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Abstract

Evaluating natural language generation (NLG) models has become a popular and
active field of study, which has led to the release of novel datasets, automatic
metrics, and human evaluation methods. Yet, newly established best practices
are often not adopted. Moreover, the research process is often hindered by the
scarcity of released resources like model outputs, and a lack of documentation of
evaluation parameters often complicates judging new NLG methods. We analyze
66 papers published in 2021 across 29 different dimensions to quantify this effect,
and identify promising ways for the research community to improve reporting and
reviewing experimental results.

1 Introduction

For authors and reviewers in empirical machine learning, evaluation is key to verify the validity of
a scientific claim. Yet collecting and reporting experimental results involves decisions that are not
always reported, including the selection of datasets, the choice and parametrization of metrics, the
task setups used for human evaluation, and many more. Often these design decisions are based on
previously published work and assumptions about what the community considers acceptable, a cycle
that can lead to the normalization of flawed evaluation and reporting practices.

This is a particularly salient problem for text generation, where researchers have long called out
opaque evaluation practices [e.g.,|Stent et al., 2005, Belz and Gatt, [2008| Pitler et al., [2010]. The
issues range from metrics that do not correlate well with different surface-level [Fabbri et al.| [2021]]
or semantic [Maynez et al.,[2020]] quality aspects, to a focus on English datasets [Joshi et al., 2020],
or underreported human evaluation details [Howcroft et al., 2020]. As a result of these and many
other issues, it is challenging to improve evaluations as a whole. New evaluation techniques are rarely
widely adopted, and reviewers may not even be aware what constitutes a “good” evaluation.

This paper presents a list of 29 suggestions across 8 high-level evaluation aspects that is grounded in
the published NLG evaluation literature, and we quantify the extent to which authors follow them.
We survey 66 papers published at EMNLP, INLG, and ACL in 2021, find that these practices are
followed at an average rate of 27% and uncover dimensions that require more drastic changes in the
NLG community. For an extended motivation for each suggestion, we point to the extended version
of this work [[Gehrmann et al., 2022]].

2 Background and Study Setup

Our analysis focuses on conditional natural language generation. We consider tasks in which a model
can be trained to maximize a conditional probability p(y|x) where y is natural language and x is an
input that can be structured data or natural language and which provides information about what
should be generated. We require the NLG tasks to have an explicit communicative goal, which
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needs to be expressed. That means that a model has to plan the content and structure of the text, and
actualize it in fluent and error-free language [Gehrmann, 2020]. This includes, e.g., summarization,
machine translation, and paraphrasing, while excluding question answering (answer-spans are not
natural language) and open ended language modeling (unconditional). We also omit multimodal tasks
(e.g., image captioning, speech-to-text), as well as those with non-textual output (e.g., sign language,
audio) because they require different evaluation processes.

Starting with the accepted long papers from EMNLP (848 papers), ACL (572), and INLG (46) 2021,
we filtered to papers with titles that directly mentioned an NLG task or used related keywords (like
“generating” or “realizing”). Papers were excluded from the final list when, upon reading them, we
noticed that they either did not report any results or only for tasks not covered by the above definition.
The final list includes 66 papers.

3 Evaluation Best Practices and Annotation Instructions

We annotate each paper for 29 dimensions of NLG model evaluation based on 8 categories of best
practices introduced by (Gehrmann et al.[[2022]]. The annotation instructions and limitations are in
Appendix [A]and [B] respectively. Below, we provide brief context for these suggestions, which are
listed in Table[dl

Make informed evaluation choices and document them. Prior work has called out issues in the
documentation of details of the ML pipeline e.g., in datasets [Bender and Friedman, 2018 |Gebru
et al.| 2021, [McMillan-Major et al., 2021]], models [Mitchell et al.l [2019], and human evaluations
[Shimorina and Belz,[2021]]. A similar argument can be made for evaluation, where, for example, the
design of data splits [Sggaard et al.| | 2021]] and the reference style [Goel et al., 202 1]] may favor systems
by design, yet those choices are not always documented. Liao et al|[2021]] point out that equating a
benchmark task with insights into model capabilities can lead to harmful over-generalization. We
further aim to measure the adoption of non-English datasets [e.g.,|Scialom et al.| 2020} [Ladhak et al.|
2020, |Hasan et al., [2021]].

Measure specific generation effects. The exponential output space in NLG sets it apart from other
NLP tasks and leads to a reliance on automatic metrics. However, that means that evaluation results
are only as trustworthy as the metrics. Unfortunately, most commonly used metrics have a poor
correlation with human judgments [e.g.,[Fabbri et al., 2021} |Deutsch et al.|[2021]. Moreover, different
quality aspects (e.g., grammaticality, faithfulness) may not correlate with each other [Pitler et al.,
2010} |Graham), 2015} Deutsch and Roth| 2021]], which suggests that a single number, as produced by
almost all automatic metrics, cannot fully characterize an NLG system. Another conceptual flaw is
that metrics by design are unidirectional: an increase suggests that a system is “better”, but often an
improvement on one axis comes at a cost in other areas. Evaluations should thus also identify these
trade-offs and potential shortcomings.

Analyze and address issues in the used dataset(s). Model limitations often stem from issues in the
data, and the data itself can lead to false downstream claims. To address these issues, we need to
improve how data collection processes are documented [Bender and Friedman), 2018, |Gebru et al.,
2021]]. Additionally, paying closer attention to datasets can lead to improvements for the whole
research field [e.g., [Dusek et al.,|2019| [Thomson and Reiter,2020] over time. Sending pull requests
to update data documentation and datasets thus needs to become as commonplace as sending pull
requests to or opening issues in open-source libraries. Treating datasets as dynamic encourages the
development of evaluation suites that everyone can benefit from [Bowman and Dahl, 2021]].

Evaluate in a comparable setting. Another commonly found issue is the lack of reproducibility of
evaluation numbers. Metrics have many hyperparameters and few of them are commonly reported,
leading to unfair comparisons [Liao et al., 2021} |Post, [2018]]. Numbers should thus be recomputed in
the same environment.

Run a well-documented human evaluation. [Howcroft et al.|[2020]] find that parameters of human
evaluations are often underreported, which can lead to implicit overclaims, a lack of reproducibility,
and the absence of robust evaluation standards. Many aspects that should be reported are proposed in
human evaluation datasheets [Shimorina and Belz, [2021} |Belz et al., 2021]].

Produce robust human evaluation results. In addition to better documentation, we also need to
improve how human evaluations work toward reusability and replicability in human evaluations, e.g.,



Best Practice & Implementation Yes No %

Make informed evaluation choices and document them

Evaluate on multiple datasets 47 9 839
Motivate dataset choice(s) 21 34 382
Motivate metric choice(s) 20 46 303
Evaluate on non-English language 19 47 288
Measure specific generation effects
Use a combination of metrics from at least two different categories 36 27 57.1
Avoid claims about overall “quality” 34 31 523
Discuss limitations of using the proposed method 19 46 292
Analyze and address issues in the used dataset(s)
Discuss or identify issues with the data 19 47 288
Contribute to the data documentation or create it if it does not yet exist 1 58 1.7
Address these issues and release an updated version 3 10 231
Create targeted evaluation suite(s) 14 52 212
Release evaluation suite or analysis script 3 63 4.5
Evaluate in a comparable setting
Re-train or -implement most appropriate baselines 40 19 678
Re-compute evaluation metrics in a consistent framework 38 22 633
Run a well-documented human evaluation
Run a human evaluation to measure important quality aspects 48 18 727
Document the study setup (questions, measurement instruments, etc.) 40 9 81.6
Document who is participating in the study 28 20 583
Produce robust human evaluation results
Estimate the effect size and conduct a power analysis 0 48 0.0
Run significance test(s) on the results 12 36 250
Conduct an analysis of result validity (agreement, comparison to gold ratings) 19 29 396
Discuss the required rater qualification and background 10 38 20.8
Document results in model cards
Report disaggregated results for subpopulations 13 53 197
Evaluate on non-i.i.d. test set(s) 14 52 212
Analyze the causal effect of modeling choices on outputs with specific properties 16 50 242
Conduct an error analysis and/or demonstrate failures of a model 15 51 227
Release model outputs and annotations
Release outputs on the validation set 1 65 1.5
Release outputs on the test set 2 63 3.1
Release outputs for non-English dataset(s) 1 25 3.8
Release human evaluation annotations 1 47 2.1

Table 1: Suggested best practices and number of papers that follow them. See Appendix [A]for exact
annotation instructions.

by using projects that standardize parts of the process [e.g.,|Khashabi et al.,|2021| |Gehrmann et al.,
2021]). To that regard, we measure adherence to some of the best practices suggested by |van der Lee
et al.[[2019], effect size estimates, power analyses, statistical significance tests, and analyses of the
validity of human evaluation results.

Document results in model cards. Mitchell et al.|[2019] describe the “quantitative analysis” process
of reporting disaggregated results according to chosen metrics. Generalizing this argument, we need
to identify what breaks a model, with the goal of moving away from chasing the highest overall
number. The long-term goal of evaluation reports are performance guarantees: we would like to
know exactly what to expect of a model for a given input. Evaluation reports should further include
improved error analyses, following suggestions by [van Miltenburg et al.| [2021]] and [Bender and
Koller| [2020]], who argue for more focus on limitations in addition to aggregated scores.

Release model outputs and annotations. Finally, to improve replicability, model outputs for
validation and test sets alongside instructions on how to replicate reported numbers should be
released. Many works like that of [Fabbri et al.|[2021]] would not be possible without access to model
outputs, and such corpora can be used for metric development and validation, and to conduct meta
evaluations. Releasing outputs on non-English datasets, even when no human evaluation can be
conducted, supports evaluation improvements on the covered languages by reducing the burden on
the evaluation researchers to produce the outputs.



4 Results

We find that 36.7% of our 2046 judgments were positive, which means that the field has already taken
a significant step toward solving the problems pointed out throughout this survey. Scores for papers
ranged from 6.5% to 58.1%, with an average of 27.3% (median 25.8%, standard deviation of 0.11),
suggesting that no consistent standard is widely applied.

The vast majority of papers include evaluation results from multiple datasets (84%) and report human
evaluation results (73%). However, the documentation of the choices that went into the evaluation
process is often flawed. Only 38 and 30% of papers respectively motivate why they chose a particular
dataset and metric, and half the papers made claims in the abstract pertaining to their system outputs’
overall quality when this was not the aspect that was evaluated. About 29% of papers reported
results on a non-English language, although most were machine translation papers. Disappointingly,
only 29% discussed the limitation of the proposed method, a finding that corroborates our claim
that evaluations are too focused on reporting superior performance rather than fully characterizing
system outputs. As a positive example, [Kim et al.[[2021] report negative results on out-of-distribution
performance, encouraging future researchers to work on making their proposed method more robust.

On a positive note, a majority of papers (57%) report metrics from different categories instead of only
relying on lexical overlap. In most such cases, the categories were metrics that measure similarity
to a reference and diversity among outputs. However, some also developed metrics to specifically
measure what is being claimed. For example, [Lyu et al.|[2021] work on lexical consistency for
document-level MT, which they derive a metric from and use alongside other metrics to validate their
specific claims. About 20% of papers provide additional breakdowns of the results, report on non-i.i.d.
test sets, conduct error analyses, or demonstrate a causal effect of input features. These are especially
helpful when the analysis is motivated by problem-specific needs. For example, Krishna et al.|[2021]
investigate the generation of doctors’ notes from conversations and analyze the performance in the
presence of simulated speech recognition errors.

While 29% of papers point out issues in the datasets they use or introduce, we found only one
paper that contributed to the data documentation, leaving future researchers to rediscover the same
issue(s). Moreover, only 3/13 papers that point out issues actually work toward solving them and
release updates to the dataset. As discussed above, this is an area where normalizing contributing
documentation and releasing updates would have beneficial effects for future work with these datasets.

Of the papers that report human evaluation results (73%), 82% state what is being measured, although
the documentation of who is evaluating is still lacking (58%). We did not find a single paper that
estimated how many annotations should be collected, and most opted for the “typical” 100 data points
which, as pointed out above, may be insufficient [van der Lee et al., [2021]]. Similarly, only 25% and
39% of papers assess the annotations and/or the annotators and only 21% discuss what background
knowledge was required to participate in an evaluation.

The aspect that is lacking the most is the release of data. Though many papers released datasets or
code to reproduce their models, almost none released model outputs or their human evaluation data.
This can lead to issues when new papers are unable to compare using the same metrics environment,
something that 37% of papers did not do. Moreover, it can significantly slow evaluation research due
to a lack of data to annotate or human annotations to compare to.

Overall, our analysis demonstrates that there is much room for improvement in NLG evaluation, but
it also shows that we are not starting at zero. While none of the papers reached 100%, which may be
an overly ambitious goal, many reached 40% or higher, meaning that they already included many
of our suggestions. We hope these best practices serve as a useful resource for researchers when
designing and documenting NLG evaluations and for reviewers when evaluating NLG work.
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A Annotation Instructions

Make informed evaluation choices and document them

e Evaluate on multiple datasets: Select yes if the paper reports results on more than one
dataset. Select N/A if the paper explicitly states that there is only one dataset available for
the addressed task.

e Motivate dataset choice(s): Select yes if the paper states why each particular dataset was
chosen. If the only reasoning is that previous work uses it, select no. If the paper introduces
a dataset, select N/A.

e Motivate metric choice(s): Select yes if the paper states why each particular metric was
chosen. If the only reasoning is that previous work uses it, select no.

e Evaluate on non-English language: If at least one of the evaluated datasets includes non-
English language, select yes.

Measure specific generation effects

e Use a combination of metrics from at least two different categories: Select yes, if the
automatic evaluation results include at least two metrics from different families (e.g., one
QA-based one and one lexical one). Reporting ROUGE and BLEU would not count while
ROUGE and BLEURT would.

e Avoid claims about overall “quality”: Select no if the abstract of the paper reports im-
provements generally and not in terms of specific generation aspects (e.g., “we outperform
baselines™)

e Discuss limitations of using the proposed method: Select yes, if there is at least one
paragraph dedicated to the limitations of the proposed method in the results or discussion
section or as its own section.

Analyze and address issues in the used dataset(s)

e Discuss or identify issues with the data: Select yes, if there is at least a mention of problem-
atic artefacts with the data or what or who it represents.
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e Contribute to the data documentation or create it if it does not yet exist: Select yes, if the
paper is accompanied by a data card or if there is a mention that original documentation was
updated.

e Address these issues and release an updated version: Select yes, if the paper is accompanied
by a release of updated data or points to a loader that retrieves the updated dataset. If the
paper introduces a dataset, select N/A.

e Create targeted evaluation suite(s): Select yes, if the paper describes the creation of a
fine-grained breakdown of subpopulations or multiple training or test splits.

e Release evaluation suite or analysis script: Select yes, if the resources in the previous points
were released in the form of data or code.

Evaluate in a comparable setting

e Re-train or -implement most appropriate baselines: Select yes, if the paper explicitly
mentions that it trains or implements baselines from prior papers.

e Re-compute evaluation metrics in a consistent framework: Select yes, if all the reported
scores were computed by the authors or by another centralized framework (e.g., through
upload to a leaderboard). If only a subset was recomputed, select no.

Select N/A for both questions above if a new dataset was introduced and the only one evaluated in
the paper.

Run a well-documented human evaluation

e Run a human evaluation to measure important quality aspects: Select yes, if a human
evaluation of any kind was conducted.

e Document the study setup (questions, measurement instruments, etc.): Select yes, if, at the
minimum, the specific questions and the way that participants answer them are reported.

e Document who is participating in the study: Select yes, if, at the minimum, the annotation
platform used and the number of participants are stated.

Produce robust human evaluation results

e Estimate the effect size and conduct a power analysis: Select yes, if any effect size estimate
or power analysis is mentioned (we assume that not mentioning it implies it absence).

e Run significance test(s) on the results: Select yes, if the human annotation results are
accompanied by a statistical significance test.

e Conduct an analysis of result validity (agreement, comparison to gold ratings): Select yes, if
there is any kind of analysis of the quality of the human annotations themselves.

e Discuss the required rater qualification and background: Select yes, if the required knowl-
edge of raters is discussed and compared to the qualifications selected for in the study.

Document results in model cards

e Report disaggregated results for subpopulations: Select yes, if the paper reports fine-grained
results on subsets of the test set(s) (note that the paper does not need to introduce these
breakdowns as in the point above).

e Evaluate on non-i.i.d. test set(s): Select yes, if there is an evaluation on a non-i.i.d. test set.
If the paper does not specifically mention this fact, select no (i.e., if the used dataset has
such a test set but this is not mentioned).

e Analyze the causal effect of modeling choices on outputs with specific properties: Select
yes, if the results include a breakdown that allow for insights of the form “if input has feature
X, model output has Y”. An ablation study counts as a yes, if the ablation focuses on feature
representations (i.e. what data a model sees), but not if the ablation is on model architecture
choices.

e Conduct an error analysis and/or demonstrate failures of a model: Select yes, if there is any
kind of error analysis or qualitative samples of where the model fails.



Release model outputs and annotations

In this section, select yes, if the paper is accompanied by data releases that include the following.

e Release outputs on the validation set
Release outputs on the test set

Release outputs for non-English dataset(s): Select N/A if the paper does not include evalua-
tion on any non-English data.

Release human evaluation annotations

B Limitations

There are a few limitation of this analysis setup. (1) Due to the phrasing as recall-oriented prompts,
nuanced errors pointed out in earlier sections are implicitly ignored. For example, “Document the
study setup” is marked as positive even if the exact definition of each measurement category is not
provided. The lack of providing a definition was identified as a source of confusion by Howcroft et al.
[2020]. In other cases, our prompts may not be covering all possibilities. For example, a study that
releases not an improved version of a corpus, but instead a tailored pretraining set would not count
as “Address dataset issues and release an updated version”. (2) Each paper is only annotated by one
co-author of this survey (after ensuring that the annotating author does not have a conflict of interest).
This means that there could be misunderstandings of the different dimensions. We tried to address
this problem by refining definitions when unclear points arose and by discussing the definitions before
starting the annotation which led to the instructions above. Nevertheless, the exact percentage results
may differ from the ground-truth by a few points and we thus consider only the overall trends when
interpreting the results. (3) We are not releasing our annotations. To protect the identity of authors of
papers with flawed evaluation processes according to our analysis, we will not release the data which
may hinder reproducibility. We highlight a few positive examples in Section 4]

Implementing and popularizing these changes in the community will require several changes to
peer review processes. First, we should encourage authors to submit resource papers. As|Rogers
and Augenstein| [2020]] point out, resource papers are already underappreciated and increasing what
counts as acceptable documentation for a resource paper may lead to fewer such papers being written.
Second, authors and reviewers need to move from claiming empirical improvements toward a more
rigorous documentation of how those were achieved. Modeling papers often include deliberations
why certain architecture choices were made, but the choice of which datasets to evaluate on or which
metrics are being used rarely move beyond “other people use it”. By the same logic, reviewers
may be hesitant to accept claims when a model is not evaluated on the standard flawed datasets. As
discussed in this work, many of the standard practices should be reconsidered and we thus need more
elaboration on these choices. Third, we encourage researchers to focus on specific phenomena, rather
than overall quality. Instead of treating NLG models or metrics as “one big problem”, we encourage
work on more specific aspects, say, logical consistency in dialog, or aggregations in table-to-text
generation. We further encourage researchers to use task-specific metrics and be upfront with the
trade-offs, and we encourage reviewers to expect and accept more nuanced claims and contributions
while discouraging claims about the overall quality of a system. Finally, to support this research, we
should encourage re-training and/or re-implementing prior work for the most appropriate benchmark
task(s) and evaluation process when necessary.
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