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Challenges de Madrid

Enhance information acquisition with VAEs

 Discovery of high-value information.

e Bayesian reward function [2] as an expected gain of information:

R(i,X()) — <EI!‘;"VP(X,'IXO)DKL [p(X¢|Xi,X0) ||p(X¢‘X0)]

e Approximated in [3,4] by transforming into Z space:

A

RI(Xia XO) — ﬂpg(xi,zz-,zolxo) {KI[‘ [QA(hlz’b ZO)l QA(hlzo)] T
ﬂpe(X¢,Zq>,|Xo)KI[" [QA(h‘ZcI), Zi,ZO) |QA(h|Z(I)7 ZO)]}

e These methods are based on Gaussian approximations of the true posterior.

2] Bernardo et at., 1979 Bl Ma et at., 2018 [4 Ma et at., 2020
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Challenges de Madrid

Improve missing data imputation with VAEs

 |mputation under a VAE framework [3,4,5,6]:

p(ZEU‘ZEO) — 41p(z|azo)[p(wU‘Z)] ~ 4:q(z|azo)[p(wU|z)]

e Also based on Gaussian approximations of the true posterior.

8l Ma et at., 2018 4 Ma et at., 2020 [l Nazabal et at., 2020 (61 Mattei et at., 2020
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Challenges de Madria

Jointly increase flexibility and improve inference

 Hierarchical VAEs are successful at modeling flexibility. @ ~1
L

p(zl)Hp(Zl | 21-1) Al Z2
(=2

I

e Complicated posteriors -> Delicate inference
(posterior collapse).

logp(x) \
. . . Approximation

e (Gaussian approximate inference worsens. | Gap
L[q7] '
4

Amortization

Gap

£[q] *'

Figure 1. Gaps in Inference [6]
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Contributions de Madrid
Hierarchical Hamiltonian VAE for mixed-type incomplete data (HH-VAEM)

* |ncreased flexibility by using I, @ - ,@ -
hierarchical latent space. A

 |mproved inference by means of
automatically tuned HMC.

L ry @ »@ -
 Reparameterization for well-posed HMC :
on relaxed posterior. 5 re <
M te | tati d G?* -------
. ore accurate imputation an 5
prediction. E @ @
de O deU

e More effective information acquisition.

Advances in Neural Information Processing Systems (NeurlPS) 2022



Universidad ..
- - uga CarloslI
Information acquisition de Madrid
Sampling-based method

e Sampling-based estimator [11] of the Mutual Information:

R(i,xo0) = Dxv [p(y, zilzo)|lp(y|xo)p(rilxo)| = L(y; z:i |xo) =

pxi,y|wo (jS, yle)
[ b e (w0 ylw0) o (
// yleo P oo (2i]70)Pateg (U]0)

p$iay|m0 (i7 J)
Pzx;|xo (i)pykno (J)

o]

v Avoids the Gaussian approximation

v Efficient, easy parallelization.

[11] Kraskov et at., 2004
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HH-VAEM

Improving inference

?HMC samples (orange) 2HMC samples (orange)

L(x:0,0) = Eq,(z|a) logpo(z | 2)] = Drr (qp(2 [ 2)p(2))

S
~ o logpo(a | 29) — Dic (ao(= | @)p(2)
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Hamiltonian Monte Carlo de Madrid

Improving inference

e Discrete trajectories (chains) of 1 updates, © . AVAV.  ha VeV
ending in: *

' (z]z) ~ p(z|z)

 Target: true posterior density.
* Needed: 3

e 1. Good initial proposal (encoder).

e 2. Well-defined hyperparameters.

Random hyperparameters Tuned hyperparameters
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Hamiltonian Monte Carlo

Hyperparameter tuning [7]

10 10

E, ) [log p* ()]

0 -
—1 4

SKSD(q'"(x), p* (x))

 Tuning the hyperparameters via Variational

Inference: 5 01\/\&'\./\/ =

| %«MWWM

* * —31 =37 Inflation
¢ qu 2 |
~10 - . - ~10 - . | |
-10 -5 0 5 10 -10 -5 0 5 10 %75 50 100 150 200
X0 X0 step

(a) Before training (wave) (b) After training (wave) (c) Objectives, inflation (wave)

 Add an inflation parameter for scaling the
proposal [8]

3 3 Eq('r](r] log p‘ (.’II)
—1-
| - ) 5. W
s* = argmin SKSD(z"), V., log p*(2)) N Y I
) SKSD(¢")(z), p*(z))
)‘.? O‘ 2
iy 0 WWMW
—2 1 Inflation
N
: Sy
| ]l
-2 0 2 ~2 0 2 3 R ra—
X0 Zo step

(d) Before training (dual moon) (e) After training (dual moon) (f) Objectives, inflation (dual moon)

/1 Campbell et at., 2021 B8 Gong et at., 2020
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Hierarchical latent space de Madria
lll-posed for HMC

 Hierarchical dependencies lead to huge gradients [11, 12]

1 "
7'1_|_% =T T §¢ © vzz log p (zl) ; \

1
1 . |
Fivr =14 1 - §§b © VZH—l log p (Zl-|-1)7 08 | RGN WA T, N

0.6

04 | mems WITHOUT reparameterization
wess WITH reparameterization

0.2 -
O_ML——M

18k 184k 188k 192k 19.6k 20k

(a) Mean acceptance rate p,

Bl Betancourt et at., 2017  [10] Betancourt et at., 2015
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Hierarchical latent space de Madria »
lll-posed for HMC

e Solution:

v' Reparameterization for relaxed posterior: |

hy = fu(hiy1) + fo(Riy1) - € l @
5 o

(a) AR hierarchy (b) Reparameterization

NNs with parameters Qm — fuz, Haz — fcfz

Advances in Neural Information Processing Systems (NeurlPS) 2022
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Hierarchical latent space de Madria
lll-posed for HMC

* Solution: I, @ - ,@ >@
A

v' Reparameterization for relaxed posterior:

hy = fu(hiy1) + fo(Riy1) - € :
I'h ’- ------- >@ >
NNs with parameters Quz — fuz, Haz — fcfz @ & >
-
v Perform inference on € = {¢y, ..., €} with standard §
Gaussian prior. = @ @
de O aecU

v' No residual distributions needed.
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Hierarchical latent space de Madrid
lll-posed for HMC

08 | ApA ,

 Solution: 06 -
04 | e WITHOUT reparameterization
, mes WITH reparameterization
v Reparameterization for relaxed posterior: . oy |
0
18k 184k 188k 19.2k 19.6k 20k
hl — fﬂzl (hl-l—].) —|— fa'l (hl_|_]_) * El (a) Mean acceptance rate p,
NNs with parameters ‘9#1 — fuz, Haz — fcfz |
} = WITHOUT reparameterization

we=  WITH reparameterization

1.4

v Perform inference on € = {€y, ..., €} with standard
Gaussian prior.

-1.8

2.2

-2.6

v' No residual distributions needed.

0 2k 4k 6k 8k 10k 12k 14k 16k 18k
(b) log p(xv|xo)

v' No need to increase complexity of the HMC method.
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Optimization algorithm

Algorithm 1 Training algorithm for HH-VAEM ° 1 . Trai n marg I nal VAES USi ng :

Input: data (mg :N), yg :N)), steps: Tq, Tvi, Tumc

Parameters: v, 0, 1, ¢, s Lo(rq: {0 — I (x 2-)E o
STAGE 1: MARGINAL VAES a (¥a;10a,7a}) (24 € z0) Qg (zalza) 108

ford=1to D do
Initialize marginal VAE {04, 74}
fort=1to7T,;do
'y:’i-l_l, 92-'_1 — Adamvg’% (Lq)
end for
end for

po, (Tq, 24q)
Avq (Zd ’ :Ed)
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HH-VAEM G masnd
Optimization algorithm
Algorithm 1 Training algorithm for EFL-VAEM e 2. Training Hierarchical VAE using the ELBO:
Input: data (w(ol ’N), yg :N)), steps: Ty, Ty 1, Trrnic I
carameters: 7, 9 9. 6.8 Lvi (2o, y0;{0,¢}) = By, [logpe (zo0 | h1) +logps (yo | &, hi)] - ; Dx1 (gy (&1 | o, yo) [P (€1))
ford=1to D do =

Initialize marginal VAE {04, 74}
fort=1to7T,;do
’yfi-l_l, 93-'_1 — Adamvfl,% (,Cd)
end for
end for
STAGE 2: DEPENDENCY VAE
fort=1to Ty ag do
9t+1, wt—l_l — Adamgt,w (EVI)

end for reo

-2.2 -
-2.4
-2.6 -
-2.8 -

-3.2 -
-3.4
-3.6

'k 0 2k 4k 6k 8k 10k12k14k16k

(a) log p(zv|zo)
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HH-VAEM

Optimization algorithm

3. Train a) encoder using ELBO, b) HMC hyperparams, decoder and

N o | predictor parameters using HMC objective and c) scale using
Input: data (mo Yo ), steps: Ty, Iv i, THmC SKSD
Parameters: v, 0, Y, ¢, s '
STAGE 1: MARGINAL VAES
for d = 1to D do L o)
Initialize marginal VAE {04, v4} - — L
fort = 1to 7T, do Lumc (ZOvyO7{97¢7¢}) qu(bT)(e)[logPG (ZO ’ hl) _I_logp@ (yO ’ wahl) _|_Zp(el )]
vo 05« Adam,e g (L) =1
end for
end for

STAGE 2: DEPENDENCY VAE Lsksp(To,yo;s) = SKSD (QéT)(Glz@ T0,Y0; 8), p(€|zo, To, yo))
fort=1to Ty ag do

9t+1, wt—l_l < Adamgt,,w (EVI)
end for ro

Algorithm 1 Training algorithm for HH-VAEM

STAGE 3: JOINTLY OPTIMIZING VAE + HMC 2 q(z|lxz) p(z|z)
fort=1to THMC do -2.2
¢t+1 — Adamw (LVI) ~2.4 1
9t+1, ¢t+1 — Adamgt,¢t (LHMC) :i:
8t+1 — Adamst (LSKSD) _.3 |
end for 3.2 -
_3_4 l

-3.6
)k 0 2k 4k 6k 8k 10k12k14k16k18k20k2:

(a) logp(xu|To) 2HMC samples (orange)
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Experiments
Mixed-type data

k
1
108 P(01|0) = 108 E ey ) [P0 |€)] ~ log 7 3 plaue:)

Bank

Insurance

Avocado

Naval

Yatch

Diabetes

Concrete

Wine

Energy

Boston

VAEM
MIWAEM
H-VAEM
HMC-VAEM

2.84 +0.07
2.74 £ 0.05
2.82 +0.06
2.69 £+ 0.05

1.81 +0.03
1.88 +0.04
1.80 = 0.04
1.77 + 0.06

1.89 4 0.01
1.92 +0.04
1.89 = 0.01
1.89 = 0.02

0.55 = 0.05
0.57 = 0.03
0.48 = 0.06

3.15 = 0.28
2.66 = 0.11
3.06 = 0.31

0.49 4+ 0.07 2.21 4 0.24

2.78 £ 0.16
2.00 =£0.09
2.74 +0.09
2.72 + 0.20

2.45 1+ 0.26
2.34 +£0.51
2.42 +0.21
2.28 £+ 0.29

3.01 £0.61
2.76 = 0.48
2.80 = 0.56
2.83 £ 0.46

2.09 = 0.10
2.06 = 0.14
1.72 £ 0.11
1.73 4+ 0.05

2.01 =0.23
1.94 = 0.23
1.89 +0.24
1.83 == 0.16

[HH-VAEM

2.63 1 0.04

1.75 = 0.03

1.88 +0.05

0.40 & 0.05

2.47 £ 0.27

2.54 £0.13

2.28 £ 0.09

1.90 = 0.17

1.71 £ 0.04

1.83 £+ 0.11

Table 1: Test negative log likelihood of the unobserved features for our model and baselines.

log p(y|lxo) = log

k
ﬂ |
g™ (elzo) [P(YlE)] A log - > plyle:).

Bank

Insurance

Avocado

Naval

Yatch

Diabetes

Concrete

Wine

Energy

Boston

VAEM
MIWAEM
H-VAEM
HMC-VAEM

0.56 = 0.06
0.51 £ 0.03
0.50 = 0.03
0.52 4= 0.02

1.20 = 0.03
1.15 +0.03
1.06 = 0.02
1.00 = 0.03

1.18 = 0.02
1.15+0.03
1.18 =0.02
1.12 + 0.03

269+=0.01 061=x0.02 1.59%0.19
2.710£0.01 0.60£0.03 1.36 = 0.10
268001 060=x0.02 1.71=+0.14
2.71 £0.01 0.52 4 0.15

1.55 = 0.29

1.07 = 0.09
0.95 = 0.22
1.02 = 0.09
0.95 == 0.26

0.28 = 0.09
0.28 =0.13
0.26 = 0.11
0.28 = 0.09

0.61 +=0.14
0.54 = 0.12
0.46 = 0.14
0.41 + 0.07

0.85+=0.21
0.80 = 0.21
0.90 &= 0.22
0.71 +£0.13

|HH-VAEM 0.49 + 0.03 0.93 + 0.06 1.10 £+ 0.01 2.62 +0.01 0.56 +=0.02 1.38 +0.18 0.95 4 0.08 0.20 + 0.04 0.32 + 0.05 0.55 &+ 0.04 |

Table 2: Test negative log likelihood of the predicted target for our model and baselines.
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Experiments
MNIST datasets

VAE MIWAE H-VAE HMC-VAE HH-VAE

MNIST 0.124 £0.001 0.121 £0.001 0.119 £0.001 0.101 £ 0.004|0.094 4 0.003
F-MNIST 0.162 + 0.002 0.160 4 0.002 0.156 £ 0.002 0.150 £ 0.002| 0.144 =+ 0.002

Table 3: Test negative log likelihood of the unobserved features for the
MNIST datasets.

VAE MIWAE H-VAE  HMC-VAE HH-VAE

MNIST 0.153 £0.009 0.151 £0.007 0.146 £+ 0.006 0.067 £+ 0.007|0.056 &= 0.019
F-MNIST 0.501 £ 0.012 0.496 + 0.008 0.494 + 0.007 0.357 £+ 0.060|0.337 4= 0.069

Table 4: Test negative log likelihood of the predicted target for the
MNIST datasets.

VAE MIWAE H-VAE HMC-VAE HH-VAE

MNIST  0.953 £0.004 0.953 £ 0.003 0.953 + 0.003 0.978 £+ 0.003 | 0.981 = 0.005
F-MNIST 0.824 4+ 0.005 0.824 +0.004 0.824 + 0.004 0.869 £+0.015|0.876 4 0.017

Table 5: Test accuracy of the predicted digits for the MNIST datasets.

Advances in Neural Information Processing Systems (NeurlPS) 2022
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Sequential Active Information Acquisition (SAIA)

e Sequentially acquiring high-value information by

selecting features that maximize

j(yaxz ‘ il?o) ~ Zp:ci,mmo (27]) lOg

LY,

pxi,y|mo (27 ])

Pzx;lxo (i)pykno (])

—4— VAEM + KL —4+— VAEM + ours —4— HH-VAEM + ours
0.40 10
15 81 8
©0.35 o
E E 10 E 61 E 6
2 I 2 %
*0.30 = e s 4
5.
2
. 2 . , . . .
0 5 10 0 2 4 6 0 5 10 0 2 4 6 8
Steps Steps Steps Steps
(a) Avocado (b) Yatch (c) Boston (d) Energy
0.8
0.0116 4
: | 70
o 061 ° o 121 ©
£ £ 0.0114/ g g
o 0.41 el o 101 = 60
2 g g 4 8 d
0.2 0.01121 -
ol 50
0.0 0.0110+
0 5 10 0 5 10 0 2 4 6 8 0.0 25 50 7.5 10.0
Steps Steps Steps Steps
(e) Wine (f) Naval (g) Concrete (h) Diabetes

Figure 5: SAIA metric curves. Horizontal axis shows acquisition steps (number of discovered features). Vertical axis
is the RMSE.

Advances in Neural Information Processing Systems (NeurlPS) 2022




Universidad
Carlos il
de Madrid

Experiments
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Conclusion de Madric

e \We presented:
1. HH-VAEM: novel Hierarchical VAE improved with HMC with automatic hyperparameter optimization.

2. Novel sampling-based technique based on the Mutual Information estimation for efficient information
acquisition.

e Based on the provided experiments, we demonstrate that our methods:
v Improve approximate inference in hierarchical VAEs wrt to the Gaussian approximation.
v Improve missing data imputation task.
v Improve prediction task.

v Improve active information acquisition task.
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