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Figure 4: SAIA curves. RMSE vs number of discovered features.
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Hierarchical VAE and HMC @

I
e Increase model flexibility with a hierarchical latent @

space h = {hq,...,hy} where h; ~ p(hi|h;11).
(a)
e Improving posterior approximation by means of well- I
posed HMC to sample €T) ~ ¢(T)(e|zo,yo). (b)

Figure 2: AR (a),
Reparam. (b).

e Reparameterization for reducing strong curvature
regions where Vi, , logp*(hi.p) T1:

hy = fu, (hiy1) + fo, (hiy1) - &

e Automatically tune HMC hyperparams for effi-
ciently explore posterior distribution.
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(a) Before training (b) After training (c) Training objectives

Figure 3: HMC training example.

Sampling-Based Active Learning

e Sampling-based information reward estimator for acquiring variables z;
to accurately predict y:
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that uses HMC in p (z;,y | ®o) = E @) (¢|zo) [P (i, Y | €)], instead of the
Gaussian alternative (Figure 1).
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