at least one node selected. If nothing
is selected, they will be applied to the whole glyph

Get Intersection

Leaves only areas that are covered by at least two contours

Delete
Intersection

Removes all areas that are covered by more than one
contour

Set PS Direction

Sets the direction of all curves to PostScript curves (black
on the left)

Set TT Direction

Sets the direction of all curves to TrueType curves (black
on the right)

& | Reverse All Paths Reverses the direction of all contours of the glyph
4 Expand Path Converts contours to strokes
| Make Parallel Creates a contour that is parallel to the existing contour.
Path See the next section for more information about this and
previous features
+%| Curves to Converts all Type 1 (3"d-order) curves to TrueType (2nd-
TrueType order) curves
+1t| Curves to Converts all TrueType (2"-order) curves to Type 1 (3%-
PostScript order) curves
"ﬁ; Selection to Creates a new glyph from the selection and converts the
Component selection into a component. Current glyph becomes a
composite glyph
gt | Correct Analyses an outline and fixes the types of connections
Connections between outline segments (lines and curves)

429

430

1| Join Broken Automatically joins all "broken" contours in a glyph. This
Contours command may not work if the nodes that should be
connected are not close enough to each other
Close Open Closes all open contours in a glyph creating a straight
Contours segment between first and last nodes

¥ | Nodes at
extremes

Automatically inserts nodes at the extreme points of
curves. We highly recommend that all curves have nodes
at their extreme points

¥ | Optimize

Optimizes the outline

% | Align to Guides

Move all nodes on to guidelines, hints or grid if they are
sufficiently close to them. This command will “snap” nodes
only to the guiding layers that are currently visible

Relocate
startpoints

Opens the dialog allowing you to set the preferred position
of the startpoints.

Most of these commands can be applied to many glyphs at a time if you
select a number of glyphs in the Font Window. Commands marked with
the » sign in the Contour menu are tools and were not included in the table

above.

Creating Contours

FontLab Studio has two commands that can help you automatically create
contours. These commands are Expand Path and Make Parallel Path.

Both commands will take one or more existing contours and create new
ones using some options.

Expand Path

This command will use contours as a trajectory for parallel contours or for
the paintbrush:

\

\""ﬂ-_

—

J

Source open contour

Path is expanded with parallel contour Path is expanded with the shaped brush

To use this operation first select the contours to which you want it to
apply. All contours that have at least one node selected will be processed. If
nothing is selected, the whole glyph contour will be taken.

431

Select the Contour > Paths > Expand Path command in the menu. You
will see a dialog box that lets you select options:

Expand Stroke

@ Simple stroke:

Stroke width: 40 height: ™ Uniform

) Brush tracing:

| Cancel) (oKk)

First choose between Simple Stroke and Brush Tracing.

In the first case you may just set the Width and the Height of the stroke.
The resulting contours will be closed anyway.

In the latter case you may specify brush size and shape. Width is the width
of the brush ellipse at its widest part. Angle is the degree of the brush
ellipse slant and Roundness is the relation (in percent) of the narrow and
wide widths of the brush ellipse. Below is a sample of the path expand with
different brushes:

000

The next line of options specifies the way the expanding algorithm will
process the contour corners and the ends of an open contour:

—

Flat contour ends vs. round ends

432

The last option lets you specify the shape of the brush stroke:

v'
| G
L
——
i
—ell
«nlln-

This is the sample of the stroke above with different brush shapes:

When you finish selecting options, click OK to expand the selected
contours.

433

434

Make Parallel Path

With this operation you can create a path that is parallel to any existing
path. The method of selecting contours for processing is simple: all
contours that have at least one node selected will be taken into account. If
no nodes are selected, the whole glyph outline is processed.

Select the contours that you want to process and choose the Contour >
Paths > Make Parallel Path command from the menu. You will see a
dialog box for specifying the options of the command:

Parallel Contour

Relative position:
@ Left Right " Both
" Remove the original | Generate closed contour

Contour offset:

20 : = W Uniform

Cancel) (oK)

The relative position section lets you specify the side of the original path at
which the new path will be created:

i
:2.< e 4:'- L
kw N

S—

Left and right side option (original path is not selected)

The side depends on the direction of the original path. Select the Both
option to generate parallel contours on each side of the source contour.

Contour offset defines the distance at which the new path will be created.
Use the Uniform option to have the same distance set for X and Y
directions.

Check the Remove the original check box to remove the source contours
and keep only the generated parallel paths. Check the Generate closed
contour check box to create contours automatically closed. This feature is
available only if the Both option is selected.

Below is a sample of what you can do with the parallel path feature and
contour-editing tools:

Glyph contour after multiple parallel paths created and then closed with the Add
corner tool

Rendering of the glyphs above

As you can see, with the Make parallel path feature you can create
complex ornaments in minutes.

435

436

Merging and Intersecting Contours

With the Merge Contours, Get Intersection and Delete Intersection
commands, which are available in the Contour > Transform menu, you
can perform very interesting operations on contours.

All three operations are applied to contours that have at least one node
selected or to the whole glyph outline if nothing is selected.

The Merge Contours command combines contours, removing all outline
overlapping and keeping the filled result unchanged:

Ou @=

The Merge Contours command is the outline equivalent of the Boolean
“OR” operation.

The Get Intersection command will keep only the area of intersection,
removing all other parts:

¢&= »

This command is the outline equivalent of the Boolean “AND” operation.

The last command, the Delete Intersection works in the opposite manner
of the Get intersection command, keeping only those areas of contours
that don’t overlap:

This is the outline equivalent of the Boolean “XOR” operation.
Note: You can select multiple glyphs, or all glyphs, in the Font Window

and apply the commands to many glyphs at a time. You can also use Action
or Action Set to apply the “Remove overlap” command in batch mode.

437

438

Converting Contours

Several commands in the Contour menu are used to change contours'
attributes.

Sometimes, you may find that e.g. the interior counter of “o” is black
instead of white/transparent, or two overlapping contours create a white
intersection. This means that one of the contours in your glyphs has a
wrong direction.

FontLab Studio can detect such problems and automatically correct the
contour direction for PostScript (Type 1/Bezier) or TrueType outlines. For
that, use the Set PS Direction (for Type 1 or OpenType PS contours) or Set
TT Direction (for TrueType / OpenType TT contours) commands in the
Contour > Paths menu. These commands will reverse some of the
contours so that all contours have the contour direction prescribed by the
font format.

To reverse all contours in the glyph, i.e. change the direction of every
contour in the glyph to the opposite, use the Reverse All Paths command
in the Contour > Paths menu.

Use the Curves to PostScript and Curves to TrueType commands in the
Contour > Convert menu to convert glyph's outline to 3rd-order curves or
2nd-order curves respectively. These commands only convert curves but do
not change their direction so you may need to use the Set PS Direction and
Set TT Direction commands later.

Note: You can select multiple glyphs, or all glyphs, in the Font Window

and apply the commands to many glyphs at a time. You can also use Action
or Action Set to apply the commands in batch mode.

Outline Optimization

With the Optimize command FontLab Studio tries to automatically adjust
the outline to remove unnecessary elements and correct others.

To perform optimization, use the Optimize command in the Contour
menu.

Optimization does three things:

1. Removes unnecessary curve and line segments.

2. Aligns vertical and horizontal lines that are not precisely directed.
3. Corrects the connection types of lines and curves.

You can control the optimize features with the Font Audit section of the
Preferences dialog box:

Outline simplification level: Process normally &= !

: N
Auto-alignment level: Process normally = 1

Outline Controls curve removal feature, from “do not simplify outline”
Simplification to “extreme”. The bigger value you choose — the more curves
level FontLab Studio will try to remove

Auto-alignment Controls auto-alignment feature in a range from “do not align”
level to “extreme”.

Note: You can select multiple glyphs, or all glyphs, in the Font Window
and apply the command to many glyphs at a time. You can also use Action
or Action Set to apply the command in batch mode.

439

440

Grid Layer

This layer is very simple: if the Grid is on, you will see a grid of vertical and
horizontal lines in the edit Window. If View > Layers > Snap to Layers >
Grid is enabled (which it is by default) any node that you move will snap to
the gridlines.

You can adjust the grid frequency on the Glyph Window > Dimensions
page of the Preferences dialog box

Grid step: 100 x 100

Guidelines Layer

Guidelines are straight lines that are used to guide the drawing of specific
elements of a glyph. Guidelines can be vertical, horizontal or slanted.

Guidelines can be slanted at any angle from -45 to +45 from the vertical or
horizontal direction. Slanted guidelines can help to mark italic characters,
or specific slanted elements in normal characters, like the inner bar in the
letter ‘N’.

You can see little numbers giving the position and slanting angle of each
guideline near the edges of the editing field of the Glyph Window where the
guidelines cross the rulers.

There are local and global guidelines. Local guidelines appear only in the
glyph where they were set. Global guidelines appear in all glyphs of the
font. Global guidelines are very useful to mark important levels in the font
(by using horizontal global guidelines) or to set the base direction of an
italic or oblique font (using slanted guidelines).

441

442

Editing Guidelines

Be sure that the Edit | * |tool is active and the guidelines layer is visible —
use the View > Show Layers > Guidelines command to switch it on. Note
that the Guidelines layer will automatically switch on if you add a new
guideline.

To add a new local guideline:

1. Position the mouse cursor on the horizontal ruler bar (for a horizontal
guideline) or on the vertical bar (for a vertical guideline).

2. Press the mouse button. The bar will appear “pressed” and the new
guideline will appear.

3. Holding the mouse button down, drag the guideline to the desired
place and release the button.

To add a new global guideline:
1. Create a local guideline as described above.
2. Position the cursor on the guideline and Ctri-click the mouse button.

3. Inthe menu, select the Convrt to Global command.

To move the guideline:

1. Move the mouse cursor onto the guideline that you want to move. Be
sure that no other objects (such as nodes or hints) are near the cursor.

2. Press the mouse button and drag the guideline to the new place.

While you are dragging the guideline and the mouse cursor is within the
snap-to distance the guideline will stick to the node. Nodes must be visible.

The guideline will snap to all nodes regardless of the mouse cursor position
if the option View > Snap to > Outline is on and the following checkbox on
the Glyph Window page of the Preferences dialog box is also switched on:

4 Align to all contour points if Snap to Outline is on

To slant the guideline:

1. Move the cursor onto the guideline near one of the sides of the editing
field of the Glyph Window.

2. Press the mouse button. The mouse cursor will change to a pair of
curved arrows & that shows you the guideline slant direction.

3. Moving the mouse, slant the guideline to the angle that you want. Hold
down the SHrFT key to constrain the slanting angle to 3-degree
increments.

To remove the guideline:

I.1. Start moving or slanting the guideline.

I.2. While holding down the mouse button, press the CtrL key and then
release the mouse button.

I.1. Position the cursor on the guideline and Crri-click the mouse button.

II.2.In the menu, select the Delete command.

You can use this option:
W Remove hints and quides by moving out of the window

located on the Glyph Window page of the Preferences dialog box, to
remove any guideline or hint by simply dragging it from the editing field of
the Glyph Window.

To remove all guidelines use the Remove guidelines command in the
Tools > Hints & Guides menu. Options of this command include:

Both to remove all guidelines

Vertical to remove only vertical guidelines

Horizontal to remove only horizontal guidelines.

The same command is available in the rulers popup menu that appears if
you CTrL-click the vertical or horizontal ruler.

Note: While you are editing the guideline, its parameters are shown on the
Meter bar.

443

444

Guidelines Popup Menu

More commands are available in the guideline’s popup menu.

There are two different guideline popup menus — one for local and one for
global guidelines. Both menus include Align, Delete and Properties
commands. The Properties command, as usual, will open the Property
panel for the active guideline. The Delete command will remove the active
guideline. The Align command is available only for slanted guidelines and
will align them to the vertical or horizontal axis (i.e. remove their slant and
make them vertical or horizontal guidelines).

Global guidelines have an additional set of commands located in the
Guideline Is submenu. By selecting the commands in this submenu you
can set the font parameters: Ascender, Descender, Caps Height, x Height
or Visual Ascender and Descender that are used to set 100% zoom in the
Glyph Window. The Create Local command will create a new local
guideline on top of the global one.

The local guideline menu has one additional command, Create
Orthogonal, which you can use to create a guideline that is orthogonal to
the current one:

P 4 Convert to global
o Align
: Delete

& Create orthogonal

g Properties...

Guidelines Tracking

There is a special feature that lets you modify an outline by moving
guidelines. You switch this feature on in the Glyph Window page of the
Options dialog box (choose the Options command in the Tools menu to
open the dialog box):

| Hints tracking

Tracking offset: 5] % of UPM

_ | Guidelines tracking

When guidelines tracking is active and you move a guideline a distance not
greater than the Tracking offset parameter all outline nodes that were on
the guideline will be moved with it:

Original outline Same outline after topmost guideline moved up

If you move a global guideline and the Track global guidelines option is
on, then all glyphs of the font that have nodes on this guideline will be
modified. Be careful with this feature because the results of global
guideline tracking are not undoable.

445

Guidelines Properties Panel

To open the guideline properties panel, Ctre-click (or right-click) the
guideline and choose the Properties command from the popup menu:
: (&) Guide Properties

Horizontal guideline

T s3m :
% le0 .
Name: i -

W Default color

In this properties panel you can change the position and slant angle of a
guideline. You also can name the guideline (or global guideline) and
change its color. This will help you to distinguish different guidelines.

To name the guideline, just enter some text in the Name field and
press RETURN. The guideline will get a label:

|
1
|
|
|
g — C———

To change the guideline color, click on Default color to switch it off
and then click on the color bar to select new color in the Color Picker.

Guidelines' default colors are set on the Preferences > Glyph Window
> Colors page.

446

Meter Mode

With this tool you can measure any distance and angle in your glyph. It is
very useful if you want to create very precise, extremely high quality

symbols.

To measure distances between two points:

1. Select the Meter tool < in the Tools toolbar. The Meter tool panel

appears:
(&)

1452

& 03

Meter

1452 - 15
L 08 ok r EHI 0

This is a brief description of the fields on the Meter panel:

. oiem
LT 4

Absolute position of the point (relative to the glyph zero
point)

g, © o8 Reference distance (relative to the position of the reference
+ v 1509 :
point)
.x ' 545 Horizontal and vertical distance (from the beginning to the
* %0 end of the metering line)
& Egg-g Geometric distance an angle of the metering line
& I
A 23 The total quantity of nodes and of selected nodes in the

glyph.

Note that you can open the panel at any time if you click on the
button in the bottom-left corner of the Glyph window. A second click
on this button will close the panel.

Position the mouse cursor on your first point.

Press the mouse button and drag the mouse to the second point. In the

Meter panel you will see the vertical, horizontal and direct distance
between two points and the angle of a vector that would theoretically
connect these points. Hold down the SurrT key while you drag the
mouse to constrain the measurement to 15-degree increments.

447

448

While you are dragging the mouse you will see that the Meter tool arrow
sticks to any object that it can find in the editing field.

You may dock the Meter panel to the top or bottom edge of the Glyph
Window.

To measure the distance from a contour:

1. Put the mouse cursor on the contour from which you want to measure.

2. Press the mouse button and drag the mouse to what you want to
measure to. Hold down the SuiFT key and the direction of the mouse’s
movement will be constrained to the normal direction of the contour
startpoint.

3. When you're done, release the button.

Tip: You can temporarily switch to the Meter tool in the Edit mode by
pressing and holding down the CMD+OPTION+SHIFT keys.

Setting Guidelines, Anchors and
Sidebearings

With the Meter tool you can not only measure angles and distances but
also mark glyph elements with guidelines and anchors and set right and

left sidebearings.

Press the CTrL key and measure the distance. When you release the button
a popup menu appears.

Here is what you can do:

Add two guidelines

Two guidelines, vertical and horizontal, will be added. The
point where they will be added depends on the option
selected in the secondary menu: 100% means that the
guidelines will be added at the end point of the measured
distance. 50% means that the guidelines will be added in
the middle of the measured line segment and 200% means
that guidelines will be added at twice the measured
distance

Add horizontal
guideline

The same as above, but only a horizontal guideline will be
added. This command with the 50% option can be very
useful in finding the middle of a glyph element

Add vertical guideline

The same, but only a vertical guideline will be added

Add slanted guideline

A slanted guideline will be added along the meter tool’s
arrow. Note that the next guideline that you drag from the
rulers will be parallel to this one

Set right sidebearing

Set the right sidebearing at the destination point

Set left sidebearing

Set the left sidebearing at the destination point. Set
sidebearing commands are very useful when you need to
set sidebearings at given distance from some glyph
element

Add anchor

An anchor point is added at the destination endpoint of
the meter line.

449

450

Mask Layer

When you need something more than guidelines or a grid to help with
glyph editing you can use the mask layer. The mask layer is an outline that
is created with the same segments as the glyph’s outline. It appears in the
Glyph Window as a dashed outline and the glyph’s nodes “stick” to the
mask. You can think of the mask as a “freeform” guideline.

The mask layer is very useful when you want to use one font as a template
for another font. For example, you can put the sans-serif version of the
typeface into the mask layer while you are working on the serif version in
the outline layer.

Another application of the mask layer is the creation of Multiple Master
fonts. In this case you put one style of the typeface in the mask layer,
another style on the outline layer and, after defining the design axis, you
can put one of the masters on the mask, using the mask’s “snap” feature or
some other techniques that will be discussed later.

The mask layer can be filled in two ways: by copying the selected
part of the outline to the mask layer or by using the Assign Font Mask
command.

To copy the selected part of the outline to the Mask layer use the
Copy Outline to Mask command in the Tools > Mask menu. If nothing is
selected in the outline layer the entire glyph outline will be copied.

You can customize colors of the Mask layer background and outlines on the
Glyph Window > Colors page of the Preferences dialog box described in
the “FontLab Studio Options” section.

Editing Mask

To edit the mask layer with the usual editing tools you need to activate it
with the Editing Layers panel:

(&) Editing Layers

Outline =
Metrics

Guides

Hints

Mask

[l ===

!21 Auto select layer

Alternatively you can use the Edit Mask command in the View > Show
Layers menu.

When the Mask layer is selected for editing, the outline layer will be shown
as a mask and may be filled, if Fill Outline (preview) mode is active, so
you can use it as a reference. The editing field changes its color to remind
you are in the Mask layer. Use any tool of the Edit mode to create, edit or
remove the nodes and contours of the Mask layer outline. (Re)Activate the
Outline layer when you are finished working on the mask.

You can switch to the Mask layer and back to the Outline layer simply by
double-clicking contours of the mask and outline. The editing field
background color will change accordingly showing you whether you are in
the mask-editing mode or not.

451

452

Mask Operations

All operations related to the Mask layer appear in the Tools > Mask menu:
Paste Mask to Outline

Adds the contents of the mask layer to the outline. The added part will be
selected so you can start to work with it immediately.

Clear Mask
Clears the mask layer, removing all its contents.
Swap Outline with Mask

Exchanges the Outline layer and the Mask layer.

Assigning a Mask

With this command you can take glyphs from one font and put them into
the Mask layer of another font. The glyphs of the fonts are linked using
their names, so the glyph with the name “zero” in the assigned font will be
placed into the Mask layer of the glyph with the name “zero” in the font
where the mask is being made.

When you select the Assign Font Mask command from the Tools > Mask
menu, you will see the dialog box:

Assign Mask

Choose font that you want to use as mask of the current font:

ACaslonPro-Regular
FreeFontPro-Bold
FreeFontPro
MinionMM-|t

You have selected font MinionMM-It.

ABCabcl23

Weight

7 367
Width '._—.; =
OpticalSize &3 e

| Create new glyphs if they do not exist in the font

-_Cancel_- (oK)

There is a list of all open fonts in the top of the dialog box. Select the font
whose glyphs you want to put into the Mask layer of the current font (it
may be the same font). If you select a Multiple Master font scroll bars and
edit controls will appear allowing you to select an intermediate design of
the font.

453

If you switch on Create new glyphs if they do not exist in the font
options, then FontLab Studio will create definitions for glyphs that are
present in the “mask” font but absent in the current font. The newly
defined glyphs will not have an outline but they will have a Mask layer that
you can use as a template.

You can apply the operation only to the glyphs selected in the Font
Window. Check the Assign mask only to selected glyphs option in this
case.

454

Global Mask Layer

A global mask is a kind of mask that is font-wide and appears in all Glyph
Windows.

Global Mask features and operations are very similar to those of a Mask:
you can copy a selected part of any glyph to the Global Mask layer; copy a
local mask to the Global Mask layer; paste the Global Mask layer to the
outline layer or clean the Global Mask layer.

If the snap-to- global mask function (View > Snap to Layers) is on and the
Global Mask layer is visible (View > Show Layers), all nodes in all glyphs
will snap to the template.

Commands related to the Global Mask layer are concentrated in the Tools
> Mask menu:

Copy Outline to Global Copies the selected area of the glyph outline (or the
Mask whole outline if nothing is selected) to the Global Mask
layer

Copy Mask to Global Mask Copies the Mask layer of the current glyph to the
Global Mask layer. In other words, converts a local
template into a global, font-wide template

Paste Global Mask to Mask Copies the contents of the Global Mask layer to the
Mask layer of the current glyph

Clear Global Mask Clears the contents of the font Global Mask layer.

You can customize the color that is used to render the Global Mask layer
using the Colors page accessible from the Preferences dialog box. Refer to
the “FontLab Studio Options” section for description of this dialog box.

Note: In previous versions of FontLab, this layer was called the Template
layer.

455

456

Background Layer

When other methods are not adequate you can use a background bitmap
template. A bitmap template is a black-white bitmap image that appears on
the screen underneath all the other layers. You can use it as a template for
a glyph outline (it is especially useful when working with the VectorPaint
tools) and you can automatically convert it into an outline.

To see the background layer switch it on in the View > Show Layers menu.

Create a background layer using any of the three following
methods:

1. Open a bitmap image file (in PICT or TIFF format).
2. Paste an image from the Clipboard.

3. Rasterize the current outline to make an image in the bitmap
background layer.

You can also copy the contents of the background to the Clipboard to paste
it into any Macintosh image-editing program; save it to the image file; and
set its size and position on the screen.

To open a bitmap image, select the Background command from the
File > Import menu:

Import > Backgrgund...

Export b Bitmap Font...
= EPS...

Font Info... HF S i

Page Setup...

Print... 3P

You will see the standard Mac OS Open File dialog box where you can
select the bitmap image that you want to put into the background layer.
FontLab Studio supports all bitmap formats supported by QuickTime.
Bitmap files that you import into FontLab Studio must be black and white
(line-art) images. Color or grayscale images will be imported into FontLab
Studio as black and white too.

To export a bitmap image, select the Background command from the
File > Export menu:

Import e
Backgrolznd...
= EPS...
Font Info... TC3EF Metrics. .
Page Setup... —"
| Print... P

You will see the standard Mac OS Save File dialog box where you can name
the bitmap file that you want to save from the background layer. FontLab
Studio supports only PICT (standard Macintosh bitmap format). Select the
destination for the file and click Save.

To copy a bitmap image from another Macintosh program into
FontLab Studio, select the image in the program using its selection tools;
copy the image onto the Clipboard (the image may be color, black-white or
grayscale); switch to the FontLab Studio window; and select the Paste
command from the Edit menu.

To rasterize a glyph’s outline and make a background layer from it, select
the Create command from the Tools > Background menu.

457

458

Below is a table containing all the commands from the Background menu
related to background bitmap layer:

Create Rasterizes the outline and makes a background layer

Copy Copies the contents of the background layer to the Macintosh
Clipboard. You can also use the Paste command from the Edit
menu to paste the bitmap contents of the Clipboard to the
background layer

Remove Removes the contents of the background layer

Move and Scale

Activates the Bitmap Positioning operation described in the
next section

Trace Pixels

Automatically traces the background layer on the pixel basis
and adds the tracing results to the outline. This operation
doesn't create curves but makes a pixel font outline: each pixel
results in a square “staircase” element.

Trace

Automatically traces the background layer and adds the
tracing results to the outline. You can customize the
autotracing options on the Trace Options page of the
Preferences dialog box described in the “FontLab Studio
Options” chapter.

Note that if you apply the File > Export > Background command to the
glyphs selected in the Font Window (when the Font Window is active),
then the backgrounds of all selected glyphs will be saved using filenames
generated from decimal code of the glyph.

You can change the color which is used to render the bitmap background in
the Glyph window on the Colors page of the Preferences dialog box
described in the “FontLab Studio Options” chapter.

Background Positioning

This operation lets you set the size and position of the background layer:

#

4

SN e

Different sizes and positions of the bitmap background layer

To set size and position of the background layer:

1.

Activate the Bitmap Positioning operation. Select the Move and Scale
command from the Tools > Background menu or press the | ¥ | button
on the Background toolbar or simply double click on the bitmap
background while the Edit tool is active.

You will see a control box surrounding the bitmap.

Drag the handles in the corner of the control box to scale the
background. Hold the SHirt key to keep the proportions.

Position the mouse inside the control box and press the mouse button
and drag the mouse to position the background.

Use the arrow keys on the keyboard or Surrr+arrow keys to move the
background.

Press the right mouse button or Ctre-click to open a popup menu with
the following commands:

Fit to glyph Aligns the Bitmap background so it will fit the glyph outline

Delete Remove the contents of the background layer.

Press the RETURN key on the keyboard to finish positioning the background
or the Esc key to cancel changes.

459

460

Tracing Background

In FontLab Studio you can easily trace background bitmap that is create
contours from it and add to the glyph outline. There are two tracing
commands in the Tools > Background menu: Trace and Trace Pixels.
These commands stand for smooth tracing and pixel tracing.

Smooth Tracing

To trace bitmap and put the result in the glyph outline layer, select the
Trace command in the Tools > Background menu. FontLab Studio will
autotrace the image accordingly to the options set on the Trace Options
page of the Preferences dialog box, place the result on the outline layer and
select it so you can copy, move, transform the selection right after the
tracing operation.

The smooth tracing algorithm is customizable:

Easy trace options

How tight a fit should the generated contour be? Normal Iy

Advanced trace options

Trace tolerance (distance from the outline to the bitmap edge):

< less [k more = 1
R

Curve fit quality (allowed error of curve's approximation):

< less eomfil mare > 1

Straighten angle (allowed error of straight lines generation):

< less -k more > |3
N

E Tracer may generate curves

ETracer should generate extreme points on curves

Easy Trace Options

In the easy trace options popup menu you can quickly select common
predefined options, changing from Very tight to Very loose. When you
select one of these easy options in the popup menu FontLab Studio will
automatically adjust all the tracing parameters. The tighter the option you
choose the more accurate the tracing will be. In other words, the outline
will be closer to the original bitmap image. This is the first law of
autotracing. The second law is that the tighter the option you choose the
more nodes you will get on the outline. More nodes mean more time and
larger font files.

Usually, the Normal option will be the best. If you find that the Normal
autotracing option does not work for you, you can try the other tracing
options listed in the popup menu.

Advanced Trace Options

You can customize the autotracer parameters with the more detailed
options in the advanced options section:

Trace tolerance Allows you to change the distance between the generated
outline and the edge of the original bitmap

Curve fit quality Allows you to change the accuracy of curve fitting in the
generated outline

Straighten angle Defines the angle between two lines less than which the
autotracer will replace several lines with one line

Tracer may generate This option (active by default) allows the autotracer to

curves generate curves
Tracer should This option (active by default) forces the autotracer to
generate extreme insert nodes at the extreme points of curves.

points on curves

The algorithm of smooth tracing used by FontLab Studio is the same as the
one used in ScanFont and BitFonter applications.

461

http://www.fontlab.com/scanfont/
http://www.fontlab.com/bitfonter/

462

Pixel Tracing

To trace bitmap with the simple pixel-based algorithm, use the Trace
Pixels command in the Tools > Background menu. FontLab Studio will
trace bitmap pixels using straight segments only not curves:

| |
_g. | =
You can achieve the similar result using the FontFlasher utility for creating
pixel fonts.

Note that the pixels do not overlap each other and some pairs of nodes may
have the same coordinates. You may want to further edit the result
manually.

In this algorithm the outline depends completely on the size of pixels in the
bitmap. If the bitmap is quite smooth you will get too many nodes on the
outline:

http://www.fontlab.com/fontflasher/

Shape Groups and Neighbors

In FontLab Studio you can define special groups of glyphs that we call
shape groups and neighbors.

The shape groups and neighbors are useful in the process of working with
glyphs that have common design. For example, glyphs "C", "O", "G", "Q"
are quite similar and may be designed at the same time, as a group.

Shape Groups

To see glyphs belonging to one shape group in the Glyph window,
select the Shape Group command from the View > Show Layers menu or

click on the i button on the Show Layers toolbar.

If the current glyph belongs to a group other glyphs from that group will
appear grey in the background:

You can now visually compare sidebearings and shapes of all glyphs of the
group. And more: you can quickly open any of the glyphs in the group
simply by double-clicking its outline.

The view of the grouped glyphs are fully customizable on the Glyph
Window > Shape groups and neighbors page of the Preferences
dialog box.

463

464

For example, to place the grouped glyphs vertically, use the following
setting:

Shift glyphs in the shape group: 0 'x 100 % of UPM

To change the opacity of the grouped glyphs, use this control:

Shape group opacity: .25 | %

When the Glyph Window is active and you open the Preview panel you can
see the preview of the current glyph group. Select the Glyph Group
command in the Preview Options menu:

-

i

Warerfall

¥

Show Metrics
Vertical Orientation
Right-to-Left

The group for the current glyph ("h" in our sample) will appear:

hknum

Double-clicking any of the group members will open it in the current Glyph
window for editing.

Neighbors

To see glyphs belonging to one neighbors group in the Glyph
window, select the Neighbors command from the View > Show Layers
menu. Neighbors of the current glyph defined in the neighbors.txt file will
appear:

\ +

| /’; A\
| ||

i |

Every glyph may have only two neighbors defined. Neighbors allow you to
look at your current glyph in a context. If kerning is defined for neighbor
glyphs they are shown with kerning. You may switch this feature off on the
Glyph Window > Shape groups and neighbors page of the
Preferences dialog box:

W Apply kerning to neighbors

Clicking on the neighbor's outline will open it for editing in the same Glyph
window. This feature can be switched off in Preferences.

465

466

Editing Groups and Neighbors

Shape groups and neighbors are defined in two files: groups.txt and
neighbors.txt located in the Application user data/Data folder. Open these
files in any text-editing application and you will see their structure is very
simple:

%%FONTLAB GROUPS

hamburgefonstiv

qckwxjplzyd

zero one two three four five six seven eight nine zero
AVTY

BPR

%%FONTLAB NEIGHBORS
lhn

period i

ij period

hkK

In the groups.txt and neighbors.txt files groups and neighbors are defined
as lines of glyph names delimited by space. Each line of text is a group.
Lines of neighbors may contain only 3 names. The middle glyph name is
the main while others are neighbors. You may edit the content of these files
to fit your needs.

You can also click on the Edit Groups button on the Preferences >
Glyph Window > Shape groups and neighbors page to edit
groups.txt.

Outline Operations

In FontLab Studio, operations are temporary tools that let you modify your
glyph. Operations are activated by pressing on their buttons in the Tools
toolbar or by selecting a command in the Contour and Tools menus.

When an operation is activated one or more handles appear depending on
the operation. After you make changes double-click to accept them (you
can also press the RETURN key on the keyboard) or press the Esc key to
reject the changes.

When the operation is completed the tool that was selected before will be
activated again. As with all permanent tools you can use the zoom selection
tool, quick zoom keys and all the other viewing options of the Glyph
Window while you are working with the operations tool.

Here is a list of all available operations:

1% Free Transform Scales, rotates or skews the selected portion of the
outline or the whole glyph (described on page 419)

ii| Envelope Modifies the outline as if it was painted on rubber

| Reverse Path Reverses the contour’s direction

- Set Startpoints Changes the startpoints of contours and rearranges
contours

| Simplify Path Approximates a segment of the outline with a curve

++ | Move Node Lets you set precise positions of outline points

it Interpolate Nodes Modifies the outline by moving a few “base” points

i | Position Background Sets the size and position of the bitmap background
(Tools > Background > layer (described on page 459).
Move and Scale)

Below you will find a detailed description of the outline operations that
have not already been described. The Free Transform operation was
described on page 419, the Position Background operation was described
on page 459.

467

468

Envelope

This operation transforms your glyph as if it were on a rubber plate and
you began to stretch it:

Original glyph Glyph after envelope transformation

Envelope is the most “freeform” transformation available in FontLab
Studio. Be careful with it because it can produce very unusual results.

To apply an envelope to a glyph:

1. Activate an Envelope operation. Select the Envelope command in the

Contour > Transform menu or press the % button on the Transform
toolbar.

2. You will see a control box surrounding your glyph:

The control box consists of 8 curves with control vectors and control
points.

3. Position the mouse cursor on any of the handles of the control box,
press the mouse button and drag the handle to a new location. You will
immediately see the results of the transformation:

4. Double-click in the free space of the Glyph Window to accept the
changes or press the Esc key to reject the changes.

You can select one of the predefined envelopes. CTrr-click in the free space
of the Glyph Window and choose Select predefined command in the
context popup menu. You will see a dialog box with several predefined
envelopes:

Select an Envelope

'MODDGWDED

Force: % [] Randomize

Cancel | (oK 1}

Choose the envelope in the Effect list that you want to apply and fill in a
Force option. A force of 100% will make the envelope look as it is in the
selection list. A value of 0% will make a plain rectangle. Check on the
Randomize option to apply the envelope with random force.

When you select one of the predefined envelopes you can still modify it
using envelope handles.

469

470

Reversing a Contour’s Direction

Sometimes you need to reverse the direction of a contour. In FontLab
Studio you can do this in one of two ways: CTRL-click on each contour that
you want to reverse and select the Reverse Contour command in the
popup menu, or activate the Reverse Path operation.

To activate the operation select the Reverse Path command in the
Contour > Path menu.

When you activate the Reverse Path operation you will see that all the
contours now have arrows that show their direction.

You can reverse any path by clicking on it with the mouse button.

By double-clicking you can finish the operation and accept all the changes
that you just made. By pressing Esc you finish the operation and reject all
the changes.

Tip: We recommend that you switch to the Fill Outline (Preview) mode

when you use this operation. The direction of a contour changes the
contour’s “colors," and in the Fill Outline mode you will see the changes

immediately.

Rearranging Contours

Sometimes you need to change a contour’s sequence to simplify the
programming of hint substitution. An easiest way to do this is to use the
Set Startpoints operation.

Select the Set Startpoints operation in the Contour > Path menu.

When you activate this operation you will see the yellow marks that show
the sequence number of each contour.

To change a contour’s startpoints just click on a new startpoint
position.

To change a contour’s sequence:

1. Place the mouse cursor on the contour whose sequence you want to
change.

2. Crtrr-click on the contour. The selected contour will be highlighted.

3. Inthe popup menu choose one of these commands:

Up To move the contour one step up (contour #3 will be #2)

Down To move the contour one step down (contour #3 will be #4)

First To move the contour to the top of the sequence (contour #3 will be
#1)

Last To move the contour to the bottom of the sequence (contour #3 will

be the last contour in the sequence).

Double-click to accept the changes (you can also press the RETURN key on
the keyboard) or press the Esc key to reject the changes.

471

472

Simplifying Path

Using this operation you can simplify a segment of the glyph’s outline to a
single curve (i.e. remove excess nodes on a path):

R L.

Original outline Outline after simplifying
To simplify part of the outline:

1. Activate the Simplify Path operation: select Contour > Paths >

Simplify Path (CMD-OPTION-C) Or press the 2= button on the Path
toolbar.

2. Click on the outline where you want to start the curve. Hold the SHiFr
key down to make a smooth transition between the new curve and the
old outline.

3. Click where you want to finish the curve. Again, hold the SHiFT key
down to make a smooth transition. The shorter segment of the closed
path will be simplified. Hold the OptioN key when clicking to simplify
the longer segment.

Note that the starting and finishing points must be on the same contour
but don’t have to be on exiting nodes.

Double-click on the white space to accept the changes and exit the
operation. You can also press the RETURN key on the keyboard.

Moving Nodes

This operation lets you set the position of the nodes very precisely. Of
course, you can use the nodes’ property panel but this operation may
simplify the job:

1. Activate the Move Node operation by selecting the Move Node
command in the Contour menu.

2. Click anywhere in the editing field to set up a reference point. If you
click close to any of the guiding elements or close to one of the nodes
the reference point will “stick” to that object. The reference point will
be highlighted.

3. Position the cursor on the node you want to move and click the mouse
button again.

The destination node will also be highlighted and a dialog box appears:

Set Node

Relative Offset:

s -3

¥ 7o

(2 w] (4¥]
(4 v] (4 ¥

¥ 9217 L 7ans

Absolute Position:

i=SFECH| = B S PEEM | =

© Cancel) @D

In this dialog box FontLab Studio shows the relative position of the
reference point and the destination node in rectangular and polar
coordinates as well as the absolute position of the destination node. You
can change any value and all the other values will automatically be
recalculated.

After you press the OK button the destination node will be moved to the
new location and you can repeat steps 1-3 to move other nodes.

473

474

Interpolation

With this operation you can move a few points and all other points of the
glyph outline between the moved points will be interpolated:

Original glyph Glyph after interpolation

As you can see, this operation can save a lot of time when you want to
proportionally modify your glyph but want to save some important values,
like stem widths.

Interpolation is extremely useful when you are making Multiple Master
fonts. Refer to the “Multiple Master Fonts” chapter for more information.

When the Interpolate Nodes operation (the Contour menu) is activated a
small panel appears, consisting only of two buttons, OK and Cancel.

Press the OK button to accept any changes that you made with the
interpolation operation (you can also press the RETURN key on the
keyboard) or press the Cancel button to reject the changes (the Esc key is
the equivalent of this button).

How interpolation works

1. You set the new position of several glyph points. We call these points
reference points.

2. All points on contours that are between two reference points are
interpolated. All contours are processed independently:

4

Points 2 and 5 are reference points. Points 3 and 4 are between these
points and will be interpolated. Note that points 1 and 6 are also
between reference points, because all contours in FontLab Studio are
closed.

3. All non-reference points are interpolated between two reference points
according to the following rules:

a) If the contour has only one reference point, it is shifted with that point:

b) Ifapoint is between two reference points, it is proportionally
interpolated:

_»» Reference point 1

--- —»/ Reference point 2

475

476

¢) If point is outside the interpolated points, it is shifted with the closest
reference point:

- /‘" Reference point 1

- v¥ Reference point 2
/

-

/

To interpolate a glyph:

1. Activate an Interpolation operation. Select the Interpolate Nodes
command in the Contour menu.

2. You will see a panel with the OK and Cancel buttons. You can press the
OK button any time to finish your work with the Interpolation
operation or press the Cancel button to reject all changes.

3. Position the mouse cursor on the reference point that you want to set;
press the mouse button and drag the point to a new location. Release
the button when you are done. Note that the point will “stick” to all
guiding layers as well as to other glyph nodes. Hold the Surrr key down
to constrain the direction of movement to 15-degree increments.

4. You may want to set a so-called base point — a reference point that
points to itself. A base point will remain in place during interpolation.

5. When you set the new position of the first reference point, you will see
the results of outline interpolation as a gray outline.

o

Cmp-click on a reference point to remove that reference point.

7. Crri-click the mouse button in the free space of the Glyph Window
and select the Remove all links command from the popup menu to
remove all reference links.

Choose Set Destination... command to open following dialog box:

Set Link Destination

Relative Offset:

ks 160

ESE

|y 1600

(4 ¥] (24
(4 »] (4 ¥

s 107

Absolute Position:

B [s7e IR [z |

Cancel) B

Here you can specify properties of the link with all possible precision.
Original Position command will reset link to zero, so node will retain
its position.

You can select several points using the usual point selection
procedure. If you add a reference point after selection all selected
points will move to the position of the same reference point. Use this
technique to “collapse” parts of the outline.

Press the OK button to finish your work with the Interpolation
operation or press the Cancel button to reject all changes.

477

478

Metrics

The Metric data of a glyph includes information about the horizontal and
vertical width. Glyphs have an origin point, a baseline, sidebearings, and
left and right margins:

«——— Character width

(/— Right margin

A4

— Left sidebearing

v

Baseline “—5>

Right sidebearing

Zero or origin point

The baseline is used to align characters in a series. The left and right
margins are used to define the positions of sequential characters in a series
when the horizontal writing mode is selected. In the vertical writing mode
the left and right margins are used to horizontally align characters and the
top margin is used to vertically align characters.

In FontLab Studio, the position of the origin point is the position of the left
margin in the horizontal direction and the position of the baseline in the
vertical direction. However, you can modify the position of any of the four
margins. If you move the baseline or left margin line you will shift the
entire glyph.

Editing Metrics

FontLab Studio has a special window for editing glyph metrics, of course,
but you can make small adjustments right in the Glyph Window, using the
main edit tool.

To change glyph metrics first activate the Metrics layer in the Editing
Layers panel:

&) Editing Layers

Outline =
Metrics

Guides

Hints

Mask

EINEINEINEILEN

" Auto select layer

Then use the mouse and drag the left or right sidebearing or the baseline.

In FontLab Studio you can define vertical glyph metrics: the vertical
advance “width” (called vertical advance vector) for Asian glyphs used to
type in vertical direction from top to bottom. To define a vertical glyph
advance vector, press and hold the Suirr key before moving the base line:

479

480

Using the Measurement Line

By default the sidebearing values are measured from the rightmost and
leftmost points of the glyph:

Left sidebearing Right sidebearing
; B ‘ ; |‘

H

T

Sometimes you need to measure sidebearing values from some other point
on the glyph outline. In FontLab Studio you can do that by using the
measurement line — a horizontal red line that defines the “height” of the
sidebearing measurement:

Measurement line

You can see measured values appear above the line when you move the
right or left sidebearing;:

The same values appear in the glyph properties panel:

o3 o 2 % 0 /S an ardd debe #has ig
w19 + &0 = TES

ko B2 A 104 it 570 «<—Measured S de eafings
& (39, -1B8) £ (705, T04)

You can drag the measurement line to any position and the information in
the Glyph properties will be updated accordingly.

You also can change the measurement line position in its Properties panel
if you click on the measurement line while holding down the Cmp key on
the keyboard.

481

Baseline Properties Panel

With this property panel you can adjust the position of the glyph’s baseline.
To open it CTrL-click on the baseline and select the Properties command
in the popup menu or click on the baseline while holding down the Cmp key
on the keyboard.

™ Baseline Properties

Baseline position

Position: 2 : units

From:

ak
g

current Position

To change the position of the baseline:

1. Select the base level of the modification. It can be the old position (for
relative offset) the top of the glyph, the bottom of the glyph, the top
sidebearing, or the bottom sidebearing.

2. Change the position of the baseline relative to the base level.

Press the RETURN key or click anywhere in the editing field to apply the
changes.

482

Metrics Properties Panel

To open the metrics property panel, position the mouse cursor on the left
or right glyph margin, Ctrr-click and select the Properties command, or
just Cmp-click on one of the margins.

&) Metrics Properties

Clyph metrics

M 5135

i 249

|4 | |4 ®

w (a2l

In this panel you can modify a glyph’s sidebearings and/or width.

483

484

Vertical Metrics

Every font has several vertical font metrics for alignment of text:

Ascender

The Ascender line defines the position of the top of lowercase characters
(usually the topmost point of the Latin ‘b’).

The Descender line defines the position of the bottom of the lowercase
characters (usually the bottom point of ‘p’).

The Caps height defines the height of the uppercase characters (without
overshoot). Usually it is the height of the ‘H’.

The x Height is the height of most lowercase characters, like ‘x’ or ‘v’.

In FontLab Studio you can modify the vertical metrics values in the Font
Info dialog box, but you can also preview and change them visually in the
Glyph Window.

Make sure that the Vertical metrics layer |*~|is active and not locked.

In the Editing field vertical metrics appear as gray lines with a label at the
right:

[#] Ascender

Descender

i)
Caps height
]

x Height

To change a metric, just drag its line with the Edit tool or Cmp-click the
metric line to open its properties panel and enter a numeric value.

In FontLab Studio you can also define vertical glyph metrics: the
vertical advance “width” (called vertical advance vector) for Asian glyphs
used to type in vertical direction from top to bottom. To define a vertical
glyph advance vector, hold the Su1FT key while moving the base line.

485

486

Hints and Links Layer

Hints are used by the font rasterizer to improve a glyph’s appearance on
devices with low output resolution, like computer monitors or low-res
printers. A detailed description of the hinting methods and manual and
automatic hinting features available in FontLab Studio is in the “Hinting”
chapter. For now we’ll just mention that in the Glyph Window you can see
font-level alignment zones and Type 1 character-level hints and links.

There are two hinting methods applied to Type 1 fonts (hints for True Type
fonts are always generated automatically): font-level hinting and
character-level hinting. Font-level hinting is generated automatically in
FontLab Studio, so you don’t have to edit it manually.

Character-level hinting is applied to the characters’ stems:

| —

7 Vertical stems

y 4

T~

= =

All important stems in a glyph should have stem hints, a pair of vertical or
horizontal lines. The information in the hint includes not just the position
of each of the two lines that “build” the hint, but also the position of one
(major) line and the width of the hint.

Horizontal stem

You can declare stem hints in FontLab Studio just by dragging them and
modifying their width. Because hints in FontLab Studio are very
“intelligent,” they automatically snap to the contour, minimising your
work. In most cases the autohinting algorithm that is included in FontLab
Studio produces good results — usually not any worse than the results of
manual hinting.

There is a special feature, called Hints Tracking that can be used with
hints. It will be described later, when we discuss editing hints.

Links

Stem hints are not connected to the outline — they exist in a different layer.
This allows you to use hints as pairs of guidelines while you work on an
outline. But if you change the outline after hints are set you have to set all
the hints again to reflect the outline changes. Another kind of stem hint,
called a link, may help in this case.

Links connect two outline nodes, using the position of the nodes and the
distance between them, to define a stem hint. If you move one of the nodes
connected by a link the link will automatically reflect the changes. Links
can also be either vertical or horizontal:

Vertical links

Horizontal link

Links are extremely useful when you are working with Multiple Master
fonts. In these fonts each point has several “layers”, called masters, which
represent different styles of the font. If you try to set hints in Multiple
Master fonts, you will have to manually define the hints’ positions in each
master. But with links you can just connect two outline nodes and hints
will be generated automatically for each master when you export your font.
Refer to the “Multiple Master Fonts” chapter for more information about
links.

487

Editing Hints

Editing hints is very similar to editing guidelines. You can add new hints
through the ruler bar of the Glyph Window; drag them with the mouse;
and delete them by using the menu command or by clicking on both mouse
buttons.

In contrast to guides, hints consist of two lines that can be moved together
or separately. Hints cannot be slanted.

To add a new hint:

1. Position the mouse cursor on the horizontal ruler bar (for a horizontal
hint) or on the vertical bar (for a vertical hint).

2. Press and hold the Cmp key. Press the mouse button. The bar will
appear “pressed” and a new hint will appear. Release the Cmp key.

3. Holding the mouse button, drag the hint to the desired place and
release the button.

To move a hint:
1. Move the mouse cursor onto one of the hint’s lines.

2. Press the mouse button and drag the hint to its new place. Both hint
lines will move together.

To move a hint’s lines separately hold down the Surrr key while
dragging one of the hint’s lines. Using this procedure you can change the
width of the hint.

While you are dragging the hint and the mouse cursor is within the snap-to
distance the hint line will stick to the node. Nodes must be visible.

The hint will snap to all nodes regardless of the mouse cursor position if
the option View > Snap to > Outline is on and the following checkbox on
the Glyph Window page of the Preferences dialog box is also switched on:

1 Align to all contour points if snap to contour is on

Note: While you are editing the hint, its parameters are shown on the
status bar.

488

To remove a hint:
I.1. Start editing the hint.

I.2. While holding the mouse button down, press the CtrL key and then
click the mouse button.

II.1. Position the cursor on the hint and Crrr-click the mouse button.

I.2. Select the Delete command from the menu.

489

490

Hints Tracking

If the Hints tracking option on the Glyph Window > Tracking page of
the Preferences dialog box is on:

@ Hints tracking

Tracking offset: |5 % of UPM

and you move hints a distance less than the Tracking offset setting, all
nodes that are on the hint will be moved with it. Use this feature to keep an
outline on the hint when you want, for example, to modify the hint’s width.
Note that this feature also works when you change a hint through the
property panel described below.

Editing Links

Links connect two nodes. The only way to edit links is to connect them to
different nodes of the outline.

To add a new link:

1.

Click on the Add New Horizontal (or Vertical) Link command in the
Tools > Hints & Guides menu.

2. Click the first node of the link.

3. Drag the mouse cursor to the second node and release the button.

To edit a link:

1. Position the mouse cursor on one of the link’s lines.

2. Press the mouse button and drag the mouse. You will see that when
you move the cursor onto the outline’s nodes they become highlighted.

3. Position the mouse cursor on the node where you want to connect the
link (it will become highlighted) and release the mouse button.

4. Release the mouse button while the link is not connected and a vertical
link will disappear. A horizontal link will become a ghost link in this
case (more on ghost links later).

5. Crre-click the mouse button while dragging a links’ line to remove a

link.

491

492

Hint and Link Popup Menu

To open the hint or link popup menu, Crri-click one of the hint or
linKk’s lines.

The Hint popup menu includes the following commands:

Convert to Link Converts the active hint to a link

Reverse Reverses the direction of the hint

Delete Removes the hint

Define a Stem Defines a vertical or horizontal stem (global hinting parameter)
as equal to the width of the current hint

Properties Opens the hint property panel.

The Link popup menu includes the following commands:

Convert to Hint Converts the active link to a hint

Reverse Reverses the direction of the link
Delete Removes the link
Properties Opens the link property panel.

Hint Commands

The Tools > Hints & Guides menu contains several commands related to

hints:

Remove Hints

Removes vertical or horizontal or all hints and links.
This command is duplicated in the rulers context menu

Autohinting

Automatically generates hints for the current glyph.
Autohinting options can be adjusted in the Type 1 page
of the Options dialog box

Autoreplacing

Automatically generates a hint replacement program for
the current glyph. Refer to the “Hinting” chapter for
more information about hint replacement

Convert Hints to Links

Converts all hints to links

Convert Links to Hints

Converts all links to hints

Type 1 Hinting

Activates the Type 1 hinting tool (described later in the
“Hinting” chapter)

TrueType Hinting

Activates the TrueType hinting tool (described later in
the “Hinting” chapter).

Same commands are duplicated in the Glyph Window context menu
(which appears if you Ctrr-click in an empty area of the editing field).

Some commands are available also in the Hints & Guides toolbar:

8 Hints & Guides

TR o
E | g U R

493

494

Autohinting Options

You can customize the autohinting algorithms using the Hinting
Settings > T1 Autohinting page of the Font Info dialog box (File >
Font Info):

Min width Max width Min length Aspect ratio l
Horizontal: 20 (250 | 60 ==l '

Vertical: 20 250 60 | 2

All values are relative to UPM = 1000 units

You also may need to use the following option:

™ Remove all existing hints before autohinting

on the Preferences > Generating Type 1 > Type 1 autohinting page.

Width limits Declares the minimum and maximum width of hints that the
autohinting algorithm is allowed to create

Min. length Declares the minimum length of the nearest vertical (or
nearest horizontal) straight segments (or curve control
vectors) that can be a candidate for building a hint

Minimal length/ Declares a critical correlation between the width of a
width aspect ratio candidate for the hint and the length of the straight segment
that builds that candidate

Remove all Allows you to remove all existing hints before autohinting the

existing hints glyph. If this option is switched off new hints will be added to

before autohinting the existing hint set. Of course, a hint substitution program
will be built.

Note that all values are set for a 1000 UPM font and are automatically
scaled by FontLab Studio according to the real UPM size.

Some recommendations:

1. If you want FontLab Studio to generate thin hints (horizontal serif
hints, for example), set the Min width parameter to a value less then
the width of the serif. Use the Meter tool to measure the width of the
serif. Set Min. width to a value that is greater than the serif width to
prevent FontLab Studio from autohinting the serifs (the real width of
the serif in the picture is 18 units):

| : :
Min. width = 20 Min. width = 10

2. Decrease the Min. length value to generate more hints. Increase the
value to generate only the most important hints.

3. Increase the Max. width value if you are working on a black or heavy
font that has very thick stems.

495

496

Hint Properties Panel

To open the hint properties panel, Cmp-click one of the hint lines or Ctrr-
click and choose the Properties command in the popup menu:
| &) Hint Properties

Horizental hint

Position: | -3

|4 k| |4 K

Width: 32

In the hint property panel, you can modify the position of a hint in the
upper edit box and modify the width of the hint in the lower box. Press the
RETURN key or click the mouse outside of the properties panel to apply the
changes.

Link Properties Panel

In the Link properties panel you can modify a link’s properties: enter the
index numbers of the two nodes which you want to “connect” by the link in
the editing fields or check the Ghost Link checkbox to make a link into a
ghost link:

0 Link Properties

Vertical link
Node 1:
MNade 2: 10
] Ghost Link

Alighment Zones

Most fonts have “square” and “round” glyphs. Round glyphs (like “O” and
“Q”) usually have 3-4% “overshoot” on the bottom and top. “Overshoot” is
the amount that a glyph extends above or below its nominal top or bottom.
It is used to optically correct the appearance of “round” glyphs, which tend
to appear too small at their nominal height.

When a font is rendered on a device with limited resolution, it is often
necessary to “suppress” the overshoots to make a line of text look smooth:

Top alignment zone

N

N

Bottom alignment zone

This whole process is described in full detail in the “Hinting” chapter. Here
we will only discuss the basic modification of the layer with the Edit tool.

To let a font-rendering program perform overshoot suppression you need
to “declare” overshoots using alignment zones:

=

\

You can modify alignment zones with the Edit tool: just drag the bottom or
top line of the zone to change its width or position.

You may later use the FontInfo dialog (File > Font Info) to check the exact
parameters of the zones.

497

498

Sketch Mode

Sketch mode is a new easy, alternative way to create outlines. To activate
Sketch mode just select the Sketch Mode command in the Contour menu
or use the OpTION-2 key combination. To return back to Edit mode, use the
OrtION-1 key combination.

When you enter sketch mode for the first time the glyph outline is
automatically converted into a special format that is optimised for
“freestyle” editing. Thus the sketch mode has two outline layers: one with
the original “real” glyph outline, and one with the sketch outline.

In contrast to the outline representation used in the Edit mode, the Sketch
outline is not WYSIWYG. Before exporting to a font file all sketch outlines
must be converted into “standard” outlines. I.e. you edit the sketch, but
nothing changes in the real glyph outline until you do the conversion.

In the Sketch outline, all points that define the outline are positioned on-
curve. There are no Bezier control points or TrueType off-curve points:

The principle is somewhat similar to the Tkarus® font editor by URW++
but the underlying geometry is not identical. In the Sketch mode, there are
3 types of points: corner, curve and tangent:

When points of known types are set, FontLab Studio automatically “draws”
the outline to match their positions. If you want to change the shape of the
outline, just move the points or add more points to increase the precision:

When you enter the Sketch mode, you will see an additional Sketch
toolbar:

Sketch

Ol D Az ua Ba | X

Here is a short description of the commands available on the Sketch
toolbar:

Show outline Displays the real glyph outline in the background of the
sketch outline
4./ Show marks Shows point and direction marks
| New sketch Use to create a new, empty sketch. Le. delete the

current sketch

A Import sketch Convert the glyph outline to a sketch

A Replace outline Replace the glyph outline with the sketch

.| Add to outline Add the sketch outline to the glyph outline.

The same commands are available in the popup menu that appears if you
Crre-click the empty space of the Glyph window.

499

500

Visualization of the Sketch Outline

Every point in Sketch mode can have 2 marks:
The Node icon, which is similar to how nodes are shown in Edit mode.

The Direction mark which shows the curve direction (the mark is on the
convex side of the curve) at the point.

Direction marks are different depending on the type of the node:

Short mark \\ Curve point

Longer mark Corner point

Mark with an arrow Startpoint of the contour

Double mark \ Tangent point

Use the View > Show Layers > Nodes (|~) command to switch the node
icons on or off and the Show Marks button on the Sketch toolbar to show
or hide the direction marks.

With the Show Outline | “*| button you can turn the real (Edit mode) glyph
outline in the background of the Sketch outline on or off:

The glyph outline may appear contoured or filled, depending on the Fill
Outline ('i) mode.

Moving Points

To move points simply drag them with the mouse button. Hold the SuiFt
key down to constrain movement to the vertical or horizontal direction.

Changing Point Type

To change point type from corner to curve to tangent simply double-click
the node with the mouse button.

Removing Points

There are two ways to remove unnecessary points:

1. Use the Eraser tool. Select the tool (%)), position the cursor over the
point you want to remove and press the mouse button. Drag the mouse
to remove multiple points. Cmp-click and drag to surround the points
you want to remove with a rectangle.

2. Using the Edit tool (| *), start dragging the point, press the CTrL key
and then click the mouse button without releasing the Ctrur.

When you remove a point, you'll notice that FontLab Studio tries to keep
the outline smooth:

In normal outline mode you usually try to minimise the number of nodes
and use Bezier control points and off-curve points to make the outline look
smooth. The main feature and benefit of Sketch mode is that you can add
as many curve points as you want to make the outline smooth and precise,
and the curves will be aligned and optimised automatically.

501

502

Inserting Points

One way to insert points is to use the Knife tool (<*).

1. Select the tool on the Tools toolbar.

2. Click on the outline where you want to insert a point.

Alternatively you can add points with the Edit tool:

1. Position the cursor on the outline.

2. Press the OptioN key and click the outline.

Reversing Contours

Cwmp-click one of the nodes of the contour to reverse its direction.

Selecting Points

As in the standard Edit mode, you can select many points and perform
group operations, like moving the selection or copying to and from the
Clipboard.

To select points with the edit tool, press the mouse button in an empty area
and drag the cursor to surround the points you want to select with the
rectangle:

Hold the Surrt key down to invert the selection state of the points.

To select the whole contour, double-click it. Note that you must not
double-click one of the points — this operation will change its type.

You can use commands from the Edit menu to select or deselect parts of
the outline:

Select All to select the whole outline
Deselect to remove all selections
Invert Selection to invert the selection state of all nodes.

Click anywhere in the empty area anytime to remove all selections.

503

504

Using the Magic Wand Tool

With this tool you can easily select multiple contours. It is especially useful
when your sketch contains multiple overlapping outlines.

1. Activate the Magic Wand tool () by pressing the 4 key or by holding
down the Cmb key while the Edit tool is active.

2. Click anywhere near the contour you want to select. The closest
contour to the point where you clicked will be selected.

3. Hold down the SHiFT key to reverse the selection state of the contour.

Moving the Selection

When multiple points are selected you can move the entire selection with
the Edit tool: just click on any selected point or selected part of the outline
and drag the mouse. Hold down the SHiFT key to constrain movement to
the vertical or horizontal direction only.

Transforming the Selection

You may rotate, scale, and slant a selection with the Rotate ((?')), Scale
(&) and Slant () tools on the Tools toolbar.

1. Select the part of outline you want to transform or remove all
selections to transform the whole outline.

2. Choose the tool to perform the transformation.

3. Click the mouse button on the center of transformation and drag the
mouse to rotate, scale or slant. Hold down the SurFT key to constrain
the transformation.

Note, that the Free Transform operation and the Transformation panel
don't work with sketch outlines.

Selection Operations

You may copy, paste, delete and duplicate a selected part of the sketch
outline. Use the following commands from the Edit menu:

Copy Copy the selection to the Clipboard
Paste Add the clipboard contents to the current sketch
Delete Remove all the selected points

Duplicate Add a copy of the selection.

When you use the Paste or Duplicate command, the selection is added
with a shift from the original position. You may control the amount of this
shift on the Glyph Window > Dimensions page of the Preferences dialog
box.

505

506

Breaking and Joining the Sketch Outline

You may break the sketch outline at any point with the Knife or Edit tool.

To break the outline with the Knife tool, select the tool (#*]) and click
on the node where you want to make a break.

To break the outline with the Edit tool, select the tool (| *)), hold the
ortioN key and click the point where you want to make a break.

To join two contours, drag with the Edit tool and position the starting
or ending point of the first contour over the ending or starting point of the
second contour.

Hold the OptioN key down while moving the point to prevent the
contours from joining.

Converting Sketch to Outline

Click the | Replace outline button to convert the Sketch into a normal
outline. FontLab Studio will try to optimise the result using the minimum
number of curves while maintaining high precision.

With the [*] Add to outline command you can add the contents of the
Sketch outline to the normal glyph outline.

To see the converted result simply change to edit mode (OprION-1). If you
think that the Sketch converter produced too many curves, use the
Optimize command in the Contour menu to fix it:

Working with Composite
Glyphs

Composite glyphs are glyphs made up of two or more components, like a
letter plus an accent. One or more of the components are referenced. I.e.
their contours are not actually present in the composite glyph, but are
“copied” from and linked to some other character. Thus whenever the
original component contour is changed, all the composite glyphs that copy
the component also change. The contour of composite components appears
in dashed lines in the Glyph window.

Composites have the advantage of allowing the user to create only one
instance of a component that is frequently found in a font and reusing it
without having to redraw it each time. Later if the design of the component
changes it need only be altered once — in the original component. And
finally, a composite takes up less room in the font than an outline, allowing
for smaller font files.

There are three operations related to composite glyphs: adding a
component to glyphs, decomposing a component and positioning a
component.

507

508

Adding a Component

To add a component to a glyph currently open in the Glyph Window, select
the Add Component command from the Glyph menu.

You will see a dialog box that looks just like a Find Glyph dialog box:

Select a Component Glyph

Name %) (begms with_13) ¢

C 0063 m

c_t EOO3 V
cacute 0107

caron 02C7

ccaron 010D A

ceedilla 00E7 ¥

Total: 20

o | % {o | (cancel) 0k

The only difference is that only those glyphs that can be used as component
glyphs will appear. Of course, a glyph cannot be a component for itself.

A composite glyph can be used as a component glyph. It is automatically
converted to source components.

Another difference is that you can set the position by entering its x
(horizontal) and y (vertical) coordinates. The component position is the
distance between the composite zero point and the component’s zero point.

To add a component you select the glyph you want to use as a
component in this dialog box and press the OK button.

Another way to add a component is to drag it from the Font Window
and drop it in the Glyph Window while the Cmp key is pressed.

Decomposing

To decompose a composite glyph, select the Decompose command
from the Glyph menu or from the Glyph Window context popup menu. The
outlines of all components will be scaled and shifted according to their
settings and added to the composite glyph. If the component glyphs had
hints then these hints will also be added and a hint replacement program
will be automatically generated. The link to the original component will be
lost.

To decompose an individual component in a composite glyph, CTrL-
click the component and select Decompose in the context popup menu.

509

510

Component Positioning

To activate the component positioning operation, activate the Edit
tool, position the mouse cursor on the component’s outline and click the
mouse button.

Alternately, if the current glyph is composite-only (so if doesn’t have any
“normal” outlines), use the PAGe UpP and PAGE DowN keys to select a
component for editing.

You will see a control box surrounding the component with four corner
handles, a cross in the center, a centerline and the number of the
component in the components list.

To select another component, use the PAGe Up and PAGE Down keys or
the TaB key.

o m
B N —
|
'__g__
% & —

To select several components, click on each of them with the SHrrr key
pressed.

To move the component position the mouse cursor inside the control
box, press the mouse button and drag the control box to a new location. If
you position the cursor on the cross in the middle of the control box you
can set the position of the component more precisely because the cross will
snap to the guiding elements while moving.

You can also use the keyboard to move the component. Arrow keys
move the component in one font-unit increments, the Surrr+arrow keys
increase movement to 10 units, and the Cmp+arrow keys increase
movement to 100 units.

To scale a component position the mouse cursor on one of the handles,
press the mouse button and drag the mouse to change the size of the
component. Hold the Suirt key down to constrain the proportions of the
component. Hold the Cmp key down to scale around the component's
center.

Some other useful commands are available in the popup menu that
appears if you Ctri-click the editing area while component tool is active:

Decompose Decomposes (adds the outline to the composite glyph) the
current component

Delete Removes the component

Reset Shift Moves the component to the position (0, 0)

Center Moves the component horizontally to the glyph's center

Set Scale 100% Sets the scale at 100% for the component. Note that the Type 1
font format does not support scaled components

H Mirror Mirrors the component (sets the scale for x or y direction to

V Mirror —100% and adjusts shift accordingly)

Make First Sets the component to the first place in the components list

Copy Metrics Copies metrics data from the component to the composite glyph

Copy Anchors Copies all anchors from the component glyph to the composite

Edit Component Opens a new Glyph Window with the currently active
component

Properties Opens the Component Properties panel (described below).

511

512

Component Properties

You can set the precise size and position of the component. CTRL-
click the component with the Edit tool. You will see a popup menu. Select
the Properties command in this menu and you will see the Component

Properties dialog box:
. (5] Component
Component:
”numbersign fB
Position:

X: -605 5 ¥: 113

|4 ®

Scale:

X412351 00 yi|117.5

Apply

In this dialog box you can select a different glyph to be used as a
component and set the component’s position and scale. The component
position is the distance between the composite zero point and the
component’s zero point.

Tip: You may just double-click on the component to get the component

Properties dialog box.

Anchors Layer

Sometimes when you work with a glyph it’s helpful to mark particular
positions and refer to them later. In FontLab Studio you can use a special
editing layer called Anchors to do this. Anchors are simply named points
that you can add, remove, move or rename. A special property of anchors is
that you can use them in macro programs and in the automatic glyph
construction feature.

To add an anchor, Ctre-click anywhere in the empty space of the editing
field and select the Add Anchor command in the popup menu:

Edit Mask
Action...

Add Note. ..
Add Anchor..[,

You will see a new anchor (by default it is a small red cross) and an editing
field asking you to enter a name for the anchor:

|anchc\r| |

Name the anchor and click the RETUurN key to complete.

513

514

Moving Anchors

To move an anchor, just drag it with the Edit tool. You will see the anchor
position highlighted while you are dragging it:

...... A
| [-332,242)

Removing Anchors

To remove an anchor, Ctrr-click it and select the Delete command in
the popup menu.

Renaming Anchors

To rename an anchor, Crrr-click it and choose the Rename command.
Change the anchor name in the editing field.

Changing Anchor Color

You may choose one of five colors to mark the anchor. Ctrr-click the
anchor; select the Mark command from the popup menu; and choose the
color:

e > PR
_ Blue

Properties
T ——————————

Green
Magenta
Cyan

Anchor Properties

Cmp-click the anchor or Ctrr-click and choose the Properties command in
the menu to open the anchor Properties panel:

8 Anchors Properties

Anchor
Mame | Positicn
ancher (144, 513)
_top 1370, 853)
_bottom {380,
left {-133,
nght 1739, 3300

Position: 739 | . 330

-

This panel lists all anchors defined for the glyph. To change the properties
of one of the anchors, select it in the list and the anchor will be highlighted.

To change the position of the anchor, use the editing fields below the list:

Tl

|4

To rename the anchor, click the selected anchor’s name in the list and
change it in the editing field:

rightd5 (F39, 3300

515

516

Using Anchors to Build Composites

The main purpose of anchors is to mark important positions in the glyph
space. In addition, anchors may be used to “link” some glyphs and form
composite glyphs:

A" 4

+ +

| |
| 2 |
| |
| |
| |
| |
| |
TR T 1T

You can define a composite glyph using the Composites tool at any time,
but that operation creates “fixed” composites and you would need to
perform it manually for every composite glyph you want to create. For
composites that consist of a base glyph and one or more “accent” glyphs
this operation may take a lot of time.

In contrast, with anchors you can create “virtual” composites, which can be
converted to the fixed state at any time with the Generate Glyphs
command in the Glyph menu.

To define a virtual composite you need to define pairs of anchors in
the base and the accent glyph. Each pair of anchor names must match by
the “underscore rule”: for each base anchor, there must be a corresponding
accent anchor with the same name except that it starts with an underscore.
So if there is a base anchor named “top” in the base glyph, there must be an
accent anchor named “_top” in the accent glyph — FontLab Studio will be
able to match these two anchors and create a virtual composite by
snapping them to each other.

» o«

Note: In our example, we call the anchors “top”, “_top”, “bottom” and

“_bottom”, but other names can be used, provided that they match by the
underscore rule (e.g. “ogonek” and “_ogonek”). Remember: in each pair of
anchor names, the base anchor always has the name without the
underscore, while the name of the accent anchor always starts with the
underscore.

« %,

First, open the base glyph, e.g. “0”:
| |
| |
| |
| |
| |
| |

=T
Insert the base anchors there. In our example, we create one base anchor

“top”, to which the accent anchor “_top” will snap, and one base anchor
“bottom”, to which the accent anchor “_bottom” will snap.

 hop

|
|
|
|
|
|
|
1 T
| e |

To add anchor points use the Add Anchor command from the Glyph
Window context menu, and set the names of the anchors accordingly.

Tip: There is a special shortcut that creates base anchors with predefined
names: every time you use CTRL+OPTION+SHIFT+click, a new anchor will
be added with a predefined name; first “top”, then “bottom”, “left”, “right”,

” o«

and later “anchor4”, “anchor5” etc.

517

518

The next step is to add matching accent anchors in the accent glyph. Open
one of the accent glyphs:

| |
1~

Add an accent anchor named “_bottom” at the point in the accent glyph
where it will snap to the “bottom” base anchor in the base glyph. Add the
accent anchor “_top” where it connects to the “top” base anchor:

+

| _battom
()
| o)
| |
| |
| |
.

You may use the Add Anchor command to add these anchors.

Tip: Again, there is a special shortcut that creates anchors with predefined
names that match the previously. CMp+CTRL+OPTION+SHIFT+click will
first add an anchor named “_top”, if you use it again, it will add the anchor
named “_bottom”, then “_left”, “_right”, and later “_anchor4” etc.

Notes: Whether you use the Add Anchor command and use arbitrary
names on your own or the special shortcuts using the predefined names,
what really matters is that the anchor names match by the underscore rule.
Instead of positioning the “top” base anchor above the glyph, you can
position it at the baseline and only adjust its horizontal placement. In such
case, you would also place the “_top” accent anchor in the accent glyphs at
the baseline. They need to snap to each other so their relative position
needs to be consistent. Also, it doesn’t always make sense to place all types
of anchors to all glyphs — it really depends on the desired character set of
your font.

519

520

Using the Anchors Panel

Use the Anchors panel to preview “virtual” composites:

1.

2.

Open the Preview panel (Window > Panels > Preview command).

Select the Anchors page of the Preview panel:

. OpenType Features Preview | Anchnrs}

Open the base glyph in the Glyph Window. The Anchors panel will
immediately list all of the anchors and all matching accent glyphs that
have “link” anchors:

)] Preview

OpenType Features Preview | Anchers)

| Anchor: [top _?] A L

| Name :Unicod

g“;sterisk “IZIDEa * — LN

M equal 003d

The left list includes all accent glyphs that can be linked with the base
glyph using one of the defined anchors. The first 10 resulting virtual
composites are previewed in the sample string. Use the check boxes to
the left of the accent list to choose which composites to preview:

asterisk 002a
@ equal 003d
@ grave 0oed

Choose another anchor in the list to update the accent list with accents
that can be connected to that anchor:

ik

ancher: |« top
bottom

LY ENEEE

5. Double-click one of the virtual composites to select one of the accented
glyphs for preview:
(&) Preview

'd'p.eﬁ;l"ype-Féa-tures “-F;re;fi.ew T Anchors }

| Anchor: | _bottam ﬂ A ML
Mame | Unicad
M 0041
M c

- AC
® Ok

As you can see, now the anchor list includes all virtual composites that
can be created using the selected accent glyph and the selected anchor.
Double-click one of the virtual composites to select it for previewing.

6. If you move anchor point currently selected in the Anchors panel with
the Edit tool you will see the sample string automatically updated to
show the new shapes of the virtual composites.

The panel contains two buttons to the right of the anchors list:

A Click this button to get to the Generate Glyphs dialog box and create new
composite glyphs

B When this button is pressed, the anchors panel previews text in right-to-left
mode, which is useful if you are working with Arabic or Hebrew glyphs.

Ctri-clicking on the virtual composite allows you to create a glyph after a
command is selected in the popup menu:

521

522

The dialog box appears allowing you to name the new glyph:

Cenerate Glyph

Enter the name for the generated glyph:

Casterisk

| Replace the glyph if it already exists in the font

Cancel-_.- (OK }

Name the new glyph, click OK and the composite glyph will be added to the
font and opened in the current Glyph window.

Creating Composites and
Ligatures

Another way to create real composite glyphs from the base and
accent glyphs is to use the Generate Glyphs command from the Glyph
menu:

Generate Glyphs

Glyph names separated by space or comma:

C+caron A+dieresis|

V .e
| Decompose ligatures | Ligatures are right-to-left
!21 Create glyphs even if they already exist

I Mark new glyphs !21. Replace existing glyphs

(Cancel (oK) v

L

In the dialog box enter the composite name using the simple syntax:
[base glyph name] or [composition recipe]=[result glyph name]

A composition recipe includes one or more base glyph names separated by
commands. There are two commands used:

_ (underscore) — appends following glyph to the right.

The "_" command is used for creating ligature glyphs, like “fl, ffl” or others.
For example:

f_l=fl, f_i=fi, c_t=ct

523

524

+ (plus) — appends following glyph as component of the
composite glyph.

For example:
C+caron=Ccaron A+dieresis=Adieresis
You may enter more than one name separated by a space or colon.

In the composition recipe, the "+" command may be followed by one or
two alignment commands:

~ align component to the uppercase position

~ do not move component vertically

< align component to the left of the base glyph
> align component to the right of the base glyph
| center component horizontally

For example:
A+">dot=Adot

Add the number after alignment commands to additionally shift the
component. For example:

A+~-200cedilla=Acedilla

n_n

Use "%="instead o to decompose created composite glyph. For

example:

A+"ring¥%=Aringdecomposed

Click on the ' /button to view full description of the commands syntax
used in the dialog box.

Check the Decompose ligatures option below the names field to “paste” all
the components’ outlines and make a decomposed glyph:

Check the Ligatures are right-to-left option below the names field to
reverse the order of components in ligatures. If this option is on, you will
get "If" instead of "fl", for example.

If you click on the & button you can choose and open the text file with
glyph name definitions prepared in advance.

Check the Mark new glyphs option to mark created glyphs in the Font
window with color.

Check the Replace existing glyphs option to place created glyphs in the
occupied cells of the font chart. An old glyph will be moved to the end of
the chart in this case.

Tip: By default, FontLab Studio automatically recognizes if an uppercase
composite glyph is generated and shifts the accent components up by the
difference of the font’s caps height and x-height. If you are unhappy with
the default positioning of the accents in the generate uppercase glyphs,
temporarily modify the font’s caps height setting in the Font Info dialog
and generate the glyphs again. If your font contains an extra set of
specially-positioned uppercase accents and you do not want FontLab
Studio to shift them up, use the “~” command in the recipe, e.g.
A+~acute.case=Aacute

Note: If you are generating a composite glyph from components that

already have corresponding base anchors and accent anchors, the anchor
positioning will override the positioning used in the composition recipe.

525

526

Aliases Table

FontLab Studio comes with an alias.dat file (located in the Shared default
data/Data folder), which is the text file that defines the decomposition of
common composite glyphs. Here is a part of the alias.dat file:

%%FONTLAB ALIASES
nbspace space

hyphen minus
periodcentered middot
onesuperior one
ordmasculine o
onequarter one_slash_four
onehalf one_slash_two

As you can see, every line of the file contains the real name of the
component glyph is followed (with a single space as the separator) by the
decomposition name:

onequarter one_slash_four

This means that when you request the glyph named “onequarter” in the
Generate Glyphs dialog box, FontLab Studio will create a new glyph
named “onequarter” but built as a ligature using the “one”, “slash” and
“four” components as if you had entered the name “one_slash_four”.

You can modify this table to include glyph names you often need to create.
Put the modified file in Shared user data/Data folder.

Using the Smart Shapes Panel

In FontLab Studio you can add predefined customisable graphical shapes
to glyphs. There are seven shapes included with FontLab Studio and it is
possible to add more. You can select a shape from the Smart Shapes panel.

To open the Smart Shapes panel, select the Smart Shapes command
in the Window > Panel menu:

Fonts
Font Map

Smart Shapes :

The panel consists of a shapes list and a Place button that you click to add
a shape to the outline:

[Smart Shapes

Rectangle
Free Rectangle D
Ellipse

Star

Palygon
Grid

.
L

Place

527

528

Here is a brief description of each shape:

Grid Simple grid (a customizable set of rectangles or squares)
HE
Arc Simple closed or open arc contour
X:
Rectangle Simple rectangular contour
*
Ellipse Circle or ellipse
)
® ®
Free Rectangle that can be freely rotated
rectangle ; 3
Star Star with customizable number of rays
Polygon Polygon with customizable number of vertices

O

To add a shape to a glyph’s outline, select the shape that you want to
add and press the Place button on the Smart Shapes panel. Or just double-
click the shape's name in the list.

When you press the Place button you will see the shape appear in the
middle of the Glyph Window. Shapes have a blue outline and several
control handles that you drag to customize it.

Drag the cross control handle in the center of the shape to move it. The
behaviour of the other handles depends on the shape’s type. For example,
in the Star the handles determine the internal and external radius of the
star’s rays and the angle between vertices that form a ray.

Try placing some shapes into the Glyph Window and drag their control
handles to see what they do. Use the SHiFT key to constrain the movement
of handles. For example, in the Rectangle shape holding the SurFT key
down will produce a square instead of a rectangle.

Every shape has a property panel where you can set the shape’s parameters
precisely. Press the Properties button on the control panel to open the
Properties panel for the shape:

0 Smart Shape

Properties... Cancel QK

Here is a preview of the Star’s panel:
Star Properties

Number of rays: 5
Internal radius: 1E|D

External radius: -ZDD

Cancel | (0K 1}

In this properties panel you can change the number of the star’s rays and
the values of the internal and external radii.

Fontlab Ltd. has a standard for smart shapes modules and may offer
additional Smart Shapes in future.

529

530

Importing and Exporting
Glyphs

With FontLab Studio you can exchange outline data with other vector-
editing programs, either using the Clipboard or files. The most common
format for vector data is Encapsulated PostScript (EPS).

Vector editing programs such as Adobe Illustrator and Macromedia
Freehand typically are able to open and save EPS files. EPS was the native
file format of Adobe Illustrator until version 8.0, though more recently, the
Adobe Illustrator file format (.Al) is based on PDF rather than EPS.

FontLab Studio can exchange outline data with Adobe Illustrator via the
clipboard, and also export and import glyphs to and from Al-compatible
EPS files. On one hand, you can use Adobe Illustrator or other compatible
applications to draw your glyphs and then import them into FontLab
Studio. On the other hand, files exported from FontLab Studio can be
opened in any program that supports Al-compatible EPS files, e.g.
Macromedia Freehand, Corel Draw, ACD Canvas etc.

By default, all font units in FontLab Studio correspond to points in
Adobe Illustrator or other vector drawing applications. This means that if
you want your uppercase letter H to be 700 units high in FontLab, you
should make it 700 pt high in Illustrator. 72 pt = 1 inch, so 700 pt =

9.72 inch.

Exporting Glyphs

To copy part of the glyph’s outline to a vector-editing program use the
usual copy procedure. The selected portion of the outline will be copied to
the Clipboard. Then switch to your vector-editing program and select the
Paste command from the Edit menu.

To export a glyph to an Adobe Illustrator 8-compatible EPS file:

1. Select the EPS command from the File > Export menu.

2. Select the export folder and enter the name of the EPS/AI file in the
standard File Save dialog box.

3. Press the Save button in the dialog box, and the EPS/AI file will be
exported to the designated directory.

You can also export several glyphs at once: Switch to the Font
Window, select the glyphs that you want to export and select the EPS
command from the File > Export menu. You will see a Save File dialog
box where you enter a prefix file name for the exported glyphs. Each glyph
will be exported to its own file with the file name consisting of the prefix
plus the decimal code of the exported glyph.

531

532

Preparing Artwork in Adobe Illustrator

If you intend to use Adobe Illustrator to draw the glyph outlines:

In Ilustrator, go to Edit > Preferences > Units & Undo or Units & Display
Performance. Change all units to points (1 point is equal to 1 unit in
FontLab). Go to Preferences > Files & Clipboard. Disable PDF, enable
AICB and select Preserve Paths. In Preferences > Guides & Grid, set
Gridline every: 10 pt and Subdivisions: 10.

Still in Ilustrator, select File > New. Set the width of the document in
points to be the double of the UPM size of your font (e.g. 2000 pt for a 1000
UPM font). Set the height of the document to be the same as UPM size —
Descender (e.g. 1000 — (—263) = 1263 pt). Select Window > Info, View >
Show Rulers, View > Snap to Grid. Disable View > Guides > Lock Guides.
Optionally select View > Show Grid.

Now click on the top ruler of the Illustrator document window and drag
out a guideline. Position it at the height that has the same (positive) value
as the (negative) descender of your font (e.g. 263 in our example). From the
left ruler, drag a guideline and position it at 0. Click at the top left corner of
the Ilustrator document window (where the top ruler and the left ruler
meet) and drag out the origin point to where the two guidelines you have
just drawn cross. Finally, click on the top ruler and drag guidelines to the
positions of your ascender, x-height, and caps height.

You can draw your letters. Remember to assign some kind of fill to all your
Ilustrator drawings and avoid drawing letters that exceed the bottom or
the top of the document size.

If you have already drawn some letters before, copy them to the newly
created document, place and re-scale so that they fit between the
guidelines you've drawn. Remember that all points of your letters should
snap to the grid (otherwise FontLab will round their position).

When you finished drawing your glyph in Illustrator, choose Select > All,
Edit > Copy if you want to copy the outlines via clipboard or File > Export
> Illustrator Legacy EPS or File > Save As, and select Illustrator 8 EPS as
your file format, if you want to save the artwork as an EPS file.

Importing Glyphs

To paste an outline from a vector-editing program into FontLab Studio
select the outline object that you want to copy and choose the Copy
command from the Edit menu (in the source application). To place the
copied outline in FontLab Studio switch to FontLab Studio (Glyph
Window) and select the Paste command from the Edit menu.

To import an Illustrator 8-compatible EPS file into FontLab Studio, open
a Glyph window (make a new glyph if necessary) and choose Edit > Paste
if you’re pasting from clipboard or File > Import > EPS if you're importing
from a file.

533

Manual and Automatic Scaling

If the imported drawings end up being too large or too small, go
back to your outline-drawing application and scale the artwork
accordingly. Remember that if the option Fit EPS files to (Ascender-
Descender) height in Preferences > General > EPS and bitmap
background is disabled, 1 pt in Illustrator/EPS corresponds to 1 font unit
in FontLab Studio and artwork is imported without any scaling.

Alternatively, instead of scaling all your artwork to a particular height (e.g.
700 pt) in Ilustrator, you can also have FontLab Studio automatically
scale the artwork for you. This is particularly useful if you import pre-
existing logos or similar symbols to FontLab Studio. If you wish that
FontLab Studio automatically scales all pasted or imported artwork to fit
the font’s height, enable the Fit EPS files to (Ascender-Descender) height
option located in the Preferences > General > EPS and bitmap
background dialog box:

| Fit EPS files to (Ascender - Descender) height

Note: Nodes in digital fonts can only have integer coordinates.
On the other hand, your Illustrator artwork can have nodes with fractional
coordinates such as 161.352 pt or 354.78 mm. When FontLab Studio
imports a drawing, it has to round them to integer values — because it
cannot generate fonts with fractional coordinates. The smaller your object
is, the more extreme the rounding (and therefore, distortion) will occur.
Therefore, we advise that you always scale your artwork in Illustrator to
the appropriate size before copying it to FontLab Studio so that rounding
will be minimal. Also, if you work in Illustrator or similar applications,
avoid fractional coordinates altogether by setting your grid to 1 pt and
making sure that all your nodes snap to it.

Note: Remember that FontLab Studio can only edit font outlines, not
features such as color of outline, outline width or fill color. Regardless of
the settings you have in the vector-editing application, only information
about outlines will be copied to FontLab Studio. Ideally, in your vector-
editing application set the fill color of all your objects to 100% black, and
the width of the outlines to none.

534

Printing a Glyph
To print a sample of the current glyph, select the Print command in the

File menu while the Glyph Window is active.

Refer to the “Printing and Proofing Fonts” chapter for further details.

535

Editing Metrics

The tools in FontLab Studio for editing metrics data are common to all
FontLab applications, so if you have learned how to use these tools in
FontLab Studio you will be ready to use these same tools in any of the
FontLab programs.

538

What are Font Metrics?

A program that aligns and spaces text calculates the total width of all the
characters in a paragraph. It then adjusts the widths of the space
characters that separate the words and tries to put as many characters as
possible into one line. The information about the words that are used to
make a paragraph, and the information about the width of the individual
characters is the only information necessary. To determine distances
between lines, the application uses information common to all glyphs in
the font, such as the length of ascenders and descenders, and a suggested
line gap, and places the lines of text on the page using these distances. This
information about horizontal and vertical spacing is what is known as font
metrics.

All font and glyph metrics are expressed in font units, the same units that
are used to measure node coordinates and settings such as UPM size.

There are four principal types of metric information in fonts:

1. Vertical font metrics (also known as font family metrics): metric
values common for the entire font and often shared across a family,
used to determine the linespacing. This includes baseline, the ascender
and descender lines, the caps height, the x-height and the line gap.
These are discussed in the “Font Header” chapter and the “Vertical
Metrics” section of the “Glyph Window” chapter.

2. Horizontal glyph metrics (usually referred to as glyph metrics or
just metrics): metric values of individual glyphs that are used to
compute line lengths. This includes advance widths and sidebearings.
These are discussed in this chapter as well as in the “Metrics” section
of the “Glyph Window” chapter.

3. Kerning: pair-wise adjustment of horizontal glyph metrics.

4. Vertical glyph metrics: the vertical advance “widths” (called
vertical advance vector) for Asian glyphs used to type in vertical
direction from top to bottom. These are discussed below.

This chapter discusses primarily the horizontal and vertical glyph
metrics as well as kerning. For vertical font metrics, please consult
the “Font Header” chapter.

Horizontal Glyph Metrics

Each glyph in the font has a bounding box, a rectangle positioned in a
theoretical rectangular cell. The most extreme nodes of the glyph
determine the bounding box. Each glyph usually also has sidebearings:
extra space to the left of bounding box (left sidebearing, LSB) and to the
right (right sidebearing, RSB). The sum of the sidebearings and the
bounding box width define the advance width (often just called width).

The intersection of the baseline and the left sidebearing is called the zero
point. Horizontal (x) node coordinates to the right of the LSB line are
positive and coordinates left of the LSB line are negative. Similarly, vertical
(y) node coordinates above the baseline are positive and those below the
baseline are negative.

When an application is laying a line, it positions the next glyph’s LSB line
right at the RSB line of the previous glyph.

Ascender

i N ——— —i' N
Caps height - - = ommy = = g 1T 1

L | |

: L1 L
x-height I | | I | I !

n B |

N BR N

| Bounding I I

I | box [1| L

L \| | |
Baseline .. . e | : b 1= | .

i-—» LSB RSB ._.i EH gesgéitlve

l——— Advance width —— I I
Descender I

|

Glyphs may have negative sidebearings, e.g. the rightmost edge of the
bounding box may be positioned to the right of the RSB line.

539

540

Kerning

Kerning information is used to adjust the space between specific pairs of
characters. As you can see in the following picture some characters may be
well spaced with just the bearings rectangle but other characters are not.
To fix this problem a special technique called kerning has been developed.

A good example is the “Av” pair. In the following picture you can see two
examples of inter-character spacing, with and without kerning:

Av Av

With kerning Without kerning

You can see that only the kerned image is optically correct because it can
compensate for the problem caused by the special form of the “v” and “A”
glyphs printed in sequence that leaves too much space between the letters.

Older font formats (Type 1, MM, TrueType without OpenType tables)
implement kerning using kerning pair lists. Each kerning pair defines the
number of font units (usually negative) by which the right sidebearing of
the first glyph in a pair should be horizontally shifted when the glyph is
followed by a specified second glyph. In the example above, the advance
width of the “A” glyph may be 400 units and the advance width of the “v”
glyph 250 units. The kerning pair “A v -50” defines that if “A” is followed by
“v”, the advance width of “A” should be reduced by 50 units.

A typical problem of the plain kerning pair list approach is that for
accented characters, many duplicate pairs need to be included in the font.
The pairs “Av”, “Av”, “Av” etc. usually should be kerned by the same
amount, yet each of them needs to be included separately in the font —
otherwise it will not be kerned. This results in rather large tables that
unnecessary increase the size of the font and may hamper the performance
of some applications. Therefore, in OpenType fonts, a more sophisticated
kerning approach called class-based kerning has been developed to help
address this problem.

Class-Based Kerning

Some glyphs have a very similar appearance on both sides:

o~ —-—
All these glyphs have the same shape on the right side

It seems natural to group such similar glyphs into glyph classes and then
define kerning between these classes. This approach may dramatically
decrease the number of individual kerning pairs to declare.

Class kerning, when defined for a font, may be used during the design
process to decrease the amount of kerning work.

In Type 1, MM and old-style TrueType fonts, class-based kerning should be
converted to plain kerning before the font is generated.

In OpenType (PS and TT) fonts, class-based kerning may be exported
directly; it will be directly supported by applications that support
OpenType Layout features, such as Adobe InDesign, Adobe Illustrator CS,
Adobe Photoshop CS, TextEdit, Pages or Keynote on Mac OS X, Mellel on
Mac OS X, and many others.

In addition, for OpenType PS fonts, the Adobe system font rasterizer
(ATM) on Windows and Mac OS X automatically convert the Western
European subset of the class-based kerning included in the font into plain
kerning when the font is installed.

541

542

Vertical Glyph Metrics

When typing text in some Asian languages, it is often necessary to specify
the vertical alignment of characters in the text. In this case, information
about the vertical glyph metrics is stored in the font file:

L

L

Usually, all Chinese, Japanese or Korean glyphs written in vertical layout
have the same vertical advance “width” (called the vertical advance vector)
so only the position of the glyph within the rectangular glyph cell needs to
be specified.

However, it is possible to adjust the vertical advanced vector of individual
glyphs. To define a vertical glyph advance vector in FontLab Studio, open
the glyph in the Glyph Window, hold the Surrr key and move the base line.
You will be able to set the top vertical glyph sidebearing (marked with a
black-green symbol) and the bottom vertical glyph sidebearing (marked
with a yellow-black symbol).

Note that this information is only used by applications that support vertical
text layout, and only if the vertical glyph metric information is specified for
all glyphs. Do not confuse vertical glyph metrics with vertical font metrics,

i.e. ascender or descender lines that are used in text that is set horizontally.

Metrics Files

Information about the advance width of a glyph is usually located in font
files. Kerning information may also be included in the file. In OpenType
and FontLab font formats both metrics and kerning data are located in a
single font file. In Type 1 (PostScript) fonts the metrics and kerning data
are located in separate files.

In Macintosh Type 1 fonts the metrics and kerning information is stored in
suitcases and printer font files.

There are two possible formats for the metrics files that are used with
Windows Type 1 fonts: AFM and PFM. AFM files (Adobe Font Metrics) are
text files containing all the metrics and kerning information for a given
font. These files are legible as text and can be edited in any text editor.
PFM files (Printer Font Metrics) are metrics and kerning files used by the
Windows operating system. They are binary files and cannot be read
without special utilities. AFM files are a standard format for the exchange
of metrics information for PostScript fonts. This information can be read
directly by several operating systems and programs.

In the Windows OS Multiple Master Type 1 fonts store metrics information
in another format. There is a binary Multiple Master Metrics file, which
usually has the file extension MMM, and a text Multiple Master metrics
file. MMM files include information about the font’s axes and masters,
multiple-master data for glyphs’ metrics and kerning and other font header
data. The text metrics files have a composite structure: there is a linking
file that describes the font header, axes and masters information, and
separate AFM files (with metrics and kerning data) for each master font.

FontLab can import and export metrics and kerning information in any of
these formats.

543

544

Metrics Window

FontLab has a special window where you can edit the metrics and kerning
information. It is called the Metrics window.

To open the Metrics window select the New Metrics Window
command in the Window menu. The Metrics window will appear:

. ees Metrics - Adobe Caslon Pro
BB B e ErhcM @ E F *_f
I =
. ABCDEF
i}

Fontsw || Kerning W || Size: 72w s/ @l Options w || Tools w| ABCDEF i

|
i

The Metrics window consists of several parts:

1. A Metrics window toolbar with controls for importing and exporting
metrics files, automating metrics or kerning generation and other
commands:

EH Be E- oM pE BES

By default the toolbar is docked to the top of the window, but you can
drag it to the bottom or leave it floating around.

2. A Metrics Tools toolbar with four buttons that allow you to select one

of the metrics tools:

By default this toolbar is vertically aligned and docked to the
left side of the window. You can drag it anywhere or dock to any

I
4™ | side.
M

3. Alocal command area that is used to select a mode for the Metrics
window and a string for metrics or kerning editing;:

Fontsw | Keming w || Size: 72w || ua/(@l)| Options ~ w | Tools w | ARCDEF ol |85

4. The editing area where the edited string with controls appears.

5. The header button, located in the top-right corner of the window:
=]

Use this button to switch the local command area between top and
bottom locations (see below).

The local command area of the Metrics window may be located in the
bottom (default) or top area of the window. When the local command area
is in the top location, it includes controls to modify metrics or kerning;:

w 72 |[§) [ABCDEF @G

{3 48 ol wepi |38 i o746 |12

The content of this properties area depends on the current editing mode of
the Metrics window.

545

546

Editing Modes

The Metrics window may work in four different modes:

Text mode Is used to enter and edit text in the main editing area. Works very
similar to any standard text editor such as TextEdit

Preview mode This mode is used to preview text with kerning applied and check
it at different sizes. Also the position and width of the underline
and middle-stroke line can be adjusted in this mode

Metrics mode This mode is used to adjust the metrics of individual glyphs.
Kerning is not visible in the metrics mode

Kerning mode In this mode you can edit pair kerning (both "flat" and class-
based).

Other things that appear in the Metrics window are the: Ruler, Panel and
Table.

Metrics Ruler

The Metrics Ruler is a narrow bar located above the editing area:

Its purpose is very simple: to provide an overview of metrics and kerning
data for the current line of text in the editing area.

The Metrics Ruler shows the width of the glyphs (in the middle of the glyph
cell) and kerning. Kerning data appears on a light-blue background if
kerning is negative (as in the AV pair) and on a yellow background when
kerning is positive.

Of course, kerning information appears on the ruler only when the Metrics
window is in kerning or preview mode.

The Metrics Ruler also may be used to create new global guidelines, but we
will talk about that later.

You can control the appearance of the ruler using the Ruler command in
the Options menu (if the local command area is at the bottom) or with the
Ruler button "+ on the Metrics Window toolbar.

547

548

Metrics Panel

The Metrics Panel is a horizontally oriented table that may appear above or
below the editing area:

HE| H A 1 e Tl - G E v

| aa3 T4 a1 BEQ T4E EH7 a1 B30 IR
| i} -1 2 H 2 a2 48 4K 28
7

1

| v 0 jal B4 13 36 28 -13

| | | | | | [e |
The Metrics Panel includes the following information for every glyph in the
editing field: name, width, left and right sidebearing and a pair kerning
value with the next glyph.

FoE

You may control the appearance of the Metrics Panel using the Panel
command in the Options local menu (when the local command area is at

the bottom) or with the Panel button on the Metrics window toolbar: =,

Click on this button in the top-right area of the panel to move it
top or bottom:

eight @

soo
33

If you click on any cell in the Panel you may change the value:

Use the Up and Down arrow keys to navigate between different values for
the same glyph. Use the Tas and SHirT+TAB keys to navigate between
glyphs.

When the Metrics Panel is visible, the properties area of the command area
(if it is at the top) disappears.

Metrics Table

Use this button £ in the bottom control area or the Table button +E of
the Metrics Window toolbar to open the Table:

Name Width | Left Right

A 743 -1 o

B (] il B4
C 746 48 38
D 813 29 42

E 630 46 29
F 598 32 =12
G 818 48 36
H 853 35 37
| 371 20 40
I 332 -f7 16
K 712 56 =10
L 662 39 16

This table contains metrics or kerning information for all the glyphs in the
font. Actually you can decrease the number of glyphs (or kerning pairs)
that appear in the table using the filter control that is located below it.

LAl alvohs

=
All glyphs

Selected glyphs .,
Glyphs in encoding

When the Metrics window is in metrics mode, every row in the table
contains the name of the glyph, the glyph width and left and right
sidebearings.

In kerning mode every row contains the names of the first and second
glyphs in the pair and a kerning value. Sometimes cells may contain
additional marks that help to manage class-based kerning but we will
discuss that later.

Context Menu

As in all other windows of FontLab Studio, if you Ctrr-click the editing
area, you will see a context menu which contains commands that are
related to the current mode of the Metrics window. We will describe the
contents of each menu when we talk about the different modes.

549

550

Metrics Window Toolbar

This is a simple list of all the buttons available on the toolbar:

"‘% Opens a metrics file (PFM, AFM or MMM format)

“['S'E” Saves a metrics file

[é Quick Save — saves the current metrics files to a temporary file

s

Opens the metrics from a temporary file saved by Quick Save

B L]

HH

* Opens a command menu (see below).

A3y = Opens the class kerning menu. Discussed in the Editing Kerning section.
- Activates support for the measurement line. When it is active, all metrics
are measured along the line
anges the preview panel to the right-to-left reading mode
RTL Changes the preview panel to the right-to-left reading mod

Activates the flip mode in which all glyphs appear flipped vertically.

=
| Opens the Panel

+E Opens the Table

= Opens the Ruler

The Command menu contains the following commands:

Auto Opens the Automatic Metrics or Automatic Kerning generation
dialog boxes

Add Pairs Opens the Add pairs dialog box where you can define new pairs the
easy way

Reset Kerning Opens the Reset Kerning dialog box

Edit Kerning Opens the Kerning Editor dialog box

Assistance Opens the Assistance dialog box, which may be Metrics Assistance
or Kerning Assistance, depending on the current mode

Generate Opens the Automatic Classes Generation dialog box.
Classes

Selecting a String for
Previewing or Editing

To prepare text for editing you have the following options:

1.

Select one of the predefined sample strings in the sample text combo-
box:

ABCDEF nGHI YR ':'
| AECDEF “nGHIY |
the quick brown fnx@
ABCD

HBCabol 23
{H\=ehg3

HBCDEFGH

IJELMMNOPG i

RSTUNY B
shedafahiillen

v

Enter the text in the sample text field of the control area (top or bottom
located):

HAMEURGEWONS |7
Enter the Text mode and type sample text directly in the Editing area.

Append glyphs to the sample text by dragging them from other
windows.

551

552

Selecting a Predefined Sample String

Click on the button to the right of the sample text field and select the string
for editing:

ABCDEFnGH (=)

| AECDEF \nGHI, |
the quick brown fu:-xm
ABCD

AECabc 123

{H%xehgS

AECDEFGH

I JELMNOPG "
RSTUMY Y L
shedafahbiillra iy

Or use the spin buttons to the right of the field to select the next or
previous string:

ABCabclZy m =

You can also use the CMp+PcUP and CMp+PGDN keyboard shortcuts to
navigate the list of sample strings up and down.

Editing a Sample String

Just click the sample string text field and modify it as you want. You may
type text into it or you may use FontLab glyph-access notation to access
glyphs that have no characters mapped to the current keyboard layout.

FontLab Sample Text Notation:

Character Meaning of the following text

/

Glyph name follows the slash: /A

Follow the name with another '/' to continue entering glyph names or
enter a space after the glyph name to continue entering ANSI
characters:

/Acaron/Adieresis BCDEF

You may enter the code of the character according to the currently
active encoding or a codepage:

/128/130

In this case the code number must contain only digits.

/1

Y.

1#

Unicode index of the glyph in hex format
/#0446

Unicode index of the glyph in hex format may be preceded with "u'
\0445\0448\u0446 BCDE

\\

\

\n

Line break in the preview

553

Customizing the Sample String List

If you click on the button - to the right of the sample list control, you will
see the following dialog box:

Load Text

Contents of the preview text combo box:

ABCabcl23)
ABCDEF\nGHI\nKLMMNOYnPORSTUVWXY Z[1]
the quick brown fox jumps over the lazy dog
[hamburgevens

HAMEURGEY ONS

SHE VERSE ASHORE

AS ACREES RUNAS

GCORGEQUS MAME

HAHHAACHADODAD

HEHHECHBOOBO N
HCHHCOHCOOCO
HVxehg5
ABCDEFCH
HELMMNOPQ

PO LI LA R

(@,

Second preview string:

| Cancel) f 0K 3

As you can see, there is a big multiline editing field that contains all the
strings in the sample list. Change it as you want or click on the = button
to fill it from a text file.

You may use special characters as described in the previous section to
enter glyph codes, names or Unicode indexes. Type \n to force a line break
in the sample text.

554

The Second preview string textbox contains text that will appear as an
additional line below the editable sample text. It’s very useful for
comparing spacing and kerning to some "standard" string that is
representative for your font.

43 BEO

45

Enter some text, close the dialog box and then use the sample string scroll
buttons or the CMp+PcUP and CMp+PGDN keyboard shortcuts to see how it
works. Do not forget to click on the editing area before using any shortcuts.

555

Entering Text in Text Mode

You may edit text in the editing area similarly to how you do it in any text
editor. Just activate the Text tool on the Metrics Tools toolbar:

@f‘w M Ay

You can also select Text in the mode selection menu in the local command
area docked to the bottom:

'Proview w!
= Praview

M etrics!

Kearning

After the tool is activated you will see a caret cursor in the editing area.
Start typing text. You may also drag-select text and use the Edit > Copy
and Edit > Paste commands to move blocks of text inside the Metrics
window or from external applications.

636 [261/256/256/254) 355 | 426 | 426 (254) 427 254 4 | 427 |341] 426 | 313 254) 40 | 506 | 341356 | 433 | 341254267 532 254 513 533 | 426 (25400

After the tool is activated you

will see a in the

editing area. Start typing text

Check the sample string editing field, you will notice that it automatically
creates FontLab notation for all non-ANSI characters.

556

Using Drag-Drop

The easiest way to fill a sample string is using the drag-drop method.
You can simply drag any glyph from the Font Window and drop it in the
Metrics Window and it will be inserted in a position highlighted by the
caret. If you want to add glyphs to the string, hold the Surrt key. If you
want to replace the sample string with the dropped glyphs, hold down the
Cwmbp key.

You can also drag glyphs from the Classes panel — glyphs or classes. If you
drag a class from the class list, only the key glyph of the class will be
inserted. If you want to insert all glyphs of the class, hold down the OpTION
key.

Navigating in the Sample String

You can also use the PaGe Up and PAGE DowN keys on the keyboard to
navigate within the sample string. The HomE and Enp keys will jump to the
beginning and end of the current line of text.

To scroll the window you can press the space bar and scroll the Metrics
window with the hand tool.

If the sample text is really long, switch the Metrics window into Preview
mode and use the hand tool to scroll the editing area.

557

558

Activating and Browsing Glyphs

Click on any glyph in the Editing area and it will be selected for further
editing. In metrics mode you will see the right and left handles that allow
you to change the sidebearings and in kerning mode you’ll see a pair
handle that highlights a position between the first and second glyphs in the
pair.

After you activate a glyph you can browse the glyph collection in the
current font. Use the "previous glyph" and "next glyph" shortcuts. By
default they are Cmp + [and Cmb +] respectively.

In Metrics and Kerning modes you can change a glyph in the string
just by clicking the related key on the keyboards or by quickly entering its
name.

Selecting Preview Size

If the local command area is in the top part of the Metrics window, type the
desired point size in the String Size field:

a2 3

or select one of the predefined sizes from the list.

If the local command area is at the bottom, you will get a size menu:

Size: 72 W

and two buttons to the right of it:
C L

Use these buttons to decrease or increase the size of the sample
string.

Both the combo box and the Size menu contain an Auto command. Select
it and the size of the sample text will be automatically selected to fit one
line of text (or two lines if the second sample string is not empty) into the
current vertical size of the editing area.

The Size menu (available when the local command area is at the bottom)
also has the Custom... command. Select it and you will see the following
dialog box:

String Size

P8 =5 T

-

Cancel) (0K ‘)

Type in the desired point size in the text field at the right or use the slider
to adjust the size. You will see the result immediately in the Metrics
window.

If the sample text becomes too large to fit in the window, a vertical scroll
bar will appear allowing you to view all the editing areas of the Metrics
Window.

559

Right-to-Left Mode

If you are working on a font that requires right-to-left reading, like Arabic
or Hebrew, you can change the Metrics window to the right-to-left mode.

string is written from right to left:

8eme Metrics - Arial Unicode MS
BE OO : E-B-M M E REFT
2145 983 1323
1 &
ay =
Gt m-m]
i}

¥ | Preview W | Size: 81 w | (@l Options [Tools = yfea? \fhEdifea >)lHE

Note: The Metrics window in FontLab Studio does not support OpenType
Layout features, so Arabic shaping is not automatically performed. You
need to explicitly enter the glyph names or Unicode codepoints of the
presentational forms to display the text.

Flipped Mode

Sometimes it is useful to see your font without being able to read the text.
It may help you to better visualize the even placement of the stems and to
recognize the rhythm of the black and white features.

Click on the Flip button ‘B to flip all the glyphs around their horizontal
axis:

pyw pLE.

IESE.
@
>

36|

The text remains editable and all the tools will work with the flipped text.

560

Previewing Outline and Nodes

Some commands in the View > Show Layers menu work when the Metrics
window is active:

Guidelines Global guidelines are visible in the current line

Glyph metrics Baseline is visible

o Vertical Font vertical metrics are visible in the current line
metrics

s Nodes Nodes are visible

(m Preview Outlines are filled

This means that it is not necessary to have the glyph outlines always filled
while you are working with font metrics. For example you may need to
switch off the fill and switch on the nodes to visually compare placement of
nodes in some glyphs:

N Sl Ve
ACCE]h

561

562

Customizing Colors

You are not restricted to black text on a white background. Open the
Metrics options page (Preferences > Metrics Window):

@Automatic line feed

"I Highlight all key glyphs in kerning and metric classes

@. Highlight all kerning pairs

@Apmv text template when item is selected in the table

Background: T—
Foreground: [] Dependant pairs: [

Font to use in the preview combo box:

A
@ Move focus to sample string when Metrics window is opened

Sort items in the kerning /metrics table: = By encoding _:]

Use these controls to customize the foreground and background colors:

!Eackgmund: |:1
|
\Foreground: A

As a result, you can get custom colors in the Metrics window:

ABCabc123

Editing Underline and
Strikethrough

To edit the position and width of the underline and strikethrough line
switch the Metrics window to the Preview mode. You can do this by
clicking on the Preview Mode button €7 of the Metrics Tools toolbar or by
selecting Preview in the mode-selection menu of the bottom command
area or by selecting the same command in the context menu that appears
when you Crre-click the editing field.

To get access to the controls for adjusting the properties of the lines, switch

the local command area to the top using this button: ‘2 (located in the
top-right corner of the editing area). This is how the Metrics window
should look:

enoe Metrics - Adobe Caslon Pro

BE He E-HBoMpe RERE

1 Auto |[§) [ABCabclZ3 @G-
Fl (o] = 100 1) w5 ‘e

3

iMi 742 660 746 427 304 411 [0 5000 500

Just above the ruler you can see the lines controls:

=]

o =

563

There are two buttons and four editing boxes. Click on the Underline

button | 2 | to show the underline:

8] = [“100 |(f k50 |3 [e
T3

660 746 427 304 411 500 500

ABCabcl12

As you can see, underline controls are now enabled so you can use this
-100

control: = " to change the underline position. Use this control:

usf 50

~ to change the underline thickness.

Use the Strikethrough button | ® | to show the strikethrough line and
enable the related controls:

a B =228 | =550 |
4 4

743 B0 EL L] 427 af 1 a00 a00

Strikethrough may appear together with underline or separately (as
pictured).

564

I Editing Metrics

This section discusses horizontal glyph metrics (the advance width and
the sidebearings, jointly referred to as just metrics), and kerning. In
FontLab you can modify this information either manually or automatically.

Horizontal glyph metrics can be modified manually in the Glyph window
by dragging on the sidebearing lines. However, this does not give you an
accurate presentation of the glyphs in context. The process of letterspacing
(devising of glyph metrics and kerning) should not be done for each
individual character separately. Inter-glyph whitespace should be designed
based on words and strings of text. You can do this in the Metrics Window.

To modify glyph metrics, switch the Metrics Window to the Metrics mode:

click on the Metrics Mode button i in the Metrics Tools toolbar or select
the Metrics command in mode-selection menu on the bottom command
area:

Fraview
Text

Kerning

You can also Ctrr-click the editing area and select the Metrics Mode
command in the context menu.

565

566

The easiest way to see the metrics of a glyph is to use the Property area:

My 36 2|26 S ome BOE L

i 427 206 and a6

hamb

%86
i Jis]
= -

By default, the Property area is empty. To make the metrics editing
controls visible, click the mouse button on a glyph in the editing field. The
metrics editing controls will appear and the sidebearings lines with editing
handles will appear at the sides of the glyph.

The numbers at the bottom of the glyph are the left and right sidebearing
values and the glyph’s advance width.

Manual Metrics Editing

To modify a glyph’s metrics you can use several methods:

1. Drag the sidebearings lines.

2. Drag the glyph within the editing area.

3. Edit the values in the property area of the Metrics Window.
4. Use the Metrics Panel.

5. Use the Metrics Table.

To drag the sidebearings lines just position the mouse cursor on the
line, press the mouse button and drag the mouse. Release the mouse
button when you are done.

To drag a glyph within the editing area, position the mouse cursor on
the glyphs’ image; press the mouse button and drag the mouse to position
the glyph inside its width. Press the OptioN key while dragging the mouse
to modify the glyph’s width.

You can also modify the vertical position of the glyph relative to its
baseline. Just press and hold the Surrr key on the keyboard while dragging
the glyph.

567

568

Using the Keyboard

When the glyph is active you can use the keyboard to adjust the metrics:

Left and right
arrow keys

Moves the glyph by one font unit inside the sidebearings without
changing the advance width. Hold the SHIFT key to move the
glyph by 10 font units

Cmd+left and

Moves the glyph together with the right sidebearing. This changes

right arrow keys the left sidebearing and the advance width. Hold the SHirT key to

move by 10 font units at each key click

Page Up

Moves to the previous glyph in the sample line

Page Down

Moves to the next glyph in the sample line

Any character

Selects the character you have clicked as the current character for

or digit editing. You can also enter the glyph name if you want to access
glyphs that are not assigned to any key combination

Cmd+] and Moves to the next and previous glyphs in the font.

Cmd+[

Using the Metrics Panel

a8ne Metrics - Adobe Caslon Pro

AFM AFM |y o 2 e _ 55

B B e WM |G ES

1 T Auo IE‘{ halburg ’i gf.
:5“-;' N)l h a ! b u r q =
N4 = | s3e 427 256 S04 S0k 341 485
i o+ | 26 43 1z 2 15 24 14
% | 1 E] 5 33 1z -1 -3
AY ke

T30 427 256 304 506 341 485

halburg .

The Panel always consists of four lines:

Nbl h 2 | b u ¥ q
| 529 427 256 504 506 341 485
« | oz 43 1z 2 15 24 14
+ | 1s 2 5 23 1z -1 -3

Click on any number in the panel to enter an exact value. Just use the
keyboard to adjust the number and press the RETURN or ENTER key when
you are done. The Esc key or a click outside the cell you are editing will
cancel the changes.

Use the Up and Down arrow keys on the keyboard to move up and down in
the panel. Use the TaB key to move right and SHIFT+TAB to move left.

569

570

Referencing Metrics

In the Metrics Panel, you can use glyphnames as a reference instead of the
real numeric values. For example, if you want to set the left sidebearing of
the glyph ‘B’ to be equal to the left sidebearing of the glyph ‘D’, click on the
cell located at the intersection of the B column and the third row:

EEQ

—

02

and, instead of the numeric value for the metric, enter “=D”. When you
click RETurN key to accept changes, the data will be copied from the source

glyph.

Using the Calculator

FontLab Studio has very simple calculator embedded in most editing fields
that allow you to enter formulas. Instead of entering a value you can enter
an equation:

650/2

Which will produce 325 — the value that appears in the editing field. This
calculator works in the Metrics Panel.

The basic 4 operations: + - / and * are accepted.

Using the Metrics Table

Click on this *E button on the Metrics Window toolbar or this ¥ button
on the bottom bar to open the table:

|Name |Width |Left 'Right@

‘A 743 -1 0

8 660 31 64

IC 746 | 48 38

(D 813 29 42

[E 690 46 29

IF 598 32 -12

G 818 48 36

| H 853 35 37

| 371 20 40

[332 |-77 |16

[k 712 |56 -10

fL 662 39 16

M 981 |8 31

[N 795 22 41

lo 821 48 48

P 607 31 19 |y
la 815 48 371 |v
: Al alyphs %8s

In metrics-editing mode this table has four columns: Name (contains the
glyph name), Width, Left (left sidebearing) and Right (right sidebearing).

You can click on the header of each column to sort table rows according to
the related value (name, width, left or right sidebearing). This is very useful
in finding glyphs whose metrics have particular properties.

571

572

To edit any of the metrics values, click on the table cell and enter the new
value. Click RETURN to accept it or Esc to cancel.

You can filter the glyphs that are listed in the table. To do so, use the Filter
selector control below the table:

Ll avohs

=
All glyphs

Selected glyphs |,
Glyphs in encoding

If you choose Selected glyphs, only the glyphs that are selected in the
Font window will appear in the table. Similarly, if you select Glyphs in
encoding, only glyphs that are in the current "yellow zone" of the Font
window will go into the table.

Metrics in the table are calculated according to the current state of the
measurement line — if it is active, all metrics are based on its position.

Refer to the next section for more information about the measurement
line.

Previewing Dependent Composites

Some of the glyph names in the Metrics table have a light-green mark at
their right:

4

This means that this glyph works as a base glyph in one or more composite
glyphs. For example, if you have an 'a’ glyph and 'adieresis’, 'acaron' and
'agrave' composites, the 'a’ will get this mark.

If you click on the mark while no glyph is currently selected for metrics
editing in the main panel, FontLab Studio will automatically generate a
sample string which has the "base" glyph first and all "dependent” glyphs
following:

(a/aacute/acircumflex/adieresis/agrave/aring/abreve/atildg fﬂ

e N O w av

addaaaaa

Use this feature to check that the metrics of the base glyph and dependent
glyphs are compatible.

573

574

Generating Context

If no glyph is selected for metrics adjustment and you click on a row in the
table, FontLab Studio will automatically generate some text around your
glyph to help with metrics editing:

HOHanon
HHHannn
O00ao000
XHXaxox

The content of this context depends on the type of the glyph: an uppercase
glyph will have more uppercase "neighbors" while a lowercase will get
lowercase context on the right side.

The Measurement Line

To activate the measurement line, click on this button: ¥f. You will see a
red line appear in the editing area:

HDBIO

When the measurement line is active (and visible), the glyph sidebearings
are measured not from the extreme points of the character (i.e. from the
bounding box), but from the point of intersection of the measurement line
and the contour:

Right sidebearing along the
measurement line

—P‘ <&—— Standard right sidebearing

The measurement line is very useful when you are setting metrics in a serif
font — usually the designer would like to ignore serifs when calculating
sidebearings and the measurement line gives you a natural way to do that.

575

576

Automatic Metrics Generation

FontLab Studio can automatically define glyph metrics using a special
algorithm. This algorithm usually produces good results but we
recommend manual editing for the best results.

To automatically generate glyph metrics, select the Auto command

in the Tools local menu or context popup menu of the Metrics Window.

The Automatic Metrics Generation dialog box appears:

Automatic Metrics Generation

You want to generate metrics for; All characters in current string |y !

How tight spacing should be?

Medium T‘ Custom metrics: s 30 ap 30

When do you want to keep existing metrics?

If new metrics will differ not more than |5 ! 10 %

How much must the shape of glyphs inflate to generate metrics?

Medium ':!

(Cancel'-f 3

This dialog box includes two areas: Area of application and Parameters.
In the first area you select the glyph(s) to which the automatic algorithm
will be applied.

The possible choices are:

Current character This option is the default if any glyph is selected in the
only editing area

All glyphs in the This option generates metrics for all glyphs in the current
current string string in the editing area
Whole font This forces FontLab Studio to generate metrics for all glyphs

in the font and is not generally recommended. This
operation is not undoable. FontLab prompts you and asks
that you save the current metrics information in a special file
from which it may be easily restored if you are not satisfied
with the results that the autometrics algorithm produced.

You can choose the parameters for the algorithm in the Parameters area of
the Autometrics dialog box. All the parameters are displayed. We
recommend that you experiment with various parameters using the
autometrics application.

577

578

Quick Save and Quick Open

You can use these commands to temporarily save the current state of the
metrics and kerning information. To quick save a metrics file, ~SAVE.AFM
in the Application user data/Autosave folder (typically Macintosh HD/Users/
Your Username/Library/Application Support/FontLab/Studio 5/Autosave), press

the B button on the toolbar.

To open a previously saved file, press the & button. The Warning dialog
box appears prompting you to save the current (modified) state of metrics
into the same temporary file.

Editing Kerning

To edit kerning data switch the Metrics Window to Kerning mode by
pushing the A¥ button on the Metrics Tools toolbar.

or, select the Kerning command in the popup menu that appears if you
Ctre-click in the editing area of the Metrics Window.

When you switch to the kerning mode and the metrics property panel is
visible you will see the total number of defined kerning pairs for the
current font appear in the property area of the Metrics Window:

Pairs #: .112 i

To make the Kerning Editing controls visible you must select the pair that
you want to edit. Position the mouse cursor on the right glyph of the pair
and click the mouse button.

You will see the Kerning Editing controls appear in the property area and
the kerning line and handle appear in the editing area:

e

Pairs #: 113 Kerning: -35

There is now a blue area in the metrics ruler. This means that negative
kerning exists for that pair (A and V) in the current font. If that area is
bright yellow, it means that kerning between the two glyphs is positive.

579

580

Manual Kerning Editing

To edit kerning manually, drag the kerning line (or right glyph of the
kerning pair) using the mouse. If you press the CtrL key while dragging
and release the mouse button, that kerning pair will be removed. You
will see that the total number of kerning pairs decreases.

Tip: if you hold OptioN key and double-click the right glyph of the pair, it
will be copied to the left of the left glyph:

AVol

L

before Oprron-double click to ‘o'

AoVoT

L

after Oprion-double-click
Using the Keyboard

When a glyph is selected in the sample string you can use the left and right
arrow keys to change the kerning by one font unit at each key click. Hold
the SHiFT key to change the kerning by 10 font units.

Use the Cmp+[and Cmp+] keys to change the glyph in the string and PAGe
Ur and Pace Down keys to move to the previous and next glyph in the
string.

Using the Metrics Panel

When the properties area is expanded and kerning editing mode is
activated you can see all the glyph metrics and pair kerning information in
the editing field:

M: A W A T 1
had 43 TOE 43 Toz 436
+ 1 28 -1 -8 -8
+ a -19 a 10 -24
ke e e |
[143 E3 Tk s | T4z [] Tz [] 4z]

VAT

Kerning is displayed on the fifth row in the Metrics Panel and each value is
positioned between the glyphs that form the kerning pair. The background
color for the kerning value is white when there is no kerning, light blue if
kerning is negative (glyphs are shifted toward each other) and yellow if
kerning is positive.

To change the kerning value, click on the kerning row in the table and
enter the new value. Click the RETURN key on the keyboard to accept the
changes or Esc to cancel. Use the TaB and Suirr+TAB keys to select a pair
in the sample string.

581

Using the Metrics Table

If the metrics table is visible (if not, use the +E button on the toolbar or
the £ button on the bottom panel to show it) in kerning mode it will have
three columns:

st 2nd Walue
gquotesing quotesing -36
quotesing s -64
A guotesing -74
A 0 -37
A L -23
A W =45
A W -67
A Y -74
A a =10
A o =20

The first two columns contain the names of the first and second glyphs of
the pair. The third column contains the kerning value. If the kerning value
is on a light-blue background it means that it is negative. Positive kerning
is on a light-yellow background.

If the digits are red-colored it means that this pair is a class kerning
exception (for more information about class kerning and exceptions see the
“Class-Based Kerning” and “Kerning Exceptions” sections below).

You can easily change the kerning for a pair — click the number in the right
column and enter the new value. Click RETURN to accept or Esc to cancel.

582

Filtering Pairs in the Table

The number of kerning pairs in a big font can be huge and navigating a
kerning table with a thousand rows may be difficult.

Use the filter control below the table to limit the number of pairs that are
put into the table:

LAl oairs -
All pairs
One glyph is selected
Both glyphs are selected
One glyph is in enceding
Both glyphs are in encoding

If you select All pairs, it will list all available pairs. The other options will
show only the pairs that follow the selected rule.

For example, to show all pairs that have 'A' on the left or right side, choose
One glyph is selected and select 'A' in the Font window.

If you select Both glyphs are selected and select 'A' and V', you will see
only two lines: AV and V A.

583

584

Generating Context

If no pair is selected in the editing field and you click on a pair in the
Metrics table, FontLab Studio will automatically generate sample text that
"highlights" the selected pair and allows you to see how the kerning in this
pair works in a real-life situation:

HOHAenon
HHHAennn

OOOAeo000
XHX Aexox

The selected pair appears in the middle of each string with some optically
unique glyphs on the left and on the right. Selection of these glyphs
depends on the case of the first and second glyphs of the pair: uppercase
glyphs will get uppercase neighbors.

You can customize the context by editing the Metrics.txt file located in the
Application user data/Data folder.

Deleting Pairs

Select a pair in the Metrics table and click on the BAckspAce (DELETE) key
on the keyboard. The pair will be removed.

Of course, you can use the Edit > Undo command to get your pair back.

Using the Kerning Dialog

You may add or delete kerning pairs linked to a selected glyph and enter
precise kerning values using the Kerning Information dialog box.

To open this dialog box press the ¥ * button on the Metrics window
toolbar and select the Edit Kerning command from the menu or select the
Edit Kerning command in the context menu of the main editing area. This
command is also available in the Tools menu on the bottom panel.

You will see the following dialog box:

Kerning Information

1st glyph | 2nd glyph |Kernin
=37
-65
-23
-67
-74
-10
=20
uotesingle -74 "
-24
-30

10

scH0

| lee=ee> >
EC""QQW-(

A > MRS = v =37 Z

Ist count: 11 2nd count: 8 Total pairs; 112

EShowkeming only for the current glyph ([Cancel) {’ 0K }

In the top half of the dialog box you see a table that has information about
all the kerning pairs in which the current glyph is on the left. Each row of
this table includes the name of the paired glyph on the right and the
kerning value.

585

586

You can sort this list by the names of the “right” glyphs or by the kerning
value. To sort the list, click on the header of the column that you want to
use as the sort key.

You can edit a kerning value or change the right glyph of the pair
using the edit controls below the list. The sample window in the bottom
part of the dialog box previews the selected kerning pair. You will
immediately see the result of the changes in the Metrics window.

To add a new kerning pair press the Add button. The currently selected
pair will be duplicated and you can change it. This is very useful when you
want to add a kerning pair that has a value equal to an existing pair but the
right glyph is different, as in the “Ta” and “Ta” pairs.

To remove a kerning pair select it and press the Del button.

Adding Kerning Pairs

To quickly add many new kerning pairs you can use the Add Pairs
command which is available in the context menu, Tools menu or in the
menu that appears if you click on the #¥ ~ button in the Metrics window
toolbar.

Enter kerning pairs followed by a kerning value in the editing box in the
top. You will see a preview of the kerning in the panel below:

Add Kerning Pairs

New pairs: 1st name, 2nd name, value separated by space or comma:
AV -100AT -70

AV|AT

| Cancel f: OK }

%

You can paste kerning data from a text editor, or table application, or click
on the & button to read kerning data from a text file.

587

Automatic Kerning Generation

The easiest way to apply kerning to a font is to use FontLab Studio’s
autokerning algorithm. This algorithm analyzes the shape of the glyphs in
the given pairs and automatically kerns them. You can control the pairs list
that the autokerning algorithm processes as well as other parameters.

To define kerning automatically press the ¥ T button on the toolbar
and select the Auto command in the popup menu.

The Automatic Kerning Generation dialog box appears:

Automatic Kerning Generation

¥ou want to generate kerning for: All pairs in the following... |3 |

Pairs list: Standard [|

_ | Respect kerning classes

How much white space do you want to leave between glyphs?

Custom 51 Custom: 40

When do you want to keep existing kerning?
MNever ﬂ ' 10 “%

| Allow far positive kerning

Maximum number of pairs to generate: 1024

Maximum absolute value for generated kerning: 10

(Cancel | (oK)

This dialog box consists of two areas: the Area of application and
Parameters.

In the first area you select the pairs for which the algorithm will compute
kerning values. You can choose between Current pair only (available if
one of the pairs is selected in the editing area), All Pairs in the current
string, or All Pairs in the following list.

588

The second area allows you to generate kerning for all the pairs located in a
special list file. The list files are stored in the Application default
data/Kerning folder (typically Macintosh HD/Library/Application
Support/FontLab/Studio 5/Kerning). You can create your own kerning pair
files or use one of the files placed there at the time of FontLab’s
installation.

If the Respect kerning classes button is checked, then the autokerning
algorithm will be applied only to key glyphs of the kerning classes and to
glyphs that do not belong to any kerning class.

The Parameters option lets you customise the autokerning algorithm. The
most used option is: How much white space do you want to leave
between glyphs? This controls how close the glyphs will be moved
together while computing kerning in the pair.

The Allow for positive kerning check box lets the autokerning algorithm
produce positive kerning in pairs. Positive kerning moves glyphs apart
from each other. Positive kerning is usually not recommended but there
may be occasional circumstances where it is needed.

If you want to save the existing kerning the popup menu lets you control
the disposition of the existing (imported or manually created) kerning
pairs. You can replace existing pairs by automatically generating new ones,
keep them unchanged, or select the condition mode.

The Maximum number of generated pairs and Maximum absolute value
for generated kerning options control the possible number of
automatically created pairs and the maximum normal (negative or
positive) kerning value.

589

Resetting Kerning

To remove the kerning information for some glyphs or for the entire font
you must use the Reset Kerning feature. To open the Reset Kerning dialog
box press on the #¥ button and select the Reset Kerning command in the
popup menu.

The Reset Kerning dialog box appears:

Reset Kerning

What exactly do you want to do?

" Reset kerning for all pairs in the string

) Reset kerning for all glyphs in the string

f® Limit the number of kerning pairs to 1000

") Delete all pairs that are less than 10 -
"I Check all masters of the MM font

_) Completely reset kerning in the current font

| Cancel) (OK \)

This dialog box includes options that control kerning removal.

Available options are:

Reset kerning for the This is the default if a pair is selected. Removes kerning

current pair for that pair only. You can get the same result by
pressing the CTRL key while editing kerning for the
current pair

Reset kerning for all pairs Default if no pairs are selected. Removes kerning in all

in the string pairs that exist in the current string

Reset kerning for all Removes kerning in all pairs that include glyphs in the

glyphs in the string current string

Limit number of Kerns only the given number of pairs with the largest

kerning pairs to... absolute kerning value

Delete all pairs that are Removes all pairs that have a kerning value less than the

less than... given value. The absolute value of kerning is compared

Completely reset kerning Removes all the kerning pairs available in the font.

in the current font Because this is not an undoable operation, the warning
dialog asks you to save the current metrics and kerning
data in the temporary file.

590

Adjusting Metrics and Kerning

If you want to change metrics or kerning by some fixed value and the
manual process will take too much time, you can use the Actions dialog

box.

1. Switch to the Font window.

2. Select the glyphs that you want to process.

3. Open the Actions dialog box using the Tools > Action command.

4. Inthe dialog box select the Metrics > Adjust metrics action:

Actions

Select an action:

I» Contour
I+ Hints and Guidelines
= Metrics

Set width (600 C)

Set sidebearings (550, 550) c
Center glyph

Autospacing 5:2 112 N
Adjust metrics (0000) by O units c v

Current action: Adjust metrics and kerning

__| Apply to entire font

Left sidebearing Adjust by: 8 Units ﬂ i
Right sidebearing =

Width __| Shift the Mask layer

Kerning __ Use the measurement line

M Affect composites

1§ Cancel } (: OK :}

591

592

In the options area select the metrics that you want to change:

Left sidebearing
Right sidebearing
Width

Kerning

=l

Enter the amount by which you want to adjust the values and select the
units (which can be font units or a percentage of the source value).
Enter a positive number to increase metrics distances or kerning or a
negative value — to decrease.

Normally metrics are measured from the bounding box. You can
change this, however, if you want, to measurement from a
measurement line by using the check box.

The Affect composites option lets you choose what will happen with
composite glyphs that reference glyphs whose metrics you adjust using
this action. If the checkbox is on (which is the default) the position of
the components in composites will be adjusted to compensate for the
change of the left sidebearing of the referenced glyph, so the shape of
the composite is not changed. If you want to avoid this effect, uncheck
this option.

The measurement line is a horizontal line (defined in the Glyph
Window) that defines a “slice” which is used to measure the distance
from outline to sidebearings. Please refer to the “Glyph Window”
chapter for more details.

Class-Based Kerning

Some glyphs in a font may have a similar shape and may be kerned equally.
For example, “A” and “Acaron” will have the same kerning value if kerned
with “T” or “Tcaron”. With the standard kerning system this will require 4
kerning pairs. If the number of similar glyphs in the group increases, the
number of necessary pairs will rise dramatically.

A better way to handle the kerning of similar glyphs is to define glyph
groups or classes. In our example the first class will contain the glyphs “A”
and “Acaron” and the second “T” and “Tcaron”. Then we will need to define
only one pair and all glyphs in both classes will be covered.

Kerning classes may save a lot of time if you need to kern a font that
contains a lot of similar glyphs. The typical number of class kerning pairs
(which define kerning between classes) is a few hundred. Compare this to
several thousand pairs that are necessary to define the same kerning data
using traditional methods.

Classes are also actively used to define OpenType features that are
applicable to a set of glyphs, so we will return to this subject in the
“OpenType Fonts” chapter.

593

594

Class-Based Kerning and OpenType Fonts

By default, FontLab Studio will keep a class-based kerning structure when
you open an OpenType font that has it. For each kerning class Studio will
automatically generate a class name and mark the first glyph in the class as
the key glyph. This feature allows you to work with the huge kerning tables
of some OpenType fonts in a comfortable environment that excludes most
repetitive pairs.

When you finish edit kerning pair values in the Metrics window you need
to create a “kern” feature that will build kerning into the final OpenType
font. You can use the special macro program available in the Macros
submenu of the Metrics window context menu or you can simply remove
the kern feature and FontLab Studio will automatically generate a new one
on export of the OpenType font.

Classes Panel

To define glyph classes in FontLab you need to use the Classes panel.
Open the panel using the Panels > Classes command from the Window

menu.
|| Classes
d[Jﬂ - v X -
¥ A Vel) Name Unicod |Width [<-- |--> |Type
¥ _A_left LIk 6] 5 0047 665 47 45
*_B "’.:f‘f. 5| Gbreve O11E 665 47 45
[=
- Bolen LY G| Goircumflex 011€C 665 47 45
¥ C v v =
o b ikt Cer | | [GlGeommaaccentoizz 665 47 45
g e | O|cdotaccent 0120 665 47 45
¥ _)_right @ GG Ghreve Grircumflex Coommaaccent Gdotaccent
E] |l T
E H el -
Kerning I |
+ [

5 glyphs in this kerning class Accept

This panel contains a toolbar, a list of classes, a class preview panel, a class
definition panel and a status bar that tells you how many glyphs are
defined for the current class.

On the toolbar there are several buttons:

ad

o v
File
operations

)
.
Reset Classes
Open Classes...

Generate Classes...
Clean Up Classes

Sawve Classes...
Close Panel

Reset classes — removes all classes

Open classes — opens the class information from the text file

Copy classes from a Font — copies all classes from another
opened font

Generate Classes... — automatically generates kerning and metrics
classes using advanced optical algorithms

Clean Up Classes — checks all glyphs in all classes and allows you
to remove nonexistent glyphs or tries to automatically create them
Save classes — saves information about the font classes to a text file
Close panel — closes the Classes panel

595

596

We will discuss all these commands below.

Use this button to select one of the class preview modes in the drop-
down menu:

L=
Large lcons

List
+ " Details

£8 .| Choose
view mode

i Selects all glyphs that belong to the current class in the Font window
Select class

W Marks all class glyphs in red

Mark class

x Remove Removes the glyphs selected in the class preview panel from the class
glyph

Add as Adds the glyph selected in the class preview panel to the current

Component glyph window as a component.

Three additional buttons are in the status bar:

+ - Defines a new class
Add class
i Removes the current class
—— Remove
class
Accept Click this button to accept the changes made to the class definition
code.

Class Definition

Every class is defined as a list of glyph names preceded by the class name:
_s3: s' scircumflex scaron

The class name may only include uppercase and lowercase English letters,
digits as well as underscore (_) and period (.). Spaces and special
characters are not permitted in class names!

There are three types of classes:

Kerning classes. These are used to group together glyphs that will share
the same kerning value. If a kerning pair is defined or changed for one of
the glyphs in the class, the remaining glyphs will automatically share the
same kerning value. The name of a kerning class must start with an
underscore (e.g. _a).

Metrics classes. These are used to group together glyphs that will share
the same metrics (advanced width and sidebearings). If metrics are
changed for one of the glyphs, the user can quickly propagate the change to
other glyphs using Metrics Assistance. Note that unlike with kerning
classes, the changes made to one of the glyphs in a metrics class are not
automatically reflected in the other glyphs. The name of a metrics class
must start with a period (e.g. .n).

OpenType classes. These are used in OpenType Layout feature
definitions. For example, the layout feature for old style figures (“onum”)
may replace a class of lining figures with a class of old-style figures. The
name of an OpenType class must start with an uppercase or a lowercase
letter (e.g. smcp2).

Each kerning class and each metrics class must have exactly one key
glyph defined — this is done by following one of the glyph names in the
glyph definition by the quotesingle (') character. The key glyph acts as a
“representative” of the class. The user defines the metrics or kerning for
the key glyph and then — automatically or semi-automatically — the
changes are propagated to the remaining glyphs in the class. A metrics or
kerning class may not contain more than one key glyph. All non-key glyphs
are called dependent glyphs or child glyphs.

The class definition appears in the bottom part of the panel and you can
edit it to add or remove glyphs.

597

598

Defining the Class

Click on the | * - button to define a new class. From the flyout menu
select New Kerning Class, New Metrics Class or New OpenType Class.
Choose New Kerning Class. You will see a default class name appear in the
list of classes and in the class definition panel:

_kernt:

You can manually enter glyph names that you want to add to the class
after a colon:

_kern1: A Acaron

or you can drag-drop glyphs from the Font Window to append their
names to the class.

Tip: Use the Edit > Find command to quickly find all glyphs which have
names begin with 'A'.

Find Glyph
‘Name %) (begins with |3 [

A 0041 m

AE 0o0Ce
AEacute O1FC
AEacute_small

AEsmall i

Aacute 0oc1 v

Total: 28

| Create unexisting glyph iHllw| [Cancel) (oK \"

Click on the 2] Select button to select all the glyphs found.

It’s time to rename the class. Use the class definition panel and change

“_kernl” to “_A”. Click on the Accept button. Your Classes panel should
now look something like this:

Classes
95 v }(: -
K
Adieresis Aring Agrave Atilde
ﬂ Al A] A
Acircumfle Aacute Abreve Amacron
_AC A Adieresis Aring Agrave Atilde Acircumflex Aacute

Allielassas ﬂ Abreve Amacran

+ - W

9 glyphs in this kerning class Accept

Repeat the procedure to define a class for “T”-like glyphs.

Important: After making any changes to a class definition, click the
RETURN key on the keyboard or the Accept button on the Classes panel.

599

600

Key Glyph
Kerning classes must include a declaration of the key glyph that is used as a
kerning master for other glyphs in the class.

To define a key glyph, add a single quote (') after its name in the class
definition text:

= o . =
A A A A A
A Adieresis Aring Agrave Atilde
- ’ - -
A A A A

Acircumfle Aacute Abreve Amacron

_ADA Adieresiz Aring Agrave Atilde Acircumflex Aacute
Abreve Amacron

After you accept the changes made in the class definition string, the key
glyph will get a yellow background in the preview panel.

Rearranging Classes and Glyphs

You can easily rearrange classes in the class list by dragging them to a new
place. Also, you can copy glyphs from one class to another using the drag-
drop method:

1. Select the glyphs in the source class.
2. Dragthem to the class list.
3. Drag over the classes list until the destination class is selected.

4. Move the mouse cursor to the glyph palette at the right and release the
button — you will see that the glyphs are added to the destination class.

601

602

Editing Class-Based Kerning

To define kerning for a class you need to define the kerning for the key
glyph of the class using the standard tools of the Metrics window in
kerning mode.

When you enter glyphs that are used as key glyphs into the kerning-editing
string and select a pair of them for kerning editing you will see two buttons
appear below the glyph images:

AVA

]

If you click on one of these buttons you will see a popup menu that lists all
classes where the glyph acts as a key glyph:

Select the class name and it opens for preview in the Classes panel.

Similar buttons appear when you edit kerning using the Kerning Editor
dialog box:

Al v

Their purpose is the same — to preview classes in which the currently
selected glyph serves as a key glyph.

Tip: Hold down the Cmp key and click on the “® icon in the Metrics
window. If a glyph is a member of the class, it will be replaced by the key
glyph of that class.

Side of the Class

When kerning for the key glyphs is defined, you may apply the kerning
value to other glyphs of the class. To do that you need to specify if the class
contains glyphs that must have the same kerning on the left or on the right
side. For example, the B D E F H glyphs all have the same shape on the left
side, so in many cases the kerning pairs where they are the second glyphs
will be the same:

oB oD oE ol oH

This means that in this case 'B' is the key glyph of the "right" or "second"
class — its members are the second glyphs in a pair (which is "right" in the
case of left-to-right writing scripts).

From the other side, such glyphs as D O Q and Oslash have roughly the
same shape on the right side, so they can work as the first glyph in a pair:

Dv Ov Qv Qv

Some glyphs may have the same shape on both sides, which may mean that
they can be used as first or second glyphs in a pair.

To specify the "side" of a kerning class, you may use the Kerning Assistance
panel or the checkboxes in the class list:

KA vl I
Gl [
B [[
B D [&[]
B R [&[]
E_5 v @[
BT [
| v]

A check box to the right of the central dot means that a glyph in this class
may act as a second glyph of a pair (as in our first example above). A check
box to the left means that the class contains first glyphs of pairs.

603

604

Generating Kerning Classes Automatically

FontLab Studio 5 has a very smart algorithm that can automatically
generate kerning and metrics classes.

Click on the command menu button in the Metrics window toolbar to open
the menu:

Fooer

R

Auto...

Add Pairs...
Reset Kerning...
Edit Kerning...

Assistance...

Select the Generate Classes command. You will see a dialog box:

Automatic Classes Generation

Perform analysis between
Baseline _:] and = Caps Height —:!

EAdjust for smallcaps and lowercase

@ Generate metrics classes

@ Generate kerning classes B

! Compress flat kerning to class kerning after classes are generated
™ Do not mix characters from different scripts in the class

| Only combine glyphs compatible on both sides

-." Cancel) { 0K \ﬁ

To generate metrics and kerning classes FontLab Studio analyzes the shape
of the glyphs. Those glyphs that have similar shapes on the left or right side
are combined into a kerning class. If both sides are similar then a metrics
class can be generated.

The first group of controls defines the area that is used to analyze glyph
shape. The preview to the right shows this area. It could be from baseline
to Caps height or from descender to ascender or any combination.

If the Adjust for smallcaps and lowercase option is active, then it will
automatically lower the top line of the area if lowercase or small caps
glyphs are analyzed.

The controls in the bottom allow you to choose what kind of classes you
want to generate. These could be metrics or kerning classes or both.

If you want to generate kerning classes, you will get a few more options:

Compress flat kerning to class kerning after classes are
generated

If this option is on, then FontLab Studio will not only generate kerning
classes but also convert plain pair kerning into class-based kerning. This is
the fastest way to convert plain TrueType or Type 1 kerning to modern
OpenType-based kerning.

Do not mix characters from different scripts in the class

If this option is active (which is recommended) then FontLab Studio will
check the Unicode index (or some other properties if Unicode is not
defined yet) to check that glyphs that belong to different scripts will not go
into the same class. In other words, even if Latin 'A' and Cyrillic 'A' are
identical, they will not go into the same class.

Only combine glyphs compatible on both sides

Activate this option if you want to get smaller classes with much more
similar glyphs. Usually if this option is on, only base glyphs and composite
glyphs that reference the base will be combined into a class.

Generate Classes

This command is also available in the File menu "8 T of the Classes panel.

605

606

Kerning Exceptions

Suppose you have two kerning classes and some kerning is defined
between their key glyphs. The "Side" properties are set correctly so all
glyphs from both classes are kerned:

ke Kd ke

As you can see, last pair in the sample above has an obvious conflict — the
right glyph overlaps the left glyph.

To fix this situation we can use class kerning exceptions — individually
kerned pairs that correct class-based kerning. In the example above, we
will define a new kerning pair between F and egrave:

ke kd Fe

Notice that the bar below the kerning pair has a different color: "real"
kerning of the key glyphs is black, a "virtual" kerning pair which is a result
of class-based kerning is gray and an exception is red.

Similarly, in the kerning table the kerning value for exception is colored
red.

Class Kerning Modes

To control how class-based kerning and exceptions work in the Metrics
window, choose one of the class kerning modes.

Click on this button in the Metrics window toolbar:

S
Class kerning

¥ Class kerning with exceptions
Class kerning in key pairs only

Individual pair kerning (class kerning is off)

Class kerning

If this option is active, only class kerning is editable and no exceptions are
allowed. So if you have kerning defined between "left" _A class and "right"
_T class, then if you change the kerning between any two members of the
class, it will be the same as if you had changed the kerning between the two

key glyphs.
Class kerning with exceptions

In this case if you modify the kerning between two members of a class that
are not key glyphs, you will define an exception.

Class kerning in key pairs only

This option allows you to modify kerning only in key glyphs, all other
members of the class are "locked".

Individual pair kerning

If this mode is active, class kerning is completely ignored.

607

Previewing Class-based Kerning

In the Metrics table key glyphs of the classes have a light-blue area to the

right of the glyph name:
A, C 47
2, T a5

If you click on this area, FontLab Studio will automatically generate a
sample string that contains the second glyph of the pair kerned with all
glyphs of the class:

a8 -, O
If you press the OptioN key and click on the class area of the pair of two key

glyphs, it will generate a sample string that contains all combinations of all
glyphs of the two classes.

Instead of clicking on the class area, you can press Cmp and click on the
glyph name.

608

Kerning Classes and OpenType Kerning

OpenType fonts (TrueType or PostScript flavored) may have kerning in
two places: the kern table and the kern positioning feature.

The kern table may contain only plain kerning, not dependent on any
classes. It is used by applications that don't know how to use OpenType
positioning features.

The kern feature allows you to define very complicated kerning, which
includes class-based kerning and even more complex things like three-
glyph kerning or context-dependent kerning.

FontLab Studio 5 allows you to generate both types of kerning data blocks
in the exported OpenType font file. This is controlled in Preferences >
Generating OpenType and TrueType > Kerning:

@ Export "kern” table

__ Expand class kerning while building [kern] table

E Cenerate "kern” feature if it is not defined

As you can see, there are two check boxes: Export "kern" table and
Generate "kern" feature if it is not defined.

The first check box also has some options that control kerning expansion —
conversion of class-based kerning to plain kerning supported by the table.
We will discuss kerning expansion in the next section.

It is important to understand that the only way to put class-based kerning
into the final font file (and keep it as class kerning, without expanding it to
plain table) is to build the "kern" feature. You can do it manually, using the
OpenType editor described on page 851 or you can use the automation
tools provided by FontLab Studio.

609

610

Please note that if you have the kern feature already defined, all
changes that you make in kerning or in classes or in class
kerning properties will have no effect until you re-generate the
kern feature.

There are three ways to update the kern feature:

1. Use the Generate command from the Metrics window context menu
(in Kerning mode).

2. Use the same command located in the File menu of the OpenType
panel.

3. Use the Kerning Assistance dialog box that is described below.

Kerning Assistance

FontLab Studio has a special dialog box that can simplify the creation of
class-based kerning. Before you start using it, define some kerning classes
(which have their name preceded by an underscore and one of the glyphs
in the class is selected as a key glyph).

To open the Kerning Assistance dialog box use the Tools > Kerning
Assistance command:

OpenType Kerning Assistance

SN ===

1st Classes 0 2nd Classes

M A A M _0_left, 0 0
™ 88 M PP

M cc ¥ RR

™ _E_right, E ™ s s

® GG M 7T

M _H.H # Uu

™ __right, | = _V,W

@ KK ¥ xx

oL ™ v,y

@ M. M " ’E _Z, i i
™ _0._right, O o B T =

AZ|AZ AZ|AZ AZ AZ

There is no kerning defined for this pair

-_A: A' Aacute Acircumflex Adieresis Agrave Aring Atilde Abreve Amacron e
Acgonek Alpha Lambda Alphatonos ;

(_ Cancel -.I | Expand -'Ccmpress] Update [kern] feature | (Save 3

The dialog box has a toolbar at the top, two lists of kerning classes (for left
and right glyphs in the pair) and a sample panel that shows the result of
kerning of the pair.

611

612

The left and right lists contain all the kerning classes of your font. The
classes on the left contain the first glyph of a pair. The right list contains
second glyphs of pairs. Check the classes that may act as a first glyph (see
previous section for explanation of the class side). Those classes which are
kerned with the key glyph of the "left" class will be highlighted with a
yellow background and the sample panel below the lists will preview
combinations of glyphs from the first and second class that are currently
selected.

The actual kerning positioning and the exact kerning value come from the
kerning of the key glyphs of each of the kerning classes. This means that if
you have an “_A-class” and a “_V-class” which have ‘A’ and ‘V’ as key
glyphs in each class, respectively, you must define the kerning for the “AV”
pair using the Metrics window. If you then checked “_A-class” in the left
list and “_V-class” in the right list all glyphs in these classes would be
kerned by the same value as the “AV” pair.

A preview panel in the bottom of the dialog box can preview the result of
the class kerning. Left-drag to scroll the preview panel and see more
sample pairs.

Click on the Right-to-left © button on a toolbar to show the preview in
the right-to-left direction.

Buttons on the toolbar for working with the kerning data:

K Open data file Opens the data file with the kerning assistance
information. FontLab Studio can open data files saved by
itself and kerning assistance files saved from
Fontographer®. In the latter case Studio will
automatically generate kerning classes and check them in
the list similarly to the Fontographer® Kerning
Assistance dialog box

Ko Save data file Saves current kerning assistance information to a data
file so you can apply it to a different font

7} Select all left Checks all items in the left list

D Deselect all left Unchecks all items in the left list

= Select all right Checks all items in the right list

O Deselect all right Unchecks all items in the right list

@ Validate Checks for errors

r1L |Right-to-left Shows the preview in the right-to-left direction.

Defining a New Class

You can define a new kerning class without leaving the Kerning assistance
dialog box. Click on the 2 button and enter the class name and list of

glyphs in the panel that is below the preview panel. Click the Accept ¥
button to add the new class to the lists. Do not forget to mark the key glyph
of the class with the single quote character: "_kerni: A' Agrave"

Editing the Class Code

Use the class panel (located below the preview) to change the class —

remove or add glyphs. Click on the Accept . button to put the changes
into effect.

613

614

Expanding Kerning

Sometimes you may need to convert class-based kerning into a plain
kerning table. To do so click the Expand Kerning button. You will see a
dialog box that lets you customize the expanding process:

Expand Kerning

With this function you can convert class-based kerning
to some pair kerning table. Note that this may result in
generation of thousand of new kerning pairs.

Eﬁ Create only pairs with glyphs in these codepages/encodings:

| Contents of the cmap (1,0) table
| Current codepage in the Font Window
Codepages

E

ncodings

I
B

: Keep existing pairs

E Limit total number of pairs in the table to: 2048

(Ccancel) (_Expand)

Expanding class kerning may generate a lot of new kerning pairs: if you
have two classes kerned and each has 10 glyphs expanding will create 99
new kerning pairs. To let you control this process we introduced filtering
options.

The first option, Create only pairs with glyphs in these
codepages/encodings, lets you select the languages that you want to
support by the new expanded pairs. Select one or more codepages or
encodings and FontLab Studio will generate only those pairs that have
both glyphs in one of the selected codepages or encodings.

The second option, Keep existing pairs, allows you to control the
preference of existing kerning pairs over the new automatically generated
pairs.

The third option, Limit total number of pairs..., allows you to limit the
total number of newly generated pairs. Filtering is based on the absolute
value of the pair — pairs with bigger values (positive or negative) have a
better chance of being generated.

After you select your options and click the Expand button FontLab Studio
will calculate the number of new and modified pairs and issue a warning.
Click Yes to continue or No to cancel.

Compressing Kerning

FontLab Studio can perform an operation that is the opposite of expanding
class-based kerning. It is called kerning compression. If you have some
plain kerning in your font and have defined some kerning classes
(manually or automatically), you can convert plain kerning to class
kerning. Click on the Compress button. You will see a warning message
and if you press on the Compress kerning table button FontLab Studio
will analyze the kerning table and classes and try to remove plain kerning
pairs that are unnecessary if class kerning is correctly defined for the font.

Updating the "kern" Feature

If you change some properties of the kerning classes in the Metrics
window, Classes panel or Kerning assistance dialog box, this updated
information will be stored in the font (and saved in the VFB file) but will
have no effect on the exported OpenType font. To put class kerning into
effect you need to store it in the form of a "kern" feature that is compiled
into a binary glyph positioning table.

To update the kern feature click on this button:

| Update [kern] feature |

615

You may open the OpenType panel (Window > Panels > OpenType) to see
the new kern feature:

'C) OpenType

Name . enum pos F @_4 —49;
L enum pos F[AE AEacute] —49; E]
cpsp enum pos F @_g -56;
kerm enum pos Fo[0e oeacute] -56;
aalt enum pos F @_o_right -15;
c2sc enum poz F [cd e qoe ccedlllu eacute ecircumf lex ed
enum pos F @ _comma -156;
Jacn ehum pos N @_commg —42; a
DAY enum pos x @_o_right —48; v
case [] 40k
Inum [@FIGURES = ['
pnum AFIG_TAE_LINING @FIG_FIT_LINING @FIG_FIT_OLDSTYLE @F
tnum Ii
-
b v | @NUMERATOR_ALL = [y
@FIG_NUMERATOR @MISC_NUMERATOR v
+[®] e > o

If you want to understand what this means, please refer to the “OpenType
Fonts” chapter on page 825.

616

Metrics Assistance

Another way to use classes is to adjust the metrics (advance width and left
and right sidebearings) in the glyphs that belong to the class. Use the Tools
> Metrics assistance command to open the Metrics assistance dialog box:

Metrics Assistance

="s| @ 0O
Class Name | Copy Metrics fAcIi_ust_
M oaa left, width 10 units
@ HE 0 units
™M cG 0 units
MM 0 units
A A ML COrR ®w 1d 5 Cunies

" Use the measurement line

AAAAAAAAAAAAA

A_AAdlerems_Armg Agrave Atilde Acircumflex Aacute Abreve Amacron v
fal

Acgonek Alpha Alphatonos Lambda

(_ Cancel) (" Apply and Save) (Save \’

It has a toolbar, a list of the metrics classes, a command area, a preview

panel and a class information panel that lets you change class definitions
and define new classes.

Before you start using class metrics, define some metrics classes (their
names must start with a period). You can do that inside the Metrics

assistance dialog box, but adding classes with the Classes panel is much
easier.

617

618

The typical procedure to define class-based metrics:

1. Select the class in the list.

2. Check the checkbox to the left of the class name to indicate that that
the class must be processed.

3. Inthe control area below the list check the metrics you want to copy
from the key glyph of the class to the rest of the glyphs. It could be L
for the left sidebearing, R for the right sidebearing and W for the
advance width.

4. Ifyou want, you can use the Adjust field at the right of the control area
to change the metrics when they are copied from the key glyph of the
class. Enter a positive or negative value and select the units — font
units or percent of the original value.

Of course, you can generate some metrics classes automatically using the
Generate Classes feature described on page 604.

Optionally you can measure sidebearings along the measurement line,
which may be very useful if you are working with a serif font.

Use the preview panel to see the effect of your actions. To apply the new
metrics click the Apply and Save button. Click on the Save button to store
the metrics assistance information without actually changing the glyph
metrics.

The editing field below the preview panel lets you change the class

definition. Click on the ¥ button to accept changes. To create a new class,

press the .2 button.

Use the toolbar buttons to perform additional operations in the Metrics

Assistance dialog box:

1_ | Open data file

Opens the data file with the metrics assistance
information. FontLab Studio can open data files saved by
itself and metrics assistance files saved from
Fontographer®. In the latter case Studio will
automatically generate classes and import all information
that is compatible with the FontLab Studio metrics
assistance feature

M, | Save data file

Saves current metrics assistance information to the data
file so you can apply it to different fonts

Select all

Checks all classes in the list

O Deselect

Unchecks all classes in the list.

619

620

Editing Metrics Class Properties in Classes
Panel

You can define "left", "right" and "width" properties of the metrics class
without opening the Metrics Assistance dialog box. If you look at the
metrics class in the Classes panel you will see that it has some controls to
the right of the name:

M zsmall LR
M H L [w|w [R [w

These check boxes mean the same as the L, R and W controls in Metrics
assistance. Use them to declare the properties of the metrics class.

You will have to open the Metrics assistance dialog box to apply metrics
class relations and adjust metrics accordingly.

Opening Metrics Files

FontLab Studio allows you to import metrics and/or kerning information
into the current font. Using this feature, you can create metric and kerning
information once and use it in several similar fonts.

To import a metrics file into FontLab Studio click the & button on
the Metrics window toolbar (or choose File > Import > Metrics). You will
see the standard Macintosh Open File dialog box. Select the metrics file
that you want to import (in PFM or AFM format) and press the Open
button.

The Import Metrics dialog box appears:

Import Metrics File

Import results:

Import of metrics file

fUsersjffantlab/Dezktop ffreefontpro.afm was successful. It
contains metrics for 1029 glyphs 1029 of which exist in the
current fant. Owverall metrics compatibility iz 100.00%.
Average width difference is 0. Metrics file includes 112

-

What do you want to do with metrics data?

Replace only metrics that are close toc... | %]

Allowed difference between metrics: 10 %

What do you want to do with kerning data?

Do nething 49

What do you want to do with other data?

Do nothing 5 |

Cancel | (Ok “1

The topmost control contains a legend describing the metrics file that you
are importing and its compatibility with the current font.

621

622

The options below let you select various metrics importing options:

What do you want to do with the metrics data:

Do nothing Do not import metrics data from this file
Replace all metrics Import all metrics data (glyphs’ widths and
in the current font sidebearings) and replace the metrics data in the

current font. We recommend that you use this option
only if your font is very similar to the metrics file that
you are importing

Replace all metrics that are Replace only those metrics records that are similar to

close to current the imported metrics. The Possible difference
between metrics option controls the allowed
difference

Replace metrics that are These options are obvious.
thinner than in the current
font

Replace metrics that are
wider than in the current
font

What do you want to do with the kerning data:

Do nothing Do not import kerning data from the metrics file
Completely replace kerning Remove all existing kerning pairs and replace them
data in the current font with pairs imported from the metrics file

Add imported Leave the existing kerning pairs unchanged but add

kerning data to the current new kerning pairs from the metrics file
font

Add new kerning Import information about the glyphs that form each
pairs but autokern them kerning pair in the metrics file and apply an
autokerning algorithm to these pairs.

The What do you want to do with other data? option controls the font
header importing option. FontLab Studio can import the Font Info data
from the metrics file and replace the current font info data if the Replace
this data in the current font option is selected.

Note that when you open a metrics file while editing the metrics of a
Multiple Master font only the metrics and kerning of the currently selected
master will be replaced. Be careful.

Saving Metrics Files

When you export a font file in Type 1 font format the metrics files (in AFM
and PFM formats) are automatically written. The TrueType font format
includes all metrics information so it is not necessary to export additional
files.

However, if you want to export a metrics file alone, you can always do
AFM

so by using the Metrics Window. Just press the E button on the Metrics
Window toolbar (or choose File > Export > Metrics). The standard Save
File dialog box appears:

Save
Save As: freefontpro.afm @
Where: | TestFonts ﬂ
Format: Adobe Font Metrics T!

| Save the INF file when AFM is saved

| Cancel) (Save 79

Select the destination format (AFM or PFM for single master fonts and
AMM or MMM for Multiple Master fonts), and the destination directory.
Enter the file name and press the Save button to save the metrics file.

You may choose whether to save the font information (.inf) file along with
the .afm metrics file or not.

623

Printing

While you are in the Metrics Window you can print sample strings with or
without metrics and kerning information. To do so select the Print
command in the File menu.

Choose the Font Sample page:
[Frmtmg

Font sample €3

Font Table Text to print:

hamburgevens

w hamburgevons

Font Sample

i Textsize: 48 E| _Word wrap | Print right-to-left
HEs
Font Waterfall ™ Fill outlines
> _| Apply kerning v
£| |21 Print metrics data

Gilyph:Sample " Print underline

[comsn
|and

Clyph Warterfall

[Cancel) {-\ Print)

You will see that the "A text to print" field is populated with the sample
string from the metrics window. Select other appropriate options and click
OK to print the sample.

Check the “Printing and Proofing Fonts” chapter on page 277 for more
printing options.

624

Actions

In FontLab Studio you can transform glyphs in many ways. You can edit
glyphs and glyphs’ metrics manually using the Glyph and Metrics windows
described in previous chapters. Or you can use FontLab Studio’s actions to
edit glyphs or metrics automatically. Actions may be applied to one glyph,
to a range of glyphs selected in the Font window, to a special set of glyphs
(only to letters or only to digits, for example) or to a whole font. All actions
are carefully designed and often produce high-quality results that do not
require manual control or correction.

In this chapter we will show you how to use the actions and give a detailed
description of each available action.

The Actions Dialog Box

The easiest way to apply actions is to use the Actions dialog box. It is
accessible from the Tools menu while the Font or Glyph window is active.
Select the Action command from the Tools menu and you will see a dialog
box:

Actions

Select an action:

[» Contour

[+ Hints and Guidelines
= Metrics

[+ Effects

Current action:

] Apply to entire font | Cancel |

Note: in previous versions of FontLab, this dialog box was called
Transformation.

If you open this dialog while the Glyph window is active the action will be
applied only to the glyph currently open. If you open it while the Font
window is active then the action will be applied to all selected glyphs.

626

To choose an action to run use the list of actions:
Select an action:

[Contour

[Hints and Guidelines
= Metrics

[+ Effects

Expand one of the categories to see all the actions:

- Contour
Shift (0, 0)
Mirror [H]

Scale (80.00, 100.00) HMZ
Rotate (15.00° CW) Z

Slant (12.00° R)Z
Decompose

Curves to PostScript

Some action names are followed by their parameters in brackets. Select an
action and you will see a parameter panel appear below the list:
Current action: Rotate glyph

Rotation angle: 15 @) Clockwise) Counterclockwise

i

Rotate around: Origin point (0,0) _11

The contents of the parameter panel depend on the action selected. Note
the red MM mark in the right top corner of some parameter panels. This
mark means that the currently selected action may be applied to a single
master of a Multiple Master font. All actions that do not have this mark are
not compatible with Multiple Master fonts. You can use them, but all the
masters will stick together and you will lose the “multiple-masterness” of
your font.

627

628

After you select an action and set its options, press the OK button to run
the action. If you are applying the action to a lot of glyphs a warning
message will appear telling you how many glyphs you will modify and
asking you for confirmation. Action applied to many glyphs is not
undoable, so it’s a good idea to save your font before running this action.

You can repeat the last action by choosing the Tools > Repeat Action
command or by pressing the 2 button in the Transformation panel.

Below you will find a detailed description of each available action. A
description of the more sophisticated Action Set dialog box, where you
can build an Action Set that can include many actions, finishes up this
chapter.

Actions

There are four groups of actions:

Contour The contours of a glyph is transformed

Hints and Actions that are concerned with hints and links

Guidelines

Metrics Metrics information is transformed (includes automatic metrics

generation)

Effects A set of effects that can be applied to glyphs.

The actions in the Actions and Action Set panels can be applied to entire
glyphs only, not to parts of glyphs. If you wish to scale, rotate or mirror a
selected portion of a glyph rather than the entire glyph, please use the
Transformation panel (Window > Panels menu) or the Free Transform
feature (Contour > Transform menu).

629

630

Contour Transformation

Here is a list of all the contour transformation actions:

Shift Shifts the glyph’s outline

Mirror Mirrors the glyph vertically or horizontally

Scale Scales the glyph proportionally or non-proportionally
Rotate Rotates the glyph

Slant Slants the glyph

Decompose Decomposes a composite glyph

Curves to PostScript Converts an outline to the Type 1 (3'd-order curves) format

Curves to TrueType Converts an outline to the TrueType (2"d-order curves) format

Contour Direction

Sets the direction of contours to PostScript or TrueType or
reverses all contours

Connections Automatically detects the connection types between the
contour segments
Extremes Automatically inserts points at extreme points on curves

Remove Overlap

Removes overlapping parts of the glyphs’ outline

Make Master

Automatically calculates the 4th master when 3 other masters
are known

Optimize

Optimizes the glyph outline with a custom set of options

Blend

Blends the outline and mask layers.

Shift
Horizontal shift: .0 . Vertical shift: .0
"1 Shift the Mask layer
This action shifts the outline of the glyph in the vertical and/or horizontal

direction. Here is a sample of a font with some glyphs shifted in the vertical
direction:

Sample text

You can also shift glyphs in the vertical direction in the metrics mode of the
Metrics window: hold the Surrt key and drag the glyph.

Use the Shift the Mask Layer control to shift the mask layer together with
the outline or to leave it untouched.

Mirror

™ Horizontal mirror | Vertical mirror

~ 1 Mirror metrics

Here is the result of this simple transformation:

ésrqls fext

The letters in the word “Sample” were mirrored horizontally and the letters
in the word “text” — vertically.

Use the Mirror Metrics control to swap left and right sidebearings of a
glyph.

631

632

Scale

Horizontal scale: 80 "I Proportional scale

N ealnaale: "100 '21 Scale hints '21 Scale metrics

&

Scale center: = Origin point (0,0) _'!

This action lets you scale your glyphs proportionally or non-proportionally.
Enter your desired vertical and horizontal scale factors in the edit fields.
Switch on the Proportional scale option to keep the vertical and horizontal
scale factors the same.

Switch off the Scale hints option to avoid scaling hints along with the
glyph’s outline. Scaling hints’ width is not always precise so if you scale
hints with the outline you sometimes find that some hints now miss the
nodes that they were supposed to hint. We recommend converting hints to
links before this transformation to keep the proper width and position of
hints.

Here is an example of this transformation (the letters of the word “Sample”
were scaled 80% horizontally and the letters of word “text” were
proportionally scaled to 120% of original size):

Sample text

Rotate

Rotation angle: 15 @ Clockwise [Counterclockwise
Rotate around: Exact position &= !
Rotation center: 0 L

This transformation action simply rotates glyphs. You can set the rotation
angle, the position of the center of rotation and the direction of rotation.

You can rotate glyphs around the origin point, around the reference point,
around the center of the glyph’s bounding box or you can specify a point
that will be used as the center of rotation.

To specify the reference point, drag the glyph's origin point % in the Glyph
window.

Here is an example of the same rotation transformation around different
center points:

X
X
Slant
Slant angle: 12 I f# slant to the right) Slant to the left "
Slant center: = Origin point (0,0) 3

This action slants glyphs. It is the quickest way to make an oblique version
of your font. Just apply this transformation to all the font’s glyphs and
correct the Font Info settings to let the operating system know that this
font is now oblique.

Here is a sample of Slant transformation (“Sample” is slanted 12 degrees to
the right and “text” is slanted 30 degrees left):

Sample s\

633

634

Decompose

This action is the equivalent of the Decompose command from the Glyph
menu. It replaces references to other glyphs (components) by the
respective outlines. If the components were scaled or shifted, this
information is retained accordingly. Applied to the whole font, it makes the
font free of composites.

Curves to PostScript

This action converts all TrueType curves (2nd-order, quadratic B-splines) in
the selected glyphs into PostScript curves (Type 1 curves, 3rd-order, cubic
Bezier curves). TrueType curves are used in TrueType and OpenType TT
fonts, PostScript curves are used in Type 1, OpenType PS and MM fonts.
Use this command if you want to manually prepare a TrueType font for
conversion into Type 1 format, or if you opened a TrueType font but prefer
to edit outlines in the Bezier form. This action does not change the contour
direction — do not forget to correct the direction of the contours to make
the glyphs compatible with the Type 1 or the OpenType PS format
requirements.

Curves to TrueType

This action is the reverse of the previous one. It converts PostScript curves
into TrueType curves. Usually, it is used to prepare a Type 1 font for
manual TrueType hinting. This action does not change the contour
direction so you need to correct the direction of the contours in an extra
step, using the following action.

Contour Direction

") Reverse all contours
) Set diraction to TrueType (black on the right)
) set direction to PostScript (black on the left)

This action automatically detects the direction of contours and corrects
them according to the option selected. The Reverse all contours option
just changes the direction of all contours to the opposite.

Connections

Use this action to reset and recalculate the types of connections between
outline segments. For example, if the BCPs of two curve segments are
aligned but the connection is sharp, it will be set to a smooth connection.
This is useful after major modification of an outline when you want to
review how outline segments are connected.

Extremes

This command is the equivalent of the Nodes at extremes outline action
that was described in the “Glyph Window” chapter. Use it to automatically
insert nodes at curves’ extreme points as is required by the Type 1 or
OpenType PS specification.

Remove Overlap

This action removes overlapping parts of the glyph’s outline. It also sets the
direction of all the contours to counterclockwise (as it required by the Type
1 specification). Use this transformation as the final step to prepare glyph
outlines for hinting or production.

Several examples of this transformation:

| 1 CC

Make Master

This transformation takes three known masters of a four-master Multiple
Master font and calculates the fourth master. It uses a simple algorithm of
linear extrapolation, so the results are not usually precise. But they may
give important information about the proportions of the fourth master, so
you can get a close approximation of what the fourth master should look
like.

635

636

Optimize

Outline simplification level: Process normally 4

Auto-alignment level: Process normally & !

With the Optimize action FontLab Studio tries to automatically adjust the
outline to remove unnecessary elements and correct others.

With the action options you can control the optimization process:

Outline Controls the curve removal feature, from “do not simplify
Simplification outline” to “extreme”. The bigger value you choose the more
level curves FontLab Studio will try to remove/smooth

Auto-alignment Controls the auto-alignment feature in a range from “do not
level align” to “extreme”.

Auto-alignment automatically corrects relative position of lines and curves,
for example, if two adjacent curves are almost smoothly connected, but not
precisely, auto-alignment will correct that.

Blend

Blend amount: 50
This transformation blends the mask and outline layers, and replaces the

outline layer with the result. A single parameter lets you choose the
position of the intermediate design between the mask and outline layers:

5

Outline and mask layers

i

On the example above outline layer is black weight and mask layer is
regular. Below are samples of the Blend transformation with different
values of the parameter:

10% 50% 80%

637

Hints and Guidelines Transformation

Hints transformation actions let you automate some hinting actions:

Remove Hints/Guides Lets you remove hints and links or guidelines

Autohint Automatically generates hints

Convert to Instructions Converts Type 1 hints to editable visual TrueType

instructions
Autoreplace Automatically generates a hint replacement program
Convert to Links Converts all hints to links
Convert to Hints Converts all links to hints
Drop TT Hints Removes all TrueType hints, visual or imported
Reassign Stems Checks all links in TrueType hinting program and tries

to automatically select the best stems for them.

Remove hints/guides

@ Remowve horizontal hints Removwe horizontal guidelines

@ Removwe vertical hints Remove vertical guidelines

™ Also remove links

Use this action to remove hints and links or guidelines in selected glyphs.
This command is the equivalent of the Remove Hints and Remove Guides
commands that were described in the “Glyph Window” chapter.

Autohint

Analyses a glyph’s outline and generates hints for the glyph. This action
uses autohinting options that can be set in the Type 1 Autohinting page
of the Font Info dialog box. Please refer to the page 748 for a description of
the autohinting options.

638

Convert to instructions

Use this action to convert Type 1 hints to the editable TrueType visual
instructions. Do not forget to prepare the outlines of the glyphs for
TrueType hinting using the Curves to TrueType transformation action. You
can find a detailed description of this process in the “Hinting” chapter.

Autoreplace

This action automatically builds a hint replacement program for the
overlapping Type 1 hints. Run it after autohinting. Refer to the chapter
“Hinting” for more information about hinting and hint replacement.

Convert to links

Use this action to convert Type 1 hints to links. FontLab Studio will analyze
the outline of the glyph and try to make links that will replace the hints.
Refer to the “Glyph Window” chapter for information about hints and
links.

Convert to hints

This action is the reverse of the previous one. It converts all links to hints.
Because this operation is always possible (conversion of hints to links is
not), you can be sure that it will replace all links by hints.

Drop TT Hints

This action removes all TrueType hints, including visual (manually
created) and imported, from the source TrueType font.

Reassign stems

This operation will check all TrueType hinting program for a glyph. If there
are some links (single links or double links) that are attached to standard
stem, it will try to automatically select the best stems. This operation is
useful if you performed some heavy editing of the TrueType standard
stems and want to make sure that correct stems are assigned to links.

639

640

Metrics Transformation

These transformations let you automatically set metrics, calculate metrics
in glyphs, increase or decrease a glyph’s sidebearings and width, and center
glyphs in their advance width.

Available metrics transformations are:

Set Width Sets a fixed advance width and aligns the glyph within the
advance width

Set Sidebearings Sets or changes sidebearings’ values

Center Glyph Centers a glyph in the advance width

Autospacing Automatically calculates the glyph’s metrics using the same
algorithms that are used in the Metrics window

Adjust Metrics Changes sidebearings and kerning by the given value in font
units or in percentage.

Set Width

Set width to: -600] Center character T‘

| Shift the Mask layer

This action lets you set a fixed width for all glyphs that are selected in the
Font window. It is the fastest way to make a monospaced font: select all
glyphs, open the Actions dialog, set the desired width and press the OK
button.

In the parameter panel you can choose what to do with glyphs that are
thinner than the requested advanced width. A glyph may be aligned to the
left or right margins or it may be centered in the advance width.

Set Sidebearings

Left SB: = Set equa... T‘ -50
Right SB: = Set equa... ﬂ 50

M Affect composites "1 Shift Mask "] Limit BBox

Use this action to change the sidebearings' values of the glyphs. You can set
new values for the left or right sidebearings or change these values by
entering the amount in font units. So if you think that your font needs
some more white space, just select this action, choose the Increase by
option in the list boxes and enter the value by which you want to increase
the sidebearings.

If the Affect composites option is off the action will not be applied to
composite glyphs.

Here is a sample of increased glyph widths:

Sample text

Center glyph

This action simply centers the glyph in the advance width:

S S

Before centering After centering

641

642

Autospacing

Leave Medium 4 white space around glyph

Generated metrics should =~ Medium T! depend on glyph shape

This action analyses the glyph’s outline and automatically calculates its
sidebearings. It uses the same algorithm that is used to automatically
calculate metrics in the Metrics window. Refer to the “Automatic Metrics
Generation” section in the “Editing Metrics” chapter for more information
about the autospacing algorithm and options.

Adjust Metrics
] Left Sidébearing Adjust by: 0 [Units £) it
" Right sidebearing s
1 Width = Shift the Mask layer
[Kerning __ Use the measurement line

™ Affect com posites

This action lets you to change metrics or kerning by some given value or
percentage of the original value.

In the options area select the metrics that you want to change:

Left sidebearing
Right sicdebearing
Width

Kerning

ENEI

Enter the amount by which you want to adjust the values and select the
units (which can be font units or a percentage of the source value). Enter a
positive number to increase metrics distances or kerning or a negative
value to decrease them.

Normally metrics are measured from the bounding box. You can change
this, however, if you want, to measure from a measurement line by using
the check box.

A measurement line is horizontal line (defined in the Glyph Window) that
defines a “slice” which is used to measure the distance from outline to
sidebearings. Please, refer to page 480 in the “Glyph Window” chapter.

Effects

Increase your font library with this set of professionally designed effects.
From outline to 3D-shadow, to gradient fill — these transformation filters
always produce good results.

Bold/Outline Increases the glyph’s weight or creates an outline version of the
glyph

College Makes a double outline version of the glyph

Shadow Generates a drop shadow

3D Extrusion

Makes a “3D” version of the glyph

3D Rotate Makes an illusion of a glyph rotated in 3D space
Gradient Generates an illusion of a gradient fill

Random Randomly moves nodes

Envelope Applies one of the predefined envelope transformations
Parallel Creates parallel contour(s)

Expand Converts contour into a brush path

Add Nodes Adds more nodes to contours.

643

644

Bold/Outline

H weight: 20 v Keep glyph dimensions

V weight: 20 " Make round corners

") Make outline version of glyph

¥ Change weight of the glyph
This is one of the most used actions in FontLab Studio. With it you can

precisely change the weight of the glyph’s stems, make an outline version
of the glyph or change the contrast:

ample

Original glyphs

Sample

Bold 20 units in both directions Keep glyph’s dimensions is ON

ample

Bold 20 units in both directions. Keep glyph’s dimensions is OFF
Note that the size of all the glyphs has changed

Sample

Bold 20 units in the horizontal direction

Sample

Outline 20 units in both directions. Make round corners is OFF

Enter the horizontal and vertical values that will be used to increase
(positive numbers) or decrease (negative numbers) the weight of the
outline.

Switch on the Keep glyph's dimensions check box to scale the glyph so the
weight-increasing effect will be compensated.

Switch on Make round corners to make rounded corners in the new
outline:

Note that the weight-changing values are in font units, so the visual effects
of this action depend on the font’s UPM value.

College

Distance to outline: 10

Weight of outline: ‘10

The best way to explain this effect is to see a sample of it:

Sample

The parameters of this effect are very simple:

Weight of the outline

Distance to outline

645

646

Shadow

Horizontal shift: |50 . Weight of outline: 10

Vertical shift: -—50

This is a very nice effect that can save you a lot of time. Those who have
tried to make a shadow font manually know what a miracle this
transformation performs:

Sarnole

The parameters set the shift of the shadow (positive values are to the right
and up) and width of the outline:

Weight of the outline

A
—b—‘d— Horizontal shift

Vertical shift

3D Extrusion

Horizontal shift: |50 . Weight of outline: 10

Vertical shift: -—50

This action is similar to the Shadow action but it simulates a 3D thickness
of the glyphs:

Sarnols

The parameters of this action are the same as in the previous section.

3D Rotate

¥ Rotation: 30 degrees

Z Rotation: 30 - degrees

With this action you can “rotate” your glyphs in “3D” space:

Sammple

The parameters of this action set angles of rotation for glyphs around
imaginary axes. Z Rotation means rotation around the vertical axis. Y
Rotation is around the horizontal axis. The vertical axis goes through the
middle of the glyph.

Gradient

%) Top to bottom _ Bottom to top
Number of stripes: 40

Begin from position: -400 Proceed to position: IIEO

Here’s what you can do with this effect:

As parameters of this effect you can set the number of stripes that appear
on your glyphs, the starting and finishing line of the effect and the
direction of the gradient.

The starting and finishing lines can be manually set to let you customize
this effect and make it look the same in all glyphs. Note that these values
are set in font units so they are relative to the font’s UPM value.

647

648

Random

Horizontal offset: 5 ’Ei Proportional offset

This effect randomly shifts a glyph’s nodes. It is especially interesting when
combined with other effects, like Gradient:

You can control how much the nodes are shifted. You can set the same
value for both directions if the Proportional offset option is on or you can
customize the values separately.

Envelope
Effect: O DD[:] B DED
Force: 100 % "1 Randomize

This effect lets you apply one of many predefined transformations to
several glyphs at once. Refer to the “Glyph Window” chapter for more
information about the Envelope effect. Here is an example of what you can
do with this effect:

Sample

Arial font after “circle” envelope with -30% Force value

The Randomize option applies some random changes to the effect to make
an even more interesting result.

Expand

Width: 40 . Angle: 0 " Roundness: 100
Cap: | Join: m - Body: T v

The Expand effect will use contours as a trajectory for the paintbrush. It is
almost the same as the Contour > Paths > Expand Path command.

Specify brush size and shape. Width is the width of the brush ellipse at its
widest part. Angle is the degree of the brush ellipse slant and Roundness is
the relation (in percent) of the narrow and wide widths of the brush ellipse.
Below is a sample of the path expand with different brushes:

000

The next line of options specifies the way the expanding algorithm will
process the contour corners and the ends of an open contour:

—

Flat contour ends vs. round ends

The last option Body lets you specify the shape of the brush stroke:

649

Parallel

Position: () Left () Right ® Both
"I Remove the original @ Generate closed contour
Offset: 10 ™ Uniform

The Parallel effect creates a contour that is parallel to the existing contour.
It is the same as the Make Parallel Path command in the Contour > Paths
menu. Refer to the “Make Parallel Path” section for more information
about its algorithm and options.

Add nodes

Segment length: 100 " Randomize

™ Convert curve segments to straight lines

The Add Nodes effect creates more nodes on the contour. It puts a node
every x units, where x is the segment length value you entered. For

example:
“--"'l-—-._‘_ _r.-r. \-\-
+ .'\.‘_“. ._.-‘-.-'_'.;-\-._'—l.._ \-
i * k g g .-‘-.'—'l.._._-‘
Before adding nodes After adding nodes

Note that this action always closes open contours.

650

Action Set Dialog Box

There is a more advanced method of applying actions to glyphs. With it you
can apply many actions at once, transform a subset of a font’s glyphs, see
an instant preview of a series of actions and even save action sets for future
use.

To open the Action Set dialog box select the Action Set command in the
Tools menu. Note that this command is available while any of the windows

is open. You will see a rather complex dialog box:

Action Set
Apply action set to: Current character c:rn-I\-r : 1
Action set will affect 1 glyph
Saved action sets: [Select a set to load] 4
Available actions: Action set:
= Contour | Scale (80.00, 100.00) HMZ 4
Shift — Rotate (15.00° CW) Z —
Mirror $
Scale
Rotate = v
Slant — —
Y
DEmRERS ’ b
Current action is: Rotate glyph
Rotation angle: 15 @ clockwise O Counterclockwise Sk
Rotate around: = Origin point (0,0) ﬂ
[Show Preview) (" Cancel) ~ Run

This dialog box has several areas that control different options of the action
set.

651

652

Action Set Range

In the top part of the dialog box an Apply action set to area is situated:

Apply action set to: Current character only = !

Action set will affect 1 glyph

Controls in this area let you select which glyphs you want to transform.
Open the popup menu and you will see the available options:

v Current character only
Selected characters
All characters in the font
All characters in the characters list
All characters which are not in the list
All opened fonts
Fonts in the Fonts List

Current glyph only Actions will be applied only to one current glyph: the
“blue” glyph in the Font window or the current glyphs in
the Metrics or Glyph windows

Selected glyphs Actions will be applied to all the glyphs that are selected in
the Font window

All glyphs in the font The whole font will be transformed

All glyphs in the glyph Only glyphs that are enumerated in the glyphs’ list will be
list transformed (see below)

All glyphs that are not Only those glyphs that are not in the list will be

in the list transformed. Thus if the list includes all the digits and you
select this option, all glyphs except the digits would be
transformed

All opened fonts Action set will be applied to all glyphs in all opened fonts

Fonts in the Fonts List Action set will be applied to all glyphs in all fonts that are
added to the fonts list (see below).

If you are editing a Multiple Master font the master selection popup menu
will appear below the range list and you can select the master that will be
transformed. Note that only transformation actions that have the red MM
mark in the right-top corner may transform a selected master. All other
actions always transform all masters.

Glyph List
You may select which glyphs will be transformed by entering a list of
glyphs. This is handy for repetitive or recurrent transformations.

To create a glyph list select the All glyphs in the glyph list or All glyphs
that are not in the list options in the ranges selection list and press the

- button (which will be enabled).
You will see a dialog box:

Glyph List

E %

am

Use glyphs in the glyph list above

(Cancel) 0K ‘}

Enter all the glyphs that you want to transform into the Glyph list editing
field. You can use special character commands to enter characters that are
not included in the standard Roman character set used in Mac OS by
default. Use a °/’ prefix to enter a glyph’s name or use a decimal code and a
“/#” prefix to enter a glyph’s Unicode index.

Use the & button to open any text file and use it as a glyph list and the
button to save the current glyph list in a text file.

Note that if you open the Action Set dialog box while the Metrics window is
active the glyph list will be copied from the Metrics window’s sample string
and the All glyphs in the glyphs list option will be automatically selected, so
you can instantly apply transformations to the set of glyphs that are
previewed in the Metrics window.

653

If the font contains glyph classes defined then you can select one of the
classes in the list:

v Use glyphs in the glyph list above
LETTERS_NORMAL
PUNCT_DEFAULT
SLASH
_O_right
_O_left

zonk>

Choosing the class name will add glyphs of the class to the list above.

654

Action Set

In the middle of the dialog box there are two list boxes:

Available actions: Action set:

= Contour .+ | Scale (80.00, 100.00) HMZ 4
Shift G — Rotate (15.00° CW) Z —
Mirror
Scale
Rotate
Slant
Decompose

Fasmone #o MoctCceimit

+

4
E &

X

The left list box, called Available actions includes the names of all
available transformation actions. The actions are grouped in categories for
easier selection. The right list box previews the current set of actions that
will be applied in sequence.

You may add as many actions as you want to the action set; delete actions
from the set; or rearrange actions to make them execute in proper
sequence.

To add an action to the action set, select the action (use the ¥ and ¥
icons in the Available actions list to expand and collapse the action
categories) and press the > button, or double-click an action name.

The action will be added to the bottom of the action set (the right list) with
its default parameters.

To adjust an action’s parameters, select the action in the Action set
list and enter new parameters in the Current action area. The actions’
parameters panels are described in the previous sections.

To remove an action from the set select the action that you want to

remove and press the _*_ button, or double-click the name of the action in
the right list.

To remove all actions from the action set press the *_ button.

To move an action one step up in the program select it and press the . *

button or press the ¥ button to move an action one step down.

655

Using the Preview Window

When you make a program that includes several actions you can see an
instant preview of the transformation program that you have made.

Press the Show Preview button to open a preview window:
a8 Action Set Preview

Clyph to preview: A E] ’21 Show details

L

—l-u-'-ﬁag

b7

Original Scale Rotate Bold/Outline

e 4w

ity
et

You see that this panel includes a sample glyph that is incrementally
transformed. You can see the results of each action so it’s very easy to
control how your action set works.

With the Glyph to preview list box you can select the glyph that is used to
preview the transformations.

If you switch on the Show details option then the nodes, metrics and hints
will be visible in preview.

Use the scroll bar at the bottom of the window to see further samples of the
transformation actions program.

Press the Close button to close this window.

656

Saving and Opening an Action Set

You can save the set of actions that you created and you can open and use
previously saved sets.

To save the action set press the button. You will see a standard
dialog box where you can select a directory and enter a file name for the
program. If you save an action set in the Programs folder within your
Application user data folder (typically Macintosh HD/Users/Your Username/
Library/Application Support/FontLab/Studio 5/Programs), the action set will
automatically appear in the Saved action sets list box the next time you
open the Action Set dialog box.

After you press Save in the Save File dialog box a new dialog box will ask
you to enter a name for the action set. This name will be used to identify
the action set and it will appear in the Saved action sets list box.

To open a previously saved action set press the & button and select one of
the programs in the standard Open File dialog box.

A faster way to open action sets is to use the Saved action sets list box.
The names of all action sets saved in the FontLab Studio directory will
appear in this list:

Saved action sets: Convert Type 1 font to TrueType _:]

Just select the set that you want to open. You will see the set appear in the
Action set list box.

657

Transforming Fonts

With the Action Set dialog box you can apply a set of actions to multiple
fonts at once. The easiest way is to apply it to all fonts that are open in
FontLab Studio. If that is not enough, you can run the transformation
program in “batch mode”, processing multiple fonts that are not open in
FontLab Studio.

To select fonts for transformation:

1. Select “Fonts in the Fonts List” as the range:

¥ Current character only
Selected characters
All characters in the font
All characters in the characters list
All characters which are not in the list
All opened fonts

Fonts in the Fonts List [»

2. Click on the - button to the right of the Apply action set control to
open the Fonts List dialog box:

Fonts List

Fonts:

Options:
"I Append suffix to the font names:

_| Append suffix to the file names:

ar

Destination format: Same as source I

Destination folder:

I Save into source folder

L

(| Preferences...) Cancel | Start

658

3.

4.

Click on the _*_ button to add fonts to the list using the standard File
Open dialog box. Note that you may select multiple font files to add:

Fonts:

Macintosh HD:Users:alex:Documents: TestFonts:FuturBooCORIotf +
Macintosh HD:Users:alex:Documents: TestFonts: FuturBooC.otf St
Macintosh HD:Users:alex:Documents: TestFonts: CombilumBol

Macintosh HD:Users:alex:Documents: TestFonts: Combilum —
Macintosh HD:Users:alex:Documents: TestFonts: BaltiClta.otf "
Macintosh HD:Users:alex:Documents: TestFonts:BaltiCBol.otf i,
Macintosh HD:Users:alex:Documents: TestFonts: BaltiC.otf

To remove a font from the list select it and click on the _~ button.
Click the *_ button to remove all fonts from the list.

Use the Options controls to define the optional suffixes that will be
added to the font name and to the file name during transformation:

[@ Append suffix to the font names: Outline

,EAppend suffix to the file names: _d|

In the same area you can select the destination format in which the
font will be exported:

Destination format: | v Same as source =
Type 1 (PFB)

TrueType (TTF)

FontLab (VFB)

Type 1 (PFA)
OpenType/CFF (OTF) k.
Mac Type 1 (Suitcase)

Mac TrueType (Suitcase)
Mac TrueType (DFont)

Use the Same as source choice to leave the font’s format unchanged.

The font’s customized export options (if source fonts are in FontLab
Studio format) or the currently selected export options will be used to
build the destination font. You may change the current options if you
press the Preferences button.

Tip: if you do not specify any actions in your action set, you can use
this batch transformation feature to convert fonts from one format to
another.

659

660

6. Enter the path to the destination folder or use the ‘& button to select it
from the one of existing directories:

Destination folder:

" save into source folder

.r'Users,r'fontlab,r.'Desktop %

Use the Save into source folder choice to put new fonts to the folder
with the source fonts reside.

7. Click Start to complete the definition of the list.

After you start the action set FontLab Studio will open fonts from the list;
apply the action set; adjust the font and file names if specified; and save
the resulting fonts in the selected formats to the selected directory on your
disk.

Hinting

This chapter is about hinting Type 1 and TrueType fonts. Hinting is a
rather technical stage of the modern font design process. It is the stage
where art truly meets technology. You need a lot of technical information
to make well-hinted fonts and this chapter will give it to you.

I Font Scaling, PPM

One of the most important features of outline fonts is that they can be used
on many different output devices — from computer monitors to
imagesetters. Because character outline shapes are defined as sequences of
lines and curves it is easy to scale outlines to any size and resolution.
However, almost all output devices have discrete elements arranged in a
regular rectangular raster (grid) and the images that these devices produce
are constructed using these discrete cells. Each cell in an output image has
integer coordinates and is called a pixel (picture cell). On a computer
monitor these are individual fluorescent dots. On a printer they are dots of
toner or ink.

To measure scaled outlines in a resolution-independent way, it is
convenient to define a quantity called Pixels Per eM (PPM, sometimes
written ppem). This is the number of pixels that can fit into the font’s
height. From the “Glyph Window” chapter you know that font height is a
basic font measurement unit equal to the Units Per eM (UPM). In
TrueType / OpenType TT fonts UPM is usually equal to 1000 or 2048 and
in Type 1, MM and OpenType PS fonts to 1000.

A A

UPM PPM

Outline character Rasterized character

So, to scale a font to render at a specific point size on a device with a
specific resolution we take the resolution and point size to calculate the
PPM value. Then we scale all the outline characters by multiplying by the
PPM/UPM coefficient.

In PostScript printing, one typographic point (1 pt) is equal to 1 /72 inch.

662

The original Macintosh computer had the screen DPI resolution of 72 DPI
(dots per inch) so 1 pt was represented by exactly one pixel. This is a
practical fact so font scaling works with this assumption. This means that
PPM sizes correspond to point sizes at 72 DPI: to represent 12 pt type on a
72 DPI screen, the font is rasterized at 12 PPM.

Microsoft Windows works at the default resolution of 96 dpi. With such a
setting, 12 pt type is rasterized using 12 * 96/72 = 16 PPM.

Windows users can specify other dpi resolutions for on their systems in
Control Panel > Display > Settings > Advanced > General > DPI Setting,
e.g 120 or 133 dpi. The general formula for converting between point sizes
and PPM sizes is:

<point size> = 72/<dpi> * <PPM size>
<PPM size> = <dpi>/72 * <point size>

663

664

Coordinate Rounding,
Gridfitting

Output devices take the vector outline of a glyph and “rasterize” it. That is,
they calculate from the outline data where they need to place each pixel to
get an accurate output representation of the glyph. Since the final output is
on a discrete raster (i.e. a grid of numbered pixels), the scaled pixel
coordinates need to be rounded somehow to integer values.

For example, if you have an outline point with coordinates (120, 10pand scale it down 7 times, you
will get the coordinates (17.1429, 14.2857). After rounding to the closest integer values, the

resulting coordinates will be (17, 14) and so the rounding error will be 0.1429 (0.84%) pixels for the
horizontal coordinate and 0.2857 (2%) for the vertical coordinate. If we instead scale this point
down 13 times, then the scaling errors will be 2.5% for the vertical coordinate and 3.8% for the
horizontal coordinate. You can see that the rounding error increases as the size of the final outline is
reduced.

—»| [¢— Rounding error

To minimize rounding errors font rasterizers use special algorithms that
slightly change the scaled outlines to get better results on devices with low
and medium resolution. This process is called gridfitting. Algorithms that
gridfit outlines use additional information stored with an outline’s
definition. These instructions are referred to as hints. Hints usually define
the most important proportions of characters, the positions of critical
elements of characters, and a set of rules for outline modification.

For perfect-looking fonts it’s not enough to define the characters' outlines,
you must also provide hints. The process of specifying the hints is quaintly
called hinting.

TrueType and Type 1 Hints

The two most commonly used font formats are Type 1 and TrueType.
However, they use very different hinting instructions and it is not always
possible to automatically convert Type 1 hints to TrueType hints.

Y

7\

AN

-
R

Type 1 hinting TrueType hinting

In Type 1 fonts, hints define the most important dimensions in the
characters, like the position and width of the crossbar of the letter ‘H.’

Font hints in TrueType (usually called instructions) directly control the
movement of points and the rounding of point coordinates. A TrueType
hinting program is written in a special programming language. This makes
TrueType hinting very flexible and powerful but also too complex to
program directly. Usually a smaller set of higher-level instructions are used
to define hints. These instructions are compiled to native TrueType hinting
language during font export.

665

666

Type 1 Hints

As you know from the “Glyph Window” chapter, there are two kinds of
Type 1 Hints — font level hints and character-level hints.

Font-level hints define important vertical positions in the font, the most
commonly used stem widths and some other important data that helps
control the hinting process.

Character-level hints are used to declare the position and width of the
most important character elements. The most common use for hints is to
declare the position and width of character stems. These hints are scaled
with the outline in the rendering stage, but due to their independence from
the outline, they help to maintain the same stem widths for all stems of a
certain width, independent of how it happens to fall on the discrete raster:

Y YTY
Y Y Y Y Y YV

Unhinted character Hinled characier '

Notice that in the unhinted character the outline falls on the grid such that
two rows of pixels would be turned on for the right vertical stem. The hint
forces the right stem to become the same width as the left stem in the
hinted character.

In the following sections we will discuss font-level hints and the process
called hint programming that is required at times.

Font-Level Type 1 Hints

Font-level hints are used to keep important character elements similar at
all PPM sizes.

There are three types of font-level hints:

Alignment Zones Positions and width of important heights

Standard Stem Widths Widths of the most commonly used stems

Control Data Controls the hinting process

All font-level hinting is set on the Hinting Settings page of the Font Info
dialog in FontLab Studio.

667

668

Alignment Zones

Alignment zones are typically used to perform a process known as
overshoot suppression:

Rounded characters and characters with sharp ends usually are created a
little bit larger than “flat characters”:

N

N]

Notice that the top and bottom of the O extend just a little beyond the top
and bottom of the H. This is called overshoot. It is necessary to compensate
for a visual effect that makes rounded characters look slightly smaller.
Usually the overshoot height is set to 3-4% of character height. However, at
small PPM size, this value may be rounded to one pixel.

When the PPM is small, one pixel may be 15% of the character height or
even more. Here’s how it happens:

Assume that the topmost position of the H character is 700 units and the top position of the O is
715. At 12 PPM (1000 font units scaled to 12 pixels), the rounded height of the H will be 8 pixels. The

height of the O will be 9 pixels. One pixel difference at this height means 8%. Much more than the
original 2%!

To avoid such an excessive difference between the rasterized heights of the
two types of characters, overshoots are suppressed and the size of O is
forced equal to the height of H at small PPM.

This is done by declaring alignment zones that define the bottom and top
positions of the zone (in our example the height of H and O) and the
alignment direction (bottom or top):

Top alignment zone

N

N

Bottom alignment zone

At small PPMs all points that have vertical positions inside the zone will be
aligned to the primary line (i.e. moved in the direction of the alignment
zone).

669

Editing Alignment Zones

To set or edit alignment zones open the Font Info dialog box and
select the Hinting settings item in the list at the left:

Set alignment for the master: Singl aste =

{® Set local alignment zones) Set family alignment zones

Primary zones: Secondary zones:

=20, 0 -281, -272 # Auto zones
410, 414
417, 435
450, 462
666, 683
708, 723

20 [fo | [+ [-281] [-272] [*][=

Copy family zones

There are two list boxes where alignment zones may be set: the Primary
zones list and the Secondary zones list:

Primary zones: Secondary zones:

-20,0 281, -272
410, 414
417, 435
450, 462
bB6, 683
708, 723

In Type 1 terminology primary zones are called BlueValues and secondary
zones OtherBlues.

BlueValues include one bottom alignment zone, the so-called baseline
zone, and up to 6 top alignment zones. The baseline zone is used to control
bottom overshoots that have to be aligned to the baseline.

OtherBlues includes up to 5 bottom alignment zones.

670

To add a new alignment zone, press the _* | button below the list.

To edit the position of the zone, select the zone you want to edit in the
list and edit it in the edit fields below the list.

To remove an alignment zone, select the zone you want to remove
from the list and press the _~_ button below that list.

You can see a preview of the zones by switching on the Alignment
Zones layer with the View > Show Layer > Alignment zones command.

When zones are visible on screen, you can preview changes you make to
the zones by pressing the Apply button in the FontInfo dialog box.

You can edit zones in the Glyph window, using the edit tool. Make
sure they are not locked by the View > Lock layers > Alighment zones
command.

Press the _7* Auto zones | hutton to automatically calculate alignment
zones in the Primary zones list box.

How FontLab Studio Calculates Alignment Zones

To calculate alignment zones in the BlueValues list, FontLab Studio finds characters with overshoots
and characters that are flat in the position of the overshoot. Then it measures the top and bo ttom
vertical positions of these characters and detects a zone. Examples of such characters are: ‘o’ and ‘x’,
‘O"and ‘H', ‘p’ and ‘g’, and so on. FontLab Studiotries to find many different characters from
different languages, so it is usually able to locate some examples.

Alignment zones are also used in TrueType manual and automatic hinting.

671

672

Family Alignment Zones

To support the common appearance of fonts that belong to the same font
family the Type 1 hinting system allows so-called FamilyBlues, alignment
zones that are used in the whole font family. Typically the alignment zones
of the regular weight are used as Family Blues in all members of the family.

To set family alignment zones click on the Set family alignment
zones radio button. Then edit the alignment zones as usual. To return to
editing “local” alignment zones click on the Set local alignment zones
radio button.

You also can copy family alignment zones defined for the current font to
any other font opened in FontLab Studio. Just press the Copy family
zones button and select the destination font in the appeared dialog box:

Copy Family Zones

Select fonts where you want to copy current Family Zones:

™ FreeFontPro-Bold
FreeFontPro-Boldltalic
FreeFontPro-ltalic

v
™

(d

[Cancel) {’ OK “-

TrueType Alignment Zones

In FontLab Studio 5 you may define different alignment zones for Type 1 or
TrueType hinting. TrueType zones have no limitations in their number and
allow better control over their scaling. We will discuss them in full detail in
“TrueType Hinting Tool” section.

Note that if some font has some Type 1 zones and no TrueType zones,

Type 1 zones will be automatically converted and used in TrueType hinting.
So it is a good idea to begin with definition of Type 1 alignment zones,
convert them (it will happen automatically in most) to TrueType zones and
then adjust them using special tools available in TrueType hinting mode.

673

674

Standard Stem Widths

Typically many characters in a font use the same few standard stem widths.
As examples, let’s take the H, B, and F characters shown below. All of them
have the same width for the straight vertical stems and the same width for
the horizontal stems:

-V | >V e >V

»IUI UI 4

The most widely used stem widths are stored in the font header in order to
force the rasterizer to render these stems at the same width.

This information is used to control at what character size the rounded stem
width goes from one to two pixels and from two to three pixels. A step from
one to two pixels means a 100% width increase and a step from 2 to 3 pixels
a 50% increase. This means that near this value rounding errors will be
maximal and control over stem widths will be necessary.

If one stem has a width of 74 units and another a stem width of 76 units and the UPM is 1000 units,
then at a PPM of 20 pixels the first stem will be rounded to 1 pixel and the second stem to 2 pixels.

Scaled back to the original coordinates, this difference will be 50 units! That is clearly too much for
an original difference of only 2 units.

Standard widths work with stem hints. When the width of a hint is close to
one of the standard widths, the rounded width of the hint (and the real
stem outline) will be forced equal to the width of the rounded standard
stem.

Type 1 and TrueType Standard Stems

In FontLab Studio 5 every font may have two sets of stems: Type 1 stems

and TrueType stems. They are applied in different hinting modes and have
some differences:

e Number of Type 1 stems is limited by 10 in each direction (vertical and
horizontal).

¢ TrueType stems may have names. Number of TrueType stems is not
limited.

e It is possible to define "stem hinting" for TrueType stems, which will
control their scaling. We will talk about it in a section dedicated to
TrueType hinting.

If some font has Type 1 standard stems and no TrueType stems, they will
be automatically converted when such font is opened to FontLab studio.

In following paragraphs we will discuss tools to define Type 1 standard

stems. TrueType standard stems are described in the TrueType Hinting
section.

Editing Type 1 Standard Stems

Standard stem widths are controlled through the Standard Stems page of
the Font Info dialog box:

— Hinting Settings
Standard stems (T1 hinting)

Set stems for the master:

V stems: 60 40 60

+ —
H stems: 60 40 |40 i

_| ForceBold (used to make Type 1 font looking bold) | 7 Auto stems

There are controls for vertical and horizontal standard stem widths. All
available stems appear in the horizontal lists. You can select any stem just
as you would in normal, vertical list controls.

To add a stem to the list of the standard stems press _ % at the right
side of the stems' list.

675

676

To edit a standard stem width, select it using the mouse and edit its
value in the edit field to the right of the list.

To remove a stem from the list, select it and press the " button.

Note that FontLab Studio will sort stem widths in ascending order when
you close the Font Info dialog box.

StdHW, StdVW, StemSnapH and StemSnapV Parameters

From the Type 1 font specification you may know that in Type 1 fonts two types of standard stem
widths are used: Standard Width and Stem Snap Width. There is one standard width for each
direction and up to 10 stem snap values. In FontLab Sudio these values are united in the stem list.
StdHW and StdVW are taken from the first records in the stem lists. StemSnapH and StemSnapV
records are the remaining records in the stems' list.

Standard stem widths are also used in TrueType hinting.

FontLab Studio 5 also has a faster way to append stems to the list of
standard stem widths. Any vertical or horizontal hint may be used as a
source of stem width information. Just point the Edit tool at the hint,
Crri-click and select the Define a Stem command in the popup menu. If
this command is not accessible, it means that this stem is already in the
list.

To automatically calculate standard stem widths press the
AutoStems button.

How FontLab Studio Calculates Standard Stems

FontLab Studio can calculate standird stem widths only if some characters in the font have Type 1
hints, so it converts links to hints first (in memory) using the most important glyphs in the font.

1. It builds a table of all hints that are used in the font, sorts this table by frequency of usage and
selects the most frequently used hints.

2. All selected hints are then compared with these most frequently occurring stem widths and
hints with widths that are close together are combined into a single record.

3. Thelistis then sorted again.
The most frequently used elements are then selected and used as standard stems.

Additional Control Data

Some additional data may be set to control the hinting process:

BlueScale Controls PPM when overshoot suppression is switched off

BlueShift Gives more precise control over overshoot description and flex hints
(see below)

BlueFuzz Expands alignment zones in both directions.

You can set all these values on the Additional Hinting Parameters page
of the Font Info dialog box:

Set values for the master:

FB threshold: 0.5

Blue Scale: as itis ﬂ is equal to: "0.039625"

BlueShift: 7
BlueFuzz: 1
@Automaticallv generate Flex hints in T1 and OT-P5 fonts
BlueScale is the PPM size at which overshoot suppression is switched off. If
PPM is less than BlueScale, then overshoot suppression is applied. If it is equal
to or exceeds BlueScale, overshoot suppression works only if the distance from

the aligned point to the base line of the alignment zone is less than the
BlueShift value and the scaled distance is less than half of a pixel.

677

678

The BlueScale value is stored in Type 1 fonts in a very strange format, but in
the Alignment page you can set it using one of three different ways: directly, in
the form that the Type 1 specification describes (i.e. it looks like a floating
point number), as a PPM size, or as a point size on a device with 300 DPI
resolution. Use the BlueScale: popup menu to select the BlueScale editing
method and edit it in the is equal to: edit field.

BlueScale Formulas
The “actual” value of the BlueScale value is calculated as:
(PPM-163333)
800.0
The BlueShift is also used to control Flex hints. Shallow curves that are

compatible with other flex requirements (see below) will be hinted by Flex
hints only if height of the Flex composition is less than BlueShift.

BlueScale =

The BlueFuzz value allows you to expand the action range of the
alignment zones in both directions. Thus if you have defined a zone like
(700-715), and BlueFuzz is equal to 2, then the actual zone used will be
(698-717). This is usually used when you are not sure that you correctly set
all the alignment zones or when the characters are not all precisely aligned.
The normal value of this parameter is 0 but by default it is set to 1. It is not
recommended to use the BlueFuzz value other than 0.

TrueType hinting algorithms do not use BlueScale, BlueFuzz and BlueShift
values.

Flex Hints

Some glyphs have very shallow curves that are nearly horizontal or nearly
vertical. At low resolution and low point size it is better to replace such
curves with straight lines.

Flex hint may be applied to a glyph outline segment only if following
conditions are completed:

1. Sequence is formed by exactly two curves.
2. Outer endpoints must be at the same position (x or y).

3. The joining endpoint between two curves must be located on the
extreme position (vertical or horizontal) of the outline section.

4. The difference (in x or y) coordinates between the joining endpoint and
outer endpoint must be less than BlueShift parameter global hinting
parameter.

—

B i I E S s it T Same level

Flex hints in FontLab Studio are set automatically during the font export
(in Type 1 or OpenType-PS format). You may only control this feature
globally: if you want font to include Flex hints, switch on this check box on
the Global hinting parameters section:

@Automatically generate Flex hints in T1 and OT-P5 fonts

When you do manual Type 1 hinting programming you can preview Flex
hint zones.

679

680

Stem Hint Programming

Now that you know everything about font-level hinting and know how to
set and edit stem hints (from the “Glyph Window” chapter). It’s time to
talk about hint programming.

The Type 1 hinting system requires that stem hints not overlap each other.
Because stem widths have no length limits and are applied to the whole
character, sometimes it is necessary to give special instructions to hints in
order to avoid such overlaps:

.I 1 1
Overlapped hints

In the left picture we have two vertical overlapping hints and in the right
picture two pairs of horizontal overlapping hints.

Each of these hints should, however, work only on part of the outline:

Hints set #1 Hints set #2

As you can see, we have two hint sets and three outline segments: from
point 1 to point 4, from point 5 to point 12 and from point 13 to point 15.

So we must switch active hint sets as the rasterizer proceeds along the
contour to match the part of the outline that the hint sets apply to. We
need to have some program that will switch off the right hint in segment 2
(after the rasterizer has passed point 3, where the right hint applies and
before it gets to point 5 where the left hint applies) and switch it back on in
segment 3 (before it gets to point 13 where the right hint applies again).
The same program should switch on the left hint in segment 2 and switch it
off again in segment 3. This way only one of the two hints is active at any
one time.

681

682

This program is called a hint replacement program and the process that it
performs is called hint replacement.

FontLab Studio will generate hint replacement programs for every
character where necessary but you can also set hint replacement programs
manually if necessary to get the best possible results.

You can see the state of the character's hints and hint replacement
program instantly in the Font Window. There is a small mark in the left-
bottom area of each character cell. If this mark is present, it means that a
hint replacement program is present. If the mark is green it means that
the program is OK, that is, there are no overlapping hints. If this mark is
red it means that the character has overlapping hints.

The hint replacement program will be removed if you insert or delete a hint
or a node, or apply any transformation operation to the character.
Consequently, we recommend that you set advanced hinting information
only after you finish editing the character’s outlines, at the last stage of
font development.

Type 1 Hinting Tool

Use the Type 1 Hinting Tool to create a hint replacement program.

To activate the Type 1 Hinting tool select Type 1 Hinting in the Tools
> Hints & Guides menu. Or just click on the % button in the Tools toolbar.

If the glyph that you are hinting contains TrueType curves FontLab Studio
will open the warning dialog box:

Do you want to correct problems before continuing?

Current glyph doesn't match Type 1 requirements.
Contours have wrong directions or 2nd order curves are present.

__ Always do correction

Cancel) { OK }

Click Cancel to avoid activating the Type 1 hinting tool or OK to convert
the glyph to Type 1 curves. Check the Always do correction option to
convert all glyphs that are opened for Type 1 hinting.

When the Type 1 hinting tool is successfully activated you will see a pixel
preview panel:
: a8 Hinting Options

Current PPM: |12] m

and a small toolbar:

Type 1 Hinting

683

684

The buttons on the toolbar mean:

3 Auto

Automatic hinting

= 3-Hint-H
0=

Allows horizontal triple hints when pressed

m:m 3-Hint-V

Allows vertical triple hints when pressed

[Preview Opens the Preview panel
Preview Paints rasterized picture of the glyph as a background of the
Pixels editing area

gy Preview Previews Flex hint zones in the current glyph in red color.
Flex

When the Type 1 hinting tool is active, the contents of the Glyph window

change:
8eme Glyph - B from Adobe Caslon Pro
e R R e B TR A TR I TN FARTTR TR TR AT TY e
Type 1 Hinting
w | P :
B Hinting Options 3 I; l
_ Current PPM: 12 @ i @ = n E ;ﬁ
= S
@11 %" @
ol 21 gt
o T o B
Eir 4 W&‘M@ i
- 2z E.El
e J i3 ¢
&
hd
&)1 1008w e il s

Here is a brief description of what appears in the editing field:

Thick green lines Currently active set of stem hints

Thin gray lines All other hints

Yellow areas Overlapping zones of hints

Black contour Active part of contour

Green "HR" marks Hint-substitution points

Yellow marks Startpoints of contours with their number

Arrows Direction of contours.

There are active and inactive contour segments and active and inactive
stem hints. Active hints work when the active part of an outline is
processed by the rasterizer. The hint replacement points separate contour
segments from each other.

You can select different active parts of the outline by clicking on the
outline segment that you want to make active. The active segment always
appears in black and the hints that apply to that segment appear in green.

685

686

Inserting and Removing Replacement
Points

The contour segments to which you may assign hints lie between two hint
replacement points (green marks). To define a new contour segment you
add a new replacement point. Remember that the node where you put the
hint replacement mark will be the first node to which the hint set is
applied.

To add a hint replacement point:

1.

Position the mouse cursor on the node where you want to set the hint
replacement mark.

Crri-click with the mouse. You will see the popup menu with two
commands: Cancel (does nothing) and Add replace point here (adds
the replacement point). Select the latter command and a new
replacement point will appear.

When you insert a new replacement point FontLab Studio
automatically selects the hints that should be set in the new contour
segments.

To remove a hint replacement point:

1.
2.

Position the cursor on the node that has an “HR” mark.

Ctri-click and select the Remove this replace point command from
the popup menu.

FontLab Studio will combine hints from the two segments, trying to
make an optimal hint selection. It will not let hints overlap.

Adding and removing hints

FontLab Studio automatically chooses the hints that should be included in
the hint set that belongs to the contour segment beginning from the new
hint replacement mark. To modify this hint set you can add or remove
hints from it.

To add a hint to the hint set:

1.

Position the mouse cursor on the hint that you want to add. The cursor
should be between two hint lines.

Crri-click with the mouse. The selected hint will be highlighted and
you will see the popup menu with three commands: Cancel (closes the
menu), Add this horizontal hint, and Add this vertical hint. Only one
of the two latter commands is available depending on which hint you
want to add. If the popup menu does not appear, it usually means that
you tried to add a hint that will overlap one of the hints that is in the
current hint set.

If the popup menu appears but includes a different set of commands, it
means that you missed and selected the wrong hint, or no hint at all.

“Wrong hints” are hints that overlap any of the hints that are already
active in the current segment.

To remove a hint from the hint set:

1.

Locate the mouse cursor somewhere between the lines of the hint that
you want to remove. Currently active hints are shown in green.

Crrr-click and select the Remove this horizontal (or vertical) hint
command from the popup menu.

687

688

Editing Hints

With the Type 1 hinting tool you can also add, edit and delete Type 1 hints
and links.

To add a new hint, hold the Cmp key and drag it from the vertical or
horizontal ruler line in the left and top parts of the Glyph Window and
position it where you want the hint to be.

To add a new link, select the Add new vertical/horizontal link
command from the Tools > Hints & guides menu or from the popup menu
that appears if you CTrL-click on an empty area of the Glyph Window.
Click the mouse cursor on the first node of the pair you want to link and
drag it to the second node and then release it.

To edit a hint or link, position the mouse cursor on the hint’s or link’s
line, press the mouse button and move it to the new position. Refer to the
description of the Edit tool on page 488 for more information about hint
editing.

To remove a hint or link, position the mouse cursor on one of the hint’s
or link’s lines and Ctrr-click. Select the Delete command in the popup
menu.

Select the Reverse command from the same menu to reverse the hint’s
direction. Correct direction of hints is left-to-right and bottom-to-top.
Incorrectly directed Type 1 hints may cause the problems with some older
font rasterizers, so FontLab Studio will correct the hint direction
automatically during the Type 1 font generation.

Select the Properties command to open the hint (or link) properties panel.

There is a faster way to open the properties panel: hold the Cmp key
and click on one of the hint lines.

Note that if you delete a hint you will remove it completely, not just the
reference to it as in the case of the Remove command described in the
previous section.

Autoreplacing

The easiest way to build a hint substitution program is to click the |
button on the Type 1 Hinting toolbar. We recommend that you begin from
the automatically generated hint substitution program and make
adjustments as necessary.

Preview Pixels

While you are editing hinting you can preview your glyph rendered as
black-white picture. You have two options: use Pixel Preview panel of the
Hinting Options panel:

. (5] Hinting Options

Current PPM: -12 1 EJ

or you can put a rasterized image of the glyph into the background of the
glyph outline:

689

690

To select the PPM of the rasterized sample use the Current PPM control of
the Hinting Options panel:

Current PPM: .12 . [T]

It is possible to quickly "browse" different PPM sizes using the Cmp+PcUpP
and Cmp+PcDowN keyboard shortcuts.

You can also enlarge sample of the glyph in the Pixel Preview panel using
the zoom buttons to the right of it:

D1l
(Y21
31
Y41

@61

Preview Panel

The Type 1 Hinting Tool has a preview panel that shows how Type 1 hints
will affect the character’s appearance.

To show the preview panel press the |* button in the command panel.

The preview panel consists of two fields: a standard edit field where you
can enter a sample string, and a preview window, where two types of
preview appear:

[e Type 1 Preview .
H@Ox@o - (el T Sample string text
IR OB < Sample string preview

«» e EEEDER BBBBBBBBBBBBBBBBB Waterfall preview

1117 14 48 £F 27 24 SE BE 2P 28 E9

You can change the rasterizer to preview the font. Click on the small button
in the preview window and observe the list of rasterizers:

Apple B&W

DO v Adobe B&W
Adobe Grayscale

2
FreeType B&W
Py~ FreeType Grayscale
i i

Select Apple B&W to see how the font will look in Mac OS X.

In the waterfall preview you can see the current character in various PPM
sizes. In the top part of the preview window a sample of any character can
appear. We recommend using this sample area to compare the rasterizing
results of different characters in a font. You can change the PPM at which
the sample string is previewed very easily: position the cursor on the PPM
preview in the waterfall range and double-click the mouse button.

To see a preview of special characters that are not accessible directly
from the keyboard use the usual FontLab Studio rules for entering special
characters (i.e. enter the character name after a slash ‘/’ character — use
two slashes to enter a slash: “//”).

FontLab Studio updates the preview panel every time you change
something in the hint replacement program. This may be a slow process on
some computers, but you can hide the panel; edit the hint replacement
program; and then switch the panel back on to see the results of your work.

How the Type 1 Preview Panel Works

For Type 1 preview FontLabStudio uses selected rasterizer. When the Type 1 preview panel is open
and something is changed in the character FontLab Studio performs the following operations:

1. FontLab Studio creates a very small Type 1 font that includes the empty (“.notdef”) character
the current character and all characters from the sample string.

2. All characters in this font are mapped to codes starting at 20h (32) - the code of the space
character. The empty character is not mapped.

3. This font is exported in Type 1 font format and a suitcase file is created for it. The font name is
set for this font in such a way as to avoid conflict with names of any of the installed fonts.

4. The font and suitcase files are saved in temporary directory.
5. Thefontis installed in System. All previews are made with this font.
When the font is no longer needed it is uninstalled and the font and suitcase files areamoved.

691

Expanding the Preview Panel

The Preview panel may work in “closed” or “expanded” mode. To open the
panel click on the 7 . You will see the preview panel expand:
(&) Type 1 Preview

The quick brown fox jumps over ’E‘ 2l B

The quick brewen fex jurnge orer

s oo e0000 OOOOOOOOOOOOOOOOO

The quuck becwen fos: JLmps over
‘The quickbaown fos jumyps avar
The quick bronan foee jurngs ower
The quick browr, fox jurapes awer
1z The quick bresen fox jumps over
The quick brewen fos jurmps over
The quick brown fox jumps over
The quick brown fox jumnps over
The quick brown fox jumps over

The top part of the panel remains the same, and the bottom part is the

sample string rendered at multiple PPMs. You close the panel by clicking
the - button.

692

Preview Panel Options

With the Preview panel options dialog box you can customize the PPMs at
which the horizontal waterfall and sample string are rendered.

To open the dialog click on the |~ button to the right of the sample
string editing control. You will see the options dialog box:

Hinting Preview Options

List of PPMs to preview:
5-36, 38, 40, 42, 48

Reset

List of PPMs in expanded view:
5-24 (_ Reset

™ Lock preview text box

Contents of the preview text combo box:

The quicl brown fox jumps over

H@Ox @o

AS ACREES RUNAS

ABCabcl23

ABCDEFCHIJKLMMOPQRST LV WY Z

hamburgevons

HAMBURCEV ONS

SHE VERSE ASHORE

GCORCEOUS MNAME

HAHHAACHAOOAD i
HEHHEOHEOOED v

Open... '_

Font to use in the preview combo box: _Seiect... |

(cancel) (Apply | (0K -}

At the top of the dialog box you will find two editing fields where you can
enter the list of PPMs to preview in the horizontal waterfall line (top
control) and in which to preview the sample string in the expanded mode
(bottom line).

Enter the PPMs separated by commas or define ranges of PPMs using
the ‘-*:

12, 13, 15, 16-24

Click on the Reset button to the right of the editing fields to reset the list of
PPMs to the default values.

693

694

Lock preview text box

When this option is switched on, FontLab Studio will not allow you to
change the contents of the sample string edit box. You can, however, select
pre-defined strings in the list.

Below the options there is a list of pre-defined sample stings. You can
freely edit it as text or click the Open button to open a text file that will be
used as a source of sample strings.

The last option in the dialog box is the Font to use in the preview combo
box. Enter the font name or click on the Select button to choose one of the
fonts. The font will be used in the sample selection control — this is very
useful when you are working with non-Latin fonts.

Some Examples

Here we want to show you some typical hinting situations and
recommended hinting sequences for them:

— e —
1T b D }n \ >h il \\\\ﬁm
/.// I 3 /0/t 5 - /‘/«/
— N ™ ~ NI

on . U L ol L, @\ri _/

Example of a hint replacement program for the Times ‘B’ character

(0 0

e

Example of a hint replacement program for the Times ‘g’ character

695

696

TrueType Instructions

In TrueType fonts, the hinting process is very different from the one used
in Type 1 fonts. As we said before, in TrueType font format almost all
characters have special programs that directly control the movement of
outline points at different PPM sizes.

The native TrueType instruction language consists of several dozen
commands. All the commands deal with the data stack, a temporary
storage place, and the constant definitions that come with a font.

There are 3 different kinds of instructions in each TrueType font file. One
global program (called the Font Program) is executed one time when the
font is used for the first time. Another global program (called the PPM
Program) is executed one time when the font’s PPM is changed. Local
programs (Glyph Programs) are executed for each glyph when it is scaled.

Programs can deal with points, distances, arithmetic values, constants and
graphics state parameters. Graphics state parameters set rules that are
used as settings for various commands.

Every character outline is scaled according to the selected PPM value.
Point coordinates are stored as fixed-point numbers (they are not integers,
but have a fixed precision). Then the glyph program is interpreted. The
glyph program measures the distances between outline points, uses font-
level constants and resets the position of some outline points. These points
are called touched points.

All untouched points usually interpolate (by the last glyph program
command) between the new positions of touched points.

| (- I
HEEEN LT [T
77_l_l_l_L._Q‘ 17 17 “N
H N SEEEE A mn H b
T S AR % AEE 11
1] 4 114 1] >
1] v 1] ¢ 1]]
1]] 11 N | 1] N %
1] ™~ N\ 1]] 1] AN
1] I | P Bl 1] [N Bl
1] s 1 1| # \ [1] »
1] < 11 1] ULl lele* 1] v
T T 1 1 1 L T ﬁ‘(l L B
Original outline Hinted outline Hinted outline
before interpolation after final interpolation

There are several special commands that are applied to the glyph outline at
specific PPMs. These commands are called delta instructions and are used
to slightly modify the position of outline points to improve the character’s
appearance.

We will not include here a complete description of all TrueType
instructions. If you are interested we recommend that you read “Technical
Specifications for TrueType Font Files” which is available from Microsoft.

697

698

Font Parameters

Because within each font it’s very important that all characters have a
consistent appearance, some font-level information is necessary for
hinting. There are two kinds of such information: alignment zones and
stem widths.

Alignment zones set the positions of the most important vertical positions,
such as the sizes of uppercase characters, the position of middle-lines, and
the top and bottom overshoot positions.

To minimize rounding error and to make better baseline alignment you
have to suppress overshoots and maintain the same size of overshoot and
regular characters at small PPMs. This is very easy to do if you position and
size the bottoms and tops of these characters and “stick” the bottom and
top points to these values.

Stem widths define the most important stems in the font and control the
rounding of these stems. Here you must control the PPM at which the stem
width changes from one to two pixels and from two to three pixels.

Refer to page 672 for more information about alignment zones and
standard stem widths.

Visual TrueType Hints

In FontLab Studio we use a small set of high-level hinting instructions that
are automatically compiled to TrueType instructions during font export.
Because these instructions can be set and edited visually we call them
visual TrueType hints or just visual hints.

Visual hints are enough to define TrueType hints even in very complex
situations and they are compiled in very compact and effective TrueType
instruction code.

The visual hint set includes the following commands:

Align Aligns (moves) the position of the outline point to the designated
position on the grid or to the edge of the alignment zone.

Single Link Sets the position of the point relative to the position of another
point. Distance can be linked with one of the stem widths.
Distances also may be rounded or not.

Double Link Sets the distance between two points to an integer value that may
be linked with a stem width

Interpolate Interpolates the position of a point between two other points

Middle Delta Slightly shifts a point at a specific PPM. This command works
before the final interpolation of untouched points.

Final Delta Slightly shifts a point at a specific PPM. This command works after
the final interpolation of untouched points. This command is used
for the final outline correction.

All commands are available in horizontal and vertical directions. There are
no “diagonal” visual instructions.

Sequence of commands

Visual commands may be set in any seq uence, but they are interpreted in a very specific order.
FontLab Studio automatically detects the logic of the hinting program and does intelligent sorting.

1. Align commands are always interpreted first.

2. Double links are interpreted first also, except thaimiddle delta instructions may set points that
are linked by double links.

3. Single links and interpolate commands are interpreted in logical sequence.

Middle delta commands are interpreted after commands that set positions of the points for
which they are set, but before commands that are based on these points.

5. Final delta commands are interpreted after final interpolation of the untouched points.

699

700

TrueType Hinting Tool

With the TrueType hinting tool you can set and modify visual TrueType
hints and preview the real resulting TrueType font using the system
TrueType rasterizer.

To activate the TrueType Hinting Tool select the TrueType Hinting
command from the Tools > Hints & Guides menu or press the | button
on the Tools toolbar.

When you select the TT Hinting Tool you may see the message:

Do you want to correct outline problems before
continuing?

Current glyph doesn't match TrueType requirements.
3rd order curves are present. Contour direction is wrong.

: Always do correction

3 Ignore the direction warning

Cancel) ¢ ok }

This message appears if the current character has 3rd-order curves that
should be converted to 2nd-order curves to set Visual TrueType hints or if
the contour direction is wrong.

The TrueType specification requires that contours in TrueType fonts to be
directed clockwise. Most rasterizers will correctly render TrueType fonts
with incorrectly directed contours, but it is not guaranteed so we
recommend directing contours according to the specification. If you don’t
want FontLab Studio to check the contour direction, check the Ignore the
direction warning option.

Press the OK button to continue to work with the tool. Leave the Always do
correction option checked if you want FontLab Studio to always correct
the outline format when opening a character.

When the Hinting Tool becomes active you will see that the editing field of

the Glyph Window has changed:
& O & Clyph - B from Adobe Caslon Pro

BT EXT) " £
5||I"|||'||'l|"|':"||||I|||||||||I|||||||.m'||"|||'||'I®‘mm
=] =
209 =
£1
-,-_ & T\L‘_“_“_‘—H

0] = = 14
500] tis
515

1]

Fy

b:1
v

(8 1) 1005w | =) yairizl 4

Illlglll Illlgllllélf::llllgllliélllgllll
T

The Toolbar, Options, and Preview may appear on the screen:

™ TrueType Options | TrueType Tools

Current PPM: 16 L X, [Etor to] &7 oAr oA | B L) W
()] TrueType Preview

Link to stem: =

%) Automatic H@0x @o i

) None i

m . 36 - Ty

L i —— HEOxPo

aRound distance
v et BEEB BBBBBBBBBBBBBBB
Round position: 5 8 7 o8 310111217 1415 @47 15 13 20 21 22 23 24 25 26
@+ O+ O+

— —~
() Center (_) Double

"1 Round destination

Delta PPM range:
15 1s

Deita offset: 0
o e s L e
122458873

EFEEATE

Ty
L1l
~
L2211
e
4l

)
61

701

702

Toolbar

TrueType Toaols

! ! A ; s | 'ty
X, R 1oy oy o0 | +ar oA | B flall T v

With the Toolbar you can select the hinting direction, the current visual
instruction tool, and the layers that appear in the editing field of the Glyph
Window. You can also open and close the Preview and Program panels.

Here is a detailed description of the Toolbar buttons:

¥: Setvertical direction. Sets visual instruction tools to work in the vertical
direction. L.e. create vertical links, alignment, interpolation and deltas.
Instructions in different directions are independent of each other

X Set horizontal direction

+«+ Select Align command

roe| Select Single Link command

rad Select Double Link command

| Select Interpolate command

s Select Middle Delta command

+A Select Final Delta command

Switch TrueType hinting tool to bitmap mode

1 Show Preview panel

#=| Open the Options menu.

If you click on the | ¥~/ button, you will see the Options menu:

+ Hinted outline
v Grid lines
Pixel centers
v Resulting image
Point numbers

Program panel
v Preview panel

All the commands except the two at the bottom control the appearance of
the layers that represent information about the hinting process. The layers
are described in the following section.

The two remaining commands let you open the Programs panel that
previews the source code of the hinting program and the Preview panel
that shows the result of the hinting.

703

Layers

With the TrueType tool you can see various information layers in the Glyph
Window.

A

Gridlines

Point indexes

Resulting outline

~g¢————— Pixel centers

Resulting pixels

- Original outline

These layers are different from the usual editing layers, so we will explain

them here:

Outline The original, untouched outline of the glyph always appears in the
Glyph Window in black. The Resulting outline, which is the result of
the interpretation of the instruction program, appears in gray

Grid Gridlines. Gridlines mark the edges of pixels that will appear in the
selected PPM size

Centers Centers of pixels. When the outline is filled, all pixels whose centers
are on the outline or inside the outline are set black. This layer is
very useful for delta hinting

Pixels Resulting pixels. FontLab Studio uses the real TrueType rasterizer

to preview a filled glyph at the selected PPM after interpretation of
the instruction program

Point indices Point numbers. There are also two special points that mark the left
and right sidebearings of the character. You can apply any
commands to any of these points.

704

I Options Panel

The main control center of the TrueType hinting tool is the Options panel:

O _TrueType Options

Current PPM: |15 g———— Current PPM size

Link to stem:

® Automatic -+——— Alignment of distances
) None

() |y: 36 -

Round distance

Round pasition:

@+ O+ O#

() Center (") Double

Point alignment options

"] Round destination

Delta PPM range:
16 14— Delta instruction settigns

Delta offset: 0
R e R e

SFES4TLL 1ZT4EETE

T £

g g b
-4——==r—— Preview of the current glyph
:EI @31
O 41g— Preview zoom buttons

—~
Bl

The main use of this panel is for selection of the current PPM size. Use the

popup menu to select one of the predefined values or enter your own value
in the edit field:

Current PPM: |16

In the options preview window you can see a sample of the current
character. FontLab Studio uses a real system TrueType rasterizer to render
the character, so this preview is exactly what you will see when you export
a TrueType font and use it in an application in a black-white mode.

Use the zoom selection buttons to enlarge the sample character:

1:1
.2:1<

E @3:1

4:1
61

1 ®)

t— Zoom buttons

—

All other options that can be set in this panel will be described later.

705

706

TrueType Preview Panel

In the preview panel you will see a waterfall preview of the current
character and a preview of a string at the current PPM size:

(&) TrueType Preview

The quick brown fox jumps over @ e Sample string edit fielc

The quick brown fox jumps over « Preview window

..+ +222288RBEBBBBBBBBBBE «——————— Waterfall preview

S 6 7 5 2404112174445 4r a5 49 20 21 22 27 24 25 26 27 2%

To open the Preview panel (if it’s not already open) press the =2

button on the toolbar.

If you enter any characters in the edit field, you will see these characters
appear in the top of the preview window. Use the usual FontLab Studio
rules to enter special characters (enter the character name after a slash ‘/’
character or two slashes to enter a slash: “//”).

You may also drag selected characters from the Font Window and drop
them in the Preview window.

With the waterfall preview you can quickly select the current PPM. Just
move the cursor to the sample PPM you want to select and double-click the
mouse button.

How FontLab Studio Previews TrueType Fonts

FontLab Studio uses the real Mac OS TrueType rasterizer (ATSUI) to give an exact preview of the
TrueType hinting for the Preview panel, the Pixels layer in the Glyph Window and the preview
window in the Options panel. To get a preview FontLab Studio implements the following steps:

1.

2.

5.
6.

FontLab Studio creates a very small TrueType font that includes the empty (notdef) character,
current character and all characters from the sample string of the Preview panel.

All characters in this font are mapped to codes starting from the 20h (32)- code of the space
character. The empty character is mapped to 0, as usual.

This font is exported in TrueType format using all the TrueTyp e export settings, including
grayscale settings, maintaining the existing instructions setting and autohinting. A special font
name is set for this font to avoid conflict with any installed fonts.

This font is saved in the temporary directory and installed in the system.
The new font is installed in the system. All previews are made with this font.
When the font is no longer needed it is uninstalled and the font file is removed.

Like the Type 1 hinting preview panel, the TrueType hinting preview panel
can be opened and its options can be customized. Please refer to the
description of the Type 1 hinting preview panel on page 689 for more
information.

707

I Program Panel

In the Program panel you can see the text of the instruction program as it is
interpreted:

(5] TrueType Program
Instructions:

: DoubleLinkH 0 <-> 28 | Delete)
: DoubleLlinkH 24 <-> 4
:MDeltaH 24 <3> 22 - 23
:MDeltaH 24 <2> 9 - 21
. InterpolateH 24 -> 8 <- 4 na € Close B
:InterpolateH 24 -> 33 =- 40 -
MDeltaH 33 =3> 22 - 23

MDeltaH 33 =2> 9 - 21

[~ Reset)

= M W W R = O

| More >>)

To open the Program panel use the command from the TrueType

hinting Options menu .

The Program panel consists of the program listing and four buttons:

Delete Removes the selected command

Reset Removes all commands

Close Closes the panel

More>> Expands the panel to include the command options controls.

708

Here are the mnemonics that are used to represent commands. A detailed
description of each command and its parameters will follow.

AlignTop

Align a point to the top alignment zone

AlignBottom

Align a point to the bottom alignment zone

Align Align a point to the grid

SingleLinkH, Single Link commands in horizontal and vertical directions
SingleLinkV

DoubleLinkH, Double Link commands in horizontal and vertical directions

DoubleLinkV

InterpolateH,

InterpolateV

Interpolate commands in horizontal and vertical directions

MDeltaH, MDeltaV

Middle Delta commands

FDeltaH, FDeltaV

Final Delta commands.

Click on the More>> button to expand the panel:

| ©

Tru'éT',rpe Program

Instructions:

B T = 3 B B B ™

: DoubleLinkH 0 <-> 28

: DoublelinkH 24 <-= 4

: MDeltaH 24 <3> 22 - 23

: MDeltaH 24 <2> 9 - 21

: InterpolateH 24 -> B <- 4 na
: InterpolateH 24 -> 33 <-4 0
: MDeltaH 33 <3> 22 - 23

: MDeltaH 33 <2> 9 - 21

Fram: O] To: ‘28

Stem: Round without stem

| Delete)

Reset

Close

Less << |

4

{ Apply)

In expanded mode you see the command options panel in the bottom.
Select the command and use the controls in that area to change the
command parameters. Click the Apply button after you make changes to
accept them.

709

710

The commands in the list have a two-way connection with the Glyph
window: when you click on the visual representation of the command in
the Glyph window, the related command is selected in the Program panel’s
list.

When you select a command in the Program list, the command is visually
highlighted in the Glyph window:

i
P =

Use the command link to check the logic of the hinting program and to
customize command parameters in complex situations.

Alighment Instructions

Alignment instructions are used to align points to the grid. There are two
types of alignment instructions: those linked with alignment zones and
those not linked with zones.

Alignment Zones

Alignment zones define important vertical positions that are common to
many font characters. A good example of an alignment zone is a baseline
and the bottom position of the ‘O’ character:

YL J7

Bottom alignment zone

At low PPM sizes you must set the bottom point of the characters ‘O’, ‘C’
and similar characters to the baseline to suppress the bottom overshoot. In
this case we have a so-called bottom alignment zone.

Another example of an alignment zone is the top line of the ‘H’ character
and the ‘O’ character:

y N

Top alignment zone

A

Alignment zones are previewed in the Glyph Window with a gray color.

711

Editing TrueType Alighment Zones

TrueType alignment zones are different from the Type 1 zones that we
discussed in the previous section. To add new TrueType zones or edit
existing zones do the following;:

1. Click on the Options button of the Options panel:
[O TrueType Options |

Current PPM: 16 @

Link to stem:
E} Automatic

") None

Ty 36 v@l

™ Round distance

2. Click on the Zones tab in the appearing dialog box:

Stems | fones | General

You will see the Zones page:

TI' .}.-.lint-i.ng apt.i-ans

! Stems | Zones | General |

foml b o= [TE T
Name |vo [v1 |dv Name |v0 vl |dv
t0 410 414 4 b:0 0 =20 20
tl 417 435 18 b:1l =272 -281 9
t2 450 462 12
t3 666 683 17
4 708 723 15
t0 [=H0]
a10 2 414 (7 4 il 0 £ [-20 i) [20)
{ Cancel'_l —oK—)

712

The zones page contains a toolbar, two lists and a command area below
each list. The left list stores all information about the top zones (where

alignment happens in top-to-bottom direction) and the right list — about
the bottom zones.

For each zone you may specify its name and position of the "snap to"
(primary) line (v0) and a secondary (v1). The position of the secondary may
be defined in absolute coordinates or as a distance from the primary line
(top zone pictured):

< v
dv
< v0

To change settings for a zone select it in the list and use controls below the
list.

There is a toolbar above zones lists. Use it to call following commands:

+ -+ Addnew top or bottom zone, respectively.

— -+ Remove current top or bottom zone.

T Import Type 1 zones of the current font
Import TrueType zones from another font (font selection dialog box
appears)

e Replace Type 1 zones with the TrueType zones

713

714

AlignTop and AlignBottom Instructions

These instructions are available only when the vertical hinting direction is
selected.

To add AlignTop or AlignBottom commands:

1. Select the Align tool [**%..

2. Position the cursor over the point that you want to align and click the
mouse button

3. Ifthe selected point was in one of the alignment zones, an AlignTop or
AlignBottom command will be added to the hinting program. If the
selected point is not in the zone, the “free” Align command will be
added.

The AlignTop command appears as:

_/ Align top command

sosssnies o])
Alignment zone
P [¢]

ey e
i e

o s

The AlignBottom command is similar to the AlignTop command.

How AlignTop and AlignBottom Commands Work

1. Inthe prep program (this program interprets every time the PPM is changed) all alignment
zones (stored in the cvt table) are aligned to the closest iieger position.

2. When the glyph program interprets, the position of the point aligned to the zone by the
AlignTop or AlignBottom command is set equal to the aligned position of the zone if the
scaled distance between it and the zone is no more than 16/17 piels.

The AlignTop and AlignBottom commands have two arguments: the index
of the point that is aligned by the command and the index of the zone. In
the Program panel these commands appear as:

AlignBottom 12 [1]

AlignTop 5[0]

where 12 and 5 are point indexes and 1 and 0 are indexes of the bottom and
top zone, respectively.

Hinting Alighment Zones

By default the position of the alignment zones is scaled linearly. Sometimes
this may not be satisfactory and you may need to exactly specify the
position of the alignment zones at some PPMs.

With FontLab Studio you can adjust the position of the zones around the
linearly scaled position.

Every alignment zone has a yellow icon at the left:

Tﬂg‘

EQ

You can drag this icon up or down to adjust the position of the zone at the
current PPM:

&

L1

If you move the icon you will see all glyphs that have align commands
applied to that zone changed their shape.

You may find this feature useful when you have to add glyphs to an already
hinted TrueType font. New glyphs often have a different height at some
PPMs and you can correct that with the zone alignment command and
zone hinting.

715

716

Align Instruction

Use the Align command when it’s not necessary (or possible — you can’t
align points to horizontal alignment zones) to align a point to an alignment
zone but you want to align the point’s position to the grid. The Align
command is available in both directions.

The Align command allows you to directly control how point coordinates
are rounded.

To select a rounding method use the alignment control radio buttons in the
Options panel:
| Round 'pusiri'-:r'h:

®+ O¢ O4

: Center : Double

" | Round destination

Here is a graphical description of the various rounding methods:

Rounding Appearance Code Description

0 Aligns to the closest grid line
$§ * o
x|
v
L . 1 Aligns to the left or bottom grid line
=X
A
x 2 Aligns to the right or top grid line
* S L L
x|
T pad 3 Aligns to the closest center of pixel
X
v
4
, ok Aligns to closest edge of pixel or center of pixel
x>
_
4$’>

To set an alignment command on the outline:

1. Press the Align button | ‘**| on the toolbar.
2. Position the mouse cursor on the point that you want to align.

3. Click the mouse button. Hold the SHirt key if you are setting vertical
commands and the point is inside an alignment zone.

In the Program panel the Align command appears as:

AlignV 12 1]
AlignH 22 [0]

where 12 and 22 are point indices and 1 and 0 are the codes of the
alignment rounding method as shown in the table above.

717

Align commands are the very first commands in any hinting program. They
do not have base points and affect only one point.

Customizing the Align Instructions

You can customize Align instructions with the context menu. CTrL-click the
point to which the align command is to be applied and you will see the
menu:

Delete Command

Attach to Zone

Aligl{ment Type v’ Closest Pixel Edge

Left/Bottom Edge
Right/Top Edge
Center of Pixel
Double Grid

You may delete the command, attach or detach it from the alignment zone
(this option is available only if the point is in the zone) and change the
alignment type.

Another way to customize the command is to use the Program panel in
expanded mode:

Point: | 28

Align: ' Closest pixel edge HH

718

Links

Links are the most important visual commands. They are used to set
relationships between outline points and to set distances between points to
one of the standard stem values.

There are two types of links: single links and double links. Single links need
to have a base point that is set by a previous command. This can be any
command except a final delta.

A double link does not need to have base points. It sets the position of two
points and they can be used as base points for a single link or interpolate
command.

719

720

Standard Stems

All link commands can be connected with one of the standard stems. When
a link is connected to a stem it sets the distance between points to the
scaled and rounded width of the stem. Using this technique you can
implement standard-stem-based hinting, keeping important stem widths
the same in every character in which they are used.

Please note that Type 1 standard stems and TrueType stems are different,
although they function similarly. There is no limitation to the number of
TrueType stems and they may be named. We will discuss all the different
options of TrueType stems later on page 740.

You can use the Options panel to select standard stem options:

Link to stem:

@ Automatic
") None

-

E Round distance

There are three main options: Automatic connection to the stem, Manual
connection and no connection at all.

In automatic mode FontLab Studio will automatically select the standard
stem that is closest to the linking distance. It will not connect the link with
the stem if the difference between the distance and the stem width is more
than either the stem or the distance.

In manual mode, you select a stem to which you want to connect a link in
the stems popup menu and switch on the Select option. However, if the
difference between the distance and the selected stem is too high, FontLab
Studio will not connect the link to the stem.

To keep from connecting a link with a standard stem switch on the
None option.

Single Links

The single link connects an outline point to a point whose position is set by
another command. If you set a single link that linked point will always be at
the given distance from the base point:

Original stem

<4— Resulting stem

Single link instruction

A single link may be linked with one of the standard stem widths. If it is so
linked then the distance to the base point is replaced by the scaled and
rounded stem width. So if several links are connected to the same stem
width the distances from the base points will always be the same.

Single links are very straightforward: they have one base point and one
affected point.

If a single link is connected with one of the standard stems the linking
distance is always rounded to the grid. If the link is not so connected, then
it may be rounded or not depending on the currently selected Round
distance option:

E Round distance

Rounding distances is the default option for this command because it
usually gives better control of the position of the destination point.

There is a special kind of single link called the aligned single link. It can be
described as a combination of a single link and the Align command on the
linked point. You can’t set a normal Align command at the end of the link
but you can use an aligned link in this case. To make a link aligned switch
on the Round destination option on the Options panel:

| Round destination

Aligned single links use the current Align mode.

721

722

To set a single link:

1. Select the single link tool |**%.

2. Position the cursor on the base point. Don’t forget that the position of
the base point must be set by an instruction.

3. Press the mouse button and drag the mouse to the point that you want
to link. A circle will highlight it. Release the button.

Hold the Surrt key down if you do not want to connect the single link to a
standard stem width. If you hold the Suirt key the stem settings in the
Options panel will not work.

If the base point of the link is not aligned by some other command,
FontLab Studio will automatically set an Align command on it. Hold down
the Cmp key if you want to prevent this.

In the Glyph Window the single link command appears as a directed line
with a mark in the middle. The mark is yellow if the link is connected to a
standard stem width, and gray if it is not. If the link is connected, the stem
name may appear near the mark:

Base point

@l // Stem name
\ Linked point (#38)

In the Program panel a single link command appears as:

SingleLinkV 12 -> 38 [0] 1

where 12 is the base point; 38 is the linked point; 0 is the number of the
stem to which this link is connected (or “ns” if it is not connected to the
stem); and 1 is the type of alignment for aligned links (or “na” for links that
are not aligned).

How the SingleLink Command Works
1. First the original (not gridfitted) positions of the base point and the linked point are r etrieved
and the distance between them is measured.

2. Ifthelinkis connected with a stem the distance is replaced by the prepared stem width for this
PPM. If the scaled distance is equal to or exceeds 3 pixels it is rounded to the closest integer. If
the link is not connected to the stem the distance is rounded or not depending on the
rounding option of the command.

3. Thedistance of the linked point is set equal to the gridfitted position of the base point shifted
by the distance.

4, Ifalinkis aligned then the position of the linked point is rounded to the grid according to the
align mode stored as the last command parameter.

723

724

Customizing the Single Link Command

There are two ways to customize the single link command: the context
menu and the Program panel.

To customize a command with the context menu Crrr-click the round
icon in the middle of the link:

Delete Command

+ Round Distance

Distance Alignment > Do Mot Link to S5tem

) = = Select Stem Automatically
Align Destination Position >

T — N3l
42

Use the Delete Command command to remove the command and the
other options to customize it. The Distance Alignment sub-menu lets you
link the command to one of the stems.

The Align Destination Position submenu is the same that you can see in
the Align command’s context menu and defines the rounding of the
destination position.

In the Program panel the Single link options looks like:

| From: 113 | To: 71
| Stem: | Round without stem 4
| Align: = Do not align —:]

You can change the indexes of the starting and destination points and
change the distance rounding and destination alignment options.

Single Link Examples

Here are some examples of single link hinting:

e

Horizontal hinting of the Times ‘m’ character

R

2.4

Vertical hinting of the Times ‘F’ character

725

726

Double Links

Double links let you set the distance between two “untouched” points. Both
points will be moved by this command and both points will be touched
afterward.

The distance between points can be connected to one of the standard stem
widths using the usual procedure described above. If the distance is
connected to the stem width, it will scale with the stem.

4 Original stem

Resulting stem

Double link instruction

You can’t predict where points will move that are connected by a double
link so we recommend that you use this command only for stems for which
the position is not very important or for stems that will be used as the basis
for hinting.

The double link command does not have base points, but it sets the
position of points.

To set a double link:

1. Select the double link tool "%,

2. Position the cursor over one of the points you want to link. Press the
mouse button.

3. Drag the cursor to the point you want to link to the first point. A circle
will highlight any point over which you move the cursor. Release the
mouse button when the desired point is highlighted.

Hold the Surrr key down if you do not want to connect the double link to a
standard stem width. If you hold down the SHrFT key the stem settings in
the Options panel will not work.

In the Glyph Window the Double link command appears as a line with two
arrows and a mark in the middle. The mark is blue if the link is connected
to the stem, and gray if it is not connected. If the link is connected the stem
width will appear near the mark:

< -% First linked point

:.: 1 3 T Second linked point
n
n

‘k Stem name

In the Program panel a double link command appears as:

DoubleLinkV 12 <-> 36 [0]

where 12 and 36 are points that are linked; and 0 is the number of the stem
to which this link is connected (or “ns” if it is not connected to the stem).

How the Double Link Command Works

1. The original (not grid-fitted) positions of two linked points are retrieved and the distance
between them measured.

2. Ifthelink is connected with the stem the distance is replaced by the prepared stem width for
the PPM. If the scaled distance is equal to or exceeds 3 pixels it is rounded to the closest
integer. If the link is not connected to a stem the distane is rounded to the closest nteger,
starting from 1.

The grid-fitted positions of the two linked points are stored.
Both points are aligned to the closest grid line.
Rounding errors for both points are calculated by comparing original and rounded postions.

oA W

The point whose rounding error is less remains in place and the second point is set at the
distance calculated in step 1. If the rounding errors are equal then the point with the lower
coordinate value is set.

7. Thedistance of the linked point is set equal to the grid-fitted position of the base point shifted
by the distance.

727

728

Customizing the Command

Ctri-click the middle icon on the double link to open the context menu:

Delete Command

Distance Alignment »

Convert to Single Link Align Left/Bottom Point
Align Right/Top Point

The Delete Command command and Distance Alignment options are the
same as in the Single Link menu. An additional command is Convert to
single link. Use it to replace the double link command with the
combination of the align and single link commands.

Program panel options for the double link command are simple:

From: 29 To: 7

Stern: | x:31 |

an
ke

There are controls to select the indexes of the linked points and the list of
stem names to which the distance must be aligned.

Double Link Examples

Some examples of double link command usage:

TN
-0

DAY E .

Horizontal hinting of the Times ‘H’ character

There are two double links and two single links in this example. The double links set the width and
position of the two vertical stems and the single links align other points that are on the same stem.

Horizontal hinting of the Times “o0” character

Double links are usually used to hint charactes in the horizontal directions in cases where stem
position is not important. As you saw in the Single Links section we used single links to set
horizontal instructions in the ‘m’ character because we wanted to keep the distances between
vertical stems the same.

729

730

I Interpolation

Most of the time, the align and linking commands are enough to hint most
characters, but in some cases a very different kind of command is
necessary. Look at the enlarged middle-right region of the character B in
the vertical direction:

¢ Resulting outline \ g

Original outline
Without interpolation With interpolation

You can see that point 11 in the original outline in the vertical direction is
set exactly between points 34 and 38. But because these points are
connected by a double link and point 11 is not controlled it becomes too
close to point 38.

In this and similar cases you can use the interpolate command. This
command sets the position of a point in the same proportion between two
other points as it was in the original outline.

Or the intermediate point could be aligned to he grid and serve as the
starting point for a single link or another interpolation command.

This command has two base points and one affected point.
To set the interpolate command:

1. Select the interpolate tool |
2. Position the cursor over the first base point.

3. Holding the mouse button down move the cursor to the interpolated
point and release the button.

4. Move the cursor to the second base point and click the mouse
button.

In the Glyph Window the interpolate command appears as two directed
lines from the interpolated point to base points.

In the Program panel the interpolate command appears as:

InterpolateV 34 -> 11 <- 38
where 11 is the interpolated point and 34 and 38 are the base points.

Customizing the Command

To customize the command right click the command icon (small green
circle). In the context menu you can use the Delete command to remove
the command and the Align destination menu to align the destination
point to the grid.

In the Programs panel the Interpolation command options look like this:

From: '29 . To: '?
Paoint: .4
align: | Do not align =]

The Options panel allows you to choose the source and destination points
for the command and to customize the alignment of the destination point.

731

I Delta Instructions

Now you know all about the visual hinting commands that can be applied
to an outline at all PPMs. In addition to these commands the TrueType
hinting language lets you set special commands that will work only at
specific PPM sizes. These commands are called delta instructions.

There are two delta instructions for each hinting direction: middle delta
instructions and final delta instructions.

Final delta instructions are necessary when you want to slightly change the
instruction set — usually to add or remove some pixels:

732

Middle Delta Instructions

A middle delta instruction can move outline points like any other
instruction. It can move any outline point in 1/8-pixel increments from one
pixel left (or bottom) to one pixel right (or top):

-8/8 48 0 +4/8 8/8

+8/8

+4/8

Movement space of delta instruction

Middle delta instructions are interpreted like other commands in the
hinting program. They are automatically inserted between “normal”
instructions that move points and so can be used to modify the normal
interpretation of the hinting program:

Middle delta instruction

In the example above, the vertical stem is moved one pixel to the left when
the middle delta instruction is applied.

A middle delta instruction may be applied to a touched or untouched point
and the point becomes touched afterwards.

It’s a good idea to use middle delta instructions to correct the rounding
direction on some PPMs, like on the character ‘e’ at small PPM sizes.

Another good application of middle delta instructions is the correction of
diagonal hints. A middle delta instruction “touches” the point to which it is
applied, so any other point between two delta instructions will be
interpolated in the final interpolation routine.

733

734

The middle delta instruction has 4 arguments: point to move, PPM,, PPM,
(the PPM range in which this instruction works), and the shift distance in
eighths of pixels. In the Program panel this instruction looks like:

MDeltaV 18 <6> 12-14

where 18 is the point index, 6 is the distance to move (in this case — move
up by 34 of a pixel. A minus sign in front of the number would indicate a
move down), 12 is PPM,, and 14 is PPM,. This means that point 18 will be
moved up 34 of a pixel when PPM is 12, 13 or 14.

To set a middle delta instruction:

1. Select the Middle Delta tool [

2. Inthe Options panel select the shift distance, direction and PPM

range:
EDeIta PPM range:

22 27 -¢—— Delta PPM range
| Delta offset: 3

[T WEE [[+——— Shift distance
; 3“7 6. 5423

By default the PPM range is equal to the current PPM.

3. Move the cursor to the point at which you want to set the delta
instruction and click the left button.

Faster Methods to Set Delta Instruction

There are two other methods to set delta instructions. The simplest method
is to select the Middle Delta tool, position the mouse cursor over the point
you want to move and drag the point in the needed direction. Hold down
the SHiFT key to move the point only in the current hinting direction
(horizontal or vertical).

While you are dragging the mouse to set the instruction you will see its
value both near the end of the line and on the Meter panel:

4,1

. =
wk H

You can also Ctrr-click any point on the
Set Middle Delta < g |outline and select the delta command in the
Set Finl Delta » -7 |context menu.

Align Point 4 o

Lo B = B A S

735

736

Active and Inactive Delta Instructions

Delta instructions may be active or inactive. When the current PPM is
within the PPM range of the delta instruction the instruction is active.
Otherwise it is inactive.

T

&
Active delta instruction (shift up)

&

Inactive delta instruction

Note: if you set a new middle delta instruction at a point where a delta

instruction is already set and is active the old instruction will be replaced
by the new one.

If you set delta instructions for the same point and with the same shift
distance but for different PPM ranges FontLab Studio will try to combine
PPM ranges and unite delta instructions where it is possible.

Customizing the Delta Instruction
Ctri-click the delta instruction mark to get access to the context menu:

%—.

&

</ v Delete command
prerer—

Delta value [2
Remove for current PPM

Use the Delete command command to remove a middle delta instruction,
so it will be removed for all PPMs for which it is defined.

Use the Remove for current PPM command to remove a middle delta
instruction only for the currently selected PPM. For example, if the delta
instruction is defined for the PPM range 12-18 and the current PPM is 14,
after you use Remove for current PPM you will get two delta instructions:
12-13 and 15-18.

The Delta value submenu lets you choose the delta instruction shift
distance.

Another way to customize delta instructions is to use the options area in
the Program panel:

Foint: .EI:I

Offset:

E7E 542321 12345672

Range: 16 . .16

You can change the point number, shift distance and the PPM range.

737

738

Final Delta Instructions

Final delta instructions are applied after the final interpolation of all
untouched points. They are used as a last resort to shift points to remove or
add pixels at PPM sizes where it is still necessary after application of zones,
stems and all other hints:

==

[Delta 1

- Delta 2

Bo4

Hinted character at 12 PPM Same character with two delta
without delta instructions instructions

The sequence of interpretation is the only difference between middle and
final delta instructions. They work exactly the same way. To set final delta
instructions, select the final delta tool | ™| and follow the same instructions
as above for middle deltas.

Some recommendations:

1. Delta hinting is a very time-consuming operation because you have to
check the rendering results at many PPMs. So always try first to get the
best possible results from normal, linear hinting.

2. Use the waterfall preview in the Preview panel to see where delta
hinting is necessary.

3. Tryto set as few delta instructions as possible. They increase font size
and complexity.

4, It’s better to set one delta instruction with a larger range than two less
comprehensive delta instructions.

I Removing Instructions

You can remove any instruction using two methods:

1. Select the instruction in the Program panel and press the Delete
button.

2. Position the cursor on the hotpoint of the instruction, hold the Cmp key
and click the mouse button.

AlignTop, AlignBottom, Align, MiddleDelta and FinalDelta
instructions have hotpoints on the point to which they are applied.

SingleLink and DoubleLink instructions have hotpoints on the mark in
the middle of the line that connects the two points.

The Interpolate instruction has a hotpoint near the point that is
interpolated.

739

740

Standard Stems

There are two sets of standard stems in FontLab Studio: Type 1 standard
stems and TrueType stems. Type 1 stems are used by the Type 1 font
rasterizer and have some limits. For example, it is possible to define only 12
stems for each direction.

TrueType stems have no limits and also have some additional properties.
They may be named and their rounding may be specified for selected
PPMs.

In FontLab Studio you can control the rounding of the standard stem
widths. You can set the PPM size at which any standard stem width is
changed from 1 to 2 pixels, from 2 to 3 pixels, from 3 to 4 from 4 to 5 and
from 5 to 6 pixels. We call these critical PPM sizes “jump” PPMs because
here the stem width makes a jump from 1 to 2 pixels, from 2 to 3 pixels and
so on up to 6 pixels wide. By default, standard stems are scaled linearly and
are rounded to the closest integer value.

When you add a new Type 1 stem, it is added to both stem lists: Type 1
(editable with Font Info) and TrueType.

To control the TrueType stems’ properties you open the TrueType stems
dialog box:

: 1 TrueType Options
Current PPM: '16 IE]

Link to stem: X i
Press this button to open the Stems dialog box
@ Auromatic

__ None /

: Y. 36 v@

IE Round distance

You will see the following dialog box:

' TT Hinting Options
["Stems | Zones = General |
B+ 4 - oo
| Name |Width |ppm1 |ppm2 ppm3 |[ppm4 |ppm5 |ppm6
y: 36 36 0 42 70 98 125 153
!X: 72 72 0 19 32 49 63 R
!x: 92 92 0 19 32 39 49 60
v 38 36 o [[E{4z 70 [E[os 121125 [E[152 |F
= Wt L =t = L
Apply € Cancel) (oK)

Make sure that Stems page is selected on the tab control.

The dialog box consists of a toolbar on the top, a stem list and a row of
controls to adjust stem parameters.

741

742

Buttons on the toolbar mean:

i,

Include vertical stems in the list (stems measured along the X axis)

=

e

Include horizontal stems in the list

+

Add new horizontal stem

+

Add new vertical stem

Remove the stem selected in the list

Automatically calculate and optimize the rounding PPMs

¢

Reset rounding PPMs to linear values

Import Type 1 stems into the list

=

Import stems from another font.

Columns in the list mean:

Name Name of the stem. This is editable if you click the F2 button on the

keyboard. You can also use the control below the list to change the
stem name. The stem name appears when the stem is used in
hinting program. We do not recommend using long stem names, 6-
8 characters is enough in most cases

Width Width of the stem. Use the control below the column to change the

value

PPM2-PPM6 PPMs at which the stem is scaled to 2-6 pixels.

Click on the column header to sort the list by the column values.

A yellow background in the list highlights vertical stems.

It is easy to add a new stem: just click on the | % or the |* button and a
new stem will appear with the <unnamed> name and a width of 100.

To remove a stem, select it in the list and click on the | = | button.

Click on the - button to append Type 1 stems to the list. FontLab Studio
will append only those stems that are not already in the list.

With the | button you can append stems from another font. Click it and

select the source font from the list:

Select the font

Select the font in the list below:

FreeFontPro

[Cancel) (0K \.-

When you remove stems that are used by the hinting program in some
glyphs FontLab Studio will replace any stem-linked link with a simple
rounded link.

743

Stems Rounding

Control over stem widths rounding is necessary for two reasons:

1. To control a font’s contrast. If your font is low contrast, like Courier or
Arial, you may want to set the jump PPMs for vertical and horizontal
stems equal. This way, the font will never get high contrast, as when
vertical stems are 2 pixels wide and horizontal stems are only 1 pixel
wide.

2. To synchronise the scaling of stems with close widths — like the stems
that control straight and round vertical stems in uppercase characters.
At large PPM sizes they should be different but they have to make the
1—2 and 2—3 width jumps together.

Bigger jump values are necessary when you are working on a black or extra
black font where 5-pixel width stems appear at low PPMs.

To change stem rounding:

1. Inthe list select the stem that you want to edit.

2. Inthe edit fields change the PPM sizes at which this stem makes its
various jumps from one pixel up to 6 pixels.

Press the | 7| button to automatically optimize the stem rounding while
trying to keep optimal contrast. Use the || button to reset all stem PPMs
to linear values.

744

General Options

Click on the - button in the Options panel and select the General tab on
the tab control. You will see a General Options dialog box:

TT Hinting Options

Stems Zones | General |

Stem snap precision: 17 /16 of the pixel

5

2
Stop zones alignment above this PPM: 48 ._: »
Do not execute instructions above this PPM: 0 =

¥ Shift key constrains setting of the delta instruction’s direction
(Cancel) 0K

Stem snap precision

Measured in 1/16 of a pixel, this value defines the difference between the
actual stem width (scaled but not rounded) and the stem width in pixels
specified by the stems dialog box. If the difference is more than the defined
value, the stem is rounded linearly. A value of 16/16 will mean that stem
rounding will be controllable only when the difference is less than one
pixel. A value of 32/16 defines a possible difference of 2 pixels.

Stop zones alignment above this PPM

Enter the font size in PPM after which zone alignment will not be operative
and all points controlled by the AlignTop and AlignBottom commands will
be rounded to closest pixel edge.

Do not execute instructions above this PPM

Defines the PPM above which instructions will not be operative anymore.
Enter 0 to never stop instructions.

Shift key constrains setting of the delta instruction’s direction

Inverts the function of the Suirt key when you define delta instructions. By
default you can freely move the destination point of the delta offset and
you have to press SHIFT key to limit direction to the current hinting
direction. When this option is deactivated, delta offset direction will be
fixed and you have to press SHIFT key to “free” it.

You may click Apply button to immediately see results of the new options
in the Preview panel.

745

746

Context Menu

If you Ctri-click in the free space of the Glyph Window edit field you will
see a popup menu:

Reset Program
Remove H Commands
Remove V Commands

Remove All Deltas

Convert Hints to Instructions
Reassign Stems

Autohinting Options...

Macro >

The commands available in this menu are:

Cancel Closes the menu

Reset Program Removes all instructions

Remove H CommandsRemoves all horizontal commands including delta
instructions

Remove V Commands Removes all vertical commands including delta instructions

Remove Final Deltas Removes all final delta instructions

Remove All Deltas Removes all delta instructions (middle delta and final delta)

Convert Hints to Tries to convert Type 1 hints and links to visual hints. You

Instructions can use this command as a kind of TrueType autohinting. If a
glyph doesn’t have any Type 1 hints, use the Tools > Hints &
Guides > Autohint command to generate them. Follow with
the Convert Hints command to generate a TrueType hinting
program for the glyph

Reassign Stems Checks all single and double links that are attached to one of
standard stems and tries to automatically select the best
stem for the link length.

Autohinting Options Opens the Autohinting options dialog box that lets you
customize the process of converting Type 1 hints to TrueType
instructions. This dialog box is described below.

Autohinting Process

When you select the Convert Hints to Instructions command in the popup
menu or apply the same action in the Action or Action Set dialog box,
FontLab Studio:

1.
2.
2.1

2.2.

23

341

3.2

Converts all hints to links to find what points are linked by the hint.
For every horizontal link:

If one of the linked points is in the top or bottom alignment zone: adds
an AlignTop or AlignBottom command and connects another point to
it by the SingleLink command. Automatically links the SingleLink
command with one of the standard stems.

If none of points is in the alignment zone: links them by a DoubleLink
command or by a SingleLink command if one point is linked to another
outline point.

Checks all outline points and if one of them is on the same horizontal
line as one of the linked points: links it by the SingleLink command. It
doesn’t do this if the point is adjacent to an already connected point.

For every vertical link:

Connects two points by the DoubleLink command or by the SingleLink
command if one of the points is linked to another outline point.

Checks all outline points and if one of them is on the same horizontal
line as one of the linked points: links it by the SingleLink command. It
doesn’t do this if the point is close to an already connected point.

FontLab Studio optionally detects “cusp” points and links them to one
of the single and double link commands.

For single and double link commands that connect round points, like
on the left and right sides of the ‘O’ FontLab Studio may optionally add
middle delta commands that correct the rasterization of the curve.

747

Autohinting Options

You can customize the conversion process with the Autohinting Options
command. Use this command to open the dialog box:

TrueType Autoh::nting

Autohinting options:
liq Cenerate triple hints
| Direct links to center of the glyph where possible
@Automatica“y interpolate positions of the cusp points
E Try to automatically generate delta instructions
™ Add link to the right sidebearing point

@ Interpolate positions of the double links

Single link attachement precision (7 is default value): 7

(Cancel 3 {' OK \

Generate triple hints

If this option is active FontLab Studio will try to generate TrueType
instructions that simulate Type 1 triple hints for characters like ‘m’ where
the distance between stems must be kept the same at all PPMs:

e

TR

bH

748

Direct links to center of the glyph where possible

FontLab Studio can try to hint starting from the left sidebearing and going
to the right or starting from both sidebearings and going to the center of
the glyph. Use this option to customize the hinting direction:

H:$‘3|

®

|
I
| |
|(:J:l[H:$€l|
| |

or
Automatically interpolate the position of cusp points

A Cusp is a point where the contour sharply changes direction:

If this option is on, FontLab Studio will generate an Interpolate command
that will link the cusp point to one of the links:

Try to automatically generate delta instructions

Our research shows that it is useful to include small middle delta
commands at the end of links that connect round parts of the glyph:

Use this option to control this feature.

749

750

Add link to the right sidebearing point

FontLab Studio can generate a single, distance-rounded link that will go
from the rightmost hinted point to the right sidebearing point. This feature
guarantees at least one pixel distance between glyphs on all PPMs.

Interpolate positions of the double links

In glyphs like ‘B’, which have overlapping stems, FontLab Studio may hint
them independently or hint the first stem and then interpolate the position
of the second stem using the interpolation command with the final point
aligned to the grid:

Whether this is appropriate for your font has to be decided on a case-by-
case basis.

Single link attachment precision

If an outline is not very precise you can enter a value in this field so
FontLab Studio will have a threshold to decide when several points are
located along a line. For precise fonts set this value to 1 or 0.

Generally speaking, autohinting is a trial and error process. You can get
very good autohinting results if you select the correct options for your font
and define correct stem and alignment zone behaviour at the critical PPMs.

Processing Multiple Glyphs

You can convert Type 1 hints to TrueType instructions for many glyphs at
once if you use the Actions dialog box.

Open the Actions dialog box with the Tools > Action command and select
the Convert to Instructions command in the Hints and Guidelines
section.

751

752

Hinting Sidebearings

With FontLab Studio’s TrueType hinting tool you can set instructions that
will control the horizontal position of a character’s sidebearings. This gives
you precise control over a character’s metrics at small PPM sizes.

In the editing field of the Glyph window you can see yellow marks that
designate sidebearing points. There are left and right sidebearing points.
The left mark controls the position of the left sidebearing and the right
mark controls the right sidebearing.

LR

Sidebearing points are always aligned in the horizontal direction.

You may apply any command to the right sidebearing point, but the left
point can be used only as a source of links or interpolate commands.

By moving the right sidebearing point you can control the amount of white
space at the right side of the character.

Usually the position of the right sidebearing point is controlled by a
rounded single link command or by a final delta instruction. Because the
length of the single link with rounded distance cannot be less than one
pixel you can set this command and be sure that left or right whitespace
will never disappear.

Both sidebearing points may be used as sources of any command just like
any other point of a character’s outline.

How FontLab Studio Implements Commands that Move Sidebearing Points

The TrueType font format has a special table that can contain the widths of characters that are
rendered at specific PPM sizes. This helps the rasterizer to preview lines of text on screen very
quickly. FontLab Studio builds this table when it exports a font in TrueType format. To do this it
interprets instructions that are applied to the sidebearing points at every PMM size from 9 to 24.

Hinting Composite Glyphs

FontLab Studio allows you to set TrueType hints for the composite glyphs.
There is not much visible difference between hinting plain and composite
glyphs — Glyph window and tools look as if you are hinting decomposed

glyph.

The principle difference is that components of a composite glyph appear
already hinted. It means that if you have hinted glyph ‘E’ and hinted glyph
‘caron’ and if you want to check hinting in glyph ‘Ecaron’ you will see that
both components look exactly as they look in respective glyphs, and the
only thing you need to do is to hint their relative position.

Usually all you need to do to hint a composite glyph is to put a few middle-
delta instructions on the contours of accent components so they will get a
correct and symmetric position in the composite glyph.

You can however completely override hinting of components and provide
new hinting program for a composite glyph. In this case you may take a
composite glyph as a combination of all components as if it is decomposed.

753

754

Automatic TrueType Hinting

There is no special command “TrueType autohinting” in FontLab Studio.
There is Type 1 autohinting and automatic conversion of Type 1 hints to
TrueType instructions. This is a more flexible solution to the TrueType
autohinting problem because it allows you to use all the correct Type 1
hints that you have or to build both hints at once.

To automatically generate visual TrueType hints for the whole
font:

1.

2.

Select the Action Set command from the Tools menu.

If you have a Type 1 font (outlines of 3rd-order curves) with a Type 1
hints set select Convert Type 1 font to TrueType from the program
selection popup menu:

Saved action sets: v [Select a set to load] @

Convert Type 1 font to TrueType

Rotated Outline
Sample program
TrueType Autohinting

If the font has no hints at all select TrueType Autohinting from the
program selection popup menu.

Choose an application range for the selected program:

Apply action set to: + Current glyph only E
Selected glyphs
All glyphs in the §lyph list
All glyphs which are not in the list

All opened fonts
Fonts in the Fonts List

Press the Run button to start the process.

Working With Bitmaps

Setting complex instructions program and multiple delta instructions may
take a lot of time. An alternative is to create bitmap versions of the glyphs
for most important sizes so TrueType rasterizer will use them instead of
rendering outline glyphs and instructions program.

Bitmaps can be defined for any combinations of glyphs and PPMs. A font
may have only one bitmap for one glyph and one PPM or lots of bitmaps
for different glyphs at different PPMs — there are no limits.

FontLab Studio supports import, export and editing of so-called embedded
bitmaps.

755

756

Importing Bitmaps

Import happens automatically if this option is active in the Preferences >
Opening OpenType & TrueType > TrueType/OpenType TT (.ttf) dialog
box:

E Import embedded bitmaps

When a font has embedded bitmaps, PPMs for which bitmaps are present
are colored red in the TrueType tool Preview panel:

EE EEBEBE

9 101112 1= 14
You can import embedded bitmaps from a different TrueType font. To do
so:
1. Click on the #: button on the toolbar to enter the bitmap mode of the
TrueType hinting tool.

2. Crrr-click anywhere in the Glyph window and select the Import
bitmaps... command in the context menu.

3. Select a TrueType (.ttf) font with embedded bitmaps in the standard
File Open dialog box.

Editing Bitmaps

To get access to embedded bitmaps activate Bitmap mode by clicking
on this button on the TrueType hinting toolbar: 3 .
You’ll see the Glyph window and preview panel change:

In Bitmap mode the Glyph window previews the bitmap with pixels
represented as black squares. If there is no bitmap defined for the current
PP, it looks different:

3

757

758

If you want to add a bitmap for the current PPM, Crrr-click

anywhere in the Glyph window and select the Generate Bitmap command
in the context menu:

Cancel

Generate Bitmap

Import Bitmaps...
Highlight Differences

You can edit the bitmap with the mouse: just click and drag the mouse.

To remove the bitmap for the current PPM use the Remove Bitmap
command in the menu.

When there are bitmaps defined for the glyph, they are highlighted in the
Preview panel:

eEEEEEEEBB

10 11 12 13 14 15 1 17 g5 19

Highlight Differences

You may highlight the differences between the result of the rendered and
hinted outline and a bitmap. Enter the Bitmap mode and select the
Highlight Differences command in the context menu:

Cancel

Generate Bitmap

Import Bitmaps...

v Highlight Differences
When you leave the bitmap mode (click on the #: button or select any
other TrueType hinting tool) you will see that all pixels that are different in
the rendered outline and in the bitmap are highlighted in red:

You can use this feature to separate the “artistic” and technical parts of the
hinting process: make good bitmaps; activate the Highlight Differences
feature; go into hinting mode and set hints so there are no red pixels.

759

760

Exporting Bitmaps
To export embedded bitmaps make sure that this option:

@ Export embedded bitmaps

is active in the Preferences > Generating OpenType & TrueType >
TrueType/OpenType TT (.ttf) dialog box.

Please note that Windows operating system will display embedded bitmaps
only when a font is rendered in black/white mode. If font smoothing is
activated in the system and allowed for the point size in the font, bitmaps
will not appear.

Hinting Strategies

This section will give some examples of visual hinting strategies that are
applicable in different situations.

Middle Delta or Final Delta

The final delta command is the very last command of the instruction
sequence. This command moves only the point to which it is attached and
only on PPMs for which it is set. We recommend using this command in
situations where only one pixel needs to be “switched” on or off:

"

. jp Final delta instruction
1

The middle delta instruction is much more flexible. You can use it to
slightly modify the interpretation of the hinting program because it is
automatically inserted between commands and is interpreted after the
command that sets the position of a point and before any command that
uses that position as a basis (like link and interpolation instructions).

761

762

But even if the middle delta command is set on an untouched point it is
applied to the point before final interpolation of the untouched points. This
point becomes touched after interpretation of the middle delta command
so the position of other untouched points will be changed proportionally to
the shift of that point:

g

Middle delta instructions

We recommend using the middle delta command with untouched points
when it’s necessary to shift several points at once. Usually you have such a
situation on diagonal and curved stems.

Single Link or Double Link

We recommend using the double link command only in situations where
only the width of the stem is important, not the position:

¥

s\ |
k Double links

Here is a good example of the situation where double links should be
replaced by a chain of single links:

=] k23 23

mmmmmmmmmmmmmmmmmmmmmmmm

763

r v o
=2+ e =2 SS%

mmmmmmmmmmmmmmmmmmmmmmm

Another possible application of the double link is hinting a character’s
middle horizontal stem:

TXxi)

— Double link

ZE

X

[

If the position of the middle stem in different characters is different, you
cannot be sure that the hinted position will be the same at all PPMs, even if
the difference is very small. There is always a chance that at some PPM the
rounding of linked points will be different and the link will be shifted top
or bottom.

Be ready to set a number of middle delta instructions or, better yet, set a
special middle line alignment zone and use a combination of align and
single link instructions.

764

Hinting White Space

Sometimes it’s necessary to set the width of the white space inside a
character, especially with a narrow character that has more than one

vertical stem. Take the character “H” as an example. With normal fonts we

usually use two double links to set the widths of vertical stems:

e

1

-l

=9

Because at all PPM sizes we will have enough space between stems we

don’t really care about white space. But look what happens if we try to use

the same technique with a narrow font:

e
S

i

104 [

At many PPMs the vertical stems are snapped together and the character

becomes completely unreadable.

765

We can, however, use only one double link, then link the two stems
together with a single link with a rounded distance and set the width of the
right stem with a single link connected to the stem:

[qI] ¥]

The rounded distance of the single links cannot be less than one pixel, so
we will always have some white space between the stems.

To complete the hinting of this character we have to add a rounded single
link to the right sidebearing point to make sure that the white space
between our character and the next character does not disappear.

766

Hinting Serifs

We recommend hinting serifs in the vertical direction by a single
link command:

&
Serif single link ————» ,/’/%rd

If the serifs are thin then it’s not necessary to attach their width to the
standard stem width. A single link with rounded distance will be enough.
Rounded single links cannot appear less than one pixel in length so the
serif will never disappear.

Of course, if you want to have more control over the serif’s width you can
define a special stem width and attach the serif’s single links to this width.

For total control over serifs’ behavior you can also set horizontal
commands that will control the “length” of the serifs:

Serif length single link

767

768

Hinting Diagonals

Hinting diagonal stems is the most complicated job in hinting. There are
no special “diagonal” commands so you have to set both horizontal and
vertical commands to control the width of a diagonal stem.

We know two ways to hint diagonal stems:

1. Define special standard stem widths. Set vertical and horizontal
commands attached to these widths and control the rounding of stem
widths using the stems dialog box.

2. Set the positions of one side of the stem using the usual commands
(align and link) and set the position of the other side by single links
that are not rounded and not aligned. Adjust the width of the stem
using middle delta instructions.

If a diagonal stem is intersected by another vertical, horizontal or
diagonal stem then we recommend using the interpolation instruction
to set the position of the intersection points.

In most cases good hinting of diagonal stems is not possible without final
delta-hinting.

Hinting Symmetrical Characters

There are two types of symmetrical characters: round characters (like ‘O’)
and “pike” characters (like V).

Round characters are “automatically symmetrical” in both directions. So
it’s enough to set the positions and width of the vertical and horizontal
“stems” and the center points will be interpolated and automatically set in
the central position:

ooQo DDODOGOUDDDOOOOOOOOOOOO

For “pike” characters this is not good enough because the position of the
pike point is important. At most PPMs you must set the width of the pike to
one pixel. Automatic interpolation of the outline may set the pike point to a
position where the pike will disappear.

So in the case of pike characters we have to begin by positioning the pike
point with the align to pixel center command and then set the positions
of all other points by linking to this point:

TY Y VY YY VVVVVVVVVVVVVVVVVVVV

769

770

Interpolate or Not

As you already know all points that were not positioned by commands
(untouched points) are interpolated automatically by the final
interpolation command. Final interpolation sets the position of any
untouched point proportionally to the closest untouched points. But
sometimes you may want to control the interpolation process and directly
set the base points of the interpolation. Usually this happens when a point
is geometrically between two touched points that belong to different
contours:

The only way to keep point 10 between points 31 and 34 is to set an
interpolation command in the vertical direction. It’s a good idea to
interpolate the same point in the horizontal direction too:

Note: When testing your hinted fonts, test a range of sizes. View sample
text at what you consider to be “normal” viewing size, and test at 3-4 sizes
above and below. Keep in mind that you may run your machine at much
higher or lower resolution than others. Someone with a 1024 x 768 17”
monitor will likely choose a smaller size than someone using the same
resolution on a 12” laptop.

Tip: You can use the zoom feature of Microsoft Word or a web browser
such as Opera to simulate different DPI settings. The default DPI setting of
Mac OS is 72 DPI and of Windows is 96 DPI. When you test your font on
Mac OS at 12 pt, the 12-PPM size will be used. When you zoom Word or
Opera to 133%, you will see the 16-PPM size which is the size, used for 12
pt type on Windows. Conversely, in Word or Opera on Windows, set your
zoom to 75%. This way, your 12 pt type will be displayed using 12-PPM
rather than the usual 16-PPM.

771

772

I Hinting Multiple Master Fonts

Multiple Master (or MM for short) fonts contain more than one layer of
outlines making possible to create indefinite number of intermediate font
variations. You can get more information about MM fonts in “Multiple
Master Fonts” chapter in this book (page 775).

Usually MM fonts are used to create font families, and in most cases they
contain one or two axis: weight and width. In the case of one (let’s say
weight) axis font will contain two masters, so to say, two layers of
information about the glyph shapes. First master will define “light” version
of the font and second master — “bold” or “extra bold” version.

With FontLab Studio 5 you can apply TrueType hinting to Multiple Master
fonts. So, instead of hinting these two masters separately (and also provide
TrueType hinting to all generated intermediate designs) you can do it only
once.

There are some limitations:

1.
2.

You can apply hints to only one master, the first one.

TrueType alignment zones and standard stems are not compatible with
MM fonts and will be simply copied to the generated intermediate
designs from the first master. Which means that you will have to
update stems and zones values.

However, Type 1 zones and standard stems are compatible with
Multiple Master font structure, and they can be used to create
intermediate values. There is one requirement: their ordering and
value must be exactly the same as ordering and values of the zones and
stems of the first master of the MM font.

Delta hints usually will not work well. Make basic hinting with the MM
font, but apply delta hints after generating the intermediate font.

I Hinting for ClearType

ClearType is a text rendering technology developed by Microsoft and
introduced in Windows XP. It works with LCD screens and uses colored
(green, blue and red) subpixels to increase visible screen resolution in one
direction. On LCD screens each full-color pixel actually consist of three
smaller subpixels colored with basic colors. These colors mix with each
other, so by applying different brightness to each subpixel we can get a
practically unlimited number of color combinations:

By changing color values for each pixel it is possible to simulate the effect
of changing the brightness of each subpixel. For example, rendering a fully-
blue pixel effectively means that the red and green subpixels are turned off
and the blue subpixel is on. The human eye reacts differently to brightness
changes of different colors so the color combinations are chosen very
carefully. If the pixels are sufficiently small, the human eye does not notice
the individual colors but instead, perceives the color pixels as
combinations of subpixels — resulting in an increased resolution.

hamham

Pure black-and-white rendering gives sharp Grayscale rendering helps smoothing

pixels but does not render well fine elements diagonals but usually either blurs the stems or

such as serifs. Also, italics are problematic. = makes them too black so the type either
unsharp or unevenly colored.

harmnkam hambham

When enlarged (left), ClearType rendering looks like a mosaic of color pixels. However, in
very small sizes, the user perceives each colored pixel as a combination of subpixels. The
result is type that has smooth edges and yet appears sharp. Particularl‘ helps italics.

hambham

773

http://en.wikipedia.org/wiki/Image:Subpixels.png

774

TrueType hints work when font is rendered with ClearType technology, but
with some limitations. For example, final delta instructions are not used at
all.

You cannot see a sample of the font rendered with ClearType in FontLab
Studio for Macintosh. But this is possible with the Preview panel in Studio
for Windows. Use this button to choose the rasterizer on Windows:

Black-'White
Gravscale
v ClearType

If you select ClearType in this list, all rendering in the Preview panel will be
done using this rendering technology.

Mac OS X (Apple) and Acrobat (Adobe) also use subpixel rendering
algorithms. The principle is similar to ClearType but the details of the
implementation differ. This means that the effects of subpixel rendering of
the same font on Windows, on Mac OS X and in Acrobat will usually be
different.

Multiple Master Fonts

With FontLab Studio you can make a special type of font called a Multiple
Master font. Multiple Master fonts contain several font styles, called
masters, in one font file. A program that uses a Multiple Master font can
select not only one of the master fonts, but also any intermediate style
created by interpolation of the master fonts. So it can use not only Bold,
Normal, Narrow or Wide styles, but any style in between, such as 30%
Weight and 47% Width. We will discuss this process in full detail in the
next sections.

776

Multiple Master Fonts Theory

The Multiple Master font format was developed by Adobe Systems as an
extension of the Type 1 font format. This means that Multiple Master fonts
(or MM fonts, for short) are compatible with all PostScript printers. MM
fonts can be used on Microsoft Windows and Mac OS Classic if Adobe Type
Manager (ATM) is installed. Mac OS X supports MM fonts natively
starting with version 10.2.

The Multiple Master font format is not very widely used as the final
deliverable format. However, many type designers use Multiple Master
fonts during the design process and use them to generate a family of
single-master fonts that go into distribution. Using MM fonts as a design
tool can be an excellent way to speed up the design of large font families.

For technical details and an excellent background in this subject we
strongly recommend you read “Designing Multiple Master Typefaces”, a
book published electronically by Adobe Systems:

http://partners.adobe.com/asn/developer/pdfs/tn/5091.Design_MM_Fonts.pdf

http://partners.adobe.com/asn/developer/pdfs/tn/5091.Design_MM_Fonts.pdf
http://partners.adobe.com/asn/developer/pdfs/tn/5091.Design_MM_Fonts.pdf

A simple picture can describe the main idea of the Multiple Master font
format:

1 2

4 3

If we have two contours that have the same number of segments of the
same type (straight or curve), we can always make intermediate contours
by interpolation. The number of these different contours is limited only by
the precision that we choose.

Applied to fonts, this idea gives us the following:

D
D

In this picture we used two styles of the same typeface, Light and Black, as
ends and, as you can see, we have many more styles in the middle. Fonts
that are used to define end designs are called masters. A combination of
several masters into one font file is called a Multiple Master font.

-,
B>

777

778

In the example we used only two masters, and we changed only one
property of the font using interpolation. But we can define more masters
and get even more choices for changing the design of the font. For instance
here’s what happens when we use four masters: now we can vary both the
fonts’ width and weight:

Narrow Light Wide Light

) D

Narrow Black Wide Black

The quick brown fox jumped over the lazy dog

The quick brown fox jumped over the lazy dog

The quick brown fox jumped over the lazy dog

The quick brown fox jumped over the lazy dog

The quick brown fox jumped over the lazy dog
The quick brown fox jumped over the lazy dog

The text sample typed with different instances of the same Multiple Master font

Design Axes and Dynamic Range

It is possible to define a number of properties of an MM font using
masters. These properties are called design axes, or simply axes, for short.

You can define as many of these design axes as you want, but four axes in a
single MM font is the practical limit since there is no program as of this
printing that can use more than that. The number of masters that is
necessary to define a given number of axes can be calculated as 2», where n
is the number of axes. So a single axis font requires 2 masters, a two-axis
font — 4 masters, a three-axis font — 8 masters and finally, a four-axis font
requires 16 masters.

You can see in this picture how design axes and masters are used to select
an intermediate design of the MM font:

B -

1 . .

, Weight Axis :

I T T T [
50 Different intermediate positions on the axis 1450

JU

779

780

In MM fonts it is important to know how much the property connected
with the design axis can be changed. If we take the Weight axis, for
instance, then it might be changed from normal (120) to bold (700), a
moderate change, or from light (50) to black (1450), a much larger change:

N R
J D)D) ==
DRED) Bzl =:

The range within which the property of the axis may be changed is called
the dynamic range. It is the distance between the two masters that define
an axis measured using a standard scale line.

In our example the first dynamic range is 580, from 120 to 700, and the
second dynamic range is 1400, from 50 to 1450.

So that desktop publishing programs can use MM fonts that were designed
by different manufactures some standards have been set for axes types and
names.

Standard Axes

There are four standard axes defined by the Multiple Master standard.

They are supported by Adobe and thus are likely to be compatible with all
current desktop publishing programs. Of course, you can define your own
design axes — this may be useful if you use MM as an internal design tool.

Weight

This axis allows you to change the weight of the font:

The quick brown fox jumped over the lazy dog

The quick brown fox jumped over the lazy dog
The quick brown fox jumped over the lazy dog
The quick brown fox jumped over the lazy dog

The quick brown fox jumped over the lazy dog
Changes in the weight (the defined dynamic range) may be very different in

different fonts, for example, from normal to bold or from light to black or
from bold to heavy, depending on the designer’s intentions.

Width

This design axis allows you to change the width of the font:

The quick brown fox jumped over the lazy dog
The quick brown fox jumped over the lazy dog
The quick brown fox jumped over the lazy dog

This is very useful in making text fit in a given space on the page. If the
Condensed style is too narrow and the Normal style is too wide, with a MM
font you can select an intermediate width style and the text will fit
perfectly.

781

782

Optical Size

This is an axis for high-end typography. In the pre-computer age
typographers used metal fonts that were aligned in strings manually or
with the help of complex mechanical machines. In those times fonts were
not “scalable” and there was a separate physical type-font for each point
size of a typeface. And fonts that were designed for different point sizes of
the same typeface had slightly different designs for improved legibility:

Designs of the same character for 6 and 72 pt. point size

When scalable fonts appeared this typography feature wasn’t compatible
with the technology so it all but disappeared. We had scalable fonts that
could be shrunk or enlarged to any point size, but the price for this was a
little decrease in the quality of typeset text.

With Multiple Master fonts it is possible to define two optical size masters,
one for small point sizes and another for large point sizes, and use MM
interpolation to create the proper font design for the final selected point
size:

72 pt. master font 6 pt. master font

In the following example you can see two lines of text typed with the same
font but different optical size selection:

YBCIPC 1,P6 pegqel [ouf
VBCIPC LP6 f6X{ [oU{

For better comparison, both lines were typed at the same point size (28 pt)
but with the different optical sizes. Note the different contrast and inter-
character spacing.

Style

This design axis can cover many different design properties. Here’s one
example of what you can do with it:

[H1 [H £ iR 1]

HHHHHH
HHHHHH

There is no standard definition or real property of this axis. And there is no
standard for its dynamic range.

783

784

Design Coordinates and Weight Vectors

You know that all axes have ranges. These ranges can vary from 0 to 9999,
but a more practical range of 0 to 1000 is usually used. Somehow we have to
define a way to designate the position of an intermediate MM design in the
design axis space.

A very natural way to define the position of the intermediate font is to use
its position on each design axis. These coordinates are called design
coordinates:

Width axis

Weight axis
0

coordinates

Design

Intermediate design

There is also another type of coordinate called blend coordinates. Blend
coordinates are normalized to the given dynamic range of the axis. If an
axis has a (50-400) dynamic range then the design coordinate (50) equals
the blend coordinate 0.0. The design coordinate (400) equals the 1.0 blend
coordinate. Intermediate design coordinates are converted to the blend
coordinates using linear calculation (by default) or a non-linear axis graph
(described in the next section).

When we know the design coordinates we can calculate what proportion of
each master we need to build the intermediate font. This process is called
blending.

Simple formulas are used to make these calculations and as a result we get
an array of values that define the “weight” of each master in the final
interpolation that produces an intermediate font:

[0.13, 0.77] — for a one-axis font (two masters are blended)
[0.02, 0.24, 0.11, 0.63] — for a two-axis font (four masters are blended)

Note that the sum of all weights is always equal to 1.

This array of masters’ weights is called the weight vector and is used
internally by the font interpreter to build the intermediate font. Note that
while blend coordinates are used internally, externally, design coordinates
are used.

A special weight vector, called the default weight vector, should be set in
the font header to define a standard intermediate design of the MM font. A
MM font is “seen” as a typical Type 1 font by a PostScript device or
program, and this Type 1 font is an intermediate instance of the MM font
with the default weight vector.

785

Extrapolation

The Multiple Master font specification allows only interpolation of the
master designs to define an intermediate font. In addition to that basic
feature, however, the Multiple Master font structure allows linear
extrapolation of the designs also. This feature allows us to artificially
extend the design range of the MM font, which sometimes produces
interesting results:

AS AGREES RUNAS
AS AGREES R

Standard dynamic range for the Width axis

AS AGREES RUNAS
AS AGREES

Extrapolated range for the Width axis

AS AGREES |

Extrapolated Weight

In real life this feature lets you extend font families with very little effort:
for instance, build an MM font using the normal and bold styles and then
add light and extra bold using the extrapolation feature.

786

Anisotropic Interpolation

Standard MM fonts have the same interpolation values for both the X and
Y directions. In FontLab Studio it is possible to define a different
interpolation weight for directions. With this you can make interesting
form variations:

AS AGREES R

Standard (proportional) interpolation

AS AGREES R

Anisotropic interpolation

As with the extrapolation, this feature is not a part of the MM specification
and anisotropic interpolation (or extrapolation) will work only inside
FontLab Studio. You can use it to generate single-master fonts from MM
fonts.

Tip: If you have a font with one Weight axis that has a Light (or Regular)
master and a Bold (or Black) master, you can use the anisotropic
interpolation to quickly create nearly-optically correct condensed or
extended fonts. First, create an anisotropic interpolated instance as shown
on the picture above, and then condense it using a normal scaling
transformation. This will produce condensed letterforms with visually
equal stems that may require very minimal manual work to polish up.

787

788

The Axis Graph

Usually design coordinates are translated to the weight vector using simple
linear calculations. It is possible, however, to define a map for non-linear
calculations:

1.0

o Blend coordinates

| 6 Design coordinates 72

This map sets a series of points that map the design and blend coordinates.
Between these points linear interpolation is used (this is called a piece-wise
linear function).

Usually this kind of axis graph (or axis map, in some literature) is used for
the Optical Size axis. The Optical Size axis usually has a dynamic range of
6-72. The design coordinate 6 means the version of the typeface adjusted
for 6 pt. type. The design coordinate 72 represents the typeface design for
72 pt. type. Between these values the blend coordinates are mapped using
the axis graph, as in the picture above. This mapping gives better control of
the variation of the design for the different design coordinates. In this case
it causes a more rapid change in the appearance of the typeface at smaller
optical sizes than at larger.

The value of the leftmost and rightmost design coordinates of the axis
graph (6 and 72 in our example) are always mapped to 0 and 1 blend
coordinates and are used by the font interpreter to get information about
the dynamic range of the axis. So an axis graph is always present for each
axis but in most cases it is just a single straight line.

We again recommend you read the “Designing Multiple Master Typefaces”
book to get more information about the axis map.

Multiple Master Fonts in
Studio

As we said before, in FontLab Studio you can make Multiple Master fonts
that will be completely compatible with the Multiple Master specification.
You can edit every aspect of the MM fonts, from master outlines to metrics
to kerning and font header data. You can make up to four axes, which
means that the font will need 16 masters. And at any time you can view an
intermediate font made from the designed MM font in its current state.

In the following sections we will discuss MM-specific FontLab Studio
features. We presume that you have read the previous chapters of this book
and know all the single-master features of FontLab Studio.

789

790

Creation of MM Fonts in FontLab Studio

In FontLab Studio you can do the following MM-specific things:

1. Open any existing MM font for editing

2. Convert a single-master font to a MM font

3. Define additional axis in a MM font

4. Remove any of the axes of a MM font

5. Convert a MM font to a single-master font.

6. Edit axis graphs, rename and rearrange axes.

You can also use FontLab Studio’s special feature, called Assign Master, to
simplify the combination of several single-master fonts into one MM font.

Multiple Master Outlines in FontLab Studio

In FontLab Studio all outlines are multiple master-compatible from the
very beginning. Every node of the outline has a layered structure:

Node type and other oplicns
Node position on layer 1
Node position on layer 2

Node position on layer 3
Node position on layer 4

Thus, a Multiple Master font in FontLab Studio is not a combination of
several separate masters, but a single multilayered font. This means that in
FontLab Studio it’s impossible to make masters incompatible, because they
are just the different layers of the same font.

Defining an Axis

If you want to convert a single-master font to a Multiple Master font you
must define a new design axis. Select the Tools > Multiple Master >
Define New Axis command. You will see a dialog box:

Define New Axis

Name the axis:

Full Name: Weight ’ﬂ

Assign the short name (two letters):

ShortName:_Wt . (Recalc)

Select the axis type:

Axis Type: Weight fﬂ Recalc)

E Convert hints to links before addition of the new axis

[Cancel) { 0K \!'

To define an axis you must enter an axis name, a short name and select an
axis type.

Select the name of the axis in the Full Name list. You can enter your own

custom name, but we strongly recommend you use only names that are in
the list in order to make the font compatible with font interpreters. When
you are adding a new axis to a Multiple Master font the names of the axes
that are already present in the font will not appear in the list.

The short name of the axis is used when a font interpreter needs to make a
name for an intermediate font. Usually the name looks something like:

MinionMM_245 wt 580 wd

where MinionMM is the name of the MM font, 245 and 580 are design
coordinates of the intermediate font and wt and wd are short names of two
axes, Weight and Width respectively.

791

792

The axis type is necessary to identify a new axis. As we said in previous
sections, there are four registered axis types:

Weight Variation of the font’s weight

Width Variation of the font’s width

Optical Size V_ariation of the font’s design to make it more legible at different font
sizes

Serif Modification of the font’s style. Usually this is used for modification

of the font’s serifs. For example, from serif to sans-serif font, or
variation of the serifs’ width.

Usually it is not necessary to fill in all three edit fields. Just select or enter
the axis name and FontLab Studio will automatically fill in all the other
fields.

Check the Convert hints to links before adding new axis option to
automatically apply the Convert Hints to Links action to all characters of
the font. We recommend converting hints to links because in a MM font it
is much easier to edit links than hints. Links are Multiple Master-
compatible by default, because they connect multilayered nodes, while
hints connect points that have different coordinates on different masters.

When you define an axis the number of masters will be increased twofold.
Therefore, a single-axis font will have two masters, a two-axis font will
have four masters, etc. The contents of all existing masters will be
duplicated, as seen in the picture:

Weight 0 Weight 1

KON

Weight 0 Weight 1 Weight 0 Weight 1
Width 0 Widtho Width 1 Width 1

Selecting a Master

When you define an axis or open a Multiple Master font you will have more
than one master. Open a Glyph window with any character and you will see
several masters appear in the editing field and the master selection popup
menu enabled:

'S | W0 B

Different masters of the Multiple Master font appear as outlines of
different colors. One master appears in black and it is the only editable
master, called the active master. All editing tools, actions and operations
are applied to this master:

All masters are identified by their names. The master name is the position
of the master on the design axis:

— WIDTH (Wd) >

Wt0 Wdo W0 Wd1

B v B
Wt1 Wdo Wit1 Wd1

793

794

You can select the active master using the following methods:

1. Double-click the master outline that you want to activate.

2. Select a master in the master selection popup menu:

= WD E‘]

3. Select the Window > Panels > Masters command. The Masters panel

appears:
e Masters
& & | synchronize
™ O wio
W @ w1

Click on a master’s activate control ‘' in the Masters panel.

Using the Masters panel you can also select which masters will appear in
the Glyph window. Use the masters’ check boxes in the Masters panel to
show or hide masters.

Press the Hide All |#] button in the Masters panel to hide all masters
except the active master or press the Show All |2/ button to show all the
masters.

The Synchronize option when switched on allows you to synchronize
changing active masters both in the Glyph window and in the Metrics
window if it's open.

Using an Axis Panel

When the Preview mode of the Glyph window is active you can display an
intermediate instance of the MM font that is selected for editing.

Open the Axis Panel by using the Window > Panels > Axis command. You
will see the Axis panel appear:

&) Axis

- : Auto Align b

This panel has a slider and an edit box for each axis in the MM font. Use
these controls to select the design coordinates of the intermediate instance
that you want to preview.

The filled preview (View > Show Layers > Fill Outline) of the selected
intermediate design will appear in the Glyph Window in gray:

Four masters’ outlines and an intermediate preview in gray

If an active master is the same as the selected instance (as when master
Wt0 WdO is active and both sliders are in the leftmost positions), the filled
preview will appear in black because it precisely corresponds to the active
master.

795

796

To preview the active master (in black) press the Align |** button in the
Axis panel. Switch on the Auto Align check box to make alignment of the
intermediate preview to the active master automatic, so that when you
select another master as active, the preview will automatically follow it and
you will see a filled preview of the master that you are working on.

The _* button allows you to quickly preview primary instances defined for
the font on the Multiple Master Settings page of the Font Info dialog box.
This button is disabled if no instances were defined.

Extrapolation

The Axis panel allows you to select not only design coordinates that are
within the axis dynamic range, but to go beyond that point, thus
extrapolating the master designs.

If one of the values is out of defined dynamic range, the editing control
background turns yellow:

Weight
LV

Anisotropic Interpolation

Click on the |- button in the Axis panel to open the anisotropic
interpolation dialog box:
X/¥ Axis Interpolation

Select the axis:
‘Weight =

10—)

&
&4
.

74

R PR

x | Cancel (OK ‘}

Select the axis in the list at the top and use the graph to define the
relationship between X and Y interpolation.

797

798

The X-axis on the graph represents the X interpolation position on the
design axis. The Y-axis represents the relative Y interpolation. Here are
some examples of the possible X-Y interpolation relationships:

Isotropic, proportional interpolation. This is the
default setting

L I R R T

Fixed Y (width) axis. Width does not change when
you move the slider. The weight (X axis) changes
linearly along the weight axis.

L I R R T

To edit the graph, use same mouse commands as when you are editing a
glyph’s outline. Cmp-click inserts a point. Pressing the CtrL key when a
point is being moved removes the point.

Click on the . *_ button to reset any changes and return the graph to the
linear state. Click OK to apply changes and close the dialog box.

Previewing the Intermediate Design

You can use the Preview panel to preview an intermediate design of a MM
font in high-quality mode. Use the Window > Panels > Preview command

to open the panel:
| 0 Preview

OpenType Features Preview | Anchors

"ABCabr123] . T E BT D
0 Masters
F B @Synchrnnize
W) weo wdo
M @ we1 wdo
M) weo wd1
W (O wel wdi

Please, refer to page 386 in the “Glyph Window” chapter for basic
information about the Preview panel.

Use the Masters panel to change the previewed masters. Use sliders in the
Axis panel to see intermediate designs in the Preview panel.

799

800

Designing Masters

In FontLab Studio you can make a Multiple Master font by “raising” it from
a single-master font by adding an axis. When you have a one-axis MM font
you can add another axis and so on:

There is an automatic way in Studio to take two fonts and make a MM font
from them using one as the first master and another as the second master.
This approach has pros and cons. On one hand, this process is fast and
convenient. On the other hand, you sometimes can get an improperly made
MM font. There is a chance that one of the font’s characters has not been
converted according to MM rules.

We have, however, included several special features in FontLab Studio that
can help you make MM fonts from different fonts.

Using the Blend Feature to Build MM Fonts

If you have two single-master fonts and want to build a Multiple Master
font you can use the Tools > Blend Fonts operation. Open the fonts and
select the Blend Fonts command. You will see the Blend Fonts dialog box:

Blend Fonts

Select the first font:

Corpid-Light

ABCabc

Select the second font:
Corpid—Eoid T‘

ABCabc

: Blend fonts @ Build the Multiple Master font

ar

Name of the axis:

Weight B

.@ Do not interpolate compatible outlines

" | Remember source and destination fonts

| Cancel) (OK \}

Select the first and second fonts in the popup menus in the top area of the
dialog box and choose the Build the Multiple Master font option.

Choose the name of the Multiple Master font axis in the Name of the axis
control. You can select one of the standard names or you can enter any
other name.

801

802

Click the OK button and wait while FontLab Studio generates a font. Some
glyphs cannot be blended (usually these glyphs have different number of
contours). If they are present, FontLab Studio will show a warning dialog
box and these glyphs will have the first font on the outline layer and second
font on the Mask layer, so you can correct outlines and use the Mask to
Master feature (described below) to build the MM font.

To not let FontLab Studio add nodes to compatible contours leave the Do
not interpolate compatible outlines option switched on.

Those glyphs that had compatible outlines and do not get additional nodes
during the blend operation will be marked with green color in the font
window.

If you want you may check the Remember source and destination fonts
option to ask Studio to remember your choice of the fonts until you repeat
the Blend Fonts operation.

Assigning a Master

With this command you can take glyphs from one font and put them into
one of the masters of the current MM font. The glyphs of the fonts are
linked using their names, so the glyph with the name “zero” in the assigned
font will be placed into the master of the glyph with the name “zero” in the
font where the master is being assigned.

When you select the Assign Master command from the Tools > Multiple
Master menu, you will see the dialog box:

Assign Master

Select a master which you want to replace by different font:
We0 Wd0 H

__| Do not insert points ’21 Do not interpolate compatible outlines

Choose font that you want to put into the master of the current font:

Myriad M
PirateBones
Corpid-Bold
Corpid-Light

You have selected font MyriadMM.

ABCabc123

Weight '_/' 405
Width i 600
[Cancel) { OK j

There is a list of masters in the popup menu in the top of the dialog box.
Select one of the masters to be assigned here. There is a list of all open
fonts below the masters popup menu. Select the font whose glyphs you
want to put into the selected master of the current font. If you select a
Multiple Master font scroll bars and edit controls will appear allowing you
to select an intermediate design of the font.

803

804

If you switch on the Do not insert points option, then FontLab Studio will
copy outlines as they were in the source font regardless their compatibility
with the outlines in the destination font. Use this option only if you are
sure the outlines in the source and destination fonts are completely
compatible.

To prevent FontLab Studio from adding nodes to compatible contours
leave the Do not interpolate compatible outlines option switched on.

Mask to Master Action

The Mask to Master operation from the Tools > Multiple Master menu just
replaces the outlines of the current master with the contents of its mask
layer. (Each master can have its own mask on the Mask layer.)

Suppose you have a Multiple Master font that has one axis, two masters
(that are the same) and a Bold style on the Mask layer of the second
master.

Open any character for editing and activate the Wtl layer, switch on the
Fill Outline mode and select an intermediate position of the design
coordinates in the Axis panel:

&) Axis

- : Auto Align b

Look in the top-right area of the Glyph window. There is a special mark
(rightmost) that may be gray, red or green:

(o (D

A red mark shows that the mask layer is not compatible with the master.
“Incompatible” means that mask and outline layers have different numbers
of contours, so FontLab Studio cannot match the points and curves.

A green mark means that the mask and outline layers seem to be
compatible and you may apply the Mask to Master action. This action
replaces the contents of the active master with the contents of its Mask
layer. If the Mask layer is completely compatible with the outline you will
instantly get a properly made master for the active layer:

? T
|
|
|
|

o b

FontLab Studio uses the Blend algorithm to match points in the Mask and
Outline layers. Sometimes it can produce incorrect results, so we
recommend you check your outlines after you complete the Mask to Master

operation.

805

806

You can apply the Mask to Master action to several characters at
once:

1.

Activate the Font window. Note the mask compatibility marks in the
top-right corner of the characters’ cells.

Select the characters to which you want to apply the Mask to Master
action.

Select the Tools > Multiple Master > Mask to Master command.
A dialog box appears:

Mask to Master

Select a master which you want to replace by the mask layer:
Wl Wd0 4]

ABCabc123

" Do not insert points

[Cancel) I': ok—)

If you switch on Do not insert points option, then FontLab Studio will
copy outlines as they were in the Mask layer regardless their
compatibility with the font. Use this option only if you are sure the
Mask layer is completely compatible with the outline.

Select the master that you want to replace by its Mask layer in the
masters list box. Press the OK button to begin the transformation.

Using Interpolation to Make Masters

If two styles are completely incompatible you can use the Interpolate
operation (described in the “Glyph Window” chapter) to make masters.

Put one style on the outline layer and define an axis. Put the other style on
the Mask layer using the Assign Mask dialog box.

Select the master that should look close to the appearance of the style on
the Mask layer and activate an Interpolation operation. Use Interpolation
to “stretch” the outline on the Mask layer. This is relatively easy to do
because the destination points of the interpolation links will stick to the
Mask layer.

After you complete work with the Interpolation tool use the Edit tool to
fine-tune the master.

807

Match Masters Operation

Sometimes you may need to change contours of the master so that they
become compatible with contours of the other master. For example, the
startpoints in two masters do not match:

Master Wt0 Master Wti

To fix the startpoints or correct the order of contours for two masters in the
Glyph window, select the Match Masters command in the Tools > Multiple
Master menu.

FontLab Studio will check contours and correct them if needed. For
example, the startpoint of the contour in one of two masters will be
changed:

Master Wt0 Master Wtl

If FontLab Studio cannot check contours for some reason it will present
the warning message:

Masters in this glyph do not match each other. Operation is not
complete.

Cancel

808

Rearranging Masters

Very rarely you may need to change the position of a master on the design
axis. Look at the picture:

Width axis
»
a
X
@©
5
slr---------t---------- 1
2| '
I I
I] !
1 ® !
1 £ 1
1 ° 1
I
| " .
| Design |
: Intermediate design :
I
I .
| I
1 e !
I . I
I I
| I
| I

Increasing of the width value does increase the width of a glyph. That's OK.
But sometimes you can meet a font with the messed up masters where
increasing of the values actually decreases the design.

809

810

To fix the coordinates in a MM font FontLab Studio has the Rearrange
Masters feature:

Rearrange Masters

Rearrange font masters in the list below:

ABRaeg123

Wl wd0

ABRaeg123

Wil widn

ABRaeg123

Wl wdl

ABRaeg123

Wil Widl

[Cancel_n(oK \'r

The dialog box contains a list of masters. You can see in the preview that
the glyphs from Wil are thin while the glyphs from Wt0 are thick. This
means the direction of the weight axis is not correct. Just drag the "Wtl
Wd0" master and drop it above the "Wt0 Wd0" master. The order of the
masters will change. Then drag and drop the "Wt1 Wd1" font above the
"Wt0 Wd1" font. Click OK to apply changes and the masters in the font will
be rearranged according to the selected order. The weight axis will get its
normal direction.

Multiple Master Metrics

You can set metrics for Multiple Master fonts as easily as you can for a
single-master font. Of course, you can use the Edit tool to adjust
sidebearings but it is much easier to do it with the Metrics window.

When a MM font is opened in the Metrics window its four modes (text,
preview, metrics and kerning) work slightly differently.

The text and preview modes show the intermediate font in the sample
window. Use the Axis panel to select the design coordinates of this
intermediate font.

In metrics and kerning modes only a master can be previewed in the
Metrics window. You can use the Masters panel to select the master to
preview and edit.

So, to edit metrics and kerning information, select the master that
you want and edit it as a single-master font. FontLab Studio will
automatically track all changes and complete the Multiple Master data for
the font.

Another difference is the save format for the metrics file. If a MM font is
open then a binary MMM (Multiple Master Metrics) file is used to store the
metrics data. Or you can save a set of text AFM files for each master and
linked MM file. Select the format that you want to use in the Format popup
menu of the Save File dialog box that appears when you press the Save
Metrics button in the Metrics window toolbar.

When you are opening or saving single-master metrics files, they will be
applied to (or generated from) the currently active master.

811

Editing Axis Settings

When you are editing a Multiple Master font you can change the axis
names at any time. Select the Tools > Multiple Master > Modify Axis
Names command and you will see a dialog box:

Modify Axis Mames

Choose the axis to modify:
Weight T‘

You are modifying axis Weight.

Axis parameters:

Full Name: Weight (" Recalc)

Short Name: Wt

Axis Type: “Weight] El

[Cancel) (OK j)

Select the axis that you want to change in the list box located in the top
area of the dialog box and use the editing fields to change the axis’ name,
type or short name. Press the Recalc button after you change the axis’
name to let FontLab Studio automatically calculate the rest of the data.

812

Removing an Axis

At some point you may want to remove one of the design axes of a Multiple
Master font. When you remove an axis the number of masters will be
decreased by half. You can lose half of the information also, so be careful
with this operation. The remaining masters will be blended according to
their position on the removed axis (which you can specify).

To remove an axis, select the Tools > Multiple Master > Remove Axis
command. A dialog box appears:

Remove Axis

Choose the axis to remove:

Weight
Width

You have selected axis Weight to be removed.

Select a position for the remaining masters on the removed axis:

i
o =10

215 ' 830

2 masters will be removed if you remove this axis.
Remaining masters will be blended according to the selected position.

F Cancel'-{ OK ‘}

Select the axis you want to remove in the axis list at the top of the dialog
and use the scroller to set the “blending coordinate” that will be used to
blend the remaining masters.

You can use the Generate Instance feature (described on the page 820) if
you want to convert the MM font to single-master font. Sometimes it is
easier to use than the Remove Axis feature.

813

814

Multiple Master and Font Info

Here is a list of the pages of the Font Info dialog box with notes about their
information in a Multiple Master font:

Basic Set of Font Names
Have minor changes:

1. Multiple Master fonts usually have the “MM” suffix at the end of their
names.

2. Thelength of the Menu name is limited to 7 characters.

3. MM fonts with a Weight axis have the “All” value in the Weight field.
MM fonts with a Width axis have the “All” value in the Width field.

Use the Check & button to automatically validate font names.
Key Dimensions

Each master has its own set of Dimension values. Use the master selection
popup menu at the top of the page to choose the Master for which you want
to set dimensions:

Set dimensions for the master: |« Wt0 wWdo =

Wil wdl

Alignment Zones and Stems

Each master has its own set of alignment zones, standard stems and other
font-level hinting information. Use the master selection list to choose the
master whose alignment setting you want to change. Note that when you
add new alignment zones they will appear in all masters, so always check
all the masters to be sure that the alignment information is set properly.

Panose Identification

Enter settings in the Panose fields Weight or Proportion if your font has
Weight or Width axes respectively.

Multiple Master Settings

This page appears only if you are editing the Font Info of a MM font. Use
the sliders below the preview window to choose the default Weight Vector
of the font. Then press Apply.

Default WeightVector (Multiple Master fonts only) el
Weight vy 405
Width i 500
| Get position from the Axis panel '__. ([Primary Instances 3

Press the Get position button to put the values from the Axis panel if it is
open.

Press the Primary Instances button to define more default instances for
the font. The Primary Instances panel appears:

K Primary Instances
400 wt 600 wd e
215 wt 300 wd

215 wt 700 wd
400 wt 300 wd
400 wt 700 wd

215 wt 600 wd +

565 wt 300 wd i

565 wt 600 wd

565 wt 700 wd

700 wt 300 wd o (B
o

700 wt 600 wd

- o e

815

Here is the list of the panel's buttons and their meaning;:

nie Allows you to rename the instance selected in the list. The name of an
instance is used as style name for a font generated with the Generate
Instance command.

4+ Adds new instance to the list according to the design selected in the Font
——' Info dialog box

Removes the selected instance without a warning

Removes all primary instances defined for the font. This command will

b . .

— ' require confirmation

= Allows you to preview the selected instance in the Font Info dialog box
Closes the panel.

[

Press the Apply button in the Font Info dialog box to set the current
intermediate design as the font's default vector.

816

Editing the Axis Graph

You can edit an axis graph for every axis defined in a MM font. As we said
before, the axis graph is used to set the dynamic range of the axis, so it is
always necessary to adjust it.

To edit an axis graph, select the Tools > Multiple Master > Edit Axis
Graph command. The Axis Graph dialog box appears:

Axis Graph
Choose the axis to modify:
Weight 44
i &30
5
s
7;
&
5.
4
2
2
1
2'0'0""‘323? b0 ado wdo coo sho ey ado
200 | Current position X: "237] Y: ”0 . "a00
(Reset) { Cancel) [Apply (0K \'r

817

818

To edit a graph:

1.

Select an axis whose graph you want to edit in the axis list located at
the top area of the dialog box.

Position the mouse cursor on the leftmost point of the line in the graph
and click the mouse button.

In the Current position editing fields enter the lowest design
coordinate for this axis or position the cursor on the leftmost point and
drag it.

Do the same with the rightmost point to define the dynamic range.

If you want to define a more complex graph you can add points. To add
a point, position the mouse cursor on the line segment where you want
to add the point, press the Cmp key and click the mouse button.

To move a point, position the mouse cursor on the point, press the
button and drag the point to a new position.

To enter the position of the point, click on the point and enter the
position of the point in the Current position editing fields.

To delete a point, select it with a click and press on the * | button. Or
you may just press the CTrL key while dragging the point.

Press the Apply button to accept any changes that you have made or
Reset to return to the original design.

Choosing Dynamic Range

When you define a design axis you should choose the proper edge design
coordinates and dynamic range for it. It is important to make your font
compatible with Multiple Master fonts made by other manufacturers.
Dynamic range is not so important for the Style axis because there is no
standard for it and it is relatively easy to set the dynamic range for Optical
Size because it is usually known for this axis. So we have the Weight and
Width axes to choose dynamic ranges for.

As you know, the dynamic range is the distance between the lowest and
highest design coordinates, so all you have to do is to choose the proper
low and high edge values.

The best way to choose these values is to compare your font with a font that
already has these values assigned properly. We recommend you use one of
Adobe’s fonts for this comparison.

Another recommendation is to choose edge values so that the design
coordinate of the Normal style (normal weight and normal width) of the
font will be 500-600 units.

819

820

Generating a Single-Master Font

You can create a regular single-master font from an instance of a Multiple
Master font using FontLab Studio. Use the Tools > Multiple Master >
Generate Instance command to open the Generate Instance dialog box:

Generate Instance

Choose design position to generate instance:

ABCabc123

Known instances: Custom position selected F4]

Eﬁ Use instance name as style name

Weight = 570

g

Width = 682

Cancel -(oK)

Select one of the masters or primary instances in the Known instances list.
The preview and the values of the selected design will appear.

Use the controls to select the intermediate (or extrapolated) design. The
Edit controls have a white background when the selection is within the
dynamic range and a yellow background when extrapolation is used. Using
the keyboard you can enter values into the editing fields that are even
beyond the scroll bar range.

Click OK and FontLab Studio will generate a single-master font and open it
in a new Font Window.

If the option
E Use instance name as style name

is on the name of the selected primary instance will be used in the single-
master font names:

Style Name: 570 wt 719 wd i) Build Style Name

PS Font Name: Myriad-570wt7 19wd

Full Name: Myriad 570 wt 719 wd

Menu Name: Myriad

FOND Name: Myriad 570 wt 719 wd

< Tip: You can define custom primary instance names in Font Info >
Multiple Master settings, and this way, determine in advance the style
names of the generated single-master instances. This can save you
repeated renaming steps when working on a large font family.

821

822

Expanding the Master

Use Tools > Multiple Master > Expand Master to copy the contents
of one of the masters to all other masters. If this command is selected when
the Glyph window is active, it is applied to the currently active master. If it
is used when the Font window is active, you will see a dialog box that lets
you select the master for copying:

Expand Master

Select a master that you want to copy to all other masters:

Wtl wdo =

ABCabc123

(" cancel \(0K ‘}

This operation may be useful if applied when the Mask layer is in editing
mode — you may need to copy one of the Mask masters to all the other
masters to simulate the single-master Mask layer.

Hinting Multiple Master Fonts

As you know, in FontLab Studio you can use hints and links to do
character-level hinting. You can also do character-level hinting of MM
fonts using hints or links.

Hints are pairs of parallel lines that define the position and width of a
vertical or horizontal stem. Hints are independent from the outline; they
exist in a different layer. And they are multilayered, just like outline nodes
are. If you use hints to do character-level hinting you will have to hint all
the masters separately.

A better way is to use links. Links connect nodes, so they are not dependent
on the number of masters in the font. On export of the MM font the links
will be automatically converted to hints and hints will be automatically
generated according to the master’s design.

So to hint MM fonts most efficiently use vertical and horizontal links to
connect the outline nodes and you will save time in direct proportion to the
number of masters your font has.

You can make a hint replacement program using the Type 1 hinting tool if
necessary. The preview panel of the Type 1 hinting tool will show an
intermediate version of the hinted font according to the design coordinates
selected in the Axis panel. Use the sliders of the Axis panel to see how your
font will look on the screen when different font instances are generated.

823

824

Generating a Multiple Master Type 1 Font

When you finish your work with a MM font you need to build a font file
that you can use on PostScript devices or printers.

To build a Multiple Master Type 1 font for PC, choose the File >
Generate Font command. When the standard Save As dialog box appears,
select Windows Multiple Master format in the Font format popup menu:

Win TrueType/OpenType TT
OpenType PS

Font Format:] + Win Type 1
ASCII/UNIX Type 1
ASCIIJUNIX Multiple Master
FontLab

Press the Save button to save the font in Multiple Master format.

Note: PFB and MMM files will be saved if you make a Multiple Master

Type 1 font. These files are necessary to install Multiple Master fonts in
Adobe Type Manager.

Select ASCII/Unix Multiple Master format to make a Multiple Master font
in downloadable format. Fonts in this format can be instantly downloaded
to a PostScript printer.

To build a Multiple Master Type 1 font for Macintosh, choose the
File > Generate Suitcase command and refer to “Generating for Mac”
section.

OpenType Fonts

In this chapter we will discuss working with the OpenType fonts. The
OpenType font format, jointly developed by Microsoft and Adobe, allows
us to combine the best features of the TrueType and Type 1 font formats.

OpenType fonts are stored in a single font file, use Unicode as their
encoding and work in Mac OS X and Windows.

This all has been true for older TrueType fonts but the advantage of
OpenType against older font formats is the support of layout features,
which allow better typographic layout, and precise support of complex
scripts.

826

Font Features

OpenType fonts come in two formats, sometimes called flavors, OpenType
TT and OpenType PS. Both sorts of OpenType fonts may include so-called
OpenType Layout features. The layout features are rules that change the
standard behavior of the font.

For example, the small caps layout feature (abbreviated smcp) may change
all lowercase glyphs to their small caps counterparts.

Effluent

EFFLUENT

Small caps

The standard ligatures layout feature (abbreviated liga) can replace some
letter combinations with ligatures.

Effluent
Effluent

Ligature

The old-style numerals layout feature (abbreviated onum) can replace
lining figures with old-style figures.

12345
12345

Old Style Numerals

OpenType Layout features can serve typographic purposes like shown
above. In this case, applications such as Adobe InDesign, Adobe

Hlustrator CS, Adobe Photoshop CS, Apple Pages or Apple Keynote on Mac
OS X 10.4 offer the user some user interface to turn selected features on an
off.

OpenType Layout features also play a crucial role in rendering complex
scripts, i.e. writing systems such as Arabic, Devanagari or Thai. These
writing systems have complex rules for displaying characters. For example
Arabic uses different forms of letters if a letter is found at the beginning, in
the middle or at the end of the word. Also, complex scripts often use vowel
marks that are positioned dynamically over consonant letters. In all these
cases, the layout features contain mapping rules that are automatically
applied by the layout application.

Note that not all layout applications offer the same level of OpenType
support. For example, Microsoft Word 2003 for Windows supports
complex-script layout features for Arabic and Devanagari but does not
support Western typographic layout features. Adobe InDesign CS2

U.S. English and Apple Keynote on Mac OS X support Western
typographic layout features but do not support any complex-script layout
features. Adobe InDesign CS Middle East edition supports Western and
Arabic layout features, but does not support Devanagari.

Information about using OpenType fonts can be found at:

http://www.myfonts.com/info/opentype/
http://store.adobe.com/type/opentype/

Information about developing OpenType fonts can be found at:

http://www.microsoft.com/typography/SpecificationsOverview.mspx
http://www.microsoft.com/typography/developers/opentype/
http://partners.adobe.com/public/developer/opentype/

Probably the best thing about OT features is that they do not change the
source string of characters. To explain this we need to again talk about the
character-glyph model.

The source text that you type on the keyboard or get from another source is
a sequence of characters that have strong links to the codes that the
computer uses to store data. The picture of the text that you see on the
screen is a sequence of glyphs or character images. It is important to
understand that there is not necessarily a one-to-one relationship between
character and glyph: it is possible to have a single glyph used as the image
for more than one character (Latin A and Cyrillic A, for instance, are
different characters, but use the same glyph) and sometimes you may have
more than one glyph “serving” a single character.

827

http://www.myfonts.com/info/opentype/
http://store.adobe.com/type/opentype/
http://www.microsoft.com/typography/SpecificationsOverview.mspx
http://www.microsoft.com/typography/developers/opentype/
http://partners.adobe.com/public/developer/opentype/
http://www.myfonts.com/info/opentype/
http://store.adobe.com/type/opentype/
http://www.microsoft.com/typography/SpecificationsOverview.mspx
http://www.microsoft.com/typography/developers/opentype/
http://partners.adobe.com/public/developer/opentype/

828

Please, remember this key OpenType principle: OpenType layout engine
doesn’t know anything about characters! All the features that OpenType
can have are defined for glyphs. This is the process of OpenType text
processing:

0. As asource we have a sequence of characters.

1. Character codes are mapped to default glyphs using the Unicode
mapping table. In FontLab Studio this is what you see in the Font
window when you select one of the codepages. Here we have a
sequence of characters replaced by a sequence of glyphs. No character
information is available beyond this point!

2. The source sequence of glyphs is passed to the OpenType processing
module, which then applies the font features in a pre-defined
sequence. The list of the features to apply is determined by the
application (for example, in Adobe InDesign you can explicitly select
features to apply) or operating system (e.g. the rendering of Arabic text
with an OpenType font).

3. The resulting sequence of glyphs is passed to the second stage of
feature processing which can shift the positions of glyphs. Kerning is
applied at this stage.

4. The sequence of glyphs, accompanied by the positioning information,
is passed to the rasterizer, which does the imaging of the features on
the destination device: screen or printer.

Features and Lookups

Every feature consists of one or more lookups. A Lookup is an elementary
procedure performed on a glyph sequence or positioning data. For
instance, “replace the sequence of ‘f and T’ with the ‘fl’ ligature glyph” is a
lookup. A combination of similar lookups forms a feature.

The sequence of lookups is important. They are applied in the order they
are defined. The sequence of features is also important, but the application
or operating system may make changes in the feature preference.

By default all features and lookups are defined for the default language of
the Latin script.

829

830

Scripts and Languages

The second great OpenType feature is support for multiple scripts and
languages. With an OpenType font you can define different behaviors of
the font when it is used to type text in different languages. For example,
some ligatures that are necessary in English are not applicable to Turkish.
Other features, like support for initial, medial and final forms of the
characters are applicable only to Arabic script, and so on.

OpenType allows us to define script and language dependence at the
lookup level, so the same feature may work differently when different
languages are supported.

OpenType Font Formats

Another key feature of the OpenType format is the fact that from the user’s
point of view there is only one font format for Mac, PC or any other
platform.

From the inside, there are two possible forms of OpenType fonts:
OpenType TT and OpenType PS.

The general structure of the font file is the same and both versions of the
format provide the same functionality. There are some technical
differences:

Version OpenType TT OpenType PS

Outlines 2nd-order, like in TrueType 3rd-order, like in Type 1 fonts
fonts

Hinting TrueType instructions Type 1 declarative hints

File .ttf (but may be also .otf) .otf

extension

Comments Technically, these fonts are an Outline data is stored in a CFF
extension of the PC TrueType (Compact Font Format) table.
format and are backwards When printed to a PostScript
compatible with them. device, the font is converted to
Therefore, in FontLab Studio Type 1 so it is backwards-
we refer to them as TrueType compatible with all PostScript
/ OpenType TT. From the devices.
practical point of view, any PC
TrueType font is
automatically an OpenType
TT font and vice versa.

831

832

What Format to Prefer

It is not easy to say which version is better. Both formats will work on both
platforms. For Windows-centered office use we would recommend TT-
flavored OpenType fonts, as they will provide better compatibility with the
old versions of the OS.

For cross-platform and DTP-oriented applications OpenType PS fonts
seem to have some advantage because they will provide better outline
quality in Bezier drawing (less outline points). On the other hand,
OpenType TT fonts may theoretically be delta-hinted and therefore have
excellent screen quality.

Please note that the differences are minor and the most important thing to
choose is the source format in which you have your fonts. If you have
TrueType fonts that you want to convert to OpenType format by adding
features, then OpenType TT is your choice.

If you have Type 1 fonts, it will be easier to convert them to OpenType PS.
OpenType Tables

OpenType fonts consist of multiple tables. Every table is identified by a
tag, which is a combination of up to 4 characters.

3 tables are “responsible” for the OpenType features:

GDEF Glyph definition table. Contains information about font glyphs, including
their type (simple, mark or ligature), cursive-attachment points and
position of the caret inside the ligature character

GSUB Glyph substitution features

GPOS Glyph positioning features.

Other tables may exist in OpenType fonts, for example the BASE table that
defines different baseline positions for non-Latin scripts, but FontLab
Studio cannot work with these tables yet.

Please note that the presence of any one of these tables makes a TrueType
font an OpenType font.

Feature Definition Language

Information about OpenType features is stored in a binary form inside the
font file. This is not easy to modify and not easy to handle with visual tools
(like the tools that FontLab Studio provides to edit outlines that are also
stored in a binary form).

To define features in human-readable form Adobe has developed the
feature definition language (FEA). It is very easy to read and it is the most
compact way to represent OpenType font features.

Let’s take a simple example: a ligature feature that covers the basic “fi” and
“f1” ligatures that are present in almost every Western font. In feature-
definition language this feature will be defined as follows:

feature liga{
sub f i by fi;
sub f L by fl;
} liga;
Other possible features are defined in a similar way, keeping the feature

definition both compact and readable.

When FontLab Studio opens an OpenType font file that contains features it
tries to decompile the binary tables into the feature definition language.
With a few exceptions it works for most possible combinations of
substitution and/or positioning features.

In the following sections we will describe the feature definition language in
more detail. The next section covers the basic rules of the language.

833

Language Syntax

Information in this section is partially taken from the official Feature File
Format specification by Adobe with their permission. Only those parts of
the language that are supported by FontLab Studio are described.

Comments

The "#" character indicates the start of a comment; the comment extends
until the end of the line.

Special characters

pound sign Denotes start of comment

; semicolon Terminates a statement

, comma Separator in various lists

@ atsign Identifies glyph class names

\ backslash Distinguishes glyph names from an identical keyword
- hyphen Denotes glyph ranges in a glyph class

= equal sign Glyph class assignment operator

single quote Marks a glyph or glyph class for contextual substitution or
positioning

double quote Marks a glyph or glyph class for contextual substitution or
positioning

{1} braces Enclose a feature, lookup, table, or anonymous block

[1 square bracketsEnclose components of a glyph class

< > angle brackets Enclose a device, value record, contour point, anchor, or caret

() parentheses Enclose the file name to be included

Number

A <number> is a signed decimal integer (without leading zeroes). For
example:

-150
1000

834

Glyphs

These are represented by the glyph name. A glyph name may be up to 31
characters in length, must be entirely comprised of characters from the
following set:

A-Z

a-z

0-9

. (period)

_ (underscore)

and must not start with a digit or period. The only exception is the special
character ".notdef". For an extensive discussion about devising custom
glyph names in OpenType fonts, refer to the “Advanced Glyph Naming and
Encoding” section of the “Editing Fonts” chapter.

non

"twocents", "al", and "_" are valid glyph names. "2cents" and ".twocents"
are not.

An initial backslash serves to differentiate a glyph name from an identical
keyword in the feature file language. For example, a glyph named "table"
must be specified in the feature file as:

\table

835

836

Glyph classes

A feature file glyph class, <glyphclass>, represents a single glyph position
in a sequence and is denoted by a list of glyphs enclosed in square brackets.

For example:
[endash emdash figuredash]

An example of a sequence that contains a glyph class is:
space [endash emdash figuredash] space

"nn

This would match any of the 3 sequences "space endash space", "space
emdash space", or "space figuredash space" during OpenType layout.

A feature file glyph class that contains only one single glyph is known as a
singleton glyph class.

A feature file glyph class is also used to represent the set of alternate glyphs
in an alternate substitution lookup type rule.

Ranges

A range of glyphs is denoted by a hyphen:
[<firstGlyph> - <lastGlyph>]

Spaces around the hyphen are not required since hyphens are not
permitted in feature file glyph names. For example:

[A-Z]

Named glyph classes

A glyph class can be named by assigning it to a glyph class name, which
begins with the "@" character, and then referred to later on by the glyph
class name. For example:

@dash = [endash emdash figuredash]; # Assignment
space @dash space # Usage

The part of the glyph class name after the "@" is subject to the same name
restrictions that apply to a glyph name, except that its maximum length is
30.

Glyph class assignments can appear anywhere in the feature file. A glyph
class name may be used in the feature file only after its definition.

When a glyph class name occurs within square brackets, its elements are
simply added onto the other elements in the glyph class being defined. For
example:

@Vowels.lc =[aeiou];
@Vowels.uc =[AEI0 UJ;
@Vowels = [@Vowels.lc @Vowels.ucy Y];

Here the last statement is equivalent to:
@Vowels=[aeiouAEIOUYY];

No square brackets are needed if a glyph class name is assigned to another
single glyph class name. For example:

@Figures_lining_tabular = @FIGSDEFAULT;

Ranges, glyphs, and glyph class names can be combined in a glyph class.
For example:

[zerooldstyle - nineoldstyle ampersandoldstyle @smallCaps]

In FontLab Studio, you can include define FontLab Studio classes in the
Classes panel. They will be automatically included as your OpenType
classes, so it will not be necessary to copy the information twice. We will
discuss this later.

837

https://Vowels.uc
https://Vowels.lc
https://Vowels.uc
https://Vowels.lc

838

Including files

Including files is accomplished by the directive:
include(<filename>)

In this FontLab Studio implementation an included file must be located in
the Features folder.

A maximum include depth of 5 ensures against infinite include loops (files
that include each other).

Specifying features

Each feature is specified in a feature block:

feature <feature tag> {
specifications go here
} <feature tag>;

For example:

feature liga {
#...

} liga;
A feature file "rule" is a statement that specifies glyph substitution or glyph

positioning. A feature block may contain glyph substitution rules, glyph
positioning rules, or both.

FontLab Studio automatically separates features into feature records and
provides feature templates that simplify definition of new features.

Language system

In practice, most or all of the features in a font will be registered under the
same set of language systems, and a particular feature's lookups will be
identical across the language systems that the feature is registered under.

The "languagesystem" statement takes advantage of this fact. It is the
simplest way to specify a language system in the feature file. One or more
such statements may be present in the feature file at global scope (i.e.
outside of the feature blocks or any other blocks) and before any of the
feature blocks:

languagesystem <script tag> <language tag>;

When these statements are present, then each feature that does not contain
an explicit "script” or "language" statement will be registered under every
language system specified by the "languagesystem" statement(s).

If no "languagesystem" statement is present, then the implementation will
behave exactly as though the following statement were present at the
beginning of the feature file:

languagesystem latn DFLT;

839

840

Script and Language

Occasionally you may need to specify a feature whose lookups vary across
the language systems of the feature, or whose language systems vary from
the set of language systems of the rest of the features in the file (specified

by the "languagesystem" statements).

In these cases, the "script" and "language" statements should be used
within the feature block itself. (A "script" and/or "language" statement
must be present before the first rule in the feature in order to indicate to
the feature file parser that this feature is not to be registered under the
language systems specified by the "languagesystem" statements).

The feature's lookups will be registered under the script and language
attributes current at the definition of the lookup. The attributes may be
changed as follows:

"script" statement:
script <script tag>;

For example:

script kana;

When a "script"” statement is seen, the language attribute is implicitly set to
'DFLT', and the lookupflag attribute is implicitly set to 0. The script
attribute stays the same until explicitly changed by another "script”
statement or until the end of the feature.

"language" statement:

The language attribute stays the same until explicitly changed, until the
script is changed, or until the end of the feature. To change the language
attribute, use the "language" statement:

language <language tag> [excludeDFLT |includeDFLT] [required];

"

The script and lookupflag attributes stay the same as before. (If no "script
assignment statement has been seen thus far in the feature block, then the
script attribute is set to 'latn', but it is recommended that an explicit
"script" statement be used in such cases for clarity.)

Here is an example statement:
language DEU;

As a result of this statement, (a) the language attribute is changed to 'DEU
', and (b) the 'DFLT' lookups of the current script are automatically
included into the language system specified by the current script and
language attributes. If (b) is not desired, as may occasionally be the case,
then the keyword "excludeDFLT" must follow the language tag. For
example:

language DEU excludeDFLT;

The keyword "includeDFLT" may be used to explicitly indicate the default
'DFLT' lookup-inheriting behavior. For example:

language DEU includeDFLT; # Same as: language DEU;

841

842

lookupflag

The chapter "Common Table Formats" in the OpenType Font File
Specification describes the LookupFlag field in the Lookup table.

The lookupflag attribute defaults to 0 at the start of a feature block.

The lookupflag attribute stays the same until explicitly changed, until a
lookup reference statement is encountered that changes it, until the script
is changed, or until the end of the feature.

To change the lookupflag attribute explicitly, use the lookupflag statement,
which takes two formats:

lookupflag format A:
lookupflag <named lookupflag value> (, <named lookupflag value>)*;

Here, the individual lookup flag values to be set are expressed in a comma-
separated list of one or more <named lookupflag value>s, in no particular
order. A <named lookupflag value> is one of the following;:

RightTolLeft
IgnoreBaseGlyphs
IgnoreLigatures
IgnoreMarks

At most one of each of the above 5 kinds of <named lookupflag value> may
be present in a lookupflag statement. For example, to skip over base glyphs
and ligature glyphs:

lookupflag IgnoreBaseGlyphs, IgnorelLigatures;

lookupflag format B:
lookupflag <number>;

Here the entire lookup flag value is specified simply as a <number>. The
format A example above could equivalently be expressed as:

lookupflag 6;

Format A is clearly a superior choice for human readability when the
lookupflag value is not 0. However, a lookupflag value of 0 can be set only
with format B, not with format A:

lookupflag 0;

The base glyphs, ligatures, and marks are defined in the Glyph Properties
dialog. This information is stored in the OpenType font file in the GDEF
table. Please, be sure to allow export of this table in the Preferences >
Generating OpenType if you are using the lookupflag feature in the
feature definition file:

@ Cenerate GDEF table

843

lookup

The font editor can label a set of rules and refer to it explicitly later on, in
order to have different parts of the font tables refer to the same lookup.
This decreases the size of the font in addition to freeing the editor from
maintaining duplicate sets of rules.

To define and label a lookup, use a named lookup block:

lookup <label> {
rules to be grouped
} <label>;

To refer to the lookup later on, use a lookup reference statement:

lookup <label>;

For example:

lookup SHARED { # lookup definition
#...

} SHARED;

...

lookup SHARED; # lookup reference

Since the labeled block literally defines a single lookup in the font, the rules
within the lookup block must be of the same lookup type and have the
same lookupflag attribute. The lookup block must be specified within a
feature block and may not contain any other kind of block.

844

OpenType and FontLab Studio

Implementation of OpenType features in FontLab Studio is based on the
technologies provided by Adobe — one of the two inventors and key
supporters of the format.

OpenType support may be separated into three stages:

1. Importing OpenType fonts and reading the binary OpenType tables.
FontLab Studio may store the original binary tables in the .vfb file and
also to try to interpret the binary tables into the feature definition
format.

2. Editing the features and previewing the results. FontLab Studio
provides a feature editor that is integrated into the FontLab Studio
user interface and an OpenType Preview panel that can show how
features work without actually exporting and installing the font file.

3. Feature compilation and export. At this stage the Adobe FDK for
OpenType (AFDKO) library is used to compile the feature definitions
into binary tables and build the OpenType font files.

Since FontLab Studio compiles the OpenType Layout tables from the
feature definition language using the Adobe FDK for OpenType library,
there are some limitations of lookup types supported by FontLab Studio.

FontLab Studio currently does not support:
¢ GSUB lookup type 2 (Multiple substitution, e.g. ab-> cd)

e GPOS lookup types 3 (Cursive attachment positioning), 4 (Mark-
to-Base attachment positioning), 5 (Mark-to-Ligature attachment
positioning), 6 (Mark-to-Mark attachment positioning), 7
(Contextual positioning), 8 (Chaining contextual positioning)

845

846

We plan to support these OpenType specification elements in future but
currently, if you need to build OpenType fonts that support any of these
specification elements, you need to create your OpenType Layout features
using Microsoft VOLT on Windows, which is a free application available
from

http://www.microsoft.com/typography/VOLT.mspx

In such case, you can still use FontLab Studio to design the glyphs, to
create the subset of OpenType Layout features that does not use the
unsupported specification elements, and to generate the OpenType font.
Then, just use VOLT to add the missing bits.

A detailed list of OpenType lookup types not supported by FontLab Studio
can be found at

http://partners.adobe.com/public/developer/opentype/afdko/topic_feature_fil
e_syntax.html

http://www.microsoft.com/typography/VOLT.mspx
http://partners.adobe.com/public/developer/opentype/afdko/topic_feature_fil
http://www.microsoft.com/typography/VOLT.mspx
http://partners.adobe.com/public/developer/opentype/afdko/topic_feature_file_syntax.html
http://partners.adobe.com/public/developer/opentype/afdko/topic_feature_file_syntax.html

Importing OpenType Fonts

There is nothing special about importing OpenType fonts: use the File >
Open command to open files with .ttf extension (OpenType TT fonts) or
.otf extension (OpenType PS fonts).

To read OpenType features make sure that this option is active in the
Preferences > Opening OpenType & TrueType page:

@ Read OpenType layout tables (GPOS, GSUB, CDEF)

This option has several sub-options.
E Store binary OpenType layout tables

Enable this to store the original binary OpenType Layout tables — they will
be stored in your .vfb file. This is useful if you wish to make some changes
to an existing OpenType font (e.g. add or fix the design of some glyphs or
change the hinting) but you do not want to touch the OpenType Layout
tables. Remember that FontLab Studio cannot compile all lookup types so
if you are editing complex script fonts that extensively use GPOS features
(Arabic, Devanagari etc.), you most likely want to preserve the original
OpenType tables. You can later remove the binary tables from your .vfb file
using Font Info > Binary and custom tables

Disable this to prevent FontLab Studio from storing the binary OpenType
Layout tables in the .vfb file.

@ Interpret OpenType layout tables

Enable this to have FontLab Studio try to interpret (decompile) the binary
OpenType Layout tables into the feature definition language. If you are
opening a font with Roman, Greek or Cyrillic glyphs, FontLab Studio will
likely succeed in interpreting the features.

If you are opening an Arabic or Devanagari font, FontLab Studio will
probably interpret the features but many of them will be disabled
(commented out) in the feature definition language. This means that
FontLab Studio will not be able to rebuild these features. In this case, it’s
better to disable the option and only store the binary tables. You will need
to use Microsoft VOLT to develop the feature definitions for complex script
fonts.

847

848

If a GDEF table is defined in the font, FontLab Studio will read information
about anchors, glyph types and caret positions from it.

i Import kerning from the "kern” feature

If enabled, FontLab Studio will import kerning defined in the “kern”
positioning feature into the font pair kerning table. We recommended you
have this feature active when you import the OpenType font.

An OpenType font may have two sets of kerning included: OpenType GPOS
kerning (usually class-based) and plain kern table kerning. With this
option enabled, FontLab Studio will only import the GPOS kerning. If you
disable the option, FontLab Studio will import the plain kern table kerning
into the Metrics Window and the GPOS kerning into the OpenType panel.
You may later convert the GPOS kerning into plain kerning using the
Convert kerning button on the OpenType Features Sample panel.

@ Generate missing glyph names using layout tables

Some OpenType TT fonts do not include glyph names at all (they include a
so-called “post” table format 3). With this option enabled, FontLab Studio
will algorithmically build glyph names based on the Unicode values and the
OpenType Layout features. Most users will want to leave this option
enabled.

@ Interpret GX/AAT mort & morx tables

GX/AAT is an Apple technology that provides layout features (“GX” is the
older name, “AAT” is the current name). In principle, the technology is
similar to OpenType Layout but it uses a different implementation and
different tables.

You can find comparisons between AAT and OpenType Layout at:

http://developer.apple.com/fonts/WhitePapers/GXvsOTLayout.html
http://fontforge.sourceforge.net/gposgsub.html

An OpenType font (TT or PS) can include layout features in AAT format
and in OpenType Layout format, although it is more common that one font
only contains one format of layout features. Mac OS X includes several
AAT fonts, e.g. Skia, Hoefler Text, Zapfino or Apple Chancery. With this
option enabled, FontLab Studio will attempt to convert the AAT features
included in the font into the OpenType feature definition language.

http://developer.apple.com/fonts/WhitePapers/GXvsOTLayout.html
http://fontforge.sourceforge.net/gposgsub.html
http://developer.apple.com/fonts/WhitePapers/GXvsOTLayout.html
http://fontforge.sourceforge.net/gposgsub.html

Apple provides free command-line tools for Mac OS X that you can use to
add AAT features to your font:

http://developer.apple.com/fonts/OSXTools.html

After you have added your AAT features, open the font in FontLab Studio
with this option enabled (make sure to also enable

¥ store custom TrueType/OpenType tables), and you will receive an approximation of
your AAT features in the OpenType feature definition language. Now edit
and compile the feature definitions, and generate the font — you will
receive a “hybrid” OpenType/AAT font with both AAT and OpenType
Layout features included. You can also generate two fonts: one with
OpenType layout features, another with AAT features.

You can download free Arabic OpenType & AAT fonts from
http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&item_id=ArabicFonts
and use them as reference.

When you open existing OpenType fonts, it is important to realize the
interaction of the two crucial options in FontLab Studio 5.

The combination:
E Store binary OpenType layout tables

" Interpret OpenType layout tables

means that the binary OpenType tables will be retained in your .vfb file but
they will not be decompiled into human-readable feature definition
language. When you re-generate your OpenType font later, the stored
original binary tables will be written into the font.

You can decompile them later by choosing Interpret Stored Binary
Layout Tables from the OpenType panel.

849

http://developer.apple.com/fonts/OSXTools.html
http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&item_id=ArabicFonts
http://developer.apple.com/fonts/OSXTools.html
http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&item_id=ArabicFonts

850

The combination:

_| Store binary OpenType layout tables

E Interpret OpenType layout tables

means that the binary OpenType tables will not be retained in your .vfb file
but they will be decompiled into human-readable feature definition
language. When you re-generate your OpenType font later, the feature
definition language will be compiled and new binary tables will be written
into the font. Limitations discussed earlier (unsupported lookup types)
apply here.

The combination:

__| Store binary OpenType layout tables

Interpret OpenType layout tables

means that no OpenType information will be imported.
The combination:

E Store binary OpenType layout tables
E Interpret OpenType layout tables

means that the binary OpenType tables will be retained in your .vfb file and
they will be also decompiled into human-readable feature definition
language. When you re-generate your OpenType font later, FontLab Studio
will ask you which information it should use to write the OpenType layout
tables.

OpenType Panels

FontLab Studio provides two panels that deal with OpenType features: the
OpenType panel and the OpenType Features page of the Preview panel.

OpenType Panel

In FontLab Studio you can see OpenType features in the special OpenType
panel. To open the panel use the Window > Panels > OpenType
command. Below is the illustration of the panel that appears if you open
the FreeFontPro font:

(&) OpenType
B Wit B E e
Hame feature liga {
sub £ f 1 by ffi;

pnum sub f i by Fij
Case lookup MOFI £
Ihum M sub £ f L by L3
phum sub £ f by ff;

i sub f L by fl;
tum sub fFJ by ff_i;
sups sub £ by f_3;
sinf sub T h by T_h;
numr sub Toaron h by T_h.carong k:
i =tih Teammnecent b by T b commonerent = X
frac |} @FIGURES = [
liga AFIG_TAE_LINING @FIG_FIT_LIMING @FIG_FIT_OLDSTYLE @FIG
salt IH
©SWh L GNUMERATOR_ALL = [
dlig b @F IG_MUMERATOR @MISC_MUMERATOR -

n v

+m 2] v

At the top of the panel you find a toolbar, at the left — a list of the features
with two buttons below and a split field at the right. The top part of the
field contains the feature definition text for the feature selected in the list
and the bottom part contains the global definition data, which usually is a
definition of the glyph classes (unless they are defined in the Classes
panel).

You can use the separator bar between top and bottom panels to adjust
their relative vertical sizes.

851

852

Buttons on the toolbar mean:

=
5.

Open the menu. The contents of the menu are described below

]

Find the glyph or class. When the cursor in the feature-editing panel is on
the glyph name you can click on this button to quickly find the glyph in the
Font or Glyph windows. CMD+CTRL-click on the glyph name does the same.

If the cursor is on the class name FontLab Studio will try to find the class in
the bottom editing field or in the Classes panel

*E
e

Rename the glyph. Position the cursor on the glyph name and click this
button to open the glyph rename dialog box, described in one of the
following sections

@

Compile the feature definitions

&l

Open the OpenType Features Sample panel.

When you click on the 5. button you will see a popup menu:

g

-

Reset Features
Open Features...

Interpret Stored Binary Layout Tables

Compile and Store Tables in Binary Form

Copy Features from a Font...
Import Fontlab Classes
Generate "kern” Feature...

Save Features...

Close Panel

Commands in the menu mean:

Reset features

Removes all feature definition information and allows
you to start making a new set of features

Open features

Opens an existing .fea file containing feature definition
language. You can use this command to apply a
previously created feature definition to different fonts.
During import FontLab Studio automatically separates
features into individual records and places the class
definitions in the bottom editing control

Interpret Stored Binary
Layout Tables

Converts the stored binary OpenType Layout tables
into feature definition language — can be useful if
FontLab Studio did not interpret the features when
opening the font

Compile and Store Tables
in Binary Form

Compiles the feature definition language into binary
OpenType Layout tables and stores the binary tables in
the .vfb file — can be useful if you want to store the
binary tables and make some operations with them e.g.
via Python scripting

Copy Features from a
Font...

Copy the feature definition language from another font
to the current font

Import FontLab Classes

Explicitly imports the classes defined in the Classes
panel into the lower portion of the OpenType panel;
this is done implicitly and automatically if Preferences
> General Options > Unicode and OpenType > Add
all glyph classes... is enabled but sometimes it is
practical to import the class definitions explicitly

Generate "kern" Feature

Generates the GPOS kerning based on the kerning
defined in the Metrics Window and the classes defined
in the Classes panel; synonymous to Tools > Kerning
Assistance > Update [kern] feature

Save features

Saves the current set of feature definitions to a file as a
.fea (feature definition language) or .vtp (VOLT project
file)

Close panel

Closes the OpenType panel.

853

854

Adding and Removing Features

To add a new feature click on the | * | button below the features list. The
new feature (named “xxxx”) will appear in the list and the generic feature
definition text will be posted to the feature editor:

feature xxxx {
sub by ;
} xxxx;

When you change the xxxx name to something real the name in the list will
be updated automatically. Do not forget to make the ending name the same
as the beginning name or the feature definition will not compile.

To remove the feature, select it in the list and click on the T button.
Reordering Features

The order of features is sometimes important. For example, if you have the
ligature feature and the small caps feature they must be applied in a pre-
defined order: the small caps feature should come first and only after that
may ligatures be applied.

To reorder the features simply drag-drop feature names in the list.

Entering the Glyph and Class Names

All features contain glyph names. You can enter them on the keyboard but
it’s faster to use the drag-drop method:

1. Select the glyph (in the Font window or in the Classes panel) whose
name you want to enter.

2. Press the mouse button and drag the cursor to the feature definition
field. The position where the name will be inserted is highlighted with
the editing caret.

3. Select the destination position and release the mouse button to insert
the glyph name.

If more than one glyph was selected for drag-drop operation, all the glyph
names will be inserted separated by spaces and surrounded by brackets:

[zero one two three four five six seven eight nine]

To enter a class name defined in the Classes panel, drag the class name
from the list of classes.

If you drop the class name, it will be inserted into the feature definition
text preceded by the ‘@’

@smcp2

To insert the actual contents of the class rather than its name, hold
the Cmp key when you release the mouse button:

[perthousand perthousand percent threeeighths threequarters threeeighths
fiveeighths fiveeighths seveneighths seveneighths]

855

856

Renaming Glyphs and Classes

When a glyph name is entered into feature definition text the link with this
glyph in the font is lost, so if you rename the glyph using the FontLab
Studio glyph rename command the feature definition will not be updated.
To rename a glyph in the feature definitions, position the cursor on
the glyph name in the feature editing field and click the 4% button on the
toolbar. You will see a dialog box:

Replace Name

Source string:

ldoaccent

Replacement string:

Replace name in Classes panel

Rename glyph in the font

(" Cancel) (OK 1}

In the top field you can enter the name of the glyph you want to rename
and in the bottom field you enter new name for the glyph.

Check the Replace name in the Classes panel checkbox to rename the
glyph in the FontLab Studio Classes panel.

Check the Rename glyph in the font checkbox to rename the glyph in the
font.

After you click OK in the dialog box FontLab Studio will scan all the feature
definitions and replace the old glyph name with the new one. Note that you
can enter a glyph class definition as a replacement string, for instance to
replace “one” by “[one two three]”.

Compiling the Feature Definitions

When you import or create OpenType features they exist in form of the
text-based feature definition language. To convert them to the usable
binary format of the GSUB and GPOS OpenType tables they must undergo
a process called “compilation”. During compilation the feature definition
language (text) is checked for errors and glyph reverences are verified.
When everything is confirmed OK the text is converted to binary form
which you can preview or export.

To compile feature definitions click on the £ button on the toolbar.
FontLab Studio will try to compile the features and if there are errors
during the compilation they are put into a special Output panel.

There is one special error message: if glyphs are referenced by the feature
definition but do not exist in the font, FontLab Studio will show the
warning message:

Warning!

Some glyphs do not exist in the current font.
Do you want FontLab to create those glyphs?

aacute

Do you want FontlLab to create those glyphs?

| Cancel | {Create)

If you click Create, FontLab Studio will try to create the glyphs using their
names as the source of information. The same algorithm as in the Generate
Glyphs operation described on page 523 is used.

857

858

< Tip: If you import a feature definition file from an existing large OpenType

font into your font and use this operation, FontLab Studio will
automatically generate all the glyphs that are needed to support that
feature definition file. This way, you can easily match another font’s
character set.

If you hold down the Cmp key when you are clicking the Compile &
button to compile the features, FontLab Studio will compile the features
and decompile the resulting binary tables as if you had imported them
from an OpenType font file.

Compiling the Classes

There are two set of classes: text-based class definitions made in the
feature definition language and located in the bottom field of the
OpenType panel, and FontLab Studio glyph classes that are represented in
the Classes panel (for more information about the Classes panel please
refer to the “Classes Panel” section on page 595).

It is natural to provide a link between these classes. Use the following
option in the Preferences > General Options > Unicode and OpenType
dialog box:

Unicode and OpenType

@Add all glyph classes to OpenType feature definition code

@ Do not add metrics classes

to automatically include all FontLab Studio classes into the
compiled feature definition code.

Please note that FontLab Studio will import all OpenType classes when an
OpenType font is imported and will place them in the OpenType panel and
FontLab Studio Classes panel, so when you use this option for an imported
font you need to manually delete the OpenType classes to avoid
duplication.

The Output Panel

The Output panel opens automatically when there is something to show
and looks very simple:

8 Output

Missing glyph: adieresis

[FATAL] =PalatinoLlinotype-Roman= aborting because of
ErFOrs:

Basically it is just a text-output window with a scroll bar. You can CTRrL-
click the panel to open the context menu:

Clear
Select All

Close Panel

Use the commands in the menu to close the panel or clear or copy the
selected text.

You can manually open the output panel with the Window > Panels >
Output command in the main FontLab Studio menu.

The output panel is also used by the FontLab Studio Macro system to show
the results of macro program interpretation.

859

860

OpenType Features Sample Panel

When OpenType features are compiled you can preview them with the
OpenType Features Sample page of the Preview panel.

To open the Preview panel use the Window > Panels > Preview
command or click on the || button located on the OpenType panel toolbar.

When there are OT features defined the OpenType Features Sample panel
looks like this:

(&) Preview

! OpenType Features Preview [Anchors

Script: latn T‘ Language: DFLT T] T ov G e M
L opsp ABCabrlZ3 a
L kern
—== Source
ﬁ aalt
82 BABCabc123
S apcC
@ onum
— Case Rezult

Inum

mn - ABCADC12 3

trum

In the top part of the panel you find a command bar that contains script
and language selection lists and some buttons.

When more than one script or language is referred to by the feature
definition, they are listed in the popup menus on the command bar. Use
them to select the script and language to preview.

When a script is selected, you will see a list of the features that are defined
for that script and language. Please note that when you select the non-
default language only features that are unique for the selected language are
listed.

Every feature name has a check box. Use it to turn the feature on or off.
When several features are selected they are applied in the order in which
they are listed.

To the right of the list there are 3 fields: source text, source preview panel
and resulting preview panel.

You must enter the text you want to use to preview in the source text
field. Use FontLab Studio notation to enter glyphs that are not directly
accessible from the keyboard: ‘/’ followed by the glyph name and a space or
‘\’ followed by the Unicode index.

You can also drag-drop glyphs from the Font window or from the
Classes panel into the source text field.

The Source preview shows the glyphs before OpenType features are
applied. The Resulting preview panel shows the glyphs after the
OpenType features do their work. You will also see the result glyph names
below the Resulting preview.

Interpretation of the features is based on the OpenType specification and is
carefully tested for compatibility with OS and Adobe InDesign
interpretation. However please be aware that feature interpretation is an
application-centric system so it may vary in different applications.

Use the buttons on the top of the panel to get access to options:

-T = Click on this button to set the size of the preview shown in the OpenType
Features Sample panel; select a point size or choose “Auto” to make the
preview automatically fit the size of the panel

gign Click on this button to convert the GPOS kerning from the OpenType kern
feature into the plain pair kerning table. This operation is described in the
following section

i+ Ifthis button is pressed, FontLab Studio will preview the glyph metrics so
you can see how the positioning features work

FTL If this button is pressed both source and resulting preview windows work in
right-to-left mode. This is good for working with Arabic or Hebrew fonts.

Note: FontLab Studio 5 does not support automatic glyph reordering or
special shaping rules for complex scripts when displaying OpenType features
in the Features Sample panel. If you develop complex-script fonts such as
Arabic, you should test the final font in the Tools > Quick Test window
which uses the system OpenType Layout renderer.

861

862

Converting the Kerning

If you have defined a kern feature you can convert it into the plain pair

...... r
KERH

kerning table at any time. Just click on the ** button on the OpenType
Features preview panel. You will see a dialog box:

Convert [kern] Feature

Do you really want to convert OpenType [kern]
feature to the ""plain™" pair kerning data?

If answer is “Yes", then select conversion option below:

.Eompie"tél.;,r repl:lce ".i}ielalin".-pﬁ'i'r k.;ar;r.!g data : _'.r!

Total number of 8416 (792) pairs will be added.

|21, Do not expand class-based kerning pairs

(" Cancel) (Cﬂnveﬂ'}

There are two options that you can select in the list:
Completely replace “plain” pair kerning data

Use this option to remove existing kerning information and replace it with
the result of the kern feature interpretation.

Append converted kerning to the existing kerning table

Only new pairs that do not already exist will be added to the existing pair
kerning table.

Notes:

1. This operation is equivalent to the OpenType import option:

E Import kerning from the "kern” feature

The difference is that you can do it at any time not just during import
of the OpenType font file.

2. Class-based kerning, defined in the kern feature, will be converted into
class-based kerning as FontLab Studio understands it. Real kerning
pairs will be added only for the key glyphs. Please, refer to the “Editing
Metrics” chapter and page 593 for more information about class-based
kerning.

Feature Development Process

When you want to create a feature we recommend you follow this sequence
of operations:

1.

Create a feature in the OpenType panel (click on the _* button in the
lower left corner).

Name the feature. Enter the name at the beginning of the feature block
and at the end by replacing the default “xxxx”.

Fill the feature body with lookups. Descriptions of all the types of
lookups that FontLab Studio can handle follows this section.

Click the ¥ button to compile the feature definition text.

Check the Output panel for warnings and errors. If there is an error, it
will be highlighted in the feature definition text. Fix any errors.

When there are no errors, check the feature in the OpenType Features
Preview panel. Open the panel, select the script and language and enter
the test text.

At this point you know everything you need to create new features except
the actual lookups that define a feature. In the following sections we will
discuss the different types of substitution and positioning lookups.

Please note that you may combine substitution and positioning lookups in
the same feature.

863

864

Substitution Lookups

Substitution lookups deal with the replacement of the source glyph(s) with
some other glyph(s).

The simplest example of a substitution lookup is the replacement of
lowercase characters by small-caps versions.

Lookups may be context-dependent or context-independent. Context-
independent lookups are applied every time the source sequence of glyphs
is present, like when you want to replace the ‘f” and ‘I’ sequence with the I’
ligature. In other cases you may need to apply a substitution only when a
source sequence of glyphs is surrounded by some other glyphs. For
instance you may want to replace an uppercase character with a lowercase
when it is followed by another lowercase character.

The OpenType specification declares the following types of basic
substitutions:

Single Replaces a single glyph with another single glyph: a->A

Ligature Replaces multiple glyphs with a single glyph: f1-> fl

Multiple* Replaces a single glyph with multiple glyphs: $->dollar

Alternate Replaces a single glyph with one of the glyphs in a list: A -> A.versionl
or A.version2

All these substitutions may be context independent or context-dependent.

*) FontLab Studio supports all of the substitutions except the multiple
substitutions.

Single Substitution

This is the simplest substitution — it replaces a single glyph with another
glyph or a class of glyphs with another class. The Class form of the
substitution requires that the number of glyphs in the source and
destination classes be the same.

A single substitution rule is specified in one of the following formats:

substitute <glyph> by <glyph>; # format A
substitute <glyphclass> by <glyph>; # format B
substitute <glyphclass> by <glyphclass>; # format C

You can use the codeword “sub” instead of the longer “substitute”.

Format B specifies that all glyphs in the target glyph class will be replaced
by the same replacement glyph.

Format C specifies that any of the glyphs in the target glyph class must be
replaced by its corresponding glyph (in the order of glyphs in the glyph
classes) in the replacement glyph class. If the replacement is a singleton
glyph class, then the rule will be treated identically to a format B rule. If
the replacement class has more than one glyph, then the number of
elements in the target and replacement glyph classes must be the same.

For example:

sub a by a.smcp; # format A
sub [one.fitted one.onum one.taboldstyle] by one; # format B
sub [a - z] by [a.smcp - z.smcp]; # format C
sub @Capitals by @CapSwashes; # format C

The third line in the above example produces the same effect in the font as:

sub a by a.smcp;
sub b by b.smcp;
sub c by c.smcp;
#...

sub z by z.smcp;

865

866

Sample applications of this rule:
Replace different types of figures:

sub @figs_lnum by @figs_onum;

Replace lowercase glyphs by small-caps:

sub @lc by @sc;

Small SMALL

Ligature Substitution

The ligature substitution rule replaces several glyphs in sequence with a
single glyph.

A Ligature substitution rule is specified as:
substitute <glyph sequence> by <glyph>;

<glyph sequence> must contain two or more <glyph|glyphclass>es. For
example:

substitute [one one.onum] [slash fraction] [two two.onum] by onehalf;

Since the OpenType specification does not allow ligature substitutions to
be specified on target sequences that contain glyph classes, the
implementation software will enumerate all specific glyph sequences if
glyph classes are detected in <glyph sequence>. Thus, the above example
produces the same effect in the font as if the font editor manually
enumerated all the sequences:

substitute one slash two by onehalf;

substitute one.onum slash two by onehalf;
substitute one fraction two by onehalf;

substitute one.onum fraction two by onehalf;
substitute one slash two.onum by onehalf;
substitute one.onum slash two.onum by onehalf;
substitute one fraction two.onum by onehalf;
substitute one.onum fraction two.onum by onehalf;

867

868

Note: Variant glyphs should be named just like their default counterparts

but with a suffix appended after a period. The suffix can typically be the
feature tag for the layout feature the variant glyph will be most likely
accessed with. So, a small cap a can be named a.smcp and an old-style digit
2 can be named two.onum. Non-standard names should be avoided. For an
extensive discussion about devising custom glyph names in OpenType
fonts, refer to the “Advanced Glyph Naming and Encoding” section of the
“Editing Fonts” chapter.

Almost all fonts contain at least two ligatures: “fl” and “fi” which can be
easily encoded as:

substitute f | by fl;
substitute f i by fi;

Some fonts add longer ligatures:

substitute f f i by f_f_i;

tti th

Note: ligature glyphs should be named using the underscore rule, e.g.

f_f_odieresis for an ff6 ligature. Only the fi and fl ligatures should be
named without the underscores. For an extensive discussion about
devising custom glyph names in OpenType fonts, refer to the “Advanced
Glyph Naming and Encoding” section of the “Editing Fonts” chapter.

A contiguous set of ligature rules does not need to be ordered in any
particular way by the font editor; the implementation software does the
appropriate sorting. So:

sub f f by f_f;

sub f i by fi;

sub f f i by f_f_i;
suboffibyo_f f_i;

will do the same thing as:

suboffibyo_f f_i;
sub f fibyf f_i;
sub f f by f_f;

sub f i by fi;

Alternate Substitution

Alternate substitution replaces a glyph with one of the glyphs in a pre-
defined list of alternatives. The application that uses the font is expected to
decide which glyph to choose. A good example of this lookup is to provide
several versions of some glyph, like the ampersand. Another application is
the selection of several different forms of ornaments.

An alternate substitution rule is specified as:
substitute <glyph> from <glyphclass>;
For example:

substitute ampersand from [ampersand.1 ampersand.2];

& &7’

or ornament variations:

substitute asterisk from [orn.1 orn.2 orn.3 orn.4];

SR D

869

870

Context Dependent Substitutions

A context-dependent rule can be any of the rules described above with one
important difference: it defines a context that must include a target
sequence of glyphs (or glyph classes).

In the simple form of, say, ligature substitution we simply write:
sub a b c by D;

In context-dependent substitution we can declare that “abc”, which is a
target sequence of glyphs for a ligature substitution rule, must be a part of
a larger context:

sub period a' b’ ¢’ period by D;

Only when “abc” is surrounded by two “period” glyphs will substitution
take place. Note that we have marked the target glyphs with the single
quote character positioned immediately after the glyph name.

The rule is specified as follows:

substitute <marked glyph sequence> # Target sequence with marked glyphs
by <glyph sequence>; # Sub-run replacement sequence

A <glyph sequence> comprises one or more glyphs or glyph classes.

<marked glyph sequence> is a <glyph sequence> in which a set of glyphs
or glyph classes is identified, i.e. "marked". We will call this marked set of
glyphs a sub-run. A sub-run is marked by inserting a single quote (') after
each of its member elements.

This sub-run represents the target sequences of the lookups called by this
rule. The lookup type of the lookup called by this rule is auto-detected from
their target and replacement sequences in the same way as in their
corresponding stand-alone (i.e. non-contextual) statements.

Example 1. This calls a lookup. The rule below means: in sequences "a d"
or "ed" or "n d", substitute "d" by "d.alt".

substitute [a e n] d' by d.alt;

Example 2. This also calls a single substitution lookup. The rule below
means: if a capital letter is followed by a small capital, then replace the
small capital by its corresponding lowercase letter.

substitute [A-Z] [a.smcp-z.smcp]' by [a-z];

Example 3. This calls a ligature substitution lookup. The rule below
means: in sequences "e t ¢" or "e.init t ¢", substitute the first two glyphs by
the ampersand.

substitute [e e.init]' t' c by ampersand;

871

872

Specifying Exceptions to the Context Rule

Exceptions to a chaining contextual substitution rule are expressed by
inserting a statement of the following form anywhere before the chaining
contextual rule and in the same lookup as it:

ignore substitute <marked glyph sequence> (, <marked glyph sequence>)*;

The keywords "ignore substitute" are followed by a comma-separated list
of <marked glyph sequence>s. At most one sub-run of glyphs or glyph
classes may be marked in each <marked glyph sequence>, by a single-
quote (") following each glyph or glyph class. This marked sub-run, when
present, is taken to correspond to the "input sequence” of that rule. This
generally means that it should correspond to the place where substitution
would have occurred had the sequence not been an exception (see
examples below). This is necessary for the OpenType layout engine to
correctly handle skipping this sequence. When no glyphs are marked, then
only the first glyph or glyph class is taken to be marked.

The "ignore substitute" statement works by creating subtables in the GSUB
that tell the OT layout engine simply to match the specified sequences, and
not to perform any substitutions on them. As a result of the match,
remaining rules (i.e. subtables) in the lookup will be skipped.

Example 1. Ignoring specific sequences:

The "ignore substitute" rule below specifies that the substitution in the
"substitute" rule should not occur for the sequences "fa d", "fed", or "ad
d". Note that the marked glyphs in the exception sequences indicate where
a substitution would have occurred; this is necessary for the OpenType
layout engine to correctly handle skipping this sequence.

ignore substitute f [ae] d', ad'd;
substitute [a e n] d' by d.alt;

Example 2. Matching a beginning-of-word boundary:

ignore substitute @LETTER f' i';
substitute f' i' by f_i.init;

The example above shows how a ligature may be substituted at a word
boundary. @ LETTER must be defined to include all glyphs considered to
be part of a word. The substitute statement will get applied only if the
sequence doesn't match "@LETTER fi"; i.e. only at the beginning of a
word.

Example 3. Matching a whole word boundary:

ignore substitute @LETTER a'n'd', a' n' d' @ LETTER;
substitute a'n'd' by a_n_d;

In this example, the a_n_d ligature will apply only if the sequence "an d"
is neither preceded nor succeeded by a @ LETTER.

Example 4. This shows a specification for the contextual swashes feature:

feature cswh {
--- Glyph classes used in this feature:
@BEGINNINGS = [A-N P-Z Th m];
@BEGINNINGS_SWASH = [A.swsh-N.swsh P.swsh-Z.swsh T_h.swsh m.init];
@ENDINGS = [a e Z];
@ENDINGS_SWASH = [a.fina e.fina z.fina];

--- Beginning-of-word swashes:
ignore substitute @LETTER @BEGINNINGS;
substitute @BEGINNINGS' by @BEGINNINGS_SWASH;

--- End-of-word swashes:

ignore substitute @ENDINGS' @LETTER;

substitute @ENDINGS' by @ENDINGS_SWASH;
} cswh;

If a feature targets only glyphs at the beginning or ending of a word, such
as the 'init' and 'fina’ features, then the application could be made
responsible for detecting the word boundary; the feature itself would be
simply defined as the appropriate substitutions without regard for word
boundary.

873

874

I Positioning Lookups

The OpenType specification allows you to define many positioning
lookups. The lookup types may be separated into three groups:

1. Basic lookups, single and pair positioning;:

2. The Cursive attachment lookup that allows smooth connection of script
and cursive glyphs:

3. Mark attachment lookups that define relative positions of glyphs and
marks:

o

FontLab Studio can support only the first group of lookups:
single and pair positioning. We expect to support cursive and mark
attachment lookups in one of the next releases of FontLab Studio.

As in the case with substitution, positioning lookups may be context-free
and context-dependent. Context-dependent lookups are the same as
context-free but add a context that is verified against the source sequence
of glyphs. Only when the context is matched is positioning performed.

Please note that glyph positioning is performed after substitution and that
all positioning lookups must be defined for the glyph string that is a result
of substitution.

Glyph positioning rules begin with the keyword "position"; this keyword
may be abbreviated as "pos". (The "enumerate" or "ignore" keywords may
precede the "position" keyword in some cases.) The GPOS lookup type is
auto-detected from the format of the rest of the rule.

Glyph Geometry

Positioning lookups may change one of the glyph positioning metrics:

\ Placement X and Y v\ Advance XandY

A single positioning lookup may tweak any of four values: placement_X,
placement_Y, advance_Y and advance_Y.

Modification of the origin point of the glyph will shift it and all following
glyphs. Modification of the advance vector will shift the next glyph in the
glyph string.

875

876

Value Record

A <valuerecord> is used in positioning rules to define offsets to shift glyph
origin or advance vector. It must be enclosed by angle brackets, except for
format A, in which the angle brackets are optional. Note that the <metric>
adjustments indicate values (in design units) to add to (positive values) or
subtract from (negative values) the placement and advance values provided
in the font (in the '"hmtx' and 'vmtx' tables).

Value record format A:
< <metric> > # Angle brackets are optional

Here the <metric> represents an X advance adjustment, except when used
in the 'vkrn' feature, in which case it represents a Y advance adjustment.
All other adjustments are implicitly set to 0. This is the simplest feature file
<valuerecord> format, and is provided since it represents the most
commonly used adjustment (i.e. for kerning). For example:

-3 # without <>
<-3> # with <>

Value record format B:
< <metric> <metric> <metric> <metric> >

Here, the <metric>s represent adjustments for X placement, Y placement,
X advance, and Y advance, in that order. For example:

<-80 0 -160 0> # X placement adj: -80; X advance adj: -160

Single Positioning

A Single Pos rule is specified as:
position <glyph|glyphclass> <valuerecord>;

Here, the <glyph|glyphclass> is adjusted by the <valuerecord> [§2.e.iv].
For example, to reduce the left and right sidebearings of a glyph each by 80
design units:

position one <-80 0 -160 0>;
To shift the glyph up by 100 units:
position A <0 100 0 -100>;

Note that we changed the placement by 100 units but compensated for that
with a -100 change applied to advance. This is needed to shift only the
current glyph and not the following glyphs in the string.

877

878

Pair Positioning

Rules for this lookup type are usually used for kerning and must follow this
format:

position <glyph|glyphclass> <glyph|glyphclass> <valuerecord format A>;

This format is provided since it closely parallels the way kerning is
expressed in a plain pair kerning table. Here, the <valuerecord> must be of
value record format A only, and corresponds to the first
<glyph|glyphclass>.

Kerning can most easily be expressed with this format. This will result in
adjusting the first glyph's X advance, except when in the 'vrkn' feature, in
which case it will adjust the first glyph's Y advance. Some examples:

pos T a -100; # specific pair (no glyph class present)
pos [T] a -100; # class pair (singleton glyph class present)
pos T @a -100; # class pair (glyph class present, even if singleton)

pos @T [a o u] -80; # class pair

Note that if at least one glyph class is present (even if it is a singleton glyph
class), then the rule is interpreted as a class pair; otherwise, the rule is
interpreted as a specific pair.

In the 'kern' feature, the specific glyph pairs will typically precede the glyph
class pairs in the feature file, mirroring the way that they will be stored in
the font.

feature kern {
specific pairs for all scripts
class pairs for all scripts
} kern;

Enumerating Pairs

If some specific pairs are more conveniently represented as a class pair, but
the editor does not want the pairs to be in a class kerning subtable, then
the class pair must be preceded by the keyword "enumerate" (which can be
abbreviated as "enum"). The implementation software will enumerate such
pairs as specific pairs. Thus, these pairs can be thought of as "class
exceptions" to class pairs. For example:

@Y_LC = [y yacute ydieresis];
@SMALL_PUNC = [comma semicolon period];

enum pos @Y_LC semicolon -80; # specific pairs
pos f quoteright 30; # specific pair
pos @Y_LC @SMALL_PUNC -100; # class pair

The enum rule above can be replaced by:

pos y semicolon -80;
pos yacute semicolon -80;
pos ydieresis semicolon -80;

without changing the effect on the font.

879

880

Subtable Breaks

The implementation software will insert a subtable break within a run of
class pair rules if a single subtable cannot be created due to class overlap. A
warning will be given. For example:

pos [Ygrave] [colon semicolon] -55; # [line 99] In first subtable
pos [Y Yacute] period -50; # [line 100] In first subtable
pos [Y Yacute Ygrave] period -60; # [line 101] In second subtable

will produce a warning that a new subtable has been started at line 101,
and that some kern pairs within this subtable may never be accessed. The
pair (Ygrave, period) will have a value of 0 if the above example comprised
the entire lookup, since Ygrave is in the coverage (i.e. union of the first
glyphs) of the first subtable.

Sometimes the class kerning subtable may get too large. The editor can
force subtable breaks at appropriate points by inserting the statement:

subtable;

between two class kerning rules. The new subtable created will still be in
the same lookup, so the editor must ensure that the coverages of the
subtables thus created do not overlap. For example:

pos [Y Yacute] period -50; # In first subtable
subtable; # Force a subtable break here
pos [A Aacute Agrave] quoteright -30; # In second subtable

If the subtable statement were not present, both rules would be
represented within the same subtable.

I Known Features

OpenType feature processing is an application-centric system. The
application knows which features it needs to apply and then searches the
font for these features. If a feature is present in the font, it is applied. To
implement this system features must be standardized and registered so
everybody will know what is done by a feature with a particular name.

The Microsoft Typography group performs feature registration:
http://www.microsoft.com/typography
The full list of registered features may be found in this document:

OpenType Layout tag registry
http://www.microsoft.com/typography/otspec/ttoreg.htm

This document contains descriptions of all name tags that can be used in
an OpenType font for script, language and feature names.

We will provide brief definitions of the most commonly used features.

init, medi,fina and isol Features

These features are most commonly used in Arabic scripts and allow one to
define four forms of Arabic characters: initial, final, medial and isolated:

u#u.u.w..w

Isolated Final Medial Initial

Note that Arabic text is written right-to-left.

Please note that it is the application or the operating system that detects
word boundaries and applies one of the features. You are not expected to
pay attention to that in the feature definition.

Usually these features are simple substitutions:

feature init{
sub @isolated_forms by @initial_forms;
Yinit;

881

http://www.microsoft.com/typography
http://www.microsoft.com/typography/otspec/ttoreg.htm
http://www.microsoft.com/typography
http://www.microsoft.com/typography/otspec/ttoreg.htm

882

Latin Features

cpsp

Capital Spacing

Globally adjusts inter-glyph spacing for all-capital text.
feature cpsp {

pos @uppercase <7 0 14 0>;
} cpsp;

pnum

Proportional
Figures

Replaces figure glyphs set on uniform (tabular) widths
with corresponding glyphs set on glyph-specific
(proportional) widths.

feature pnum {

sub @figures by @figures_prop;
} pnum;

lnum

Lining Figures

This feature changes selected figures from oldstyle to the
default lining form

hist

Historical Forms

Replaces glyphs with their historical forms, like long
form of s or Fraktur form of k.
feature hist {
sub s by longs;
1 hist;

s+

ordn

Ordinals

Replaces default alphabetic glyphs with the
corresponding ordinal forms for use after figures

l1a-12

smcp

Small Capitals

This feature replaces lowercase characters with small
capitals

Sm-Sm

sinf

Scientific
Inferiors

Replaces lining or oldstyle figures with inferior figures
(smaller glyphs which sit lower than the standard
baseline, primarily for chemical or mathematical
notation)

H2O*H20

ornm

Ornaments

This feature lets the user access ornament glyphs in the
font

liga

Standard
Ligatures

Replaces a sequence of glyphs with a single glyph, which
is preferred for typographic purposes. This feature
covers the ligatures that the designer/manufacturer
judges should be used in normal conditions

feature liga {
sub f fibyf_f_i;
sub f i by fi;
sub T h by T_h;
sub f fjbyf f_j;
sub f f Lby f_f_L;
sub f f by f_f;
sub f j by f_j;
sub f | by fl;

} liga;

case

Case-Sensitive
Forms

Shifts various punctuation marks up to a position that
works better with all-capital sequences or sets of lining
figures; also changes oldstyle figures to lining figures

(UN)-(UN)

dlig

Discretionary
Ligatures

Replaces a sequence of glyphs with a single glyph, which
is preferred for typographic purposes. This feature
covers those ligatures that may be used for special effect,
at the user's preference

feature dlig {

sub c t by c_t;

subs t bys_t;

sub longs h by longs_h;

sub longs i by longs_i;

sub longs | by longs_L;

sub longs t by logs_t;

sub longs longs by longs_longs;
} dlig;

ct st=& 8t

frac

Fractions

Replaces figures separated by a slash with ‘common’
(diagonal) fractions

2/3-%

afrc

Alternative
Fractions

Replaces figures separated by a slash with an alternative
form

2/3+%

dnom

Denominators

Replaces selected figures that follow a slash with
denominator figures

883

884

c2sc Small Capitals This feature replaces capital characters with small
From Capitals capitals
Caps 123-caps 123
numr Numerators Replaces all with numerator figures
onum Oldstyle Figures This feature changes selected figures from the default
lining style to oldstyle form
sups Superscript Replaces lining or oldstyle figures with superior figures
and replaces lowercase letters with superior
sinf Scientific Replaces lining or oldstyle figures with inferior figures.
Inferiors

OpenType Glyph Properties

The OpenType format allows you to define a glyph’s type. This can be one
of the following values:

Unassigned Glyph type is not defined

Simple Single character
Ligature Multiple characters
Mark Non-spacing glyph used as a mark

Component Part of a character

Glyph type is used in a lookup when you need to limit it to the glyphs of a
particular type using the lookupflag command (page 842).

You define the glyph type using the glyph properties panel. Select one or
more glyphs in the Font window and open the panel with the Edit >
Properties command:

: (&) Glyph Properties
Font: FreeFontPro
HAHE three 5 4

| L oo33

|

: Replace existing glyphs|

Or | v Unassigned

" 3 |igature

- g Mark 520
b |

oo Component 9
- Classes... Apply

Select the glyph class in the list to the right of the 9T icon. If multiple
glyphs were selected, the new type will be assigned to all of them.

885

886

Caret Positioning

When several characters are replaced by a ligature glyph using the ligature
substitution lookup, a text-layout application may keep the positioning
cursor inside a ligature as if it still was a set of characters:

With FontLab Studio you can define caret positions inside the ligature. Do
the following:

1.
2.

3.

Open the ligature glyph in the Glyph window.

Open the properties panel with the Edit > Properties command.
In the properties panel select the ligature glyph type.

To the right of the glyph type selection list enter the number of
components in the ligature.

Or Ligature ﬂ z -

Make sure that View > Show Layers > Anchors and Carets option is
on.

You will see several vertical caret lines appeared in the Glyph window.
The number of the lines equals the number of components of the
ligature minus one:

| EFE L EEDZ

fy

Use the Edit tool to move the caret lines to the desired positions.

Generating OpenType Fonts

When you have a font that contains feature definitions and you want them
to be generated as an OpenType font file, the first thing you need to do is to
compile and test your features using the tools in the OpenType panel.

If you're trying to generate an OpenType TT font and feature definitions
contain errors, they will not be exported and you will get a plain TrueType
font file without any features. If you are generating an OpenType PS font
and the feature definitions contain an error the font will not be generated
at all.

When you know that there are no errors in the features and the features
work as expected, you need to check the OpenType generation options in
the Preferences > Generating OpenType & TrueType dialog box:

@Write stored custom TrueType/OpenType tables

Ei Export OpenType layout tables
@ Compile feature definitions
"] Contextual substitutions in invalid legacy format
Use this option only if you know what you are doing
Ei Generate GDEF table
| Export VOLT data

Write stored custom TrueType/OpenType tables

Enable this if you have previously opened an OpenType font with
OpenType Layout tables that are not supported by FontLab Studio, e.g.
BASE, with AAT tables such as morx, or with VOLT private tables. These
tables will be retained in the new font — FontLab Studio will not touch or
modify these. Note that if you rearranged the glyphs in your font or
performed some changes to other parts of the font, the custom tables may
become unusable.

Export OpenType Layout Tables

If this option is enabled, OpenType Layout tables will be written into the
font. If disabled, no OpenType Layout tables will be written.

887

888

Compile feature definitions

When enabled, FontLab Studio will compile the feature definition language
(specified in the OpenType panel) into OpenType binary tables, and these
binary tables will be written into the font.

If the font includes any previously existing OpenType binary tables (e.g. if
you opened an existing font or used the Compile and Store Tables in
Binary Form command from the OpenType panel), FontLab Studio will
present a dialog box asking you to choose whether the existing binary
tables or the compiled feature definitions should be written into the font.

When disabled and the font contains previously existing OpenType binary
tables, these will be written into the font. If no binary tables exist, none will
be written into the font.

Contextual substitutions in invalid legacy format

Due to a misunderstanding between Adobe and Microsoft, early versions of
Adobe InDesign (1.0, 1.5 and 2.0) contained a bug in the interpretation of
contextual substitutions (for features such as calt or clig) so only “invalid”
contextual substitutions work in these early versions . In Microsoft
applications, only “valid” contextual substitutions work. InDesign CS and
CS2 have a special routine so both “invalid” and “valid” contextual
substitutions work.

If you enable this option, FontLab Studio will generate a font with “invalid”
contextual features that will work correctly in InDesign 1.0, 1.5 and 2.0 as
well as InDesign CS and CS2, but these contextual features will not work in
OpenType-savvy applications from Microsoft or other vendors.

If disabled, “valid” contextual OpenType features will be generated that
will work in InDesign CS and CS2 and all other applications, but not in
InDesign 1.0, 1.5, 2.0. It is recommended to keep this setting disabled.

Generate GDEF table

Turn on this feature to save information about the glyph types and caret
positions to the font file. Note that this is a requirement if you have used
the lookupflag operator in feature definitions.

Export VOLT data

If this option is switched on, FontLab Studio will try to export feature
definition data in a format supported by Microsoft VOLT (Visual
OpenType Layout Tool). Not all features can be exported. Refer to the next
section for more information.

On the Kerning page of the Preferences dialog, one setting is relevant to
the OpenType font generation:

'21 Cenerate "kern” feature if it is not defined

If the font contains a pair kerning table but no GPOS kerning in an
OpenType “kern” feature and this option is switched on, FontLab Studio
will automatically generate the kern feature based on the kerning
information in Metrics Window and the Classes panel, so applications that
need this feature to make kerning will work correctly.

After all options are set correctly, use the File > Generate Font command
to save the OpenType font file. Select TrueType/OpenType TT (*.ttf)
to generate an OpenType TT (TrueType-flavored) font or OpenType PS
(*.otf) to generate an OpenType PS (CFF-flavored) font.

889

890

FontLab Studio and VOLT

Microsoft VOLT (Visual OpenType Layout Tool) is an OpenType feature
editor program developed and supported by the Microsoft Typography
group. The big benefit of this program is that it can support all the features
of OpenType including those that FontLab Studio cannot handle. VOLT is
based on a completely different user interface and provides visual tools to
define substitution and positioning lookups.

You can get more information about VOLT at this location:
http://www.microsoft.com/typography/developers/volt/default.htm

VOLT stores OpenType features and lookups information in a text-based
format, which, during work on a font, is saved in special tables in a
TrueType font. When work on the font is done, these tables are compiled to
GPOS, GDEF and GSUB tables and intermediate tables are stripped from
the font file.

If this option in the Preferences > Opening OpenType & TrueType:

@ Store custom TrueType/OpenType tables

is switched on, you can open the font saved with VOLT and it will contain
the special tables that VOLT uses to store intermediate data and on export
these tables will be restored unchanged. This means that even if you start
work on a font in VOLT, but then realize that some glyphs must be
modified, you can save the font in VOLT, open it in FontLab Studio, modify
the glyphs and return to VOLT to continue your work on OpenType
features.

http://www.microsoft.com/typography/developers/volt/default.htm
http://www.microsoft.com/typography/developers/volt/default.htm

Another FontLab Studio feature is its ability to save simple lookups and
some glyph information in VOLT format so you can start working on a font
in FontLab Studio then continue in VOLT.

FontLab Studio can export OpenType Layout feature definitions
to VOLT in two ways:

1. Use the 5. button in the OpenType panel to open a menu and then
select the Save Features command to open a File Save dialog box.
Select VOLT project files (*.vtp) as the destination format and FontLab
Studio will try to save the features in VOLT format.

2. Enable the Export VOLT data option in the Preferences > Generating
OpenType & TrueType dialog and generate the font as a
TrueType/OpenType TT. FontLab Studio will write both binary
OpenType tables and tables that VOLT can read so you can open this
font in VOLT on Windows and continue editing features.

VOLT itself cannot decompile OpenType binary tables into source
information. So Option 2 is the only way that you can open an existing
OpenType font with binary tables and turn these into VOLT source
information.

891

Macro Programming

One of the unique features of FontLab Studio is an integrated macro
programming language. With this feature you can program repeated tasks,
define custom font transformations, create your own editing tools,
integrate FontLab Studio into a font development system which may
include other tools, and use FontLab Studio in many other powerful ways.

Macro programs in FontLab Studio are written in the well-known and well-
documented Python programming language. FontLab Studio uses the
standard version of the language so almost all macros written in Python
will work in FontLab Studio. In addition to support of Python FontLab
Studio provides a detailed set of classes and variables that open all the
FontLab Studio data structures to the programming interface.

FontLab Studio 5 supports Python 2.3 which is a part of Mac OS X.

Please note that this chapter covers only the very basic features of FontLab
Studio macro programming. More information, specifications and sample
programs is available at

http://www.fontlab.com/python/

http://www.fontlab.com/python/
http://www.fontlab.com/python/

894

The Python Programming
Language

Python is a very high-level object-oriented programming language. It
combines a very clear and easy-to-understand syntax with great power,
flexibility and extensibility.

Python works on all known platforms and is intensively maintained and
updated by many professionals around the world.

It is not surprising that during the last few years Python has become a de-
facto standard for macro programming related to fonts. FontLab Studio
continues this trend and extends it to a new level — providing full
integration of macro programming tools with its user interface.

More information about Python programming, manuals and samples is
available on the official site:

http://www.python.org

which we recommend highly if you are not already familiar with the
language. We will provide minimal instruction in Python programming in
this chapter as that is better obtained elsewhere. We will assume that if you
plan to write FontLab Studio macro programs that you have read the
Python tutorials and have some experience in Python programming,.

http://www.python.org
http://www.python.org/

I Installing Python

Installing the Python interpreter is not needed for FontLab Studio 5.

FontLab Studio can work with the "framework" version of Python that is
included in Mac OS X.

895

896

Macro Toolbar

You can use macro programs without any programming. FontLab Studio
includes some sample programs in its basic installation and more
programs are available from our web site and from other sources.

The easiest way to run a macro program is to use the Macro toolbar. To
open the toolbar click View > Toolbars > Macro. The Macro toolbar
appears:

(&) Macro

k. Curvetool =+ @ Toplevel * Testing Macro =~ [B v & -

Let’s describe the contents of the toolbar from left to right:

k_ Curvetool -

Python tool selector. A Python tool is an editing tool (like Edit, Meter or
Sketch) which has all its functions defined in Python. I.e. a FontLab Studio
tool written in Python. The Python tool popup menu is available when the
Glyph window is opened.

@ Top level * Testing Macro b

Macro program selectors. The left popup menu allows you to select
one of the categories of programs and the right popup menu selects the
program within the category.

P | Run the program selected in the list described above

B Stop the program that is running

W

Open the currently selected program in the Edit Macro Panel for editing

N

Restart the Python system. Use this command to reload all standard libraries
and free all memory allocated by the Python system

T Assign the currently selected program to a key combination.

Let’s try to run one of the sample programs supplied with
FontLab Studio:

1. Open the ‘B’ glyph in a Glyph Window.
2. Open the Macro toolbar.
3. Select Effects in the folders popup menu and Drops in the macro list.

4, Click on the | * button to run the program.

This is what you should see as a result of the transformation:

Assign to Keyboard

Using the Macro toolbar you can assign up to 10 macro programs to the
keyboard combinations SHIFT+OPTION+0, SHIFT+OPTION+1, and up to
SHIFT+OPTION+9. To do so:

1. Select the macro program using the two popup menus on the toolbar.

2. Click on the [button and select a combination in the popup menu:
-
| Cancel

Testing Macro {0

Bevel Effect ol
Shadow Effect C{t2
-- empty -- N3
-- empty —- N4
-- empty -- NS
-- empty -- e
-- empty -- AT
-- empty -- {8
-- empty —- 49

The next time you press the key combination FontLab Studio will run the
assigned macro program.

897

898

Integrating into Menus

You can integrate macro programs (supplied with FontLab Studio, written
by you or downloaded from the Internet) into many context menus in
FontLab Studio. If a menu has macro programs assigned they appear in the
Macro submenu at the bottom:

Create OpenType
Invert selection
Mark problems
Print font

Select alphanumeric
Select composites

Integration of macro programs into menus is done automatically when
macro programs are stored in one of the event subfolders within one of the
following two folders:

[Application default data folder]/Macro/System
[Application user data folder]/Macro/System

while [Application default data folder] usually is Macintosh HD/Library/
Application Support/FontLab/Studio 5 and [Application user data folder] usually
is Macintosh HD/Users/Your Username/Library/Application Support/FontLab/
Studio 5.

Note that the location of the FontLab Studio user data folder can be
changed in Preferences > Folders and Paths > FontLab Studio 5 files.

We recommend placing your own macros in the Macro subfolder within
the FontLab Studio user data folder and not within the FontLab Studio
default data folder.

Note that Python macro programs must have a “.py” extension to be
accepted by FontLab Studio.

Event subfolder Description of the associated menu

name

Bitmap Context menu when the bitmap background manipulating tool
is active

Component Context menu when the component editing tool is active

Font Font window context menu

FontsList Popup menu that appears when you click on the *- ™ button in
the Fonts list panel

Glyph Glyph window context menu

Kerning Metrics window in the Kerning mode context menu

Metrics Metrics window in the Metrics mode context menu

Node Node context menu

OpenType Popup menu that appears when you click on the * ™ button in
the OpenType panel

Sample Metrics window in the Preview mode context menu

Selection Selection (in the Glyph window) context menu

Text Metrics window in the Text mode context menu

TTH TrueType hinting tool context menu.

899

Macro Tool

With FontLab Studio you can define special editing tools that are entirely
written in Python. By default FontLab Studio provides 3 sample tools:
Curve, Line and Drops. To activate a tool:

1. Open a glyph for editing in the Glyph window.
2. Select the tool in the leftmost list of the Macro toolbar.

3. Click on the [* | button on the toolbar to activate a tool.

Activate one of the standard editing tools (on the Tools toolbar) to finish
using the macro tool.

The default macro tools do the following:

Line tool — draws lines. Click the left button anywhere and drag the
mouse to draw a line. If the nodes are visible (View > Show Layers >
Nodes) you can continue defining a new contour by drawing a new line
from the end node of the previous line.

Curve tool does the same but draws curves. It emulates the curve drawing
process that is common for Macromedia Fontographer® and Freehand®.

Drop tool — just a whimsical example — when you drag the mouse it adds
a series of filled circles of random radius.

We will not document the process of creating new tools here. It is a
relatively complex programming job. If you are interested, please visit our
website for more technical documents related to FontLab Studio macro
programming.

9200

Edit Macro Panel

If you feel ready to create your first macro program you can start by
opening the Edit Macro panel. Use Window > Panels > Edit Macro to

make it visible:

B Edit Macro
-) ¥ 2
f = fl.font
if f == Mone:

exit
def process(f, g, index):

if g == Mone:

return

glyph = Glyph{g}
fl.SetUndof index)
glyph.Shift{Point{-&, &) a
g.Removelver Llap) v

This is basically a simple text editing control with a toolbar at the top. The
buttons on the toolbar mean:

&5, Open the menu that contains New, Open and Save operations

» | Run the currently edited program

B Stop the program that is runnin

“Z Restart the Python system. Use this command to reload all standard libraries
and free all memory allocated by the Python system

2| Launch the external program editor if selected in the Preferences dialog box.

901

When you click the button you will see a menu:

L
New Program
Open Program...

Save Program
Save Program As...

Show Line Numbers
Close Panel

The commands in this menu let you perform standard file operations on
your current macro program.

902

Naming the Programs

When you are saving a program and want it to be used in the Macro
toolbar or to be integrated into one of the FontLab Studio menus you need
to name it. There are two ways to name a program: you can store the name
in the file name (followed by the “.py” extension) or you can embed the
name into the program code. The latter way is recommended — it allows
you to keep the filename small but descriptive.

To name a program put the following line at the very beginning of the
program:

#FLM: <program name>

where the <program name> is the name of the program, as on the
following example:

#FLM: Shadow Effect

note that there is exactly one single space between #FLM: and the name.
Save your macro within the

[Application user data folder]/Macro

folder. [Application user data folder] usually is Macintosh HD/Users/Your
Username/Library/Application Support/FontLab/Studio 5 but the location of
that folder can be changed in Preferences > Folders and Paths > FontLab
Studio 5 files.

You can make your own subfolders within the Macro folder. They will
appear as new categories in the Macro folders popup menu on the Macro
toolbar.

Note that there are two Macro folders in FontLab Studio 5: one in your
user data folder and one in the application data folder. We recommend
placing your own macros in the Macro subfolder within the FontLab
Studio user data folder and not within the FontLab Studio default data
folder.

903

904

First Steps

Let’s write a few basic programs. The “Hello World!” program is a typical
benchmark of the simplest useful program you can write. It is very easy to
do in FontLab Studio/Python:

1.

2,

Open the Edit Macro panel.

If there is something there, click on the |%. button and select the New
program command to clean the editing field.

Enter the following code:

print "Hello World!"
&) Edit Macra
G- o> . B

print "Hello World!"

Click on the | * | button to run the program.

You will see the output panel appear on the screen containing our text:

@] Output

|Helln World!

All text you output with the Python print operation appears in the Output
panel. There is more information about using this panel in the “OpenType
Fonts” chapter on page 859.

OK, now let’s do something more useful using FontLab Studio classes
(which are partially described below). Suppose we want to find all the
glyphs that are empty: i.e. don’t have an outline or any components. The
“space” is a good example of such a glyph.

First, open the font that you want to check and open and clear the Edit
Macro panel.

Type in the following simple program:

for g in fl.font.glyphs:
if len(g) == 0 and len(g.components) == 0:
print g.name

Run the program and check the results in the Output panel.
Let’s talk a little about the code above:
for g in fl.font.glyphs:

This line starts a loop that assigns the variable “g” to each of the glyphs
contained in the current font (which is referenced as “fl.font”).

if len(g) == 0 and len(g.components) == 0:

This line compares the length of the glyph outline and the length of the
“components” array (which contains all components) with zero and if there
are neither outline nor components it executes the next line.

print g.name

If the condition given in the second line is true, this line prints the glyph
name.

As you can see, with only 3 lines of code we have solved a problem that
typically takes about 30 minutes to perform.

905

9206

FontLab Studio Python Classes

In this section we will discuss a basic set of FontLab Studio classes and
variables. The full specification is available as a separate document for
download from our site (www.fontlab.com) and most classes are also self-
documented. For example, to print a short reference of the class Font, type
in the Edit Macro panel:

print Font().__doc__

And check the Output panel for the reference. Note the two underscore
characters before and after the “doc”.

FontLab

The highest class in the FontLab Studio hierarchy is a class named
FontLab. You cannot create it explicitly, but the object of this class is
always available and is named “f1”.

This class contains seven most important members:

ifont Index of the active font

font Current font as a Font object

ifontslist Index of currently selected font in the fonts list panel
iglyph Index of the currently active glyph in the current font
glyph Current glyph as a Glyph object

count Read-only — number of opened fonts

count_selected Number of selected glyphs in the Font Window

You can also access the fl object as a list of Font-type objects:

print fl[0].font_name

www.fontlab.com

There are several important methods:

Close(fontindex)

Closes the current or 'fontindex' font

Open(filename)
Open(filename, addtolist)

Opens the font from the file using the current
opening options. If 'addtolist’ is True, the font is
added to FontLab Studio's font list

Save(filename)
Save (fontindex, filename)

Saves the current or selected font using the
standard FontLab Studio Save routine

Add(font)

Adds 'font' to the list of open fonts and opens the
Font Window for it

UpdateFont()
UpdateFont(fontindex)

Updates the current font or 'fontindex' (slow
operation)

UpdateGlyph() Updates the current or 'glyphindex’ glyph of the
UpdateGlyph (glyphindex) current font
EditGlyph() Opens a Glyph window for the 'glyphindex' glyph in

EditGlyph (glyphindex)

the current font

Selected()
Selected(glyphindex)

Returns True if the current glyph or 'glyphindex’
glyph is selected (relatively slow operation)

Select(glyphid)
Select(glyphid, value)

Changes the glyph's selection state. 'glyphid' may be
string (glyph name), Uni (Unicode index) or integer
(glyph index)

Unselect()

Deselects all glyphs in the current font (fast
operation)

Message(message, question,
OKstring, Cancelstring)

Shows the alert message dialog box, all the
parameters but the first can be omitted

BeginProgress(title, counts)

Opens the Progress dialog box with. 'counts' —
number of 'ticks'

EndProgress() Closes the Progress dialog box

TickProgress(tick) Updates the Progress bar, returns False if Cancel
button was pressed. This is a relatively slow
operation

Random(hivalue) Returns a random value (very fast operation)

Random(lovalue, hivalue)

ForSelected(function_name)

calls 'function_name' for each selected glyph in the
current font. Function has the following format:
function(Font font, Glyph glyph, glyphindex)

We will provide some examples using the functions described above when
we discuss Font and Glyph classes.

907

9208

Font

The Font class contains all the data that is related to the font in FontLab
Studio internal data structures. The Font class by itself has no interaction
with the user interface elements. You need to use other classes such as the
fl object of the FontLab Studio class to interact with the font.

The most important members of the Font class are:

classes Python list with the strings containing FontLab Studio classes

ot_classes String containing OpenType classes (text that appears in the
bottom control of the OpenType panel)

features List of OpenType features. Each element of the list is an object
of the Feature class

customdata A string that may contain any data you want to attach to a font.
This data is saved in the FontLab Studio font file so you can use
this member to store information that is not editable by
FontLab Studio tools.

truetypetables List of custom TrueType tables. Each element of the list is an
object of the TrueTypeTable class.

ttinfo TrueType information (mostly hinting-related tables)
glyphs Array of glyphs. Each element of the array is an object of the
Glyph class

So, for example, if you want to see the advanced width of the glyph with
index 12 you would write:

print fl.font.glyphs[12].width

Here “fl” is an object of the FontLab Studio class that represents the
FontLab Studio user interface; “font” is the currently active font (object of
the Font class); “glyphs” is a member of the Font class representing an
array of glyphs; [12] directs us to the 12th element of the glyphs array;
“width” is a member of the Glyph class representing the glyph’s advance
width.

A shorter way to access the glyphs of the font is to access the Font object as
an array:

print len(fl.font)
print fl.font[12].width

The first line will print the number of glyphs in the font. The second line is
a shorter version of the example described above.

With the glyphs member you may perform several operations, like adding a
new glyph:

g = Glyph()
fl.font.glyphs.append(g)

This example will append a new glyph to the font.
To remove all the glyphs in the font use this method:
fl.font.glyphs.clean()

Other members of the Font class represent Font Header data and you can
get a list of them using the following operation:

print Font().__doc__

Two methods of the Font class relate to FontLab Studio internal format:

Open(filename) opens font from VFB format

Save(filename) saves font in VFB format

These operations are not connected to the FontLab Studio U, so you may
use them with fonts created inside a Python program and not connected to
the FontLab Studio system.

909

910

Glyph

The Glyph class represents the glyph as a data structure in FontLab Studio.
The most important members are listed in the following table:

parent Glyph's parent object, the Font

index Index of the glyph in the font (it is —1 if the glyph is not connected
to the font)

nodes List of nodes. Each element of the list is an object of the Node type

customdata A string-type data that may be attached to the glyph. This data is
stored to the FontLab Studio font file (VFB) so you can use it to
define glyph properties that are not supported by FontLab Studio

note Note defined for this glyph (string type)

mark Color code for the glyph mark or zero if glyph is not marked

anchors List of anchors. Each element is of Anchor type

hhints, vhints

List of horizontal or vertical hints. Each element is of Hint type

hlinks, vlinks

List of horizontal or vertical links. Each element is an object of the
Link type

components

List of components. Each element is Component object

kerning

List of kerning pairs. Each element is KerningPair class object

layers_number

Number of masters in this glyph

nodes_number

Number of nodes, same as 'len(Glyph)'

width Advance width (for the first master if glyph is Multiple Master)
height Advance height

unicode First Unicode index in integer form

unicodes List of Unicode indexes

name Glyph name

rpoint Glyph reference point.

You can get a list of operations defined for the Glyph class if you run the

following line:

print Glyph().__doc__

You can replace “Glyph” with the name of any class mentioned above to get
a description of its members and operations.

Here are some examples:

Marking all glyphs with a different color depending on the

number of components.

Non-composite glyphs are not marked. Glyphs that have exactly 2
components are marked green and glyphs that have some other number of
components or have outline and components are marked red:

for g in fl.font.glyphs:
c_len = len(g.components)

n_len = len(g)

if c_len==0:
g.mark =0
elseif c_len == 2 and n_len == 0:

g.mark = 100
else
g.mark =1

fl.UpdateFont()

for every glyph in the current font

store the number of components (length of the
components array

store the number of nodes (length of the nodes
array)

if number of components is 0
unmark the glyph

if number of components is 2 and number of
nodes is 0

Mark the glyph with green
if all conditions above are false
Mark the glyph with red

finally, update the font so the Font window will
refresh

Selecting all glyphs that have no outline or components:

fl.Unselect()
for g in fl.font:

if len(g) == 0 and len(g.components) == 0:

fl.Select(g.index)

First thing we do is deselect the font. It is faster to deselect all glyphs at
once than to change the selection of all glyphs. In our example we are
selecting only those glyphs that comply with the condition.

911

912

Modules

More complex Python programs can be written using so-called modules
(refer to your Python documentation for more information). There are
three different folders in which FontLab Studio looks for modules.

[Application user data folder]/Macro/System/Modules

typically Macintosh HD/Users/Your Username/Library/Application
Support/FontLab/Studio 5/Macro/System/Modules
Put your own FontLab-specific Python modules here

[Application default data folder]/Macro/System/Modules

typically Macintosh HD/Library/Application Support/FontLab/Studio 5/
Macro/System/Modules

Do not put your own modules here, reserved for modules from

Fontlab Ltd. and registered FontLab scripting vendors

Note that the location of the Application user data folder can be changed in
Preferences > Folders and Paths > FontLab Studio 5 files.

Please, refer to our website (http://www.fontlab.com/python/) for more
examples and information about macro programs. You may also examine
the source code of the sample programs that are supplied with FontLab
Studio.

http://www.fontlab.com/python/
http://www.fontlab.com/python/

Index

3

3D Extrusion, 646
3D Rotate, 647

A
AAT, 104
tables, 275
Acrobat, 145
Add Corner, 341
Add Curve, 341
Add Nodes, 650
Add Tangent, 341
Adjust Metrics, 642
Adjusting Metrics, 591
Adobe, 17,92,107, 147
Adobe Glyph List, 187
Adobe lllustrator, 530
Adobe InDesign, 129, 132
Adobe Type Manager, 92, 236
AFM, 20, 92, 543, 578, 621, 623
AGLFN, 148
Al, 65
Aliases Table, 526
Align, 716
AlignBottom, 714
Alignment Zones, 255, 343, 497, 668,
711,814
family, 256, 672
AlignTop, 714
Alternate Substitution, 869
anchor
name, 74
Anchors, 343, 449,511,513
Anchors Panel, 520
Anisotropic Interpolation, 787, 797
ANSI, 119, 135
Append, 171

appending
glyphs, 171
Apple, 17
Arabic, 142, 251
Arc, 528
Ascender, 243, 246
AsiaFont Studio, 152, 164
Assign Master, 803
ATM, 92
ATSUI, 317
ATypl, 17
Autohint, 638
autohinting, 96
Automatic Kerning Generation, 588
Automatic Metrics Generation, 576
Autoreplace, 639
Autoreplacing, 689
Autosave, 64, 166
Autospacing, 642
autotracer, 109
axes, 779
Axis
Defining, 791
Editing Settings, 812
graph, 788
map, 788
Removing, 813
axis graph
editing, 817
Axis Panel, 57, 795

B

Background, 343, 456, 467
layer, 71

backup, 64, 164

baseline, 478, 482, 567
property panel, 482

BCPs, 76 Component, 910

BDF_' 19 Feature, 908
Bez!er curve_s, 91, 353 Font, 908
Bezier Drawing, 341 FontLab. 906
bitmap background, 456 on ¢
bitmaps, 755 G!yph, 910
editing, 757 Hint, 910
embedded,91 kernlng, 83,107,289
Bitstream, 251 Node, 910
Blend, 637 TrueTypeTable, 908
blend coordinates, 784 Class-Based Kerning, 593
Blending Fonts, 205 editing, 602
blue marks, 352 Classes Panel, 57, 66, 83, 386, 595
BlueFuzz, 259, 260, 678 Clipboard, 167
BlueScale, 259, 677 Close Open Contours, 430
BlueShift, 259, 677 closepath, 74, 85
BlueValues, 255 cmap, 106, 252
BMP, 127 codepage
Bold/Outline, 644 custom, 144, 155
Break, 381, 506 double-byte, 144
BTBD, 247 Codepages, 141, 250
Build Names, 216 Codepages mode, 45, 94, 131
College, 645
C collinear vectors, 85
CacheTT, 104 colors
Caps height, 243 customization, 78
Caret Positioning, 886 Compiling, 857
cascade, 196 Component, 510
cell Adding, 508
sizes, 123 composite, 87,516
Center glyph, 641 characters, 507
Central European, 135 creating, 523
CFF-flavored, 106 glyphs, 507
character, 26, 128 hinting, 753
codes, 125 Connections, 355, 635
mapping standard, 125 Context Menu, 31, 159
moving, 162 Context-Dependent Substitutions, 870
Character List, 653 continuous, 158, 169
Character set, 251 Contours, 350
Microsoft, 251 Control marks, 328
OEM, 251 convert
ShiftJIS, 251 curve to vector, 380
Symbol, 251 Convert to
Character Set, 303 hints, 639
CJKV, 192 instructions, 639
class links, 639
Anchor, 910 PostScript, 634

914

TrueType, 634
converting

fonts, 323

kerning, 862
Coordinate Rounding, 664
copy, 413
copying

glyphs, 167, 168
Copyright, 230
Correct Connections, 429
creating glyphs, 334
cubic b-splines, 353
Custom Encoding, 152
custom tables, 275
Custom Unicode Ranges, 154
customization, 35
customizing

keyboard, 39

links, 41

menus, 38

toolbars, 36
Cyrillic, 125,135

range, 139
Czech, 126

D

decompose, 87, 634
decomposing, 507, 509
deleting

curves, 373

glyphs, 174

nodes, 373

pairs, 584
Delta Instructions, 732
Descender, 243, 246
design axes, 779
design coordinates, 784
Designer, 233
digital signature, 102
Double Link, 726, 763
Double-Byte Codepages, 192
drag-and-drop, 67
drag-drop, 115,170
Drop TT Hints, 639
DSIG, 102
Duplicate, 413

dynamic range, 780, 819

E
echo, 75, 368
Edit Macro Panel, 57, 63, 901
Edit mode, 339, 341
Edit tool, 341
editing
axis graph, 817
bitmaps, 757
Class-Based Kerning, 602
fonts, 111
guidelines, 442
hints, 488, 688
kerning, 579
links, 491
mask, 451
metrics, 479, 565
neighbors, 466
shape groups, 466
underline, 563
Editing Field, 328
Editing Layers Panel, 57
EID, 227
Ellipse, 528
embedded bitmaps, 104, 756
embedding, 96, 231
Empty curves, 85
ENC, 136
encoding, 27, 29, 133, 249
custom, 93, 152, 252
export options, 94
imported, 88, 136
modes, 122, 124
options, 100
Standard, 93
standards, 125
tables, 152
encoding files
custom, 152
English, 126
Envelope, 467, 468, 648
EPS, 20, 65, 530, 531
Eraser, 341,374
Estonian, 126

915

Exceptions, 872
Expand, 649
Expand Path, 429
Export Terminal, 95
exporting

bitmaps, 760

font, 92

glyphs, 530

metrics, 52
External Programs, 41
Extrapolation, 786, 796
extreme points, 85
Extremes, 430, 635

F

factory defaults, 61
FB threshold, 259

Feature Definition Language, 833

Features, 829

Features Preview Panel, 860

fina, 881

Final Delta, 738, 761

Find and Replace, 421

Flex Hints, 679

Flip Horizontal, 429

Flip Vertical, 429

FLW, 113

FogLamp, 29,116

font, 27
class, 908
creating new, 117
exporting, 92
family, 27
features, 826
formats, 116
height, 348
metrics, 538
opening, 112
printing, 277
proofing, 277,292
recently used, 115
reencoding, 182
saving, 164
template, 117
UPM, 347

Font Family

how to make, 220

Font Info, 122,210

Alignment Zones, 255
Ascender, 243

Basic PCLT options, 270
Caps height, 243
copying, 213
Copyright, 230
Created by, 230
Creation year, 230
Descender, 243
Designer, 233
Embedding, 231
Family Name, 215
FOND Name, 216
Font Name, 216

Font Names, 214

Font Smoothing, 267
Full Name, 216, 219
Global Hinting, 259
head Table, 269
hinting, 254
Identification, 240
Italic, 215

Italic angle, 243
License, 234

Mac Name, 219

Menu Name, 216
Metrics and Dimensions, 242
Notice, 230
OpenType names, 219
PANOSE, 238

PCLT Codepages, 273
PCLT Identification, 271
PCLT Metrics, 272
Revision, 235

Slant angle, 243
Standard Stems, 257
Style Name, 216, 219
Subscript, 248
Superscript, 248
Supported Codepages, 250
Trademark, 230

TrueType Unique ID, 236
TrueType Version, 235
Type 1 Unique ID, 236
Underline, 243
Unicode Ranges, 253
Vendor Code, 236
Version, 235
Weight, 215
Width, 215
x height, 243
XUID, 236
Font Map Panel, 57, 190
Font Metrics
What are, 538
Font Window, 44, 118, 120, 156, 159, 557
modes, 131
navigating, 157
options, 67
popup menu, 159
FontAudit, 84, 362
FontDirectionHint, 269
FontLab class, 906
Font-Level Type 1 Hints, 667
Fontographer, 18, 116, 356
fonts
blending, 205
converting, 323
editing, 111
merging, 200
testing, 325
Fonts List, 652
Fonts Panel, 57,197, 222
Free Rectangle, 528
Free Transform, 467
FreeHand, 530
French, 126

G

GDEF, 832
German, 126
Global Hinting, 259
Global mask, 343
Global Mask, 455
glyph, 26, 45, 128
appending, 171

caption, 120
cell, 120

classes, 181, 836
composite, 172

compound names, 149

creating, 175
deleting, 174
geometry, 875
index, 129
marking, 176
marks, 121
name, 28, 180
Note, 193

properties panel, 885

renaming, 180
searching for, 178

Symbol names, 150

glyph cell, 69
caption, 69
empty, 68
note, 69

Glyph class, 910

Glyph Window, 47, 327
change a view in, 335
Local Toolbar, 328

open the, 328
options, 72
glyphname, 129
suffix, 161
glyphs
copying, 167
creating, 334
exporting, 530
importing, 530
pasting, 169
selecting, 158
sorting, 94
Glyphs Bar, 49, 331
GPOS, 107, 832
Gradient, 647
Greek, 135
green marks, 353
grid, 77, 440
Grid, 528
gridfitting, 664

917

GSUB, 832 lkarus, 17,113

Guidelines, 343, 441, 449 Illustrator, 530
editing, 442 importing
global, 441 bitmaps, 756
properties, 446 glyphs, 530
property panel, 444 metrics, 621
tracking, 79, 445 OpenType fonts, 847
Including files, 838
H Index mode, 45, 132
INF, 92
hdmx, 104, 266 init. 881
hgad,_269 . Instructions
Highlight Differences, 759 .
hint Removing, 739

Interpolate Nodes, 467
Interpolation, 474, 697, 730, 770, 807
Intersection, 429

commands, 493
hinting, 254, 294, 661

character-level, 486 isol 881
font-level, 486 ’
strategies, 761 J

Hinting Join, 381, 506

Diagonals, 768

Multiple Master Fonts, 823
Serifs, 767 K
Sidebearings, 752

Join Broken Contours, 430

Kanji, 139
Symmetrical Characters, 769 k::gl
White Space, 765 feature, 107, 862
hints, 121 table, 107
editing, 488, 688 kerning, 540
layer, 486 automatic generation, 588
property panel, 496 class, 107, 121

tracking, 490

TrueType, 696

Type 1,666
Hungarian, 126

converting, 862
editing, 579
export options, 107
manual editing, 580
| pair, 83
pairs, 68

resetting, 590

table, 289, 862
Kerning mode, 54

IBM, 240
IBM Identification, 240
Identification

IBM, 240 Key Glyph, 600
Microsoft, 241 keyboard, 897
PANOSE, 238 customization, 39
PCL, 241 shortcuts, 39
PCLT, 271 Knife, 341, 381

Ventura Publisher, 241

918

L

language, 88, 830, 840
system, 839

Latvian, 126

License, 234

LID, 227

ligature
creating, 523
substitution, 867

Line Gap, 246

Links, 487,719
editing, 491

Lithuanian, 126

Lock, 49

lookup, 844

lookupflag, 842

Lookups, 829

LowestRecPPem, 269

M
Mac OS, 17, 221, 245, 300
Mac OS X, 98, 298
Macintosh, 23, 25,90, 116, 126, 135, 136,
251,313, 321,456, 824
Macro, 119
Tool, 900
Toolbar, 896, 903
Magic Wand, 341, 408, 504
Make Master, 635
Make Parallel Path, 429
mapping, 29, 66, 100, 125
file, 88
folder, 187
marking
glyphs, 176
mask, 343, 450
assigning, 453
editing, 451
Mask layer, 72, 121
Mask to Master, 804
master
assigning, 803
master font, 775
designing, 800
selecting, 793
Masters Panel, 57

measure, 448
measurement line, 74
medi, 881
menu, 28
customization, 38
Merge Contours, 429
Merging Fonts, 200
Meter, 49
Meter mode, 447
Meter Panel, 50, 72
Meter tool, 72
metrics, 478
automatic generation, 576
editing, 479, 565
files, 543
importing, 621
manual editing, 567
opening files, 621
printing, 624
property panel, 483, 579
saving files, 623
tools, 52
Metrics mode, 54, 565
Metrics Panel, 55
Metrics window, 51, 83, 544
customization, 82
Microsoft, 89, 126
Identification, 241
Middle Delta, 733, 761
middledot, 101
Mirror, 631
Mirror Metrics, 631
MM, 779
Monotype Imaging, 70, 120
Mouse, 31
Move Node, 467, 473
moving
nodes, 366
selection, 419
MS DOS, 142
Multiple Master, 20, 65, 74, 87,487,775
metrics, 811
printing, 280
MyFonts.com, 217

919

https://MyFonts.com

920

N
name
record, 228
suffix, 181
table, 90
names
generate, 188
Non-English, 226
OpenType, 226
Special, 226
Names mode, 45, 94, 131, 133
neighbors, 80, 465
NeXT Step, 142
NID, 227
node, 73, 352
position, 73
property panel, 384
type, 356
nodes
deleting, 373
inserting, 375
moving, 366
selection, 407
Non-nodes editing, 370
Note, 160, 193

(0)
Old Style Numerals, 826
open contour, 74
Open installed, 114
OpenType, 17,87, 99, 219, 220, 252
export options, 98
Family Name, 198
feature, 66
features, 293
Glyph Properties, 885
importing, 847
kerning, 108
names, 99, 226
OpenType Panel, 57,66, 108, 181, 293,
851
OpenType PS, 20, 89, 106, 113, 296, 679
OpenType TT, 20, 89, 105, 113, 298
operation
Envelope, 468

Interpolation, 474
Move Node, 473
Rearrange Contours, 471
Simplify Path, 472
Operation
Bitmap Positioning, 459
Component Positioning, 510
Transform, 415
Optical Size, 782
Optimize, 86, 430, 439, 630, 636
options
Digital Signature, 102
encoding, 93, 100
export, 61
Font Window, 67
FontAudit, 84
general, 62
generating OpenType & TrueType, 98
generating Type 1, 92
Glyph Window, 72
import, 61
kerning, 107
Metrics window, 82
opening OpenType & TrueType, 89
opening Type 1, 87
trace, 109
0S5/2,142
table, 104, 245
OTF, 296, 831
OtherBlues, 255
Outline Actions, 429
Outline layer, 72
Output Panel, 57,62, 859

P

Pair Positioning, 878
Panels, 56

PANOSE, 238
Parallel, 650

Paste, 167

Paste Special, 169
pasting glyphs, 167
Paths, 29

PCL, 270

PCLT, 270

PCLT Codepages, 273
PCLT Identification, 271
PCLT Metrics, 272
PDF, 145
PFA, 113
PFB, 113
PFM, 20, 92, 543,621,623
PICT, 457
PID, 227
plane, 127,139, 191
Polish, 126
Polygon, 528
Positioning Lookups, 874
PostScript, 17, 20, 91, 145, 236, 530, 543
PPM, 267,662,711, 755
Preview mode, 53
Preview Panel, 57, 292, 386
TrueType, 706
Type 1,690
printing, 277
Font Sample, 282
Font Table, 279
Font Waterfall, 284
Glyph List, 281
Glyph Sample, 286
Glyph Waterfall, 288
Kerning Table, 289
metrics, 624
Private Use Area, 151
Program Panel, 702
project, 113,202
Property Panel
baseline, 482
glyph, 885
guideline, 444
hint, 496
metrics, 483, 579
node, 384
selection, 412
Smart Shapes, 529
PUA, 146, 151
Python, 29, 57, 202, 893, 894, 895, 896,
899, 900, 901, 904, 908, 909

Q

QuarkXPress, 93

Quick Save, 578
Quick Test, 291

R

Random, 648

Rearrange Contours, 471
Reassign stems, 639
Rectangle, 528

red marks, 353
reencoding, 182
reference point, 349
reference points, 474
registry, 57

Relocate startpoints, 430
Remove hints, 638
Remove Overlap, 635
renaming glyphs, 180
Reordering Features, 854
Replacement Points, 686
Reverse Path, 467, 470
right-to-left, 68, 560
Rotate, 420, 633

Ruler, 49

Rulers, 330

S

Sample String
Navigating, 557
save encoding, 122
Scale, 632
script, 830, 840
searching glyphs, 178
selecting glyphs, 179
selection
move, 419
property panel, 412
rotate, 420
scale, 419
skew, 419
slant, 420
Set Sidebearings, 641
Set Startpoints, 467
Set Width, 640
Shadow, 646
shape groups, 80, 463
Shared folder, 31
Shift, 631

921

922

shortcut, 39
Show
Connection mode, 359
Control vectors, 359
Glyph metrics, 561
Guidelines, 561
Nodes, 359, 561
Positions, 359
Preview, 561
Vertical metrics, 561
SigMaker, 29
Simplify Path, 467, 472
Single Link, 721, 763
Single Positioning, 877
Single Substitution, 865
Single-Master Font, 820
Sketch mode, 339, 498
slant, 420, 442, 633
angle, 243
Small caps, 826
Smart Shapes
property panel, 529
Smart Shapes Panel, 57, 527
Smoothing, 267
snap-to, 77, 342
sorting glyphs, 194
Standard Encoding, 135
Standard Stem Widths, 674
Standard Stems, 257,720
Rounding, 740
Star, 528
startpoint, 352
Status Bar, 34
stem widths, 257
Style, 783
Subscript, 248
Subtable Breaks, 880
suitcase, 113, 251,313,314
supercurve, 354
Superscript, 248
Symbol, 136

T

template, 19, 44,70,71,83,117,120,
175, 343, 450, 454, 455, 456

templates, 70

testing fonts, 291

Text mode, 53
tile, 196
Toolbar, 32
Export Suitcase, 315
Lock Layers, 345
Macro, 34, 896, 903
Paint, 395
Panels, 34
Show Layers, 34, 345
Standard, 34
Tools, 34, 341
toolbars, 33
customization, 36
Tools
Add Corner, 341
Add Curve, 341
Add Tangent, 341
Contour, 398
Draw, 341
Edit, 341
Eraser, 341,374
Knife, 341
Magic Wand, 341
Meter, 339
Pen, 398
TrueType Hinting, 700
Type 1 Hinting, 683
VectorPaint, 395
touched points, 696
trace options, 109
tracking
guidelines, 79, 445
hints, 79, 490
Transform, 415
Transformation Panel, 57,415
Transformation Program, 655
TransType, 18,29, 116
TrueType, 17, 20, 87, 89, 99, 113, 220,
235, 236,623
autohinting, 103
autohinting options, 104
automatic hinting, 754
curves, 353
export options, 98, 264
hinting, 260

Hinting Tool, 700
Instructions, 696
mapping, 265
Options Panel, 705
Preview Panel, 706
Visual Hints, 699
TTF, 113,298
Type 1, 20,87, 113, 133, 220, 235, 236,
486,543,623
curves, 353
Encoding Tables, 135
export options, 263
generating, 92
Hinting Tool, 683
hints, 666
TypeTool, 18,116
Typo Ascender, 246
Typo Descender, 246
Typo Line Gap, 246

U
Ul, 58
Underline, 243, 563
Unicode, 106, 127, 249
codepoint, 130
Consortium, 127
duplicating, 173
generate, 186
index, 44, 70, 87, 88, 180, 185
indexes, 141
ranges, 139, 154, 253
remove, 189
Standard, 17, 126, 146
Unicode mode, 67
Unicode Ranges mode, 45, 132
Unique ID, 236
UPM, 89, 242, 302, 347
user interface, 25, 35

\'

Value Record, 876

VDMX, 266

vector, 27

VectorPaint, 76, 339, 395, 401

Brush, 399

Contour, 398

Ellipse, 405

Line, 403

Polygon, 404

Rectangle, 405

Select, 397

Text, 406
VectorPaint Mode, 339
Vendor Code, 236
Ventura Publisher, 241
Vertical Metrics, 245, 484
Vertical Preview, 390
vfb, 164
VFB, 113
Visual Ascender, 338
Visual Descender, 338
Visual TrueType Hints, 699
VOLT, 89, 889, 890, 891

W

Waterfall, 391

Weight, 781

weight vector, 785

WeightVector, 815

Western Roman, 135

wheel, 336

Width, 781

WinAscent, 246

WinDescent, 246

Windows, 17,90, 94, 106, 116
Symbol Encoding, 101

Windows List, 196

workspace, 58,203

www.fontlab.com, 912

X
x height, 243
XUID, 236

z

zero point, 349
zoom, 50
zoom mode, 335

923

www.fontlab.com
www.fontlab.com

	FontLab Studio 5
	Contents
	Introduction
	Major new features of FontLab Studio 5
	Other key features of FontLab Studio
	About this Manual
	System Requirements

	FontLab Studio User Interface
	Basic Terms
	Character
	Glyph
	Font
	Encoding
	Font Family
	Glyph name
	Menu
	Folders and Paths
	Mouse
	Context Menu

	Getting Started
	Customizing FontLab Studio’s User Interface
	Customizing Toolbars
	Customizing Menus
	Customization of the Keyboard
	Faster Method to Customize Toolbars
	Links to External Programs

	FontLab Studio Windows
	Font Window
	Glyph Window
	Glyph Window Contents

	Metrics Window
	Metrics Window Toolbars
	Metrics Modes

	Metrics Panel

	Panels
	FontLab Studio Options
	General Options
	Fonts
	Folders and Paths
	Open and Save
	EPS and Bitmap Background
	Multiple Master
	Unicode and OpenType

	Font Window
	Glyph Cell
	Templates

	Glyph Window
	Dimensions
	Colors
	Tracking
	Shape Groups and Neighbors

	Metrics Window
	FontAudit
	Optimize

	Opening Type 1
	Opening OpenType & TrueType
	Reading Name Records
	TrueType/OpenType TT

	Generating Type 1
	Encoding Options
	Type 1 Autohinting
	Macintosh Type 1 Bitmaps

	Generating OpenType & TrueType
	Writing Name Records
	Encoding Options
	Digital Signature
	TrueType/OpenType TT (.ttf)
	TrueType Autohinting
	OpenType TT Encoding
	OpenType PS (.otf)
	Kerning

	Trace Options

	Editing Fonts
	Opening Fonts
	Most Recently Used Fonts
	Opening Fonts with Drag-Drop
	Font Formats

	Creating a New Font
	The Font Window
	Font Window Command Bar

	Glyph Naming and Character Encoding
	Characters, Codes and Glyphs
	Character Encodings Standards
	The Unicode Standard
	The Character and Glyph Model
	Characters and Glyphs in FontLab Studio
	Font Window Modes

	Names Mode
	Type 1 Encoding Tables
	Glyph Arrangement Tables

	Unicode Ranges
	Codepages
	Double-byte

	Advanced Glyph Naming and Encoding
	Custom Glyph Naming
	Assigning Unicode codepoints
	Custom Encoding Tables
	Custom Unicode Ranges
	Custom Codepage Definitions

	Using the Font Window
	Navigating
	Selecting
	Context Menu

	Moving Glyphs
	Saving the Font
	Autosave

	Copying and Pasting Glyphs
	The Paste Special Command
	Copying Glyphs to Another Font
	Appending Glyphs to the Font
	Copying Composite Glyphs
	Drag-Drop of the Composite Glyphs

	Duplicating Unicode codepoints

	Deleting Glyphs
	Creating New Glyphs
	Marking Glyphs
	Searching for Glyphs
	Renaming Glyphs
	Reencoding the Font
	Unicode-Related Operations
	Generating Unicode codepoints
	Generating Names
	Removing Unicode Information

	The Font Map Panel
	Managing Double-Byte Codepages

	Notes
	Sorting Glyphs
	Working with Multiple Fonts
	Windows List
	Fonts Panel
	Merging Fonts
	Saving and Opening a Project
	Saving and Opening a Workspace

	Applying Modifications
	Blending Fonts

	The Font Header
	Font Info Dialog Box
	Command Bar
	Copying Font Info

	Font Names
	Basic Identification and Names
	Accessing MyFonts.com Database
	OpenType-Specific Names
	How to Make a Font Family
	Non-English and Special Names
	Copyright Information
	Font Embedding
	Copyright Note

	Designer Information
	License Information

	Font Identification
	Version Information
	Basic Font Identification
	PANOSE™ Identification
	Other Identification Systems
	IBM Identification
	PCL and Ventura Publisher Identification
	Microsoft Identification

	Metrics and Dimensions
	Font UPM Value
	Basic Font Dimensions
	Advanced Vertical Metrics
	Superscript and Subscript

	Encoding and Unicode
	Supported Codepages
	Type 1 Character Set

	Custom [cmap] encodings
	Supported Unicode Ranges

	Hinting Settings
	Alignment Zones
	Family Alignment Zones

	Type 1 Standard Stems
	Global Hinting Parameters
	Type 1 Autohinting Parameters

	Format-Specific Options
	Type 1 Export Options
	TrueType Export Options
	TrueType Mapping Settings
	Device-Dependent Metrics
	Font Smoothing Control
	[head] Table Settings
	Basic PCLT options
	PCLT Identification
	PCLT Metrics and Font Description
	PCLT Codepages
	Binary and custom tables

	Printing and Proofing Fonts
	Printing
	Printing Font Table
	Printing Glyph List
	Printing Font Sample
	Printing Font Waterfall
	Printing Glyph Sample
	Printing Glyph Waterfall
	Printing Kerning Table

	Quick Test
	Other Proofing Methods
	Preview panel
	OpenType Features panel
	Hinting Tools

	Generating Fonts
	Relevant Font Formats
	OpenType PS
	Macintosh TrueType
	Windows TrueType / OpenType TT
	Macintosh Type 1
	Windows Type 1

	Before You Generate
	Font Info
	Character Set
	Glyphs
	Hints
	Kerning
	OpenType Layout Features

	Relevant Generation Options
	Generating Type 1
	OpenType PS
	OpenType TT

	Generating for Windows/Mac
	Generating for Mac
	Font Suitcases
	Building Font Suitcases
	Export Options
	Building ATR-compatible Suitcases

	Family Info

	Options for Converting Fonts
	Testing Fonts

	The Glyph Window
	Glyph Window Contents
	The Glyphs Bar

	Selecting a Glyph for Editing
	Creating Glyphs

	Changing the View in the Glyph Window
	Quick Zoom Selection
	Vertical Alignment Options

	Tools and Operations
	Edit Mode
	Temporary Activating the Edit Tool
	Snap-to Distance

	Editing Layers
	Easier Way to Control Editing Layers

	Outline Layer
	Units of Measurement
	Reference Points
	Contours
	Open and Closed Contours
	Filled and Unfilled Contours
	Startpoint and Closepath
	Curves and Lines
	Connections
	Node Type

	Outline Appearance
	Smoothed Contour
	High-quality Preview
	Outline Preview Options

	FontAudit
	Moving Nodes
	Options
	Outline Echo

	Using the Keyboard
	Non-node editing
	Changing Connection Type
	Deleting Nodes
	Deleting Lines and Curves
	Eraser Tool
	Inserting Nodes
	Using the Drawing Tool
	Adding Points to a Contour
	Converting Segments
	Breaking and Joining Contours
	Node Commands
	Node Properties
	Previewing Glyphs
	Preview Modes
	Vertical Preview
	Waterfall Preview
	Preview Options

	VectorPaint Mode
	Freehand Select Tool
	Pen (Contour) Tool
	How to create a new contour
	How to modify an existing contour
	How to draw a single curve

	Brush Tool
	VectorPaint Options
	Line Tool
	Polygon Tool
	Ellipse and Rectangle Tools
	Text Tool

	Selections
	Using the Magic Wand Tool
	Moving the Selection
	Selection Commands
	Selection Properties Panel
	Copying the Selection
	Transforming the Selection
	Using the Transformation Panel
	Using Transform Tools
	Using the Free Transform Operation

	Find and Replace Outline Operation
	Building an Outline from Blocks
	Contour-related Commands
	Creating Contours
	Expand Path
	Make Parallel Path

	Merging and Intersecting Contours
	Converting Contours
	Outline Optimization

	Grid Layer
	Guidelines Layer
	Editing Guidelines
	Guidelines Popup Menu
	Guidelines Tracking
	Guidelines Properties Panel

	Meter Mode
	Setting Guidelines, Anchors and Sidebearings

	Mask Layer
	Editing Mask
	Mask Operations
	Assigning a Mask

	Global Mask Layer
	Background Layer
	Background Positioning
	Tracing Background
	Smooth Tracing
	Pixel Tracing

	Shape Groups and Neighbors
	Shape Groups
	Neighbors
	Editing Groups and Neighbors

	Outline Operations
	Envelope
	Reversing a Contour’s Direction
	Rearranging Contours
	Simplifying Path
	Moving Nodes
	Interpolation

	Metrics
	Editing Metrics
	Using the Measurement Line

	Baseline Properties Panel
	Metrics Properties Panel

	Vertical Metrics
	Hints and Links Layer
	Links
	Editing Hints
	Hints Tracking
	Editing Links
	Hint and Link Popup Menu
	Hint Commands
	Autohinting Options
	Hint Properties Panel
	Link Properties Panel

	Alignment Zones
	Sketch Mode
	Visualization of the Sketch Outline
	Moving Points
	Changing Point Type
	Removing Points
	Inserting Points
	Reversing Contours
	Selecting Points
	Using the Magic Wand Tool

	Moving the Selection
	Transforming the Selection
	Selection Operations
	Breaking and Joining the Sketch Outline
	Converting Sketch to Outline

	Working with Composite Glyphs
	Adding a Component
	Decomposing
	Component Positioning
	Component Properties

	Anchors Layer
	Moving Anchors
	Removing Anchors
	Renaming Anchors
	Changing Anchor Color
	Anchor Properties
	Using Anchors to Build Composites
	Using the Anchors Panel

	Creating Composites and Ligatures
	Aliases Table

	Using the Smart Shapes Panel
	Importing and Exporting Glyphs
	Exporting Glyphs
	Preparing Artwork in Adobe Illustrator
	Importing Glyphs
	Manual and Automatic Scaling

	Printing a Glyph

	Editing Metrics
	What are Font Metrics?
	Horizontal Glyph Metrics
	Kerning
	Class-Based Kerning

	Vertical Glyph Metrics
	Metrics Files

	Metrics Window
	Editing Modes
	Metrics Ruler
	Metrics Panel
	Metrics Table
	Context Menu
	Metrics Window Toolbar

	Selecting a String for Previewing or Editing
	Selecting a Predefined Sample String
	Editing a Sample String
	Customizing the Sample String List

	Entering Text in Text Mode
	Using Drag-Drop
	Navigating in the Sample String
	Activating and Browsing Glyphs
	Selecting Preview Size
	Right-to-Left Mode
	Flipped Mode
	Previewing Outline and Nodes
	Customizing Colors

	Editing Underline and Strikethrough
	Editing Metrics
	Manual Metrics Editing
	Using the Keyboard
	Using the Metrics Panel
	Referencing Metrics
	Using the Calculator

	Using the Metrics Table
	Previewing Dependent Composites
	Generating Context

	The Measurement Line
	Automatic Metrics Generation

	Quick Save and Quick Open
	Editing Kerning
	Manual Kerning Editing
	Using the Keyboard
	Using the Metrics Panel
	Using the Metrics Table
	Filtering Pairs in the Table
	Generating Context
	Deleting Pairs

	Using the Kerning Dialog
	Adding Kerning Pairs
	Automatic Kerning Generation
	Resetting Kerning

	Adjusting Metrics and Kerning
	Class-Based Kerning
	Class-Based Kerning and OpenType Fonts
	Classes Panel
	Class Definition
	Defining the Class
	Key Glyph
	Rearranging Classes and Glyphs
	Editing Class-Based Kerning
	Side of the Class

	Generating Kerning Classes Automatically
	Kerning Exceptions
	Class Kerning Modes
	Previewing Class-based Kerning
	Kerning Classes and OpenType Kerning
	Kerning Assistance
	Defining a New Class
	Editing the Class Code
	Expanding Kerning
	Compressing Kerning
	Updating the "kern" Feature

	Metrics Assistance
	Editing Metrics Class Properties in Classes Panel

	Opening Metrics Files
	Saving Metrics Files
	Printing

	Actions
	The Actions Dialog Box
	Actions
	Contour Transformation
	Shift
	Mirror
	Scale
	Rotate
	Slant
	Decompose
	Curves to PostScript
	Curves to TrueType
	Contour Direction
	Connections
	Extremes
	Remove Overlap
	Make Master
	Optimize
	Blend

	Hints and Guidelines Transformation
	Remove hints/guides
	Autohint
	Convert to instructions
	Autoreplace
	Convert to links
	Convert to hints
	Drop TT Hints
	Reassign stems

	Metrics Transformation
	Set Width
	Set Sidebearings
	Center glyph
	Autospacing
	Adjust Metrics

	Effects
	Bold/Outline
	College
	Shadow
	3D Extrusion
	3D Rotate
	Gradient
	Random
	Envelope
	Expand
	Parallel
	Add nodes

	Action Set Dialog Box
	Action Set Range
	Glyph List

	Action Set
	Using the Preview Window
	Saving and Opening an Action Set

	Transforming Fonts

	Hinting
	Font Scaling, PPM
	Coordinate Rounding, Gridfitting
	TrueType and Type 1 Hints
	Type 1 Hints
	Font-Level Type 1 Hints
	Alignment Zones
	Editing Alignment Zones
	Family Alignment Zones
	TrueType Alignment Zones

	Standard Stem Widths
	Type 1 and TrueType Standard Stems
	Editing Type 1 Standard Stems

	Additional Control Data
	Flex Hints

	Stem Hint Programming
	Type 1 Hinting Tool
	Inserting and Removing Replacement Points
	Adding and removing hints
	Editing Hints
	Autoreplacing
	Preview Pixels
	Preview Panel
	Expanding the Preview Panel
	Preview Panel Options

	Some Examples
	TrueType Instructions
	Font Parameters
	Visual TrueType Hints

	TrueType Hinting Tool
	Toolbar
	Layers

	Options Panel
	TrueType Preview Panel
	Program Panel
	Alignment Instructions
	Alignment Zones
	Editing TrueType Alignment Zones
	AlignTop and AlignBottom Instructions
	Hinting Alignment Zones
	Align Instruction
	Customizing the Align Instructions

	Links
	Standard Stems
	Single Links
	Customizing the Single Link Command
	Single Link Examples

	Double Links
	Customizing the Command
	Double Link Examples

	Interpolation
	Customizing the Command

	Delta Instructions
	Middle Delta Instructions
	Faster Methods to Set Delta Instruction
	Active and Inactive Delta Instructions
	Customizing the Delta Instruction

	Final Delta Instructions

	Removing Instructions
	Standard Stems
	Stems Rounding

	General Options
	Context Menu
	Autohinting Process
	Autohinting Options
	Processing Multiple Glyphs

	Hinting Sidebearings
	Hinting Composite Glyphs
	Automatic TrueType Hinting
	Working With Bitmaps
	Importing Bitmaps
	Editing Bitmaps
	Highlight Differences
	Exporting Bitmaps

	Hinting Strategies
	Middle Delta or Final Delta
	Single Link or Double Link
	Hinting White Space
	Hinting Serifs
	Hinting Diagonals
	Hinting Symmetrical Characters
	Interpolate or Not

	Hinting Multiple Master Fonts
	Hinting for ClearType

	Multiple Master Fonts
	Multiple Master Fonts Theory
	Design Axes and Dynamic Range
	Standard Axes
	Weight
	Width
	Optical Size
	Style

	Design Coordinates and Weight Vectors
	Extrapolation
	Anisotropic Interpolation
	The Axis Graph

	Multiple Master Fonts in Studio
	Creation of MM Fonts in FontLab Studio
	Multiple Master Outlines in FontLab Studio

	Defining an Axis
	Selecting a Master
	Using an Axis Panel
	Extrapolation
	Anisotropic Interpolation

	Previewing the Intermediate Design
	Designing Masters
	Using the Blend Feature to Build MM Fonts
	Assigning a Master
	Mask to Master Action
	Using Interpolation to Make Masters

	Match Masters Operation
	Rearranging Masters
	Multiple Master Metrics
	Editing Axis Settings
	Removing an Axis
	Multiple Master and Font Info
	Editing the Axis Graph
	Choosing Dynamic Range

	Generating a Single-Master Font
	Expanding the Master
	Hinting Multiple Master Fonts
	Generating a Multiple Master Type 1 Font

	OpenType Fonts
	Font Features
	Features and Lookups

	Scripts and Languages
	OpenType Font Formats
	What Format to Prefer
	OpenType Tables

	Feature Definition Language
	Language Syntax
	Comments
	Number
	Glyphs
	Glyph classes
	Ranges
	Named glyph classes
	Including files
	Specifying features
	Language system
	Script and Language
	lookupflag
	lookup

	OpenType and FontLab Studio
	Importing OpenType Fonts
	OpenType Panels
	OpenType Panel
	Adding and Removing Features
	Reordering Features
	Entering the Glyph and Class Names
	Renaming Glyphs and Classes
	Compiling the Feature Definitions
	Compiling the Classes

	The Output Panel
	OpenType Features Sample Panel
	Converting the Kerning
	Feature Development Process

	Substitution Lookups
	Single Substitution
	Ligature Substitution
	Alternate Substitution
	Context Dependent Substitutions
	Specifying Exceptions to the Context Rule

	Positioning Lookups
	Glyph Geometry
	Value Record
	Single Positioning
	Pair Positioning
	Enumerating Pairs
	Subtable Breaks

	Known Features
	init, medi, fina and isol Features
	Latin Features

	OpenType Glyph Properties
	Caret Positioning

	Generating OpenType Fonts
	FontLab Studio and VOLT

	Macro Programming
	The Python Programming Language
	Installing Python
	Macro Toolbar
	Assign to Keyboard

	Integrating into Menus
	Macro Tool
	Edit Macro Panel
	Naming the Programs
	First Steps

	FontLab Studio Python Classes
	FontLab
	Font
	Glyph
	Modules

	Index
	3-B
	B-C
	C-E
	E-F
	F-G
	G-K
	L-M
	N-P
	P-S
	S-T
	T-Z

