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e Dual coordinate descent (CD) method is one of the most

effective approaches for large-scale linear classification
(e.g., linear SVM).

e However, its sequential design makes the parallelization
difficult.

e In this work,
— We investigate multi-core dual CD methods for linear
classification.

1. Specify a feasible v and calculate w = ) |, y;a;x;
2: while true do
3: fori:=1,...,ldo
4. G yin$i — 1+ D;,0 < O(n)
G if0 < a; < U,
PG (proj. grad.) = ¢ min(0,G)  if a; = 0,
max(0,G) ifa; =U.
if |[PG| > 10~1° then
d < min(max(ozi — G/Qu, O), U) —
Q; < o + d
w — w + dy;x;

e In CD a selected a; may not need to be updated. After calculat- | | e The selection of B is essential. An example:
ing V, f(a), we know if that’s the case in line 6. Practically we - {1,...,l} splitsto By, ..., Br

have — For each B in Bj,...,Br select elements in B

k k k k with larger project eradient as B.
Qiy1,  Qiigy-e s Qy  Qiyg, ... gET Project g

— Theoretical convergence is established.

unchanged unchanged

k Other selections of B are possible.

o If we know a7 is unchanged, then V; f(a) doesn’t need to be .
calculated. The block size | B| is also important

e Idea: a setting to guess that some «; are unchanged — too small | B| may cause parallelization overhead

— Calculate V; f(a),Vi € B in parallel. — too large | B| may cause slower convergence
Fortunately, we found that the training time is

about the same when |B| is set to be a few hun-
dreds.

Shrinking technique in Hsieh et al. [2008] for re-
moving some unnecessary «; can be incorporated.

— We propose a new framework to parallelize dual CD

and establish its theoretical convergence properties. )
— Select a much smaller subset B from B to do sequential CD

updates.

Existing Works: Mini-batch Dual CD That is, we conjecture «;,7 € B \ B need not be updated.

Formulations o Instead of running through i = 1,...,lin line 3one by | | A new framework:

one, run a batch of ¢ in parallel.

e Further, we demonstrate through experiments that the
method is robust and efficient.

1: while true do
Select a set B
Calculate V 5 f () in parallel

e Given training data (x;,y;) € R" x {—1,1},e=1,...,L 5
3: )i L
4:  Select B C B with |B| < |B|
5

e Linear classification obtains its model vector w by solv- | | ® For convergence, the step size d in line 7 is scaled down

ing: o; < o; + Bd, where 0 < 1
1 ,V : ol Sequentially update o;,7 € B
min  ~wlw + CL(w) (1) Takac et al. [2015] discussed the condition of 8 and proved
w2 the convergence with suitable £. . .
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W, T;,Y;) = . ]
3 Yi) max (0,1 — y,wlx;)* L2-loss SVM. i in a batch

Lee et al. [2015] detailed study this issue in a multi-core 1073
Newton method. They consider atomic and reduce oper-

1074t

o If (1) is referred to as the primal problem, then a dual CD
method solves the following dual problem:
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We can then update o and maintain the weighted sum in
(4) by Our Idea and Design Conclusions
a; < o; +d and w +— w + dy;x;. (6) . . .
‘ ‘ e e For convergence, we don’t use asynchronous updates. e We propose an effective parallel dual CD framework for multi-core environments.
e The main computation for updating an «; includes two : L : s : : :
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