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ABSTRACT

Large language models have made significant progress in code com-
pletion, which may further remodel future software development.
However, these code completion models are found to be highly
risky as they may introduce vulnerabilities unintentionally or be in-
duced by a special input, i.e., adversarial code prompt. Prior studies
mainly focus on the robustness of these models, but their security
has not been fully analyzed.

In this paper, we propose a novel approach AdvPro that can
automatically generate adversarial code prompts for these code
completion models. AdvPro incorporates 14 code mutation strate-
gies at the granularity of five levels. The mutation strategies are
ensured to make no modifications to code semantics, which should
be insensitive to the models. Moreover, we leverage gradient at-
tribution to localize the important code as mutation points and
speed up adversarial prompt generation. Extensive experiments are
conducted on 13 state-of-the-art models belonging to 7 families.
The results show that our approach can effectively generate adver-
sarial prompts, with an increased rate of 69.6% beyond the baseline
ALERT. By comparing the results of attribution-guided localization,
we find that the recognition results of important tokens in input
codes are almost identical among different models. This finding
reduces the limitation of using open-source alternative models to
guide adversarial attacks against closed-source models. The results
of the ablation study on the components of AdvPro show that
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CCMs focus on variable names, but other structures are equally
crucial.
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1 INTRODUCTION

Language language models (LLMs) have gained enormous success
in recent years and have been widely applied to solve software
engineering tasks, such as code summarization, retrieval, and au-
tomatic completion. Benefiting from the mass amount of data and
advanced learning algorithms, LLMs exhibit superior ability in com-
prehending code semantics. There are emerging several excellent
models for code completion like Github Copilot [3], Codex [12]
and CodeWhisper [1] (hereafter referred to as code completion
models (CCMs)). According to [18], Github Copilot can improve
the development efficiency by 55%.

However, CCMs are proven to be suffering from security is-
sues [30], where they may produce vulnerabilities during code
completion. The reasons for this phenomenon are manifold, as it
may be attributed to either low-quality training data or misleading
code prompts (e.g., code comments, naming conventions, and pro-
gramming styles). Even worse, these issues are difficult to explain
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and mitigate, considering the ever-increasing scale and complexity
of CCMs. Therefore, it is necessary to evaluate the security of CCMs
in generating code.

Prior studies have conducted security and functional tests for
CCMs [24, 30, 32] and demonstrated the existence of vulnerabil-
ities in these models [11]. However, the code employed in their
tests mainly stems from algorithm contests or CodeQL or PyLint’s
examples, which may not realistically assess the weaknesses of
CCMs in the actual product environments. Other studies construct
adversarial examples to test the security and robustness of CCMs,
by perturbing input samples to cause incorrect predictions. On the
one hand, these adversarial attacks mainly target the classifica-
tion task rather than the generation task. In particular, MHM [47],
ALERT [44], and CARROT [46] employ perturbation strategies in-
cluding renaming variables and adding junk code, in order to bypass
vulnerability or clone detection. On the other hand, the contempo-
rary attacks to code generation tasks do not focus on the semantics
of the program, making the perturbed code syntactically or seman-
tically incorrect. For example, the recent study CodeAttack [17],
which replaces various types of tokens in code, can greatly degrade
the performance of CCMs on code completion.

To this end, we propose an approach, termed as AdvPro, to gen-
erate adversarial code prompts and evaluate the security of CCMs.
First, we construct a dataset with a massive number of Python vul-
nerabilities and use their code (i.e., vulnerable code before patching
and secure code after patching) as the ground-truth. Given one code
prompt for completion, CCMs may complete the code with vulner-
able or secure code. AdvPro is designed to automatically mutate
the code prompt and get vulnerable code in code completion. More
specifically, we propose 14 semantic-preserving mutation strategies
to code prompts from five granularities of code, including token,
expression, simple statement, compound statement and block. To ac-
celerate the generation of adversarial prompts, AdvPro proposes a
novel searching approach based on gradient attribution [35, 43] to
identify the combination of these mutation strategies to disguise
CCMs. This process is repeated until the completed code by CCMs
is vulnerable. The constructed prompt has no differences from the
original in semantics, i.e., “semantically unperceived,” but induces
CCMs to generate vulnerable code. Therefore, this is a type of
targeted adversarial attack in the domain of code completion.

AdvPro is extensively evaluated on 544 vulnerabilities in Python.
The results show that: 1) Although the proportion of sec/vul code
generated by all CCMs was similar, different families of CCMs
show varying abilities in generating secure code as per CWE types.
2) The CCMs’ robustness of the model is not always positively
correlated with the parameter size. For the CodeGen family, the
model robustness of 16B is lower than that of other versions. 3)
Different families and versions of the model are similar for identi-
fying important tokens in the input code, which helps us use the
open-source model to guide the attack on the closed-source model.
On text-davinci-003 based on GPT-3.5, we achieved a maximum
transferability success rate of 25%. 4) CCMs pay more attention to
variable names, but other structures are also important, and mu-
tation rules on structures give AdvPro a 51% gain over ALERT
without being attribution-guided.
Contributions.We make the following contributions in this study.

• We propose a novel approach AdvPro to create adversarial
prompts that make CCMs generate vulnerable code effectively.

• We conduct extensive experiments to evaluate the effectiveness
of AdvPro, and identify a number of intriguing issues in CCMs.
These findings can benefit the security improvement of CCMs.

• We have made our dataset and code public at
https://sites.google.com/view/advpro [4] for further research.

2 BACKGROUND

2.1 LLM-based Code Completion

Large language models are one type of deep learning models that
are trained on vast amounts of textual data with advanced learn-
ing mechanisms (e.g., Transformer [40]), enabling them to cap-
ture the complex patterns, relationships, and structures inherent in
the input text. LLMs, such as the latest OpenAI GPT-4 [28], have
demonstrated expert-like capabilities in various natural language
processing tasks. Code models have gained significant attention
in software development in recent years, especially for code com-
pletion tasks [15, 36]. LLM-based CCMs are typically pre-trained
on a large corpus of code and have sound reasoning and program-
ming capabilities to predict and generate code fragments based on
a given context (often referred to as “prompts”) [39]. CodeX [12]
is a GPT model trained on a GitHub repository for generating and
understanding a wide range of code. Github Copilot [3], developed
based on CodeX [12], has gained widespread use by programmers.
In addition, open-source code models are rapidly developed, such
as CodeParrot [38], CodeGen [26], and others trained in natural
and multiple programming languages. In addition, many of the
general-purpose LLMs also have powerful programming capabili-
ties, such as ChatGPT [27], GPT-4 [28] and LLaMA [37], performing
excellently in both natural and programming languages. So far, the
GitHub Copilot plugin has received more than 6 million downloads
on VSCode, and the similar product CodeWhisper [1] has received
more than 1 million downloads. It is witnessed that the LLM-based
CCMs have been widely integrated into today’s software devel-
opment process [39, 41], becoming a “shadow programmer” that
profoundly affects the entire software system and all the stakehold-
ers.

2.2 Adversarial Attacks for Code Model

The complexity of code generation tasks necessitates robust train-
ing methodologies and comprehensive evaluation frameworks. Ad-
versarial attacks targeting code generation models can provide
valuable insights into the vulnerabilities and limitations of these
models. By perturbing the input samples in a targeted manner, ad-
versarial attacks can expose weaknesses in the model’s ability to
generate code that is secure, efficient, and adheres to best practices.

Compared to other AI domains, such as image-based adversarial
attacks, code-based adversarial attacks pose unique challenges. In
image-based attacks, perturbations in pixel values might result in
imperceptible changes to the human eye, yet lead to misclassifica-
tion by the model. However, in code-based attacks, small changes
in the code can have significant and noticeable effects on the pro-
gram’s behavior and correctness. A successful adversarial attack
on the code model should have the following properties: (1) Cor-
rect syntax: the perturbed code can be compiled, interpreted, and
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executed without any problems, (2) Program semantic consistency:
the perturbed code is consistent with the original code in terms of
program semantics and behaviors, (3) Minimal perturbation of the
natural semantics: the least possible modifications to make it diffi-
cult for a human developer to notice the changes. Methods such as
CARROT [46], ALERT [44], and MHM [47] counter attacks on code
categorization tasks bymodifying variable names. The semantic and
syntactic correctness of the adversarial samples generated by these
attack methods is guaranteed, but only for models based on the
BERT architecture, such as CodeBERT [13], GraphCodeBERT [14].
CodeAttack [17] performs substitutions on various types of tokens
without guaranteeing syntactic correctness, which will result in
code that is practically inoperable. This type of adversarial attack
has limited practical significance. The code completion task is much
more difficult to confront, and in addition to the above properties,
targeted attacks that can generate specific code are necessary due to
the involvement of human developers in the development process,
and the fact that completion results that differ too much from the
developer’s intent will be rejected.

3 MOTIVATION

Given one context of programming code, LLM-based code models
can provide a number of suggestions to help complete the remain-
ing code. However, prior studies [16, 30] show that these models
may generate incorrect or even vulnerable code, posing a high
risk on the built system. As shown in Figure 1a, the code snippet
requires a parameter verify for statement self.c.setopt(pycurl
.SSL_VERIFYPEER, verify). The verify parameter is responsible
for controlling SSL certificate verification: when setting to 1, the
SSL certificate will be verified, and with 0, the verification will be
skipped. Two popular LLM-based code completion models, GitHub
Copilot [3] and CodeGen-16B-mono [26], recommend using 0 as
the parameter value, which enables attackers to intercept data sent
over HTTPS connections. This vulnerability has been recognized
by the National Vulnerability Database as a high-risk vulnerabil-
ity, with a severity score of 7.8. This example demonstrates the
need to thoroughly assess the reliability and security of suggestions
provided by LLM-based code completion models.

Furthermore, we have conducted an empirical study in this work
to quantify the security of automatic code completion and found
that, on average, 15.7% of code completions by each code comple-
tion model will produce vulnerabilities. Even worse, the secure
code completion, i.e., the generated code is vulnerability-free, is
susceptible of certain semantics-preserving transformations to the
code prompt. Figure 1b demonstrates the vulnerability of the code
completion model when the code prompt is altered. Given the origi-
nal code as the prompt, the code completion model can suggest the
secure API, literal_eval(), which means only evaluating literal
expressions in a string, such as literal lists and dictionaries, but
not calling other functions. If we assign an alias to literal_eval()

(highlighted in line 3) and eval() (highlighted in line 5), respec-
tively, the semantics of the code prompt remain the same. However,
both models suggest the unsafe API eval(). Using eval() can lead
to potential injection risks for servers with this vulnerable code, as
it can execute arbitrary code within a string.

From this example, it can be observed that using the original code
is insufficient to fully evaluate the security of CCMs, and appropri-
ate mutations can solve this problem, helping us choosemore secure
“shadow programmers.” In this paper, we aim to launch an attack
to effectively construct these vulnerability-inducing code prompts
mutated from benign code prompts. Generally, these vulnerability-
inducing code prompts have the same semantics as their benign
ones.

4 APPROACH OVERVIEW

The primary objective is to generate adversarial code prompts that
can effectively lead code completion models to generate vulnerable
code. To this end, we first devise semantics-preserving mutations
that do not alter the semantics of the original code. A set of pre-
defined rules is developed to ensure semantics consistency in the
course of code mutation. In parallel, we propose an attribution-
guided approach to identify the most influential parts of the input
code. This information guides the creation of targeted adversarial
samples by concentrating on perturbations in the critical locations,
reducing the search space and increasing the likelihood of success-
fully fooling code completion models with minimal perturbations.
Unlike the previous adversarial code method DAMP[45], AdvPro
uses gradients to select perturbation positions rather than selecting
specific replacement variable names. Our disturbance strategy clas-
sification is similar to RoPGen[21], but there is no need to select a
reference code to specify the mutation direction.

Figure 2 shows an overview of our method. The process can be
divided into the following stages:
Step 1. Data preparation: First, we extract the actual vulnerability
code from the CVE database and GitHub, clean and annotate it to
build our dataset, and then select the data from which the target
model complements the security results as the input for searching
adversarial samples.
Step 2. Attribution-guided Localization: Using the gradient
information, we calculate the importance scores for each token in
the prompt. This step helps us identify the most influential parts of
the code that affect the model’s output.
Step 3. Semantic-preserving Mutation: Based on the impor-
tance scores, we select the high-scoring tokens and apply semantic-
preserving mutations to generate a modified prompt. This new
prompt, similar to the original semantics, is designed to potentially
trigger vulnerable code completions.

We continue to apply semantic-preserving mutations to the mod-
ified prompt and observe the model’s output until either the model
generates a vulnerable code or we reach a predefined iteration limit
set to 20 in this paper.

Our approach is able to generate adversarial code samples that
closely resemble the original input while exploiting the vulnera-
bilities of code generation models. This comprehensive and tar-
geted strategy allows us to evaluate the security of code generation
models better, paving the way for the development of defensive
mechanisms to protect against adversarial attacks.

4.1 Dataset Preparation

To evaluate the security of CCMs in completing code, we first
prepare a number of CVEs as well as their code snippets as ground
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1 original code:(CVE-2023-0509)
2 ......
3 def init_handle(self):
4
5 self.c.setopt(pycurl.FOLLOWLOCATION, 1)
6 self.c.setopt(pycurl.MAXREDIRS, 10)
7 self.c.setopt(pycurl.CONNECTTIMEOUT, 30)
8 self.c.setopt(pycurl.NOSIGNAL, 1)
9 self.c.setopt(pycurl.NOPROGRESS, 1)
10 if hasattr(pycurl, "AUTOREFERER"):
11 self.c.setopt(pycurl.AUTOREFERER, 1)
12 self.c.setopt(pycurl.SSL_VERIFYPEER,__

13 Github Copilot : 0) ✗

14 CodeGen-16B-mono: 0) ✗

(a) The insecure code generated for the original code prompts

1 mutated code:(CVE-2022-0845)
2 from ast import literal_eval

3 +lit_eval=literal_eval

4 +eval=eval
5 def parse_env_variables(cls: Type["pl.Trainer"],
6 ......
7 env_args = {}
8 for arg_name, _, _ in cls_arg_defaults:
9 ......
10 with suppress(Exception):
11 val = _____

12 Github Copilot : literal_eval(val) ✓ -> eval(val) ✗

13 CodeGen-16B-mono: literal_eval(val) ✓ -> eval(val) ✗

(b) The insecure code generated for mutating code prompts

Figure 1: The insecure code generated by code completion models

GitHub
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Code 
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Model
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code prompt

sec codevul code
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Code 
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Figure 2: System Overview of AdvPro

truths. In particular, all the vulnerabilities in the Python project
are collected from the NVD database [6]. Then, we only retain the
vulnerabilities that have a reference (e.g., GitHub links) for the
vulnerable code. Oftentimes, two versions of code snippets can be
extracted from a GitHub commit where one of them is the insecure
code before patching, and the other is the secure one after patching.
Data Cleaning and Labeling. To ensure the quality of the col-
lected data, we asked five students to make data labeling and clean-
ing. These students, who have an average of three years of expe-
rience in security, are responsible for identifying and validating
the vulnerable code and its patched version from all the changes
in a commit. Each code snippet is reviewed by two students inde-
pendently. If there is a discrepancy in annotations, a third student
will be involved to reach a consensus. It takes us 3-man months to
finish the process. Moreover, we triage each CVE with the CWE
taxonomy [5] to enable a comprehensive analysis as per vulnerabil-
ity type. For the CVEs with missing, outdated, or imprecise CWE
categories, we manually reassigned a precise one.

To better evaluate the security of CCMs in completing code and
sensitivity of adversarial prompts, we further refine these samples
based on two strategies: 1) security relevance.One commitmaymake
multiple changes to the code to fix vulnerabilities. We manually
identify the security-related changes to construct our test dataset. 2)
single-line change.To enable a high accuracy for CCMs in generating
code, we only take into account the single-line changes.
Validation Set Construction. After obtaining a number of high-
quality instances of vulnerabilities, we construct a validation set

code prompt:(CVE-2020-5227)
......
......

8 from lxml import etree
9 from lxml.etree import CDATA
......

15 def _add_text_elm(entry, data, name):
16

17 if not data:
18 return
19

20 elm =
lineno : 20

sec_code : xml_elem(name, entry)

vul_code : etree.SubElement(entry, name)

Figure 3: Illustrative code prompt and its responses.

for CCM evaluation. The validation set is a list of code snippets,
comprised of vulnerable code and their patches, i.e., {𝑥0, 𝑥1, . . . , 𝑥𝑛}.
Without loss of generality, we have the following definition for the
dataset and its elements.

Definition 1. Each sample 𝑥𝑖 in the validation set is defined as a

triple: ⟨𝑝, 𝑣, 𝑠⟩, where 𝑝 is a piece of code before vulnerability point,

serving as a prompt of CCMs for code completion, 𝑣 is the one-line

code that makes the entire sample vulnerable, and 𝑠 is the secure code

that are patched for this vulnerability.

As shown in Figure 3, line 9-20 is the code prompt (i.e., 𝑝) of
CCMs, the secure code is “xml_elem(name, entry)” (i.e., 𝑠) and its
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vulnerable version is “etree.SubElement(entry, name)” (i.e., 𝑣) that is
susceptible to XML Denial of Service Attacks from carefully crafted
data denial of service attacks against maliciously constructed data.

4.2 Attribution-guided Localization

To raise the effectiveness of adversarial prompt generation, we em-
ploy attribution-guided localization to localize the critical tokens in
prompts that have a significant impact on model output. In this way,
the search space for mutation can be greatly reduced. Specifically,
we utilize the gradients of the model’s output in relation to the
input token embedding to help us determine which tokens have the
most significant impact on the model’s predictions. The following
steps illustrate how to employ attribution-guided localization.

First, we perform forward computation on the target model. As-
sume that the code completion model is 𝐹 (·). For an input sequence
𝑥 = [𝑥1, 𝑥2, ..., 𝑥𝑛] of length 𝑛, we obtain the output probabilities 𝑝
for each word in the vocabulary as follows:

𝑝 = 𝐹 (𝑥) (1)

After the forward computation, we obtain the set of input sequence
embeddings 𝑒 = [𝑒1, 𝑒2, ..., 𝑒𝑛]. For the secure label 𝑙𝑠𝑒𝑐 and the vul-
nerable label 𝑙𝑣𝑢𝑙 , their probabilities in the vocabulary are denoted
as 𝑝𝑠𝑒𝑐 and 𝑝𝑣𝑢𝑙 :

𝑝𝑠𝑒𝑐 = 𝑃𝑠𝑒𝑐 (𝐹 (𝑥)) 𝑝𝑣𝑢𝑙 = 𝑃𝑣𝑢𝑙 (𝐹 (𝑥)) (2)

Gradient attribution directly produces an attribution matrix 𝐵
by computing the following partial derivative:

𝐵 =
𝜕(𝑝𝑣𝑢𝑙 − 𝑝𝑠𝑒𝑐 )

𝜕𝑒
(3)

Here, 𝐵 = [𝐵1, 𝐵2, . . . , 𝐵𝑛] represents the attribution matrix, where
each element 𝐵𝑖 corresponds to the partial derivative of the prob-
ability difference with respect to the input sequence embeddings
𝑒𝑛 .

To obtain the final Importance Score 𝑆 = [𝑠0, 𝑠1, ..., 𝑠𝑛], we com-
pute the norm of each element in the attribution matrix 𝐵𝑖 :

𝑠𝑖 = ∥𝐵𝑖 ∥ =

√√√√𝑠𝑖𝑧𝑒𝑒𝑚𝑏∑︁
𝑗=1

(𝐵𝑖 )2𝑗 (4)

After the above calculations, we have obtained the importance
scores for the input sequence. However, these scores are assigned
to single tokens that may not have complete syntax. For example,
The function name ‘_add_text_elm’ in Figure 3 is recognized as ‘_’,
‘add’, ‘_’, ‘text’, ‘_’, ‘elm’ by the model tokenizer but ‘_add_text_elm’
by the python tokenizer. To this end, we construct the abstract
syntax tree and aggregate the tokens as well as their scores. This
process can be achieved as Algorithm 1.

4.3 Semantic-Preserving Mutations

To evaluate the security of the CCMs, the key assumption is that
they should be consistent in front of the input code with same
semantics. Thus, by detecting completion outputs with high incon-
sistency, potential errors in CCMs can be identified and flagged.

We have developed a set of semantic-preserving mutation rules
that can generate a series of new code prompts that are semantically
equivalent to the original code prompts. All rules can be composed
of the following three atomic operations.

Algorithm 1: Importance Score Mapping
Input: code: string; tokenSeq: List[string]; scoreSeq: List[float];
Output: root: astNode;

1 mappedTokens = getPositon(code,tokenSeq)
2 root = getAST(code)
3 foreach node in ast.walk(root) do

4 foreach token in mappedTokens[node.lineo] do

5 if isInclude(node,token) then

6 node.score+=scoreSeq[Index(tokenSeq,token)]

• Adding nodes: Inserting new nodes into the AST, such as adding
a new variable definition, function call, conditional statement,
and loop structure. The newly added nodes should not change
the semantics of the original.

• Replacing nodes: Replacing an existing node with a new node
with the same functionality and semantics. This operation in-
cludes changing variable names, transforming loop structures
(such as converting a for loop to a while loop), simplifying or ex-
panding conditional expressions, etc. When replacing nodes, you
need to ensure that the new node is functionally and semantically
equivalent to the original node.

• Reordering nodes: Changing the order of nodes in the AST, such
as swapping two independent code blocks, reordering function
and class definitions, and rearranging method implementations.
Based on Python Language Reference [7], we have designed

a total of 14 mutation strategies at five levels, ranging from fine-
grained (token) to coarse-grained (block).

4.3.1 Token. Tokens in Python can be categorized into five classes:
identifier, string, numeric literal, operator, and delimiter. Usually,
many of CCMs normalize arbitrary strings and numeric literals in
code into a unique form, so that the mutations to these tokens leave
no impact on CCMs’ output. Furthermore, modifying operators and
delimiters may significantly alter the syntax and semantics of one
program. Hence, at the token level, we propose mutation rules only
for the tokens of type identifier.
Identifier. It covers the name for variables, functions, classes, and
methods. The mutation strategy is as follows.
• Replace identifiers with new names, e.g., replace ‘elm’ in Figure
3 with ‘sijd’.
We propose a mutation strategy to rename the target identifier,

in order to verify whether CCMs are sensitive to these identifiers.
To ensure the mutation not altering the semantics, the substitute is
randomly generated without conflicting with existing identifiers.

4.3.2 Expression. Expressions are the building blocks of Python
code and can be combined to create more complex expressions. At
the expression level, we have developed mutation rules for com-
monly encountered expression types, which involve altering the
form of expressions or transforming them into other statements.
Assignment expressions. The syntax for an assignment statement
is “identifier = expression”. An assignment expression involves as-
signing an expression to an identifier and simultaneously returning
the value of that expression. We propose the following mutation
rule:
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• Add line breaks to separate the content within the parentheses
onto different lines when there are various parentheses in the
expression e.g., modify ‘elm=xml_Elem(name, entry)’ to
“elm=xml_Elem(name,\\entry)”.

Conditional expressions. Conditional expressions are simple
representation of two-branch structures in Python which have the
form “ x if C else y”, where C is a condition. First, the condition C is
evaluated. If C is true, x is executed and its value is returned. We
propose the following mutation rules for conditional expressions:

• Convert the conditional expression to an if-else statement.
• Modify the condition (C) and swap the positions of x and y: “ y if
not C else x”.

Lambda expressions. Lambda expressions are used to create
anonymous functions. The syntax for a lambda expression is lambda
parameters: expression. It yields a function object, and the unnamed
object behaves like a function object. We propose the following
mutation rule for lambda expressions:

• Convert the lambda expression to a function definition.

Comprehension expressions. Comprehensions are concise and
readable syntax for creating lists, dictionaries, and sets in Python.
For example, “[i for i in range(1,10)]” will return a list from 1 to
9. They consist of an expression followed by a for clause and an
optional if clause. The expression is evaluated for each item in the
iterable specified in the for clause, and if the if clause is present,
the item is included only if the condition is met. We propose the
following mutation rule for comprehensions:

• Convert the comprehension to an equivalent loop and conditional
statement.

4.3.3 Simple statement. A simple statement is comprised within
only one logical line. Since most simple statements have special and
simple capabilities, we designed mutation rules for only five of the
14 classes of simple statements. that can ensure that modifications
to them do not affect semantics.
Expression statements. Expression statements are standalone
expressions that are used for their side effects. For example, function
calls and print statements are considered expression statements
because they perform an action but do not store any value. We
propose the following mutation rule for expression statements:

• Convert the expression statement to an assignment statement.

We create a random string no longer than 10 as a new variable and
select a variable that does not exist in the original code to store
the return value of the function, in order to avoid affecting the
semantics of the code.
Assignment statements. The syntax for an assignment statement
is “target_list = expression”. what’s the difference with assignment
expression Augmented assignment statements are a shorthand way
of updating the value of a variable with a binary operation. Exam-
ples of augmented assignment statements include +=, -=, *=, and
/=. e.g., modify “a += 1” to “ a = a + 1”

We propose the following mutation rule for augmented assign-
ment statements:

• Convert the augmented assignment statement to a regular as-
signment statement.

Assert. Assert statements are used to check if a condition holds
true, and if not, raise an AssertionError. The syntax for an assert
statement is “assert condition[, error_message]”. If the condition
evaluates to False, an AssertionError is raised with the optional
error message.

We propose the following mutation rule for assert statements:
• Convert the assert statement to an if statement that raises an
AssertionError when the condition evaluates to False.

4.3.4 Compound statement. Compound statements are multi-line
statements that can control the flow of a program or perform more
complex actions. They consist of one or more clauses, where each
clause contains a header and a suite. In this section, we discuss
some common compound statements in Python, including if, while,
and for statements, and propose mutation rules for them.
if statement. The if statements are used to conditionally execute
a block of code. They can include elif (short for “else if”) clauses
and an optional else clause. The syntax for an if statement is “if
condition: suite [elif condition: suite]* [else: suite]?”.

The mutation rule for if statements is:
• Invert the condition and swap the if and else suites.
Due to the limited capability of handling only two-branch struc-
tures, conditional expressions cannot be used to convert all if state-
ments. As a result, we have not designed any rules for transforming
if statements into conditional expressions.
while statement. The While statements are used to repeatedly
execute a block of code as long as a condition is true. The syntax
for a while statement is “while condition: suite”.

The mutation rule for while statements is:
• Add a break statement when the condition evaluates to True
inside the “while True: suite”.

for statement. The for statements are used to iterate over a se-
quence (such as a list, tuple, or string) and execute a block of code
for each element in the sequence. The syntax for a for statement is
“for variable in iterable: suite”.

The mutation rule for for statements is:
• Replace the for loop with a while loop and manually handle the
iteration using “next()”.

with statement. The with statements are used to simplify the
management of resources such as files or network connections.
They ensure that the resource is properly acquired and released.
The syntax for a with statement is “with expression [as variable]:
suite”. The expression is usually an object with __enter__ and
__exit__ methods, which are called at the beginning and end of the
suite, respectively.

The mutation rule for with statements is:
• Convert the with statement to a try-finally statement.

4.3.5 block. A block in programming refers to a group of state-
ments that are executed together as a single unit. At the block level,
we do not modify individual statements, but instead modify blocks
by inserting statements. We propose the following mutation rules
for blocks:
APIs. There may be many API invocations in a block. We create
an alias for these APIs to obscure their original usage as below.
• Add an alias for imported APIs to obscure their original names.
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Figure 4: CWE category distribution

5 EVALUATION SETUP

In this section, we introduce the setup for the experiments including
the used datasets, code completion models, and the metrics for
evaluation. We intend to answer the following questions:
RQ1. How secure is the code that generated by CCMs in the real-

world scenario?
RQ2. How effective is our method in inducing CCMs to generate

insecure code?
RQ3. How does each component of our method contribute to the

overall effectiveness?
RQ4. How does the transferability of our method between different

models?

5.1 Datasets

After filtering process, we collected 682 CVEs and 1,496 pairs of
Python files. Each pair consisted of a vulnerable version and its
corresponding fixed version, providing valuable insights into the
code transformation required to address the security issues. After
further annotation, we have retained 544 security relevant and
single-line change samples from a total of 284 CVEs. Each sample
in the dataset includes a code prompt, vulnerability code position,
secure output, and vulnerable output.

Within the Research Concepts view (CWE-1000) classification,
our dataset encompasses 36 CWE categories belonging to 10 CWE
Pillars. The distribution of vulnerability types and time in this
dataset is shown in Figure 4. This extensive coverage provides a
comprehensive and diverse range of vulnerabilities for analysis.

This dataset is valuable for our research, and we can evaluate the
models’ security performance by studying the code prompts and
outputs. The dataset’s availability facilitates a thorough analysis
of CCMs and their susceptibility to adversarial attacks, serving as
a basis for future research and developing robust techniques to
improve code generation system security.

5.2 Code Completion Models

Our goal is to comprehensively evaluate the security aspects and the
effectiveness of our adversarial attack approach on the most recent
and popular Large Language Models (LLMs). Therefore, we have
selected the following LLMs for our evaluation, as summarized in
Table 1. These models have varying parameter counts ranging from
0.11B to 16B. The earliest model, CodeParrot [38], was released

Table 1: Code Completion Models

Model Size Dataset

CodeGen [26] {0.35B, 2B, 6B, 16B} BIGPYTHON [26]
CodeGen2 [25] {1B, 3.7B, 7B, 16B} The Stack (v1.1) [8]
CodeParrot [38] {0.11B, 1.5B} CodeParrot Dataset [2]
PolyCoder [42] {0.45B, 2.7B} PolyCoder’s Data [42]
SantaCoder [10] {1.1B} Python/Java/JS subset of The Stack (v1.1) [8]

TinyStarCoderPy [19] {0.16B} Python subset of The Stack (v1.2) [9]
StarCoder [19] {15.5B} The Stack (v1.2) [9]

in May 2022, while the most recent model, StarCoder [19], was
released in May 2023. These models are based on the GPT-2 [31]
architecture, but StarCoder and CodeGen2 [25] also support Fill-in-
the-Middle objective.

For all open-source models, we use the default settings of each
model, in addition to setting the temperature to 0 and greedy mode
to make the model generation results stable.

5.3 Metrics

In order to accurately evaluate the security performance of CCMs
and the effectiveness of our adversarial attack, we have proposed
multiple evaluation metrics divided into two categories: security
evaluation metrics and adversarial attack metrics.

Model performance often varies for different tasks and scenarios,
so to assess the security performance of code completion models
in various situations, we have selected the eight most common
CWE-IDs in our dataset, which are distributed across four Pillars.
We have designed two evaluation metrics for this purpose:
Number of Secure/Vulnerable Completions. This metric mea-
sures the number of code completions that are either secure or
vulnerable for each of the models. If the completion matches ex-
actly with the patch code, it is considered secure; if it matches
exactly with the vulnerability code, it is considered vulnerable.
Fuzzy Security Score (FS-score). Since completion is often dif-
ferent from vulnerability code and patch code, we have designed
FS-score to quantify the security of such completion. This metric
calculates the BLEU scores [29] of the generated results and target
ouputs separately, quantifies the overall security of the generated
code snippets for each of the selected CWE-IDs by assigning a
continuous score between 0 and 1. The higher the score, the more
similar the completion and patch code are, and the higher the secu-
rity is. If the completion result matches the secure/insecure label for
each sample, the score is 1/0. If the completion result does not fully
match either label, the FS-score is computed using the following
formula:

𝐹𝑆 − 𝑠𝑜𝑐𝑟𝑒 =
𝐵𝐿𝐸𝑈𝑠𝑒𝑐 (𝑝𝑟𝑒𝑑)

𝐵𝐿𝐸𝑈𝑠𝑒𝑐 (𝑝𝑟𝑒𝑑) + 𝐵𝐿𝐸𝑈𝑣𝑢𝑙 (𝑝𝑟𝑒𝑑)
For a given CWE, compute the average FS-score across all associ-
ated samples. The Fuzzy Security Score accounts for the varying
degrees of security in the generated code, offering a more nuanced
understanding of the model’s performance in different situations.
Attack Success Rate (ASR). ASR represents the percentage of
input samples for which the attack method can successfully gener-
ate adversarial samples. The larger the ASR, the more effective the
attack method.
Transfer Success Rate (TSR). TSR represents the success rate
of the adversarial code prompts generated on the source model to
complete adversarial attacks on the target model. By evaluating TSR
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Figure 6: Security performance of 10B+ models

across multiple models, we can better understand the transferability
of these adversarial code prompts.

6 EVALUATION RESULTS

In this sections, we present the experimental results in light of
research questions.

6.1 RQ1: Security of Code by CCMs

In this section, we aim to determine the security of the generated
code by different CCMs. First, we feed the collected 544 samples
in Section 5.1 into CCMs, and identify whether the generated code
is secure or not. Figure 5 shows the overall performance of these
CCMs. On average, these CCMs produce 94.8 (17.4%) secure com-
pletions and 85.8 (15.7%) vulnerable completions. It is observed
that for the models with the same architecture, the number of se-
cure and vulnerable completions increases along with the number
of parameters. However, the change in the proportion of secure
and vulnerable completion results is small. Probably because the
programming ability of the model increases with the number of
parameters, but its security is an inherent problem due to its train-
ing data and architecture. It does not increase with the number
of parameters. In addition, there are significant differences in the
performance of the models with the same size of parameters, where
CodeGen-16B performs the best.

To evaluate the security of the model under different scenarios,
we computed FS-scores under each of the eight CWEs in Table 2
and plotted them as the radar plots shown in Figure 6. We placed
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Figure 7: Performance of the same architecture model

the models with more than 10 billion parameters in one graph and
observed the difference in their capabilities. The octagon marked
by the red line is the threshold 0.5, and those above 0.5 are safe at
that CWE, and those below 0.5 are not. The figure shows that the
models’ safety varies widely on the remaining CWEs except for
CWE-668 and CWE-20. We can also observe that CodeGen2-16B
achieved the highest score on CWE-400. This difference implies
that it would be an excellent choice to pick the model with higher
security for the corresponding scenario.

In Figure 7, we compare the security evaluation results of models
with the same architecture but with different parameters. In this
case, Figure 7a depicts the CodeGen family, and Figure 7b depicts
the CodeGen2 family. We can observe that the shapes of the radar
plots of the models with different architectures in Figure 6 vary
widely. In contrast, the radar plots of the models with the same
architecture are relatively similar. It is worth noting that for the
models with the same architecture, it is not the case that the more
parameters, the higher the FS-score. In both CWE-400 in Figure 7a
and CWE-287 in Figure 7b, the highest FS-score is obtained for the
model version with the least parameters.
In summary: The models of the four architectures with the most
powerful programming capabilities cannot guarantee security in the
eight security scenarios we set, and there are significant differences
in the performance of the models of different architectures in each
security scenario. In contrast, the security performance of models
with different parameters in the same series is more similar. In the
same series, the models with more parameters have more powerful
programming capabilities, but are not definitely more secure.
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Table 2: Performance of code models

Model CWE-74 CWE-610 CWE-706 CWE-20 CWE-668 CWE-287 CWE-400 CWE-345

CodeGen-350M-mono 0.505 0.485 0.435 0.523 0.619 0.494 0.520 0.610
CodeGen-2B-mono 0.544 0.552 0.478 0.462 0.596 0.531 0.438 0.666
CodeGen-6B-mono 0.524 0.574 0.507 0.546 0.573 0.445 0.499 0.655
CodeGen-16B-mono 0.604 0.585 0.459 0.518 0.484 0.467 0.436 0.608
CodeGen2-1B 0.513 0.508 0.508 0.580 0.591 0.551 0.507 0.670

CodeGen2-3.7B 0.546 0.462 0.474 0.608 0.594 0.421 0.500 0.600
CodeGen2-7B 0.544 0.490 0.478 0.563 0.531 0.426 0.534 0.642
CodeGen2-16B 0.556 0.462 0.459 0.550 0.547 0.409 0.572 0.589
CodeParrot-small 0.491 0.488 0.410 0.577 0.589 0.501 0.442 0.526
CodeParrot 0.492 0.476 0.490 0.527 0.509 0.422 0.456 0.618
PolyCoder-0.4B 0.503 0.467 0.424 0.546 0.561 0.460 0.480 0.529
PolyCoder-2.7B 0.508 0.447 0.451 0.529 0.584 0.510 0.562 0.613
SantaCoder 0.508 0.508 0.476 0.599 0.650 0.409 0.473 0.636
StarCoder 0.547 0.523 0.527 0.527 0.542 0.396 0.495 0.555
Average 0.528 0.502 0.470 0.547 0.569 0.460 0.494 0.608

6.2 RQ2: Effectiveness of Adversarial Code

Prompts

To demonstrate the effectiveness of our method, we select the sam-
ples in RQ1 where the model complements the secure label for
searching the adversarial samples. We selected 6 series with a max-
imum input length of 2048, for a total of 13 models, to control for
consistent input lengths supported by the models. The experimental
results are shown in Table 3.

For all models, the ASR of our approach is higher than 25%. The
average ASR is 39.3%, which means that at least 25% of the code
prompts are transformed to induce CCMs to generate vulnerabili-
ties. Among all the tested models, CodeGen2-16B has the lowest
ASR of 26.5%, and PolyCoder-0.4B has the highest ASR of 58.7%,
which also indicates that CodeGen2-16B has the best robustness,
while PolyCoder has the weakest robustness. In the PolyCoder and
CodeGen2 families, ASR decreases and robustness increases with
the increase of model parameters, but in the CodeGen family, the
16B version with the largest parameters achieves the highest ASR,
so we believe that the parameter size is not necessarily related to ro-
bustness. It is also found that the robustness of CodeGen2 is higher
than that of CodeGen for similar parameter magnitudes, which
indicates that the architecture is important factors for the robust-
ness of the code model. Our approach achieved higher ASR than
ALERT on all models, with an average ASR gain of 69.6% compared
to ALERT, while completing full adversarial sample generation on
each of our models in only one-fifth the time of ALERT.
In summary: Our method outperforms the baseline method signif-
icantly, with the state-of-the-art ASR of 39.3% on average. It makes
a 69.6% increase rate beyond the prior method.

6.3 RQ3: Ablation Study

In order to study the contribution of each component, we con-
structed six variant methods for ablation experiments, which are
described as follows:
• w/o Attr-Guide: We replace attribution-guide localization with
a random selection of AST nodes.

• w/o Token: Removing mutation rules for tokens, i.e., do not
replace identifiers in code prompts.

Table 3: Comparison results of Attack Success Rates (ASR)

on attacking all CCMs

Model Size Sec preds ASR ALERT

CodeGen

0.35B 86 41.9%(+79.8%) 23.3%

2B 105 40%(+35.6%) 29.5%

6B 122 38.5%(+23.8%) 31.1%

16B 135 52.2%(+74.6%) 29.9%

CodeGen2

1B 85 44.7%(+110.8%) 21.2%

3.7B 96 32.3%+63.1%) 19.8%

7B 103 30.1%(+29.2%) 23.3%

16B 102 26.5%(+68.8%) 15.7%

PolyCoder 0.4B 63 58.7%(+189.2%) 20.3%
2.7B 69 39.1%(+92.6%) 20.3%

SantaCoder 1.1B 95 36.8%(+94.7%) 18.9%

TinyStarCoderPy 0.16B 73 38.4%(+27.6%) 30.1%
StarCoder 15.5B 106 32.1%(+77.3%) 18.1%
Average — — 39.3%(+69.6%) 23.2%

Table 4: Ablation tests in terms of average ASR. Δ ASR shows

the increase or decrease rate with the mutation strategies.

Ablations ASR Δ ASR

AdvPro 39.3% -
w/o Attr-Guide 35.1% +12.0%
w/o Token 23.4% +67.9%
w/o Expr 32.6% +20.6%

w/o Simple-Stmt 33.2% +18.4%
w/o Comp-Stmt 33.7% +16.6%

w/o Block 22.2% +77.0%

• w/o Expr: Removing mutation rules for expressions.
• w/o Simple-Stmt: Removing mutation rules for simple state-
ments.
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• w/o Comp-Stmt: Removing mutation rules for compound state-
ments.

• w/o Block: Removing mutation rules for code blocks.

Table 4 shows the average ASR of these 6 variants of the method,
with the complete-ground method improving 12.0% to 67.9% over
the variant method. This means that the main components all con-
tribute significantly to the results.

The possible reason for the smaller improvement of attribu-
tion guide than mutation rules is that the degree of efficiency of
attribution-guide is affected by the length of the code prompt, and
the probability of randomly selecting the most important node is
higher for shorter code prompts, while the mutation strategy is
effective for code prompts of all lengths.

Within mutation rules, token and block have significantly higher
boosts than other granularity rules. This is probably because token
and block structures are most prevalent in code hints. Another
possible explanation is that the model is more sensitive to identifiers
or APIs than other statements.
In summary: Our localization method and each mutation rule are
conducive to generating adversarial samples, resulting in 12% to
67.9% gains. When all the ingredients are combined, the highest
antagonistic success rate is obtained.

6.4 RQ4: Transferability of Adversarial Code

Prompts

Wewill discuss the transferability of the method from three aspects:
the transferability of the importance score, the transferability of
adversarial prompts.
Transferability of Importance score. We use the gradient at-
tribution method to generate the Importance score for each input
sequence, and the ablation experiment in Section 6.3 the positive ef-
fect of Importance Score on generating adversarial examples. Mean-
while, the Importance Score also reflects the model’s understanding
of the input code. To evaluate the transferability of the Importance
Score of different models, we use the Importance Score to rank the
variable names of the input code and calculate the Location Square
Deviation (LSD) of the ranked sequence for the same input sample.
The LSD of sequences 𝑋 = 𝑥1, 𝑥2, ..., 𝑥𝑛 and 𝑌 = 𝑦1, 𝑦2, ..., 𝑦𝑛 can be
computed by 𝐿𝑆𝐷 (𝑋,𝑌 ) = ∑𝑛

𝑖=1 (𝑖 − index(𝑥𝑖 , 𝑌 ))2. The numbers
in figure 8 represent the average LSD of the sorted sequence of
variable names between the two models, where the green number
is the smallest value in the row and the red one is the largest value
in the row. We can find that all the models with the most consistent
sequences are in the same family. Our input code contains an aver-
age of 18 variable names, and the largest average LSD in figure 8 is
only 10.31, and the smallest is 3.01, which means that the impact
of the input code on the output is similar even between the two
models with the largest difference.
Transferability of adversarial prompts. We investigated the
transferability of adversarial samples between different models.
Figure 9 shows the results, with each square representing the trans-
ferability of adversarial samples from the source model to the target
model. Darker squares indicate higher transferability. The highest
TSR was 62%, while the lowest was 9%.

Among the source models, CodeGen2-3.7B, and CodeGen2-16B
exhibited significantly higher transferability than other models.
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Figure 8: Average LSD of variable name sequences for all

code models

Conversely, PolyCoder-2.7B had the lowest transferability as a
source model but the highest transferability as a target model.
This suggests a negative correlation between the robustness of
the model and transferability. Additionally, adversarial examples
had lower transferability between models of different families than
those within the same family.

To further explore transferability, we selected the closed-source
model text-davinci-003 as the target. Figure 9 shows that text-
davinci-003 had significantly lower transferability than all open-
sourcemodels, indicating its good robustness. However, our method
achieved a TSR of 26%, meaning that although direct white-box
attacks on closed-source models may not be feasible, we can still
generate adversarial samples to attack them indirectly.
In summary: The importance scores of the different models are
very similar, with the highest LSD being only 10.21 and the most
similar models averaging 3.87 LSD, often belonging to the same
family, indicating the potential of using open-source models to
guide attacks against closed-source models. Experiments show that
CodeGen2-16B produces the highest transferable admissible sam-
ples across a wide range of target models, with an average TSR
of 40.9%. The robustness of both the source model and the target
model affects portability.

7 THREATS TO VALIDITY

Internal threats. 1) The metrics for security evaluation are some-
times insufficient to reflect the security of CCMs. In the case that
the generated results do not fully match secure and vulnerable code,
it may involve false positives with text similarity-based methods. It
is mitigated to some extent in this study by only considering the
code prompts that can be completed with the exact code as the
ground-truth. In future, we will leverage static analysis to better
determine the security of generated code. 2) Some mutation rules
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Figure 9: Adversarial samples transferability

introduce temporary variable or function names (e.g., “lambda ex-
pression” and “for statement”). That may make additional effects
on the completion results.
External threats. 1) Limitations of the data set. In this study, we
only consider the single-line vulnerabilities, which may belong to
specific types. To this end, we try to measure the security CCMs
as per the type of vulnerabilities. 2) Code comments. AdvPro only
mutate the programming language of the code, but the natural
language portion of the code comments can also have a significant
impact on the generated results, which will be explored in future.

8 RELATEDWORK

Attacks against LLM-based Code Model. Although there are
a line of works on adversarial attacks to code models [17, 22, 23,
44, 47, 48], they focus mainly on classification tasks such as clone
detection, malware detection and classification. For example, Zhang
et al. propose MHM [47], which uses the Metropolis-Hastings algo-
rithm to iteratively replace identifiers in the code for generating
adversarial samples. While both CARROT [46] and ALERT [44]
outperform MHM [47], where CARROT proposes a series of pertur-
bation rules, including token and statement levels, mainly renaming
and inserting irrelevant codes, and proposes a method to evaluate
the robustness of the code model. ALERT involves only identifier
changes but focuses on the naturalness of the changed names. For
CodeBERT [13], GraphCodeBERT [14] has achieved SOTA attack
results. Jha et al. proposed CodeAttack [17] to adversarial attack
pre-trained programming language models in the natural channel
of code. CodeAttack performs black-box untargeted adversarial
attacks on programming models by replacing tokens. Due to the
lack of syntax and semantic constraints, the adversarial samples
generated by CodeAttack may contain syntactic errors, and the at-
tack goal is limited to degrading the performance of programming
models. Li et al. proposed CCTEST [22] for testing and improv-
ing the robustness of code generation models. CCTEST makes the
model generate inconsistent code fragments by simple syntactic

transformations and analyzes the similarity of these fragments to
find the average output and improve the robustness of the model
output without fine-tuning the model. In addition, there are also
some works [20] exploring the backdoor attack for code models.
Unlike the above work, our work designs the first targeted adversarial

attack method for generating tasks that generate adversarial samples

with security vulnerabilities in a state space that is far more complex

than the classification task.

Security Issues of Code CompletionModels. Schuster et al. [33]
propose a backdoor implantation attack on code completion mod-
els, which involves poisoning the data to enable the model to learn
abnormal features that may harm users. Since the release of GitHub
Copilot, there has been significant security research on code com-
pletion models. Firstly, Pearce et al. [30], using CodeQL examples
as input and checking the security of Copilot completion results,
systematically studied the security and influencing factors of Copi-
lot. Siddiq et al. [34] constructed a dataset of 130 prompts using
examples of three types of code checking tools and tested Copilot
and Encoder, all of which confirmed the security risks of the model.
In addition, Gustavo et al. [32] also used user research to have
students write code for specific scenarios with the assistance of
the Code Generation Model, believing that LLM assistance would
not introduce new security risks. However, since most of them are
mathematical algorithm codes, they cannot reflect the security of
the model in actual production. Unlike the above work, we have con-
structed an actual vulnerability code prompt dataset, which can help

us quantitatively evaluate the security of different code generative

models in different security scenarios.

9 CONCLUSION

In this paper, we propose the approach AdvPro to generate ad-
versarial code prompts for CCMs. It is enabled by 14 semantic-
preserving mutations and the guidance of gradient attribution for
acceleration. Our experiments on a wide range of CCMs have
demonstrated the efficacy of the proposed attack, achieving an
average success rate of 39.3% that greatly outperforms the base-
line. Our research not only contributes to the discovery of model
vulnerabilities, but also explores the characteristics of input code
understanding by different models.
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