Parallel Dual Coordinate Descent Methoator Large-scale Linear

Classification in Multi-core Environments
Weli-Lin Chiang, Mu-Chu Lee and Chih-den Lin

Department of Computer Science & Information Engineering, National Taiwan University

A Practical Implementation for Dual CD

Introduction Proposed Parallel Dual CD Method Implementation of the Proposed Framework

e Dual coordinate descent (CD) method is one of the most

effective approaches for large-scale linear classification
(e.g., linear SVM).

e However, its sequential design makes the parallelization
difficult.

e In this work,
— We investigate multi-core dual CD methods for linear
classification.

1. Specify a feasible v and calculate w =) |, y;a;x;
2: while true do
3: fori:=1,...,ldo
4. G yin$i — 1+ D;,0 < O(n)
G if0 < a; < U,
PG (proj. grad.) = ¢ min(0,G) if a; = 0,
max(0,G) ifa; =U.
if |[PG| > 10~1° then
d < min(max(ozi — G/Qu, O), U) —
Q; < o + d
w — w + dy;x;

e In CD a selected a; may not need to be updated. After calculat- | | e The selection of B is essential. An example:
ing V, f(a), we know if that’s the case in line 6. Practically we - {1,...,l} splitsto By, ..., Br

have — For each B in Bj,...,Br select elements in B

k k k k with larger project eradient as B.
Qiy1, Qiigy-e s Qy Qiyg, ... gET Project g

— Theoretical convergence is established.

unchanged unchanged

k Other selections of B are possible.

o If we know a7 is unchanged, then V; f(a) doesn’t need to be .
calculated. The block size | B| is also important

e Idea: a setting to guess that some «; are unchanged — too small | B| may cause parallelization overhead

— Calculate V; f(a),Vi € B in parallel. — too large | B| may cause slower convergence
Fortunately, we found that the training time is

about the same when |B| is set to be a few hun-
dreds.

Shrinking technique in Hsieh et al. [2008] for re-
moving some unnecessary «; can be incorporated.

— We propose a new framework to parallelize dual CD

and establish its theoretical convergence properties.)
— Select a much smaller subset B from B to do sequential CD

updates.

Existing Works: Mini-batch Dual CD That is, we conjecture «;,7 € B \ B need not be updated.

Formulations o Instead of running through i = 1,...,lin line 3one by | | A new framework:

one, run a batch of ¢ in parallel.

e Further, we demonstrate through experiments that the
method is robust and efficient.

1: while true do
Select a set B
Calculate V 5 f () in parallel

e Given training data (x;,y;) € R" x {—1,1},e=1,...,L 5
3:)i L
4: Select B C B with |B| < |B|
5

e Linear classification obtains its model vector w by solv- | | ® For convergence, the step size d in line 7 is scaled down

ing: o; < o; + Bd, where 0 < 1
1 ,V : ol Sequentially update o;,7 € B
min ~wlw + CL(w) (1) Takac et al. [2015] discussed the condition of 8 and proved
w2 the convergence with suitable £. . .
z . . Comparison: asynchronous CD, our proposed method and single-core LIBLINEAR
where L(w) — Z E(w: i, 1) 2) e However, using conservative steps may cause slower
— e convergence. e 1-axis is the training time in seconds, y-axis is the relative error, and “New” is our method.
Eq. (2) is the loss function, and two losses are considered: | | ® In line 9, race conditions occur for multi-threading. e [1loss |
rcv KDD2010-b covtype url_combined
ma’X(O7 1 - y’lwaw'lx) Ll_loss SVM? w % w —I_ Z dzyzwz (7) 107y T"‘.\; | | - Aslync-CD-l 10% "-"‘ | | | *--*IAsync-CD-l 10° | | = Asylnc-CD-l 10% ' = Asynlc-CD-l

w = Agync-CD-2
» —+ Async-CD-4 |}
w = Async-CD-8
New-1
= New-2
= New-4
— New-8
e - LIBLINEAR

w = Async-CD-2 10_1
w w Async-CD-4 |4
w = Async-CD-8
New-1 10721
= New-2
— New-4 3
= New-8 107}
e - LIBLINEAR |4

w = Async-CD-2
B_ |+ = Async-CD-4 |]
w = Async-CD-8
New-1 4
— New-2]_0'2—
= New-4
N — New-8
},' e LIBLINEAR

w = Async-CD-2
w & Async-CD-4
w = Async-CD-8
New-1
= New-2
= New-4
— New-8
e LIBLINEAR

W, T;,Y;) = .]
3 Yi) max (0,1 — y,wlx;)* L2-loss SVM. i in a batch

Lee et al. [2015] detailed study this issue in a multi-core 1073
Newton method. They consider atomic and reduce oper-

1074t

o If (1) is referred to as the primal problem, then a dual CD
method solves the following dual problem:

107}

attons. b\ e e] N e 103l 2 Lo
: : L ™ I N N N e VRS 10° et PR 1 e LT
1 o l — However, even with careful settings, the overhead of (7) . b . AV RN
min - oo Qo — E Qg is significant because of the small batch size. . . . " oo
o —1) i o 1075 1 2 3 4 5 6 1075 1000 2000 3000 4000 5000 1075 1 2 3 4 5 6 7 107650 100 150 200 250 300 350 400
~ — A simple comparison between parallel mini-batch CD |
subjectto 0< o; <UVi=1,...,1, and single-thread dual CD (LIBLINEAR) HIGGS yahoo-japan yahoo-korea
_ . . 10 . . . 102 . . . 102 . ‘
where () = Q+ D with Q; 5= W w;r 105, and D is dlag()nal rcv covtype -7 e -7 evncco . P2 heynecna -7 evnccon
— = T sl S | el o e
with AN o 107 onecoa | o v ponec
1072} ' ‘\ — ﬂg:gj_;] — New-2 — New-2 10'4— — New-2 — New-2
(’?‘.‘ o : :ew:; : :ew:; : Eew:; 10741 : :ew::
D o O U . < C for Ll_]'OSS SVM7 10'3’; I‘-“ iz; l HS e LIBLINEAR | 1073} o:-o LIBLINEAR] 107!} e o e LIBLINEAR |] e LIBLINEAR
i = — -\ L e * o el
L oo for L2-loss SVM. 1043 N e e N [N e e 2 Lo N g R | 0
20 \ - 107 .”._ - 10 "Ilﬁ.h "]
. . . 105! ",‘. | . ‘oinin, .] ., . . , . . | 1061 ._‘.‘1*.
e Each time an «; is selected and a one-variable sub- | o : 1 10 \ N\ e ..
O 10° ‘ ‘ : : ‘ 10° ‘ ‘ : : ‘ -7 5 BN -8 , , . , o o -7 LT
problem is solved: S Coo e A e W 10°5—20 40 60 80 100 120 140 1075 500 1000 1500 2000 2500 090 05 1o 15 20 25 30 1075 25 30 35 40
min f(c + de;) subject to 0 < o; + d < U, (3) e Therefore, we may give up parallelizing (7) in multi-core | | 19 1oss
d : .
environments. KDD2010-b covtype url_combined
where €;, — [O, c ey O, 1, O, C ey O]T Clearly, 10 . 107 e . ‘ . . 1072 - . . . 10 —
——" T _ 2 -7 meymecoa | B} "7 reneco- "7 revneco- "7 reyneco-
i—1 Existing Works: Asynchronous Dual CD N || 107 2 smecnel| [10%) Sesiel
1073} Niﬂcl- h 1073} NZ::L- - Nzx:z Nses\::.f-l-il- -
1 - s : 104] — e Z e 10 ~ v ; Y i
fla+de;) = =Q:d* + V,; f(ar)d + constant. e To address the slow convergence of mini-batch CD, Hsieh e el I el | 10| el
2 et al. [2015] and Tran et al. [2015] parallelize the for loop oo S 10° - ., '
The solution of (3) can be easily seen as (line 3) so each thread updates «; asynchronously. For Lol , 10°] S\ 10 1 2 *1
o ° ° .2 7 ‘s . b 10'5— .
V. f(a) line 9, w can be updated by atomic operations. 10%] 107} : 10 " |
d = min | max | «; = 0/, U | — «. : ' 10” 3 6 10% T000 2000 30004000~ 5000 107 YT 25 10655100 50 200 250 360 350
Qi Since the processors are running concurrently, w may
e A crucial observation in Hsieh et al. [2008] notes that if chan(g:;[e) bftween the start (line 4) and the end (line 9) of HIGGS yahoo-japan yahoo-korea
one S ep. 10 . 10 . . ‘ 107 . . 107 w2
l i "7 renecoa T oo K\ "7 ranecoa
)) . o 102} * w Asinc-CD-df] w Asinc-CD-él 10} w Asinc-CD-él] 10} o Asinc-CD-ﬁl]
w = E YO (4) For convergence, the iteration lag 7 is ihe key Varlable for o L e o2l ol I el Sy ute
i1 analysis. Specifically, the sequence {a"} should satisfy ol — — sl N s R |z
— e - LIBLINEAR 1073} o e LIEVEI-SEAR | ._. EI:V:I-SEAR h ._. EI:V:I-ISEAR
is maintained, then V; f () can be easily calculated by k<k+T 10°| T g 10° 1 10° N
— : .. : : 10} B 4 107 107}
l where £ is the iteration index when iteration k starts. o 10 RN e 2 e 2
— 5 . — — g . . . — 5 s 5 510 7 1 7
VZf(a) B (QCX)Z : Z QZ] 4 : (5) The iteration lag T must Satley some conditions. How- 1075 20 40 5 80 100 10%5— 1000 2000 3000 4000 .5‘(')‘66‘ 6000 100605 25 3.0 1075 5 530 35
I= ever, the conditions may not hold, so asynchronous CD
— L 1+ D ; e Asynchron CD is efficient, but may fail when using more thread
=Yy, w xT; — 1+ Dj;0. may dlverge. Syncnronous S eIricient, bu ay Ia en using more eads.
We can then update o and maintain the weighted sum in
(4) by Our Idea and Design Conclusions
a; < o; +d and w +— w + dy;x;. (6) . . .
‘ ‘ e e For convergence, we don’t use asynchronous updates. e We propose an effective parallel dual CD framework for multi-core environments.
e The main computation for updating an «; includes two : L : s : : :
O(n) OperatiOnz . (5) and (6)p g ¢ ® We Sequentlally update w due to the race Condltlon 1n (7) O FUture dlreCtlon. dual CD 1n mUItI'CPU environments.
Unfortumatelv th e i ik q . However, we ensure that this takes a small portion while | | ¢ Multi-core LIBLINEAR is available at:
o . 1 : : : ! : : :
niortunately, the procedure 1s Iherently sequentia others are parallelizable. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multicore—-1liblinear

