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Advances in Neural Information Processing Systems (NeurIPS) 2022

Challenges
Enhance information acquisition with VAEs

• Discovery of high-value information.


• Bayesian reward function [2] as an expected gain of information:





• Approximated in [3,4] by transforming into  space:


 


• These methods are based on Gaussian approximations of the true posterior.

z
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[3] Ma et at., 2018 [4] Ma et at., 2020[2] Bernardo et at., 1979
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Challenges
Improve missing data imputation with VAEs

• Imputation under a VAE framework [3,4,5,6]:





• Also based on Gaussian approximations of the true posterior.

p(xU |xO) = Ep(z|xO)[p(xU |z)] ⇡ Eq(z|xO)[p(xU |z)]
<latexit sha1_base64="GDNdmuq5P26I50HoAyAIhfrjaoY="></latexit>
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[3] Ma et at., 2018 [4] Ma et at., 2020 [5] Nazabal et at., 2020 [6] Mattei et at., 2020
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Challenges
Jointly increase flexibility and improve inference

• Hierarchical VAEs are successful at modeling flexibility.





• Complicated posteriors -> Delicate inference 
(posterior collapse).


• Gaussian approximate inference worsens.

p(z1)
LY

l=2

p(zl | zl�1)
<latexit sha1_base64="+MnSmLtDX/eslYBCGeRekf45KUk="></latexit>
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[6]

z1
<latexit sha1_base64="1gXU4TbLSkaFNbb0Rl8AuNXpQNw=">AAACanicdVFJTsMwFHXDVMJcVohNREFigaq4RQw7BBsWLECiUKmNKsf5KVZtJ7IdRIlyCbZwMe7AIXCHBS3wJcvP7w96fj9MOdPG9z9Lztz8wuJSedldWV1b39jcqjzoJFMUmjThiWqFRANnEpqGGQ6tVAERIYfHsH81zD8+g9IskfdmkEIgSE+ymFFiLNXqhCJ/Lbq4u1n1a/4ovN8AT0AVTeK2u1W66UQJzQRIQznRuo391AQ5UYZRDoXbyTSkhPZJD9oWSiJAB/lIcOEdWCby4kTZI403Yn925ERoPRChrRTEPOnZ3JD8LzecqIs/p02RoZh+v4y1TQs38VmQM5lmBiQd644z7pnEG5rpRUwBNXxgAaGK2a979IkoQo213O1EENu1jObmPQUgi1z1wiL3axg3jqy/J+fYXoXrWv/xrNu/wUO9hhu1+t1x9eJysoky2kV76BBhdIou0DW6RU1EEUdv6B19lL6cirPj7I5LndKkZxtNhbP/DSCpu3I=</latexit>

z2
<latexit sha1_base64="1maWpgk440eQVoHS/0CTSHSjhgw="></latexit>

x
<latexit sha1_base64="hNSlGFbxY1QXRZSWX4aNGu5SNtI=">AAACaHicdVHLTgIxFC3jC8cX6MIYNxOIiQtDZsD42BHduHCBiTwSIKRT7mCl7UzajoFM5h/c6p/5C36F5bEQ0Js0PT33kdNz/YhRpV33K2OtrW9sbmW37Z3dvf2DXP6wocJYEqiTkIWy5WMFjAqoa6oZtCIJmPsMmv7wfpJvvoFUNBTPehxBl+OBoAElWBuq0fF5Mkp7uaJbcqfhrAJvDopoHrVePvPY6Yck5iA0YViptudGuptgqSlhkNqdWEGEyRAPoG2gwBxUN5nKTZ0zw/SdIJTmCO1M2d8dCeZKjblvKjnWL2o5NyH/y00mqvTPaQukzxffo5m2ReE6uOkmVESxBkFmuoOYOTp0JlY6fSqBaDY2ABNJzdcd8oIlJtoYbnf6EJilTOcmAwkg0kQO/DRxS55XuTD+Xt165kpt2/jvLbu9ChrlklcplZ8ui9W7+Say6BQV0Dny0DWqogdUQ3VE0Ct6Rx/oM/Nt5axj62RWamXmPUdoIazCD6yuusw=</latexit>
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Contributions
Hierarchical Hamiltonian VAE for mixed-type incomplete data (HH-VAEM)

• Increased flexibility by using 
hierarchical latent space.


• Improved inference by means of 
automatically tuned HMC.


• Reparameterization for well-posed HMC 
on relaxed posterior.


• More accurate imputation and 
prediction.


• More effective information acquisition.
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Information acquisition
Sampling-based method

• Sampling-based estimator [11] of the Mutual Information:








✓ Avoids the Gaussian approximation


✓ Efficient, easy parallelization.

<latexit sha1_base64="1fTp7jnSabzrDDNHeOeUSrYuCIA="></latexit>

R(i,xO) = DKL [p(y, xi|xO)||p(y|xO)p(xi|xO)] = I(y;xi |xO) =

=

ZZ

xi,y
pxi,y|xO

(xi,y|xO) log

✓
pxi,y|xO

(xi,y|xO)

pxi|xO
(xi|xO)py|xO

(y|xO)

◆

<latexit sha1_base64="rJXJ1ryOWx+hCoYn/O5Cy1SCgZg="></latexit>

Î(y;xi |xO) ⇡
X

ij

pxi,y|xO
(i, j) log

pxi,y|xO
(i, j)

pxi|xO
(i)py|xO

(j)
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[11] Kraskov et at., 2004



Advances in Neural Information Processing Systems (NeurIPS) 2022

2HMC samples (orange)

q(z|x)
<latexit sha1_base64="niwxoIL1HiGXPyfnNOipINpldKk="></latexit>

p(z|x)
<latexit sha1_base64="iqypmH2FYUXQjM8UtFTYmeFMZt0="></latexit>

2HMC samples (orange)

q(z|x)
<latexit sha1_base64="niwxoIL1HiGXPyfnNOipINpldKk="></latexit>

p(z|x)
<latexit sha1_base64="iqypmH2FYUXQjM8UtFTYmeFMZt0="></latexit>

HH-VAEM
Improving inference
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L(x; ✓,�) = Eq�(z|x) [log p✓(x | z)]�DKL (q�(z | x)kp(z))
<latexit sha1_base64="9Yyz2BaOCfjC7mVy/nUsNe1hYBM="></latexit>

⇡ 1

S

SX

s=1

log p✓(x | z(s))�DKL (q�(z | x)kp(z))
<latexit sha1_base64="dBNJFu6AYyYPIsXLwHCtjquQR7Q=">AAADTXicdVLbjtMwEHWywC7h1sIjLxYVUitBlbRbFh6QyuUBCR4WLXuR1t3IcZzUqnPBdlCL8Q/wK3wMz3wIbwjhtJXYtDCSNeMz54zGnolKzqTy/R+Ou3Pl6rXdvevejZu3bt9pte+eyKIShB6TghfiLMKScpbTY8UUp2eloDiLOD2NZq/q/OknKiQr8g9qUdJJhtOcJYxgZaGw9Q3hshTFHKJEYKIDo48MRLLKQi2fB+biCPEihWWI1JQq3EVRwWO5yKzTc0vMWAwvY5/Nhe7Knuk9fh3qt/CdQZwmqvsxROWUdZvMbfXc9CD6AssNYg8Jlk5VL2x1/L6/NLgdBOugA9Z2GLadryguSJXRXBGOpTwP/FJNNBaKEU6NhypJS0xmOKXnNsxxRuVEL3/VwIcWiWFSCHtyBZfoZYXGmax7tMwMq6nczNXg/3J1RWn+Wa0BRlnzPl/11mxcJU8nmuVlpWhOVn0nFYeqgPXEYcwEJYovbICJYPbpkEyxnbaye+GhmCZ2d5Z19Ywu8kLRMBWU5kaLNDLa7wfB8JH95yfPAutMU0HsQ+wuhhGv6F+BP6oFg9F+7UaDofE8z04v2JzVdnAy6AfD/uD9fmf8cj3HPXAfPABdEIADMAZvwCE4BsRpOwfO2Hnhfnd/ur/c3yuq66w190DDdnb/ANdPELU=</latexit>
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Hamiltonian Monte Carlo
Improving inference

• Discrete trajectories (chains) of  updates, 
ending in:





• Target: true posterior density.


• Needed:


• 1. Good initial proposal (encoder).


• 2. Well-defined hyperparameters.

T

q(T )(z|x) ⇡ p(z|x)
<latexit sha1_base64="foXhOnAEY+a5B/Z3kf8Rv8hxKCc="></latexit>
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Random hyperparameters Tuned hyperparameters
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Hamiltonian Monte Carlo
Hyperparameter tuning [7]

• Tuning the hyperparameters via Variational 
Inference:





• Add an inflation parameter for scaling the 
proposal [8]


�
⇤ = argmax

�
E
q(T )
� (z)

[log p⇤(z)] +H

h
q
(T )
� (z)

i

<latexit sha1_base64="5GQfkpVivkHxsVmDDr6aHIVWgyY="></latexit>

s⇤ = argmin
s

SKSD(z(T ),rz log p
⇤(z))

<latexit sha1_base64="u/EDBB+1f3G7DTIQx3ZpIIdJKa4="></latexit>
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[7] Campbell et at., 2021 [8] Gong et at., 2020
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Hierarchical latent space
Ill-posed for HMC

• Hierarchical dependencies lead to huge gradients [11, 12]


 

rl+ 1
2
= rl +

1

2
� �rzl log p

⇤(zl) ,

zl+1 = zk + rl+ 1
2
� � � 1

M
,

rl+1 = rl+ 1
2
+

1

2
� �rzl+1 log p

⇤(zl+1),
<latexit sha1_base64="MxZR1tWJN3eArjVQ1nWbxC5Qg4s=">AAAD1nicjVNbb9MwFHYTLiNctsEjL4YKtLKqSjokeEGa4IUXpCHRrdJcKsd1WqvORbaD1lrmDfHKD+CP8W9wLhVLG6QdKdLxd75zzpfPSZhxJpXv/+k47q3bd+7u3fPuP3j4aP/g8PG5THNB6IikPBXjEEvKWUJHiilOx5mgOA45vQiXH4r6xTcqJEuTL2qV0UmM5wmLGMHKQtPDzm/vJURhrIWZan6MIoGJDoweGgPfbQocHsNrFYgUvVLlbh3ynBpd8FC2YLYJ9SFKZ6mCKMEhx1O9nnKL8nQOs6+vjgrm2k7sob4lIujBOioV61JFsNltj8tid7u+f6tupGfT2sr+ZIypJG0pEk1FLTJu7E2LNeXoXXtKuAf704OuP/DLgLtJUCddUMeZvc9naJaSPKaJIhxLeRn4mZpoLBQjnBoP5ZJmmCzxnF7aNMExlRNd6jXwhUVmMEqFfRIFS/R6h8axlKs4tMwYq4XcrhXg/2rFRGlapzXAMG6eryptTeEqejvRLMlyRRNS6Y5yDlUKi28czpigRPGVTTARzL46JAts70jZP8GzpgbbFu4m58NBcDIYfn7dPX1f27sHnoLn4AgE4A04BR/BGRgB4rhOzxk6J+7Y/e7+cH9WVKdT9zwBjXB//QXGNz3D</latexit>
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[9] Betancourt et at., 2017 [10] Betancourt et at., 2015
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Hierarchical latent space
Ill-posed for HMC

• Solution: 


✓ Reparameterization for relaxed posterior:





NNs with parameters  , ✓µl ! fµl
<latexit sha1_base64="nKBjK6cUNVTPx6BdTNqJ7ZtUrvY="></latexit>

✓�l ! f�l
<latexit sha1_base64="RCecItDCDusJ+UZQ3uqq7gLDUiA=">AAACdXicdVFNT9tAEN24hYbw0VCOCGkhgDgFG5DaAwdULhxBagAJR9Z4M05W7NrW7hgSWf4z/Jpey62/hCubjwOBdqSV3rw3M3o7E+dKWvL9vzXv0+eFxS/1pcbyyura1+b6t2ubFUZgR2QqM7cxWFQyxQ5JUnibGwQdK7yJ78/H+s0DGiuz9BeNcuxq6KcykQLIUVHzNCQc0mROGasCqzKkARJEZWhlX0OkqoqHRvYHBMZkjzx5o0TNlt/2J8E/gmAGWmwWl9F6bTvsZaLQmJJQYO1d4OfULcGQFAqrRlhYzEHcQx/vHExBo+2WE3sV33NMjyeZcS8lPmHfdpSgrR3p2FVqoIF9r43J/2njibb657Q5Mtbz+XDqbd44JT+6pUzzgjAVU99JoThlfHwC3pMGBamRAyCMdF/nYgAGBLlDNdxSg/cr/Aiuj9rBcfvo6qR19nO23jrbZDvsgAXsOztjF+ySdZhgT+w3+8Oeay/elrfr7U9LvdqsZ4PNhXf4ClJBxEg=</latexit>

11



Advances in Neural Information Processing Systems (NeurIPS) 2022

Hierarchical latent space
Ill-posed for HMC

• Solution: 


✓ Reparameterization for relaxed posterior:





NNs with parameters  , 


✓ Perform inference on  with standard 
Gaussian prior.


✓ No residual distributions needed.

✓µl ! fµl
<latexit sha1_base64="nKBjK6cUNVTPx6BdTNqJ7ZtUrvY="></latexit>

✓�l ! f�l
<latexit sha1_base64="RCecItDCDusJ+UZQ3uqq7gLDUiA="></latexit>

ϵ = {ϵ1, . . . , ϵ1}

12



Advances in Neural Information Processing Systems (NeurIPS) 2022

Hierarchical latent space
Ill-posed for HMC

• Solution: 


✓ Reparameterization for relaxed posterior:





NNs with parameters  , 


✓ Perform inference on  with standard 
Gaussian prior.


✓ No residual distributions needed.


✓ No need to increase complexity of the HMC method.

✓µl ! fµl
<latexit sha1_base64="nKBjK6cUNVTPx6BdTNqJ7ZtUrvY="></latexit>

✓�l ! f�l
<latexit sha1_base64="RCecItDCDusJ+UZQ3uqq7gLDUiA="></latexit>

ϵ = {ϵ1, . . . , ϵ1}
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HH-VAEM
Optimization algorithm

14

• 1. Train marginal VAEs using: 

<latexit sha1_base64="cK0YybJqVHPUesHQQUox4A2OBZY="></latexit>

Ld (xd; {✓d, �d}) = I (xd 2 xO)Eq�d
(zd|xd) log

p✓d (xd, zd)

q�d (zd | xd)
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HH-VAEM
Optimization algorithm

15

• 2. Training Hierarchical VAE using the ELBO:


LV I (xO,yO; {✓, }) = Eq [log p✓ (zO | h1) + log p✓ (yO | x̂,h1)]�
LX

l=1

DKL (q (✏l | xO,yO) kp (✏l))
<latexit sha1_base64="DDzMn17ct6OkxggYPXdKfP4H/Kc="></latexit>
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HH-VAEM
Optimization algorithm

16

3. Train a) encoder using ELBO,  b) HMC hyperparams, decoder and 
predictor parameters using HMC objective and c) scale using 
SKSD.




LHMC (zO,yO; {✓, ,�}) = E

q(T )
� (✏)

[log p✓ (zO | h1) + log p✓ (yO | x̂,h1) +
LX

l=1

p(✏(T )
l )]

<latexit sha1_base64="U3g2aseI6xL/7/yvvaLq2R/gRYw="></latexit>

2HMC samples (orange)

q(z|x)
<latexit sha1_base64="niwxoIL1HiGXPyfnNOipINpldKk=">AAACznicdVFNbxMxEHWWr7J8pXDkYhEhFamKdpOGllsFF45BIm2lbrTyOrOpFa+92LNVwmJxRRz5NVzhX/Bv8CZBYlsYyfLzm3mj8byslMJiFP3qBDdu3rp9Z+dueO/+g4ePuruPT6yuDIcJ11Kbs4xZkELBBAVKOCsNsCKTcJot3jT500swVmj1HlclTAs2VyIXnKGn0u5+grDEdZ+aa4W+b5rJClz9YS/Jivqjo59oA5buhUu7vagfrYNeB/EW9Mg2xulu52sy07wqQCGXzNrzOCpxWjODgktwYVJZKBlfsDmce6hYAXZar8dx9LlnZjTXxh+FdM3+rahZYe2qyHxlwfDCXs015P9yTUfr/tmtRWZF+73czNYeHPOjaS1UWSEovpk7ryRFTZuV05kwwFGuPGDcCP91yi+YYRy9MWEyg9ybt7FgASulEdK5AVCuNvPM1VE/jof7fs8vX8X+cm1F27Q/gmjUCAajg+YaDYYuDEPvXnzVq+vgZNCPh/3Bu4Pe8eutjzvkKXlG9khMDskxeUvGZEI4+Ua+kx/kZzAOLgMXfN6UBp2t5glpRfDlN0Bz4VM=</latexit>

p(z|x)
<latexit sha1_base64="iqypmH2FYUXQjM8UtFTYmeFMZt0="></latexit>
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Experiments
Mixed-type data

17

º

º

log p(y|xO) = logE✏⇠q(T )(✏|xO) [p(y|✏)] ⇡ log
1

k

kX

i

p(y|✏i),
<latexit sha1_base64="aerw93NHcqpSgQ9tLDddsv62bl8=">AAADCnicdVLdbtMwGHXC3yh/HVxy80GF1EqoagbSdoM0gZC4Y0jrNqnJIsd1Uqt27NkOamXyBjwNd4hbXoBL3ganLWjp2CdZOj7n+/ORM8WZsaPR7yC8cfPW7Ts7dzv37j94+Ki7+/jEyEoTOiaSS32WYUM5K+nYMsvpmdIUi4zT02z+rtFPP1NtmCyP7VLRROCiZDkj2Hoq7f6KuSxA9eNMuGUNX6ABizr9OIA3ACsxFtjOssy9r1PXqDFVhnFZ1hAbJuDi3PWPB3W/LV1u5BM5ze0Etuf8Sx9ArFkxswnEWCktF/B3dq4xcVHt5s20SqTsfH5tl5QNAF6m3d5oOFoFXAXRBvTQJo7S3eBZPJWkErS0hGNjJtFI2cRhbRnhtO7ElaEKkzku6MTDEgtqErfyvoYXnplCLrU/pYUVe7nCYWHMUmQ+s/HRbGsNeZ3WdDT1f7u1yEy074v1bu3FbX6QOFaqytKSrPfOKw5WQvMvYMo0JZYvPcBEM/90IDPs3bf+93S8qdG2hVfByd4wejXc+/S6d/h2Y+8Oeoqeoz6K0D46RB/QERojEuwHSZAHRfg1/BZ+D3+sU8NgU/MEtSL8+QdaGfhJ</latexit>



Advances in Neural Information Processing Systems (NeurIPS) 2022

Experiments
MNIST datasets

18
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• Sequentially acquiring high-value information by 
selecting features that maximize

Experiments
Sequential Active Information Acquisition (SAIA)

19

Î (y;xi | xO) ⇡
X

ij

pxi,y|xO
(i, j) log

pxi,y|xO
(i, j)

pxi|xO
(i)py|xO

(j)
<latexit sha1_base64="fHGWFj1jw/Cd4/ne4yIu/K0xOLE="></latexit>
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Experiments
Conditional image inpainting

20

1. Encode to


2. Using HMC, sample from 


3. Decode to 

q(0)
�

(✏ | zO,xO,yO)
<latexit sha1_base64="/QgY8DozStjyo397LlWFK9WPY78="></latexit>

q(T )
�

(✏ | zO,xO,yO)
<latexit sha1_base64="5LfSBha2gwbnOmHKMvv6ANDODbs="></latexit>

p
⇣
xU | ✏(T )

⌘

<latexit sha1_base64="AFwOXvOf1a+N8p9n3UGtWxyFXSs="></latexit>
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Conclusion

• We presented:


1. HH-VAEM: novel Hierarchical VAE improved with HMC with automatic hyperparameter optimization.


2. Novel sampling-based technique based on the Mutual Information estimation for efficient information 
acquisition.


• Based on the provided experiments, we demonstrate that our methods:


✓ Improve approximate inference in hierarchical VAEs wrt to the Gaussian approximation.


✓ Improve missing data imputation task.


✓ Improve prediction task.


✓ Improve active information acquisition task.

21
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