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1 Common Definitions

1.1 Evaluation Language Definitions

Evaluation Language

𝑣 F 𝑛 | 𝑖 | True | False | ⟨𝑣, 𝑣⟩ | 𝑤
𝑤 F 𝜆(𝑥 :𝜏) . 𝑒 | grd {𝜏 ⇐ 𝜏}𝑤
𝐸 F [ ] | ⟨𝐸, 𝑒⟩ | ⟨𝑣, 𝐸⟩ | fst{𝜏} 𝐸 | snd{𝜏} 𝐸 | app{𝜏} 𝐸 𝑒 | app{𝜏} 𝑣 𝐸 | 𝐸 𝑒 | 𝑣 𝐸 | binop𝐸 𝑒 | binop 𝑣 𝐸

| cast {𝜏 ⇐ 𝜏 ′} 𝐸 | if 𝐸 then 𝑒 else 𝑒 | mon {𝜏 ⇐ 𝜏} 𝐸 | assert𝜏 𝐸
Err◦ F Wrong

Err• F DivErr | TypeErr(𝜏, 𝑣)
Err F Err◦ | Err•

𝑒 F Err | 𝑥 | 𝑛 | 𝑖 | 𝜆(𝑥 :𝜏). 𝑒 | ⟨𝑒, 𝑒⟩ | app{𝜏} 𝑒 𝑒 | 𝑒 𝑒 | fst{𝜏} 𝑒 | snd{𝜏} 𝑒 | binop 𝑒 𝑒 | cast {𝜏 ⇐ 𝜏 ′} 𝑒
| if 𝑒 then 𝑒 else 𝑒 | mon {𝜏 ⇐ 𝜏} 𝑒 | grd {𝜏 ⇐ 𝜏} 𝑒 | assert𝜏 𝑒

𝐾 F Nat | Int | Bool | ∗×∗ | ∗→∗ | ∗
𝜏 F Nat | Int | Bool | 𝜏×𝜏 | 𝜏→𝜏 | ∗
binop F sum | quotient
𝑛 F N

𝑖 F Z

∝: 𝐾×𝑣 −→ B

𝑣0 ∝ 𝐾0 =



True

if 𝐾0 = Nat and 𝑣0 ∈ N
or 𝐾0 = Int and 𝑣0 ∈ Z
or 𝐾0 = Bool and 𝑣0 ∈ B
or 𝐾0 = ∗×∗ and 𝑣0 ∈ ⟨𝑣, 𝑣⟩
or 𝐾0 = ∗→∗ and 𝑣0 ∈ 𝑤
or 𝐾0 = ∗
False

otherwise
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Gradually Typed Languages Should Be Vigilant! 3

𝛿 : binop×𝑣×𝑣 −→ 𝑒

𝛿 (binop, 𝑖0, 𝑖1) =



𝑖0 + 𝑖1
if binop = sum{𝜏}
DivErr

if binop = quotient{𝜏}
and 𝑖1 = 0
⌊𝑖0/𝑖1⌋
if binop = quotient{𝜏}
and 𝑖1 ≠ 0

∝𝐿𝑝𝑜𝑠 : 𝜏×𝑣 −→ B

L 𝑣 ∝𝐿
𝑏𝑛𝑑

𝜏 𝑣 ∝𝐿𝑚𝑜𝑛 𝜏 𝑣 ∝𝐿
𝑐ℎ𝑒𝑐𝑘

𝜏

N 𝑣 ∝ ⌊𝜏⌋ 𝑣 ∝ ⌊𝜏⌋ True

T 𝑣 ∝ ⌊𝜏⌋ True 𝑣 ∝ ⌊𝜏⌋
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1.2 Operational Semantics

−→∗
𝐿

reflexive-transitive closure of −→
𝐿

−→
𝐿

compatible closure of ↩→
𝐿

𝑒 ↣
𝐿
𝑒

fst{𝜏0} 𝑣0 ↣
𝐿

Wrong

if 𝑣0 ≠ ⟨𝑣1, 𝑣2⟩

fst{𝜏0} ⟨𝑣0, 𝑣1⟩ ↣
𝐿

assert𝜏0 𝑣0

snd{𝜏0} 𝑣0 ↣
𝐿

Wrong

if 𝑣0 ≠ ⟨𝑣1, 𝑣2⟩

snd{𝜏0} ⟨𝑣0, 𝑣1⟩ ↣
𝐿

assert𝜏0 𝑣1

binop 𝑣0 𝑣1 ↣
𝐿

Wrong

if 𝛿 (binop, 𝑣0, 𝑣1) is undefined

binop 𝑣0 𝑣1 ↣
𝐿

assert𝜏0 𝛿 (binop, 𝑣0, 𝑣1)
if 𝛿 (binop, 𝑣0, 𝑣1) is defined

app{𝜏0} 𝑣0 𝑣1 ↣
𝐿

assert𝜏0 (𝑣0 𝑣1)

𝑣0 𝑣1 ↣
𝐿

Wrong

if 𝑣0 ≠ 𝑤0

(𝜆(𝑥0 :𝜏1) . 𝑒0) 𝑣1 ↣
𝐿
𝑒0 [𝑥0←𝑣1]

if 𝑣1 ∝𝐿𝑐ℎ𝑒𝑐𝑘 𝜏1

(𝜆(𝑥0 :𝜏1) . 𝑒0) 𝑣1 ↣
𝐿

TypeErr(𝜏1, 𝑣1)
if ¬𝑣1 ∝𝐿𝑐ℎ𝑒𝑐𝑘 𝜏1

(grd {𝜏1 ⇐ 𝜏2}𝑤0) 𝑣1 ↣
𝐿

mon {cod(𝜏1) ⇐ cod(𝜏2)} (𝑤0 (mon {dom(𝜏2) ⇐ dom(𝜏1)} 𝑣1))

cast {𝜏1 ⇐ 𝜏0} 𝑣0 ↣
𝐿

mon {𝜏1 ⇐ 𝜏0} 𝑣0
if 𝑣0 ∝𝐿𝑏𝑛𝑑 𝜏1
and 𝑣0 ∝𝐿𝑏𝑛𝑑 𝜏0
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cast {𝜏1 ⇐ 𝜏0} 𝑣0 ↣
𝐿

TypeErr(𝜏1, 𝑣0)
if ¬𝑣0 ∝𝐿𝑏𝑛𝑑 𝜏1

cast {𝜏1 ⇐ 𝜏0} 𝑣0 ↣
𝐿

TypeErr(𝜏0, 𝑣0)
if ¬𝑣0 ∝𝐿𝑏𝑛𝑑 𝜏0

mon {𝜏1 ⇐ 𝜏2} 𝑖0 ↣
𝐿
𝑖0

if 𝑖0 ∝𝐿𝑚𝑜𝑛 𝜏1 ∧ 𝑖0 ∝𝐿𝑚𝑜𝑛 𝜏2

mon {𝜏1 ⇐ 𝜏2} ⟨𝑣0, 𝑣1⟩ ↣
𝐿
⟨mon {fst(𝜏1) ⇐ fst(𝜏2)} 𝑣0,mon {snd(𝜏1) ⇐ snd(𝜏2)} 𝑣1⟩

mon {𝜏1 ⇐ 𝜏2}𝑤 ↣
𝐿

grd {𝜏1 ⇐ 𝜏2}𝑤
if𝑤 ∝𝐿𝑚𝑜𝑛 𝜏1 ∧𝑤 ∝𝐿𝑚𝑜𝑛 𝜏2

mon {𝜏0 ⇐ 𝜏1} 𝑣0 ↣
𝐿

TypeErr(𝜏0, 𝑣0)
if ¬𝑣0 ∝𝐿𝑚𝑜𝑛 𝜏0

mon {𝜏0 ⇐ 𝜏1} 𝑣0 ↣
𝐿

TypeErr(𝜏1, 𝑣0)
if ¬𝑣0 ∝𝐿𝑚𝑜𝑛 𝜏1

if True then 𝑒1 else 𝑒2 ↣
𝐿
𝑒1

if False then 𝑒1 else 𝑒2 ↣
𝐿
𝑒2

assert𝜏0 𝑣0 ↣
𝐿
𝑣0

if 𝑣0 ∝𝐿𝑐ℎ𝑒𝑐𝑘 𝜏0

assert𝜏0 𝑣0 ↣
𝐿

TypeErr(𝜏0, 𝑣0)
if ¬𝑣0 ∝𝐿𝑐ℎ𝑒𝑐𝑘 𝜏0
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1.3 Store-Based Evaluation Language Definitions

Store-Based Evaluation Language

𝑣 F ℓ | 𝑛 | 𝑖 | True | False | ⟨ℓ, ℓ⟩ | 𝜆(𝑥 :𝜏) . 𝑒
Err◦ F Wrong

Err• F DivErr | TypeErr(𝜏, 𝑣)
Err F Err◦ | Err•

𝑒 F Err | 𝑥 | ℓ | 𝑣 | ⟨𝑒, 𝑒⟩ | app{𝜏} 𝑒 𝑒 | 𝑒 𝑒 | fst{𝜏} 𝑒 | snd{𝜏} 𝑒 | binop 𝑒 𝑒 | cast {𝜏 ⇐ 𝜏 ′} 𝑒
| if 𝑒 then 𝑒 else 𝑒 | mon {𝜏 ⇐ 𝜏} 𝑒 | assert𝜏 𝑒

𝐾 F Nat | Int | Bool | ∗×∗ | ∗→∗ | ∗
𝜏 F Nat | Int | Bool | 𝜏×𝜏 | 𝜏→𝜏 | ∗
binop F sum | quotient
Σ ∈ L ↦→ V × option(T × T)
ℓ ∈ L

𝑛 ∈ N

𝑖 ∈ Z

𝐸 F [ ] | ⟨𝐸, 𝑒⟩ | ⟨ℓ, 𝐸⟩ | fst{𝜏} 𝐸 | snd{𝜏} 𝐸 | app{𝜏} 𝐸 𝑒 | app{𝜏} ℓ 𝐸 | 𝐸 𝑒 | ℓ 𝐸 | binop𝐸 𝑒 | binop ℓ 𝐸
| cast {𝜏 ⇐ 𝜏 ′} 𝐸 | if 𝐸 then 𝑒 else 𝑒 | mon {𝜏 ⇐ 𝜏} 𝐸 | assert𝜏 𝐸

∝: 𝐾×V −→ B

𝑣0 ∝ 𝐾0 =



True

if 𝐾0 = Nat and 𝑣0 ∈ N
or 𝐾0 = Int and 𝑣0 ∈ Z
or 𝐾0 = Bool and 𝑣0 ∈ B
or 𝐾0 = ∗ × ∗ and 𝑣0 ∈ ⟨ℓ, ℓ⟩
or 𝐾0 = ∗ → ∗ and 𝑣0 ∈ 𝜆(𝑥 :𝜏) . 𝑒
or 𝐾0 = ∗
False

otherwise

𝛿 : binop×V×V −→ E

𝛿 (binop, 𝑖0, 𝑖1) =



𝑖0 + 𝑖1
if binop = sum{𝜏}
DivErr

if binop = quotient{𝜏}
and 𝑖1 = 0
⌊𝑖0/𝑖1⌋
if binop = quotient{𝜏}
and 𝑖1 ≠ 0
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∝𝐿𝑝𝑜𝑠 : T×V −→ B

L 𝑣 ∝𝐿
𝑏𝑛𝑑

𝜏 𝑣 ∝𝐿𝑚𝑜𝑛 𝜏 𝑣 ∝𝐿
𝑐ℎ𝑒𝑐𝑘

𝜏

N 𝑣 ∝ ⌊𝜏⌋ 𝑣 ∝ ⌊𝜏⌋ True

T 𝑣 ∝ ⌊𝜏⌋ True 𝑣 ∝ ⌊𝜏⌋

pointsto(Σ, ℓ)

pointsto(Σ, ℓ) =


fst(Σ(ℓ))
if fst(Σ(ℓ)) ≠ ℓ′

pointsto(Σ, ℓ′)
if fst(Σ(ℓ)) = ℓ′

⌊𝜏⌋ tag of

⌊Int⌋ = Int

⌊Nat⌋ = Nat

⌊Bool⌋ = Bool

⌊𝜏 × 𝜏 ′⌋ = ∗ × ∗
⌊∗ → 𝜏 ′⌋ = ∗ → ∗
⌊∗⌋ = ∗
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1.4 Store-Based Operational Semantics

−→∗
𝐿

reflexive-transitive closure of −→
𝐿

−→
𝐿

compatible closure of ↩→
𝐿

Σ, 𝑒 ↩→
𝐿
Σ, 𝑒

Σ, 𝑣 ↩→
𝐿

Σ[ℓ ↦→ (𝑣, none)], ℓ
where 𝑙𝑜𝑐 ∉ 𝑑𝑜𝑚(Σ)

Σ, fst{𝜏0} ℓ0 ↩→
𝐿

Σ,Wrong

if Σ(ℓ0) ≠ (⟨ℓ1, ℓ2⟩, _)

Σ, fst{𝜏0} ℓ0 ↩→
𝐿

Σ, assert𝜏0 ℓ0

if Σ(ℓ0) = (⟨ℓ1, ℓ2⟩, _)

Σ, snd{𝜏0} ℓ0 ↩→
𝐿

Σ,Wrong

if Σ(ℓ0) ≠ (⟨ℓ1, ℓ2⟩, _)

Σ, snd{𝜏0} ℓ0 ↩→
𝐿

Σ, assert𝜏0 ℓ0

if Σ(ℓ0) = (⟨ℓ1, ℓ2⟩, _)

Σ, binop ℓ0 ℓ1 ↩→
𝐿

Σ,Wrong

if 𝛿 (binop, pointsto(Σ, ℓ0), pointsto(Σ, ℓ1)) is undefined

Σ, binop ℓ0 ℓ1 ↩→
𝐿

Σ, assert𝜏0 𝛿 (binop, pointsto(Σ, ℓ0), pointsto(Σ, ℓ1))
if 𝛿 (binop, pointsto(Σ, ℓ0), pointsto(Σ, ℓ1)) is defined

Σ, app{𝜏0} ℓ0 ℓ1 ↩→
𝐿

Σ, assert𝜏0 (ℓ0 ℓ1)

Σ, ℓ0 ℓ1 ↩→
𝐿

Σ,Wrong

if Σ(ℓ0) = (𝑣, _) and 𝑣 ∉ 𝜆(𝑥 :𝜏) . 𝑒 ∪ ℓ
or Σ(ℓ0) = (ℓ′0, none)

Σ, ℓ0 ℓ1 ↩→
𝐿

Σ, 𝑒0 [𝑥0← ℓ1]
if Σ(ℓ0) = (𝜆(𝑥0 :𝜏1) . 𝑒0, _) and
pointsto(Σ, ℓ1) ∝𝐿𝑐ℎ𝑒𝑐𝑘 𝜏1
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Σ, ℓ0 ℓ1 ↩→
𝐿

Σ,TypeErr(𝜏1, ℓ1)
if Σ(ℓ0) = (𝜆(𝑥0 :𝜏1) . 𝑒0, _) and
¬pointsto(Σ, ℓ1) ∝𝐿𝑐ℎ𝑒𝑐𝑘 𝜏1

Σ, ℓ0 ℓ1 ↩→
𝐿

Σ,mon {cod(𝜏1) ⇐ cod(𝜏2)} (ℓ0 (mon {dom(𝜏2) ⇐ dom(𝜏1)} ℓ1))
if Σ(ℓ0) = (ℓ2, some(𝜏1, 𝜏2))

Σ, cast {𝜏1 ⇐ 𝜏0} ℓ0 ↩→
𝐿

Σ,mon {𝜏1 ⇐ 𝜏0} ℓ0
if pointsto(Σ, ℓ0) ∝𝐿𝑏𝑛𝑑 𝜏1
and pointsto(Σ, ℓ0) ∝𝐿𝑏𝑛𝑑 𝜏0

Σ, cast {𝜏1 ⇐ 𝜏0} ℓ0 ↩→
𝐿

Σ,TypeErr(𝜏1, ℓ0)
if ¬pointsto(Σ, ℓ0) ∝𝐿𝑏𝑛𝑑 𝜏1

Σ, cast {𝜏1 ⇐ 𝜏0} ℓ0 ↩→
𝐿

Σ,TypeErr(𝜏0, ℓ0)
if ¬pointsto(Σ, ℓ0) ∝𝐿𝑏𝑛𝑑 𝜏0

Σ,mon {𝜏1 ⇐ 𝜏2} ℓ0 ↩→
𝐿

Σ[ℓ1 ↦→ (ℓ0, some(𝜏1, 𝜏2))], ℓ1
if ℓ1 ∉ dom(Σ)
and pointsto(Σ, ℓ0) = 𝑣 where 𝑣 = 𝑖 or True or False
and 𝑣 ∝𝐿𝑚𝑜𝑛 𝜏1 ∧ 𝑣 ∝𝐿𝑚𝑜𝑛 𝜏2

Σ,mon {𝜏1 ⇐ 𝜏2} ℓ0 ↩→
𝐿

Σ, ⟨mon {fst(𝜏1) ⇐ fst(𝜏2)} ℓ1,mon {snd(𝜏1) ⇐ snd(𝜏2)} ℓ2⟩
if Σ(ℓ0) = (⟨ℓ1, ℓ2⟩, _)

Σ,mon {𝜏1 ⇐ 𝜏2} ℓ0 ↩→
𝐿

Σ[ℓ1 ↦→ (ℓ0, some(𝜏1, 𝜏2))], ℓ1
if ℓ1 ∉ dom(Σ)
and pointsto(Σ, ℓ0) = 𝑣 and 𝑣 = 𝜆(𝑥0 :𝜏1). 𝑒0
and 𝑣 ∝𝐿𝑚𝑜𝑛 𝜏1 ∧ 𝑣 ∝𝐿𝑚𝑜𝑛 𝜏2

Σ,mon {𝜏0 ⇐ 𝜏1} ℓ0 ↩→
𝐿

Σ,TypeErr(𝜏1, ℓ0)
if ¬pointsto(Σ, ℓ0) ∝𝐿𝑚𝑜𝑛 𝜏1

Σ,mon {𝜏0 ⇐ 𝜏1} ℓ0 ↩→
𝐿

Σ,TypeErr(𝜏0, ℓ0)
if ¬pointsto(Σ, ℓ0) ∝𝐿𝑚𝑜𝑛 𝜏0

Σ, if ℓ0 then 𝑒1 else 𝑒2 ↩→
𝐿

Σ, 𝑒1

if pointsto(Σ, ℓ0) = True

Σ, if ℓ0 then 𝑒1 else 𝑒2 ↩→
𝐿

Σ, 𝑒2

if pointsto(Σ, ℓ0) = False
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Σ, if ℓ0 then 𝑒1 else 𝑒2 ↩→
𝐿

Σ,Wrong

if pointsto(Σ, ℓ0) ≠ ℓ or True or False

Σ, assert𝜏0 ℓ0 ↩→
𝐿

Σ, ℓ0

if pointsto(Σ, ℓ0) ∝𝐿𝑐ℎ𝑒𝑐𝑘 𝜏0

Σ, assert𝜏0 ℓ0 ↩→
𝐿

Σ,TypeErr(𝜏0, ℓ0)
if ¬pointsto(Σ, ℓ0) ∝𝐿𝑐ℎ𝑒𝑐𝑘 𝜏0
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∅, app{∗} (𝜆𝑓 : Nat→Nat. cast {∗ ⇐ Nat} app{Nat} 𝑓 42) (cast {Nat→Nat⇐ ∗→∗} 𝜆𝑥 : ∗. 𝑥)
−→∗

𝐿
{ℓ1 ↦→ (𝑣1, none), ℓ2 ↦→ (𝑣2, none)}, app{∗} ℓ1 (cast {Nat→Nat⇐ ∗→∗} ℓ2)

−→∗
𝐿
{ℓ1 ↦→ (𝑣1, none), ℓ2 ↦→ (𝑣2, none)}, app{∗} ℓ1 (mon {Nat→Nat⇐ ∗→∗} ℓ2)

−→∗
𝐿
{ℓ1 ↦→ (𝑣1, none), ℓ2 ↦→ (𝑣2, none), ℓ3 ↦→ (𝑙2, some(Nat→Nat, ∗→∗))}, app{∗} ℓ1 ℓ3

−→∗
𝐿
{ℓ1 ↦→ (𝑣1, none), ℓ2 ↦→ (𝑣2, none), ℓ3 ↦→ (𝑙2, some(Nat→Nat, ∗→∗))}, assert ∗ (ℓ1 ℓ3)

−→
𝐿
{...}, assert ∗ cast {∗ ⇐ Nat} app{Nat} ℓ3 42 (†)

−→∗
𝐿
{..., ℓ4 ↦→ (42, none)}, assert ∗ cast {∗ ⇐ Nat} app{Nat} ℓ3 ℓ4

−→∗
𝐿
{...}, assert ∗ cast {∗ ⇐ Nat} assert Natmon {Nat⇐ ∗} (ℓ3 (mon {∗ ⇐ Nat} ℓ4))

Fig. 1. Example of log-based reduction.

1.5 Store-Based Operational Semantics Example
The sequence of reductions in Figure 1 gives a taste of the Store-Based Operational Semantics through the evaluation of
the example expression 𝑒 from above. The reduction sequence is the same for both Natural and Transient except for
the step marked with (†). Up to that point, both semantics store intermediate values in the value log Σ, check with a
cast that ℓ2 points to a function, and, after the check succeeds, create a new label ℓ3 that the updated Σ associates with
the types from the cast. For step (†), both semantics perform a beta-reduction. But via the compatibility metafunction,
Transient also checks that the argument of ℓ1 is indeed a function. The two semantics get out of sync again after the
last step of the shown reduction sequence. Specifically, for the remainder of the evaluation, Natural performs checks
due to the monitor expressions such as the ones around ℓ3 and ℓ4, while Transient performs the checks stipulated by
assert expressions.
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1.6 Operational Semantics Simulation Result
To compare the two semantics, we have to define a relation that compares values between the two languages. The store
semantics will represent:

(1) Guards as a linked list of pairs of types, ending at a lambda with no types.
(2) Pairs as a pointer to the two subcomponents, with no types.
(3) Base values as a linked list of pairs of types, ending at a base value with no types.

We capture this in the following value equivalence:

(Σ, ℓ) ≡ 𝑣

pointsto(Σ, ℓ) = 𝑣

(Σ, ℓ) ≡ 𝑣

Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _)
(Σ, ℓ1) ≡ 𝑣1
(Σ, ℓ2) ≡ 𝑣2

(Σ, ℓ) ≡ ⟨𝑣1, 𝑣2⟩

Σ(ℓ) = (ℓ′, some(𝜏 ′, 𝜏))
(Σ, ℓ′) ≡ 𝑣

(Σ, ℓ) ≡ grd {𝜏 ′ ⇐ 𝜏} 𝑣

Σ(ℓ) = (𝜆𝑥 : 𝜏 . 𝑒, _)

(Σ, ℓ) ≡ 𝜆𝑥 : 𝜏 . 𝑒

Theorem 1.1 (Store and Non Store Operational Semantics Are Eqivalent).
𝑒 −→∗

𝐿
𝑒′ and 𝑒′ is irreducible iff ∀Σ. ∃Σ′, ℓ . (Σ, 𝑒) −→∗

𝐿
(Σ′, ℓ) and (Σ′, ℓ) ≡ 𝑒′
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2 Simple Typing

2.1 Simple Definitions

language

Γ F · | Γ, (𝑥 :𝜏0)

Γ ⊢sim 𝑒 : 𝜏 typing

T-Var
(𝑥0 :𝜏0) ∈ Γ0

Γ0 ⊢sim 𝑥0 : 𝜏0

T-Nat

Γ0 ⊢sim 𝑛0 : Nat

T-Int

Γ0 ⊢sim 𝑖0 : Int

T-True

Γ0 ⊢sim True : Bool

T-False

Γ0 ⊢sim False : Bool

T-Lam
Γ0, (𝑥0 :𝜏0) ⊢sim 𝑒0 : 𝜏1

Γ0 ⊢sim 𝜆(𝑥0 :𝜏0) . 𝑒0 : 𝜏0→𝜏1

T-Pair
Γ0 ⊢sim 𝑒0 : 𝜏0
Γ0 ⊢sim 𝑒1 : 𝜏1

Γ0 ⊢sim ⟨𝑒0, 𝑒1⟩ : 𝜏0×𝜏1

T-Cast
Γ0 ⊢sim 𝑒0 : 𝜏0

Γ0 ⊢sim cast {𝜏1 ⇐ 𝜏0} 𝑒0 : 𝜏1

T-App
Γ0 ⊢sim 𝑒0 : 𝜏0→𝜏1

Γ0 ⊢sim 𝑒1 : 𝜏0

Γ0 ⊢sim app{𝜏1} 𝑒0 𝑒1 : 𝜏1

T-Fst
Γ0 ⊢sim 𝑒0 : 𝜏0×𝜏1

Γ0 ⊢sim fst{𝜏0} 𝑒0 : 𝜏0

T-Snd
Γ0 ⊢sim 𝑒0 : 𝜏0×𝜏1

Γ0 ⊢sim snd{𝜏1} 𝑒0 : 𝜏1

T-Binop
Γ0 ⊢sim 𝑒0 : 𝜏0
Γ0 ⊢sim 𝑒1 : 𝜏1

Δ(binop, 𝜏0, 𝜏1) = 𝜏2

Γ0 ⊢sim binop 𝑒0 𝑒1 : 𝜏2

T-If
Γ0 ⊢sim 𝑒0 : Bool
Γ0 ⊢sim 𝑒1 : 𝜏0
Γ0 ⊢sim 𝑒2 : 𝜏0

Γ0 ⊢sim if 𝑒0 then 𝑒1 else 𝑒2 : 𝜏0

T-Sub
Γ0 ⊢sim 𝑒0 : 𝜏0
𝜏0 ⩽: 𝜏1

Γ0 ⊢sim 𝑒0 : 𝜏1

𝜏 ⩽: 𝜏

Nat ⩽: Int

𝜏0 ⩽: 𝜏2 𝜏1 ⩽: 𝜏3

𝜏0×𝜏1 ⩽: 𝜏2×𝜏3

𝜏2 ⩽: 𝜏0 𝜏1 ⩽: 𝜏3

𝜏0→𝜏1 ⩽: 𝜏2→𝜏3 𝜏0 ⩽: 𝜏0

Δ : binop×𝜏×𝜏 −→ 𝜏

Δ(sum,Nat,Nat) = Nat

Δ(sum, Int, Int) = Int

Δ(quotient,Nat,Nat) = Nat

Δ(quotient, Int, Int) = Int
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3 Tag Typing

3.1 Definition

language

Γ F · | Γ, (𝑥 :𝐾0)

Γ ⊢tag 𝑒 : 𝐾 typing

T-Var
(𝑥0 :𝐾0) ∈ Γ0

Γ0 ⊢tag 𝑥0 : 𝐾0

T-Nat

Γ0 ⊢tag 𝑛0 : Nat

T-Int

Γ0 ⊢tag 𝑖0 : Int

T-True

Γ0 ⊢tag True : Bool

T-False

Γ0 ⊢tag False : Bool

T-Lam
Γ0, (𝑥0 : ⌊𝜏0⌋) ⊢tag 𝑒0 : 𝐾1

Γ0 ⊢tag 𝜆(𝑥0 :𝜏0). 𝑒0 : ∗→∗

T-Pair
Γ0 ⊢tag 𝑒0 : 𝐾0
Γ0 ⊢tag 𝑒1 : 𝐾1

Γ0 ⊢tag ⟨𝑒0, 𝑒1⟩ : ∗×∗

T-Cast
Γ0 ⊢tag 𝑒0 : 𝐾0
⌊𝜏0⌋ = 𝐾0

Γ0 ⊢tag cast {𝜏1 ⇐ 𝜏0} 𝑒0 : ⌊𝜏1⌋

T-App
Γ0 ⊢tag 𝑒0 : ∗→∗
Γ0 ⊢tag 𝑒1 : 𝐾0

Γ0 ⊢tag app{𝜏0} 𝑒0 𝑒1 : ⌊𝜏0⌋

T-Fst
Γ0 ⊢tag 𝑒0 : ∗×∗

Γ0 ⊢tag fst{𝜏0} 𝑒0 : ⌊𝜏0⌋

T-Snd
Γ0 ⊢tag 𝑒0 : ∗×∗

Γ0 ⊢tag snd{𝜏1} 𝑒0 : ⌊𝜏1⌋

T-Binop
Γ0 ⊢tag 𝑒0 : 𝐾0
Γ0 ⊢tag 𝑒1 : 𝐾1

Δ(binop, 𝐾0, 𝐾1) = 𝐾2
⌊𝜏2⌋ = 𝐾2 ∨ ⌊𝜏2⌋ = ∗

Γ0 ⊢tag binop 𝑒0 𝑒1 : 𝐾2

T-If
Γ0 ⊢tag 𝑒0 : Bool
Γ0 ⊢tag 𝑒1 : 𝐾0
Γ0 ⊢tag 𝑒2 : 𝐾0

Γ0 ⊢tag if 𝑒0 then 𝑒1 else 𝑒2 : 𝐾0

T-Sub
Γ0 ⊢tag 𝑒0 : 𝐾0
𝐾0 ⩽: 𝐾1

Γ0 ⊢tag 𝑒0 : 𝐾1
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3.2 Simple Typing Implies Tag Typing

Γ+

(Γ, 𝑥 : 𝜏)+ = Γ+, 𝑥 : ⌊𝜏⌋

·+ = ·

Theorem 3.1 (Simple Typing Implies Tag Typing). If Γ ⊢sim 𝑒 : 𝜏 then Γ+ ⊢tag 𝑒 : ⌊𝜏⌋.

Proof. By induction over the typing derivation. The typing rules have a one to one correspondance, so each case
follows by the induction hypothesis. □
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4 Truer Transient Typing

4.1 Definition

language

Γ F · | Γ, (𝑥 :𝐾0)
⊔,⊓ : 𝜏 × 𝜏 −→ 𝜏

𝜏 ⊔ 𝜏 ′ =



∗
if 𝜏 = ∗
or 𝜏 ′ = ∗
or ⌊𝜏⌋ ≠ ⌊𝜏 ′⌋

and 𝜏 ≠ ⊥ and 𝜏 ′ ≠ ⊥
𝜏

if 𝜏 ′ = ⊥
𝜏 ′

if 𝜏 = ⊥
Int

if 𝜏 = Nat and 𝜏 ′ = Int

or 𝜏 = Int and 𝜏 ′ = Nat

𝜏

if 𝜏 = 𝜏 ′

𝜏1 ⊔ 𝜏 ′1 × 𝜏2 ⊔ 𝜏
′
2
if 𝜏 = 𝜏1 × 𝜏2 and 𝜏 ′ = 𝜏 ′1 × 𝜏

′
2

∗ → (𝜏2 ⊔ 𝜏 ′2)
if 𝜏 = ∗ → 𝜏2 and 𝜏 ′ = ∗ → 𝜏 ′2

𝜏 ⊓ 𝜏 ′ =



⊥
if 𝜏 = ⊥
or 𝜏 ′ = ⊥
or ⌊𝜏⌋ ≠ ⌊𝜏 ′⌋

and 𝜏 ≠ ∗ and 𝜏 ′ ≠ ∗
𝜏

if 𝜏 ′ = ∗
𝜏 ′

if 𝜏 = ∗
Nat

if 𝜏 = Nat and 𝜏 ′ = Int

or 𝜏 = Int and 𝜏 ′ = Nat

𝜏

if 𝜏 = 𝜏 ′

𝜏1 ⊓ 𝜏 ′1 × 𝜏2 ⊓ 𝜏
′
2
if 𝜏 = 𝜏1 × 𝜏2 and 𝜏 ′ = 𝜏 ′1 × 𝜏

′
2

∗ → (𝜏2 ⊓ 𝜏 ′2)
if 𝜏 = ∗ → 𝜏2 and 𝜏 ′ = ∗ → 𝜏 ′2
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Γ ⊢tru 𝑒 : 𝜏 typing

T-Var
(𝑥0 :𝐾0) ∈ Γ0

Γ0 ⊢tru 𝑥0 : 𝐾0

T-Nat

Γ0 ⊢tru 𝑛0 : Nat

T-Int

Γ0 ⊢tru 𝑖0 : Int

T-True

Γ0 ⊢tru True : Bool

T-False

Γ0 ⊢tru False : Bool

T-Lam
Γ0, (𝑥0 : ⌊𝜏0⌋) ⊢tru 𝑒0 : 𝜏1

Γ0 ⊢tru 𝜆(𝑥0 :𝜏0) . 𝑒0 : ∗→𝜏1

T-Pair
Γ0 ⊢tru 𝑒0 : 𝜏0
Γ0 ⊢tru 𝑒1 : 𝜏1

Γ0 ⊢tru ⟨𝑒0, 𝑒1⟩ : 𝜏0×𝜏1

T-Cast
Γ0 ⊢tru 𝑒0 : 𝜏0

Γ0 ⊢tru cast {𝜏2 ⇐ 𝜏1} 𝑒0 : ⌊𝜏2⌋ ⊓ ⌊𝜏1⌋ ⊓ 𝜏0

T-App
Γ0 ⊢tru 𝑒0 : ∗→𝜏1

Γ0 ⊢tru 𝑒1 : 𝜏 ′0
Γ0 ⊢tru app{𝜏2} 𝑒0 𝑒1 : ⌊𝜏2⌋ ⊓ 𝜏1

T-AppBot
Γ0 ⊢tru 𝑒0 : ⊥
Γ0 ⊢tru 𝑒1 : 𝜏 ′0

Γ0 ⊢tru app{𝜏1} 𝑒0 𝑒1 : ⊥

T-Fst
Γ0 ⊢tru 𝑒0 : 𝜏0×𝜏1

Γ0 ⊢tru fst{𝜏2} 𝑒0 : ⌊𝜏2⌋ ⊓ 𝜏0

T-FstBot
Γ0 ⊢tru 𝑒0 : ⊥

Γ0 ⊢tru fst{𝜏0} 𝑒0 : ⊥

T-Snd
Γ0 ⊢tru 𝑒0 : 𝜏0×𝜏1

Γ0 ⊢tru snd{𝜏2} 𝑒0 : ⌊𝜏2⌋ ⊓ 𝜏1

T-SndBot
Γ0 ⊢tru 𝑒0 : ⊥

Γ0 ⊢tru snd{𝜏1} 𝑒0 : ⊥

T-Binop
Γ0 ⊢tru 𝑒0 : 𝜏0
Γ0 ⊢tru 𝑒1 : 𝜏1

Γ0 ⊢tru binop 𝑒0 𝑒1 : Δ(binop, 𝜏0, 𝜏1)

T-If
Γ0 ⊢tru 𝑒0 : Bool
Γ0 ⊢tru 𝑒1 : 𝜏0
Γ0 ⊢tru 𝑒2 : 𝜏1

Γ0 ⊢tru if 𝑒0 then 𝑒1 else 𝑒2 : 𝜏0 ⊔ 𝜏1

T-IfBot
Γ0 ⊢tru 𝑒0 : ⊥
Γ0 ⊢tru 𝑒1 : 𝜏0
Γ0 ⊢tru 𝑒2 : 𝜏1

Γ0 ⊢tru if 𝑒0 then 𝑒1 else 𝑒2 : ⊥

T-Sub
Γ0 ⊢tru 𝑒0 : 𝜏0
𝜏0 ≤ 𝜏1

Γ0 ⊢tru 𝑒0 : 𝜏1

Δ : binop×𝜏×𝜏 −→ 𝜏

Δ(sum,Nat,Nat) = Nat

Δ(sum, Int, Int) = Int

Δ(quotient,Nat,Nat) = Nat

Δ(quotient, Int, Int) = Int

Δ(binop,⊥, 𝜏) = ⊥ if 𝜏 = Nat or Int or ⊥
Δ(binop, 𝜏,⊥) = ⊥ if 𝜏 = Nat or Int or ⊥

𝜏 ≤ 𝜏

𝜏0 ⩽: 𝜏1

𝜏0 ≤ 𝜏1

𝜏0 ≤ 𝜏2 𝜏1 ≤ 𝜏3

𝜏0×𝜏1 ≤ 𝜏2×𝜏3

𝜏0 ≤ 𝜏1

∗→𝜏0 ≤ ∗→𝜏1 ⊥ ≤ 𝜏 𝜏 ≤ ∗
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4.2 Simple Typing Implies Truer Transient Typing

Γ+

(Γ, 𝑥 : 𝜏)+ = Γ+, 𝑥 : ⌊𝜏⌋

·+ = ·

The following proofs will use the fact honest transient types with ⊔ and ⊓ form a lattice ordered by ≤.

Lemma 4.1 (Lattice join idempotent). 𝜏 ⊔ 𝜏 = 𝜏

Proof. By induction on the structure of 𝜏 , in each case following immediately from the definition of ⊔. □

Lemma 4.2 (Lattice join absorption). 𝜏0 ⊔ (𝜏0 ⊓ 𝜏1) = 𝜏0

Proof. By induction on the structure of 𝜏0; in each case by induction on the structure of 𝜏1, in each case following
immediately from the definitions of ⊔ and ⊓ and the prior lemma. □

Lemma 4.3 (Lattice meet idempotent). 𝜏 ⊓ 𝜏 = 𝜏

Proof. By induction on the structure of 𝜏 , in each case following immediately from the definition of ⊓. □

Lemma 4.4 (Lattice meet absorption). 𝜏0 ⊓ (𝜏0 ⊔ 𝜏1) = 𝜏0

Proof. By induction on the structure of 𝜏0; in each case by induction on the structure of 𝜏1, in each case following
immediately from the definitions of ⊔ and ⊓ and the prior lemma. □

Lemma 4.5 (Lattice ordering implies ≤). If 𝜏 = 𝜏 ⊓ 𝜏 ′, then 𝜏 ≤ 𝜏 ′.

Proof. We proceed by induction on the structure of the definition of 𝜏 ⊓ 𝜏 ′:

⊥ Since 𝜏 = 𝜏 ⊓ 𝜏 , 𝜏 = ⊥; it is immediate that 𝜏0 ≤ 𝜏1.
𝜏 This case occurs if 𝜏 ′ = ∗; consequently it is immediate that 𝜏 ≤ 𝜏 ′.
𝜏 ′ In this case, the hypothesis ensures that 𝜏 = 𝜏 ′, so 𝜏 ≤ 𝜏 ′ by reflexivity.
Nat In this case, 𝜏 must be Nat and 𝜏 ′ must be Int. By definition, Nat ≤ Int.
𝜏 In this case, 𝜏 = 𝜏 ′; it is immediate that 𝜏 ≤ 𝜏 ′.
𝜏1 ⊓ 𝜏 ′1×𝜏2 ⊓ 𝜏

′
2 In this case, by the hypothesis, 𝜏1 = 𝜏1 ⊓ 𝜏 ′1 and 𝜏2 = 𝜏2 ⊓ 𝜏

′
2, so by induction 𝜏1 ≤ 𝜏 ′1 and 𝜏2 ≤ 𝜏

′
2. Then

it is immediate from the definition of the lattice ordering that 𝜏1×𝜏2 ≤ 𝜏 ′1×𝜏
′
2.

∗→𝜏2 ⊓ 𝜏 ′2 In this case, 𝜏2 = 𝜏2⊓𝜏 ′2 by the hypothesis, so 𝜏2 ≤ 𝜏
′
2 by induction; hence it is immediate from the definition

of the lattice ordering that ∗→𝑡𝑎𝑢2 ≤ ∗→𝜏 ′2.

□

Lemma 4.6 (Lattice ordering is implied by ≤). If 𝜏 ≤ 𝜏 ′, then 𝜏 = (𝜏 ⊓ 𝜏 ′).

Proof. We proceed by induction on the structure of the definition of ≤, with the cases of ⩽: inlined:

Nat ⩽: Int This is immediate by the definition of ⊓.
𝜏0×𝜏1 ⩽: 𝜏2×𝜏3 This is subsumed by the case 𝜏0×𝜏1 ≤ 𝜏2×𝜏3 below.

2024-04-22 00:20. Page 18 of 1–108.



Gradually Typed Languages Should Be Vigilant! 19

𝜏0→𝜏1 ⩽: 𝜏2→𝜏3 Because we are considering the lattice of honest transient types, 𝜏0 = 𝜏2 = ∗, and this is subsumed
by the case ∗→𝜏1 ≤ ∗→𝜏3 below.

𝜏0 ≤ 𝜏0 This is immediate by the definition of ⊓.
𝜏0×𝜏1 ≤ 𝜏2×𝜏3 This rule requires that 𝜏0 ≤ 𝜏2 and 𝜏1 ≤ 𝜏3; hence, by induction 𝜏0 = 𝜏0 ⊓ 𝜏2 and 𝜏1 = 𝜏1 ⊓ 𝜏3. This is

then immediate by the definition of ⊓.
∗→𝜏1 ≤ ∗→𝜏3 This rule requires that 𝜏0 ≤ 𝜏1, and so by induction 𝜏0 = 𝜏0⊓𝜏1; this is then immediate by the definition

of ⊓.
⊥ ≤ 𝜏 This is immediate by the definition of ⊓.
𝜏 ≤ ∗ This is immediate by the definition of ⊓.

□

Theorem 4.7 (Simple Typing Implies Truer Transient Typing).
If Γ ⊢sim 𝑒 : 𝜏 then Γ+ ⊢tru 𝑒 : 𝜏 ′ where 𝜏 ′ ≤ ⌊𝜏⌋.

Proof. Proceed by induction on the simple typing derivation:

T-Var By the definition of lowering, if 𝑥 : 𝜏 ∈ Γ, then 𝑥 : ⌊𝜏⌋ ∈ Γ+, so T-Var applies and ⌊𝜏⌋ is precisely the 𝜏 ′ such that
Γ+ ⊢ 𝑒 : 𝜏 ′ and 𝜏 ′ ≤ ⌊𝜏⌋.

T-Nat, T-Int, T-True, T-False For each base type literal, a corresponding rule exists in the honest transient type
system, which ascribes the same time (which is also equal to, and hence below in the lattice, the original simple
type).

T-Lam Consider arbitrary Γ0, 𝑥0, 𝜏0, 𝑒0, 𝜏1, such that Γ0 ⊢ 𝜆(𝑥0 : 𝜏0) . 𝑒0 : 𝜏0→ 𝜏1. Then by induction we know that
(Γ0, (𝑥0) : 𝜏0)+ ⊢ 𝑒0 : 𝜏 ′1, for some 𝜏 ′1 ≤ ⌊𝜏1⌋. Note that (Γ0, (𝑥0 : 𝜏0))

+ = Γ+0 , 𝑥0 : ⌊𝜏0⌋ by definition, and similarly
that (𝜆𝑥0 : 𝜏0 . 𝑒0)+ = 𝜆(𝑥0 :𝜏0). 𝑒+0 by definition. Then T-Lam applies s.t. Γ+0 ⊢ 𝜆(𝑥0 :𝜏0). 𝑒0 : ∗→𝜏 ′1. Note that
⌊𝜏0→𝜏1⌋ = ∗→∗ ≤ ∗→∗ by the definition of lattice ordering, completing the proof.

T-Pair Consider arbitrary Γ0, 𝑒0, 𝑒1, 𝜏0, 𝜏1, s.t. Γ0 ⊢ 𝑒 : 𝜏 by simple typing rule T-Pair if 𝑒 = ⟨𝑒0, 𝑒1⟩ and 𝜏 = 𝜏0×𝜏1. Then
by induction, there exist some 𝜏 ′0 and 𝜏

′
1, s.t. Γ

+
0 ⊢ 𝑒0 : 𝜏

′
0, Γ
+
0 : 𝑒1 : 𝜏 ′1, 𝜏

′
0 ≤ ⌊𝜏0⌋, and 𝜏

′
1 ≤ ⌊𝜏1⌋. Then instantiate

𝜏 ′ = 𝜏0×𝜏1; it is clear that the honest transient typing rule T-Pair applies, since (⟨𝑒0, 𝑒1⟩)+ = ⟨𝑒0, 𝑒1⟩, and it is
immediate by the definition of ≤ that 𝜏 ′ ≤ ⌊𝜏0×𝜏1⌋ = ∗×∗.

T-Cast Consider arbitrary Γ0, 𝑒0, 𝜏0, 𝜏1, s.t. Γ0 ⊢ 𝑒 : 𝜏 by simple typing rule T-Cast if 𝑒 = cast {𝜏0 ⇐ 𝜏1} 𝑒0 and 𝜏 = 𝜏1.
Then by induction, Γ+0 ⊢ 𝑒0 : 𝜏 ′0 for some 𝜏 ′0 s.t. 𝜏

′
0 ≤ ⌊𝜏0⌋. Instantiate 𝜏

′ by ⌊𝜏1⌋ ⊓ ⌊𝜏0⌋ ⊓ 𝜏 ′0; then it is clear
that the honest transient typing rule T-Cast applies, since by definition 𝑒 = cast {𝜏0 ⇐ 𝜏1} 𝑒0. It remains to be
shown that ⌊𝜏1⌋ ⊓ ⌊𝜏0⌋ ⊓ 𝜏 ′0 ≤ ⌊𝜏1⌋; this follows immediately from the properties of the lattice meet operation.

T-App Consider arbitrary Γ0, 𝑒0, 𝜏0, 𝜏1 s.t. Γ0 ⊢ 𝑒 : 𝜏 by simple typing rule T-App if 𝑒 = app{𝜏1} 𝑒0 𝑒1 and 𝜏 = 𝜏1. Then
by induction, Γ+0 ⊢ 𝑒0 : 𝜏𝑙 for some 𝜏𝑙 ≤ ⌊𝜏0→𝜏1⌋ = ∗→∗, and Γ+0 ⊢ 𝑒1 : 𝜏

′
0 for some 𝜏 ′0 ≤ ⌊𝜏0⌋. By inspection of

≤, note that 𝜏𝑙 must be either ⊥ or ∗→𝜏 ′
𝑙
for some 𝜏 ′

𝑙
. Note that 𝑒 = app{𝜏1} 𝑒0 𝑒1, and so in the former case

T-AppBot syntactically applies and in the latter T-App; consider each case:
𝜏𝑙 = ⊥: Instantiate 𝜏 ′ = ⊥; then it is clear that Γ′0 ⊢ 𝑒

′ : 𝜏 ′ by T-AppBot. Then ⊥ ≤ ⌊𝜏1⌋ is immediate by the
definition of lattice ordering.

𝜏𝑙 = ∗→𝜏 ′
𝑙
: Instantiate 𝜏 ′ = ⌊𝜏1⌋ ⊓ 𝜏 ′𝑙 ; then it is clear that Γ′0 ⊢ 𝑒

′ : 𝜏 ′ by T-App, so what remains to be shown is
that ⌊𝜏1⌋ ⊓ 𝜏𝑙 ≤ ⌊𝜏1⌋; this is immediate by the definition of meet on a lattice.

T-Fst Consider arbitrary Γ0, 𝑒0, 𝜏0, 𝜏1, s.t. Γ0 ⊢ 𝑒 : 𝜏 by simple typing rule T-Fst with premise Γ0 ⊢ 𝑒0 : 𝜏0×𝜏1 if
𝑒 = fst{𝜏0} 𝑒0 and 𝜏 = 𝜏0. Then, by induction, Γ′0 ⊢ 𝑒 : 𝜏 ′𝑝 s.t. 𝜏 ′𝑝 ≤ ⌊𝜏0×𝜏1⌋ = ∗×∗. By inspection on ≤, note
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that 𝜏 ′𝑝 must be either ⊥ or 𝜏𝑝 ′0×𝜏𝑝
′
1 for some 𝜏𝑝 0 and 𝜏𝑝 1. Since 𝑒 = fst{𝜏0} 𝑒0, the rule T-FstBot applies in the

former case, and similarly T-Fst applies in the latter. Consider each of these cases:
𝜏 ′𝑝 = ⊥: Instantiate 𝜏 ′ = ⊥; Γ+0 ⊢ 𝑒 : 𝜏

′ by T-FstBot, and ⊥ ≤ ⌊𝜏0⌋ follows immediately from the definition of
lattice ordering.

𝜏 ′𝑝 = 𝜏𝑝
′
0×𝜏𝑝

′
1: Instantiate 𝜏 ′ with ⌊𝜏0⌋ ⊓ 𝜏𝑝 ′0. Then Γ+0 ⊢ 𝑒 : 𝜏

′ by T-Fst, and 𝜏 ′ ≤ ⌊𝜏0⌋ by the the definition of
meet on a lattice.

T-Snd Consider arbitrary Γ0, 𝑒0, 𝜏0, 𝜏1, s.t. Γ0 ⊢ 𝑒 : 𝜏 by simple typing rule T-Snd with premise Γ0 ⊢ 𝑒0 : 𝜏0×𝜏1 if
𝑒 = snd{𝜏1} 𝑒0 and 𝜏 = 𝜏1. Then, by induction, Γ′0 ⊢ 𝑒 : 𝜏

′
𝑝 s.t. 𝜏 ′𝑝 ≤ ⌊𝜏0×𝜏1⌋ = ∗×∗. By inspection on ≤, note that

𝜏 ′𝑝 must be either ⊥ or 𝜏𝑝 ′0×𝜏𝑝
′
1 for some 𝜏𝑝 0 and 𝜏𝑝 1. Since 𝑒 = snd{𝜏1} 𝑒0, the rule T-SndBot applies in the

former case, and similarly T-Snd applies in the latter. Consider each of these cases:
𝜏 ′𝑝 = ⊥: Instantiate 𝜏 ′ = ⊥; Γ+0 ⊢ 𝑒 : 𝜏

′ by T-SndBot, and ⊥ ≤ ⌊𝜏1⌋ follows immediately from the definition of
lattice ordering.

𝜏 ′𝑝 = 𝜏𝑝
′
0×𝜏𝑝

′
1: Instantiate 𝜏 ′ with ⌊𝜏1⌋ ⊓ 𝜏𝑝 ′1. Then Γ+0 ⊢ 𝑒 : 𝜏

′ by T-Snd, and 𝜏 ′ ≤ ⌊𝜏1⌋ by the the definition of
meet on a lattice.

T-Binop Consider arbitrary Γ0, binop, 𝑒0, 𝑒1, 𝜏0, 𝜏1, and 𝜏2, s.t. Γ0 ⊢ 𝑒 : 𝜏 by simple typing rule T-Binop with premise
Δ(binop, 𝜏0, 𝜏1) = 𝜏2 if 𝑒 = binop 𝑒0 𝑒1 and 𝜏 = 𝜏2. By induction, note that Γ+0 ⊢ 𝑒0 : 𝜏

′
0 for some 𝜏 ′0 ≤ ⌊𝜏0⌋, and

Γ+0 ⊢ 𝑒1 : 𝜏
′
1 for some 𝜏 ′1 ≤ ⌊𝜏1⌋. Note that for the simple typing Δ(binop, 𝜏0, 𝜏1) to be defined, 𝜏0 and 𝜏1 must

each be either Nat or Int; consequently, by inspection of the lattice order, 𝜏 ′0 and 𝜏
′
1 must each be Nat, Int, or ⊥.

Then by inspection, in any such case, Δ(binop, 𝜏 ′0, 𝜏
′
1) is defined and ≤ Δ(binop, 𝜏0, 𝜏1) = 𝜏2. Then instantiate 𝜏 ′

with ⌊𝜏2⌋ ⊓ Δ(binop, 𝜏 ′0, 𝜏
′
1); since 𝑒 = binop 𝑒0 𝑒1, the rule S-Binop applies, and by the definition of meet on a

lattice, ⌊𝜏2⌋ ≤ 𝜏 ′.
T-If Consider arbitrary Γ0, 𝑒0, 𝑒1, 𝑒2, 𝜏0, s.t. Γ0 ⊢ if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏0 by the T-If simple typing rule. Let

𝑒 = if 𝑒1 then 𝑒2 else 𝑒3 and 𝜏 = 𝜏0. Then by induction, there exist some 𝜏 ′
𝑏
≤ ⌊Bool⌋ = Bool, 𝜏 ′0 ≤ ⌊𝜏0⌋, and

𝜏 ′1 ≤ ⌊𝜏0⌋, s.t. Γ
+
0 ⊢ 𝑒0 : 𝜏

′
𝑏
, Γ+0 ⊢ 𝑒1 : 𝜏

′
0, and Γ+0 :⊢ 𝑒2 : 𝜏 ′1. Notice that 𝜏

′
𝑏
may be only ⊥ or Bool, by the definition

of lattice ordering. Since 𝑒 = if 𝑒0 then 𝑒1 else 𝑒2, in the former case the rule T-IfBot applies; in the latter the
rule T-If applies. Consider each of these cases:
𝜏 ′
𝑏
= ⊥: By T-IfBot, Γ+0 ⊢ 𝑒 : ⊥, so instantiate 𝜏 ′ = ⊥. Notice then that ⊥ ≤ ⌊𝜏⌋ by lattice ordering, so the proof
is completed.

𝜏 ′
𝑏
= Bool: By T-If, Γ+0 ⊢ 𝑒 : 𝜏

′
0 ⊔ 𝜏

′
1. Instantiate 𝜏

′ by 𝜏 ′0 ⊔ 𝜏
′
1; then we must show that 𝜏 ′ ≤ ⌊𝜏⌋. Since 𝜏 ′0 ≤ ⌊𝜏0⌋

and 𝜏 ′1 ≤ ⌊𝜏0⌋, ⌊𝜏0⌋ is an upper bound of 𝜏 ′0 and 𝜏 ′1. By the definition of join on a lattice, 𝜏 ′0 ⊔ 𝜏
′
1 is

less-than-or-equal-to any other upper bound of 𝜏0 and 𝜏1, so this is shown.
T-Sub Consider arbitrary Γ0, 𝑒0, 𝜏1, 𝜏0, s.t. Γ0 ⊢ 𝑒 : 𝜏 by simple typing rule T-Sub with premise 𝜏0 ⩽: 𝜏1 if 𝑒 = 𝑒0 and

𝜏 = 𝜏1. By induction, Γ0 ⊢ 𝑒 : 𝜏 ′0 for some 𝜏 ′0 ≤ ⌊𝜏0⌋. Then instantiate 𝜏 ′ = 𝜏 ′0. It is immediate that Γ0 ⊢ 𝑒 : 𝜏 ′; it
remains to be shown that 𝜏 ′ ≤ ⌊𝜏1⌋. Since 𝜏0 ⩽: 𝜏1, 𝜏0 ≤ 𝜏1. By Lemma 4.8, ⌊𝜏0⌋ ≤ ⌊𝜏1⌋. Then by Lemma 4.9,
𝜏 ′ = 𝜏 ′0 ≤ ⌊𝜏0⌋ ≤ ⌊𝜏1⌋ so 𝜏

′ ≤ ⌊𝜏1⌋.

□

Lemma 4.8 (Lattice ordering is preserved by tag-of). If 𝜏0 ≤ 𝜏1, then ⌊𝜏0⌋ ≤ ⌊𝜏1⌋.

Proof. By cases on the structure of the definition of ≤; in each case the lemma is immediate. □

Lemma 4.9 (Lattice ordering is transitive). If 𝜏 ≤ 𝜏 ′ and 𝜏 ′ ≤ 𝜏 ′′, then 𝜏 ≤ 𝜏 ′′.
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Proof. By induction on the structure of the definition of 𝜏 ≤ 𝜏 ′ (generalized with respect to 𝜏 ′′), with the cases of
⩽: inlined:

Nat ⩽: Int: Since by assumption Int ≤ 𝜏 ′′, it is clear by inspection that 𝜏 ′′ must be either Int or ∗; in either case
Nat ⩽: 𝜏 ′′ is immediate.

𝜏0×𝜏1 ⩽: 𝜏2×𝜏3: This is subsumed by the case 𝜏0×𝜏1 ≤ 𝜏2×𝜏3 below.
𝜏0→𝜏1 ⩽: 𝜏2→𝜏3: Because we are considering the lattice of honest transient types, 𝜏0 = 𝜏2 = ∗, and this is subsumed

by the case ∗→𝜏1 ≤ ∗→𝜏3 below.
𝜏 ≤ 𝜏 : Since by assumption 𝜏 ′ ≤ 𝜏 ′′, 𝜏 = 𝜏 ′ ≤ 𝜏2.
𝜏0×𝜏1 ≤ 𝜏2×𝜏3: Since by assumption 𝜏 ′ = 𝜏2×𝜏3 ≤ 𝜏 ′′, it is clear that 𝜏 ′′ must be either ∗ or 𝜏 ′′0 ×𝜏

′′
1 for some 𝜏 ′′0 , 𝜏

′′
1 s.t.

𝜏2 ≤ 𝜏 ′′0 and 𝜏3 ≤ 𝜏 ′′1 . If 𝜏
′′ is ∗, the lemma follows immediately. Otherwise, note that this rule requires that

𝜏0 ≤ 𝜏2 and 𝜏1 ≤ 𝜏3; hence, by induction, 𝜏0 ≤ 𝜏 ′′0 and 𝜏1 ≤ 𝜏 ′′1 , and therefore 𝜏 ≤ 𝜏 ′′.
∗→𝜏1 ≤ ∗→𝜏3: Since by assumption 𝜏 ′ = ∗→𝜏3 ≤ 𝜏 ′′, it is clear that 𝜏 ′′ must be either ∗ or ∗→𝜏 ′′1 for some 𝜏 ′′1 s.t.

𝜏3 ≤ 𝜏 ′′1 . If 𝜏
′′ is ∗, the lemma follows immediately. Otherwise, note that this rule requires that 𝜏1 ≤ 𝜏3; hence,

by induction, 𝜏1 ≤ 𝜏 ′′1 , and therefore 𝜏 ≤ 𝜏 ′”.
⊥ ≤ 𝜏 𝜏 = ⊥ ≤ 𝜏 ′′ is immediate by the definition of lattice ordering.
𝜏 ≤ ∗ Since by assumption 𝜏 ′ = ∗ ≤ 𝜏 ′′, 𝜏 ′′ must be ∗, and so the lemma follows immediately.

□
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4.3 Tag Typing Implies Truer Transient Typing
Theorem 4.10 (Tag Typing Implies Truer Transient Typing). If Γ ⊢tag 𝑒 : 𝐾 then ∃𝜏 ≤ 𝐾 such that Γ ⊢tru 𝑒 : 𝜏 .

Proof. By induction over the tag typing derivation.

T-Var
(𝑥0 :𝐾0) ∈ Γ0

Γ0 ⊢tag 𝑥0 : 𝐾0

T-Nat

Γ0 ⊢tag 𝑛0 : Nat

T-Int

Γ0 ⊢tag 𝑖0 : Int

T-True

Γ0 ⊢tag True : Bool

T-False

Γ0 ⊢tag False : Bool

These cases are immediate by applying the corresponding truer typing rule and from premises.

T-Lam
Γ0, (𝑥0 : ⌊𝜏0⌋) ⊢tag 𝑒0 : 𝐾1

Γ0 ⊢tag 𝜆(𝑥0 :𝜏0) . 𝑒0 : ∗→∗

T-Pair
Γ0 ⊢tag 𝑒0 : 𝐾0
Γ0 ⊢tag 𝑒1 : 𝐾1

Γ0 ⊢tag ⟨𝑒0, 𝑒1⟩ : ∗×∗

T-If
Γ0 ⊢tag 𝑒0 : Bool
Γ0 ⊢tag 𝑒1 : 𝐾0
Γ0 ⊢tag 𝑒2 : 𝐾0

Γ0 ⊢tag if 𝑒0 then 𝑒1 else 𝑒2 : 𝐾0

T-Sub
Γ0 ⊢tag 𝑒0 : 𝐾0
𝐾0 ⩽: 𝐾1

Γ0 ⊢tag 𝑒0 : 𝐾1

These cases follows by the induction hypothesis and the corresponding rule.

T-App
Γ0 ⊢tag 𝑒0 : ∗→∗
Γ0 ⊢tag 𝑒1 : 𝐾0

Γ0 ⊢tag app{𝜏1} 𝑒0 𝑒1 : ⌊𝜏1⌋

T-Fst
Γ0 ⊢tag 𝑒0 : ∗×∗

Γ0 ⊢tag fst{𝜏0} 𝑒0 : ⌊𝜏0⌋

T-Snd
Γ0 ⊢tag 𝑒0 : ∗×∗

Γ0 ⊢tag snd{𝜏1} 𝑒0 : ⌊𝜏1⌋

These cases follow by induction and their corresponding typing rule, with the caveat that if the truer type of the
premise is ⊥, the corresponding bot rule must be used.

T-Cast
Γ0 ⊢tag 𝑒0 : 𝐾0
⌊𝜏0⌋ = 𝐾0

Γ0 ⊢tag cast {𝜏1 ⇐ 𝜏0} 𝑒0 : ⌊𝜏1⌋

This case follows by induction and applying the cast rule in truer, noting truer doesn’t require any relationships
between the type of what’s underneath and the tags on the casts.

T-Binop
Γ0 ⊢tag 𝑒0 : 𝐾0
Γ0 ⊢tag 𝑒1 : 𝐾1

Δ(binop, 𝐾0, 𝐾1) = 𝐾2

Γ0 ⊢tag binop 𝑒0 𝑒1 : 𝐾2

This case follows by induction, noting that if either of the truer types corresponding to 𝐾0 or 𝐾1 are ⊥, then the
result type is ⊥. If the truer types are different, ie one is Nat and the other Int, we apply subsumption to get both at Int,
and then can apply the binop rule. Otherwise, we directly apply the binop rule.

□
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5 Vigilance for Simple Typing
In this section,V𝑇 refers toV𝑇

sim
, E𝑇 refers to E𝑇

sim
,VH𝑇 refers toVH𝑇

sim, andVH
𝑇 refers toVH𝑇

sim.

5.1 Vigilance Logical Relation for Simple Typing
⟦Γ ⊢sim 𝑒 : 𝜏⟧𝐿 ≜ ∀(𝑘,Ψ, Σ, 𝛾) ∈ G𝐿⟦Γ⟧ where Σ : (𝑘,Ψ) . (𝑘,Ψ, Σ, 𝛾 (𝑒)) ∈ E𝐿⟦𝜏⟧

G𝐿⟦Γ, 𝑥 : 𝜏⟧ ≜ {(𝑘,Ψ, Σ, 𝛾 [𝑥 ↦→ ℓ]) | (𝑘,Ψ, Σ, 𝛾) ∈ G𝐿⟦Γ⟧

∧ ℓ ∈ dom(Ψ) ∧ ℓ ∉ dom(𝛾)

∧ (𝑘,Ψ, Σ, ℓ) ∈ V𝐿
𝑘
⟦𝜏⟧}

G𝐿⟦•⟧ ≜ {(𝑘,Ψ, Σ, ∅)}

⊢ Σ ≜ ∀ℓ ∈ dom(Σ) . Σ(ℓ) = ((ℓ′, some(𝜏 ′, 𝜏)) ∧ 𝜏 ′ ∝ pointsto(Σ, ℓ) ∧ 𝜏 ∝ pointsto(Σ, ℓ)

∧ ¬ ∗×∗ ∝ pointsto(Σ, ℓ))

∨ Σ(ℓ) = (𝑣, none) where 𝑣 ∉ L

Σ : (𝑘,Ψ) ≜ dom(Σ) = dom(Ψ) ∧ ⊢ Σ ∧ ∀𝑗 < 𝑘, ℓ ∈ dom(Σ).(( 𝑗,Ψ, Σ, ℓ) ∈ VH𝐿⟦Ψ(ℓ)⟧

∧ (Σ(ℓ) = (ℓ′, some(𝜏, 𝜏 ′)) ⇒ Ψ(ℓ) = [𝜏, 𝜏 ′,Ψ(ℓ′)] ∧ Ψ(ℓ′) = [𝜏 ′′, . . .] ∧ 𝜏 ′′ <: 𝜏 ′)

∧ (Σ(ℓ) = (𝑣, none) ∧ 𝑣 ∉ L⇒ ∃𝜏 .Ψ(ℓ) = [𝜏]))

This is an unfolded version of the definition in the paper. We break up the definition there for ease of explanation, and
unfold here for ease of use.

( 𝑗,Ψ) ⊒ (𝑘,Ψ) ≜ 𝑗 ≤ 𝑘 ∧ ∀ℓ ∈ dom(Ψ) . Ψ′ (ℓ) = Ψ(ℓ)

EH𝐿⟦𝜏⟧ ≜ {(𝑘,Ψ, Σ, 𝑒) | ∀𝑗 ≤ 𝑘. ∀Σ′ ⊇ Σ, 𝑒′ . (Σ, 𝑒) −→𝑗

𝐿
(Σ′, 𝑒′) ∧ irred(𝑒′)

⇒ (𝑒′ = Err• ∨ (∃(𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) . Σ′ : (𝑘 − 𝑗,Ψ′) ∧ (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ VH𝐿⟦𝜏⟧))}

VH𝐿⟦Int, 𝜏2, . . . 𝜏𝑛⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | ∀𝜏 ∈ [Int, 𝜏2, . . . 𝜏𝑛] . (𝑘,Ψ, Σ, ℓ) ∈ V𝐿⟦𝜏⟧}

VH𝐿⟦Nat, 𝜏2, . . . 𝜏𝑛⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | ∀𝜏 ∈ [Nat, 𝜏2, . . . 𝜏𝑛] . (𝑘,Ψ, Σ, ℓ) ∈ V𝐿⟦𝜏⟧}

VH𝐿⟦Bool, 𝜏2, . . . 𝜏𝑛⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | ∀𝜏 ∈ [Bool, 𝜏2, . . . 𝜏𝑛] . (𝑘,Ψ, Σ, ℓ) ∈ V𝐿⟦𝜏⟧}
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VH𝐿⟦𝜏 ′1 × 𝜏
′′
1 , 𝜏2, . . . 𝜏𝑛⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _)

∧ (𝑘,Ψ, Σ, ℓ1) ∈ VH𝐿⟦𝜏 ′1, fst(𝜏2), . . . fst(𝜏𝑛)⟧

∧ (𝑘,Ψ, Σ, ℓ2) ∈ VH𝐿⟦𝜏 ′′1 , snd(𝜏2), . . . snd(𝜏𝑛)⟧}

VH𝐿⟦𝜏 ′1 → 𝜏 ′′1 , 𝜏2, . . . 𝜏𝑛⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | ∀( 𝑗,Ψ
′) ⊒ (𝑘,Ψ), Σ′ ⊇ Σ where Σ′ : ( 𝑗,Ψ′) .

∀𝜏0 where cod(𝜏 ′′1 ) ⩽: 𝜏0 .∀ℓ𝑣 where ( 𝑗,Ψ
′, Σ′, ℓ𝑣) ∈ V𝐿⟦𝜏 ′1⟧.

( 𝑗,Ψ′, Σ′, app{𝜏0} ℓ ℓ𝑣) ∈ EH𝐿⟦[𝜏0, cod(𝜏2), . . . cod(𝜏𝑛)]⟧}

VH𝐿⟦∗, 𝜏2, . . . 𝜏𝑛⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | (𝑘 − 1,Ψ, Σ, ℓ) ∈ VH𝐿⟦Int, 𝜏2, . . . 𝜏𝑛⟧

(𝑘 − 1,Ψ, Σ, ℓ) ∈ VH𝐿⟦Bool, 𝜏2, . . . 𝜏𝑛⟧

∨(𝑘 − 1,Ψ, Σ, ℓ) ∈ VH𝐿⟦∗ × ∗, 𝜏2, . . . , 𝜏𝑛⟧

∨(𝑘 − 1,Ψ, Σ, ℓ) ∈ VH𝐿⟦∗ → ∗, 𝜏2, . . . , 𝜏𝑛⟧}

E𝐿⟦𝜏⟧ ≜ {(𝑘,Ψ, Σ, 𝑒) | ∀𝑗 ≤ 𝑘. ∀Σ′ ⊇ Σ, 𝑒′ . (Σ, 𝑒) −→𝑗

𝐿
(Σ′, 𝑒′) ∧ irred(𝑒′)

⇒ (𝑒′ = Err• ∨ (∃(𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ). Σ′ : (𝑘 − 𝑗,Ψ′) ∧ (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ V𝐿⟦𝜏⟧))}

V𝐿⟦Int⟧ ≜ {(𝑘,Ψ, Σ, ℓ | pointsto(Σ, ℓ) ∈ Z}

V𝐿⟦Nat⟧ ≜ {(𝑘,Ψ, Σ, ℓ | pointsto(Σ, ℓ) ∈ N}

V𝐿⟦Bool⟧ ≜ {(𝑘,Ψ, Σ, ℓ | pointsto(Σ, ℓ) ∈ B}

V𝐿⟦𝜏1 × 𝜏2⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _) ∧ (𝑘,Ψ, Σ, ℓ1) ∈ V𝐿⟦𝜏1⟧ ∧ (𝑘,Ψ, Σ, ℓ2) ∈ V𝐿⟦𝜏2⟧}

V𝐿⟦𝜏1 → 𝜏2⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | ∀( 𝑗,Ψ′) ⊒ (𝑘,Ψ). ∀Σ′ ⊇ Σ where Σ′ : ( 𝑗,Ψ′) .

∀ℓ𝑣 where ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝐿⟦𝜏1⟧. ∀𝜏𝑜 . where 𝜏2 ⩽: 𝜏0

( 𝑗,Ψ′, Σ′, app{𝜏𝑜 } ℓ ℓ𝑣) ∈ E𝐿⟦𝜏0⟧}
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V𝐿⟦∗⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | (𝑘 − 1,Ψ, Σ, ℓ) ∈ V𝐿⟦Int⟧

(𝑘 − 1,Ψ, Σ, ℓ) ∈ V𝐿⟦Bool⟧

∨(𝑘 − 1,Ψ, Σ, ℓ) ∈ V𝐿⟦∗ × ∗⟧

∨(𝑘 − 1,Ψ, Σ, ℓ) ∈ V𝐿⟦∗ → ∗⟧}
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5.2 Vigilance Fundamental Property for Natural with Simple Typing
In this subsection, we use Γ ⊢ 𝑒 : 𝜏 to mean Γ ⊢sim 𝑒 : 𝜏 .

5.2.1 Lemmas Used Without Mention

Lemma 5.1 (Stepping to Error Implies Expression Relation). If (Σ, 𝑒) −→𝑗

𝑁
(Σ′,Err•) then (𝑘,Ψ, Σ, 𝑒) ∈ E𝑁 ⟦𝜏⟧

Proof. If 𝑘 < 𝑗 , then we’re done because the condition in the expression relation is vacuously true.
Otherwise, we can use 𝑗 as our steps, Σ′ as our ending value log, and Err• as our irreducible expression, and we satisfy
the condition in the expression relation. □

Lemma 5.2 (Stepping to Error Implies Expression History Relation). If (Σ, 𝑒) −→𝑗

𝑁
(Σ′,Err•) then (𝑘,Ψ, Σ, 𝑒) ∈

EH𝑁 ⟦𝜏⟧

Proof. Similar to the previous proof. □

Lemma 5.3 (Anti-Reduction - Head Expansion - Expression Relation Commutes With Steps). If (𝑘,Ψ′, Σ′, 𝑒′) ∈
E𝑁 ⟦𝜏⟧ and (Σ, 𝑒) −→𝑗

𝑁
(Σ′, 𝑒′) and Σ′ : (𝑘,Ψ′) then (𝑘 + 𝑗,Ψ, Σ, 𝑒) ∈ E𝑁 ⟦𝜏⟧

Proof. Unfolding the expression relation in our hypothesis, there exists (Σ′′, 𝑒′′), 𝑗 ′ such that (Σ′, 𝑒′) −→𝑗 ′

𝑁
(Σ′′, 𝑒′′)

and (Σ′′′, 𝑒′′) is irreducible.
Either 𝑒′′ = Err•, in which case (Σ, 𝑒) −→𝑗+𝑗 ′

𝑁
(Σ′′,Err•), so we’re done.

Otherwise, there is a (𝑘 − 𝑗 ′,Ψ′′) ⊒ (𝑘,Ψ′) such that Σ′′ : (𝑘 − 𝑗 ′,Ψ′′), and (𝑘 − 𝑗 ′,Ψ′′, Σ′′, 𝑒′′) ∈ V𝑁 ⟦𝜏⟧.
Using this information, we can show (𝑘 + 𝑗,Ψ, Σ, 𝑒) ∈ E𝑁 ⟦𝜏⟧ by noting (Σ, 𝑒) −→𝑗+𝑗 ′

𝑁
(Σ′′, 𝑒′′). □

Lemma 5.4 (Anti-Reduction - Head Expansion - Expression History Commutes With Steps). If (𝑘,Ψ′, Σ′, 𝑒′) ∈
EH𝑁 ⟦𝜏⟧ and (Σ, 𝑒) −→𝑗

𝑁
(Σ′, 𝑒′) and Σ′ : (𝑘,Ψ′) then (𝑘 + 𝑗,Ψ, Σ, 𝑒) ∈ EH𝑁 ⟦𝜏⟧

Proof. Similar to the previous proof. □

Lemma 5.5 (The Operational Semantics Preserves Well Formed Value Logs). If ⊢ Σ and (Σ, 𝑒) −→∗
𝑁
(Σ′, 𝑒′)

then ⊢ Σ′.

Proof. The proof is immediate by inspection of the Operational Semantics. □

Lemma 5.6 (Not Enough Steps Implies Any Expression Relation). If (Σ, 𝑒) −→𝑘
𝑁
(Σ′, 𝑒′) and (Σ′, 𝑒′) is not

irreducible, then ∀𝑗 ≤ 𝑘 . ( 𝑗,Ψ, Σ, 𝑒) ∈ E𝑁 ⟦𝜏⟧ and ( 𝑗,Ψ, Σ, 𝑒) ∈ EH𝑁 ⟦𝜏⟧.

Proof. Both conclusions are immediate, since the implications in the relations are vacuously true. □

Lemma 5.7 (The Operational Semantics Only Grows Stores). If (Σ, 𝑒) −→∗
𝑁
(Σ′, 𝑒′) then Σ′ ⊇ Σ.

Proof. This is a corollary of Lemma 5.8. □

5.2.2 Lemmas Used With Mention

Lemma 5.8 (The Operational Semantics Produces Value Log Extensions). If (Σ, 𝑒) −→∗
𝑁
(Σ′, 𝑒′), then ∃ℓ ⊆

dom(Σ′) such that ℓ ∉ dom(Σ) and Σ′ = Σ[ℓ ↦→ (𝑣, _)].
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Proof. By inspection of the Operational Semantics, no steps modify the value stored in the value log, meaning
Σ′ ⊇ Σ.
And also by the inspection of the Operational Semantics, there is exactly one rule to allocate new entries in the value
log, meaning Σ′ \ Σ is a suitable choice for [ℓ ↦→ (𝑣, _)]. □

Lemma 5.9 (Steps are Preserved in FutureValue Logs). If (Σ, 𝑒) −→𝑗

𝑁
(Σ′, 𝑒′) and ℓ ∉ dom(Σ′) then (Σ[ℓ ↦→ (𝑣, _)], 𝑒) −→𝑗

𝑁

(Σ′ [ℓ ↦→ (𝑣, _)], 𝑒′).

Proof. Since all of the added locations are not in Σ′, and therefore also not in Σ, no rule that will lookup a label in
the derivation tree for (Σ, 𝑒) −→𝑗

𝑁
(Σ′, 𝑒′) will find a different value or type.

The only remaining notable reduction steps are those that allocate a new label and value entry, but since ℓ ∉ dom(Σ′),
we can allocate the same entry unchanged. □

Lemma 5.10 (Subtyping Preserves Logical Relations). ∀Σ, 𝑘,Ψ, 𝜏, 𝜏 ′. where Σ : (𝑘,Ψ) and 𝜏 ⩽: 𝜏 ′.

(1) If (𝑘,Ψ, Σ, 𝑒) ∈ E𝑁 ⟦𝜏⟧ then (𝑘,Ψ, Σ, 𝑒) ∈ E𝑁 ⟦𝜏 ′⟧
(2) If (𝑘,Ψ, Σ, ℓ) ∈ V𝑁 ⟦𝜏⟧ then (𝑘,Ψ, Σ, ℓ) ∈ V𝑁 ⟦𝜏 ′⟧
(3) If (𝑘,Ψ, Σ, 𝑒) ∈ EH𝑁 ⟦𝜏, 𝜏⟧ then (𝑘,Ψ, Σ, 𝑒) ∈ EH𝑁 ⟦𝜏 ′, 𝜏⟧
(4) If (𝑘,Ψ, Σ, ℓ) ∈ VH𝑁 ⟦𝜏, 𝜏⟧ then (𝑘,Ψ, Σ, ℓ) ∈ VH𝑁 ⟦𝜏 ′, 𝜏⟧

Proof. Proceed by mutual induction on 𝑘 and 𝜏 :

• 𝑘 = 0: Both 1 and 3 are immediate if 𝑒 ≠ ℓ .
If 𝑒 = ℓ then 1 and 3 follow immediately from 2 and 4.
2 and 4 follow identically in the 𝑘 = 0 case as they do in the 𝑘 > 0 case, but the function case is vacuously true.

• 𝑘 > 0:
(1) Unfolding our hypothesis, there is some (Σ′, 𝑒′), 𝑗 such that (Σ, 𝑒) −→𝑗

𝑁
(Σ′, 𝑒′).

If 𝑒′ = Err• then we’re done.
Otherwise, there is some (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ′) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ V𝑁 ⟦𝜏⟧.
We now have two obligations:

a) (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ V𝑁 ⟦𝜏 ′⟧.
b) Σ′ : (𝑘 − 𝑗,Ψ′).

For a) by IH 2) (not necessarily smaller by type or index), we have (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ V𝑁 ⟦𝜏 ′⟧, which is
what we wanted to show.

For b), this is immediate from the premise.
(2) Case split on 𝜏 ⩽: 𝜏 ′:

i) 𝜏 ⩽: 𝜏 : immediate.
ii) Nat ⩽: Int: immediate because N ⊆ Z.
iii) 𝜏1 × 𝜏2 ⩽: 𝜏 ′1 × 𝜏

′
2, with 𝜏1 ⩽: 𝜏

′
1 and 𝜏2 ⩽: 𝜏

′
2:

We want to show (𝑘,Ψ, Σ, ℓ) ∈ V𝑁 ⟦𝜏 ′⟧.
Unfolding our hypothesis, we get that Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _).
We want to show (𝑘,Ψ, Σ, ℓ1) ∈ V𝑁 ⟦𝜏 ′1⟧ and (𝑘,Ψ, Σ, ℓ2) ∈ V

𝑁 ⟦𝜏 ′2⟧.
We can apply IH 2) (smaller by type) to both of these judgements to get (𝑘,Ψ, Σ, ℓ1) ∈ V𝑁 ⟦𝜏 ′1⟧ and
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(𝑘,Ψ, Σ, ℓ2) ∈ V𝑁 ⟦𝜏 ′2⟧.
This is sufficient to show (𝑘,Ψ, Σ, Σ(ℓ)) ∈ V𝑁 ⟦𝜏 ′⟧.

iv) 𝜏1 → 𝜏2 ⩽: 𝜏 ′1 → 𝜏 ′2, with 𝜏
′
1 ⩽: 𝜏1 and 𝜏2 ⩽: 𝜏

′
2:

We want to show (𝑘,Ψ, Σ, ℓ) ∈ V𝑁 ⟦𝜏 ′⟧.
Let ( 𝑗,Ψ′) ⊒ (𝑘,Ψ) and Σ′ ⊇ Σ such that Σ′ : ( 𝑗,Ψ′).
Let ℓ𝑣 ∈ dom(Σ′) such that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑁 ⟦𝜏 ′1⟧.
Let 𝜏0 :⩾ 𝜏 ′2.
We want to show ( 𝑗,Ψ′, Σ′, app{𝜏0} ℓ ℓ𝑣) ∈ E𝑁 ⟦𝜏0⟧.
From IH 2) (smaller by type) applied to the facts that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑁 ⟦𝜏 ′1⟧ and that 𝜏

′
1 ⩽: 𝜏1 gives

us ( 𝑗 + 1,Ψ′, Σ′, ℓ𝑣) ∈ V𝑁 ⟦𝜏1⟧.
Then, we can apply our hypothesis about Σ(ℓ) (noting that𝜏0 :⩾ 𝜏 ′2 :⩾ 𝜏2) to get ( 𝑗,Ψ′, Σ′, app{𝜏0} ℓ ℓ𝑣) ∈
E𝑁 ⟦𝜏0⟧, which is what we wanted to prove.

(3) Unfolding our hypothesis, we get that there are some (Σ′, 𝑒′), 𝑗 such that (Σ, 𝑒) −→𝑗

𝑁
(Σ′, 𝑒′) and (Σ′, 𝑒′)

are irreducible.
If 𝑒′ = Err•, then we’re done.
Otherwise, there is some (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ VH𝑁 ⟦𝜏, 𝜏⟧,
which means ∃ℓ ∈ dom(Σ′) such that 𝑒′ = ℓ .
Then by IH 4) (not necessarily smaller by type or index) with 𝜏 ⩽: 𝜏 ′, we get (𝑘− 𝑗,Ψ′, Σ′, ℓ) ∈ VH𝑁 ⟦𝜏 ′, 𝜏⟧,
which is what we wanted to show.

(4) We want to show (𝑘,Ψ, Σ, ℓ) ∈ VH𝑁 ⟦𝜏 ′, 𝜏⟧.
We case split on 𝜏 ⩽: 𝜏 ′:

i) 𝜏 = 𝜏 ′: immediate by premise.
ii) Nat ⩽: Int:

by our premise, we already get that ∀𝜏𝑜 ∈ 𝜏 , (𝑘,Ψ, Σ, ℓ) ∈ V𝑁 ⟦𝜏𝑜⟧.
Therefore, it suffices to show (𝑘,Ψ, Σ, ℓ) ∈ V𝑁 ⟦Int⟧ given (𝑘,Ψ, Σ, ℓ) ∈ V𝑁 ⟦Nat⟧ which is imme-
diate since N ⊂ Z.

iii) 𝜏1 × 𝜏2 ⩽: 𝜏 ′1 × 𝜏2 with 𝜏1 ⩽: 𝜏
′
1 and 𝜏2 ⩽: 𝜏

′
2:

by our premise, we get that Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _) and (𝑘,Ψ, Σ, ℓ1) ∈ VH𝑁 ⟦𝜏1, fst(𝜏)⟧ and (𝑘,Ψ, Σ, ℓ2) ∈
VH𝑁 ⟦𝜏2, snd(𝜏)⟧.
We can apply IH 4) (smaller by type) to both to get (𝑘,Ψ, Σ, ℓ1) ∈ VH𝑁 ⟦𝜏 ′1, fst(𝜏)⟧ and (𝑘,Ψ, Σ, ℓ2) ∈
VH𝑁 ⟦𝜏 ′2, snd(𝜏)⟧, which is what we wanted to show.

iv) 𝜏1 → 𝜏2 ⩽: 𝜏 ′1 → 𝜏 ′2 with 𝜏
′
1 ⩽: 𝜏1 and 𝜏2 ⩽: 𝜏

′
2:

unfolding what we want to show, let Σ′ ⊇ Σ, ( 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : ( 𝑗,Ψ′).
Let ℓ𝑣 ∈ dom(Σ′) such that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑁 ⟦𝜏 ′1⟧.
Let 𝜏0 ⩽: 𝜏 ′2.
We want to show ( 𝑗,Ψ′, Σ′, app{𝜏0} ℓ ℓ𝑣) ∈ EH𝑁 ⟦𝜏0, cod(𝜏)⟧.

By IH 2) (smaller by type), we get that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑁 ⟦𝜏1⟧.
We can then apply the fact that (𝑘,Ψ, Σ, ℓ) ∈ VH𝑁 ⟦𝜏, 𝜏⟧ to get ( 𝑗,Ψ′, Σ′, app{𝜏0} ℓ ℓ𝑣) ∈ EH𝑁 ⟦𝜏0, cod(𝜏)⟧,
which is what we wanted to show.
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□

Lemma 5.11 (RV-Monotonicity). If Σ : (𝑘,Ψ) and 0 ≤ 𝑗 ≤ 𝑘 and Σ′ ⊇ Σ and (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) and Σ′ : (𝑘 − 𝑗,Ψ′)
and (𝑘,Ψ, Σ, ℓ) ∈ VH𝑁 ⟦𝜏⟧ then (𝑘 − 𝑗,Ψ′, Σ′, ℓ) ∈ VH𝑁 ⟦𝜏⟧

Proof. We want to show (𝑘 − 𝑗,Ψ′, Σ′, ℓ)VH𝑁 ⟦𝜏⟧.
Let 𝜏 be the head of 𝜏 so that 𝜏 = [𝜏, . . .].
We proceed by induction over 𝑘 and 𝜏 :

• 𝑘 = 0: The function and dynamic cases are vacuously true, and the rest follow as in the other case.
• 𝑘 > 0:

i) 𝜏 = Int: immediate because Σ(ℓ) = Σ′ (ℓ).
ii) 𝜏 = Nat: same as previous case.
iii) 𝜏 = Bool: same as previous case.
iv) 𝜏 = 𝜏1 × 𝜏2: then Σ′ (ℓ) = (⟨ℓ1, ℓ2⟩, _).

We want to show (𝑘 − 𝑗,Ψ′, Σ′, ℓ1) ∈ VH𝐿⟦𝜏1, fst(𝜏)⟧ and (𝑘 − 𝑗,Ψ′, Σ′, ℓ2) ∈ VH𝐿⟦𝜏2, snd(𝜏)⟧.
We have (𝑘,Ψ, Σ, ℓ1) ∈ VH𝐿⟦𝜏1, fst(𝜏)⟧ and (𝑘,Ψ, Σ, ℓ2) ∈ VH𝐿⟦𝜏2, snd(𝜏)⟧.
Both follow by IH (smaller by type).

v) 𝜏 = 𝜏1 → 𝜏2:
Let ( 𝑗 ′, 𝑃𝑠𝑖′′) ⊒ (𝑘 − 𝑗,Ψ′) and Σ′′ ⊇ Σ′ such that Σ′′ : ( 𝑗 ′,Ψ′).
Let ℓ𝑣 ∈ dom(Σ′′) such that ( 𝑗 ′,Ψ′′, Σ′′, ℓ𝑣) ∈ V𝑁 ⟦𝜏1⟧.
Let 𝜏0 :⩾ 𝜏2.
We want to show ( 𝑗 ′,Ψ′′, Σ′′, app{𝜏0} ℓ ℓ𝑣) ∈ E𝑁 ⟦𝜏0⟧.
Since ( 𝑗 ′,Ψ′′) ⊒ (𝑘,Ψ) and Σ′′ ⊇ Σ, we can apply our premise to finish the case.

vi) 𝜏 = ∗: note by downward closure, Σ′ : (𝑘 − 𝑗 − 1,Ψ′).
Then we want to show (𝑘 − 𝑗 − 1,Ψ′, Σ′, ℓ) ∈ V𝑁 ⟦Int⟧ or (𝑘 − 𝑗 − 1,Ψ′, Σ′, ℓ) ∈ V𝑁 ⟦∗ × ∗⟧ or (𝑘 − 𝑗 −
1,Ψ′, Σ′, ℓ) ∈ V𝑁 ⟦∗ → ∗⟧.
We know (𝑘 − 1,Ψ, Σ, ℓ) ∈ V𝑁 ⟦Int⟧ or (𝑘 − 1,Ψ, Σ, ℓ) ∈ V𝑁 ⟦∗ × ∗⟧ or (𝑘 − 1,Ψ, Σ, ℓ) ∈ V𝑁 ⟦∗ → ∗⟧.
The case follows by the IH (smaller by index).

□

Lemma 5.12 (Extensions PreserveValue Log Typing). If Σ : (𝑘,Ψ) and 0 ≤ 𝑗 ≤ 𝑘 and Σ′ ⊇ Σ and (𝑘− 𝑗,Ψ′) ⊒ (𝑘,Ψ)
and Σ′ : (𝑘 − 𝑗,Ψ′) and ℓ ∉ dom(Σ′) and Σ[ℓ ↦→ (𝑣, _)] : (𝑘,Ψ[ℓ ↦→ 𝜏]) then Σ′ [ℓ ↦→ (𝑣, _)] : (𝑘 − 𝑗,Ψ′ [ℓ ↦→ 𝜏]).

Proof. Note that all of the conditions in Σ′ [ℓ ↦→ (𝑣, _)] : (𝑘 − 𝑗,Ψ′ [ℓ ↦→ 𝜏]) besides those concerning the history
relation are immediate from the hypotheses.

Let Σ′′ = Σ′ [ℓ ↦→ (𝑣, _)] and let Ψ′′ = Ψ′ [ℓ ↦→ 𝜏].
We want to show ∀𝑗 ′ < 𝑘 − 𝑗 , and ∀ℓ ∈ dom(Σ′′), ( 𝑗 ′,Ψ′′, Σ′′, ℓ) ∈ VH𝑁 ⟦Ψ′′ (ℓ)⟧.
Note by downward closure, Σ′′ : ( 𝑗 ′,Ψ′′). If ℓ ∈ dom(Σ′), then we can apply Lemma 5.11 with the fact that
( 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ′) and Σ′′ ⊇ Σ′.
If ℓ ∉ dom(Σ′), then ℓ ∈ ℓ .
Thenwe can apply Lemma 5.11with the fact that ( 𝑗 ′,Ψ′′) ⊒ (𝑘,Ψ[ℓ ↦→ 𝜏]) and Σ′′ ⊇ Σ[ℓ ↦→ (𝑣, _)] to get ( 𝑗 ′,Ψ′′, Σ′′, ℓ) ∈
VH𝑁 ⟦Ψ′′ (ℓ)⟧, which is what we wanted to show. □
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Lemma 5.13 (Later Than Preserved By Lower Steps). If ( 𝑗,Ψ′) ⊒ (𝑘,Ψ) and 𝑗 ′ ≤ 𝑗 then ( 𝑗 − 𝑗 ′,Ψ′) ⊒ (𝑘 − 𝑗 ′,Ψ).

Proof. Unfolding the world extension definition, we need to show 𝑗 − 𝑗 ′ ≤ 𝑘 − 𝑗 ′ and ∀ℓ ∈ dom(Ψ), Ψ′ (ℓ) = Ψ(ℓ).
For the first condition, since 𝑗 ≤ 𝑘 and 𝑗 ′ ≤ 𝑗 , 𝑗 − 𝑗 ′ ≤ 𝑘 − 𝑗 ′.
For the second condition, we can unfold the hypothesis to get the statement we need. □

Lemma 5.14 (RE-Monotonicity). If Σ : (𝑘,Ψ) and 0 ≤ 𝑗 ≤ 𝑘 and Σ′ ⊇ Σ and (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) and Σ′ : (𝑘 − 𝑗,Ψ′)
and (𝑘,Ψ, Σ, 𝑒) ∈ EH𝑁 ⟦𝜏⟧ then (𝑘 − 𝑗,Ψ′, Σ′, 𝑒) ∈ EH𝑁 ⟦𝜏⟧.

Proof. Unfolding the relation in our hypothesis, we get that there is some (Σ′′, 𝑒′), 𝑗 ′ such that (Σ, 𝑒) −→𝑗 ′

𝑁
(Σ′′, 𝑒′).

If 𝑒′ = Err• then we’re done.
Otherwise, there is some (𝑘 − 𝑗 ′,Ψ′′) ⊒ (𝑘,Ψ) such that Σ′′ : (𝑘 − 𝑗 ′,Ψ′′) and (𝑘 − 𝑗 ′,Ψ′′, Σ′′, 𝑒′) ∈ VH𝑁 ⟦𝜏⟧.

By Lemma 5.8, Σ′′ = Σ[ℓ ↦→ (𝑣, _)].
By the fact that Σ′′ : (𝑘 − 𝑗 ′,Ψ′′) this also means Ψ′′ = Ψ[ℓ ↦→ 𝜏].
We also know from Σ′ ⊇ Σ that Σ′ = Σ[ℓ′ ↦→ (𝑣 ′, _)].
And from Σ′ : (𝑘 − 𝑗,Ψ′) that Ψ′ = Ψ[ℓ′ ↦→ 𝜏 ′].
By alpha renaming, we can assume that ℓ′ ∉ dom(Σ′′).
Then by Lemma 5.9, we get that (Σ′, 𝑒) −→𝑗 ′

𝑁
(Σ′′ [ℓ′ ↦→ (𝑣 ′, _)], 𝑒′).

Now, unfolding the expression relation in what we want to show, we have two obligations:

a) Σ′′ [ℓ′ ↦→ (𝑣 ′, _)] : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′ [ℓ′ ↦→ 𝜏 ′]).
b) (𝑘 − 𝑗 − 𝑗 ′,Ψ′′ [ℓ′ ↦→ 𝜏 ′], Σ′′ [ℓ′ ↦→ (𝑣 ′, _)], 𝑒′) ∈ VH𝑁 ⟦𝜏⟧.

For a) we can apply Lemma 5.12. We have a number of obligations:

i) Σ : (𝑘 − 𝑗,Ψ): immediate by downward closure.
ii) Σ′′ ⊇ Σ: immediate.
iii) (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ): by Lemma 5.13.
iv) Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′)i: immediate by downward closure.
v) ℓ′ ∉ dom(Σ′′): assumed above by alpha renaming.
vi) Σ[ℓ′ ↦→ (𝑣 ′, _)] : (𝑘 − 𝑗,Ψ[ℓ′ ↦→ 𝜏 ′]): this is exactly Σ′ : (𝑘 − 𝑗,Ψ′).

For b), we can apply Lemma 5.11 with the fact proven in a). □

Lemma 5.15 (E-V-Monotonicity). If Σ : (𝑘,Ψ) and 0 ≤ 𝑗 ≤ 𝑘 and Σ′ ⊇ Σ and (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) and Σ′ : (𝑘 − 𝑗,Ψ′)
then

(1) If (𝑘,Ψ, Σ, 𝑒) ∈ E𝑁 ⟦𝜏⟧ then (𝑘 − 𝑗,Ψ′, Σ′, 𝑒) ∈ E𝑁 ⟦𝜏⟧
(2) If (𝑘,Ψ, Σ, ℓ) ∈ V𝑁 ⟦𝜏⟧ then (𝑘 − 𝑗,Ψ′, Σ′, ℓ) ∈ V𝑁 ⟦𝜏⟧

Proof. Proceed by simultaneous induction on 𝑘 and 𝜏 :

• 𝑘 = 0: 1) follows immediately from 2).
Proceeds similarly to the other case, but function and dynamic cases are vacuously true.

• 𝑘 > 0:
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1) Unfolding the expression relation in our hypothesis, we get that there is some (Σ′′, 𝑒′), 𝑗 ′ such that
(Σ, 𝑒) −→𝑗 ′

𝑁
(Σ′′, 𝑒′).

If 𝑒′ = Err• then we’re done.
Otherwise, there is some (𝑘− 𝑗 ′,Ψ′′) ⊒ (𝑘,Ψ) such that Σ′′ : (𝑘− 𝑗 ′,Ψ′′) and (𝑘− 𝑗 ′,Ψ′′, Σ′′, 𝑒′) ∈ V𝑁 ⟦𝜏⟧.

By Lemma 5.8, Σ′′ = Σ[ℓ ↦→ (𝑣, _)].
By the fact that Σ′′ : (𝑘 − 𝑗 ′,Ψ′′) this also means Ψ′′ = Ψ[ℓ ↦→ 𝜏].
We also know from Σ′ ⊇ Σ that Σ′ = Σ[ℓ′ ↦→ (𝑣 ′, _)], and from Σ′ : (𝑘 − 𝑗,Ψ′) that Ψ′ = Ψ[ℓ′ ↦→ 𝜏 ′].
By alpha renaming, we can assume that ℓ′ ∉ dom(Σ′′).
Then by Lemma 5.9, we get that (Σ′, 𝑒) −→𝑗 ′

𝑁
(Σ′′ [ℓ′ ↦→ (𝑣 ′, _)], 𝑒′).

Now, unfolding the expression relation in what we want to show, we have two obligations:
a) Σ′′ [ℓ′ ↦→ (𝑣 ′, _)] : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′ [ℓ′ ↦→ 𝜏 ′]).
b) (𝑘 − 𝑗 − 𝑗 ′,Ψ′′ [ℓ′ ↦→ 𝜏 ′], Σ′′ [ℓ′ ↦→ (𝑣 ′, _)], 𝑒′) ∈ V𝑁 ⟦𝜏⟧.

For a) we can apply Lemma 5.12. We have a number of obligations:
i) Σ : (𝑘 − 𝑗,Ψ): immediate by downward closure.
ii) Σ′′ ⊇ Σ: immediate.
iii) (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ): by Lemma 5.13.
iv) Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′)i: immediate by downward closure.
v) ℓ′ ∉ dom(Σ′′): assumed above by alpha renaming.
vi) Σ[ℓ′ ↦→ (𝑣 ′, _)] : (𝑘 − 𝑗,Ψ[ℓ′ ↦→ 𝜏 ′]): this is exactly Σ′ : (𝑘 − 𝑗,Ψ′).

For b), we can apply the IH 2) (not necessarily smaller by type or index) with the fact proven in a).
2) We want to show that (𝑘 − 𝑗,Ψ′, Σ′, ℓ) ∈ V𝑁 ⟦𝜏⟧.

We case split on 𝜏 :
i) 𝜏 = Nat: then Σ(ℓ) = (𝑛, _) where 𝑛 ∈ N, so the case is immediate.

ii) 𝜏 = 𝑡𝑖𝑛𝑡 : same as above.

iii) 𝜏 = Bool: same as above.

iv) 𝜏 = 𝜏1 × 𝜏2: then Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _).
Unfolding our hypothesis gives us (𝑘,Ψ, Σ, ℓ1) ∈ V𝑁 ⟦𝜏1⟧ and (𝑘,Ψ, Σ, ℓ2) ∈ V𝑁 ⟦𝜏2⟧.
Applying IH 2) (smaller by type) to both gives us (𝑘 − 𝑗,Ψ′, Σ′, ℓ1) ∈ V𝑁 ⟦𝜏1⟧ and (𝑘 − 𝑗,Ψ′, Σ′, ℓ2) ∈
V𝑁 ⟦𝜏2⟧, which is sufficient to complete the case.

v) 𝜏 = 𝜏1 → 𝜏2: Let Σ′′ ⊇ Σ′ and ( 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ′) such that Σ′′ : ( 𝑗 ′,Ψ′′).
Let ℓ𝑣 ∈ dom(Σ′′) such that ( 𝑗 ′,Ψ′′, Σ′′, ℓ𝑣) ∈ V𝑁 ⟦𝜏1⟧.
Let 𝜏0 :⩾ 𝜏2.
We want to show ( 𝑗 ′,Ψ′′, Σ′′, app{𝜏0} ℓ ℓ𝑣) ∈ E𝑁 ⟦𝜏0⟧.
Since ⊇ and ⊒ are both transitive, we have Σ′′ ⊇ Σ, and ( 𝑗 ′,Ψ′′) ⊒ (𝑘,Ψ).
Therefore we can apply the hypothesis to complete the case.
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vi) 𝜏 = ∗: we want to show (𝑘 − 1,Ψ′, Σ′, ℓ) ∈ V𝑁 ⟦Int⟧ orV𝑁 ⟦Bool⟧ orV𝑁 ⟦∗ × ∗⟧ orV𝑁 ⟦∗ → ∗⟧.
This follows from IH 2) (smaller by index).

□

Lemma 5.16 (Check is a No Op in Natural). (1) (𝑘 + 1,Ψ, Σ, assert𝜏0 𝑒) ∈ E𝑁 ⟦𝜏⟧ iff (𝑘,Ψ, Σ, 𝑒) ∈ E𝑁 ⟦𝜏⟧.
(2) (𝑘 + 1,Ψ, Σ, assert𝜏0 𝑒) ∈ EH𝑉 ⟦𝜏⟧ iff (𝑘,Ψ, Σ, 𝑒) ∈ EH𝑉 ⟦𝜏⟧.

Proof. By the operational semantics, (Σ, assert𝜏0 𝑒) −→𝑁 (Σ, 𝑒), so the statement is immediate. □

Lemma 5.17 (App Annotations Don’t Matter in Natural). (1) (𝑘+1,Ψ, Σ, app{𝜏0} 𝑒1 𝑒2) ∈ E𝑁 ⟦𝜏⟧ iff (𝑘,Ψ, Σ, 𝑒1 𝑒2) ∈
E𝑁 ⟦𝜏⟧.

(2) (𝑘 + 1,Ψ, Σ, app{𝜏0} 𝑒1 𝑒2) ∈ EH𝑉 ⟦𝜏⟧ iff (𝑘,Ψ, Σ, 𝑒1 𝑒2) ∈ EH𝑉 ⟦𝜏⟧.

Proof. By the operational semantics, (Σ, app{𝜏0} 𝑒1 𝑒2) −→𝑁 (Σ, assert𝜏0 𝑒1 𝑒2).
We can apply Lemma 5.16 to complete the proof. □

Lemma 5.18 (Pairs of Semantically Well Typed Terms are Semantically Well Typed). If (𝑘,Ψ, Σ, 𝑒1) ∈ E𝑁 ⟦𝜏1⟧
and (𝑘,Ψ, Σ, 𝑒2) ∈ E𝑁 ⟦𝜏2⟧ then (𝑘,Ψ, Σ, ⟨𝑒1, 𝑒2⟩) ∈ E𝑁 ⟦𝜏1 × 𝜏2⟧.

Proof. Unfolding the expression relation in our hypothesis about 𝑒1, we get that there are (Σ, 𝑒′1), 𝑗 such that
(Σ, 𝑒1) −→𝑗

𝑁
(Σ, 𝑒′1) and (Σ

′, 𝑒′1) is irreducible.
If 𝑒′1 = Err•, then were done because the entire application steps to an error.
Otherwise, there is a (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′1) ∈ V

𝑁 ⟦𝜏1⟧.
This means 𝑒′1 = ℓ1 for some ℓ1 ∈ dom(Σ′).

With this and by the OS, we get (Σ, ⟨𝑒1, 𝑒2⟩) −→𝑗

𝑁
(Σ′, ⟨𝑙𝑜𝑐1, 𝑒2⟩).

We can apply Lemma 5.15 to our hypothesis about 𝑒2 to get (𝑘 − 𝑗,Ψ′, Σ′, 𝑒2) ∈ E𝑁 ⟦𝜏2⟧.
Unfolding the expression relation, we get that there are (Σ′, 𝑒′2), 𝑗

′ such that (Σ′, 𝑒2) −→𝑗 ′

𝑁
(Σ′, 𝑒′2) and (Σ

′′, 𝑒′2) is
irreducible.
If 𝑒′2 = Err•, then were done because the entire application steps to an error.
Otherwise, there is a (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ′) such that Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) and (𝑘 − 𝑗 − 𝑗 ′,Ψ′′, Σ′′, 𝑒′2) ∈ V

𝑁 ⟦𝜏2⟧,
which means 𝑒′2 = ℓ2 for some ℓ2 ∈ dom(Σ′′).

Putting everything together we get (Σ, ⟨𝑒1, 𝑒2⟩) −→𝑗 ′

𝑁
(Σ′′, ⟨ℓ1, ℓ2⟩), with Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′).

Note by OS, (Σ′′, ⟨ℓ1, ℓ2⟩) −→𝑁 (Σ′′ [ℓ′ ↦→ (⟨ℓ1, ℓ2⟩, _)]) where ℓ′ ∉ dom(Σ′′).

We firstly need Σ′′ [ℓ′ ↦→ (⟨ℓ1, ℓ2⟩, _)] : (𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)]).
Note the only interesting part of this statement is that ∀𝑘′ < 𝑘 − 𝑗 − 𝑗 ′ − 1. (𝑘′,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)], Σ′′ [ℓ′ ↦→
(⟨ℓ1, ℓ2⟩, _)], ℓ′) ∈ VH𝑁 ⟦Ψ′′ (ℓ1) × Ψ′′ (ℓ2)⟧.
This is immediate from the fact that Σ′′ : (𝑘′,Ψ′′) from downward closure, and therefore that (𝑘′,Ψ′′, Σ′′, ℓ1) ∈
VH𝑁 ⟦Ψ′′ (ℓ1)⟧ and (𝑘′,Ψ′′, Σ′′, ℓ2) ∈ VH𝑁 ⟦Ψ′′ (ℓ2)⟧.
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We know that (𝑘 − 𝑗,Ψ′, Σ′, ℓ′1) ∈ V
𝑁 ⟦𝜏1⟧ and (𝑘 − 𝑗 − 𝑗 ′,Ψ′′, Σ′′, ℓ2) ∈ V𝑁 ⟦𝜏2⟧, and Lemma 5.15 with down-

ward closure and the store typing judgement above.
From these facts we get that (𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)], Σ′′ [ℓ′ ↦→ (⟨ℓ1, ℓ2⟩, _)], ℓ1) ∈ V𝑁 ⟦𝜏1⟧ and
(𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)], Σ′′ [ℓ′ ↦→ ⟨ℓ1, ℓ2⟩], ℓ2) ∈ V𝑁 ⟦𝜏2⟧.
This is sufficient to show (𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)], Σ′′ [ℓ′ ↦→ (⟨ℓ1, ℓ2⟩, _)], ⟨ℓ1, ℓ2⟩) ∈ V𝑁 ⟦𝜏1 × 𝜏2⟧,
which is what we wanted to prove. □

Lemma 5.19 (Pairs of History Related Terms are History Related). If (𝑘,Ψ, Σ, 𝑒1) ∈ EH𝑁 ⟦fst(𝜏)⟧ and

(𝑘,Ψ, Σ, 𝑒2) ∈ EH𝑁 ⟦snd(𝜏)⟧ then (𝑘,Ψ, Σ, ⟨𝑒1, 𝑒2⟩) ∈ EH𝑁 ⟦𝜏⟧.

Proof. Unfolding the erroring expression relation in our hypothesis about 𝑒1, we get that there are (Σ, 𝑒′1), 𝑗 such
that (Σ, 𝑒1) −→𝑗

𝑁
(Σ, 𝑒′1) and (Σ

′, 𝑒′1) is irreducible.
If 𝑒′1 = Err•, then were done because the entire application steps to an error.
Otherwise, there is a (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′1) ∈ VH

𝑁 ⟦fst(𝜏)⟧.
This means 𝑒′1 = ℓ1 for some ℓ1 ∈ dom(Σ′).

With this and by the OS, we get (Σ, ⟨𝑒1, 𝑒2⟩) −→𝑗

𝑁
(Σ′, ⟨𝑙𝑜𝑐1, 𝑒2⟩).

We can apply Lemma 5.14 to our hypothesis about 𝑒2 to get (𝑘 − 𝑗,Ψ′, Σ′, 𝑒2) ∈ EH𝑁 ⟦snd(𝜏)⟧.
Unfolding the erroring expression relation, we get that there are (Σ′, 𝑒′2), 𝑗

′ such that (Σ′, 𝑒2) −→𝑗 ′

𝑁
(Σ′, 𝑒′2) and (Σ

′′, 𝑒′2)
is irreducible.
If 𝑒′2 = Err•, then were done because the entire application steps to an error.
Otherwise, there is a (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ′) such that Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) and (𝑘 − 𝑗 − 𝑗 ′,Ψ′′, Σ′′, 𝑒′2) ∈
VH𝑁 ⟦snd(𝜏)⟧, which means 𝑒′2 = ℓ2 for some ℓ2 ∈ dom(Σ′′).

Putting everything together we get (Σ, ⟨𝑒1, 𝑒2⟩) −→𝑗 ′

𝑁
(Σ′′, ⟨ℓ1, ℓ2⟩), with Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′).

Note by OS, (Σ′′, ⟨ℓ1, ℓ2⟩) −→𝑁 (Σ′′ [ℓ′ ↦→ (⟨ℓ1, ℓ2⟩, _)]) where ℓ′ ∉ dom(Σ′′).

We firstly need Σ′′ [ℓ′ ↦→ (⟨ℓ1, ℓ2⟩, _)] : (𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)]).
Note the only interesting part of this statement is that ∀𝑘′ < 𝑘 − 𝑗 − 𝑗 ′ − 1. (𝑘′,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)], Σ′′ [ℓ′ ↦→
(⟨ℓ1, ℓ2⟩, _)], ℓ′) ∈ VH𝑁 ⟦Ψ′′ (ℓ1) × Ψ′′ (ℓ2)⟧.
This is immediate from the fact that Σ′′ : (𝑘′,Ψ′′) from downward closure, and therefore that (𝑘′,Ψ′′, Σ′′, ℓ1) ∈
VH𝑁 ⟦Ψ′′ (ℓ1)⟧ and (𝑘′,Ψ′′, Σ′′, ℓ2) ∈ VH𝑁 ⟦Ψ′′ (ℓ2)⟧.

We know that (𝑘 − 𝑗,Ψ′, Σ′, ℓ′1) ∈ VH
𝑁 ⟦fst(𝜏)⟧ and (𝑘 − 𝑗 − 𝑗 ′,Ψ′′, Σ′′, ℓ2) ∈ VH𝑁 ⟦snd(𝜏)⟧, and Lemma 5.11

with downward closure and the store typing judgement above.
From these facts we get that (𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)], Σ′′ [ℓ′ ↦→ (⟨ℓ1, ℓ2⟩, _)], ℓ1) ∈ VH𝑁 ⟦fst(𝜏)⟧
and (𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)], Σ′′ [ℓ′ ↦→ ⟨ℓ1, ℓ2⟩], ℓ2) ∈ VH𝑁 ⟦snd(𝜏)⟧.
This is sufficient to show (𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) ×Ψ′′ (ℓ2)], Σ′′ [ℓ′ ↦→ (⟨ℓ1, ℓ2⟩, _)], ⟨ℓ1, ℓ2⟩) ∈ VH𝑁 ⟦𝜏⟧, which
is what we wanted to prove. □

Lemma 5.20 (Applications of Semantically Well Typed Terms are Semantically Well Typed). If (𝑘,Ψ, Σ, 𝑒𝑓 ) ∈
E𝑁 ⟦𝜏 → 𝜏 ′⟧ and (𝑘,Ψ, Σ, 𝑒) ∈ E𝑁 ⟦𝜏⟧ then ∀𝜏0 :⩾ 𝜏 ′, (𝑘,Ψ, Σ, app{𝜏0} 𝑒𝑓 𝑒) ∈ E𝑁 ⟦𝜏0⟧.
2024-04-22 00:20. Page 33 of 1–108.



34

Proof. Unfolding the expression relation in our hypothesis about 𝑒𝑓 , we get that there are (Σ′, 𝑒′𝑓 ), 𝑗 such that

(Σ, 𝑒𝑓 ) −→
𝑗

𝑁
(Σ′, 𝑒′

𝑓
) and (Σ′, 𝑒′

𝑓
) is irreducible.

If 𝑒′
𝑓
= Err•, then we’re done because the entire application steps to an error.

Otherwise, there is a (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′
𝑓
) ∈ V𝑁 ⟦𝜏 → 𝜏 ′⟧.

This means 𝑒′
𝑓
= ℓ𝑓 for some ℓ𝑓 ∈ dom(Σ′).

Using this, we know from the OS that (Σ, app{𝜏0} 𝑒𝑓 𝑒) −→
𝑗

𝑁
(Σ′, app{𝜏0} ℓ𝑓 𝑒).

We can apply Lemma 5.15 with Σ′ : (𝑘 − 𝑗,Ψ′) to our hypothesis about 𝑒 to get (𝑘 − 𝑗,Ψ′, Σ′, 𝑒) ∈ E𝑁 ⟦𝜏⟧.
Unfolding the expression relation, we get that there are (Σ′′, 𝑒′), 𝑗 ′ such that (Σ′, 𝑒) −→𝑗 ′

𝑁
(Σ′′, 𝑒′) where (Σ′′, 𝑒′) is

irreducible.
If 𝑒′ = Err• than we’re done, because the whole application errors.
Otherwise, there exists (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ′) such that Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) and (𝑘 − 𝑗 − 𝑗 ′ .Ψ′′, Σ′′, 𝑒′) ∈ V𝑁 ⟦𝜏⟧.
This means 𝑒′ = ℓ for some ℓ ∈ dom(Σ′′).

Putting what we have together, by the OS, (Σ, app{𝜏0} 𝑒𝑓 𝑒) −→
𝑗+𝑗 ′
𝑁
(Σ′′, (app{𝜏0} ℓ𝑓 ℓ)).

We have (𝑘 − 𝑗,Ψ′, Σ′, ℓ𝑓 ) ∈ V𝑁 ⟦𝜏 → 𝜏 ′⟧ and (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ′) and Σ′′ ⊇ Σ′ and Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′)
and 𝜏0 :⩾ 𝜏 ′.
We can combine these to get (𝑘 − 𝑗 − 𝑗 ′,Ψ′′, Σ′′, app{𝜏0} ℓ𝑓 ℓ) ∈ E𝑁 ⟦𝜏0⟧.
This is sufficient to complete the proof. □

Corollary 5.21. If (𝑘,Ψ, Σ, ℓ) ∈ E𝑁 ⟦∗⟧ and Σ(ℓ) = 𝑤 and (𝑘,Ψ, Σ, 𝑒) ∈ E𝑁 ⟦∗⟧ then (𝑘 − 1,Ψ, Σ, app{∗}𝑤 𝑒) ∈
E𝑁 ⟦∗⟧.

Lemma 5.22 (Applications of History Related Terms are History Related). If (𝑘,Ψ, Σ, 𝑒𝑓 ) ∈ EH𝑁 ⟦𝜏, 𝜏⟧ and
(𝑘,Ψ, Σ, 𝑒) ∈ E𝑁 ⟦dom(𝜏)⟧ then ∀𝜏0 :⩾ cod(𝑡𝑎𝑢), (𝑘,Ψ, Σ, app{𝜏0} 𝑒𝑓 𝑒) ∈ EH𝑁 ⟦𝜏0, cod(𝜏)⟧.

Proof. Unfolding the erroring expression relation in our hypothesis about 𝑒𝑓 , we get that there are (Σ′, 𝑒′𝑓 ), 𝑗 such
that (Σ, 𝑒𝑓 ) −→

𝑗

𝑁
(Σ′, 𝑒′

𝑓
) and (Σ′, 𝑒′

𝑓
) is irreducible.

If 𝑒′
𝑓
= Err•, then we’re done because the entire application steps to an error.

Otherwise, there is a (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′
𝑓
) ∈ VH𝑁 ⟦𝜏, 𝜏⟧.

This means 𝑒′
𝑓
= ℓ𝑓 for some ℓ𝑓 ∈ dom(Σ′).

Using this, we know from the OS that (Σ, app{𝜏0} 𝑒𝑓 𝑒) −→
𝑗

𝑁
(Σ′, app{𝜏0} ℓ𝑓 𝑒).

We can apply Lemma 5.15 with Σ′ : (𝑘 − 𝑗,Ψ′) to our hypothesis about 𝑒 to get (𝑘 − 𝑗,Ψ′, Σ′, 𝑒) ∈ E𝑁 ⟦dom(𝜏)⟧.
Unfolding the expression relation, we get that there are (Σ′′, 𝑒′), 𝑗 ′ such that (Σ′, 𝑒) −→𝑗 ′

𝑁
(Σ′′, 𝑒′) where (Σ′′, 𝑒′) is

irreducible.
If 𝑒′ = Err• than we’re done, because the whole application errors.
Otherwise, there exists (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ′) such that Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) and (𝑘 − 𝑗 − 𝑗 ′ .Ψ′′, Σ′′, 𝑒′) ∈ V𝑁 ⟦𝜏⟧.
This means 𝑒′ = ℓ for some ℓ ∈ dom(Σ′′).
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Putting what we have together, by the OS, (Σ, app{𝜏0} 𝑒𝑓 𝑒) −→
𝑗+𝑗 ′
𝑁
(Σ′′, (app{𝜏0} ℓ𝑓 ℓ)).

We have (𝑘 − 𝑗,Ψ′, Σ′, ℓ𝑓 ) ∈ V𝑁 ⟦𝜏 → 𝜏 ′⟧ and (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ′) and Σ′′ ⊇ Σ′ and Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′)
and 𝜏0 :⩾ 𝜏 ′.
We can combine these to get (𝑘 − 𝑗 − 𝑗 ′,Ψ′′, Σ′′, app{𝜏0} ℓ𝑓 ℓ) ∈ EH𝑁 ⟦𝜏0, cod(𝜏)⟧.
This is sufficient to complete the proof. □

Corollary 5.23. If (𝑘,Ψ, Σ, 𝑒𝑓 ) ∈ EH𝑁 ⟦∗, 𝜏⟧ and (𝑘 − 1,Ψ, Σ, 𝑒) ∈ E𝑁 ⟦∗⟧ then (𝑘 − 1,Ψ, Σ, app{𝜏0} 𝑒𝑓 𝑒) ∈
EH𝑁 ⟦∗, cod(𝜏)⟧.

Lemma 5.24 (Expression Relation implies Expression History Relation). (1) If (𝑘,Ψ, Σ, 𝑒) ∈ E𝑁 ⟦𝜏⟧ then
(𝑘,Ψ, Σ, 𝑒) ∈ EH𝑁 ⟦𝜏⟧.

(2) If (𝑘,Ψ, Σ, ℓ) ∈ V𝑁 ⟦𝜏⟧ then (𝑘,Ψ, Σ, ℓ) ∈ VH𝑁 ⟦𝜏⟧.

Proof. Proceed by induction on 𝑘 and 𝜏 :

• 𝑘 = 0: 1) is immediate from 2).

– 𝜏 = Int: immediate.
– 𝜏 = 𝜏1 × 𝜏2: then Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _).

The case follows from the IH on ℓ1 and ℓ2.
– 𝜏 = 𝜏1 → 𝜏2: vacuously true.
– 𝜏 = ∗: vacuously true.

• 𝑘 > 0: 1) is immediate from 2).

– 𝜏 = Int: immediate.
– 𝜏 = 𝜏1 × 𝜏2: then Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _).

The case follows from the IH on ℓ1 and ℓ2.
– 𝜏 = 𝜏1 → 𝜏2: Follows from 1) from the IH (smaller by index).
– 𝜏 = ∗: Follows from 2) from the IH (smaller by index), using ∗ × ∗, ∗ → ∗, or Int.

□

Lemma 5.25 (Monitor Compatibility). If Σ : (𝑘,Ψ), then

(1) If (𝑘,Ψ, Σ, ℓ) ∈ V𝑁 ⟦𝜏⟧ and Σ(ℓ′) = (ℓ, some(𝜏 ′, 𝜏)), then (𝑘,Ψ, Σ, ℓ′) ∈ V𝑁 ⟦𝜏 ′⟧
(2) If (𝑘,Ψ, Σ, 𝑒) ∈ E𝑁 ⟦𝜏⟧ then (𝑘,Ψ, Σ,mon {𝜏 ′ ⇐ 𝜏} 𝑒) ∈ E𝑁 ⟦𝜏 ′⟧.
(3) If (𝑘,Ψ, Σ, ℓ) ∈ VH𝑁 ⟦Ψ(ℓ)⟧ and Ψ(ℓ) = [𝜏𝑠 , . . .] and 𝜏 :⩾ 𝜏𝑠 and Σ′ = Σ[ℓ′ ↦→ (ℓ, some(𝜏 ′, 𝜏))] and Ψ′ =

[ℓ′ ↦→ 𝜏 ′, 𝜏,Ψ(ℓ)]Ψ and ℓ′ ∉ dom(Σ) and ⊢ Σ′ then (𝑘,Ψ′, Σ′, ℓ′) ∈ VH𝑁 ⟦𝜏 ′, 𝜏,Ψ(ℓ)⟧
(4) If (𝑘,Ψ, Σ, 𝑒) ∈ EH𝑁 ⟦𝜏⟧ and 𝜏 = [𝜏, . . .] then (𝑘,Ψ, Σ,mon {𝜏 ′ ⇐ 𝜏} 𝑒) ∈ EH𝑁 ⟦𝜏 ′, 𝜏, 𝜏⟧

Proof. Proceed by simultaneous induction on 𝑘 and 𝜏 .

• 𝑘 = 0: 2) and 4) follow from 1) and 3) respectively.
The proofs follow similarly to the other case, but any function or dynamic cases are vacuously true.
• 𝑘 > 0:
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1) Unfolding the relation in the statement we want to prove, note from our hypothesis about Σ, we get that
⊢ Σ.
Proceed by case analysis on 𝜏 ′:

a) 𝜏 ′ = Nat: Since ⊢ Σ, we have pointsto(Σ, ℓ′) ∝ Nat.
Therefore, we have pointsto(Σ, ℓ′) ∈ N, which is sufficient to complete the case.

b) 𝜏 ′ = Int: same reasoning as Nat.
c) 𝜏 ′ = Bool: same reasoning as Nat.
d) 𝜏 ′ = 𝜏 ′1 × 𝜏

′
2: By the fact that ⊢ Σ, this case is a contradiction.

e) 𝜏 ′ = 𝜏 ′1 → 𝜏 ′2: Unfolding the value relation, let Σ
′ ⊇ Σ, and ( 𝑗,Ψ′) ⊒ (𝑘,Ψ), such that Σ′ : ( 𝑗,Ψ′).

Let ℓ𝑣 such that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑁 ⟦dom(𝜏 ′)⟧.
Let 𝜏0 ⩽: cod(𝜏 ′).
We want to show ( 𝑗,Ψ′, Σ′, app{𝜏0} ℓ′ ℓ𝑣) ∈ E𝑁 ⟦𝜏0⟧.
Note by the operational semantics, (Σ′, app{𝜏0} ℓ′ ℓ𝑣) −→2

𝑁

(Σ′, assert𝜏0 (mon {cod(𝜏 ′) ⇐ cod(𝜏)} (ℓ (mon {dom(𝜏) ⇐ dom(𝜏 ′)} ℓ𝑣)))).
Note by downward closure we have Σ′ : ( 𝑗 − 2,Ψ′).
Therefore it suffices to show ( 𝑗−2,Ψ′, Σ′, assert𝜏0 (mon {cod(𝜏 ′) ⇐ cod(𝜏)} (ℓ (mon {dom(𝜏) ⇐ dom(𝜏 ′)} ℓ𝑣)))) ∈
E𝑁 ⟦𝜏0⟧.

Note that 𝜏0 :⩾ cod(𝜏 ′).
By Lemma 5.10, it suffices to show ( 𝑗−2,Ψ′, Σ′, assert𝜏0 (mon {cod(𝜏 ′) ⇐ cod(𝜏)} (ℓ (mon {dom(𝜏) ⇐ dom(𝜏 ′)} ℓ𝑣)))) ∈
E𝑁 ⟦cod(𝜏 ′)⟧.

By Lemma 5.16, it suffices to show ( 𝑗−3,Ψ′, Σ′,mon {cod(𝜏 ′) ⇐ cod(𝜏 ′)} (ℓ (mon {dom(𝜏) ⇐ dom(𝜏 ′)} ℓ𝑣))) ∈
E𝑁 ⟦cod(𝜏 ′)⟧.

By IH 2) (smaller by type), it suffices to show ( 𝑗 − 3,Ψ′, Σ′, ℓ (mon {dom(𝜏) ⇐ dom(𝜏 ′)} ℓ𝑣)) ∈
E𝑁 ⟦cod(𝜏 ′)⟧.

By Lemma 5.17, it suffices to show ( 𝑗 − 2,Ψ′, Σ′, app{cod(𝜏 ′)} ℓ (mon {dom(𝜏) ⇐ dom(𝜏 ′)} ℓ𝑣)) ∈
E𝑁 ⟦cod(𝜏 ′)⟧.

We now have two cases:
i) 𝜏 = ∗:

Then by Lemma 5.21 it suffices to show ( 𝑗−1,Ψ′, Σ′, ℓ) ∈ V𝑁 ⟦∗⟧ and ( 𝑗−1,Ψ′, Σ′,mon {dom(𝜏) ⇐ dom(𝜏 ′)} ℓ𝑣) ∈
E𝑁 ⟦dom(𝜏 ′)⟧.
Both follow by Lemma 5.15, and IH 2) (smaller by index) in the second case.

ii) 𝜏 = 𝜏1 → 𝜏2:
Then by Lemma 5.20 it suffices to show ( 𝑗−2,Ψ′, Σ′, ℓ) ∈ V𝑁 ⟦𝜏⟧ and ( 𝑗−2,Ψ′, Σ′,mon {dom(𝜏) ⇐ dom(𝜏 ′)} ℓ𝑣) ∈
E𝑁 ⟦dom(𝜏 ′)⟧.
Both follow by Lemma 5.15, and IH 2) (smaller by index) in the second case.
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f) 𝜏 ′ = ∗: Unfolding the relation in what we want to show, we want to show (𝑘,Ψ, Σ, ℓ′) ∈ V𝑁 ⟦Int⟧
orV𝑁 ⟦Bool⟧ orV𝑁 ⟦∗ × ∗⟧ orV𝑁 ⟦∗ → ∗⟧.
In each case, we can apply IH 1) (smaller by index) to complete the case.

2) Unfolding the expression relation in our hypothesis, we have that there are (𝑒′, Σ′), 𝑗 such that (𝑒, Σ) −→𝑗

𝑁

(𝑒′, Σ′) with (𝑒′, Σ′) irreducible.
If 𝑒′ = Err• then we’re done, because the monitor will step to an error as well.
Otherwise, there is (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ V𝑁 ⟦𝜏⟧.
This means ∃ℓ ∈ dom(Σ′) such that 𝑒′ = ℓ .

If ¬pointsto(Σ′, ℓ) ∝ 𝜏 ′, then (Σ,mon {𝜏 ′ ⇐ 𝜏} 𝑒) −→𝑗

𝑁
(Σ′,mon {𝜏 ′ ⇐ 𝜏} ℓ) −→𝑁 (Σ′,TypeErr(𝜏 ′, ℓ)),

so we’re done.
Otherwise, we have pointsto(Σ′, ℓ) ∝ 𝜏 ′, and since pointsto(Σ′, ℓ) ∝ 𝜏 , we also have 𝜏 ∝ 𝜏 ′.

We have 5 cases:
(a) 𝜏 ′ = Nat:

Then (Σ′,mon {Nat⇐ 𝜏} ℓ) −→𝑁 (Σ′ [ℓ′ ↦→ (ℓ, some(Nat, 𝜏))], ℓ′).
It suffices to show (𝑘 − 𝑗 − 1,Ψ′ [ℓ′ ↦→ Nat, 𝜏,Ψ(ℓ)], Σ′ [ℓ′ ↦→ (ℓ, some(Nat, 𝜏))], ℓ) ∈ V𝑁 ⟦Nat⟧,
and that Σ′ [ℓ′ ↦→ (ℓ, some(Nat, 𝜏))] : (𝑘 − 𝑗 − 1,Ψ′ [ℓ′ ↦→ Nat, 𝜏,Ψ(ℓ)]).
The first follows from downward closure, and the fact that Σ′ (ℓ) ∝ Nat means Σ′ (ℓ) = 𝑛.
The second follows from IH 3) (smaller by index).

(b) 𝜏 ′ = Int: Essentially the same as Nat.
(c) 𝜏 ′ = Bool: Essentially the same as Nat.
(d) 𝜏 ′ = 𝜏 ′1 × 𝜏

′
2:

By the fact that fst(Σ′ (ℓ)) ∝ 𝜏 ′1 × 𝜏
′
2, we have that Σ

′ (ℓ) = (⟨ℓ1, ℓ2⟩, _).
Then by theOSwe have that (Σ′,mon {𝜏 ′ ⇐ 𝜏} ℓ) −→𝑁 (Σ′, ⟨mon {𝜏 ′1 ⇐ fst(𝜏)} ℓ1,mon {𝜏 ′2 ⇐ snd(𝜏)} ℓ2⟩).
By downward closure, we get Σ′ : (𝑘 − 𝑗 − 1,Ψ′).
By Lemma 5.18, it suffices to show (𝑘 − 𝑗 − 1,Ψ′, Σ′,mon {𝜏 ′1 ⇐ fst(𝜏)} ℓ1) ∈ E𝑁 ⟦𝜏 ′1⟧ and (𝑘 − 𝑗 −
1,Ψ′, Σ′,mon {𝜏 ′2 ⇐ snd(𝜏)} ℓ2) ∈ E𝑁 ⟦𝜏 ′2⟧.

If 𝜏 = 𝜏1 × 𝜏2, then we have (𝑘 − 𝑗,Ψ′, Σ′, ℓ1) ∈ V𝑁 ⟦𝜏1⟧, and (𝑘 − 𝑗,Ψ′, Σ′, ℓ2) ∈ V𝑁 ⟦𝜏2⟧.
Then we just need to apply IH 2) (smaller by type) and Lemma 5.15.

If 𝜏 = ∗, then we have (𝑘 − 𝑗,Ψ′, Σ′, ⟨ℓ1, ℓ2⟩) ∈ V𝑁 ⟦∗⟧.
This means (𝑘 − 𝑗 − 1,Ψ′, Σ′, ⟨ℓ1, ℓ2⟩) ∈ V𝑁 ⟦∗ × ∗⟧.
Therefore (𝑘 − 𝑗 − 1,Ψ′, Σ′, ℓ1) ∈ V𝑁 ⟦∗⟧, and (𝑘 − 𝑗 − 1,Ψ′, Σ′, ℓ2) ∈ V𝑁 ⟦∗⟧.
Then we just need to apply IH 2) (smaller by index).

(e) 𝜏 ′ = 𝜏 ′1 → 𝜏 ′2:
By the fact that𝜏 ∝ 𝜏 ′, and by theOS, we have (Σ′,mon {𝜏 ′ ⇐ 𝜏} ℓ) −→𝑁 (Σ′ [ℓ′ ↦→ (ℓ, some(𝜏 ′, 𝜏))])
for ℓ′ ∉ dom(Σ′).
Let Σ′′ = Σ′ [ℓ′ ↦→ (ℓ, some(𝜏 ′, 𝜏))], and Ψ′′ = Ψ′ [ℓ′ ↦→ [𝜏 ′, 𝜏,Ψ′ (ℓ)].
We want to show Σ′′ : (𝑘 − 𝑗 − 2,Ψ′′).
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To start, the condition on entries in the value log is immediate.
Otherwise the only interesting case is the value history relation.
Let 𝑘′ < 𝑘 − 𝑗 − 2.
Then by downward closure, we get Σ′ : (𝑘′,Ψ′).
By IH 3) (smaller by index), we get (𝑘′,Ψ′′, Σ′′, ℓ′) ∈ VH𝑁 ⟦𝜏 ′, 𝜏,Ψ(ℓ)⟧, which is sufficient.
Then we just need to apply IH 1) (smaller by index).

(f) 𝜏 ′ = ∗: case spit on the shape of pointsto(Σ′, ℓ):
i) pointsto(Σ′, ℓ) = 𝑖: the proof follows identically to the Nat case.
ii) pointsto(Σ′, ℓ) = 𝑏: the proof follows identically to the Bool case.
iii) pointsto(Σ′, ℓ) = 𝜆𝑥 : _. 𝑒: then by the operational semantics, (Σ′,mon {∗ ⇐ 𝜏} ℓ) −→𝑁

(Σ′ [ℓ′ ↦→ (ℓ, some(∗, 𝜏))], ℓ′).
Therefore we want to show:
– Σ′ [ℓ′ ↦→ (ℓ, some(∗, 𝜏))] : (𝑘 − 𝑗 − 2,Ψ′ [ℓ′ ↦→ [∗, 𝜏,Ψ′ (ℓ)]])
– (𝑘 − 𝑗 − 2,Ψ′ [ℓ′ ↦→ [∗, 𝜏,Ψ′ (ℓ)]], Σ′ [ℓ′ ↦→ (ℓ, some(∗, 𝜏))], ℓ′) ∈ V𝑁 ⟦∗⟧
The first condition follows from applications of IH 3) (smaller by index).
The second condition follows from an application of IH 1) (smaller by index).

iv) pointsto(Σ′, ℓ) = ⟨ℓ1, ℓ2⟩:
By the operational semantics, either:
– (Σ′,mon {∗ ⇐ 𝜏} ℓ) −→𝑁 (Σ′, ⟨mon {∗ ⇐ fst(𝜏)} ℓ1,mon {∗ ⇐ snd(𝜏)} ℓ2⟩) or
– (Σ′,mon {∗ ⇐ 𝜏} ℓ) −→𝑁 (Σ′,TypeErr(𝜏, ℓ))
In the case it errors, we’re done.
Otherwise, it suffices to show (𝑘 − 𝑗 − 1,Ψ′, Σ′, ⟨mon {∗ ⇐ fst(𝜏)} ℓ1,mon {∗ ⇐ snd(𝜏)} ℓ2⟩) ∈
E𝑁 ⟦∗⟧.
By Lemma 5.18, it suffices to show:
– (𝑘 − 𝑗 − 1,Ψ′, Σ′,mon {∗ ⇐ fst(𝜏)} ℓ1) ∈ E𝑁 ⟦∗⟧
– (𝑘 − 𝑗 − 1,Ψ′, Σ′,mon {∗ ⇐ snd(𝜏)} ℓ2) ∈ E𝑁 ⟦∗⟧
We can unfold our hypothesis that (𝑘,Ψ, Σ, ℓ)V𝑁 ⟦𝜏⟧ to get (𝑘,Ψ, Σ, ⟨ℓ1, ℓ2⟩) ∈ V𝑁 ⟦𝜏⟧.
We now have two cases depending on whether 𝜏 = ∗ or 𝜏1 × 𝜏2:
– If 𝜏 = ∗, then (𝑘 − 1,Ψ, Σ, ℓ1) ∈ V𝑁 ⟦∗⟧ and (𝑘 − 1,Ψ, Σ, ℓ2) ∈ V𝑁 ⟦∗⟧.

By Lemma 5.15, (𝑘 − 𝑗 − 1,Ψ′, Σ′, ℓ1) ∈ V𝑁 ⟦∗⟧ and (𝑘 − 𝑗 − 1,Ψ′, Σ′, ℓ2) ∈ V𝑁 ⟦∗⟧.
Then we can apply IH 2) (smaller by index) to get what we need.

– If 𝜏 = 𝜏1 × 𝜏2, then (𝑘,Ψ, Σ, ℓ1) ∈ V𝑁 ⟦𝜏1⟧ and (𝑘,Ψ, Σ, ℓ2) ∈ V𝑁 ⟦𝜏2⟧.
By Lemma 5.15, (𝑘 − 𝑗 − 1,Ψ′, Σ′, ℓ1) ∈ V𝑁 ⟦𝜏1⟧ and (𝑘 − 𝑗 − 1,Ψ′, Σ′, ℓ2) ∈ V𝑁 ⟦𝜏2⟧.
Then we can apply IH 2) (smaller by index) to get what we need.

3) We proceed by case analysis on 𝜏 ′:
(a) 𝜏 ′ = Nat: Since we already know (𝑘,Ψ, Σ, ℓ) ∈ VH𝑉 ⟦𝑁⟧Ψ(ℓ), it suffices to show (𝑘,Ψ, Σ, ℓ′) ∈
V𝑁 ⟦𝜏 ′⟧ and (𝑘,Ψ, Σ, ℓ′) ∈ V𝑁 ⟦𝜏⟧.
This is immediate from ⊢ Σ′, which implies 𝜏 ′ ∝ pointsto(Σ′, ℓ′) and 𝜏 ∝ pointsto(Σ′, ℓ′).

(b) 𝜏 ′ = Int: same as the Nat case.
(c) 𝜏 ′ = Bool: same as the Nat case.
(d) 𝜏 ′ = 𝜏 ′1 × 𝜏

′
2: this case is a contradiction by the fact that ⊢ Σ.
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(e) 𝜏 ′ = 𝜏 ′1 → 𝜏 ′2: Unfolding the relation in what we want to prove, let ( 𝑗,Ψ′) ⊒ (𝑘,Ψ) and Σ′ ⊇ Σ such
that Σ′ : ( 𝑗,Ψ′).
Let 𝜏0 such that cod(𝜏 ′) ⩽: 𝜏0.
Let ℓ𝑣 such that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑁 ⟦dom(𝜏 ′)⟧.
We want to show ( 𝑗,Ψ′, Σ′, app{𝜏0} ℓ′ ℓ𝑣) ∈ EH𝑁 ⟦𝜏0, cod(𝑡𝑎𝑢), cod(Ψ′ (ℓ))⟧.
We know by the OS that (Σ′, app{𝜏0} ℓ ℓ𝑣) −→𝑁 (Σ′, assert𝜏0 (ℓ ℓ𝑣)) −→𝑁

(Σ′, assert𝜏0 (mon {cod(𝜏 ′) ⇐ cod(𝜏)} (ℓ (mon {dom(𝜏) ⇐ dom(𝜏 ′)} ℓ𝑣)))).
Note by downward closure, Σ′ : ( 𝑗 − 2,Ψ′).

By Lemma 5.10, it suffices to show ( 𝑗−2,Ψ′, Σ′, assert𝜏0 (mon {cod(𝜏 ′) ⇐ cod(𝜏)} (ℓ (mon {dom(𝜏) ⇐ dom(𝜏 ′)} ℓ𝑣))))
∈ EH𝑁 ⟦cod(𝜏 ′), cod(𝜏), cod(Ψ′ (ℓ))⟧

By Lemma 5.16, it suffices to show ( 𝑗−1,Ψ′, Σ′,mon {cod(𝜏 ′) ⇐ cod(𝜏)} (ℓ (mon {dom(𝜏) ⇐ dom(𝜏 ′)} ℓ𝑣))) ∈
EH𝑁 ⟦cod(𝜏 ′), cod(𝜏), cod(Ψ′ (ℓ))⟧.

By IH 4) (smaller by index), it suffices to show ( 𝑗 − 1,Ψ′, Σ′, (ℓ (mon {dom(𝜏) ⇐ dom(𝜏 ′)} ℓ𝑣))) ∈
EH𝑁 ⟦cod(Ψ′ (ℓ))⟧.

We now have two cases:
i) 𝜏 = ∗: By Lemma 5.23, it suffices to show ( 𝑗,Ψ′, Σ′, ℓ) ∈ EH𝑁 ⟦Ψ′ (ℓ)⟧ and ( 𝑗−1,Ψ′, Σ′,mon {∗ ⇐ dom(𝜏 ′)} ℓ𝑣) ∈
E𝑁 ⟦∗⟧ (since Ψ′ (ℓ) = [𝜏, . . .]).

The first follows from the fact that ( 𝑗,Ψ′, Σ′, ℓ) ∈ VH𝑁 ⟦Ψ′ (ℓ)⟧ by Lemma 5.11.

For the second, by IH 2) (smaller by index), it suffices to show ( 𝑗 −1,Ψ′, Σ′, ℓ𝑣) ∈ E𝑁 ⟦dom(𝜏 ′)⟧.
This follows by Lemma 5.15 applied to the fact that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑁 ⟦dom(𝜏 ′)⟧.

ii) 𝜏 = 𝜏1 → 𝜏2:
By Lemma 5.22, it suffices to show ( 𝑗−1,Ψ′, Σ′, ℓ) ∈ EH𝑁 ⟦Ψ′ (ℓ)⟧ and ( 𝑗−1,Ψ′, Σ′,mon {dom(𝜏) ⇐ dom(𝜏 ′)} ℓ𝑣) ∈
E𝑁 ⟦dom(𝜏)⟧ (since Ψ′ (ℓ) = [𝜏, . . .]).

The first follows from the fact that ( 𝑗 − 1,Ψ′, Σ′, ℓ) ∈ VH𝑁 ⟦Ψ′ (ℓ)⟧ by Lemma 5.11.

For the second, by IH 2) (smaller by index), it suffices to show ( 𝑗 −1,Ψ′, Σ′, ℓ𝑣) ∈ E𝑁 ⟦dom(𝜏 ′)⟧.
This follows by Lemma 5.15 applied to the fact that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑁 ⟦dom(𝜏 ′)⟧.

(f) 𝜏 ′ = ∗: unfolding the relation in what we want to show, the proof follows by IH 3) (smaller by index).
4) Unfolding the expression relation in our hypothesis, we have that there are (𝑒′, Σ′), 𝑗 such that (𝑒, Σ) −→𝑗

𝑁

(𝑒′, Σ′) with (𝑒′, Σ′) irreducible.
If 𝑒′ = Err• then we’re done, because the monitor will step to an error as well.
Otherwise, there is (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ VH𝑁 ⟦𝜏⟧.
This means ∃ℓ ∈ dom(Σ′) such that 𝑒′ = ℓ , and Ψ′ (ℓ) = 𝜏 .
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If ¬pointsto(Σ′, ℓ) ∝ 𝜏 ′, then (Σ,mon {𝜏 ′ ⇐ 𝜏} 𝑒) −→𝑗

𝑁
(Σ′,mon {𝜏 ′ ⇐ 𝜏} ℓ) −→𝑁 (Σ′,TypeErr(𝜏 ′, ℓ)),

so we’re done.
Otherwise, we have pointsto(Σ′, ℓ) ∝ 𝜏 ′, and since pointsto(Σ′, ℓ) ∝ 𝜏 , we also have 𝜏 ∝ 𝜏 ′.

We want to show (𝑘 − 𝑗,Ψ′, Σ′,mon {𝜏 ′ ⇐ 𝜏} ℓ) ∈ EH𝑁 ⟦𝜏 ′, 𝜏,Ψ′ (ℓ)⟧.
We have three cases:

a) pointsto(Σ′, ℓ) = 𝑖: By OS, (Σ′,mon {𝜏 ′ ⇐ 𝜏} ℓ) −→𝑁 (Σ′ [ℓ′ ↦→ (ℓ, some(𝜏 ′, 𝜏))], ℓ′).
Let Σ′′ = Σ′ [ℓ′ ↦→ (ℓ, some(𝜏 ′, 𝜏))] and Ψ′′ = 𝑃𝑠𝑖′ [ℓ′ ↦→ 𝜏 ′, 𝜏,Ψ(ℓ)].
Unfolding the relation inwhat wewant to show, it suffices to show∀𝜏𝑧 ∈ Ψ′′ (ℓ), (𝑘− 𝑗−1,Ψ′′, Σ′′, ℓ) ∈
V𝑁 ⟦𝜏𝑧⟧ and Σ′′ : (𝑘 − 𝑗 − 1,Ψ′′).

For the second, we can apply IH 3) (smaller by index).
For the first, by downward closure, by Lemma 5.11, (𝑘 − 𝑗 − 1,Ψ′′, Σ′′, ℓ) ∈ VH𝑁 ⟦Ψ′ (ℓ)⟧.
Then we already know (𝑘 − 𝑗 − 1,Ψ′′, Σ′′, ℓ) ∈ V𝑁 ⟦𝜏𝑧⟧ when 𝜏𝑧 ∈ Ψ′ (ℓ).
So it suffices to show (𝑘 − 𝑗 − 1,Ψ′′, Σ′′, ℓ) ∈ V𝑁 ⟦𝜏 ′⟧.

If 𝜏 ′ = Int, then we’re done.
Otherwise, 𝜏 ′ = ∗, in which case we need to show (𝑘 − 𝑗 − 2,Ψ′′, Σ′′, ℓ′) ∈ V𝑁 ⟦Int⟧, which is also
immediate.

b) pointsto(Σ′, ℓ) = 𝑏: essentially the same as the previous case.
c) Σ′ (ℓ) = ⟨ℓ1, ℓ2⟩:

By OS, (Σ′,mon {𝜏 ′ ⇐ 𝜏} ℓ) −→𝑁 (Σ′, ⟨mon {fst(𝜏 ′) ⇐ fst(𝜏)} ℓ1,mon {snd(𝜏 ′) ⇐ snd(𝜏)} ℓ2⟩).
Note by downward closue, Σ′ : (𝑘 − 𝑗 − 2,Ψ′).
By Lemma 5.19, it suffices to show (𝑘− 𝑗−2,Ψ′, Σ′,mon {fst(𝜏 ′) ⇐ fst(𝜏)} ℓ1) ∈ EH𝑁 ⟦fst(𝜏 ′), fst(𝜏), fst(Ψ′ (ℓ))⟧
and (𝑘 − 𝑗 − 2,Ψ′, Σ′,mon {snd(𝜏 ′) ⇐ snd(𝜏)} ℓ1) ∈ EH𝑁 ⟦snd(𝜏 ′), snd(𝜏), snd(Ψ′ (ℓ))⟧.
Both of these follow by unfolding the relation in the hypothesis about ℓ , applying Lemma 5.14, and
applying IH 4) (smaller by index).

d) pointsto(Σ′, ℓ) = 𝜆𝑥 : _. 𝑒:
By OS, (Σ′,mon {𝜏 ′ ⇐ 𝜏} ℓ) −→𝑁 (Σ′ [ℓ′ ↦→ (ℓ, some(𝜏 ′, 𝜏))], ℓ′), where ℓ′ ∉ dom(Σ′).
Then let Σ′′ = Σ′ [ℓ′ ↦→ (ℓ, some(𝜏 ′, 𝜏))] and let Ψ′′ = Ψ′ [ℓ′ ↦→ 𝜏 ′, 𝜏,Ψ′ (ℓ)].
By IH 3) (smaller by index) we get (𝑘 − 𝑗 − 2,Ψ′′, Σ′′, ℓ′) ∈ VH𝑁 ⟦𝜏 ′, 𝜏,Ψ′ (ℓ)⟧, so all that’s left is to
show is Σ′′ : (𝑘 − 𝑗 − 2,Ψ′′).

Let 𝑘′ < 𝑘 − 𝑗 − 2.
Note by downward closure, Σ′ : (𝑘′,Ψ′), so ∀ℓ′′ ∈ dom(Σ′), by Lemma 5.11, (𝑘′,Ψ′′, Σ′′, ℓ′′) ∈
VH𝑁 ⟦Ψ′′ (ℓ′′)⟧ (note Ψ′ (ℓ′′) = Ψ′′ (ℓ′′)).
So the final condition is (𝑘′,Ψ′′, Σ′′, ℓ′) ∈ VH𝑁 ⟦Ψ′′ (ℓ′)⟧, which follows from IH 3) (smaller by
index).

□
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5.2.3 Compatability Lemmas

Lemma 5.26 (T-Var compatibility).
⟦(𝑥 :𝜏) ∈ Γ⟧

⟦Γ ⊢ 𝑥 : 𝜏⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑁 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (𝑥)) ∈ E𝑁 ⟦𝜏⟧.
Since 𝑥 : 𝜏 ∈ Γ, we get that 𝛾 (𝑥) = ℓ .
Since (𝑘,Ψ, Σ, 𝛾) ∈ G𝑁 ⟦Γ⟧, we get (𝑘,Ψ, Σ, ℓ) ∈ V𝑁 ⟦𝜏⟧.
Then we get that (𝑘,Ψ, Σ, ℓ) ∈ E𝑁 ⟦𝜏⟧ immediately since ℓ is already a value and we have as a premise that Σ : (𝑘,Ψ). □

Lemma 5.27 (T-Nat compatibility).
⟦Γ ⊢ 𝑛 : Nat⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑁 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (𝑛)) ∈ E𝑁 ⟦Nat⟧.
Note 𝛾 (𝑛) = 𝑛.
By the OS, we have (Σ, 𝑛) −→𝑁 (Σ[ℓ ↦→ (𝑛, _)], ℓ).
We get (𝑘,Ψ, Σ, ℓ) ∈ V𝑁 ⟦Nat⟧ immediately because 𝑛 ∈ N.
SinceV𝑁 ⟦Nat⟧ does not rely on Ψ or Σ, we have that (𝑘,Ψ[ℓ ↦→ [Nat]], Σ[ℓ ↦→ (𝑛, _)], ℓ) ∈ V𝑁 ⟦Nat⟧.

□

Lemma 5.28 (T-Int compatibility).
⟦Γ ⊢ 𝑖 : Int⟧

Proof. Not meaningfully different from T-Int □

Lemma 5.29 (T-True compatibility).
⟦Γ1 ⊢ True : Bool⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑁 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (True)) ∈ E𝑁 ⟦Bool⟧.
Note 𝛾 (True) = True.
By the OS, we have (Σ,True) −→𝑁 (Σ[ℓ ↦→ (True, _)], ℓ).
We get (𝑘,Ψ, Σ,True) ∈ V𝑁 ⟦Bool⟧ immediately.
SinceV𝑁 ⟦Bool⟧ does not rely on Ψ or Σ, we have that (𝑘,Ψ[ℓ ↦→ [Bool]], Σ[ℓ ↦→ (True, _)], ℓ) ∈ V𝑁 ⟦Bool⟧.

□

Lemma 5.30 (T-False compatibility).
⟦Γ1 ⊢ False : Bool⟧

Proof. Not meaningfully different from the previous case. □

Lemma 5.31 (T-Lam compatibility).
⟦Γ1, (𝑥1 :𝜏1) ⊢ 𝑒1 : 𝜏2⟧

⟦Γ1 ⊢ 𝜆(𝑥1 :𝜏1) . 𝑒1 : 𝜏1→𝜏2⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑁 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (𝜆𝑥1 : 𝜏1 . 𝑒1)) ∈ E𝑁 ⟦𝜏1 → 𝜏2⟧.
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Note that 𝛾 (𝜆𝑥1 : 𝜏1 . 𝑒1) = 𝜆𝑥1 : 𝜏1 . 𝛾 (𝑒1).
Since 𝜆𝑥1 : 𝜏1 . 𝛾 (𝑒1) is a value, by the OS we have (Σ, 𝜆𝑥1 : 𝜏1 . 𝛾 (𝑒1)) −→𝑁 (Σ[ℓ ↦→ (𝜆𝑥1 : 𝜏1 . 𝛾 (𝑒1), none)]), where
ℓ ∉ dom(Σ).
We choose our later Ψ′ to be Ψ[ℓ ↦→ 𝜏1 → 𝜏2].
We now have two obligations:

(1) (𝑘 − 1,Ψ[ℓ ↦→ 𝜏1 → 𝜏2], Σ[ℓ ↦→ (𝜆𝑥1 : 𝜏1 . 𝛾 (𝑒1), none], ℓ) ∈ V𝑁 ⟦𝜏1 → 𝜏2⟧
(2) Σ[ℓ ↦→ (𝜆𝑥1 : 𝜏1 . 𝛾 (𝑒1), none)] : (𝑘 − 1,Ψ[ℓ ↦→ 𝜏1 → 𝜏2])

For 1), unfolding the value relation:
Let ( 𝑗,Ψ′) ⊒ (𝑘 − 1,Ψ[ℓ ↦→ 𝜏1 → 𝜏2]) and Σ′ ⊇ Σ[ℓ ↦→ (𝜆𝑥1 : 𝜏1 . 𝛾 (𝑒1), none)] such that Σ′ : ( 𝑗,Ψ′).
Let ℓ𝑣 ∈ dom(Σ′) such that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑁 ⟦𝜏1⟧.
Let 𝜏0 :⩾ 𝜏2.
We want to show ( 𝑗,Ψ′, Σ′, app{𝜏0} ℓ ℓ𝑣) ∈ E𝑁 ⟦𝜏0⟧.
By Lemma 5.17, it suffices to show ( 𝑗 − 1,Ψ′, Σ′, ℓ ℓ𝑣) ∈ E𝑁 ⟦𝜏0⟧.
By the OS, (Σ′, ℓ ℓ𝑣) −→𝑁 (Σ′, 𝛾 (𝑒1) [ℓ𝑣/𝑥]).
By the definition of substitution, 𝛾 (𝑒1) [ℓ𝑣/𝑥] = 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1).
Note that ( 𝑗 − 1,Ψ′, Σ′, 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1)) ∈ G𝑁 ⟦Γ, 𝑥 : 𝜏1⟧:

i) ( 𝑗 − 1,Ψ′, Σ′, ℓ𝑣) ∈ V𝑁 ⟦𝜏1⟧ by Lemma 5.15.
ii) ∀𝑦 ∈ dom(𝛾), ( 𝑗 − 1,Ψ′, Σ′, 𝛾 (𝑦)) ∈ V𝑁 ⟦Γ(𝑦)⟧ by the premise about 𝛾 and Lemma 5.15.

Therefore, we can apply the hypothesis to𝛾 [𝑥 ↦→ ℓ𝑣],Ψ′, Σ′, and 𝑒1 at 𝑗−1 to get ( 𝑗−1,Ψ′, Σ′, 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1)) ∈ E𝑁 ⟦𝜏2⟧.
Finally, we can apply Lemma 5.10 to get ( 𝑗 − 1,Ψ′, Σ′, 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1)) ∈ E𝑁 ⟦𝜏0⟧ which is what we wanted to show.

For 2), first note the domains are equal, since dom(Σ) = dom(Ψ).
Then note ⊢ Σ[ℓ ↦→ 𝜆𝑥1 : 𝜏1 .𝛾 (𝑒1)] since ⊢ Σ.
Then let 𝑗 < 𝑘 − 1 and let ℓ′ ∈ dom(Σ[ℓ ↦→ (𝜆𝑥1 : 𝜏1 .𝛾 (𝑒1), none)]).
If ℓ′ ≠ ℓ , then we get the remaining conditions from Σ : (𝑘,Ψ) and Lemma 5.11.
If ℓ′ = ℓ , then note the structural obligation on Ψ[ℓ ↦→ [𝜏1 → 𝜏2]] is immediate.
We want to show ( 𝑗,Ψ[ℓ ↦→ 𝜏1 → 𝜏2], Σ[ℓ ↦→ (𝜆𝑥1 : 𝜏1 .𝛾 (𝑒1), none)], ℓ) ∈ VH𝑁 ⟦𝜏1 → 𝜏2⟧.
Let ( 𝑗,Ψ′) ⊒ (𝑘 − 1,Ψ[ℓ ↦→ 𝜏1 → 𝜏2]) and Σ′ ⊇ Σ[ℓ ↦→ (𝜆𝑥1 : 𝜏1 . 𝛾 (𝑒1), none)] such that Σ′ : ( 𝑗,Ψ′).
Let ℓ𝑣 ∈ dom(Σ′) such that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑁 ⟦𝜏1⟧.
Let 𝜏0 :⩾ 𝜏2.
By inspection of the value relation, we get immediately that Σ′ (ℓ𝑣) ∝ 𝜏1, so we want to show ( 𝑗,Ψ′, Σ′, app{𝜏0} ℓ ℓ𝑣) ∈
EH𝑉 ⟦𝜏0⟧.
By Lemma 5.17, it suffices to show ( 𝑗 − 1,Ψ′, Σ′, ℓ ℓ𝑣) ∈ EH𝑉 ⟦𝜏0⟧.
By the OS, (Σ′, ℓ ℓ𝑣) −→𝑁 (Σ′, 𝛾 (𝑒1) [ℓ𝑣/𝑥]).
By the definition of substitution, 𝛾 (𝑒1) [ℓ𝑣/𝑥] = 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1).
Note that ( 𝑗 − 1,Ψ′, Σ′, 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1)) ∈ G𝑁 ⟦Γ, 𝑥 : 𝜏1⟧:

i) ( 𝑗 − 1,Ψ′, Σ′, ℓ𝑣) ∈ V𝑁 ⟦𝜏1⟧ by Lemma 5.15.
ii) ∀𝑦 ∈ dom(𝛾), ( 𝑗 − 1,Ψ′, Σ′, 𝛾 (𝑦)) ∈ V𝑁 ⟦Γ(𝑦)⟧ by the premise about 𝛾 and Lemma 5.15.
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Therefore, we can apply the hypothesis to𝛾 [𝑥 ↦→ ℓ𝑣],Ψ′, Σ′, and 𝑒1 at 𝑗−1 to get ( 𝑗−1,Ψ′, Σ′, 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1)) ∈ E𝑁 ⟦𝜏2⟧.
Then we can apply Lemma 5.24 to get ( 𝑗 − 1,Ψ′, Σ′, 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1)) ∈ EH𝑉 ⟦𝜏2⟧.
Finally, we can apply Lemma 5.10 to get ( 𝑗 − 1,Ψ′, Σ′, 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1)) ∈ EH𝑉 ⟦𝜏0⟧ which is what we wanted to show.

□

Lemma 5.32 (T-Pair compatibility).

⟦Γ1 ⊢ 𝑒1 : 𝜏1⟧
⟦Γ1 ⊢ 𝑒2 : 𝜏2⟧

⟦Γ1 ⊢ ⟨𝑒1, 𝑒2⟩ : 𝜏1×𝜏2⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑁 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (⟨𝑒1, 𝑒2⟩)) ∈ E𝑁 ⟦𝜏1 × 𝜏2⟧.
Note 𝛾 (⟨𝑒1, 𝑒2⟩) = ⟨𝛾 (𝑒1), 𝛾 (𝑒2)⟩.
We can apply the first hypothesis to get (𝑘,Ψ, Σ, 𝛾 (𝑒1)) ∈ E𝑁 ⟦𝜏1⟧.
We can apply the second hypothesis to get (𝑘,Ψ, Σ, 𝛾 (𝑒2)) ∈ E𝑁 ⟦𝜏2⟧.
Then by Lemma 5.19, (𝑘,Ψ, Σ, ⟨𝛾 (𝑒1), 𝛾 (𝑒2)⟩) ∈ E𝑁 ⟦𝜏1 × 𝜏2⟧, which is what we wanted to show. □

Lemma 5.33 (T-App compatibility).
⟦Γ1 ⊢ 𝑒1 : 𝜏1→𝜏2⟧ ⟦Γ1 ⊢ 𝑒2 : 𝜏1⟧

⟦Γ1 ⊢ app{𝜏2} 𝑒1 𝑒2 : 𝜏2⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑁 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (app{𝜏2} 𝑒1 𝑒2)) ∈ E𝑁 ⟦𝜏2⟧.
Note 𝛾 (app{𝜏2} 𝑒1 𝑒2) = app{𝜏2}𝛾 (𝑒1) 𝛾 (𝑒2).
By the first hypothesis we have (𝑘,Ψ, Σ, 𝛾 (𝑒1)) ∈ E𝑁 ⟦𝜏1 → 𝜏2⟧.
By the second hypothesis we have (𝑘,Ψ, Σ, 𝛾 (𝑒2)) ∈ E𝑁 ⟦𝜏1⟧.
Then we can apply Lemma 5.20 to get (𝑘,Ψ, Σ, app{𝜏2}𝛾 (𝑒1) 𝛾 (𝑒2)) ∈ E𝑁 ⟦𝜏2⟧ which is what we wanted to show. □

Lemma 5.34 (T-Fst compatibility).
⟦Γ1 ⊢ 𝑒1 : 𝜏1×𝜏2⟧

⟦Γ1 ⊢ fst{𝜏1} 𝑒1 : 𝜏1⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑁 ⟦Γ1⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (fst{𝜏1} 𝑒1)) ∈ E𝑁 ⟦𝜏1⟧.
Note 𝛾 (fst{𝜏1} 𝑒1) = fst{𝜏1}𝛾 (𝑒1).
From the first hypothesis, we have (𝑘,Ψ, Σ, 𝛾 (𝑒1)) ∈ E𝑁 ⟦𝜏1 × 𝜏2⟧.
Unfolding the expression relation, there are 𝑗, Σ′, 𝑒′1 such that (Σ, 𝛾 (𝑒1)) −→𝑗

𝑁
(Σ′′, 𝑒′1) and 𝑒

′
1 is irreducible.

If 𝑒′1 = Err• then we’re done because the projection also steps to an error.
Otherwise, there is a (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′1) ∈ V

𝑁 ⟦𝜏1 × 𝜏2⟧.
Unfolding the location and value relations, we get that Σ′ (𝑒′1) = ⟨ℓ1, ℓ2⟩.
By the OS, (Σ, fst{𝜏1} 𝑒1) −→𝑗

𝑁
(Σ′fst{𝜏1} 𝑒′1) −→𝑁 (Σ′, assert𝜏1 ℓ1) −→𝑁 (Σ′, ℓ1).

We can apply Lemma 5.15 to the premise that (𝑘 − 𝑗,Ψ′, Σ′, ℓ1) ∈ V𝑁 ⟦𝜏1⟧ to get (𝑘 − 𝑗 − 2,Ψ′, Σ′, ℓ1) ∈ V𝑁 ⟦𝜏1⟧.
Finally, we can apply Lemma 5.11 to get that Σ′ : (𝑘 − 𝑗 − 2,Ψ′), which is sufficient to complete the proof. □

Lemma 5.35 (T-Snd compatibility).
⟦Γ1 ⊢ 𝑒1 : 𝜏1×𝜏2⟧

⟦Γ1 ⊢ snd{𝜏2} 𝑒1 : 𝜏2⟧

Proof. Not meaningfully different from the previous lemma. □
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Lemma 5.36 (T-Binop compatibility).

⟦Γ1 ⊢ 𝑒1 : 𝜏1⟧ ⟦Γ1 ⊢ 𝑒2 : 𝜏2⟧
Δ(binop, 𝜏1, 𝜏2) = 𝜏3

⟦Γ1 ⊢ binop 𝑒1 𝑒2 : 𝜏3⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑁 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (binop 𝑒1 𝑒2)) ∈ E𝑁 ⟦𝜏3⟧.
Note 𝛾 (binop 𝑒1 𝑒2) = binop𝛾 (𝑒1) 𝛾 (𝑒2).
By the first hypothesis applied to 𝛾 we have (𝑘,Ψ, Σ, 𝛾 (𝑒1)) ∈ E𝑁 ⟦𝜏1⟧.
Unfolding we get there are 𝑗, Σ′, 𝑒′1 such that (Σ, 𝛾 (𝑒1)) −→𝑗

𝑁
(Σ′, 𝑒′1) and 𝑒

′
1 is irreducible.

If 𝑒′1 = Err• then we’re done, because the whole operation errors.
Otherwise there is a (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′1) ∈ V

𝑁 ⟦𝜏1⟧.

Note by Lemma 5.15 and Lemma 5.11, we have (𝑘 − 𝑗,Ψ′, Σ′, 𝛾) ∈ G𝑁 ⟦Γ1⟧ and Σ′ : (𝑘 − 𝑗,Ψ′).
By the second hypothesis applied to 𝛾 we have (𝑘 − 𝑗,Ψ′, Σ′, 𝛾 (𝑒2)) ∈ E𝑁 ⟦𝜏2⟧.
Unfolding we get there are 𝑗 ′, Σ′′, 𝑒′2 such that (Σ′, 𝛾 (𝑒2)) −→𝑗 ′

𝑁
(Σ′′, 𝑒′2) and 𝑒

′
2 is irreducible.

If 𝑒′2 = Err• then we’re done, because the whole operation errors.
Otherwise, there is a (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ) such that Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) and (𝑘 − 𝑗 − 𝑗 ′,Ψ′′, Σ′′, 𝑒′2) ∈ V

𝑁 ⟦𝜏2⟧.

From the definition of Δ, 𝜏3 = Int or Nat the cases proceed identically, so without loss of generality assume 𝜏3 = Int.
𝜏1 = 𝜏2 = Int, and therefore Σ′′ (𝑒′1) = 𝑖1 and Σ′′ (𝑒′2) = 𝑖2.
If binop = quotient and 𝑖2 = 0 then (Σ′′, binop 𝑒′1 𝑒

′
2) −→𝑁 (Σ′′,DivErr), so we’re done.

If binop = quotient and 𝑖2 ≠ 0, then (Σ′′, binop 𝑒′1 𝑒
′
2) −→𝑁 (Σ′′, 𝑖1/𝑖2) −→𝑁 (Σ′′ [ℓ ↦→ (𝑖1/𝑖2, none)], ℓ).

Since 𝑖1/𝑖2 ∈ Z, we’re done.
If binop = sum then (Σ′′, binop 𝑒′1 𝑒

′
2) −→𝑁 (Σ′′, 𝑖1 + 𝑖2) −→𝑁 (Σ′′ [ℓ ↦→ (𝑖1 + 𝑖2, none)], ℓ).

Since 𝑖1 + 𝑖2 ∈ Z, we’re done. □

Lemma 5.37 (T-If compatibility).

⟦Γ1 ⊢ 𝑒1 : Bool⟧
⟦Γ1 ⊢ 𝑒2 : 𝜏⟧
⟦Γ1 ⊢ 𝑒3 : 𝜏⟧

⟦Γ1 ⊢ if 𝑒1 then 𝑒2 else 𝑒3 : 𝜏⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑁 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (if 𝑒1 then 𝑒2 else 𝑒3)) ∈ E𝑁 ⟦𝜏⟧.
Note 𝛾 (if 𝑒1 then 𝑒2 else 𝑒3) = if 𝛾 (𝑒1) then 𝛾 (𝑒2) else 𝛾 (𝑒3).
From the first hypothesis applied to 𝛾 , we know (𝑘,Ψ, Σ, 𝛾 (𝑒1)) ∈ E𝑁 ⟦Bool⟧.
Unfolding, we have that there is Σ′, 𝑒′1, 𝑗 such that (Σ, 𝑒1) −→𝑗

𝑁
(Σ′, 𝑒′1) where 𝑒

′
1 is irreducible.

If 𝑒′1 = Err• then we’re done, because the entire if statement errors.
Otherwise, there is a (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′1) ∈ V

𝑁 ⟦Bool⟧.
Unfolding the location and then the value relation, we get that pointsto(Σ′, 𝑒′1) = True or pointsto(Σ′, 𝑒′1) = False.
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• pointsto(Σ′, 𝑒′1) = True: Note byOS, (Σ, if 𝛾 (𝑒1) then 𝛾 (𝑒2) else 𝛾 (𝑒3)) −→𝑗

𝑁
(Σ′, if 𝑒′1 then 𝛾 (𝑒2) else 𝛾 (𝑒3)) −→𝑁

(Σ′, 𝛾 (𝑒2)).
By Lemma 5.15 and Lemma 5.11, we have (𝑘 − 𝑗 − 1,Ψ′, Σ′, 𝛾) ∈ G𝑁 ⟦Γ1⟧ and Σ′ : (𝑘 − 𝑗 − 1,Ψ′).
From the second hypothesis, we get (𝑘 − 𝑗 − 1,Ψ′, Σ′, 𝛾 (𝑒2)) ∈ E𝑁 ⟦𝜏⟧, which is sufficient to complete the proof.

• pointsto(Σ′, 𝑒′1) = False: same as other case except replace 𝑒2 with 𝑒3.

□

Lemma 5.38 (T-Cast compatibility).
⟦Γ1 ⊢ 𝑒1 : 𝜏1⟧

⟦Γ1 ⊢ cast {𝜏2 ⇐ 𝜏1} 𝑒1 : 𝜏2⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑁 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (cast {𝜏2 ⇐ 𝜏1} 𝑒1)) ∈ E𝑁 ⟦𝜏2⟧.
Note 𝛾 (cast {𝜏2 ⇐ 𝜏1} 𝑒1) = cast {𝜏2 ⇐ 𝜏1} 𝛾 (𝑒1).
By the operational semantics, (Σ, cast {𝜏2 ⇐ 𝜏1} 𝛾 (𝑒1)) −→𝑁 (Σ,mon {𝜏2 ⇐ 𝜏1} 𝑒1).
By Lemma 5.11 and Lemma 5.15, (𝑘 − 1,Ψ, Σ, 𝛾) ∈ G𝑁 ⟦Γ⟧ and Σ : (𝑘 − 1,Ψ).
By the hypothesis, (𝑘 − 1,Ψ, Σ, 𝛾 (𝑒1)) ∈ E𝑁 ⟦𝜏1⟧.
By Lemma 5.25, (𝑘 − 1,Ψ, Σ,mon {𝜏2 ⇐ 𝜏1} 𝑒1) ∈ E𝑁 ⟦𝜏2⟧, which is sufficient to complete the proof. □

Lemma 5.39 (T-Sub compatibility).

⟦Γ1 ⊢ 𝑒1 : 𝜏1⟧
𝜏1 ⩽: 𝜏2

⟦Γ1 ⊢ 𝑒1 : 𝜏2⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑁 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (𝑒1)) ∈ E𝑁 ⟦𝜏2⟧.
From our hypothesis, we have (𝑘,Ψ, Σ, 𝛾 (𝑒1)) ∈ E𝑁 ⟦𝜏1⟧.
We can apply Lemma 5.10 to finish the case. □

5.2.4 Fundamental Property / Vigilance

Theorem 5.40 (Vigilance). If Γ ⊢ 𝑒 : 𝜏 then ⟦Γ ⊢ 𝑒 : 𝜏⟧𝑁

Proof. By induction over the typing derivation, using the compatability lemmas. □
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6 Vigilance for Truer Typing
In this section,V𝑇 refers toV𝑇

tru, E𝑇 refers to E𝑇tru,VH𝑇 refers toVH𝑇
tru, andVH𝑇 refers toVH𝑇

tru.

6.1 Vigilance Logical Relation for Truer Typing
We start with the vigilance logical relation for simple typing. The relation needs to be extended with a case to handle ⊥:

V𝐿⟦⊥⟧ = ∅

We also edit the function cases of the relation to produce a value in the meet of the tag of the annotation and the
result type:

VH𝐿⟦∗ → 𝜏 ′′1 , 𝜏2, . . . 𝜏𝑛⟧ = {(𝑘,Ψ, Σ, ℓ) | ∀( 𝑗,Ψ
′) ⊒ (𝑘,Ψ), Σ′ ⊇ Σ where Σ′ : ( 𝑗,Ψ′). ∀𝜏0 .

∀ℓ𝑣 where ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝐿⟦∗⟧.

( 𝑗,Ψ′Σ′, app{𝜏0} ℓ ℓ𝑣) ∈ EH𝐿⟦[𝜏 ′′1 ⊓ ⌊𝜏0⌋, cod(𝜏2), . . . cod(𝜏𝑛)]⟧}

V𝐿⟦∗ → 𝜏2⟧ = {(𝑘,Ψ, Σ, ℓ) | ∀( 𝑗,Ψ′) ⊒ (𝑘,Ψ). ∀Σ′ ⊇ Σ where Σ′ : ( 𝑗,Ψ′).

∀ℓ where ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝐿⟦∗⟧. ∀𝜏0 .

( 𝑗 + 1,Ψ′, Σ′, app{𝜏0} ℓ ℓ𝑣) ∈ E𝐿⟦𝜏2 ⊓ ⌊𝜏0⌋⟧}

We also need to edit the Σ : (𝑘,Ψ) judgement because we no longer have or need a correspondance between the
from type of a guard and the type underneath the guard:

Σ : (𝑘,Ψ) ≜ dom(Σ) = dom(Ψ) ∧ ⊢ Σ ∧ ∀𝑗 < 𝑘, ℓ ∈ dom(Σ) .(( 𝑗,Ψ, Σ, ℓ) ∈ VH𝐿⟦Ψ(ℓ)⟧

∧ (Σ(ℓ) = (ℓ′, some(𝜏, 𝜏 ′)) ⇒ Ψ(ℓ) = [⌊𝜏⌋, ⌊𝜏 ′⌋,Ψ(ℓ′)]∧

∧ (Σ(ℓ) = (𝑣, none) ∧ 𝑣 ∉ L⇒ ∃𝐾.Ψ(ℓ) = [𝐾]))

6.2 Vigilance Fundamental Property for Transient with Truer Transient Typing
In this subsection, we use Γ ⊢ 𝑒 : 𝜏 to mean Γ ⊢tru 𝑒 : 𝜏 .

6.2.1 Lemmas Used Without Mention

Lemma 6.1 (Stepping to Error Implies Expression Relation). If (Σ, 𝑒) −→𝑗

𝑇
(Σ′,Err•) then (𝑘,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦𝜏⟧

Proof. If 𝑘 < 𝑗 , then we’re done because the condition in the expression relation is vacuously true.
Otherwise, we can use 𝑗 as our steps, Σ′ as our ending value log, and Err• as our irreducible expression, and we satisfy
the condition in the expression relation. □

Lemma 6.2 (Stepping to Error Implies Expression History). If (Σ, 𝑒) −→𝑗

𝑇
(Σ′,Err•) then (𝑘,Ψ, Σ, 𝑒) ∈ EH𝑇 ⟦𝜏⟧

Proof. Similar to the previous proof. □

Lemma 6.3 (Anti-Reduction - Head Expansion - Expression Relation Commutes With Steps). If (𝑘,Ψ′, Σ′, 𝑒′) ∈
E𝑇 ⟦𝜏⟧ and (Σ, 𝑒) −→𝑗

𝑇
(Σ′, 𝑒′) and Σ′ : (𝑘,Ψ′) then (𝑘 + 𝑗,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦𝜏⟧
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Proof. Unfolding the expression relation in our hypothesis, there exists (Σ′′, 𝑒′′), 𝑗 ′ such that (Σ′, 𝑒′) −→𝑗 ′

𝑇
(Σ′′, 𝑒′′)

and (Σ′′′, 𝑒′′) is irreducible.
Either 𝑒′′ = Err•, in which case (Σ, 𝑒) −→𝑗+𝑗 ′

𝑇
(Σ′′,Err•), so we’re done.

Otherwise, there is a (𝑘 − 𝑗 ′,Ψ′′) ⊒ (𝑘,Ψ′) such that Σ′′ : (𝑘 − 𝑗 ′,Ψ′′), and (𝑘 − 𝑗 ′,Ψ′′, Σ′′, 𝑒′′) ∈ V𝑇 ⟦𝜏⟧.
Using this information, we can show (𝑘 + 𝑗,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦𝜏⟧ by noting (Σ, 𝑒) −→𝑗+𝑗 ′

𝑇
(Σ′′, 𝑒′′). □

Lemma 6.4 (Anti-Reduction - Head Expansion - Expression History Commutes With Steps). If (𝑘,Ψ′, Σ′, 𝑒′) ∈
EH𝑇 ⟦𝜏⟧ and (Σ, 𝑒) −→𝑗

𝑇
(Σ′, 𝑒′) and Σ′ : (𝑘,Ψ′) then (𝑘 + 𝑗,Ψ, Σ, 𝑒) ∈ EH𝑇 ⟦𝜏⟧

Proof. Similar to the previous proof. □

Lemma 6.5 (The Operational Semantics Preserves Well Formed Value Logs). If ⊢ Σ and (Σ, 𝑒) −→∗
𝑇
(Σ′, 𝑒′)

then ⊢ Σ′.

Proof. The proof is immediate by inspection of the Operational Semantics. □

Lemma 6.6 (Not Enough Steps Implies Any Expression Relation). If (Σ, 𝑒) −→𝑘
𝑇
(Σ′, 𝑒′) and (Σ′, 𝑒′) is not

irreducible, then ∀𝑗 ≤ 𝑘 . ( 𝑗,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦𝜏⟧ and ( 𝑗,Ψ, Σ, 𝑒) ∈ EH𝑇 ⟦𝜏⟧.

Proof. Both conclusions are immediate, since the implications in the relations are vacuously true. □

Lemma 6.7 (The Operational Semantics Only Grows Stores). If (Σ, 𝑒) −→∗
𝑇
(Σ′, 𝑒′) then Σ′ ⊇ Σ.

Proof. This is a corollary of Lemma 6.8. □

6.2.2 Lemmas Used With Mention

Lemma 6.8 (The Operational Semantics Produces Value Log Extensions). If (Σ, 𝑒) −→∗
𝑇
(Σ′, 𝑒′), then ∃ℓ ⊆

dom(Σ′) such that ℓ ∉ dom(Σ) and Σ′ = Σ[ℓ ↦→ (𝑣, _)].

Proof. By inspection of the Operational Semantics, no steps modify the value stored in the value log, meaning
Σ′ ⊇ Σ.
And also by the inspection of the Operational Semantics, there is exactly one rule to allocate new entries in the value
log, meaning Σ′ \ Σ is a suitable choice for [ℓ ↦→ (𝑣, _)]. □

Lemma 6.9 (Steps are Preserved in FutureValue Logs). If (Σ, 𝑒) −→𝑗

𝑇
(Σ′, 𝑒′) and ℓ ∉ dom(Σ′) then (Σ[ℓ ↦→ (𝑣, _)], 𝑒) −→𝑗

𝑇

(Σ′ [ℓ ↦→ (𝑣, _)], 𝑒′).

Proof. Since all of the added locations are not in Σ′, and therefore also not in Σ, no rule that will lookup a label in
the derivation tree for (Σ, 𝑒) −→𝑗

𝑇
(Σ′, 𝑒′) will find a different value or type.

The only remaining notable reduction steps are those that allocate a new label and value entry, but since ℓ ∉ dom(Σ′),
we can allocate the same entry unchanged. □

Lemma 6.10 (Subtyping Preserves Logical Relations). ∀Σ, 𝑘,Ψ, 𝜏, 𝜏 ′. where Σ : (𝑘,Ψ) and 𝜏 ⩽: 𝜏 ′.

(1) If (𝑘,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦𝜏⟧ then (𝑘,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦𝜏 ′⟧
(2) If (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦𝜏⟧ then (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦𝜏 ′⟧
(3) If (𝑘,Ψ, Σ, 𝑒) ∈ EH𝑇 ⟦𝜏, 𝜏⟧ then (𝑘,Ψ, Σ, 𝑒) ∈ EH𝑇 ⟦𝜏 ′, 𝜏⟧
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(4) If (𝑘,Ψ, Σ, ℓ) ∈ VH𝑇 ⟦𝜏, 𝜏⟧ then (𝑘,Ψ, Σ, ℓ) ∈ VH𝑇 ⟦𝜏 ′, 𝜏⟧

Proof. Proceed by mutual induction on 𝑘 and 𝜏 :

• 𝑘 = 0: Both 1 and 3 are immediate if 𝑒 ≠ ℓ .
If 𝑒 = ℓ then 1 and 3 follow immediately from 2 and 4.
2 and 4 follow identically in the 𝑘 = 0 case as they do in the 𝑘 > 0 case, but the function case is vacuously true.

• 𝑘 > 0:
(1) Unfolding our hypothesis, there is some (Σ′, 𝑒′), 𝑗 such that (Σ, 𝑒) −→𝑗

𝑇
(Σ′, 𝑒′).

If 𝑒′ = Err• then we’re done.
Otherwise, there is some (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ′) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ V𝑇 ⟦𝜏⟧.
We now have two obligations:

a) (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ V𝑇 ⟦𝜏 ′⟧.
b) Σ′ : (𝑘 − 𝑗,Ψ′).

For a) by IH 2) (not necessarily smaller by type or index), we have (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ V𝑇 ⟦𝜏 ′⟧, which is
what we wanted to show.

For b), this is immediate from the premise.
(2) Case split on 𝜏 ⩽: 𝜏 ′:

i) 𝜏 ⩽: 𝜏 : immediate.
ii) Nat ⩽: Int: immediate because T ⊆ Z.
iii) 𝜏1 × 𝜏2 ⩽: 𝜏 ′1 × 𝜏

′
2, with 𝜏1 ⩽: 𝜏

′
1 and 𝜏2 ⩽: 𝜏

′
2:

We want to show (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦𝜏 ′⟧.
Unfolding our hypothesis, we get that Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _).
We want to show (𝑘,Ψ, Σ, ℓ1) ∈ V𝑇 ⟦𝜏 ′1⟧ and (𝑘,Ψ, Σ, ℓ2) ∈ V

𝑇 ⟦𝜏 ′2⟧.
We can apply IH 2) (smaller by type) to both of these judgements to get (𝑘,Ψ, Σ, ℓ1) ∈ V𝑇 ⟦𝜏 ′1⟧ and
(𝑘,Ψ, Σ, ℓ2) ∈ V𝑇 ⟦𝜏 ′2⟧.
This is sufficient to show (𝑘,Ψ, Σ, Σ(ℓ)) ∈ V𝑇 ⟦𝜏 ′⟧.

iv) ∗ → 𝜏2 ⩽: ∗ → 𝜏 ′2, with 𝜏2 ⩽: 𝜏
′
2:

We want to show (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦𝜏 ′⟧.
Let ( 𝑗,Ψ′) ⊒ (𝑘,Ψ) and Σ′ ⊇ Σ such that Σ′ : ( 𝑗,Ψ′).
Let ℓ𝑣 ∈ dom(Σ′) such that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇 ⟦∗⟧.
Let 𝐾 .
We want to show ( 𝑗,Ψ′, Σ′, app{𝐾} ℓ ℓ𝑣) ∈ E𝑇 ⟦𝜏 ′2 ⊓ 𝐾⟧.
Then, we can apply our hypothesis about ℓ to get ( 𝑗,Ψ′, Σ′, app{𝐾} ℓ ℓ𝑣) ∈ E𝑇 ⟦𝜏2 ⊓ 𝐾⟧.
Finally, we can apply IH 1) (smaller by type) to get ( 𝑗,Ψ′, Σ′, app{𝐾} ℓ ℓ𝑣) ∈ E𝑇 ⟦𝜏 ′2 ⊓ 𝐾⟧ which is
what we wanted to show.

(3) Unfolding our hypothesis, we get that there are some (Σ′, 𝑒′), 𝑗 such that (Σ, 𝑒) −→𝑗

𝑇
(Σ′, 𝑒′) and (Σ′, 𝑒′)

are irreducible.
If 𝑒′ = Err•, then we’re done.
Otherwise, there is some (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ VH𝑇 ⟦𝜏, 𝜏⟧,
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which means ∃ℓ ∈ dom(Σ′) such that 𝑒′ = ℓ .
Then by IH 4) (not necessarily smaller by type or index) with 𝜏 ⩽: 𝜏 ′, we get (𝑘− 𝑗,Ψ′, Σ′, ℓ) ∈ VH𝑇 ⟦𝜏 ′, 𝜏⟧,
which is what we wanted to show.

(4) Unfolding the history relation, we want to show (𝑘,Ψ, Σ, ℓ) ∈ VH𝑇 ⟦𝜏 ′, 𝜏⟧.
We case split on 𝜏 ⩽: 𝜏 ′:

i) 𝜏 = 𝜏 ′: immediate by premise.
ii) Nat ⩽: Int:

by our premise, we already get that ∀𝜏𝑜 ∈ 𝜏 , (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦𝜏𝑜⟧.
Therefore, it suffices to show (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦Int⟧ given (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦Nat⟧ which is immedi-
ate since T ⊂ Z.

iii) 𝜏1 × 𝜏2 ⩽: 𝜏 ′1 × 𝜏2 with 𝜏1 ⩽: 𝜏
′
1 and 𝜏2 ⩽: 𝜏

′
2:

by our premise, we get that Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _) and (𝑘,Ψ, Σ, ℓ1) ∈ VH𝑇 ⟦𝜏1, fst(𝜏)⟧ and (𝑘,Ψ, Σ, ℓ2) ∈
VH𝑇 ⟦𝜏2, snd(𝜏)⟧.
We can apply IH 4) (smaller by type) to both to get (𝑘,Ψ, Σ, ℓ1) ∈ VH𝑇 ⟦𝜏 ′1, fst(𝜏)⟧ and (𝑘,Ψ, Σ, ℓ2) ∈
VH𝑇 ⟦𝜏 ′2, snd(𝜏)⟧, which is what we wanted to show.

iv) ∗ → 𝜏2 ⩽: ∗ → 𝜏 ′2 with 𝜏2 ⩽: 𝜏
′
2:

unfolding what we want to show, let Σ′ ⊇ Σ, ( 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : ( 𝑗,Ψ′).
Let ℓ𝑣 ∈ dom(Σ′) such that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇 ⟦∗⟧.
Let 𝐾 .
We want to show ( 𝑗,Ψ′, Σ′, app{𝐾} ℓ ℓ𝑣) ∈ EH𝑇 ⟦𝜏 ′ ⊓ 𝐾, cod(𝜏)⟧.

We can then apply the fact that (𝑘,Ψ, Σ, ℓ) ∈ VH𝑇 ⟦𝜏, 𝜏⟧ to get ( 𝑗,Ψ′, Σ′, app{𝐾} ℓ ℓ𝑣) ∈ EH𝑇 ⟦𝜏 ⊓
𝐾, cod(𝜏)⟧.
Then we can apply IH 3) (smaller by type) to get ( 𝑗,Ψ′, Σ′, app{𝐾} ℓ ℓ𝑣) ∈ EH𝑇 ⟦𝜏 ′ ⊓ 𝐾, cod(𝜏)⟧,
which is what we wanted to show.

□

Lemma 6.11 (RV-Monotonicity). If Σ : (𝑘,Ψ) and 0 ≤ 𝑗 ≤ 𝑘 and Σ′ ⊇ Σ and (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) and Σ′ : (𝑘 − 𝑗,Ψ′)
and (𝑘,Ψ, Σ, ℓ) ∈ VH𝑇 ⟦𝜏⟧ then (𝑘 − 𝑗,Ψ′, Σ′, ℓ) ∈ VH𝑇 ⟦𝜏⟧

Proof. We want to show (𝑘 − 𝑗,Ψ′, Σ′, ℓ)VH𝑇 ⟦𝜏⟧.
Let 𝜏 be the head of 𝜏 so that 𝜏 = [𝜏, . . .].
We proceed by induction over 𝑘 and 𝜏 :

• 𝑘 = 0: The function and dynamic cases are vacuously true, and the rest follow as in the other case.
• 𝑘 > 0:

i) 𝜏 = Int: immediate because Σ(ℓ) = Σ′ (ℓ).
ii) 𝜏 = Nat: same as previous case.
iii) 𝜏 = Bool: same as previous case.
iv) 𝜏 = 𝜏1 × 𝜏2: then Σ′ (ℓ) = (⟨ℓ1, ℓ2⟩, _).

We want to show (𝑘 − 𝑗,Ψ′, Σ′, ℓ1) ∈ VH𝐿⟦𝜏1, fst(𝜏)⟧ and (𝑘 − 𝑗,Ψ′, Σ′, ℓ2) ∈ VH𝐿⟦𝜏2, snd(𝜏)⟧.
We have (𝑘,Ψ, Σ, ℓ1) ∈ VH𝐿⟦𝜏1, fst(𝜏)⟧ and (𝑘,Ψ, Σ, ℓ2) ∈ VH𝐿⟦𝜏2, snd(𝜏)⟧.
Both follow by IH (smaller by type).
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v) 𝜏 = ∗ → 𝜏2:
Let ( 𝑗 ′, 𝑃𝑠𝑖′′) ⊒ (𝑘 − 𝑗,Ψ′) and Σ′′ ⊇ Σ′ such that Σ′′ ( 𝑗 ′,Ψ′).
Let ℓ𝑣 ∈ dom(Σ′′) such that ( 𝑗 ′,Ψ′′, Σ′′, ℓ𝑣) ∈ V𝑇 ⟦∗⟧.
Let 𝐾 .
We want to show ( 𝑗 ′,Ψ′′, Σ′′, app{𝐾} ℓ ℓ𝑣) ∈ E𝑇 ⟦𝜏2 ⊓ 𝐾⟧.
Since ( 𝑗 ′,Ψ′′) ⊒ (𝑘,Ψ) and Σ′′ ⊇ Σ, we can apply our premise to finish the case.

vi) 𝜏 = ∗: note by downward closure, Σ′ : (𝑘 − 𝑗 − 1,Ψ′).
Then we want to show (𝑘 − 𝑗 − 1,Ψ′, Σ′, ℓ) ∈ V𝑇 ⟦Int⟧ or (𝑘 − 𝑗 − 1,Ψ′, Σ′, ℓ) ∈ V𝑇 ⟦∗ × ∗⟧ or (𝑘 − 𝑗 −
1,Ψ′, Σ′, ℓ) ∈ V𝑇 ⟦∗ → ∗⟧.
We know (𝑘 − 1,Ψ, Σ, ℓ) ∈ V𝑇 ⟦Int⟧ or (𝑘 − 1,Ψ, Σ, ℓ) ∈ V𝑇 ⟦∗ × ∗⟧ or (𝑘 − 1,Ψ, Σ, ℓ) ∈ V𝑇 ⟦∗ → ∗⟧.
The case follows by the IH (smaller by index).

□

Lemma 6.12 (Extensions PreserveValue Log Typing). If Σ : (𝑘,Ψ) and 0 ≤ 𝑗 ≤ 𝑘 and Σ′ ⊇ Σ and (𝑘− 𝑗,Ψ′) ⊒ (𝑘,Ψ)
and Σ′ : (𝑘 − 𝑗,Ψ′) and ℓ ∉ dom(Σ′) and Σ[ℓ ↦→ (𝑣, _)] : (𝑘,Ψ[ℓ ↦→ 𝜏]) then Σ′ [ℓ ↦→ (𝑣, _)] : (𝑘 − 𝑗,Ψ′ [ℓ ↦→ 𝜏]).

Proof. Note that all of the conditions in Σ′ [ℓ ↦→ (𝑣, _)] : (𝑘 − 𝑗,Ψ′ [ℓ ↦→ 𝜏]) besides those concerning the history
relation are immediate from the hypotheses.

Let Σ′′ = Σ′ [ℓ ↦→ (𝑣, _)] and let Ψ′′ = Ψ′ [ℓ ↦→ 𝜏].
We want to show ∀𝑗 ′ < 𝑘 − 𝑗 , and ∀ℓ ∈ dom(Σ′′), ( 𝑗 ′,Ψ′′, Σ′′, ℓ) ∈ VH𝑇 ⟦Ψ′′ (ℓ)⟧.
Note by downward closure, Σ′′ : ( 𝑗 ′,Ψ′′). If ℓ ∈ dom(Σ′), then we can apply Lemma 6.11 with the fact that
( 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ′) and Σ′′ ⊇ Σ′.
If ℓ ∉ dom(Σ′), then ℓ ∈ ℓ .
Thenwe can apply Lemma 6.11with the fact that ( 𝑗 ′,Ψ′′) ⊒ (𝑘,Ψ[ℓ ↦→ 𝜏]) and Σ′′ ⊇ Σ[ℓ ↦→ (𝑣, _)] to get ( 𝑗 ′,Ψ′′, Σ′′, ℓ) ∈
VH𝑇 ⟦Ψ′′ (ℓ)⟧, which is what we wanted to show. □

Lemma 6.13 (Later Than Preserved By Lower Steps). If ( 𝑗,Ψ′) ⊒ (𝑘,Ψ) and 𝑗 ′ ≤ 𝑗 then ( 𝑗 − 𝑗 ′,Ψ′) ⊒ (𝑘 − 𝑗 ′,Ψ).

Proof. Unfolding the world extension definition, we need to show 𝑗 − 𝑗 ′ ≤ 𝑘 − 𝑗 ′ and ∀ℓ ∈ dom(Ψ), Ψ′ (ℓ) = Ψ(ℓ).
For the first condition, since 𝑗 ≤ 𝑘 and 𝑗 ′ ≤ 𝑗 , 𝑗 − 𝑗 ′ ≤ 𝑘 − 𝑗 ′.
For the second condition, we can unfold the hypothesis to get the statement we need. □

Lemma 6.14 (RE-Monotonicity). If Σ : (𝑘,Ψ) and 0 ≤ 𝑗 ≤ 𝑘 and Σ′ ⊇ Σ and (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) and Σ′ : (𝑘 − 𝑗,Ψ′)
and (𝑘,Ψ, Σ, 𝑒) ∈ EH𝑇 ⟦𝜏⟧ then (𝑘 − 𝑗,Ψ′, Σ′, 𝑒) ∈ EH𝑇 ⟦𝜏⟧.

Proof. Unfolding the relation in our hypothesis, we get that there is some (Σ′′, 𝑒′), 𝑗 ′ such that (Σ, 𝑒) −→𝑗 ′

𝑇
(Σ′′, 𝑒′).

If 𝑒′ = Err• then we’re done.
Otherwise, there is some (𝑘 − 𝑗 ′,Ψ′′) ⊒ (𝑘,Ψ) such that Σ′′ : (𝑘 − 𝑗 ′,Ψ′′) and (𝑘 − 𝑗 ′,Ψ′′, Σ′′, 𝑒′) ∈ VH𝑇 ⟦𝜏⟧.

By Lemma 6.8, Σ′′ = Σ[ℓ ↦→ (𝑣, _)].
By the fact that Σ′′ : (𝑘 − 𝑗 ′,Ψ′′) this also means Ψ′′ = Ψ[ℓ ↦→ 𝜏].
We also know from Σ′ ⊇ Σ that Σ′ = Σ[ℓ′ ↦→ (𝑣 ′, _)].
And from Σ′ : (𝑘 − 𝑗,Ψ′) that Ψ′ = Ψ[ℓ′ ↦→ 𝜏 ′].
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By alpha renaming, we can assume that ℓ′ ∉ dom(Σ′′).
Then by Lemma 6.9, we get that (Σ′, 𝑒) −→𝑗 ′

𝑇
(Σ′′ [ℓ′ ↦→ (𝑣 ′, _)], 𝑒′).

Now, unfolding the expression relation in what we want to show, we have two obligations:

a) Σ′′ [ℓ′ ↦→ (𝑣 ′, _)] : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′ [ℓ′ ↦→ 𝜏 ′]).
b) (𝑘 − 𝑗 − 𝑗 ′,Ψ′′ [ℓ′ ↦→ 𝜏 ′], Σ′′ [ℓ′ ↦→ (𝑣 ′, _)], 𝑒′) ∈ VH𝑇 ⟦𝜏⟧.

For a) we can apply Lemma 6.12. We have a number of obligations:

i) Σ : (𝑘 − 𝑗,Ψ): immediate by downward closure.
ii) Σ′′ ⊇ Σ: immediate.
iii) (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ): by Lemma 6.13.
iv) Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′)i: immediate by downward closure.
v) ℓ′ ∉ dom(Σ′′): assumed above by alpha renaming.
vi) Σ[ℓ′ ↦→ (𝑣 ′, _)] : (𝑘 − 𝑗,Ψ[ℓ′ ↦→ 𝜏 ′]): this is exactly Σ′ : (𝑘 − 𝑗,Ψ′).

For b), we can apply Lemma 6.11 with the fact proven in a). □

Lemma 6.15 (E-V-Monotonicity). If Σ : (𝑘,Ψ) and 0 ≤ 𝑗 ≤ 𝑘 and Σ′ ⊇ Σ and (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) and Σ′ : (𝑘 − 𝑗,Ψ′)
then

(1) If (𝑘,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦𝜏⟧ then (𝑘 − 𝑗,Ψ′, Σ′, 𝑒) ∈ E𝑇 ⟦𝜏⟧
(2) If (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦𝜏⟧ then (𝑘 − 𝑗,Ψ′, Σ′, ℓ) ∈ V𝑇 ⟦𝜏⟧

Proof. Proceed by simultaneous induction on 𝑘 and 𝜏 :

• 𝑘 = 0: 1) follows immediately from 2).
Proceeds similarly to the other case, but function and dynamic cases are vacuously true.

• 𝑘 > 0:
1) Unfolding the expression relation in our hypothesis, we get that there is some (Σ′′, 𝑒′), 𝑗 ′ such that
(Σ, 𝑒) −→𝑗 ′

𝑇
(Σ′′, 𝑒′).

If 𝑒′ = Err• then we’re done.
Otherwise, there is some (𝑘− 𝑗 ′,Ψ′′) ⊒ (𝑘,Ψ) such that Σ′′ : (𝑘− 𝑗 ′,Ψ′′) and (𝑘− 𝑗 ′,Ψ′′, Σ′′, 𝑒′) ∈ V𝑇 ⟦𝜏⟧.

By Lemma 6.8, Σ′′ = Σ[ℓ ↦→ (𝑣, _)].
By the fact that Σ′′ : (𝑘 − 𝑗 ′,Ψ′′) this also means Ψ′′ = Ψ[ℓ ↦→ 𝜏].
We also know from Σ′ ⊇ Σ that Σ′ = Σ[ℓ′ ↦→ (𝑣 ′, _)], and from Σ′ : (𝑘 − 𝑗,Ψ′) that Ψ′ = Ψ[ℓ′ ↦→ 𝜏 ′].
By alpha renaming, we can assume that ℓ′ ∉ dom(Σ′′).
Then by Lemma 6.9, we get that (Σ′, 𝑒) −→𝑗 ′

𝑇
(Σ′′ [ℓ′ ↦→ (𝑣 ′, _)], 𝑒′).

Now, unfolding the expression relation in what we want to show, we have two obligations:
a) Σ′′ [ℓ′ ↦→ (𝑣 ′, _)] : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′ [ℓ′ ↦→ 𝜏 ′]).
b) (𝑘 − 𝑗 − 𝑗 ′,Ψ′′ [ℓ′ ↦→ 𝜏 ′], Σ′′ [ℓ′ ↦→ (𝑣 ′, _)], 𝑒′) ∈ V𝑇 ⟦𝜏⟧.

For a) we can apply Lemma 6.12. We have a number of obligations:
i) Σ : (𝑘 − 𝑗,Ψ): immediate by downward closure.
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ii) Σ′′ ⊇ Σ: immediate.
iii) (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ): by Lemma 6.13.
iv) Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′)i: immediate by downward closure.
v) ℓ′ ∉ dom(Σ′′): assumed above by alpha renaming.
vi) Σ[ℓ′ ↦→ (𝑣 ′, _)] : (𝑘 − 𝑗,Ψ[ℓ′ ↦→ 𝜏 ′]): this is exactly Σ′ : (𝑘 − 𝑗,Ψ′).

For b), we can apply the IH 2) (not necessarily smaller by type or index) with the fact proven in a).
2) We want to show that (𝑘 − 𝑗,Ψ′, Σ′, ℓ) ∈ V𝑇 ⟦𝜏⟧.

We case split on 𝜏 :
i) 𝜏 = Nat: then Σ(ℓ) = (𝑛, _) where 𝑛 ∈ T, so the case is immediate.

ii) 𝜏 = 𝑡𝑖𝑛𝑡 : same as above.

iii) 𝜏 = Bool: same as above.

iv) 𝜏 = 𝜏1 × 𝜏2: then Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _).
Unfolding our hypothesis gives us (𝑘,Ψ, Σ, ℓ1) ∈ V𝑇 ⟦𝜏1⟧ and (𝑘,Ψ, Σ, ℓ2) ∈ V𝑇 ⟦𝜏2⟧.
Applying IH 2) (smaller by type) to both gives us (𝑘 − 𝑗,Ψ′, Σ′, ℓ1) ∈ V𝑇 ⟦𝜏1⟧ and (𝑘 − 𝑗,Ψ′, Σ′, ℓ2) ∈
V𝑇 ⟦𝜏2⟧, which is sufficient to complete the case.

v) 𝜏 = ∗ → 𝜏2: Let Σ′′ ⊇ Σ′ and ( 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ′) such that Σ′′ : ( 𝑗 ′,Ψ′′).
Let ℓ𝑣 ∈ dom(Σ′′) such that ( 𝑗 ′,Ψ′′, Σ′′, ℓ𝑣) ∈ V𝑇 ⟦∗⟧.
Let K.
We want to show ( 𝑗 ′,Ψ′′, Σ′′, app{𝐾} ℓ ℓ𝑣) ∈ E𝑇 ⟦𝐾 ⊓ 𝜏2⟧.
Since ⊇ and ⊒ are both transitive, we have Σ′′ ⊇ Σ, and ( 𝑗 ′,Ψ′′) ⊒ (𝑘,Ψ).
Therefore we can apply the hypothesis to complete the case.

vi) 𝜏 = ∗: we want to show (𝑘 − 1,Ψ′, Σ′, ℓ) ∈ V𝑇 ⟦Int⟧ orV𝑇 ⟦Bool⟧ orV𝑇 ⟦∗ × ∗⟧ orV𝑇 ⟦∗ → ∗⟧.
This follows from IH 2) (smaller by index).

□

Lemma 6.16 (Bot Relation If and Only If Error). (𝑘,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦⊥⟧ and (Σ, 𝑒) −→𝑗

𝑇
(Σ′, 𝑒′) where (Σ′, 𝑒′) is

irreducible and 𝑗 ≤ 𝑘 , iff 𝑒′ = Err•.

Proof. • ⇒: Unfolding our hypothesis about 𝑒 in the expression relation, we get that either:
– 𝑒′ = Err• or
– ∃(𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ V𝑇 ⟦⊥⟧

Assume for sake of contradiction the second case holds.
(𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ V𝑇 ⟦⊥⟧ implies (𝑘 − 𝑗,Ψ′, Σ′, Σ′ (𝑒′)) ∈ V𝑇 ⟦⊥⟧, which is a contradiction.
Therefore, 𝑒′ = Err•.
• ⇐: immediate.

□

Lemma 6.17 (Tagmatch Makes Values In Relation At Meet). If 𝐾 ∝ pointsto(Σ, ℓ) and (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦𝜏⟧ then
(𝑘 − 1,Ψ, Σ, ℓ) ∈ V𝑇 ⟦𝐾 ⊓ 𝜏⟧
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Proof. There are three cases to consider:

(1) 𝐾 ⊓ 𝜏 = ⊥: a contradiction.

(2) 𝐾 ⊓ 𝜏 = 𝜏 : immediate by Lemma 6.15.
(3) 𝐾 ⊓ 𝜏 = 𝐾 and 𝜏 = ∗: immediate by unfolding the value relation in our hypothesis, and noting that whichever

type of Int, ∗ × ∗ or ∗ → ∗ we satisfy must be 𝐾 .

□

Lemma 6.18 (Check Makes Terms In Relation At Meet). If (𝑘,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦𝜏⟧ then (𝑘,Ψ, Σ, assert𝐾 𝑒) ∈
E𝑇 ⟦𝜏 ⊓ 𝐾⟧.

Proof. Unfolding the expression relation in our hypothesis, we have that ∃𝑒′, Σ′, 𝑗 such that (Σ, 𝑒) −→𝑗

𝑇
(Σ′, 𝑒′)

and (Σ′, 𝑒′) is irreducible.
If 𝑒′ = Err• then we’re done.
Otherwise ∃(𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ V𝑇 ⟦𝜏⟧.
It suffices to show (𝑘 − 𝑗,Ψ′, Σ′, assert𝐾 𝑒′) ∈ E𝑇 ⟦𝜏 ⊓ 𝐾⟧.
By the OS, if ¬𝐾 ∝ pointsto(Σ′, 𝑒′) then (Σ′, assert𝐾 𝑒′) −→𝑇 (Σ′,Err•) and we’re done.
Otherwise, (Σ′, assert𝐾 𝑒′) −→𝑇 (Σ′, 𝑒′) and 𝐾 ∝ pointsto(Σ′, 𝑒′).
By Lemma 6.17, we therefore get (𝑘 − 𝑗 − 1,Ψ′, Σ′, 𝑒′) ∈ V𝑇 ⟦𝜏 ⊓ 𝐾⟧, which is sufficient to complete the proof. □

Lemma 6.19 (Tagmatch Makes Values In history relation At Meet). If 𝐾 ∝ pointsto(Σ, ℓ) and (𝑘,Ψ, Σ, ℓ) ∈
VH𝑇 ⟦𝜏, 𝜏⟧ then (𝑘 − 1,Ψ, Σ, ℓ) ∈ VH𝑇 ⟦𝐾 ⊓ 𝜏, 𝜏⟧

Proof. There are three cases to consider:

(1) 𝐾 ⊓ 𝜏 = ⊥: a contradiction because 𝐾 ∝ Σ(ℓ) and (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦𝜏⟧.

(2) 𝐾 ⊓ 𝜏 = 𝜏 : immediate by Lemma 6.11.
(3) 𝐾 ⊓ 𝜏 = 𝐾 and 𝜏 = ∗: immediate by unfolding the erroring value relation in our hypothesis, and noting that

whichever type of Int, ∗ × ∗ or ∗ → ∗ we satisfy must be 𝐾 .

□

Lemma 6.20 (CheckMakes Terms In history relationAtMeet). If (𝑘,Ψ, Σ, 𝑒) ∈ EH𝑇 ⟦𝜏, 𝜏⟧ then (𝑘,Ψ, Σ, assert𝐾 𝑒) ∈
EH𝑇 ⟦𝜏 ⊓ 𝐾, 𝜏⟧.

Proof. Unfolding the erroring expression relation in our hypothesis, we have that ∃𝑒′, Σ′, 𝑗 such that (Σ, 𝑒) −→𝑗

𝑇

(Σ′, 𝑒′) and (Σ′, 𝑒′) is irreducible.
If 𝑒′ = Err• then we’re done.
Otherwise ∃(𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ VH𝑉 ⟦𝑇⟧𝜏, 𝜏 .
It suffices to show (𝑘 − 𝑗,Ψ′, Σ′, assert𝐾 𝑒′) ∈ EH𝑇 ⟦𝜏 ⊓ 𝐾, 𝜏⟧.
By the OS, if ¬𝐾 ∝ pointsto(Σ′, 𝑒′) then (Σ′, assert𝐾 𝑒′) −→𝑇 (Σ′,Err•) and we’re done.
Otherwise, (Σ′, assert𝐾 𝑒′) −→𝑇 (Σ′, 𝑒′) and 𝐾 ∝ pointsto(Σ′, 𝑒′).
By Lemma 6.19, we therefore get (𝑘 − 𝑗 −1,Ψ′, Σ′, 𝑒′) ∈ VH𝑉 ⟦𝑇⟧𝜏 ⊓ 𝐾, 𝜏 , which is sufficient to complete the proof. □

Lemma 6.21 (Lattice Ordering Preserves Relation). If 𝜏 ≤ 𝜏 ′ then
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(1) If (𝑘,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦𝜏⟧ then (𝑘,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦𝜏 ′⟧
(2) If (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦𝜏⟧ then (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦𝜏 ′⟧.

Proof. (1) Unfolding the expression relation in our hypothesis, we have that ∃𝑒′, Σ′, 𝑗 such that (Σ, 𝑒) −→𝑗

𝑇

(Σ′, 𝑒′) and (Σ′, 𝑒′) is irreducible.
If 𝑒′ = Err• then we’re done.
Otherwise ∃(𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ V𝑇 ⟦𝜏⟧.
It suffices to show (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ V𝑇 ⟦𝜏 ′⟧, which follows by IH 2).

(2) Proceed by induction over the lattice ordering:
(a) 𝜏 ⩽: 𝜏 ′: follows from Lemma 6.10.
(b) 𝜏 = 𝜏1 × 𝜏2, 𝜏 ′ = 𝜏 ′1 × 𝜏

′
2, 𝜏1 ≤ 𝜏

′
1, and 𝜏2 ≤ 𝜏

′
2:

Then unfolding the location relation in our hypothesis, we have that Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _).
We also have that (𝑘,Ψ, Σ, ℓ1) ∈ V𝑇 ⟦𝜏1⟧ and (𝑘,Ψ, Σ, ℓ2) ∈ V𝑇 ⟦𝜏2⟧.
Unfolding the relation in what we want to show, we want to show (𝑘,Ψ, Σ, ℓ1) ∈ V𝑇 ⟦𝜏2⟧ and (𝑘,Ψ, Σ, ℓ2) ∈
V𝑇 ⟦𝜏 ′2⟧, which follows by IH 2).

(c) 𝜏 = ∗ → 𝜏𝑜 , 𝜏 ′ = ∗ → 𝜏 ′𝑜 , and 𝜏𝑜 ≤ 𝜏 ′𝑜 :
We want to show (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦∗ → 𝜏 ′𝑜⟧.
Let ( 𝑗,Ψ′) ⊒ (𝑘,Ψ) and Σ′ ⊇ Σ such that Σ′ : ( 𝑗,Ψ′).
Let ℓ𝑣 ∈ dom(Σ′) such that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇 ⟦∗⟧.
Let 𝐾 .
We want to show ( 𝑗,Ψ′, Σ′, app{𝐾} ℓ ℓ𝑣) ∈ E𝑇 ⟦𝜏 ′𝑜 ⊓ 𝐾⟧.
From our hypothesis, we get that ( 𝑗,Ψ′, Σ′, app{𝐾} ℓ ℓ𝑣) ∈ E𝑇 ⟦𝜏𝑜 ⊓ 𝐾⟧.
The proof follows from IH 1).

(d) 𝜏 ′ = ∗: Proceed by case analysis on 𝜏 :
(i) 𝜏 = Nat: Immediate.
(ii) 𝜏 = Int: Immediate.
(iii) 𝜏 = Bool: Immediate.
(iv) 𝜏 = 𝜏1 × 𝜏2: Then unfolding the location relation in our hypothesis, we have that Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _).

We also have that (𝑘,Ψ, Σ, ℓ1) ∈ V𝑇 ⟦𝜏1⟧ and (𝑘,Ψ, Σ, ℓ2) ∈ V𝑇 ⟦𝜏2⟧.
Unfolding the relation in what we want to show, we want to show (𝑘 − 1,Ψ, Σ, ℓ1) ∈ V𝑇 ⟦∗⟧ and
(𝑘 − 1,Ψ, Σ, ℓ2) ∈ V𝑇 ⟦∗⟧, which follows by IH 2) and Lemma 6.15.

(v) 𝜏 = ∗ → 𝜏 ′: We want to show (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦∗ → ∗⟧.
Let ( 𝑗,Ψ′) ⊒ (𝑘,Ψ) and Σ′ ⊇ Σ such that Σ′ : ( 𝑗,Ψ′).
Let ℓ𝑣 ∈ dom(Σ′) such that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇 ⟦∗⟧.
Let 𝐾 .
We want to show ( 𝑗,Ψ′, Σ′, app{𝐾} ℓ ℓ𝑣) ∈ E𝑇 ⟦𝐾⟧.
From our hypothesis, we get that ( 𝑗,Ψ′, Σ′, app{𝐾} ℓ ℓ𝑣) ∈ E𝑇 ⟦𝜏 ′ ⊓ 𝐾⟧.
By the IH 1), we get that ( 𝑗,Ψ′, Σ′, app{𝐾} ℓ ℓ𝑣) ∈ E𝑇 ⟦𝐾⟧ which is what we wanted to show.

□

Lemma 6.22 (Pairs of Semantically Well Typed Terms are Semantically Well Typed). If (𝑘,Ψ, Σ, 𝑒1) ∈ E𝑇 ⟦𝜏1⟧
and (𝑘,Ψ, Σ, 𝑒2) ∈ E𝑇 ⟦𝜏2⟧ then (𝑘,Ψ, Σ, ⟨𝑒1, 𝑒2⟩) ∈ E𝑇 ⟦𝜏1 × 𝜏2⟧.
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Proof. Unfolding the expression relation in our hypothesis about 𝑒1, we get that there are (Σ, 𝑒′1), 𝑗 such that
(Σ, 𝑒1) −→𝑗

𝑇
(Σ, 𝑒′1) and (Σ

′, 𝑒′1) is irreducible.
If 𝑒′1 = Err•, then were done because the entire application steps to an error.
Otherwise, there is a (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′1) ∈ V

𝑇 ⟦𝜏1⟧.
This means 𝑒′1 = ℓ1 for some ℓ1 ∈ dom(Σ′).

With this and by the OS, we get (Σ, ⟨𝑒1, 𝑒2⟩) −→𝑗

𝑇
(Σ′, ⟨𝑙𝑜𝑐1, 𝑒2⟩).

We can apply Lemma 6.15 to our hypothesis about 𝑒2 to get (𝑘 − 𝑗,Ψ′, Σ′, 𝑒2) ∈ E𝑇 ⟦𝜏2⟧.
Unfolding the expression relation, we get that there are (Σ′, 𝑒′2), 𝑗

′ such that (Σ′, 𝑒2) −→𝑗 ′

𝑇
(Σ′, 𝑒′2) and (Σ

′′, 𝑒′2) is
irreducible.
If 𝑒′2 = Err•, then were done because the entire application steps to an error.
Otherwise, there is a (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ′) such that Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) and (𝑘 − 𝑗 − 𝑗 ′,Ψ′′, Σ′′, 𝑒′2) ∈ V

𝑇 ⟦𝜏2⟧,
which means 𝑒′2 = ℓ2 for some ℓ2 ∈ dom(Σ′′).

Putting everything together we get (Σ, ⟨𝑒1, 𝑒2⟩) −→𝑗 ′

𝑇
(Σ′′, ⟨ℓ1, ℓ2⟩), with Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′).

Note by OS, (Σ′′, ⟨ℓ1, ℓ2⟩) −→𝑇 (Σ′′ [ℓ′ ↦→ ⟨ℓ1, ℓ2⟩]) where ℓ′ ∉ dom(Σ′′).

We firstly need Σ′′ [ℓ′ ↦→ (⟨ℓ1, ℓ2⟩, _)] : (𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)]).
Note the only interesting part of this statement is that ∀𝑘′ < 𝑘 − 𝑗 − 𝑗 ′ − 1. (𝑘′,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)], Σ′′ [ℓ′ ↦→
(⟨ℓ1, ℓ2⟩, _)], ℓ′) ∈ VH𝑇 ⟦Ψ′′ (ℓ1) × Ψ′′ (ℓ2)⟧.
This is immediate from the fact that Σ′′ : (𝑘′,Ψ′′) from downward closure, and therefore that (𝑘′,Ψ′′, Σ′′, ℓ1) ∈
VH𝑇 ⟦Ψ′′ (ℓ1)⟧ and (𝑘′,Ψ′′, Σ′′, ℓ2) ∈ VH𝑇 ⟦Ψ′′ (ℓ2)⟧.

We know that (𝑘 − 𝑗,Ψ′, Σ′, ℓ′1) ∈ V
𝑇 ⟦𝜏1⟧ and (𝑘 − 𝑗 − 𝑗 ′,Ψ′′, Σ′′, ℓ2) ∈ V𝑇 ⟦𝜏2⟧, and Lemma 6.15 with down-

ward closure and the store typing judgement above.
From these facts we get that (𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)], Σ′′ [ℓ′ ↦→ (⟨ℓ1, ℓ2⟩, _)], ℓ1) ∈ V𝑇 ⟦𝜏1⟧ and
(𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)], Σ′′ [ℓ′ ↦→ ⟨ℓ1, ℓ2⟩], ℓ2) ∈ V𝑇 ⟦𝜏2⟧.
This is sufficient to show (𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)], Σ′′ [ℓ′ ↦→ (⟨ℓ1, ℓ2⟩, _)], ⟨ℓ1, ℓ2⟩) ∈ V𝑇 ⟦𝜏1 × 𝜏2⟧,
which is what we wanted to prove. □

Lemma 6.23 (Pairs of Related Terms are Related). If (𝑘,Ψ, Σ, 𝑒1) ∈ EH𝑇 ⟦fst(𝜏)⟧ and (𝑘,Ψ, Σ, 𝑒2) ∈ EH𝑇 ⟦snd(𝜏)⟧
then (𝑘,Ψ, Σ, ⟨𝑒1, 𝑒2⟩) ∈ EH𝑇 ⟦𝜏⟧.

Proof. Unfolding the erroring expression relation in our hypothesis about 𝑒1, we get that there are (Σ, 𝑒′1), 𝑗 such
that (Σ, 𝑒1) −→𝑗

𝑇
(Σ, 𝑒′1) and (Σ

′, 𝑒′1) is irreducible.
If 𝑒′1 = Err•, then were done because the entire application steps to an error.
Otherwise, there is a (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′1) ∈ VH

𝑇 ⟦fst(𝜏)⟧.
This means 𝑒′1 = ℓ1 for some ℓ1 ∈ dom(Σ′).

With this and by the OS, we get (Σ, ⟨𝑒1, 𝑒2⟩) −→𝑗

𝑇
(Σ′, ⟨𝑙𝑜𝑐1, 𝑒2⟩).
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We can apply Lemma 6.14 to our hypothesis about 𝑒2 to get (𝑘 − 𝑗,Ψ′, Σ′, 𝑒2) ∈ EH𝑇 ⟦snd(𝜏)⟧.
Unfolding the erroring expression relation, we get that there are (Σ′, 𝑒′2), 𝑗

′ such that (Σ′, 𝑒2) −→𝑗 ′

𝑇
(Σ′, 𝑒′2) and (Σ

′′, 𝑒′2)
is irreducible.
If 𝑒′2 = Err•, then were done because the entire application steps to an error.
Otherwise, there is a (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ′) such that Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) and (𝑘 − 𝑗 − 𝑗 ′,Ψ′′, Σ′′, 𝑒′2) ∈
VH𝑇 ⟦snd(𝜏)⟧, which means 𝑒′2 = ℓ2 for some ℓ2 ∈ dom(Σ′′).

Putting everything together we get (Σ, ⟨𝑒1, 𝑒2⟩) −→𝑗 ′

𝑇
(Σ′′, ⟨ℓ1, ℓ2⟩), with Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′).

Note by OS, (Σ′′, ⟨ℓ1, ℓ2⟩) −→𝑇 (Σ′′ [ℓ′ ↦→ (⟨ℓ1, ℓ2⟩, _)]) where ℓ′ ∉ dom(Σ′′).

We firstly need Σ′′ [ℓ′ ↦→ (⟨ℓ1, ℓ2⟩, _)] : (𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)]).
Note the only interesting part of this statement is that ∀𝑘′ < 𝑘 − 𝑗 − 𝑗 ′ − 1. (𝑘′,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)], Σ′′ [ℓ′ ↦→
(⟨ℓ1, ℓ2⟩, _)], ℓ′) ∈ VH𝑇 ⟦Ψ′′ (ℓ1) × Ψ′′ (ℓ2)⟧.
This is immediate from the fact that Σ′′ : (𝑘′,Ψ′′) from downward closure, and therefore that (𝑘′,Ψ′′, Σ′′, ℓ1) ∈
VH𝑇 ⟦Ψ′′ (ℓ1)⟧ and (𝑘′,Ψ′′, Σ′′, ℓ2) ∈ VH𝑇 ⟦Ψ′′ (ℓ2)⟧.

We know that (𝑘 − 𝑗,Ψ′, Σ′, ℓ′1) ∈ VH
𝑇 ⟦fst(𝜏)⟧ and (𝑘 − 𝑗 − 𝑗 ′,Ψ′′, Σ′′, ℓ2) ∈ VH𝑇 ⟦snd(𝜏)⟧, and Lemma 6.11

with downward closure and the store typing judgement above.
From these facts we get that (𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)], Σ′′ [ℓ′ ↦→ (⟨ℓ1, ℓ2⟩, _)], ℓ1) ∈ VH𝑇 ⟦fst(𝜏)⟧
and (𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) × Ψ′′ (ℓ2)], Σ′′ [ℓ′ ↦→ ⟨ℓ1, ℓ2⟩], ℓ2) ∈ VH𝑇 ⟦snd(𝜏)⟧.
This is sufficient to show (𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ′′ [ℓ′ ↦→ Ψ′′ (ℓ1) ×Ψ′′ (ℓ2)], Σ′′ [ℓ′ ↦→ (⟨ℓ1, ℓ2⟩, _)], ⟨ℓ1, ℓ2⟩) ∈ VH𝑇 ⟦𝜏⟧, which
is what we wanted to prove. □

Lemma 6.24 (Applications of Semantically Well Typed Terms are Semantically Well Typed). If (𝑘,Ψ, Σ, 𝑒𝑓 ) ∈
E𝑇 ⟦∗ → 𝜏⟧ and (𝑘,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦∗⟧ then ∀𝐾 , (𝑘,Ψ, Σ, app{𝐾} 𝑒𝑓 𝑒) ∈ E𝑇 ⟦𝜏 ⊓ 𝐾⟧.

Proof. Unfolding the expression relation in our hypothesis about 𝑒𝑓 , we get that there are (Σ′, 𝑒′𝑓 ), 𝑗 such that

(Σ, 𝑒𝑓 ) −→
𝑗

𝑇
(Σ′, 𝑒′

𝑓
) and (Σ′, 𝑒′

𝑓
) is irreducible.

If 𝑒′
𝑓
= Err•, then we’re done because the entire application steps to an error.

Otherwise, there is a (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′
𝑓
) ∈ V𝑇 ⟦∗ → 𝜏⟧.

This means 𝑒′
𝑓
= ℓ𝑓 for some ℓ𝑓 ∈ dom(Σ′).

Using this, we know from the OS that (Σ, app{𝐾} 𝑒𝑓 𝑒) −→
𝑗

𝑇
(Σ′, app{𝐾} ℓ𝑓 𝑒).

We can apply Lemma 6.15 with Σ′ : (𝑘 − 𝑗,Ψ′) to our hypothesis about 𝑒 to get (𝑘 − 𝑗,Ψ′, Σ′, 𝑒) ∈ E𝑇 ⟦∗⟧.
Unfolding the expression relation, we get that there are (Σ′′, 𝑒′), 𝑗 ′ such that (Σ′, 𝑒) −→𝑗 ′

𝑇
(Σ′′, 𝑒′) where (Σ′′, 𝑒′) is

irreducible.
If 𝑒′ = Err• than we’re done, because the whole application errors.
Otherwise, there exists (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ′) such that Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) and (𝑘 − 𝑗 − 𝑗 ′ .Ψ′′, Σ′′, 𝑒′) ∈ V𝑇 ⟦∗⟧.
This means 𝑒′ = ℓ for some ℓ ∈ dom(Σ′′).

Putting what we have together, by the OS, (Σ, app{𝐾} 𝑒𝑓 𝑒) −→
𝑗+𝑗 ′
𝑇
(Σ′′, (app{𝐾} ℓ𝑓 ℓ)).
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We have (𝑘 − 𝑗,Ψ′, Σ′, ℓ𝑓 ) ∈ V𝑇 ⟦∗ → 𝜏⟧ and (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ′) and Σ′′ ⊇ Σ′ and Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′).
We can combine these to get (𝑘 − 𝑗 − 𝑗 ′,Ψ′′, Σ′′, app{𝐾} ℓ𝑓 ℓ) ∈ E𝑇 ⟦𝜏 ⊓ 𝐾⟧.
This is sufficient to complete the proof. □

Corollary 6.25. If (𝑘,Ψ, Σ, ℓ) ∈ E𝑇 ⟦∗⟧ and Σ(ℓ) = 𝑤 and (𝑘,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦∗⟧ then (𝑘 − 1,Ψ, Σ, app{∗}𝑤 𝑒) ∈
E𝑇 ⟦∗⟧.

Lemma 6.26 (Applications of Related Terms are Related). If (𝑘,Ψ, Σ, 𝑒𝑓 ) ∈ EH𝑇 ⟦𝜏, 𝜏⟧ and (𝑘,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦∗⟧
then ∀𝐾 , (𝑘,Ψ, Σ, app{𝐾} 𝑒𝑓 𝑒) ∈ EH𝑇 ⟦cod(𝜏) ⊓ 𝐾, cod(𝜏)⟧.

Proof. Unfolding the erroring expression relation in our hypothesis about 𝑒𝑓 , we get that there are (Σ′, 𝑒′𝑓 ), 𝑗 such
that (Σ, 𝑒𝑓 ) −→

𝑗

𝑇
(Σ′, 𝑒′

𝑓
) and (Σ′, 𝑒′

𝑓
) is irreducible.

If 𝑒′
𝑓
= Err•, then we’re done because the entire application steps to an error.

Otherwise, there is a (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′
𝑓
) ∈ VH𝑇 ⟦𝜏, 𝜏⟧.

This means 𝑒′
𝑓
= ℓ𝑓 for some ℓ𝑓 ∈ dom(Σ′).

Using this, we know from the OS that (Σ, app{𝐾} 𝑒𝑓 𝑒) −→
𝑗

𝑇
(Σ′, app{𝐾} ℓ𝑓 𝑒).

We can apply Lemma 6.15 with Σ′ : (𝑘 − 𝑗,Ψ′) to our hypothesis about 𝑒 to get (𝑘 − 𝑗,Ψ′, Σ′, 𝑒) ∈ E𝑇 ⟦∗⟧.
Unfolding the expression relation, we get that there are (Σ′′, 𝑒′), 𝑗 ′ such that (Σ′, 𝑒) −→𝑗 ′

𝑇
(Σ′′, 𝑒′) where (Σ′′, 𝑒′) is

irreducible.
If 𝑒′ = Err• than we’re done, because the whole application errors.
Otherwise, there exists (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ′) such that Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) and (𝑘 − 𝑗 − 𝑗 ′ .Ψ′′, Σ′′, 𝑒′) ∈ V𝑇 ⟦∗⟧.
This means 𝑒′ = ℓ for some ℓ ∈ dom(Σ′′).

Putting what we have together, by the OS, (Σ, app{𝐾} 𝑒𝑓 𝑒) −→
𝑗+𝑗 ′
𝑇
(Σ′′, (app{𝐾} ℓ𝑓 ℓ)).

We have (𝑘 − 𝑗,Ψ′, Σ′, ℓ𝑓 ) ∈ V𝑇 ⟦∗ → 𝜏⟧ and (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ′) and Σ′′ ⊇ Σ′ and Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′).
We can combine these to get (𝑘 − 𝑗 − 𝑗 ′,Ψ′′, Σ′′, app{𝐾} ℓ𝑓 ℓ) ∈ EH𝑇 ⟦cod(𝜏) ⊓ 𝐾, cod(𝜏)⟧.
This is sufficient to complete the proof. □

Corollary 6.27. If (𝑘,Ψ, Σ, 𝑒𝑓 ) ∈ EH𝑇 ⟦∗, 𝜏⟧ and (𝑘 − 1,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦∗⟧ then (𝑘 − 1,Ψ, Σ, app{𝜏0} 𝑒𝑓 𝑒) ∈
EH𝑇 ⟦∗, cod(𝜏)⟧.

Lemma 6.28 (Dynamic Checks Are Noops). (1) If (𝑘 + 1,Ψ, Σ, assert ∗ 𝑒) ∈ E𝑇 ⟦𝜏⟧ then (𝑘,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦𝜏⟧.
(2) If (𝑘 + 1,Ψ, Σ, assert ∗ 𝑒) ∈ EH𝑇 ⟦𝜏⟧ then (𝑘,Ψ, Σ, 𝑒) ∈ EH𝑇 ⟦𝜏⟧.

Proof. (1) assume there is Σ′, 𝑒′, 𝑗 such that (Σ, 𝑒) −→𝑗

𝑇
(Σ′, 𝑒′) where (Σ′, 𝑒′) is irreducible.

By the OS, we get that (Σ, assert ∗ 𝑒) −→𝑗

𝑇
(Σ′, assert ∗ 𝑒′).

Then by OS, we have (Σ′, assert ∗ 𝑒′) −→𝑗

𝑇
(Σ′, 𝑒′).

Therefore, we can apply our hypothesis to complete the proof.
(2) Same as previous case, just using the history relation.

□

Lemma 6.29 (Monitor Compatibility). If Σ : (𝑘,Ψ), then
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(1) If (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦𝜏⟧ and Σ(ℓ′) = (ℓ, some(𝜏 ′′, 𝜏 ′), then (𝑘,Ψ, Σ, ℓ′) ∈ V𝑇 ⟦𝜏 ⊓ ⌊𝜏 ′′⌋ ⊓ ⌊𝜏 ′⌋⟧
(2) If (𝑘,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦𝜏 ⊓ ⌊𝜏 ′′⌋ ⊓ ⌊𝜏 ′⌋⟧ then (𝑘,Ψ, Σ,mon {𝜏 ′′ ⇐ 𝜏 ′} 𝑒) ∈ E𝑇 ⟦𝜏 ⊓ ⌊𝜏 ′′⌋ ⊓ ⌊𝜏 ′⌋⟧.
(3) If (𝑘,Ψ, Σ, ℓ) ∈ VH𝑇 ⟦Ψ(ℓ)⟧ and Σ′ = Σ[ℓ′ ↦→ (ℓ, some(𝜏 ′, 𝜏))] and Ψ′ = [ℓ′ ↦→ ⌊𝜏 ′⌋, ⌊𝜏⌋,Ψ(ℓ)]Ψ and

ℓ′ ∉ dom(Σ) and ⊢ Σ′ then (𝑘,Ψ′, Σ′, ℓ′) ∈ VH𝑇 ⟦⌊𝜏 ′⌋, ⌊𝜏⌋,Ψ(ℓ)⟧
(4) If (𝑘,Ψ, Σ, 𝑒) ∈ EH𝑇 ⟦𝜏⟧ then (𝑘,Ψ, Σ,mon {∗ ⇐ ∗} 𝑒) ∈ EH𝑇 ⟦∗, ∗, 𝜏⟧

Proof. Proceed by simultaneous induction on 𝑘 and 𝜏 .

• 𝑘 = 0: 2) and 4) follow from 1) and 3) respectively.
The proofs follow similarly to the other case, but any function or dynamic cases are vacuously true.
• 𝑘 > 0:

1) Unfolding the relation in the statement we want to prove, note from our hypothesis about Σ, we get that
⊢ Σ.
Proceed by case analysis on 𝜏 ⊓ 𝐾 ⊓ 𝐾 ′:

i) 𝜏 = 𝜏 ⊓ 𝐾 ⊓ 𝐾 ′: Immediate.

ii) 𝜏 ⊓ 𝐾 ⊓ 𝐾 ′ = ⊥: then either 𝐾 or 𝐾 ′ is ⊥, which is a contradiction since they both tagmatch
pointsto(Σ, ℓ).

iii) 𝜏 ⊓ 𝐾 ⊓ 𝐾 ′ ⩽: 𝜏 : then 𝜏 = Int and 𝐾 or 𝐾 ′ = Nat.
Immediate because by ⊢ Σ, Nat ∝ pointsto(Σ, ℓ).

iv) 𝜏 ⊓ 𝐾 ⊓ 𝐾 ′ ≠ 𝜏 : then it must be the case that 𝜏 = ∗ and 𝐾 or 𝐾 ′ = ∗ → ∗.
Note 𝐾 or 𝐾 ′ cannot be ∗ × ∗, by ⊢ Σ.
Unfolding the relation in our hypothesis, we have that (𝑘 − 1,Ψ, Σ, ℓ) ∈ V𝑇 ⟦∗ → ∗⟧.
We want to show that (𝑘,Ψ, Σ, ℓ′) ∈ V𝑇 ⟦∗ → ∗⟧.
Unfolding the relation, let ( 𝑗,Ψ′) ⊒ (𝑘,Ψ) and Σ′ ⊇ Σ such that Σ′ : ( 𝑗,Ψ′).
Let ℓ𝑣 ∈ dom(Σ′) such that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇 ⟦∗⟧.
Let 𝐾 .
We want to show ( 𝑗,Ψ′, Σ′, app{𝐾} ℓ′ ℓ𝑣) ∈ E𝑇 ⟦𝐾⟧.
By the OS, (Σ′, app{𝐾} ℓ′ ℓ𝑣) −→2

𝑇
(Σ′, assert𝐾 (mon {∗ ⇐ ∗} (ℓ (mon {∗ ⇐ ∗} ℓ𝑣)))).

By IH 2), we have ( 𝑗,Ψ′, Σ′,mon {∗ ⇐ ∗} ℓ𝑣) ∈ E𝑇 ⟦∗⟧.
By Lemma 6.24, we have that ( 𝑗,Ψ′, Σ′, app{𝐾} ℓ (mon {∗ ⇐ ∗} ℓ𝑣)) ∈ E𝑇 ⟦𝐾⟧.
Then by IH 2), we have ( 𝑗,Ψ′, Σ′,mon {∗ ⇐ ∗} (app{𝐾} ℓ (mon {∗ ⇐ ∗} ℓ𝑣))) ∈ E𝑇 ⟦𝐾⟧.
Note that ( 𝑗,Ψ′, Σ′,mon {∗ ⇐ ∗} (app{𝐾} ℓ (mon {∗ ⇐ ∗} ℓ𝑣))) ∈ E𝑇 ⟦𝐾⟧ iff ( 𝑗,Ψ′, Σ′, assert𝐾 (mon {∗ ⇐ ∗} (ℓ (mon {∗ ⇐ ∗} ℓ𝑣)))) ∈
E𝑇 ⟦𝐾⟧.
Therefore, this is sufficient to complete the case.

2) Unfolding the expression relation in our hypothesis, we have that there are (𝑒′, Σ′), 𝑗 such that (𝑒, Σ) −→𝑗

𝑇

(𝑒′, Σ′) with (𝑒′, Σ′) irreducible.
If 𝑒′ = Err• then we’re done, because the monitor will step to an error as well.
Otherwise, there is (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ V𝑇 ⟦𝜏 ⊓𝐾 ⊓𝐾 ′⟧.
This means ∃ℓ ∈ dom(Σ′) such that 𝑒′ = ℓ .
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We want to show (𝑘 − 𝑗,Ψ′, Σ′,mon {⌊𝜏 ′⌋ ⇐ ⌊𝜏⌋} ℓ) ∈ E𝑇 ⟦𝜏 ⊓ ⌊𝜏⌋ ⊓ ⌊𝜏 ′⌋⟧.
We destruct on whether Σ′ (ℓ) is a pair.
If Σ′ (ℓ) = (⟨ℓ1, ℓ2⟩, _), then by the OS, (Σ′,mon {𝜏 ′ ⇐ 𝜏} ℓ) −→𝑇 (Σ′, ⟨mon {∗ ⇐ ∗} ℓ1,mon {∗ ⇐ ∗} ℓ2⟩).
Then by Lemma 6.22, it suffices to show (𝑘− 𝑗,Ψ′, Σ′,mon {∗ ⇐ ∗} ℓ1) ∈ E𝑇 ⟦fst(𝜏)⟧ and (𝑘− 𝑗,Ψ′, Σ′,mon {∗ ⇐ ∗} ℓ2) ∈
E𝑇 ⟦snd(𝜏)⟧
These both follow from IH 2) (smaller by index).
Otherwise, by the OS, (Σ′,mon {𝜏 ′ ⇐ 𝜏} ℓ) −→𝑇 (Σ′ [ℓ′ ↦→ (ℓ, some(𝜏 ′, 𝜏))], ℓ′).
Then by IH 3), we get Σ′ [ℓ′ ↦→ (ℓ, some(𝜏 ′, 𝜏))] : (𝑘 − 𝑗 − 1,Ψ′ [ℓ′ ↦→ ⌊𝜏 ′⌋, ⌊𝜏⌋,Ψ′ (ℓ)]).
And by IH 1), we get (𝑘 − 𝑗 − 1,Ψ′ [ℓ′ ↦→ ⌊𝜏 ′⌋, ⌊𝜏⌋,Ψ′ (ℓ)], Σ′ [ℓ′ ↦→ (ℓ, some(𝜏 ′, 𝜏))], ℓ′) ∈ V𝑇 ⟦𝜏 ⊓ ⌊𝜏⌋ ⊓
⌊𝜏 ′⌋⟧.
These two facts are sufficient to complete the case.

3) We proceed by case analysis on 𝐾 ′ (note by the fact that ⊢ Σ′, 𝐾 ∝ 𝐾 ′):

(a) 𝐾 ′ = Nat: Since we already know (𝑘,Ψ, Σ, ℓ) ∈ VH𝑇 ⟦Ψ(ℓ)⟧, it suffices to show (𝑘,Ψ, Σ, ℓ′) ∈
V𝑇 ⟦𝐾 ′⟧ and (𝑘,Ψ, Σ, ℓ′) ∈ V𝑇 ⟦𝐾⟧.
This is immediate from ⊢ Σ′, which implies 𝐾 ′ ∝ pointsto(Σ′, ℓ′) and 𝐾 ∝ pointsto(Σ′, ℓ′).

(b) 𝐾 ′ = Int: same as the Nat case.
(c) 𝐾 ′ = Bool: same as the Nat case.
(d) 𝐾 ′ = ∗ × ∗: this case is a contradiction by the fact that ⊢ Σ.
(e) 𝐾 ′ = ∗ → ∗: Since pointsto(Σ, ℓ) ∝ 𝐾 ′ and pointsto(Σ, ℓ) ∝ 𝐾 , 𝐾 = ∗ or ∗ → ∗.

Also, since ⊢ Σ′, we get that Ψ(ℓ) = [∗, 𝜏 ′] or [∗ → ∗, 𝜏 ′].
From the fact that (𝑘,Ψ, Σ, ℓ) ∈ VH𝑇 ⟦Ψ(ℓ)⟧, we get that (𝑘,Ψ, Σ, ℓ) ∈ VH𝑇 ⟦∗, 𝜏 ′⟧ or (𝑘,Ψ, Σ, ℓ) ∈
VH𝑇 ⟦∗ → ∗, 𝜏 ′⟧.
In the case of ∗, we can unfold and get (𝑘 − 1,Ψ, Σ, ℓ) ∈ VH𝑇 ⟦∗ → ∗, 𝜏 ′⟧.
Otherwise we can get the same using Lemma 6.11.
Similarly, we want to show that (𝑘,Ψ′, Σ′, ℓ′) ∈ VH𝑇 ⟦𝐾 ′, 𝐾,Ψ(ℓ)⟧.
By Lemma 6.11, in the 𝐾 ′ = ∗ case, it suffices to show (𝑘,Ψ′, Σ′, ℓ′) ∈ VH𝑇 ⟦∗ → ∗, 𝐾,Ψ(ℓ)⟧.
So let ( 𝑗,Ψ′′) ⊒ (𝑘,Ψ′), and let Σ′′ ⊇ Σ′ such that Σ′′ : ( 𝑗,Ψ′′).
Let ℓ𝑣 ∈ dom(Σ′′) such that ( 𝑗,Ψ′′, Σ′′, ℓ𝑣) ∈ V𝑇 ⟦∗⟧.
Let 𝐾 ′′.
We want to show ( 𝑗,Ψ′′, Σ′′, app{𝐾 ′′} ℓ′ ℓ𝑣) ∈ EH𝑇 ⟦𝐾 ′′, ∗, cod(Ψ(ℓ))⟧.
By the OS, (Σ′′, app{𝐾 ′′} ℓ′ ℓ𝑣) −→𝑇 (Σ′′, assert𝐾 ′′ (ℓ′ ℓ𝑣)).
By Lemma 6.20, it suffices to show ( 𝑗 − 1,Ψ′′, Σ′′, ℓ′ ℓ𝑣) ∈ EH𝑇 ⟦∗, ∗, cod(Ψ(ℓ))⟧.
By the OS, (Σ′′, ℓ′ ℓ𝑣) −→𝑇 (Σ′′,mon {∗ ⇐ ∗} (ℓ (mon {∗ ⇐ ∗} ℓ𝑣))).
By IH 2) (smaller by index), it suffices to show ( 𝑗−2,Ψ′′, Σ′′, ℓ (mon {∗ ⇐ ∗} ℓ𝑣)) ∈ EH𝑇 ⟦∗, ∗, cod(Ψ(ℓ))⟧.
By Lemma 6.28, it suffices to show ( 𝑗−1,Ψ′′, Σ′′, assert ∗ ℓ (mon {∗ ⇐ ∗} ℓ𝑣)) ∈ EH𝑇 ⟦∗, ∗, cod(Ψ(ℓ))⟧.
Then by the OS, it suffices to show ( 𝑗,Ψ′′, Σ′′, app{∗} ℓ (mon {∗ ⇐ ∗} ℓ𝑣)) ∈ EH𝑇 ⟦∗, ∗, cod(Ψ(ℓ))⟧.
By IH 2), ( 𝑗,Ψ′′, Σ′′,mon {∗ ⇐ ∗} ℓ𝑣) ∈ V𝑇 ⟦∗⟧.
Unfolding, we get that there exists some 𝑗 ′, 𝑒′′, Σ′′′ such that (Σ′′,mon {∗ ⇐ ∗} ) −→𝑗 ′

𝑇
(Σ′′′, 𝑒′).

If 𝑒′ = Err•, then we’re done because the entire application errors.
Otherwise, we get that there exists a ( 𝑗 − 𝑗 ′,Ψ′′′) ⊒ ( 𝑗,Ψ′′) such that Σ′′′ : ( 𝑗 − 𝑗 ′,Ψ′′′) and
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( 𝑗 − 𝑗 ′,Ψ′′′, Σ′′′, 𝑒′′) ∈ V𝑇 ⟦∗⟧.
Note by the operational semantics, 𝑗 ′ ≥ 1.
By Lemma 6.11, we get ( 𝑗 − 𝑗 ′,Ψ′′′, Σ′′′, ℓ) ∈ VH𝑇 ⟦∗ → ∗, 𝜏 ′⟧.
Finally we can apply this hypothesis to the fact about 𝑒′′ to get that ( 𝑗 − 𝑗 ′,Ψ′′′, Σ′′′, app{∗} ℓ 𝑒′′) ∈
EH𝑇 ⟦∗, ∗, cod(Ψ(ℓ))⟧, which is sufficient to complete the case.

(f) 𝐾 ′ = ∗: unfolding the relation in what we want to show, the proof follows by IH 3) (smaller by index).
4) Unfolding the expression relation in our hypothesis, we have that there are (𝑒′, Σ′), 𝑗 such that (𝑒, Σ) −→𝑗

𝑇

(𝑒′, Σ′) with (𝑒′, Σ′) irreducible.
If 𝑒′ = Err• then we’re done, because the monitor will step to an error as well.
Otherwise, there is (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ VH𝑇 ⟦𝜏⟧.
This means ∃ℓ ∈ dom(Σ′) such that 𝑒′ = ℓ .

We want to show (𝑘 − 𝑗,Ψ′, Σ′,mon {∗ ⇐ ∗} ℓ) ∈ EH𝑇 ⟦∗, ∗,Ψ′ (ℓ)⟧.
For ii), by OS, if Σ′ (ℓ) = (⟨ℓ1, ℓ2⟩, _), then (Σ′,mon {∗ ⇐ ℓ} −→𝑇 (Σ′, ⟨mon {∗ ⇐ ∗} ℓ1,mon {∗ ⇐ ∗} ℓ2⟩).
Then by Lemma 6.23, it suffices to show (𝑘 − 𝑗 − 𝑗 ′ − 1,Ψ, Σ,mon {∗ ⇐ ℓ1} ∈VH𝑇 ⟦∗, ∗, 𝜏⟧ and (𝑘 − 𝑗 −
𝑗 ′ − 1,Ψ, Σ,mon {∗ ⇐ ℓ2} ∈VH𝑇 ⟦∗, ∗, 𝜏⟧.
Both of these follow from (4) (smaller by index).

Otherwise, by the OS, (Σ′,mon {∗ ⇐ ∗} ) −→𝑇 (Σ′ [ℓ′ ↦→ (ℓ, some(∗, ∗))], ℓ′).
We can finish the proof by applying IH 3) (smaller by index).

□

Lemma 6.30 (Expression Relation implies Erroring Expression Relation). (1) If (𝑘,Ψ, Σ, 𝑒) ∈ E𝑇 ⟦𝜏⟧ then
(𝑘,Ψ, Σ, 𝑒) ∈ EH𝑇 ⟦𝜏⟧.

(2) If (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦𝜏⟧ then (𝑘,Ψ, Σ, ℓ) ∈ VH𝑇 ⟦𝜏⟧.

Proof. Proceed by induction on 𝑘 and 𝜏 :

• 𝑘 = 0: 1) is immediate from 2).

– 𝜏 = Int: immediate.
– 𝜏 = 𝜏1 × 𝜏2: then Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _).

The case follows from the IH on ℓ1 and ℓ2.
– 𝜏 = 𝜏1 → 𝜏2: vacuously true.
– 𝜏 = ∗: vacuously true.

• 𝑘 > 0: 1) is immediate from 2).

– 𝜏 = Int: immediate.
– 𝜏 = 𝜏1 × 𝜏2: then Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _).

The case follows from the IH on ℓ1 and ℓ2.
– 𝜏 = 𝜏1 → 𝜏2: Follows from 1) from the IH (smaller by index).
– 𝜏 = ∗: Follows from 2) from the IH (smaller by index), using ∗ × ∗, ∗ → ∗, or Int.

2024-04-22 00:20. Page 60 of 1–108.



Gradually Typed Languages Should Be Vigilant! 61

□

6.2.3 Compatability Lemmas

Lemma 6.31 (T-Var compatibility).
(𝑥0 :𝐾0) ∈ Γ

Γ ⊢ 𝑥0 : 𝐾0

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (𝑥)) ∈ E𝑇 ⟦𝜏⟧.
Since 𝑥 : 𝜏 ∈ Γ, we get that 𝛾 (𝑥) = ℓ .
Since (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇 ⟦Γ⟧, we get (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦𝜏⟧.
Then we get that (𝑘,Ψ, Σ, ℓ) ∈ E𝑇 ⟦𝜏⟧ immediately since ℓ is already a value and we have as a premise that Σ : (𝑘,Ψ). □

Lemma 6.32 (T-Nat compatibility).
⟦Γ ⊢ 𝑛0 : Nat⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (𝑛)) ∈ E𝑇 ⟦Nat⟧.
Note 𝛾 (𝑛) = 𝑛.
By the OS, we have (Σ, 𝑛) −→𝑇 (Σ[ℓ ↦→ (𝑛, none)], ℓ).
We get (𝑘,Ψ, Σ, ℓ) ∈ V𝑇 ⟦Nat⟧ immediately because 𝑛 ∈ T.
SinceV𝑇 ⟦Nat⟧ does not rely on Ψ or Σ, we have that (𝑘,Ψ[ℓ ↦→ [Nat]], Σ[ℓ ↦→ (𝑛, none)], ℓ) ∈ V𝑇 ⟦Nat⟧.
Since ℓ ↦→ Nat, we have that (𝑘,Ψ[ℓ ↦→ [Nat]], Σ[ℓ ↦→ (𝑛, none)], ℓ) ∈ V𝑇 ⟦Nat⟧.
Similarly we have (𝑘,Ψ[ℓ ↦→ [Nat]], Σ[ℓ ↦→ (𝑛, none)], ℓ) ∈ VH𝑉 ⟦𝑇⟧Nat.
Therefore, given we know Σ : (𝑘,Ψ), we know Σ[ℓ ↦→ (𝑛, none)] : (𝑘,Ψ[ℓ ↦→ [Nat]]). □

Lemma 6.33 (T-Int compatibility).
⟦Γ ⊢ 𝑖0 : Int⟧

Proof. Not meaningfully different from T-Nat □

Lemma 6.34 (T-True compatibility).
⟦Γ ⊢ True : Bool⟧

Proof. Not meaningfully different from T-Nat □

Lemma 6.35 (T-False compatibility).
⟦Γ ⊢ False : Bool⟧

Proof. Not meaningfully different from T-Nat □

Lemma 6.36 (T-Lam compatibility).
⟦Γ0, (𝑥0 :𝐾0) ⊢ 𝑒0 : 𝜏1⟧

⟦Γ0 ⊢ 𝜆(𝑥0 :𝐾0) . 𝑒0 : ∗→𝜏1⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (𝜆𝑥1 : 𝐾. 𝑒1)) ∈ E𝑇 ⟦∗ → 𝜏1⟧.
Note that 𝛾 (𝜆𝑥1 : 𝐾. 𝑒1) = 𝜆𝑥1 : 𝐾.𝛾 (𝑒1).
Since 𝜆𝑥1 : 𝐾.𝛾 (𝑒1) is a value, by the OS we have (Σ, 𝜆𝑥1 : 𝐾.𝛾 (𝑒1)) −→𝑇 (Σ[ℓ ↦→ (𝜆𝑥1 : 𝐾.𝛾 (𝑒1), none)]), where
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ℓ ∉ dom(Σ).
We choose our later Ψ′ to be Ψ[ℓ ↦→ ∗ → ∗].
We now have two obligations:

(1) (𝑘 − 1,Ψ[ℓ ↦→ ∗ → ∗], Σ[ℓ ↦→ (𝜆𝑥1 : 𝐾.𝛾 (𝑒1), none)], ℓ) ∈ V𝑇 ⟦∗ → 𝜏1⟧
(2) Σ[ℓ ↦→ (𝜆𝑥1 : 𝐾.𝛾 (𝑒1), none)] : (𝑘 − 1,Ψ[ℓ ↦→ ∗ → ∗])

For 1), we want to show (𝑘 − 1,Ψ[ℓ ↦→ ∗ → ∗], Σ[ℓ ↦→ (𝜆𝑥1 : 𝐾.𝛾 (𝑒1), none)], 𝜆𝑥1 : 𝐾.𝛾 (𝑒1)) ∈ V𝑇 ⟦∗ → 𝜏1⟧.
Unfolding the value relation:
Let ( 𝑗,Ψ′) ⊒ (𝑘 − 1,Ψ[ℓ ↦→ ∗ → ∗]) and Σ′ ⊇ Σ[ℓ ↦→ (𝜆𝑥1 : 𝐾.𝛾 (𝑒1), none)] such that Σ′ : ( 𝑗,Ψ′).
Let ℓ𝑣 ∈ dom(Σ′) such that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇 ⟦∗⟧.
Let 𝐾 .
We want to show ( 𝑗,Ψ′, Σ′, app{𝐾} ℓ ℓ𝑣) ∈ E𝑇 ⟦𝜏1 ⊓ 𝐾⟧.
By the OS, if ¬𝐾 ∝ Σ(ℓ𝑣) then the application steps to an error and we’re done.
Otherwise, (Σ′, app{𝐾} ℓ ℓ𝑣) −→𝑇 (Σ′, assert𝐾 𝛾 (𝑒1) [ℓ𝑣/𝑥]).
By the definition of substitution, 𝛾 (𝑒1) [ℓ𝑣/𝑥] = 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1).
Note that ( 𝑗 − 2,Ψ′, Σ′, 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1)) ∈ G𝑇 ⟦Γ, 𝑥 : 𝐾⟧:

i) ( 𝑗 − 2,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇 ⟦𝐾⟧ by Lemma 6.15 and Lemma 6.17.
ii) ∀𝑦 ∈ dom(𝛾), ( 𝑗 − 2,Ψ′, Σ′, 𝛾 (𝑦)) ∈ V𝑇 ⟦Γ(𝑦)⟧ by the premise about 𝛾 and Lemma 6.15.

Therefore, we can apply the hypothesis to𝛾 [𝑥 ↦→ ℓ𝑣],Ψ′, Σ′, and 𝑒1 at 𝑗−2 to get ( 𝑗−2,Ψ′, Σ′, 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1)) ∈ E𝑇 ⟦𝜏1⟧.
Finally, we can apply Lemma 6.18 to get ( 𝑗 − 1,Ψ′, Σ′, assert𝐾 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1)) ∈ E𝑇 ⟦𝜏1 ⊓𝐾⟧ which is what we wanted
to show.

For 2), first note the domains are equal, since dom(Σ) = dom(Ψ).
Then note ⊢ Σ[ℓ ↦→ (𝜆𝑥1 : 𝐾.𝛾 (𝑒1), none] since ⊢ Σ.
Then let 𝑗 < 𝑘 − 1 and let ℓ′ ∈ dom(Σ[ℓ ↦→ (𝜆𝑥1 : 𝐾.𝛾 (𝑒1), none)]).
If ℓ′ ≠ ℓ , then we get the remaining conditions from Σ : (𝑘,Ψ) and Lemma 6.11.
If ℓ′ = ℓ , then note the structural obligation on Ψ[ℓ ↦→ [∗ → ∗]] is immediate.
We want to show ( 𝑗,Ψ[ℓ ↦→ ∗ → ∗], Σ[ℓ ↦→ (𝜆𝑥1 : 𝐾.𝛾 (𝑒1), none)], ℓ) ∈ VH𝑇 ⟦∗ → ∗⟧.
Let ( 𝑗,Ψ′) ⊒ (𝑘 − 1,Ψ[ℓ ↦→ ∗ → ∗]) and Σ′ ⊇ Σ[ℓ ↦→ (𝜆𝑥1 : 𝐾.𝛾 (𝑒1), _)] such that Σ′ : ( 𝑗,Ψ′).
Let ℓ𝑣 ∈ dom(Σ′) such that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇 ⟦∗⟧.
Let 𝐾 .
We get immediately that pointsto(Σ′, ℓ𝑣) ∝ ∗, so we want to show ( 𝑗,Ψ′, Σ′, app{𝐾} ℓ ℓ𝑣) ∈ EH𝑉 ⟦∗ ⊓ 𝐾⟧.
By theOS, if¬𝐾 ∝ Σ(ℓ𝑣), then the application errors andwe’re done. Otherwise, (Σ′, app{𝐾} ℓ ℓ𝑣) −→𝑇 (Σ′, assert𝐾 𝛾 (𝑒1) [ℓ𝑣/𝑥]).
By the definition of substitution, 𝛾 (𝑒1) [ℓ𝑣/𝑥] = 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1).
Note that ( 𝑗 − 2,Ψ′, Σ′, 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1)) ∈ G𝑇 ⟦Γ, 𝑥 : ∗⟧:

i) ( 𝑗 − 2,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇 ⟦𝐾⟧ by Lemma 6.15 and Lemma 6.17.
ii) ∀𝑦 ∈ dom(𝛾), ( 𝑗 − 2,Ψ′, Σ′, 𝛾 (𝑦)) ∈ V𝑇 ⟦Γ(𝑦)⟧ by the premise about 𝛾 and Lemma 6.15.

Therefore, we can apply the hypothesis to𝛾 [𝑥 ↦→ ℓ𝑣],Ψ′, Σ′, and 𝑒1 at 𝑗−2 to get ( 𝑗−2,Ψ′, Σ′, 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1)) ∈ E𝑇 ⟦𝜏1⟧.
Then we can apply Lemma 6.30 to get ( 𝑗 − 2,Ψ′, Σ′, 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1)) ∈ EH𝑉 ⟦𝜏1⟧.
We can then apply Lemma 6.21 to get ( 𝑗 − 2,Ψ′, Σ′, 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1)) ∈ EH𝑉 ⟦∗⟧.
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Finally, we can apply Lemma 6.18 to get ( 𝑗 − 1,Ψ′, Σ′, assert𝐾 𝛾 [𝑥 ↦→ ℓ𝑣] (𝑒1)) ∈ EH𝑉 ⟦∗ ⊓ 𝐾⟧ which is what we
wanted to show.

□

Lemma 6.37 (T-Pair compatibility).

⟦Γ ⊢ 𝑒0 : 𝜏0⟧
⟦Γ ⊢ 𝑒1 : 𝜏1⟧

⟦Γ ⊢ ⟨𝑒0, 𝑒1⟩ : 𝜏0×𝜏1⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (⟨𝑒1, 𝑒2⟩)) ∈ E𝑇 ⟦𝜏1 × 𝜏2⟧.
Note 𝛾 (⟨𝑒1, 𝑒2⟩) = ⟨𝛾 (𝑒1), 𝛾 (𝑒2)⟩.
We can apply the first hypothesis to get (𝑘,Ψ, Σ, 𝛾 (𝑒1)) ∈ E𝑇 ⟦𝜏1⟧.
We can apply the second hypothesis to get (𝑘,Ψ, Σ, 𝛾 (𝑒2)) ∈ E𝑇 ⟦𝜏2⟧.
Then by Lemma 6.23, (𝑘,Ψ, Σ, ⟨𝛾 (𝑒1), 𝛾 (𝑒2)⟩) ∈ E𝑇 ⟦𝜏1 × 𝜏2⟧, which is what we wanted to show. □

Lemma 6.38 (T-Cast compatibility).
⟦Γ ⊢ 𝑒0 : 𝜏0⟧

⟦Γ ⊢ cast {𝐾1 ⇐ 𝐾0} 𝑒0 : 𝐾1 ⊓ 𝐾0 ⊓ 𝜏0⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (cast {𝐾1 ⇐ 𝐾0} 𝑒0)) ∈ E𝑇 ⟦𝐾1 ⊓ 𝐾0 ⊓ 𝜏0⟧.
Note 𝛾 (cast {𝐾1 ⇐ 𝐾0} 𝑒0) = cast {𝐾1 ⇐ 𝐾0} 𝛾 (𝑒0).
We can apply the first hypothesis to get (𝑘,Ψ, Σ, 𝛾 (𝑒0)) ∈ E𝑇 ⟦𝜏0⟧.
Unfolding the expression relation, there are 𝑗, Σ′, 𝑒′ such that (Σ, 𝛾 (𝑒0)) −→𝑗

𝑇
(Σ′, 𝑒′) where (Σ′, 𝑒′) is irreducible.

If 𝑒′ = Err• then we’re done, because the entire boundary expression errors.
Otherwise, we know there is a (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ V𝑇 ⟦𝜏0⟧.
This means ∃ℓ ∈ dom(Σ′) such that 𝑒′ = ℓ .
By the OS, (Σ, cast {𝐾1 ⇐ 𝐾0} 𝛾 (𝑒0)) −→𝑗

𝑇
(Σ′, cast {𝐾1 ⇐ 𝐾0} ℓ) −→𝑇 (Σ′,mon {𝐾1 ⇐ 𝐾0} ℓ).

By Lemma 6.15, (𝑘 − 𝑗 − 1,Ψ′, Σ′, ℓ) ∈ V𝑇 ⟦𝜏0⟧.
By Lemma 6.29, (𝑘 − 𝑗 − 1,Ψ′, Σ′,mon {𝐾1 ⇐ 𝐾0} ℓ) ∈ E𝑇 ⟦𝐾1 ⊓ 𝐾0 ⊓ 𝜏0⟧, which is what we wanted to show. □

Lemma 6.39 (T-App compatibility).

⟦Γ ⊢ 𝑒0 : ∗→𝜏1⟧
⟦Γ ⊢ 𝑒1 : 𝜏 ′0⟧

⟦Γ ⊢ app{𝐾1} 𝑒0 𝑒1 : 𝐾1 ⊓ 𝜏1⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (app{𝐾1} 𝑒1 𝑒2)) ∈ E𝑇 ⟦𝐾1 ⊓ 𝜏1⟧.
Note 𝛾 (app{𝐾1} 𝑒1 𝑒2) = app{𝐾1}𝛾 (𝑒1) 𝛾 (𝑒2).
By the first hypothesis we have (𝑘,Ψ, Σ, 𝛾 (𝑒1)) ∈ E𝑇 ⟦∗ → 𝜏1⟧.
By the second hypothesis we have (𝑘,Ψ, Σ, 𝛾 (𝑒2)) ∈ E𝑇 ⟦𝜏 ′0⟧.
By Lemma 6.21, we have (𝑘,Ψ, Σ, 𝛾 (𝑒2)) ∈ E𝑇 ⟦∗⟧.
Then we can apply Lemma 6.24 to get (𝑘,Ψ, Σ, app{𝐾1}𝛾 (𝑒1) 𝛾 (𝑒2)) ∈ E𝑇 ⟦𝜏1 ⊓ 𝐾1⟧ which is what we wanted to
show. □
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Lemma 6.40 (T-AppBot compatibility).

⟦Γ ⊢ 𝑒0 : ⊥⟧
⟦Γ ⊢ 𝑒1 : 𝜏 ′0⟧

⟦Γ ⊢ app{𝐾1} 𝑒0 𝑒1 : ⊥⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (app{𝐾1} 𝑒0 𝑒1)) ∈ E𝑇 ⟦⊥⟧.
By Lemma 6.16, we have that (Σ, 𝑒0) −→∗𝑇 (Σ

′, 𝑒′0) where 𝑒
′
0 = Err•, which is sufficient to complete the case. □

Lemma 6.41 (T-Fst compatibility).
⟦Γ ⊢ 𝑒0 : 𝜏0×𝜏1⟧

⟦Γ ⊢ fst{𝐾0} 𝑒0 : 𝐾0 ⊓ 𝜏0⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇 ⟦Γ1⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (fst{𝐾0} 𝑒0)) ∈ E𝑇 ⟦𝜏0 ⊓ 𝐾0⟧.
Note 𝛾 (fst{𝐾0} 𝑒1) = fst{𝐾0}𝛾 (𝑒0).
From the first hypothesis, we have (𝑘,Ψ, Σ, 𝛾 (𝑒0)) ∈ E𝑇 ⟦𝜏0 × 𝜏1⟧.
Unfolding the expression relation, there are 𝑗, Σ′, 𝑒′0 such that (Σ, 𝛾 (𝑒0)) −→𝑗

𝑇
(Σ′′, 𝑒′0) and 𝑒

′
0 is irreducible.

If 𝑒′0 = Err• then we’re done because the projection also steps to an error.
Otherwise, there is a (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′0) ∈ V

𝑇 ⟦𝜏0 × 𝜏1⟧.
Unfolding the location and value relations, we get that Σ′ (𝑒′0) = (⟨ℓ0, ℓ1⟩, _).
By the OS, (Σ, fst{𝐾0} 𝑒0) −→𝑗

𝑁
(Σ′fst{𝐾0} 𝑒′0) −→𝑇 (Σ′, assert𝐾0 ℓ0).

We can apply Lemma 6.15 to the premise that (𝑘 − 𝑗,Ψ′, Σ′, ℓ0) ∈ V𝑇 ⟦𝜏0⟧ to get (𝑘 − 𝑗 − 1,Ψ′, Σ′, ℓ0) ∈ V𝑇 ⟦𝜏0⟧.
Then we can apply Lemma 6.18 to get (𝑘 − 𝑗 − 1,Ψ′, Σ′, assert𝐾0 ℓ0) ∈ E𝑇 ⟦𝜏0 ⊓ 𝐾0⟧.
Finally, we can apply Lemma 6.11 to get that Σ′ : (𝑘 − 𝑗 − 1,Ψ′), which is sufficient to complete the proof. □

Lemma 6.42 (T-FstBot compatibility).
⟦Γ ⊢ 𝑒0 : ⊥⟧

⟦Γ ⊢ fst{𝐾0} 𝑒0 : ⊥⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (fst{𝐾0} 𝑒0)) ∈ E𝑇 ⟦⊥⟧.
By Lemma 6.16, we have that (Σ, 𝑒0) −→∗𝑇 (Σ

′, 𝑒′0) where 𝑒
′
0 = Err•, which is sufficient to complete the case. □

Lemma 6.43 (T-Snd compatibility).
⟦Γ ⊢ 𝑒0 : 𝜏0×𝜏1⟧

⟦Γ ⊢ snd{𝐾1} 𝑒0 : 𝐾1 ⊓ 𝜏1⟧

Proof. Not meaningfully different from the T-Fst case. □

Lemma 6.44 (T-SndBot compatibility).
⟦Γ ⊢ 𝑒0 : ⊥⟧

⟦Γ ⊢ snd{𝐾1} 𝑒0 : ⊥⟧

Proof. Not meaningfully different from the T-FstBot case. □

Lemma 6.45 (T-Binop compatibility).

⟦Γ ⊢ 𝑒0 : 𝜏0⟧
⟦Γ ⊢ 𝑒1 : 𝜏1⟧

⟦Γ ⊢ binop 𝑒0 𝑒1 : Δ(binop, 𝜏0, 𝜏1)⟧
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Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (binop 𝑒0 𝑒1)) ∈ E𝑇 ⟦𝐾2⟧.
Note 𝛾 (binop 𝑒0 𝑒1) = binop𝛾 (𝑒0) 𝛾 (𝑒1).
By the first hypothesis applied to 𝛾 we have (𝑘,Ψ, Σ, 𝛾 (𝑒0)) ∈ E𝑇 ⟦𝜏0⟧.
Unfolding we get there are 𝑗, Σ′, 𝑒′0 such that (Σ, 𝛾 (𝑒0)) −→𝑗

𝑇
(Σ′, 𝑒′0) and 𝑒

′
0 is irreducible.

If 𝑒′0 = Err• then we’re done, because the whole operation errors.
Otherwise there is a (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′0) ∈ V

𝑇 ⟦𝜏0⟧.

Note by Lemma 6.15 and Lemma 6.11, we have (𝑘 − 𝑗,Ψ′, Σ′, 𝛾) ∈ G𝑇 ⟦Γ1⟧ and Σ′ : (𝑘 − 𝑗,Ψ′).
By the second hypothesis applied to 𝛾 we have (𝑘 − 𝑗,Ψ′, Σ′, 𝛾 (𝑒1)) ∈ E𝑇 ⟦𝜏1⟧.
Unfolding we get there are 𝑗 ′, Σ′′, 𝑒′1 such that (Σ′, 𝛾 (𝑒1)) −→𝑗 ′

𝑇
(Σ′′, 𝑒′1) and 𝑒

′
1 is irreducible.

If 𝑒′1 = Err• then we’re done, because the whole operation errors.
Otherwise, there is a (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) ⊒ (𝑘 − 𝑗,Ψ) such that Σ′′ : (𝑘 − 𝑗 − 𝑗 ′,Ψ′′) and (𝑘 − 𝑗 − 𝑗 ′,Ψ′′, Σ′′, 𝑒′1) ∈ V

𝑇 ⟦𝜏1⟧.

From the definition of Δ, 𝐾2 = Int or Nat or ⊥.
In the case of ⊥, we’re done because either 𝜏0 or 𝜏1 is a ⊥, which is a contradiction.
Otherwise, the cases proceed identically, so without loss of generality assume 𝐾2 = Int.
𝜏0 = 𝜏1 = Int, and therefore pointsto(Σ′′, ()𝑒′0) = 𝑖0 and pointsto(Σ′′, 𝑒′1) = 𝑖1.
If binop = quotient and 𝑖1 = 0 then (Σ′′, binop 𝑒′0 𝑒

′
1) −→𝑇 (Σ′′,DivErr), so we’re done.

If binop = quotient and 𝑖1 ≠ 0, then (Σ′′, binop 𝑒′0 𝑒
′
1) −→𝑇 (Σ′′, 𝑖0/𝑖1) −→𝑇 (Σ′′ [ℓ ↦→ (𝑖0/𝑖1, none)], ℓ).

Since 𝑖0/𝑖1 ∈ Z, we’re done.
If binop = sum then (Σ′′, binop 𝑒′0 𝑒

′
1) −→𝑇 (Σ′′, 𝑖0 + 𝑖1) −→𝑇 (Σ′′ [ℓ ↦→ (𝑖0 + 𝑖1, none)], ℓ).

Since 𝑖0 + 𝑖1 ∈ Z, we’re done. □

Lemma 6.46 (T-If compatibility).

⟦Γ ⊢ 𝑒0 : Bool⟧
⟦Γ ⊢ 𝑒1 : 𝜏0⟧
⟦Γ ⊢ 𝑒2 : 𝜏1⟧

⟦Γ ⊢ if 𝑒0 then 𝑒1 else 𝑒2 : 𝜏0 ⊔ 𝜏1⟧

Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (if 𝑒0 then 𝑒1 else 𝑒2)) ∈ E𝑇 ⟦𝜏0 ⊔ 𝜏1⟧.
Note 𝛾 (if 𝑒0 then 𝑒1 else 𝑒2) = if 𝛾 (𝑒0) then 𝛾 (𝑒1) else 𝛾 (𝑒2).
From the first hypothesis applied to 𝛾 , we know (𝑘,Ψ, Σ, 𝛾 (𝑒0)) ∈ E𝑇 ⟦Bool⟧.
Unfolding, we have that there is Σ′, 𝑒′0, 𝑗 such that (Σ, 𝑒0) −→𝑗

𝑇
(Σ′, 𝑒′0) where 𝑒

′
0 is irreducible.

If 𝑒′0 = Err• then we’re done, because the entire if statement errors.
Otherwise, there is a (𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that Σ′ : (𝑘 − 𝑗,Ψ′) and (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′0) ∈ V

𝑇 ⟦Bool⟧.
Unfolding the location and then the value relation, we get that pointsto(Σ′, 𝑒′0) = True or pointsto(Σ′, 𝑒′0) = False.

• pointsto(Σ′, 𝑒′0) = True: Note byOS, (Σ, if 𝛾 (𝑒0) then 𝛾 (𝑒1) else 𝛾 (𝑒2)) −→𝑗

𝑇
(Σ′, if 𝑒′0 then 𝛾 (𝑒1) else 𝛾 (𝑒2)) −→𝑇

(Σ′, 𝛾 (𝑒1)).
By Lemma 6.15 and Lemma 6.11, we have (𝑘 − 𝑗 − 1,Ψ′, Σ′, 𝛾) ∈ G𝑇 ⟦Γ1⟧ and Σ′ : (𝑘 − 𝑗 − 1,Ψ′).
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From the second hypothesis, we get (𝑘 − 𝑗 − 1,Ψ′, Σ′, 𝛾 (𝑒1)) ∈ E𝑇 ⟦𝜏0⟧.
Finally, by Lemma 6.21, we get (𝑘 − 𝑗 − 1,Ψ′, Σ′, 𝛾 (𝑒1)) ∈ E𝑇 ⟦𝜏0 ⊔ 𝜏1⟧ which is sufficient to complete the proof.

• pointsto(Σ′, 𝑒′0) = False: same as other case except replace 𝑒1 with 𝑒2.

Proof. □

Lemma 6.47 (T-IfBot compatibility).

⟦Γ ⊢ 𝑒0 : ⊥⟧
⟦Γ ⊢ 𝑒1 : 𝜏0⟧
⟦Γ ⊢ 𝑒2 : 𝜏1⟧

⟦Γ ⊢ if 𝑒0 then 𝑒1 else 𝑒2 : ⊥⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (if 𝑒0 then 𝑒1 else 𝑒2)) ∈ E𝑇 ⟦⊥⟧.
By Lemma 6.16, we have that (Σ, 𝑒0) −→∗𝑇 (Σ

′, 𝑒′0) where 𝑒
′
0 = Err•, which is sufficient to complete the case. □

Lemma 6.48 (T-Sub compatibility).

⟦Γ ⊢ 𝑒1 : 𝜏1⟧
𝜏1 ≤ 𝜏2

⟦Γ ⊢ 𝑒1 : 𝜏2⟧

Proof. Let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇 ⟦Γ⟧ such that Σ : (𝑘,Ψ).
We want to show (𝑘,Ψ, Σ, 𝛾 (𝑒1)) ∈ E𝑇 ⟦𝜏2⟧.
From our hypothesis, we have (𝑘,Ψ, Σ, 𝛾 (𝑒1)) ∈ E𝑇 ⟦𝜏1⟧.
We can apply Lemma 6.21 to finish the case. □

6.2.4 Transient with Truer Transient Typing is Vigilant

Theorem 6.49 (Transient with Truer Transient Typing is Vigilant). If Γ ⊢ 𝑒 : 𝜏 then ⟦Γ ⊢ 𝑒 : 𝜏⟧𝑇

Proof. By induction over the typing derivation, using the compatability lemmas. □
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7 Vigilance for Tag Typing

7.1 Vigilance Logical Relation for Tag Typing
In this section,V𝑇 refers toV𝑇

tag , E𝑇 refers to E𝑇tag ,VH𝑇 refers toVH𝑇
tag , andVH𝑇 refers toVH𝑇

tag .
⟦Γ ⊢tag 𝑒 : 𝐾⟧𝐿 ≜ ∀(𝑘,Ψ, Σ, 𝛾) ∈ G𝐿⟦Γ⟧ where Σ : (𝑘,Ψ). (𝑘,Ψ, Σ, 𝛾 (𝑒)) ∈ E𝐿⟦𝐾⟧

G𝐿⟦Γ, 𝑥 : 𝐾⟧ ≜ {(𝑘,Ψ, Σ, 𝛾 [𝑥 ↦→ ℓ]) | (𝑘,Ψ, Σ, 𝛾) ∈ G𝐿⟦Γ⟧

∧ ℓ ∈ dom(Ψ) ∧ ℓ ∉ dom(𝛾)

∧ (𝑘,Ψ, Σ, ℓ) ∈ V𝐿
𝑘
⟦𝐾⟧}

G𝐿⟦•⟧ ≜ {(𝑘,Ψ, Σ, ∅)}

⊢ Σ ≜ ∀ℓ ∈ dom(Σ) . Σ(ℓ) = ((ℓ′, some(𝜏 ′, 𝜏)) ∧ 𝜏 ′ ∝ pointsto(Σ, ℓ) ∧ 𝜏 ∝ pointsto(Σ, ℓ)

∧ ¬ ∗×∗ ∝ pointsto(Σ, ℓ))

∨ Σ(ℓ) = (𝑣, none) where 𝑣 ∉ L

Σ : (𝑘,Ψ) ≜ dom(Σ) = dom(Ψ) ∧ ⊢ Σ ∧ ∀𝑗 < 𝑘, ℓ ∈ dom(Σ).(( 𝑗,Ψ, Σ, ℓ) ∈ VH𝐿⟦Ψ(ℓ)⟧

∧ (Σ(ℓ) = (ℓ′, some(𝜏, 𝜏 ′)) ⇒ Ψ(ℓ) = [⌊𝜏⌋, ⌊𝜏 ′⌋,Ψ(ℓ′)]∧

∧ (Σ(ℓ) = (𝑣, none) ∧ 𝑣 ∉ L⇒ ∃𝐾.Ψ(ℓ) = [𝐾]))

( 𝑗,Ψ) ⊒ (𝑘,Ψ) ≜ 𝑗 ≤ 𝑘 ∧ ∀ℓ ∈ dom(Ψ) . Ψ′ (ℓ) = Ψ(ℓ)

EH𝐿⟦𝐾⟧ ≜ {(𝑘,Ψ, Σ, 𝑒) | ∀𝑗 ≤ 𝑘. ∀Σ′ ⊇ Σ, 𝑒′ . (Σ, 𝑒) −→𝑗

𝐿
(Σ′, 𝑒′) ∧ irred(𝑒′)

⇒ (𝑒′ = Err• ∨ (∃(𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) . Σ′ : (𝑘 − 𝑗,Ψ′) ∧ (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ VH𝐿⟦𝐾⟧))}

VH𝐿⟦Int, 𝐾2, . . . 𝐾𝑛⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | ∀𝐾 ∈ [Int, 𝐾2, . . . 𝐾𝑛] . (𝑘,Ψ, Σ, ℓ) ∈ V𝐿⟦𝐾⟧}

VH𝐿⟦Nat, 𝐾2, . . . 𝐾𝑛⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | ∀𝐾 ∈ [Nat, 𝐾2, . . . 𝐾𝑛] . (𝑘,Ψ, Σ, ℓ) ∈ V𝐿⟦𝐾⟧}

VH𝐿⟦Bool, 𝐾2, . . . 𝐾𝑛⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | ∀𝐾 ∈ [Bool, 𝐾2, . . . 𝐾𝑛] . (𝑘,Ψ, Σ, ℓ) ∈ V𝐿⟦𝐾⟧}
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VH𝐿⟦∗ × ∗, 𝐾2, . . . 𝐾𝑛⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _)

∧ (𝑘,Ψ, Σ, ℓ1) ∈ VH𝐿⟦∗, fst(𝐾2), . . . fst(𝐾𝑛)⟧

∧ (𝑘,Ψ, Σ, ℓ2) ∈ VH𝐿⟦∗, snd(𝐾2), . . . snd(𝐾𝑛)⟧}

VH𝐿⟦∗ → ∗, 𝐾2, . . . 𝐾𝑛⟧ = {(𝑘,Ψ, Σ, ℓ) | ∀( 𝑗,Ψ′) ⊒ (𝑘,Ψ), Σ′ ⊇ Σ where Σ′ : ( 𝑗,Ψ′) . ∀𝜏0 .

∀ℓ𝑣 where ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝐿⟦∗⟧.

( 𝑗,Ψ′Σ′, app{𝜏0} ℓ ℓ𝑣) ∈ EH𝐿⟦[⌊𝜏0⌋, cod(𝐾2), . . . cod(𝐾𝑛)]⟧}

VH𝐿⟦∗, 𝐾2, . . . 𝐾𝑛⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | (𝑘 − 1,Ψ, Σ, ℓ) ∈ VH𝐿⟦Int, 𝐾2, . . . 𝐾𝑛⟧

(𝑘 − 1,Ψ, Σ, ℓ) ∈ VH𝐿⟦Bool, 𝐾2, . . . 𝐾𝑛⟧

∨(𝑘 − 1,Ψ, Σ, ℓ) ∈ VH𝐿⟦∗ × ∗, 𝐾2, . . . , 𝐾𝑛⟧

∨(𝑘 − 1,Ψ, Σ, ℓ) ∈ VH𝐿⟦∗ → ∗, 𝐾2, . . . , 𝐾𝑛⟧}

E𝐿⟦𝐾⟧ ≜ {(𝑘,Ψ, Σ, 𝑒) | ∀𝑗 ≤ 𝑘. ∀Σ′ ⊇ Σ, 𝑒′ . (Σ, 𝑒) −→𝑗

𝐿
(Σ′, 𝑒′) ∧ irred(𝑒′)

⇒ (𝑒′ = Err• ∨ (∃(𝑘 − 𝑗,Ψ′) ⊒ (𝑘,Ψ) . Σ′ : (𝑘 − 𝑗,Ψ′) ∧ (𝑘 − 𝑗,Ψ′, Σ′, 𝑒′) ∈ V𝐿⟦𝐾⟧))}

V𝐿⟦Int⟧ ≜ {(𝑘,Ψ, Σ, ℓ | pointsto(Σ, ℓ) ∈ Z}

V𝐿⟦Nat⟧ ≜ {(𝑘,Ψ, Σ, ℓ | pointsto(Σ, ℓ) ∈ N}

V𝐿⟦Bool⟧ ≜ {(𝑘,Ψ, Σ, ℓ | pointsto(Σ, ℓ) ∈ B}

V𝐿⟦∗ × ∗⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _) ∧ (𝑘,Ψ, Σ, ℓ1) ∈ V𝐿⟦∗⟧ ∧ (𝑘,Ψ, Σ, ℓ2) ∈ V𝐿⟦∗⟧}

V𝐿⟦∗ → ∗⟧ = {(𝑘,Ψ, Σ, ℓ) | ∀( 𝑗,Ψ′) ⊒ (𝑘,Ψ). ∀Σ′ ⊇ Σ where Σ′ : ( 𝑗,Ψ′) .

∀ℓ where ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝐿⟦∗⟧. ∀𝜏0 .

( 𝑗 + 1,Ψ′, Σ′, app{𝜏0} ℓ ℓ𝑣) ∈ E𝐿⟦⌊𝜏0⌋⟧}
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V𝐿⟦∗⟧ ≜ {(𝑘,Ψ, Σ, ℓ) | (𝑘 − 1,Ψ, Σ, ℓ) ∈ V𝐿⟦Int⟧

(𝑘 − 1,Ψ, Σ, ℓ) ∈ V𝐿⟦Bool⟧

∨(𝑘 − 1,Ψ, Σ, ℓ) ∈ V𝐿⟦∗ × ∗⟧

∨(𝑘 − 1,Ψ, Σ, ℓ) ∈ V𝐿⟦∗ → ∗⟧}

7.1.1 Truer Relation implies Tag Relation

Lemma 7.1 (Truer Sub Relations Imply Tag Sub Relations). ∀𝑘,Ψ, Σ.

(1) (𝑘,Ψ, Σ, ℓ) ∈ V𝑇
tru⟦𝐾⟧ iff (𝑘,Ψ, Σ, ℓ) ∈ V𝑇

tag⟦𝐾⟧
(2) (𝑘,Ψ, Σ, 𝑒) ∈ E𝑇tru⟦𝐾⟧ iff (𝑘,Ψ, Σ, 𝑒) ∈ E𝑇tag⟦𝐾⟧
(3) (𝑘,Ψ, Σ, ℓ) ∈ VH𝑇

tru⟦𝐾1, . . . 𝐾𝑛⟧ iff (𝑘,Ψ, Σ, ℓ) ∈ VH𝑇
tag⟦𝐾1, . . . 𝐾𝑛⟧

(4) (𝑘,Ψ, Σ, 𝑒) ∈ EH𝑇
tru⟦𝐾1, . . . 𝐾𝑛⟧ iff (𝑘,Ψ, Σ, 𝑒) ∈ EH𝑇

tag⟦𝐾1, . . . 𝐾𝑛⟧
(5) Σ :tru (𝑘,Ψ) iff Σ :tag (𝑘,Ψ)

Proof. Let 𝑘,Ψ, Σ. Proceed by induction on 𝑘 .

• 𝑘 = 0:
(1) Case split on 𝐾 :

– 𝐾 = Nat, Int,Bool: immediate by definition.
– 𝐾 = ∗ × ∗: if Σ(ℓ) ≠ (⟨ℓ1, ℓ2), _⟩ then the condition is vacuously true.

Consider when Σ(ℓ) = (⟨ℓ1, ℓ2), _⟩.
It suffices to show (0, Σ,Ψ, ℓ1) ∈ V𝑇

tru⟦∗⟧ iff (0, Σ,Ψ, ℓ1) ∈ V𝑇
tag⟦∗⟧, and similarly for ℓ2.

Unfolding both sides, this is vacuously true.
– 𝐾 = ∗ → ∗: In both directions, it suffices to show that given Σ′ ⊇ Σ and (0,Ψ′) ⊒ (0,Ψ) such that

Σ′ : (0,Ψ′), and given (0,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇
𝑡 ⟦∗⟧ and given some 𝐾 ′, then (1,Ψ′, Σ′, app{𝐾 ′} ℓ ℓ𝑣) ∈

E𝑇𝑡 ⟦𝐾 ′⟧.
Unfolding, (0,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇

𝑡 ⟦∗⟧ for either 𝑡 = tag, tru vacuously.
Therefore it suffices to show (1,Ψ′, Σ′, app{𝐾 ′} ℓ ℓ𝑣) ∈ E𝑇tag⟦𝐾 ′⟧ iff (1,Ψ′, Σ′, app{𝐾 ′} ℓ ℓ𝑣) ∈
E𝑇tru⟦𝐾 ′⟧.
Since application are guaranteed to take 2 steps, this is vacuously true.

– 𝐾 = ∗: Unfolding, this is vacuously true
(2) This case reduces to 5) and 1).
(3) The same reasoning in 2) applies here.
(4) This case reduces to 5) and 3).
(5) Unfolding the definitions, this is vacuously true, besides for the identical structural requirements.

• 𝑘 = 𝑖 + 1:
(1) Case split on 𝐾 :

– 𝐾 = Nat, Int,Bool: immediate by definition.
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– 𝐾 = ∗ × ∗: if Σ(ℓ) ≠ (⟨ℓ1, ℓ2), _⟩ then the condition is vacuously true.
Consider when Σ(ℓ) = (⟨ℓ1, ℓ2), _⟩.
It suffices to show (𝑘, Σ,Ψ, ℓ1) ∈ V𝑇

tru⟦∗⟧ iff (𝑘, Σ,Ψ, ℓ1) ∈ V𝑇
tag⟦∗⟧, and similarly for ℓ2.

Unfolding the ∗ relation on both sides, this follows from the induction hypothesis 1).
– 𝐾 = ∗ → ∗: In both directions, it suffices to show that given Σ′ ⊇ Σ and ( 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that

Σ′ : ( 𝑗,Ψ′), and given ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇
𝑡 ⟦∗⟧ and given some 𝐾 ′, then ( 𝑗 + 1,Ψ′, Σ′, app{𝐾 ′} ℓ ℓ𝑣) ∈

E𝑇𝑡 ⟦𝐾 ′⟧.
First, we’d like to show that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇

tag⟦∗⟧ iff ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇
tru⟦∗⟧.

Unfolding the ∗ case of the value relation, it suffices to show ∃𝐾 ′ ≠ ∗ such that ( 𝑗 − 1,Ψ′, Σ′, ℓ𝑣) ∈
V𝑇
tag⟦𝐾 ′⟧ iff ( 𝑗 − 1,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇

tru⟦𝐾 ′⟧.
This follows by the induction hypothesis 1), since 𝑗 − 1 < 𝑘 .
Then, it suffices to show ( 𝑗 + 1,Ψ′, Σ′, app{𝐾 ′} ℓ ℓ𝑣) ∈ E𝑇tag⟦𝐾 ′⟧ iff ( 𝑗 + 1,Ψ′, Σ′, app{𝐾 ′} ℓ ℓ𝑣) ∈
E𝑇tru⟦𝐾 ′⟧.
Since applications are guaranteed to take at least two steps or error, this follows from the induction
hypothesis 2).

– 𝐾 = ∗: Unfolding both sides, this follows a straightforward case analysis and the induction hypothesis
1).

(2) This case reduces to 5) and 1).
(3) Case split on 𝐾1:

– 𝐾1 = Nat, Int,Bool: follows from repeatedly applying 1) with each 𝐾 in [𝐾1, . . . 𝐾𝑛].
– 𝐾1 = ∗ × ∗: if Σ(ℓ) ≠ (⟨ℓ1, ℓ2), _⟩ then the condition is vacuously true.

Consider when Σ(ℓ) = (⟨ℓ1, ℓ2), _⟩.
It suffices to show (𝑘, Σ,Ψ, ℓ1) ∈ VH𝑇

tru⟦∗, fst(𝐾2), . . . fst(𝐾𝑛)⟧ iff (𝑘, Σ,Ψ, ℓ1) ∈ V𝑇
tag⟦∗, fst(𝐾2), . . . fst(𝐾𝑛)⟧,

and similarly for ℓ2.
Unfolding both sides, this follows from the induction hypothesis 1).

– 𝐾1 = ∗ → ∗: In both directions, it suffices to show that given Σ′ ⊇ Σ and ( 𝑗,Ψ′) ⊒ (𝑘,Ψ) such that
Σ′ : ( 𝑗,Ψ′), and given ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇

𝑡 ⟦∗⟧ and given some 𝐾 ′, then ( 𝑗 + 1,Ψ′, Σ′, app{𝐾 ′} ℓ ℓ𝑣) ∈
EH𝑇

𝑡 ⟦𝐾 ′, cod(𝐾2), . . . cod(𝐾𝑛)⟧.
First, we’d like to show that ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇

tag⟦∗⟧ iff ( 𝑗,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇
tru⟦∗⟧.

Unfolding the ∗ case of the value relation, it suffices to show ∃𝐾 ′ ≠ ∗ such that ( 𝑗 − 1,Ψ′, Σ′, ℓ𝑣) ∈
V𝑇
tag⟦𝐾 ′⟧ iff ( 𝑗 − 1,Ψ′, Σ′, ℓ𝑣) ∈ V𝑇

tru⟦𝐾 ′⟧.
This follows by the induction hypothesis 1).
Then, it suffices to show ( 𝑗 + 1,Ψ′, Σ′, app{𝐾 ′} ℓ ℓ𝑣) ∈ EH𝑇

tru⟦𝐾 ′, cod(𝐾2), . . . cod(𝐾𝑛)⟧. iff ( 𝑗 +
1,Ψ′, Σ′, app{𝐾 ′} ℓ ℓ𝑣) ∈ EH𝑇

tag⟦𝐾 ′, cod(𝐾2), . . . cod(𝐾𝑛)⟧.
Since applications are guaranteed to take at least two steps or error, this follows from the induction
hypothesis 4).

– 𝐾1 = ∗: Unfolding both sides, this follows a straightforward case analysis and the induction hypothesis
3).

(4) This case reduces to 5) and 3).
(5) Unfolding the definitions, besides for the identical structural requirements, it suffices to show for 𝑗 < 𝑘 ,
( 𝑗,Ψ, Σ, ℓ) ∈ VH𝑇

tru⟦Ψ(ℓ)⟧ iff ( 𝑗,Ψ, Σ, ℓ) ∈ VH𝑇
tag⟦Ψ(ℓ)⟧, which follows from 3).
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□

Lemma 7.2 (Tag Context Relation Implies Truer Context Relation). (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇tru⟦Γ⟧ iff (𝑘,Ψ, Σ, 𝛾) ∈
G𝑇tag⟦Γ⟧

Proof. It suffices to show ∀𝑥 : 𝐾 ∈ Γ. (𝑘,Ψ, Σ, 𝛾 (𝑥)) ∈ V𝑇
tru⟦𝐾⟧ iff (𝑘,Ψ, Σ, 𝛾 (𝑥)) ∈ V𝑇

tag⟦𝐾⟧, which follows from
7.1. □

Theorem 7.3 (Truer Relation Implies Tag Relation). If ⟦Γ ⊢tru 𝑒 : 𝐾⟧𝑇 then ⟦Γ ⊢tag 𝑒 : 𝐾⟧𝑇

Proof. Unfolding the goal, let (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇tag⟦Γ⟧ where Σ :tag (𝑘,Ψ).
By 7.2, (𝑘,Ψ, Σ, 𝛾) ∈ G𝑇tru⟦Γ⟧.
By 7.1, Σ :tru (𝑘,Ψ).
By the premise, (𝑘,Ψ, Σ, 𝛾 (𝑒)) ∈ E𝑇tru⟦𝐾⟧.
By 7.1, (𝑘,Ψ, Σ, 𝛾 (𝑒)) ∈ E𝑇tag⟦𝐾⟧, which is what we wanted to show.

□

7.2 Vigilance Fundamental Property for Transient with Tag Typing
Theorem 7.4 (Transient is Tag Vigilant). If Γ ⊢tag 𝑒 : 𝐾 then ⟦Γ ⊢tag 𝑒 : 𝐾⟧𝑇

Proof. By Theorem 4.10, we have that there exists some 𝜏 ≤ 𝐾 such that Γ ⊢tru 𝑒 : 𝜏 .
By subsumption, we have that Γ ⊢tru 𝑒 : 𝐾 .
By Theorem 6.49, we have that ⟦Γ ⊢tru 𝑒 : 𝐾⟧𝑇 .
By 7.3, we have the vigilance result. □
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8 Contextual equivalence

8.1 Contextual Equivalence Logical Relation—No Store
DivErr ≈ DivErr

TypeErr(𝜏, 𝑣) ≈ TypeErr(𝜏 ′, 𝑣 ′)

⟦Γ ⊢tru 𝑒1 ≤ 𝑒2 : 𝜏⟧L𝐶 ≜ ∀(𝑘,𝛾1, 𝛾2) ∈ GL⟦Γ⟧. (𝑘,𝛾1 (𝑒1), 𝛾2 (𝑒2)) ∈ EL⟦𝜏⟧

⟦Γ ⊢tru 𝑒1 ≈ 𝑒2 : 𝜏⟧L𝐶 ≜ ⟦Γ ⊢tru 𝑒1 ≤ 𝑒2 : 𝜏⟧L𝐶 ∧ ⟦Γ ⊢tru 𝑒2 ≤ 𝑒1 : 𝜏⟧
L
𝐶

GL⟦Γ, 𝑥 : 𝜏⟧ ≜ {(𝑘,𝛾1 [𝑥 ↦→ 𝑣1], 𝛾2 [𝑥 ↦→ 𝑣2]) | (𝑘,𝛾1, 𝛾2) ∈ GL⟦Γ⟧

∧ (𝑘, 𝑣1, 𝑣2) ∈ VL𝑘 ⟦𝜏⟧}

GL⟦•⟧ ≜ {(𝑘, ∅, ∅)}

EL⟦𝜏⟧ ≜ {(𝑘, 𝑒1, 𝑒2) | ∀𝑗 ≤ 𝑘, 𝑒′1 . 𝑒1 −→
𝑗

𝐿
𝑒′1 ∧ irred𝐿 (𝑒

′
1)

⇒ ∃𝑒′2 . 𝑒2 −→
∗
𝐿 𝑒
′
2

∧(𝑒′1 ≈ 𝑒
′
2 ∈ Err

• ∨ (𝑘 − 𝑗, 𝑒′1, 𝑒
′
2) ∈ V

L⟦𝜏⟧)}

VL⟦Int⟧ ≜ {(𝑘, 𝑣1, 𝑣2 | 𝑣1 = 𝑣2 ∈ Z}

VL⟦Nat⟧ ≜ {(𝑘, 𝑣1, 𝑣2 | 𝑣1 = 𝑣2 ∈ N}

VL⟦Bool⟧ ≜ {(𝑘, 𝑣1, 𝑣2 | 𝑣1 = 𝑣2 ∈ B}

VL⟦𝜏1 × 𝜏2⟧ ≜ {(𝑘, ⟨𝑣1,1, 𝑣1,2⟩, ⟨𝑣2,1, 𝑣2,2⟩) | (𝑘, 𝑣1,1, 𝑣2,1) ∈ V𝐿⟦𝜏1⟧ ∧ (𝑘, 𝑣2,1, 𝑣2,2) ∈ V𝐿⟦𝜏2⟧}

VL⟦𝜏1 → 𝜏2⟧ ≜ {(𝑘, 𝑣1, 𝑣2) | ∀𝑗 ≤ 𝑘,

∀𝑣 ′1, 𝑣
′
2 where ( 𝑗, 𝑣

′
1, 𝑣
′
2) ∈ V

𝐿⟦𝜏1⟧.

∀𝐾,𝐾 ′ where 𝐾 ⊓ 𝜏2 = 𝐾 ′ ⊓ 𝜏2 .

( 𝑗, app{𝐾} 𝑣1 𝑣 ′1, app{𝐾
′} 𝑣2 𝑣 ′2) ∈ E

𝐿⟦𝐾 ⊓ 𝜏2⟧}
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VL⟦∗⟧ ≜ {(𝑘, Σ1, Σ2, ℓ1, ℓ2) | (𝑘 − 1, 𝑣1, 𝑣2) ∈ V𝐿⟦Int⟧

(𝑘 − 1, 𝑣1, 𝑣2) ∈ V𝐿⟦Bool⟧

∨(𝑘 − 1, 𝑣1, 𝑣2) ∈ V𝐿⟦∗ × ∗⟧

∨(𝑘 − 1, 𝑣1, 𝑣2) ∈ V𝐿⟦∗ → ∗⟧}

VL⟦⊥⟧ ≜ ∅

8.2 Context typing
Truer transient contexts:

𝐸 F [] | 𝜆(𝑥 :𝐾) . 𝐸 | ⟨𝑒, 𝐸⟩ | ⟨𝐸, 𝑒⟩ | app{𝐾} 𝑒 𝐸 | app{𝐾} 𝐸 𝑒 | fst{𝐾} 𝐸 | snd{𝐾} 𝐸
| binop 𝑒 𝐸 | binop𝐸 𝑒 | cast {𝐾 ⇐ 𝐾} 𝐸 | if 𝐸 then 𝑒 else 𝑒 | if 𝑒 then 𝐸 else 𝑒 | if 𝑒 then 𝑒 else 𝐸
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T-Ctx-Hole
Γ′ ⊆ Γ

Γ ⊢tru [] : (Γ′ ⊲ 𝜏) ⇝ 𝜏

T-Ctx-Lam
Γ, (𝑥 :𝐾) ⊢tru 𝐸 : (Γ′ ⊲ 𝜏) ⇝ 𝜏 ′

Γ ⊢tru 𝜆(𝑥 :𝐾) . 𝐸 : (Γ′, (𝑥 :𝐾) ⊲ 𝜏) ⇝ ∗→𝜏 ′

T-Ctx-Pair-1
Γ ⊢tru 𝐸 : (Γ′ ⊲ 𝜏) ⇝ 𝜏1 Γ ⊢tru 𝑒 : 𝜏2

Γ ⊢tru ⟨𝐸, 𝑒⟩ : (Γ′ ⊲ 𝜏) ⇝ 𝜏1×𝜏2

T-Ctx-Pair-2
Γ ⊢tru 𝑒 : 𝜏1 Γ ⊢tru 𝐸 : (Γ′ ⊲ 𝜏) ⇝ 𝜏2

Γ ⊢tru ⟨𝑒, 𝐸⟩ : (Γ′ ⊲ 𝜏) ⇝ 𝜏1×𝜏2

T-Ctx-App-1
Γ ⊢tru 𝐸 : (Γ′ ⊲ 𝜏) ⇝ ∗→𝜏1 Γ ⊢tru 𝑒 : 𝜏2

Γ ⊢tru app{𝐾} 𝐸 𝑒 : (Γ′ ⊲ 𝜏) ⇝ 𝐾 ⊓ 𝜏1

T-Ctx-AppBot-1
Γ ⊢tru 𝐸 : (Γ′ ⊲ 𝜏) ⇝ ⊥ Γ ⊢tru 𝑒 : 𝜏2

Γ ⊢tru app{𝐾} 𝐸 𝑒 : (Γ′ ⊲ 𝜏) ⇝ ⊥

T-Ctx-App-2
Γ ⊢tru 𝑒 : ∗→𝜏1 Γ ⊢tru 𝐸 : (Γ′ ⊲ 𝜏) ⇝ 𝜏2

Γ ⊢tru app{𝐾} 𝑒 𝐸 : (Γ′ ⊲ 𝜏) ⇝ 𝐾 ⊓ 𝜏1

T-Ctx-AppBot-2
Γ ⊢tru 𝑒 : ⊥ Γ ⊢tru 𝐸 : (Γ′ ⊲ 𝜏) ⇝ 𝜏2

Γ ⊢tru app{𝐾} 𝑒 𝐸 : (Γ′ ⊲ 𝜏) ⇝ ⊥

T-Ctx-Fst
Γ ⊢tru 𝐸 : (Γ ⊲ 𝜏) ⇝ 𝜏1×𝜏2

Γ ⊢tru fst{𝐾} 𝐸 : (Γ ⊲ 𝜏) ⇝ 𝐾 ⊓ 𝜏1

T-Ctx-FstBot
Γ ⊢tru 𝐸 : (Γ ⊲ 𝜏) ⇝ ⊥

Γ ⊢tru fst{𝐾} 𝐸 : (Γ ⊲ 𝜏) ⇝ ⊥

T-Ctx-Snd
Γ ⊢tru 𝐸 : (Γ ⊲ 𝜏) ⇝ 𝜏1×𝜏2

Γ ⊢tru snd{𝐾} 𝐸 : (Γ ⊲ 𝜏) ⇝ 𝐾 ⊓ 𝜏2

T-Ctx-SndBot
Γ ⊢tru 𝐸 : (Γ ⊲ 𝜏) ⇝ ⊥

Γ ⊢tru snd{𝐾} 𝐸 : (Γ ⊲ 𝜏) ⇝ ⊥

T-Ctx-Binop-1
Γ ⊢tru 𝐸 : (Γ ⊲ 𝜏) ⇝ 𝜏1 Γ ⊢tru 𝑒 : 𝜏2

Γ ⊢tru binop𝐸 𝑒 : (Γ ⊲ 𝜏) ⇝ Δ(binop, 𝜏1, 𝜏2)

T-Ctx-Binop-2
Γ ⊢tru 𝑒 : 𝜏1 Γ ⊢tru 𝐸 : (Γ ⊲ 𝜏) ⇝ 𝜏2

Γ ⊢tru binop𝐸 𝑒 : (Γ ⊲ 𝜏) ⇝ Δ(binop, 𝜏1, 𝜏2)

T-Ctx-Bnd-1
Γ ⊢tru 𝐸 : (Γ ⊲ 𝜏) ⇝ 𝜏 ′

Γ ⊢tru cast {𝐾2 ⇐ 𝐾1} 𝐸 : (Γ ⊲ 𝜏) ⇝ 𝐾2 ⊓ 𝐾1 ⊓ 𝜏 ′

T-Ctx-If-1
Γ ⊢tru 𝐸 : (Γ ⊲ 𝜏) ⇝ Bool Γ ⊢tru 𝑒1 : 𝜏1 Γ ⊢tru 𝑒2 : 𝜏2

Γ ⊢tru if 𝐸 then 𝑒1 else 𝑒2 : (Γ ⊲ 𝜏) ⇝ 𝜏1 ⊔ 𝜏2

T-Ctx-IfBot-1
Γ ⊢tru 𝐸 : (Γ ⊲ 𝜏) ⇝ ⊥ Γ ⊢tru 𝑒1 : 𝜏1 Γ ⊢tru 𝑒2 : 𝜏2

Γ ⊢tru if 𝐸 then 𝑒1 else 𝑒2 : (Γ ⊲ 𝜏) ⇝ ⊥

T-Ctx-If-2
Γ ⊢tru 𝑒𝑏 : Bool Γ ⊢tru 𝐸 : (Γ ⊲ 𝜏) ⇝ 𝜏1 Γ ⊢tru 𝑒2 : 𝜏2

Γ ⊢tru if 𝑒𝑏 then 𝐸 else 𝑒2 : (Γ ⊲ 𝜏) ⇝ 𝜏1 ⊔ 𝜏2

T-Ctx-IfBot-2
Γ ⊢tru 𝑒𝑏 : ⊥ Γ ⊢tru 𝐸 : (Γ ⊲ 𝜏) ⇝ 𝜏1 Γ ⊢tru 𝑒2 : 𝜏2

Γ ⊢tru if 𝑒𝑏 then 𝐸 else 𝑒2 : (Γ ⊲ 𝜏) ⇝ ⊥

T-Ctx-If-3
Γ ⊢tru 𝑒𝑏 : Bool Γ ⊢tru 𝑒1 : 𝜏1 Γ ⊢tru 𝐸 : (Γ ⊲ 𝜏) ⇝ 𝜏2

Γ ⊢tru if 𝑒𝑏 then 𝑒1 else 𝐸 : (Γ ⊲ 𝜏) ⇝ 𝜏1 ⊔ 𝜏2

T-Ctx-IfBot-3
Γ ⊢tru 𝑒𝑏 : ⊥ Γ ⊢tru 𝑒1 : 𝜏1 Γ ⊢tru 𝐸 : (Γ ⊲ 𝜏) ⇝ 𝜏2

Γ ⊢tru if 𝑒𝑏 then 𝑒1 else 𝐸 : (Γ ⊲ 𝜏) ⇝ ⊥
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8.3 Contextual equivalence statement
We define a logical relation for contexts:

⟦Γ ⊢tru 𝐶1 ≈ 𝐶2 : (Γ′ ⊲ 𝜏) ⇝ 𝜏 ′⟧ ≜ ∀𝑒1, 𝑒2 .⟦Γ′ ⊢tru 𝑒1 ≈ 𝑒2 : 𝜏⟧ ⇒ ⟦Γ ⊢tru 𝐶1 [𝑒1] ≈ 𝐶2 [𝑒2] : 𝜏 ′⟧

We define an abbreviation for the notion that an expression reduces to an eventual value without encountering an
error: 𝑒 ⇓ ≜ ∃𝑒′ . 𝑒 −→∗

𝐿
𝑒′ ∧ (val(𝑒′))

Theorem 8.1 (Expression relation implies reduction eqivalence). If ⟦Γ ⊢tru 𝑒1 ≈ 𝑒2 : 𝜏⟧, then 𝑒1 ⇓ ⇔ 𝑒2 ⇓.

Proof. By applying Lemm 8.2 in both directions. □

Lemma 8.2 (Expression relation implies reduction eqivalence). If ⟦Γ ⊢tru 𝑒1 ≤ 𝑒2 : 𝜏⟧, then 𝑒1 ⇓ ⇒ 𝑒2 ⇓.

Proof. Since 𝑒1 ⇓, then there exists some 𝑒′1, 𝑘 s.t. 𝑒1 −→𝑘
𝐿
𝑒′1 and 𝑒

′
1 is a value and hence irreducible.

We want to show that 𝑒′2 ⇓. Instantiate the premise with (𝑘, ∅, ∅), obtaining that (𝑘, 𝑒1, 𝑒2) ∈ EL⟦𝜏⟧. Instantiate 𝑗
with 𝑘 and 𝑒′1 with 𝑒

′
1, observing that 𝑒′1 being a value entails it is irreducible. Then 𝑒′2 from this relation is just what we

need, since 𝑒2 reduces to it, and it is syntactically a value. □

The usual definition of contextual equivalence is then:

Γ ⊢tru 𝑒1 ≈ctx 𝑒2 : 𝜏 ≜ ∀𝐶, • ⊢tru 𝐶 : (Γ ⊲ 𝜏) ⇝ 𝜏 ′ ⇒ (𝐶 [𝑒1] ⇓ ⇔ 𝐶 [𝑒2] ⇓)

Theorem 8.3 (Binary relation is sound for contextual eqivalence). If ⟦Γ ⊢tru 𝑒1 ≈ 𝑒2 : 𝜏⟧, then Γ ⊢tru 𝑒1 ≈ctx

𝑒2 : 𝜏 .

Proof. Consider an arbitrary type 𝜏 ′ and context 𝐶 s.t. • ⊢tru 𝐶 : (Γ ⊲ 𝜏) ⇝ 𝜏 ′. Then we must show that
𝐶 [𝑒1] ⇓⇔ 𝐶 [𝑒2] ⇓. By Theorem 8.1, it is sufficient to show that ⟦• ⊢tru 𝐶 [𝑒1] ≈ 𝐶 [𝑒2] : 𝜏 ′⟧.

By Theorem 8.71, ⟦• ⊢tru 𝐶 ≈ 𝐶 : (Γ ⊲ 𝜏) ⇝ 𝜏 ′⟧. Unfolding this definition and instantiating it with 𝑒1, 𝑒2, and our
hypothesis about them, we obtain precisely the required conclusion. □

8.4 Binary relation—Proofs

8.4.1 Lemmas Used Without Mention

Lemma 8.4 (Values are in the E-relation). If (𝑘, 𝑣, 𝑣 ′) ∈ VL⟦𝜏⟧, then (𝑘, 𝑣, 𝑣 ′) ∈ EL⟦𝜏⟧.

Proof. Consider arbitrary 𝑗 s.t. 𝑣 −→𝑗 𝑣 𝑓 ∧ irredL (𝑣 𝑓 ). Note that 𝑗 must be equal to 0 since values do not reduce.
Then choose 𝑣 ′ as the 𝑒′2 of the expression relation; it is easy to see that 𝑣 ′ reduces to 𝑣 ′ in some number (0) of steps. By
our assumption, (𝑘 − 0, 𝑣, 𝑣 ′) ∈ VL⟦𝜏⟧, so we are done. □

Lemma 8.5 (Anti-Reduction - Head Expansion - Expression Relation Commutes With Steps). If (𝑘, 𝑒′1, 𝑒
′
2) ∈

E𝑇 ⟦𝜏⟧ and 𝑒1 −→𝑗

𝑇
𝑒′1 and 𝑒2 −→

𝑗 ′

𝑇
𝑒′2, then (𝑘 + 𝑗, 𝑒1, 𝑒2) ∈ E

𝑇 ⟦𝜏⟧

Proof. Consider arbitrary 𝑗 ′, 𝑒′′1 s.t. 𝑒1 −→𝑗 ′

𝑇
𝑒′′1 . If 𝑗

′ ≤ 𝑗 , by determinism of the operational semantics, 𝑒′′1 must
not be irreducible and so we are trivially done. Otherwise, assume irred𝑇 (𝑒′′1 ) and 𝑗

′ ≤ 𝑘 + 𝑗 ; we must show that
∃𝑒′′2 .𝑒2 −→

∗
𝑇
𝑒′′2 ∧ (𝑒

′′
1 ≈ 𝑒

′′
2 ∈ Err

• ∨ (𝑘 + 𝑗 − 𝑗 ′, 𝑒′′1 , 𝑒
′′
2 ) ∈ V

𝑇 ⟦𝜏⟧.
Instantiate the hypothesis with (𝑘 + 𝑗 ′ − 𝑗, 𝑒′′1 ). Since 𝑘 + 𝑗

′ − 𝑗 ≤ 𝑘 and the operational semantics are deterministic,
this gives us that ∃𝑒′′2 .𝑒

′
2 −→

∗
𝑇
𝑒′′2 ∧ (𝑒

′′
1 ≈ 𝑒

′′
2 ∈ Err

• ∨ (𝑘 + 𝑗 − 𝑗 ′, 𝑒′′1 , 𝑒
′′
2 ) ∈ V

𝑇 ⟦𝜏⟧, from which our conclusion follows
immediately. □
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Lemma 8.6 (Anti-Reduction - Head Expansion - Steps Commute With Expression Relation). If (𝑘 + 𝑗, 𝑒1, 𝑒2) ∈
E𝑇 ⟦𝜏⟧ and 𝑒1 −→𝑗

𝑇
𝑒′1 and 𝑒2 −→

𝑗 ′

𝑇
𝑒′2, then (𝑘, 𝑒

′
1, 𝑒
′
2) ∈ E

𝑇 ⟦𝜏⟧

Proof. Consider arbitrary 𝑗 ′, 𝑒′′1 s.t. 𝑗 ′ ≤ 𝑘 ∧ irred𝑇 (𝑒′′1 ) ∧ 𝑒
′
1 −→

𝑗 ′

𝑇
𝑒′′1 .

We must show that ∃𝑒′′2 .𝑒
′
2 −→

∗
𝑇
𝑒′′2 ∧ (𝑒

′′
1 ≈ 𝑒

′′
2 ∈ Err

• ∨ (𝑘 − 𝑗 ′, 𝑒′′1 , 𝑒
′′
2 ) ∈ V

𝑇 ⟦𝜏⟧.
Instantiate the hypothesis with 𝑗 + 𝑗 ′, 𝑒′′1 . Since 𝑗

′ ≤ 𝑘 , 𝑗 + 𝑗 ′ ≤ 𝑘 + 𝑗 . Since the operational semantics are deterministic
and transitive, the other conditions apply. Then the hypothesis provides precisely the appropriate 𝑒′′2 and conditions on
it and 𝑒′′1 . □

We define a notion of tags extended with bottom that are compatible with the usual lattice:

𝐾⊥ = 𝐾 | ⊥

⌊𝐾⊥⌋⊥ =


⊥ if 𝐾⊥ = ⊥

⌊𝐾⊥⌋ otherwise

∝⊥ (𝐾⊥, 𝑣) =

False if 𝐾⊥ = ⊥

𝑣 ∝ 𝐾⊥ otherwise

Lemma 8.7 (Tagof-bot is compatible with meet). ⌊𝐾⊥1 ⊓ 𝐾
⊥
2 ⌋
⊥ = ⌊𝐾⊥1 ⌋

⊥ ⊓ ⌊𝐾⊥2 ⌋
⊥.

Proof. Immediate, by unfolding definitions and case analysis. □

Lemma 8.8 (Relation implies tagmatch). If (𝑘, 𝑣, 𝑣 ′) ∈ VL⟦𝜏⟧ and 𝐾⊥ ≤ ⌊𝜏⌋⊥, then ∝⊥ (𝐾⊥, 𝑣).

Proof. By case analysis on 𝜏 and 𝐾⊥; in each case this follows immediately from unfolding the definitions ofV
and tagmatch. □

8.4.2 Lemmas Used With Mention

Lemma 8.9 (Related values have matching constructors). If (𝑘, 𝑣, 𝑣 ′) ∈ VL⟦𝜏⟧, then either

• 𝑣 = 𝑣 ′

• There exist some 𝑣1, 𝑣2, 𝑣 ′1, 𝑣
′
2 s.t. 𝑣 = ⟨𝑣1, 𝑣2⟩ and 𝑣

′ = ⟨𝑣 ′1, 𝑣
′
2⟩

• There exist some𝑤,𝑤 ′ s.t. 𝑣 = 𝑤 and 𝑣 ′ = 𝑤 ′.

Proof. By induction on 𝜏 , unfolding the definition ofV in each case. □

Lemma 8.10 (Tagmatch is up to approximation). If (𝑘, 𝑣, 𝑣 ′) ∈ V𝑇 ⟦𝜏⟧, then ∝⊥ (𝐾⊥, 𝑣) ⇔∝⊥ (𝐾⊥, 𝑣 ′).

Proof. By Lemma 8.9 and inspection of the definition of ∝⊥ (𝐾⊥, 𝑣). □

Lemma 8.11 (Tagmatch respects meets). ∝⊥ (𝐾⊥1 ⊓ 𝐾
⊥
2 , 𝑣) ⇔∝

⊥ (𝐾⊥1 , 𝑣)∧ ∝
⊥ (𝐾⊥2 , 𝑣).

Proof. By case analysis on 𝐾⊥1 , 𝐾
⊥
2 ; in each case the conclusion follows immediately by unfolding. □

Lemma 8.12 (Tagmatch implies values in relation at meet). If (𝑘, 𝑣, 𝑣 ′) ∈ V𝑇 ⟦𝜏⟧ and ∝⊥ (𝐾⊥, 𝑣), then (𝑘 −
1, 𝑣, 𝑣 ′) ∈ V𝑇 ⟦𝐾⊥ ⊓ 𝜏⟧.

Proof. Proceed by case analysis on 𝐾⊥:
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∗ By lattice properties, 𝐾⊥ ⊓ 𝜏 = 𝜏 , so this is trivial by Lemma ??.
Nat By the definition of tagmatch, 𝑣 must be a natural number. By inspection, this is possible only when 𝜏 is ∗, Int, or

Nat; in each case, 𝐾⊥ ⊓ 𝜏 = Nat. By inspection on the relation, 𝑣 always satisfied what is needed.
Int Analogous to the Nat case above.
∗×∗ By the definition of tagmatch, 𝑣 must be a pair; by inspection this is possible only if 𝜏 is ∗ or some pair type. If

the latter, 𝐾⊥ ⊓ 𝜏 = 𝜏 , and so the conclusion is immediate; otherwise, 𝐾⊥ ⊓ 𝜏 = ∗×∗, and the conclusion is
immediate from the definition of the ∗ case of the relation.

∗→∗ By the definition of tagmatch, 𝑣 must be a𝑤 ; by inspection this is possible only if 𝜏 is ∗ or some function type. If
the latter, 𝐾⊥ ⊓ 𝜏 = 𝜏 , and so the conclusion is immediate; otherwise, 𝐾⊥ ⊓ 𝜏 = ∗→∗, and the conclusion is
immediate from the definition of the ∗ case of the relation.e

⊥ Contradiction

□

Lemma 8.13 (E-V-monotonicity). (1) If (𝑘, 𝑒1, 𝑒2) ∈ E𝑇 ⟦𝜏⟧ and 𝑗 ≤ 𝑘 , then ( 𝑗, 𝑒1, 𝑒2) ∈ E𝑇 ⟦𝜏⟧.
(2) If (𝑘, 𝑣1, 𝑣2) ∈ V𝑇 ⟦𝜏⟧ and 𝑗 ≤ 𝑘 , then ( 𝑗, 𝑣1, 𝑣2) ∈ V𝑇 ⟦𝜏⟧.

Proof. Proceed by simultaneous induction on 𝑘 and 𝜏 :

• 𝑘 = 0: 1) follows immediately from 2).
Proceeds similarly to the other case, but function and dynamic cases are vacuously true.

• 𝑘 > 0:
1) Unfolding the expression relation in our hypothesis, we get that there is some 𝑒′1, 𝑗

′ such that 𝑒1 −→𝑗 ′

𝑇
𝑒′1,

and some 𝑒′2 such that 𝑒2 −→∗𝑇 𝑒
′
2.

If 𝑒′1 = Err• then we’re done.
Otherwise, (𝑘 − 𝑗 ′, 𝑒′1, 𝑒

′
2) ∈ V

𝑇 ⟦𝜏⟧.

Now, unfolding the expression relation, we want to show (𝑘 − 𝑗 − 𝑗 ′, 𝑒′1, 𝑒
′
2) ∈ V

𝑇 ⟦𝜏⟧.
We can apply the IH 2) with the fact proven in a).

2) We want to show that (𝑘 − 𝑗, 𝑣1, 𝑣2) ∈ V𝑇 ⟦𝜏⟧.
We case split on 𝜏 :

i) 𝜏 = Nat: then where 𝑛 ∈ N, so the case is immediate.

ii) 𝜏 = 𝑡𝑖𝑛𝑡 : same as above.

iii) 𝜏 = Bool: same as above.

iv) 𝜏 = 𝜏1 × 𝜏2: Then unfolding our hypothesis gives us 𝑣1 = ⟨𝑣 ′1, 𝑣
′′
1 ⟩ and 𝑣2 = ⟨𝑣

′
1, 𝑣
′′
1 ⟩ with (𝑘, 𝑣

′
1, 𝑣
′
2) ∈

V𝑇 ⟦𝜏1⟧ and (𝑘, 𝑣 ′′1 , 𝑣
′′
2 ) ∈ V

𝑇 ⟦𝜏2⟧.
The case follows by applying the IH 2) to both premises.

v) 𝜏 = ∗ → 𝜏2: Let 𝑗 ′ ≤ 𝑘 − 𝑗 .
Let ( 𝑗 ′, 𝑣 ′1, 𝑣

′
2) ∈ V

𝑇 ⟦∗⟧.
Let 𝐾,𝐾 ′.
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We want to show ( 𝑗 ′, app{𝐾} 𝑣1 𝑣 ′1, app{𝐾
′} 𝑣2 𝑣 ′2) ∈ E

𝑇 ⟦𝐾 ⊓ 𝜏2⟧.
Since 𝑗 ′ ≤ 𝑘 − 𝑗 ≤ 𝑘 , we can apply the hypothesis to complete the case.

vi) 𝜏 = ∗: we want to show (𝑘 − 1, 𝑣1, 𝑣2) ∈ V𝑇 ⟦Int⟧ orV𝑇 ⟦Bool⟧ orV𝑇 ⟦∗ × ∗⟧ orV𝑇 ⟦∗ → ∗⟧.
This follows from IH 2) (smaller by index).

□

Lemma 8.14 (Monadic bind). Suppose that 𝐸1, 𝐸2 are any evaluation contexts (n.b. not a general context, as used else-

where in these proofs), (𝑘, 𝑒1, 𝑒2) ∈ E𝑇 ⟦𝜏⟧, and for all 𝑘′, 𝑣1, 𝑣2, if 𝑘′ ≤ 𝑘∧(𝑘′, 𝑣1, 𝑣2) ∈ V𝑇 ⟦𝜏⟧ then (𝑘′, 𝐸1 [𝑣1], 𝐸2 [𝑣2]) ∈
E𝑇 ⟦𝜏 ′⟧.

Then (𝑘, 𝐸1 [𝑒1], 𝐸2 [𝑒2]) ∈ E𝑇 ⟦𝜏 ′⟧.

Proof. Consider arbitrary 𝑗, 𝑒′1 s.t. 𝑗 ≤ 𝑘 ∧ 𝐸1 [𝑒1] −→
𝑗

𝑇
𝑒′1 ∧ irred𝑇 (𝑒

′
1). Then we must show that must show that

∃𝑒′2 .𝐸2 [𝑒2] −→
∗
𝑇
𝑒′2 ∧ (𝑒

′
1 ≈ 𝑒

′
2 ∈ Err

• ∨ (𝑘 − 𝑗, 𝑒′1, 𝑒
′
2) ∈ V

𝑇 ⟦𝜏⟧).
Because 𝐸1 [𝑒1] reaches an irreducible term in at most 𝑗 steps, by our operational semantics 𝑒1 must itself reduce to

some irreducible term 𝑒3 in some smaller number of steps 𝑗 ′ ≤ 𝑗 . Then since 𝑗 ′ ≤ 𝑗 ∧ 𝑒1 −→𝑗 ′

𝑇
𝑒3 ∧ irred𝑇 (𝑒3), we can

instantiate our first assumption, obtaining that there similarly exists 𝑒4 s.t. 𝑒2 −→∗𝑇 𝑒4∧(𝑒3 ≈ 𝑒4 ∈ Err
•∨(𝑘− 𝑗 ′, 𝑒3, 𝑒4) ∈

V𝑇 ⟦𝜏⟧.
Suppose that 𝑒3 ≈ 𝑒4 ∈ Err•. Then by the operational semantics, 𝐸1 [𝑒1] and 𝐸2 [𝑒2] reduce to the same errors, so

instantiating 𝑒′1 and 𝑒
′
2 with them proves our goal.

Otherwise, we know that (𝑘− 𝑗 ′, 𝑒3, 𝑒4) ∈ V𝑇 ⟦𝜏⟧. Wemay therefore instantiate our other assumptionwith𝑘− 𝑗 ′, 𝑒3, 𝑒4
and this fact, obtaining that (𝑘 − 𝑗 ′, 𝐸1 [𝑒3], 𝐸2 [𝑒4]) ∈ E𝑇 ⟦𝜏⟧. We still must show that ∃𝑒′2 .𝐸2 [𝑒2] −→

∗
𝑇
𝑒′2 ∧ (𝑒

′
1 ≈ 𝑒2 ∈

Err• ∨ (𝑘 − 𝑗, 𝑒′1, 𝑒
′
2) ∈ V

𝑇 ⟦𝜏⟧).
Instantiate the result of our assumption with step index 𝑗 − 𝑗 ′ ≤ 𝑘 − 𝑗 ′ and 𝑒′1. By determinism of the operational

semantics, 𝐸1 [𝑒3] −→𝑗− 𝑗 ′
𝑇

𝑒′1, so we obtain that ∃𝑒
′
2 .𝐸2 [𝑒4] −→

∗
𝑇
𝑒′2∧(𝑒

′
1 ≈ 𝑒

′
2 ∈ Err

•∨(𝑘− 𝑗 ′−( 𝑗− 𝑗 ′), 𝑒′1, 𝑒
′
2) ∈ V

𝑇 ⟦𝜏⟧).
Note that 𝑘 − 𝑗 ′ − ( 𝑗 − 𝑗 ′) = 𝑘 − 𝑗 , and that since 𝐸2 [𝑒4] −→∗𝑇 𝑒

′
2 and 𝑒2 −→

∗
𝑇
𝑒4, then 𝐸2 [𝑒2] −→∗𝑇 𝑒

′
2, so this is precisely

the 𝑒′2 that we needed to show the existence of. □

Lemma 8.15 (Check compatibility). If (𝑘, 𝑣, 𝑣 ′) ∈ E𝑇 ⟦𝜏⟧ and 𝜏 ′ = 𝐾 ⊓𝜏 = 𝐾 ′ ⊓𝜏 , then (𝑘, assert𝐾 𝑣, assert𝐾 ′ 𝑣 ′) ∈
E𝑇 ⟦𝜏 ′⟧.

Proof. Proceed by case analysis on 𝐾 ⊓ 𝜏 :

𝐾 ⊓ 𝜏 = 𝜏 Then it must be the case that 𝐾 ∝ 𝑣 and 𝐾 ′ ∝ 𝑣 ′, meaning assert𝐾 𝑣 −→𝑇 𝑣 and assert𝐾 ′ 𝑣 ′ −→𝑇 𝑣 ′, which
is sufficient to complete the case.

𝐾 ⊓ 𝜏 = Nat and 𝜏 = Int Unfolding our hypothesis, we get that 𝑣 = 𝑣 ′ and 𝑣 ∈ Z.
If 𝑣 ∈ N, then assert𝐾 𝑣 −→𝑇 𝑣 and assert𝐾 ′ 𝑣 ′ −→𝑇 𝑣 ′, which is sufficient to complete the case.
Otherwise, assert𝐾 𝑣 −→𝑇 TypeErr(Nat, 𝑣) and assert𝐾 ′ 𝑣 ′ −→𝑇 TypeErr(Nat, 𝑣 ′), which is sufficient to
complete the case.

𝐾 ⊓ 𝜏 = ⊥ Then assert𝐾 𝑣 −→𝑇 TypeErr(Nat, 𝑣) and assert𝐾 𝑣 ′ −→𝑇 TypeErr(Nat, 𝑣 ′), which is sufficient to com-
plete the case.

𝐾 ⊓ 𝜏 = 𝐾 and 𝜏 ≠ 𝐾 Then 𝜏 = ∗ and 𝐾 = 𝐾 ′.
We can unfold our hypothesis to get that (𝑘 − 1, 𝑣, 𝑣 ′) ∈ V𝑇 ⟦𝐾 ′′⟧ for some 𝐾 ′′, which implies 𝑣 ′ ∝ 𝑣 .
By the OS, either assert𝐾 𝑣 −→ 𝑣 and 𝑣 ∝ 𝐾 , or assert𝐾 𝑣 −→ TypeErr(𝐾, 𝑣) and ¬𝑣 ∝ 𝐾 .
In either case, we have the corresponding property needed to complete the case.
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□

Lemma 8.16 (Dynamic Checks Are No-ops). If (𝑘 + 1, assert ∗ 𝑣, assert ∗ 𝑣 ′) ∈ E𝑇 ⟦𝜏⟧, then (𝑘, 𝑣, 𝑣 ′) ∈ E𝑇 ⟦𝜏⟧

Proof. By the OS, assert ∗ 𝑣 −→ 𝑣 and assert ∗ 𝑣 ′ −→ 𝑣 ′.
Then by our hypothesis, (𝑘, 𝑣, 𝑣 ′) ∈ V𝑇 ⟦𝜏⟧, which is sufficient to complete the proof. □

Lemma 8.17 (Subtyping Compatibility). (1) If (𝑘, 𝑣1, 𝑣2) ∈ V𝑇 ⟦𝜏⟧ and 𝜏 ⩽: 𝜏 ′ then (𝑘, 𝑣1, 𝑣2) ∈ V𝑇 ⟦𝜏 ′⟧
(2) If (𝑘, 𝑒1, 𝑒2) ∈ E𝑇 ⟦𝜏⟧ and 𝜏 ⩽: 𝜏 ′ then (𝑘, 𝑒1, 𝑒2) ∈ E𝑇 ⟦𝜏 ′⟧.

Proof. Proceed by mutual induction on 𝑘 and 𝜏 :

• 𝑘 = 0: 2 is immediate if 𝑒 ≠ 𝑣 .
If 𝑒 = 𝑣 then 2 follows immediately from 1.
1 follows identically in the 𝑘 = 0 case as it does in the 𝑘 > 0 case, but the function case is vacuously true.

• 𝑘 > 0:
(1) Case split on 𝜏 ⩽: 𝜏 ′:

i) 𝜏 ⩽: 𝜏 : immediate.
ii) Nat ⩽: Int: immediate because T ⊆ Z.
iii) 𝜏1 × 𝜏2 ⩽: 𝜏 ′1 × 𝜏

′
2, with 𝜏1 ⩽: 𝜏

′
1 and 𝜏2 ⩽: 𝜏

′
2:

We want to show (𝑘, 𝑣1, 𝑣2) ∈ V𝑇 ⟦𝜏 ′⟧.
Unfolding our hypothesis, we get that 𝑣1 = ⟨𝑣 ′1, 𝑣

′′
1 ⟩ and similarly for 𝑣2.

We want to show (𝑘, 𝑣 ′1, 𝑣
′
2) ∈ V

𝑇 ⟦𝜏 ′1⟧ and (𝑘, 𝑣
′′
1 , 𝑣
′′
2 ) ∈ V

𝑇 ⟦𝜏 ′2⟧.
We can apply IH 1) to both of judgements in our hypothesis to get (𝑘, 𝑣 ′1, 𝑣

′
2) ∈ V

𝑇 ⟦𝜏 ′1⟧ and
(𝑘, 𝑣 ′′1 , 𝑣

′′
2 ) ∈ V

𝑇 ⟦𝜏 ′2⟧.
This is sufficient to show (𝑘, 𝑣1, 𝑣2) ∈ V𝑇 ⟦𝜏 ′⟧.

iv) ∗ → 𝜏2 ⩽: ∗ → 𝜏 ′2, with 𝜏2 ⩽: 𝜏
′
2:

We want to show (𝑘, 𝑣1, 𝑣2) ∈ V𝑇 ⟦𝜏 ′⟧.
Let 𝑗 ≤ 𝑘 and ( 𝑗, 𝑣 ′1, 𝑣

′
2) ∈ V

𝑇 ⟦∗⟧.
Let 𝐾 .
We want to show ( 𝑗, app{𝐾} 𝑣1 𝑣 ′1, app{𝐾} 𝑣2 𝑣

′
2) ∈ E

𝑇 ⟦𝜏 ′2 ⊓ 𝐾⟧.
Then, we can apply our hypothesis about 𝑣1, 𝑣2 to get ( 𝑗, app{𝐾} 𝑣1 𝑣 ′1, app{𝐾} 𝑣2 𝑣

′
2) ∈ E

𝑇 ⟦𝜏2 ⊓𝐾⟧.
Finally, we can apply IH 1) to get ( 𝑗, app{𝐾} 𝑣1 𝑣 ′1, app{𝐾} 𝑣2 𝑣

′
2) ∈ E

𝑇 ⟦𝜏 ′2 ⊓ 𝐾⟧ which is what we
wanted to show.

(2) Unfolding our hypothesis, there is some 𝑗 ≤ 𝑘 and irreducible 𝑒′1, 𝑒
′
2 such that 𝑒1 −→𝑗

𝑇
𝑒′1 and 𝑒2 −→

∗
𝑇
𝑒′2.

If 𝑒′1, 𝑒
′
2 ∈ Err

• then we’re done.
Otherwise, (𝑘 − 𝑗, 𝑒′1, 𝑒

′
2) ∈ V

𝑇 ⟦𝜏⟧.
By IH 1), we have (𝑘 − 𝑗, 𝑒′1, 𝑒

′
2) ∈ V

𝑇 ⟦𝜏 ′⟧, which is what we wanted to show.

□

Lemma 8.18 (Monitor compatibility). If (𝑘, 𝑣, 𝑣 ′) ∈ V𝑇 ⟦𝜏⟧, then (𝑘 + 1,mon {𝐾 ′1 ⇐ 𝐾1} ,mon {𝐾 ′2 ⇐ 𝐾2} 𝑣 ′) ∈
E𝑇 ⟦𝜏⟧.

Proof. By induction on 𝑘 and 𝑣 :
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𝑘 = 0 By case analysis on 𝑣 , 𝑣 ′:
𝑖, 𝑖′ By OS, mon {𝐾 ′1 ⇐ 𝐾1} 𝑖 −→ 𝑖 and mon {𝐾 ′2 ⇐ 𝐾2} 𝑖′ −→ 𝑖′𝑒 , so this is immediate.
True, True As in case 𝑖 above.
False, False As in case True above.
⟨𝑣1, 𝑣2⟩, ⟨𝑣 ′1, 𝑣

′
2⟩ Since (𝑘, 𝑣1, 𝑣2) ∈ V𝑇 ⟦𝜏⟧, by inspection 𝜏 must be either 𝜏1×𝜏2 or ∗:

𝜏1×𝜏2 Note thatmon {𝐾 ′1 ⇐ 𝐾1} ⟨𝑣1, 𝑣2⟩ −→ ⟨mon {fst(𝐾 ′1) ⇐ fst(𝐾1)} 𝑣1,mon {snd(𝐾 ′1) ⇐ snd(𝐾1)} 𝑣2⟩,
and similarlymon {𝐾 ′2 ⇐ 𝐾2} ⟨𝑣 ′1, 𝑣

′
2⟩ −→ ⟨mon {fst(𝐾 ′2) ⇐ fst(𝐾2)} 𝑣 ′1,mon {snd(𝐾 ′2) ⇐ snd(𝐾2)} 𝑣 ′2⟩

It is therefore sufficient to show that

(𝑘, ⟨mon {fst(𝐾 ′1) ⇐ fst(𝐾1)} 𝑣1,mon {snd(𝐾 ′1) ⇐ snd(𝐾1)} 𝑣2⟩, ⟨mon {fst(𝐾 ′2) ⇐ fst(𝐾2)} 𝑣 ′1,mon {snd(𝐾 ′2) ⇐ snd(𝐾2)} 𝑣 ′2⟩) ∈ E
𝑇 ⟦𝜏1×𝜏2⟧

By unfolding, this is the same as showing (𝑘,mon {fst(𝐾 ′1) ⇐ fst(𝐾1)} 𝑣1,mon {fst(𝐾 ′2) ⇐ fst(𝐾2)} 𝑣 ′1) ∈
E𝑇 ⟦𝜏1⟧ and (𝑘,mon {snd(𝐾 ′1) ⇐ snd(𝐾1)} 𝑣2,mon {snd(𝐾 ′2) ⇐ snd(𝐾2)} 𝑣 ′2) ∈ E

𝑇 ⟦𝜏2⟧.
By Lemma 8.13, it suffices to show (𝑘+1,mon {fst(𝐾 ′1) ⇐ fst(𝐾1)} 𝑣1,mon {fst(𝐾 ′2) ⇐ fst(𝐾2)} 𝑣 ′1) ∈
E𝑇 ⟦𝜏1⟧ and (𝑘 + 1,mon {snd(𝐾 ′1) ⇐ snd(𝐾1)} 𝑣2,mon {snd(𝐾 ′2) ⇐ snd(𝐾2)} 𝑣 ′2) ∈ E

𝑇 ⟦𝜏2⟧.
In both cases, IH applies and hence it suffices to show (𝑘, 𝑣1, 𝑣 ′1) ∈ E

𝑇 ⟦𝜏1⟧ and (𝑘, 𝑣2, 𝑣 ′2) ∈ E
𝑇 ⟦𝜏2⟧.

These are both obtained by unfolding our assumption.
∗ Impossible, since 𝑘 = 0.

𝑤 ,𝑤 ′ Since (𝑘,𝑤,𝑤 ′) ∈ V𝑇 ⟦𝜏⟧, by inspection 𝜏 must be either ∗→𝜏 ′ or ∗:
∗→𝜏 ′ Note thatmon {𝐾 ′1 ⇐ 𝐾1}𝑤 −→ grd {𝐾 ′1 ⇐ 𝐾1}𝑤 , and similarlymon {𝐾 ′2 ⇐ 𝐾2}𝑤 ′ −→ grd {𝐾 ′2 ⇐ 𝐾2}𝑤 ′.

Consequently, it is sufficient to show that (𝑘, grd {𝐾 ′1 ⇐ 𝐾1}𝑤, grd {𝐾 ′2 ⇐ 𝐾2}𝑤 ′) ∈ E𝑇 ⟦∗→𝜏 ′⟧.
Consider arbitrary 𝑗 ≤ 𝑘 , 𝑣, 𝑣 ′ s.t. ( 𝑗, 𝑣, 𝑣 ′) ∈ V𝑇 ⟦∗⟧, 𝐾,𝐾 ′. Then we must show that
( 𝑗, app{𝐾} (grd {𝐾 ′1 ⇐ 𝐾1}𝑤) 𝑣, app{𝐾 ′} (grd {𝐾 ′2 ⇐ 𝐾2}𝑤 ′) 𝑣 ′) ∈ E𝑇 ⟦𝐾 ⊓ 𝜏 ′⟧.
By assumption, 𝑘 = 0, so 𝑗 = 0. Therefore, this is vacuously true.

∗ Impossible, since 𝑘 = 0.
otherwise Impossible by Lemma 8.9.

𝑘 > 0 By case analysis on 𝑣 , 𝑣 ′:
𝑖, 𝑖′ As in 𝑘 = 0 case.
True, True As in 𝑘 = 0 case.
False, False As in 𝑘 = 0 case.
⟨𝑣1, 𝑣2⟩, ⟨𝑣 ′1, 𝑣

′
2⟩ Since (𝑘, 𝑣1, 𝑣2) ∈ V𝑇 ⟦𝜏⟧, by inspection 𝜏 must be either 𝜏1×𝜏2 or ∗:

𝜏1×𝜏2 As in 𝑘 = 0 case.
∗ By unfolding, (𝑘 − 1,𝑤,𝑤 ′) ∈ V𝑇 ⟦∗×∗⟧. By an argument essentially identical to the previous case,

merely reducing one application of monotonicity by one is sufficient to show what is needed.
𝑤 ,𝑤 ′ Since (𝑘,𝑤,𝑤 ′) ∈ V𝑇 ⟦𝜏⟧, by inspection 𝜏 must be either ∗→𝜏 ′ or ∗:
∗→𝜏 ′ Note thatmon {𝐾 ′1 ⇐ 𝐾1}𝑤 −→ grd {𝐾 ′1 ⇐ 𝐾1}𝑤 , and similarlymon {𝐾 ′2 ⇐ 𝐾2}𝑤 ′ −→ grd {𝐾 ′2 ⇐ 𝐾2}𝑤 ′.

Consequently, it is sufficient to show that (𝑘, grd {𝐾 ′1 ⇐ 𝐾1}𝑤, grd {𝐾 ′2 ⇐ 𝐾2}𝑤 ′) ∈ E𝑇 ⟦∗→𝜏 ′⟧.
Consider arbitrary 𝑗 ≤ 𝑘 , 𝑣, 𝑣 ′ s.t. ( 𝑗, 𝑣, 𝑣 ′) ∈ V𝑇 ⟦∗⟧, 𝐾 , 𝐾 ′ s.t. 𝐾 ⊓ 𝜏 ′ = 𝐾 ′ ⊓ 𝜏 ′. Then we must show
that
( 𝑗, app{𝐾} (grd {𝐾 ′1 ⇐ 𝐾1}𝑤) 𝑣, app{𝐾 ′} (grd {𝐾 ′2 ⇐ 𝐾2}𝑤 ′) 𝑣 ′) ∈ E𝑇 ⟦𝐾 ⊓ 𝜏 ′⟧.
By OS, it suffices to show that
( 𝑗 − 1, assert𝐾 ((grd {𝐾 ′1 ⇐ 𝐾1}𝑤) 𝑣), assert𝐾 ′ ((grd {𝐾 ′2 ⇐ 𝐾2}𝑤 ′) 𝑣 ′)) ∈ E𝑇 ⟦𝐾 ⊓ 𝜏 ′⟧.
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By Lemma 8.15, it suffices to show that ( 𝑗 − 1, (grd {𝐾 ′1 ⇐ 𝐾1}𝑤) 𝑣, (grd {𝐾 ′2 ⇐ 𝐾2}𝑤 ′) 𝑣 ′) ∈
E𝑇 ⟦𝜏 ′⟧.
By OS, it suffices to show that
( 𝑗 − 2,mon {cod(𝐾 ′1) ⇐ cod(𝐾1)}𝑤 mon {dom(𝐾1) ⇐ dom(𝐾 ′1)} 𝑣,
mon {cod(𝐾 ′2) ⇐ cod(𝐾2)}𝑤 ′ mon {dom(𝐾2) ⇐ dom(𝐾 ′2)} 𝑣

′)
∈ E𝑇 ⟦𝜏 ′⟧.
By IH, it suffices to show that ( 𝑗−3,𝑤 mon {dom(𝐾1) ⇐ dom(𝐾 ′1)} 𝑣,𝑤

′mon {dom(𝐾2) ⇐ dom(𝐾 ′2)} 𝑣
′) ∈

E𝑇 ⟦𝜏 ′⟧.
By Lemma 8.16, it suffices to show that
( 𝑗 − 2, assert ∗ 𝑤 mon {dom(𝐾1) ⇐ dom(𝐾 ′1)} 𝑣, assert ∗ 𝑤

′ mon {dom(𝐾2) ⇐ dom(𝐾 ′2)} 𝑣
′) ∈

E𝑇 ⟦𝜏 ′⟧.
By the definition of meet and OS, this is equivalent to
( 𝑗−1, app{∗}𝑤 mon {dom(𝐾1) ⇐ dom(𝐾 ′1)} 𝑣, app{∗}𝑤

′mon {dom(𝐾2) ⇐ dom(𝐾 ′2)} 𝑣
′) ∈ E𝑇 ⟦∗⊓

𝜏 ′⟧.
By unfolding the assumption that (𝑘,𝑤,𝑤 ′) ∈ E𝑇 ⟦∗→𝜏 ′⟧, it suffices to show that
( 𝑗 − 1,mon {dom(𝐾1) ⇐ dom(𝐾 ′1)} 𝑣,mon {dom(𝐾2) ⇐ dom(𝐾 ′2)} 𝑣

′) ∈ E𝑇 ⟦∗⟧.
By IH, it suffices to show that ( 𝑗 − 2, 𝑣, 𝑣 ′) ∈ E𝑇 ⟦∗⟧.
By Lemma 8.13, it suffices to show that ( 𝑗, 𝑣, 𝑣 ′) ∈ E𝑇 ⟦∗⟧.
This is immediate from the assumption that ( 𝑗, 𝑣, 𝑣 ′) ∈ V𝑇 ⟦∗⟧.

∗ By unfolding, (𝑘 − 1,𝑤,𝑤 ′) ∈ V𝑇 ⟦∗→∗⟧. By an argument essentially identical to the previous case,
merely reducing one application of monotonicity by one is sufficient to show what is needed.

otherwise Impossible by Lemma 8.9.

□

Corollary 8.19. If (𝑘, 𝑒1, 𝑒2) ∈ E𝑇 ⟦𝜏⟧, then (𝑘 + 1,mon {𝐾 ′1 ⇐ 𝐾1} ,mon {𝐾 ′2 ⇐ 𝐾2} 𝑒2) ∈ E𝑇 ⟦𝜏⟧.

Proof. Unfolding the expression relation in our hypothesis, we get that there is a 𝑗 and 𝑒′1 such that 𝑒1 −→𝑗

𝑇
𝑒′

such that 𝑒′ is irreducible, and an 𝑒′2 such that 𝑒2 −→∗𝑇 𝑒
′
2 and either they’re errors, or (𝑘 − 𝑗, 𝑒′1, 𝑒

′
2) ∈ V

𝑇 ⟦𝜏⟧.
If they’re errors, then we’re done because the monitors will also step to errors.
Otherwise, we have mon {𝐾 ′1 ⇐ 𝐾1} −→𝑗

𝑇
mon {𝐾 ′1 ⇐ 𝐾1} and mon {𝐾 ′2 ⇐ 𝐾2} −→𝑗

𝑇
mon {𝐾 ′2 ⇐ 𝐾2} .

By Lemma 8.18, we have that (𝑘 − 𝑗,mon {𝐾 ′1 ⇐ 𝐾1} ,mon {𝐾 ′2 ⇐ 𝐾2} ) ∈ E𝑇 ⟦𝜏⟧, which is sufficient to complete the
proof. □

Lemma 8.20 (Boundary compatibility). If (𝑘, 𝑣1, 𝑣2) ∈ V𝑇 ⟦𝜏⟧ and 𝜏 ′ = 𝐾 ′1 ⊓ 𝐾1 ⊓ 𝜏 = 𝐾 ′2 ⊓ 𝐾2 ⊓ 𝜏 , then (𝑘 +
1, cast {𝐾 ′1 ⇐ 𝐾1} 𝑣1, cast {𝐾 ′2 ⇐ 𝐾2} 𝑣2) ∈ E𝑇 ⟦𝜏 ′⟧.

Proof. By Lemma 8.10, notice that ∝⊥ (⌊𝜏 ′⌋⊥, 𝑣1) ⇔∝⊥ (⌊𝜏 ′⌋⊥, 𝑣2). By Lemma 8.11 and our assumption, therefore,
∝⊥ (𝐾 ′1, 𝑣1)∧ ∝

⊥ (𝐾1, 𝑣1)∧ ∝⊥ (⌊𝜏⌋⊥, 𝑣1) ⇔∝⊥ (𝐾 ′2, 𝑣2)∧ ∝
⊥ (𝐾2, 𝑣2)∧ ∝⊥ (⌊𝜏⌋⊥, 𝑣2). By Lemma 8.10, ∝⊥

(⌊𝜏⌋⊥, 𝑣1) ⇔∝⊥ (⌊𝜏⌋⊥, 𝑣2). Consequently, ∝⊥ (𝐾 ′1, 𝑣1)∧ ∝
⊥ (𝐾1, 𝑣1) ⇔∝⊥ (𝐾 ′2, 𝑣2)∧ ∝

⊥ (𝐾2, 𝑣2)—which is to
say, either both of the values match both of their annotated tags, or both of them do not match at least one of their
annotated tags.

Consider then each case:
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Tags match By the operational semantics, it is sufficient to show that (𝑘,mon {𝐾 ′1 ⇐ 𝐾1} 𝑣1,mon {𝐾 ′2 ⇐ 𝐾2} 𝑣2) ∈
E𝑇 ⟦𝜏 ′⟧.
By Lemma 8.18, it is sufficient to show that (𝑘 − 1, 𝑣1, 𝑣2) ∈ E𝑇 ⟦𝜏 ′⟧.
By Lemma 8.12, it is sufficient to show that (𝑘, 𝑣1, 𝑣2) ∈ E𝑇 ⟦𝜏⟧, which is our assumption.

Tags do not match Inspection of the operational semantics shows that both terms step to a boundary error, and so
are trivially in the relation.

□

Lemma 8.21 (Boundary compatibility—open relation). If ⟦Γ ⊢tru 𝑒1 ≤ 𝑒2 : 𝜏⟧𝑇𝐶 and 𝜏 ′ = 𝐾 ′1⊓𝐾1⊓𝜏 = 𝐾
′
2⊓𝐾2⊓𝜏 ,

then ⟦Γ ⊢tru cast {𝐾 ′1 ⇐ 𝐾 ′1} 𝑒1 ≤ cast {𝐾 ′2 ⇐ 𝐾2} 𝑒1 : 𝜏 ′⟧.

Proof. Consider arbitrary (𝑘,𝛾,𝛾 ′) ∈ G𝑇 ⟦Γ⟧.
We must show that (𝑘,𝛾 (cast {𝐾 ′1 ⇐ 𝐾1} 𝑒1), 𝛾 ′ (cast {𝐾 ′2 ⇐ 𝐾2} 𝑒2)) ∈ E𝑇 ⟦𝜏 ′⟧.
By the definition of substitution, it suffices to show that (𝑘, cast {𝐾 ′1 ⇐ 𝐾1} 𝛾 (𝑒1), cast {𝐾 ′2 ⇐ 𝐾2} 𝛾 ′ (𝑒2)) ∈ E𝑇 ⟦𝜏 ′⟧.
Instantiate the hypothesis with (𝑘,𝛾,𝛾 ′), providing that (𝑘,𝛾 (𝑒1), 𝛾 ′ (𝑒2)) ∈ E𝑇 ⟦𝜏⟧.
Then Lemma 8.14 applies. Consider arbitrary (𝑘′, 𝑣1, 𝑣2) s.t. (𝑘′, 𝑣1, 𝑣2) ∈ V𝑇 ⟦𝜏⟧; we must show that (𝑘′, cast {𝐾 ′1 ⇐

𝐾1} 𝑣1, cast {𝐾 ′2 ⇐ 𝐾2} 𝑣2) ∈ E𝑇 ⟦𝜏⟧. This is immediate by Lemma 8.20 and Lemma 8.13. □

Lemma 8.22 (Application compatibility). If (𝑘, 𝑣 𝑓 , 𝑣 ′𝑓 ) ∈ V
𝑇 ⟦∗→𝜏2⟧ and (𝑘, 𝑣𝑎, 𝑣 ′𝑎) ∈ V𝑇 ⟦𝜏1⟧ and 𝜏 ′ = 𝐾 ⊓ 𝜏2 =

𝐾 ′ ⊓ 𝜏2, then (𝑘, app{𝐾} 𝑣 𝑓 𝑣𝑎, app{𝐾 ′} 𝑣 ′𝑓 𝑣
′
𝑎) ∈ E𝑇 ⟦𝜏 ′⟧

Proof. Unfolding the V relation on our first assumption and instantiating with 𝑗 = 𝑘 , 𝑣 ′1 = 𝑣𝑎 , 𝑣 ′2 = 𝑣 ′𝑎 , 𝐾 = 𝐾 ,
𝐾 ′ = 𝐾 ′ gives precisely what is to be shown. □

Lemma 8.23 (Application compatibility—open relation). If ⟦Γ ⊢tru 𝑒𝑓 1 ≤ 𝑒𝑓 2 : ∗→𝜏2⟧𝑇𝐶 and 𝜏 ′ = 𝐾1⊓𝜏2 = 𝐾2⊓𝜏2
and ⟦Γ ⊢tru 𝑒𝑎1 ≤ 𝑒𝑎2 : 𝜏1⟧𝑇𝐶 , then ⟦Γ ⊢tru app{𝐾1} 𝑒𝑓 1 𝑒𝑎1 ≤ app{𝐾2} 𝑒𝑓 2 𝑒𝑎2 : 𝜏 ′⟧𝑇𝐶 .

Proof. Consider arbitrary (𝑘,𝛾,𝛾 ′) ∈ G𝑇 ⟦Γ⟧.
We must show that (𝑘,𝛾 (app{𝐾1} 𝑒𝑓 1 𝑒𝑎1), 𝛾 ′ (app{𝐾2} 𝑒𝑓 2 𝑒𝑎2)) ∈ E𝑇 ⟦𝜏 ′⟧.
By the definition of substitution, it suffices to show that (𝑘, app{𝐾1}𝛾 (𝑒𝑓 1) 𝛾 (𝑒𝑎1), app{𝐾2}𝛾 ′ (𝑒𝑓 2) 𝛾 ′ (𝑒𝑎2)) ∈

E𝑇 ⟦𝜏 ′⟧.
Instantiate the first hypothesis with (𝑘,𝛾,𝛾 ′), providing (𝑘,𝛾 (𝑒𝑓 1), 𝛾 ′ (𝑒𝑓 2)) ∈ E𝑇 ⟦∗→ 𝜏2⟧. Similarly, the second

provides (𝑘,𝛾 (𝑒𝑎1), 𝛾 ′ (𝑒𝑎2)) ∈ E𝑇 ⟦𝜏1⟧.
Then Lemma 8.14 applies. Consider arbitrary (𝑘′, 𝑣 𝑓 1, 𝑣 𝑓 2) ∈ V𝑇 ⟦∗ → 𝜏2⟧ with 𝑘′ ≤ 𝑘 . Then by Lemma 8.13,

(𝑘′, 𝛾 (𝑒𝑎1), 𝛾 ′ (𝑒𝑎2)) ∈ E𝑇 ⟦𝜏1⟧, Lemma 8.14 again applies. Consider arbitrary (𝑘′′, 𝑣𝑎1, 𝑣𝑎2 ∈ V𝑇 ⟦𝜏1⟧ with 𝑘′′ ≤ 𝑘′. We
must show that (𝑘′′, app{𝐾1} 𝑣 𝑓 1 𝑣𝑎1, app{𝐾2} 𝑣 𝑓 2 𝑣𝑎2) ∈ E𝑇 ⟦𝜏 ′⟧; this is immmediate by Lemma 8.22. □

Lemma 8.24 (Application compatibility–function is bottom). If ⟦Γ ⊢tru 𝑒𝑓 1 ≤ 𝑒𝑓 2 : ⊥⟧𝑇
𝐶

then ⟦Γ ⊢tru
app{𝐾1} 𝑒𝑓 1 𝑒𝑎1 ≤ app{𝐾2} 𝑒𝑓 2 𝑒𝑎2 : ⊥⟧𝑇𝐶 .

Proof. Consider arbitrary (𝑘,𝛾,𝛾 ′) ∈ G𝑇 ⟦Γ⟧.
We must show that (𝑘,𝛾 (app{𝐾1} 𝑒𝑓 1 𝑒𝑎1), 𝛾 ′ (app{𝐾2} 𝑒𝑓 2 𝑒𝑎2)) ∈ E𝑇 ⟦𝜏 ′⟧.
By the definition of substitution, it suffices to show that (𝑘, app{𝐾1}𝛾 (𝑒𝑓 1) 𝛾 (𝑒𝑎1), app{𝐾2}𝛾 ′ (𝑒𝑓 2) 𝛾 ′ (𝑒𝑎2)) ∈

E𝑇 ⟦𝜏 ′⟧.
Instantiate the first hypothesis with (𝑘,𝛾,𝛾 ′), providing (𝑘,𝛾 (𝑒𝑓 1), 𝛾 ′ (𝑒𝑓 2)) ∈ E𝑇 ⟦⊥⟧.
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Then Lemma 8.14 applies. Consider arbitrary (𝑘′, 𝑣 𝑓 1, 𝑣 𝑓 2) ∈ V𝑇 ⟦⊥⟧ with 𝑘′ ≤ 𝑘 . By unfolding ofV no such values
can exist, so we are done. □

Lemma 8.25 (Fst compatibility). If (𝑘, 𝑣, 𝑣 ′) ∈ V𝑇 ⟦𝜏1×𝜏2⟧ and 𝜏 ′ = 𝐾 ⊓𝜏1 = 𝐾 ′ ⊓𝜏1, then (𝑘, fst{𝐾} 𝑣, fst{𝐾 ′} 𝑣 ′) ∈
E𝑇 ⟦𝜏 ′⟧.

Proof. Unfolding the definition of V tells us that there must be some 𝑣1, 𝑣2, 𝑣 ′1, 𝑣
′
2 s.t. 𝑣 = ⟨𝑣1, 𝑣2⟩, 𝑣 ′ = ⟨𝑣 ′1, 𝑣

′
2⟩,

(𝑘, 𝑣1, 𝑣 ′1) ∈ V
𝑇 ⟦𝜏1⟧, and (𝑘, 𝑣2, 𝑣 ′2) ∈ V

𝑇 ⟦𝜏2⟧. We must show that (𝑘, fst{𝐾} ⟨𝑣1, 𝑣2⟩, fst{𝐾 ′} ⟨𝑣 ′1, 𝑣
′
2⟩) ∈ E

𝑇 ⟦𝜏 ′⟧.
By the OS, it suffices to show that (𝑘 − 1, assert𝐾 𝑣1, assert𝐾 ′ 𝑣 ′1) ∈ E

𝑇 ⟦𝜏 ′⟧.
By Lemma 8.15, it suffices to show that (𝑘 − 1, 𝑣1, 𝑣 ′1) ∈ E

𝑇 ⟦𝜏1⟧. This is immediate by Lemma 8.13. □

Lemma 8.26 (Fst compatibility—open relation). If ⟦Γ ⊢tru 𝑒 ≤ 𝑒′ : 𝜏1×𝜏2⟧𝑇𝐶 and 𝜏 ′ = 𝐾 ⊓ 𝜏1 = 𝐾 ′ ⊓ 𝜏1, then
⟦Γ ⊢tru fst{𝐾} 𝑒 ≤ fst{𝐾 ′} 𝑒′ : 𝜏 ′⟧𝑇

𝐶
.

Proof. Consider arbitrary (𝑘,𝛾,𝛾 ′) ∈ G𝑇 ⟦Γ⟧.
We must show that (𝑘,𝛾 (fst{𝐾} 𝑒), 𝛾 ′ (fst{𝐾 ′} 𝑒′)) ∈ E𝑇 ⟦𝜏 ′⟧.
By the definition of substitution, it suffices to show that (𝑘, fst{𝐾}𝛾 (𝑒), fst{𝐾 ′}𝛾 ′ (𝑒′)) ∈ E𝑇 ⟦𝜏 ′⟧.
Instantiate the hypothesis with (𝑘,𝛾,𝛾 ′), providing (𝑘,𝛾 (𝑒), 𝛾 ′ (𝑒′)) ∈ E𝑇 ⟦𝜏1×𝜏2⟧.
Then Lemma 8.14 applies. Consider arbitrary (𝑘′, 𝑣, 𝑣 ′) ∈ V𝑇 ⟦𝜏1×𝜏2⟧. We must show that (𝑘′, fst{𝐾} 𝑣, fst{𝐾 ′} 𝑣 ′) ∈

E𝑇 ⟦𝜏 ′⟧; this is immediate by Lemma 8.25. □

Lemma 8.27 (Fst compatibility–pair is bottom). If ⟦Γ ⊢tru 𝑒1 ≤ 𝑒2 : ⊥⟧𝑇
𝐶
then ⟦Γ ⊢tru fst{𝐾1} 𝑒1 ≤ fst{𝐾2} 𝑒2 :

⊥⟧𝑇
𝐶
.

Proof. By the same reasoning as Lemma 8.24. □

Lemma 8.28 (Snd compatibility).

Proof. Nearly identical to that of Lemma 8.25. □

Lemma 8.29 (Fst compatibility—open relation). If ⟦Γ ⊢tru 𝑒 ≤ 𝑒′ : 𝜏1×𝜏2⟧𝑇𝐶 and 𝜏 ′ = 𝐾 ⊓ 𝜏2 = 𝐾 ′ ⊓ 𝜏2, then
⟦Γ ⊢tru snd{𝐾} 𝑒 ≤ snd{𝐾 ′} 𝑒′ : 𝜏⟧𝑇

𝐶
.

Proof. Nearly identical to that of Lemma 8.26, using Lemma 8.28. □

Lemma 8.30 (Snd compatibility–pair is bottom). If ⟦Γ ⊢tru 𝑒1 ≤ 𝑒2 : ⊥⟧𝑇𝐶 then ⟦Γ ⊢tru snd{𝐾1} 𝑒1 ≤ snd{𝐾2} 𝑒2 :
⊥⟧𝑇

𝐶
.

Proof. By the same reasoning as Lemma 8.24. □

8.4.3 Binary relation: Compatibility Lemmata

Lemma 8.31 (T-Var compatibility).
(𝑥 :𝐾) ∈ Γ

⟦Γ ⊢tru 𝑥 ≤ 𝑥 : 𝐾⟧L
𝐶

Proof. Consider arbitrary (𝑘,𝛾,𝛾 ′) ∈ GL⟦Γ⟧.
We must show that (𝑘,𝛾 (𝑥), 𝛾 ′ (𝑥)) ∈ EL⟦𝐾⟧.
Since 𝑥 : 𝐾 ∈ Γ, we know that there exist some values 𝑣, 𝑣 ′ s.t. 𝛾 (𝑥) = 𝑣 and 𝛾 ′ (𝑥) = 𝑣 ′. Since (𝑘,𝛾,𝛾 ′) ∈ GL⟦Γ⟧, we

know that (𝑘, 𝑣, 𝑣 ′) ∈ VL⟦𝐾⟧. Then we get (𝑘, 𝑣, 𝑣 ′) ∈ EL⟦Γ⟧ immediately since 𝑣, 𝑣 ′ are already values. □
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Lemma 8.32 (T-Nat compatibility).
⟦Γ ⊢tru 𝑛 ≤ 𝑛 : Nat⟧L

𝐶

Proof. Consider arbitrary (𝑘,𝛾,𝛾 ′) ∈ GL⟦Γ⟧.
We must show (𝑘,𝛾 (𝑛), 𝛾 ′ (𝑛)) ∈ EL⟦Nat⟧.
Note that 𝛾 (𝑛) = 𝑛.
Since 𝑛 is already a value, it suffices to show that (𝑘, 𝑛, 𝑛) ∈ VL⟦Nat⟧.
Unfolding the definition ofVL⟦Nat⟧, this is true. □

Lemma 8.33 (T-Int compatibility).
⟦Γ ⊢tru 𝑖 ≤ 𝑖 : Int⟧L𝐶

Proof. Consider arbitrary (𝑘,𝛾,𝛾 ′) ∈ GL⟦Γ⟧.
We must show (𝑘,𝛾 (𝑖), 𝛾 ′ (𝑖)) ∈ EL⟦Nat⟧.
Note that 𝛾 (𝑖) = 𝑖 .
Since 𝑖 is already a value, it suffices to show that (𝑘, 𝑖, 𝑖) ∈ VL⟦Int⟧.
Unfolding the definition ofVL⟦Nat⟧, this is true. □

Lemma 8.34 (T-True compatibility).
⟦Γ0 ⊢tru True ≤ True : Bool⟧L

𝐶

Proof. Consider arbitrary (𝑘,𝛾,𝛾 ′) ∈ GL⟦Γ⟧.
We must show (𝑘,𝛾 (True), 𝛾 ′ (True)) ∈ EL⟦Bool⟧.
Note that 𝛾 (True) = True.
Since True is already a value, it suffices to show that (𝑘,True,True) ∈ VL⟦Bool⟧.
Unfolding the definition ofVL⟦Bool⟧, this is true. □

Lemma 8.35 (T-False compatibility).
⟦Γ0 ⊢tru False ≤ False : Bool⟧L

𝐶

Proof. Consider arbitrary (𝑘,𝛾,𝛾 ′) ∈ GL⟦Γ⟧.
We must show (𝑘,𝛾 (False), 𝛾 ′ (False)) ∈ EL⟦Bool⟧.
Note that 𝛾 (False) = False.
Since False is already a value, it suffices to show that (𝑘, False, False) ∈ VL⟦Bool⟧.
Unfolding the definition ofVL⟦Bool⟧, this is true. □

Lemma 8.36 (T-Lam compatibility).
⟦Γ0, (𝑥0 :𝐾0) ⊢tru 𝑒0 ≤ 𝑒′0 : 𝜏1⟧

L
𝐶

⟦Γ0 ⊢tru 𝜆(𝑥0 :𝐾0) . 𝑒0 ≤ 𝜆(𝑥0 :𝐾0) . 𝑒′0 : ∗→𝜏1⟧L𝐶

Proof. Let (𝑘,𝛾,𝛾 ′) ∈ G𝑇 ⟦Γ0⟧.
We want to show (𝑘,𝛾 (𝜆𝑥0 : 𝐾0 . 𝑒0), 𝛾 ′ (𝜆𝑥0 . 𝐾0𝑒′0)) ∈ E

𝑇 ⟦∗ → 𝜏1⟧.
Note that 𝛾 (𝜆𝑥0 : 𝐾0 . 𝑒0) = 𝜆𝑥0 : 𝐾0 . 𝛾 (𝑒0) and similarly for the other.
We want to show (𝑘 − 1, 𝜆𝑥0 : 𝐾0 . 𝛾 (𝑒0), 𝜆𝑥0 : 𝐾0 . 𝛾 (𝑒′0)) ∈ V

𝑇 ⟦∗ → 𝜏1⟧.
Unfolding the value relation:
Let 𝑗 ≤ 𝑘 .
Let ( 𝑗, 𝑣, 𝑣 ′) ∈ V𝑇 ⟦∗⟧.
Let 𝐾 .

2024-04-22 00:20. Page 84 of 1–108.



Gradually Typed Languages Should Be Vigilant! 85

We want to show ( 𝑗, app{𝐾} (𝜆𝑥0 : 𝐾0 . 𝛾 (𝑒0)) 𝑣, app{𝐾} (𝜆𝑥0 : 𝐾0 . 𝛾 (𝑒′0)) 𝑣
′) ∈ E𝑇 ⟦𝜏1 ⊓ 𝐾⟧.

By the OS, if ¬𝐾 ∝ 𝑣 then the application steps to an error and we’re done.
Otherwise, app{𝐾} (𝜆𝑥0 : 𝐾0 . 𝛾 (𝑒0)) 𝑣 −→𝑇 assert𝐾 ((𝜆𝑥0 : 𝐾0 . 𝛾 (𝑒0)) 𝑣) −→ assert𝐾 𝛾 (𝑒0) [𝑣/𝑥].
By the definition of substitution, 𝛾 (𝑒0) [𝑣/𝑥] = 𝛾 [𝑥 ↦→ 𝑣] (𝑒0).
Note that ( 𝑗 − 2, 𝛾 [𝑥 ↦→ 𝑣] (𝑒0), 𝛾 ′ [𝑥 ↦→ 𝑣] (𝑒′0)) ∈ G

𝑇 ⟦Γ, 𝑥 : 𝐾⟧ by Lemma 6.15 and Lemma 6.17.
Therefore, we can apply the hypothesis to 𝛾 [𝑥 ↦→ 𝑣], 𝛾 ′ [𝑥 ↦→ 𝑣 ′], and 𝑒0, 𝑒′0 at 𝑗 − 2 to get ( 𝑗 − 2, 𝛾 [𝑥 ↦→ 𝑣] (𝑒0), 𝛾 ′ [𝑥 ↦→
𝑣 ′]𝑒′0) ∈ E

𝑇 ⟦𝜏1⟧.
Finally, we can apply Lemma 6.18 to get ( 𝑗 − 1, assert𝐾 𝛾 [𝑥 ↦→ 𝑣] (𝑒0), assert𝐾 𝛾 ′ [𝑥 ↦→ 𝑣 ′] (𝑒′0)) ∈ E

𝑇 ⟦𝜏1 ⊓ 𝐾⟧ which
is what we wanted to show. □

Lemma 8.37 (T-Pair compatibility).

⟦Γ ⊢tru 𝑒1 ≤ 𝑒′1 : 𝜏1⟧
𝑇
𝐶

⟦Γ ⊢tru 𝑒2 ≤ 𝑒′2 : 𝜏2⟧
𝑇
𝐶

⟦Γ ⊢tru ⟨𝑒1, 𝑒2⟩ ≤ ⟨𝑒′1, 𝑒
′
2⟩ : 𝜏1×𝜏2⟧

𝑇
𝐶

Proof. Consider arbitrary (𝑘,𝛾,𝛾) ∈ G𝑇 ⟦Γ⟧.
We must show (𝑘,𝛾 (⟨𝑒1, 𝑒2⟩), 𝛾 ′ (⟨𝑒′1, 𝑒

′
2⟩)) ∈ E

𝑇 ⟦𝜏1×𝜏2⟧.
Note that𝛾 (⟨𝑒1, 𝑒2⟩) = ⟨𝛾 (𝑒1), 𝛾 (𝑒2)⟩, and similarly for𝛾 ′, 𝑒′1, 𝑒

′
2.Wewant to show that (𝑘, ⟨𝛾 (𝑒1), 𝛾 (𝑒2)⟩, ⟨𝛾 ′ (𝑒′1), 𝛾

′ (𝑒′2)⟩) ∈
E𝑇 ⟦𝜏1×𝜏2⟧.

Notice that by instantiating our hypothesis with (𝑘,𝛾,𝛾 ′), we know that (𝑘,𝛾 (𝑒1), 𝛾 ′ (𝑒′1)) ∈ E
𝑇 ⟦𝜏1⟧ and (𝑘,𝛾 (𝑒2), 𝛾 ′ (𝑒′2)) ∈

E𝑇 ⟦𝜏2⟧.
By Lemma 8.14, it suffices to show that for any (𝑘′, 𝑣1, 𝑣 ′1) ∈ V

𝑇 ⟦𝜏1⟧where𝑘′ ≤ 𝑘 , (𝑘′, ⟨𝑣1, 𝑒2⟩, ⟨𝑣 ′1, 𝑒
′
2⟩) ∈ E

𝑇 ⟦𝜏1×𝜏2⟧.
By Lemma 8.13, we know that (𝑘′, 𝛾 (𝑒2), 𝛾 ′ (𝑒′2)) ∈ E

𝑇 ⟦𝜏2⟧. Again by Lemma 8.14, therefore, it suffices to show that
for any 𝑘′′ ≤ 𝑘′ and 𝑣2, 𝑣 ′2 s.t. (𝑘

′′, 𝑣2, 𝑣 ′2) ∈ V
𝑇 ⟦𝜏2⟧, (𝑘′′, ⟨𝑣1, 𝑣2⟩, ⟨𝑣 ′1, 𝑣

′
2⟩) ∈ E

𝑇 ⟦𝜏1×𝑡𝑎𝑢2⟧.
Since these terms are values, it suffices to show that (𝑘′′, ⟨𝑣1, 𝑣2⟩, ⟨𝑣 ′1, 𝑣

′
2⟩) ∈ V

𝑇 ⟦𝜏1×𝜏2⟧.
Unfolding the definition of V , it suffices to show that (𝑘′′, 𝑣1, 𝑣 ′1) ∈ V

𝑇 ⟦𝜏1⟧ and (𝑘′′, 𝑣2, 𝑣 ′2) ∈ V
𝑇 ⟦𝜏2⟧; both of

these are immediate by Lemma 8.13 from our assumptions. □

Lemma 8.38 (T-Cast compatibility).
⟦Γ0 ⊢tru 𝑒0 ≤ 𝑒′0 : 𝜏0⟧

𝑇
𝐶

⟦Γ0 ⊢tru cast {𝐾1 ⇐ 𝐾0} 𝑒0 ≤ cast {𝐾1 ⇐ 𝐾0} 𝑒′0 : 𝐾1 ⊓ 𝐾0 ⊓ 𝜏0⟧
𝑇
𝐶

Proof. Follows immediately from Lemma 8.21. □

Lemma 8.39 (T-App compatibility).

⟦Γ0 ⊢tru 𝑒0 ≤ 𝑒′0 : ∗→𝜏1⟧𝑇𝐶
⟦Γ0 ⊢tru 𝑒1 ≤ 𝑒′1 : 𝜏

′
0⟧

𝑇
𝐶

⟦Γ0 ⊢tru app{𝐾1} 𝑒0 𝑒1 ≤ app{𝐾1} 𝑒′0 𝑒
′
1 : 𝐾1 ⊓ 𝜏1⟧

𝑇
𝐶

Proof. Follows immediately from Lemma 8.23. □

Lemma 8.40 (T-AppBot compatibility).

⟦Γ0 ⊢tru 𝑒0 ≤ 𝑒′0 : ⊥⟧
𝑇
𝐶

⟦Γ0 ⊢tru 𝑒1 ≤ 𝑒′1 : 𝜏
′
0⟧

𝑇
𝐶

⟦Γ0 ⊢tru app{𝐾1} 𝑒0 𝑒1 ≤ app{𝐾1} 𝑒′0 𝑒
′
1 : ⊥⟧

𝑇
𝐶

Proof. Consider arbitrary (𝑘,𝛾,𝛾) ∈ G𝑇 ⟦Γ⟧.
We must show (𝑘,𝛾 (app{𝐾1} 𝑒0 𝑒1), 𝛾 ′ (app{𝐾1} 𝑒′0 𝑒

′
1)) ∈ E

𝑇 ⟦⊥⟧.
Apply the first hypothesis to get (𝑘,𝛾 (𝑒0), 𝛾 ′ (𝑒′0)) ∈ E

𝑇 ⟦⊥⟧.
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Unfolding, there exists some 𝑗 ≤ 𝑘 , 𝑒2, 𝑒3 such that 𝛾 (𝑒0) −→𝑗

𝑇
𝑒2 and 𝛾 ′ (𝑒′0) −→

𝑗

𝑇
𝑒3 where 𝑒2 and 𝑒3 are irreducible.

Either 𝑒2 = 𝑒3 ∈ Err•, or ( 𝑗, 𝑒2, 𝑒3) ∈ V𝑇 ⟦⊥⟧.
By inversion, it must be the case that 𝑒2 = 𝑒3 ∈ Err•, which means that by the OS, 𝛾 (app{𝐾1} 𝑒0 𝑒1 −→𝑗+1

𝑇
𝑒2 and

𝛾 ′ (app{𝐾1} 𝑒′0 𝑒
′
1) −→

𝑗+1
𝑇

𝑒3.
Then either, 𝑗 + 1 > 𝑘 , in which case we’re done, and otherwise both applications step to the same error within 𝑘

steps, in which case we’re done. □

Lemma 8.41 (T-Fst compatibility).
⟦Γ0 ⊢tru 𝑒0 ≤ 𝑒′0 : 𝜏0×𝜏1⟧

𝑇
𝐶

⟦Γ0 ⊢tru fst{𝐾0} 𝑒0 ≤ fst{𝐾0} 𝑒′0 : 𝐾0 ⊓ 𝜏0⟧
𝑇
𝐶

Proof. Consider arbitrary (𝑘,𝛾,𝛾) ∈ G𝑇 ⟦Γ⟧.
We must show (𝑘,𝛾 (fst{𝐾0} 𝑒0), 𝛾 ′ (fst{𝐾1} 𝑒′0)) ∈ E

𝑇 ⟦𝐾0 ⊓ 𝜏0⟧.
Note that 𝛾 (fst{𝐾0} 𝑒0) = fst{𝐾0}𝛾 (𝑒0) and similarly for 𝑒′0.
Assume that there are 𝑗 ≤ 𝑘, 𝑒1 such that fst{𝐾0} 𝑒0 −→𝑗

𝑇
𝑒1 and 𝑒1 is irreducible.

By theOS, it must be the case that there are irreducible 𝑒′1, 𝑒
′′
1 such that fst{𝐾0} 𝑒0 −→𝑗−2 fst{𝐾0} 𝑒′1 −→ assert𝐾0 𝑒′′1 −→

𝑒1.
Unfolding our hypothesis and applying it to the reduction 𝑒0 −→𝑗−2 𝑒′1, we get that there is an irreducible 𝑒′2 such

that 𝑒′0 −→
∗
𝑇
𝑒′2 and (𝑘 − 𝑗 + 2, 𝑒

′
1, 𝑒
′
2) ∈ V

𝑇 ⟦𝜏0×𝜏1⟧.
Unfolding the value relation, we get that both 𝑒′1 and 𝑒

′
2 are pairs.

Therefore, we have by the OS that there exists 𝑒′′2 , 𝑒2 such that fst{𝐾0} 𝑒
′
0 −→

∗
𝑇
fst{𝐾0} 𝑒′2 −→𝑇 assert𝐾0 𝑒′′2 −→𝑇 𝑒2.

Unfolding the fact that (𝑘 − 𝑗 + 2, 𝑒′1, 𝑒
′
2) ∈ V

𝑇 ⟦𝜏0×𝜏1⟧ gives us that (𝑘 − 𝑗 + 2, 𝑒′′1 , 𝑒
′′
2 ) ∈ V̂

𝑇 ⟦𝜏0⟧.
Finally, by Lemma 8.15, we get that (𝑘 − 𝑗 + 2, assert𝐾0 𝑒′′1 , assert𝐾0 𝑒

′′
2 ) ∈ E

𝑇 ⟦𝜏0 ⊓ 𝐾0⟧, which is sufficient to
complete the proof. □

Lemma 8.42 (T-FstBot compatibility).
⟦Γ0 ⊢tru 𝑒0 ≤ 𝑒′0 : ⊥⟧

𝑇
𝐶

⟦Γ0 ⊢tru fst{𝐾0} 𝑒0 ≤ fst{𝐾0} 𝑒′0 : ⊥⟧
𝑇
𝐶

Proof. Similar reasoning to T-AppBot. □

Lemma 8.43 (T-Snd compatibility).
⟦Γ0 ⊢tru 𝑒0 ≤ 𝑒′0 : 𝜏0×𝜏1⟧

𝑇
𝐶

⟦Γ0 ⊢tru snd{𝐾1} 𝑒0 ≤ snd{𝐾1} 𝑒′0 : 𝐾1 ⊓ 𝜏1⟧
𝑇
𝐶

Proof. Almost identical to T-Fst. □

Lemma 8.44 (T-SndBot compatibility).
⟦Γ0 ⊢tru 𝑒0 ≤ 𝑒′0 : ⊥⟧

𝑇
𝐶

⟦Γ0 ⊢tru snd{𝐾1} 𝑒0 ≤ snd{𝐾1} 𝑒′0 : ⊥⟧
𝑇
𝐶

Proof. Similar reasoning to T-AppBot. □

Lemma 8.45 (T-Binop compatibility).

⟦Γ0 ⊢tru 𝑒0 ≤ 𝑒′0 : 𝜏0⟧
𝑇
𝐶

⟦Γ0 ⊢tru 𝑒1 ≤ 𝑒′1 : 𝜏1⟧
𝑇
𝐶

⟦Γ0 ⊢tru binop 𝑒0 𝑒1 ≤ binop 𝑒′0 𝑒
′
1 : Δ(binop, 𝜏0, 𝜏1)⟧

𝑇
𝐶

Proof. Let (𝑘,𝛾,𝛾 ′) ∈ G𝑇 ⟦Γ⟧.
We want to show (𝑘,𝛾 (binop 𝑒0 𝑒1), 𝛾 (binop 𝑒′0 𝑒

′
1)) ∈ E

𝑇 ⟦Δ(binop𝜏0, 𝜏1)⟧.
Note 𝛾 (binop 𝑒0 𝑒1) = binop𝛾 (𝑒0) 𝛾 (𝑒1), and similarly for 𝑒′0, 𝑒

′
1.

2024-04-22 00:20. Page 86 of 1–108.



Gradually Typed Languages Should Be Vigilant! 87

By the first hypothesis applied to 𝛾,𝛾 ′ we have (𝑘,𝛾 (𝑒0), 𝛾 ′ (𝑒′0)) ∈ E
𝑇 ⟦𝜏0⟧.

Unfolding we get there is a 𝑗 ≤ 𝑘, and irreducible 𝑒2, 𝑒′2 such that 𝛾 (𝑒0) −→𝑗

𝑇
𝑒2 and 𝛾 ′ (𝑒′0) −→

∗
𝑇
𝑒′2.

If 𝑒2 = 𝑒′2 = Err• then we’re done, because the whole operation errors.
Otherwise (𝑘 − 𝑗, 𝑒2, 𝑒′2) ∈ V

𝑇 ⟦𝜏0⟧.

Note by Lemma 8.13 (𝑘 − 𝑗, 𝛾,𝛾 ′) ∈ G𝑇 ⟦Γ1⟧.
By the second hypothesis applied to 𝛾 , 𝛾 ′ and 𝑘 − 𝑗 , we have (𝑘 − 𝑗, 𝛾 (𝑒1), 𝛾 ′ (𝑒′1)) ∈ E

𝑇 ⟦𝜏1⟧.
Unfolding we get there are 𝑗 ′, and irreducible 𝑒3, 𝑒′3 such that 𝛾 (𝑒1) −→𝑗 ′

𝑇
𝑒3 and 𝛾 ′ (𝑒′1) −→

∗
𝑇
𝑒′3.

If 𝑒3 = 𝑒′3 = Err• then we’re done, because the whole operation errors.
Otherwise (𝑘 − 𝑗 − 𝑗 ′, 𝑒3, 𝑒′3) ∈ V

𝑇 ⟦𝜏1⟧.

From the definition of Δ, 𝐾2 = Int or Nat or ⊥.
In the case of ⊥, we’re done because either 𝜏0 or 𝜏1 is a ⊥, which is a contradiction.
Otherwise, the cases proceed identically, so without loss of generality assume 𝐾2 = Int.
𝜏0 = 𝜏1 = Int, and therefore 𝑒2 = 𝑒′2 = 𝑖0 and 𝑒3 = 𝑒

′
3 = 𝑖1.

If binop = quotient and 𝑖1 = 0 then binop 𝑖0 𝑖1 −→𝑇 DivErr, so we’re done.
If binop = quotient and 𝑖1 ≠ 0, then binop 𝑖0 𝑖1 −→𝑇 (𝑖0/𝑖1).
Since 𝑖0/𝑖1 ∈ Z, we’re done.
If binop = sum then binop 𝑖0 𝑖1 −→𝑇 𝑖0 + 𝑖1.
Since 𝑖0 + 𝑖1 ∈ Z, we’re done. □

Lemma 8.46 (T-If compatibility).

⟦Γ0 ⊢tru 𝑒0 ≤ 𝑒′0 : Bool⟧
𝑇
𝐶

⟦Γ0 ⊢tru 𝑒1 ≤ 𝑒′1 : 𝜏0⟧
𝑇
𝐶

⟦Γ0 ⊢tru 𝑒2 ≤ 𝑒′2 : 𝜏1⟧
𝑇
𝐶

⟦Γ0 ⊢tru if 𝑒0 then 𝑒1 else 𝑒2 ≤ if 𝑒′0 then 𝑒
′
1 else 𝑒

′
2 : 𝜏0 ⊔ 𝜏1⟧

𝑇
𝐶

Proof. Let (𝑘,𝛾,𝛾 ′) ∈ G𝑇 ⟦Γ⟧.
We want to show (𝑘,𝛾 (if 𝑒0 then 𝑒1 else 𝑒2), 𝛾 ′ (if 𝑒′0 then 𝑒

′
1 else 𝑒

′
2)) ∈ E

𝑇 ⟦𝜏0 ⊔ 𝜏1⟧.
Note 𝛾 (if 𝑒0 then 𝑒1 else 𝑒2) = if 𝛾 (𝑒0) then 𝛾 (𝑒1) else 𝛾 (𝑒2) and similarly for 𝑒′0, 𝑒

′
1, 𝑒2.

From the first hypothesis applied to 𝛾 , 𝛾 ′, we know (𝑘,𝛾 (𝑒0), 𝛾 ′ (𝑒′0)) ∈ E
𝑇 ⟦Bool⟧.

Unfolding, we have that there is a 𝑗 ≤ 𝑘 and irreducible 𝑒4, 𝑒′4 such that 𝑒0 −→𝑗

𝑇
𝑒4 and 𝑒′0 −→

∗
𝑇
𝑒′4.

If 𝑒4, 𝑒′4 ∈ Err
• then we’re done, because the entire if statement errors.

Otherwise, (𝑘 − 𝑗, 𝑒4, 𝑒′4) ∈ V
𝑇 ⟦Bool⟧.

Unfolding the location and then the value relation, we get that 𝑒4 = 𝑒′4 = True or 𝑒4 = 𝑒′4 = False.

• 𝑒4 = 𝑒′4 = True: Note by OS, if 𝛾 (𝑒0) then 𝛾 (𝑒1) else 𝛾 (𝑒2) −→𝑗

𝑇
if 𝑒4 then 𝛾 (𝑒1) else 𝛾 (𝑒2) −→𝑇 𝛾 (𝑒1), and

similarly for if 𝛾 ′ (𝑒′0) then 𝛾
′ (𝑒′1) else 𝛾 (𝑒

′
2).

By Lemma 8.13, we have (𝑘 − 𝑗 − 1, 𝛾, 𝛾 ′) ∈ G𝑇 ⟦Γ1⟧.
From the second hypothesis, we get (𝑘 − 𝑗 − 1, 𝛾 (𝑒1), 𝛾 ′ (𝑒′1)) ∈ E

𝑇 ⟦𝜏0⟧.
Finally, by Lemma 6.21, we get (𝑘 − 𝑗 − 1, 𝛾 (𝑒1), 𝛾 ′ (𝑒′1)) ∈ E

𝑇 ⟦𝜏0 ⊔ 𝜏1⟧ which is sufficient to complete the proof.
• 𝑒4 = 𝑒′4 = False: same as other case except replace 𝑒1 with 𝑒2.

2024-04-22 00:20. Page 87 of 1–108.



88

□

Lemma 8.47 (T-IfBot compatibility).

⟦Γ0 ⊢tru 𝑒0 ≤ 𝑒′0 : ⊥⟧
𝑇
𝐶

⟦Γ0 ⊢tru 𝑒1 ≤ 𝑒′1 : 𝜏0⟧
𝑇
𝐶

⟦Γ0 ⊢tru 𝑒2 ≤ 𝑒′2 : 𝜏1⟧
𝑇
𝐶

⟦Γ0 ⊢tru if 𝑒0 then 𝑒1 else 𝑒2 ≤ if 𝑒′0 then 𝑒
′
1 else 𝑒

′
2 : ⊥⟧

𝑇
𝐶

Proof. Similar reasoning to T-AppBot. □

Lemma 8.48 (T-Sub compatibility).

⟦Γ0 ⊢tru 𝑒0 ≤ 𝑒′0 : 𝜏0⟧
𝑇
𝐶

𝜏0 ⩽: 𝜏1

⟦Γ0 ⊢tru 𝑒0 ≤ 𝑒′0 : 𝜏1⟧
𝑇
𝐶

Proof. Follows directly from Lemma 8.17. □

8.4.4 Binary relation: Fundamental Property

Theorem 8.49 (Binary relation is reflexive). If Γ ⊢tru 𝑒 : 𝜏 then ⟦Γ ⊢tru 𝑒 ≈ 𝑒 : 𝜏⟧𝑇𝐶

Proof. By induction over the typing derivation, using the compatibility lemmata. □

8.5 Context relation—Proofs

8.5.1 Context relation: Compatibility Lemmata

Lemma 8.50 (T-Ctx-Hole compatibility).
Γ′ ⊆ Γ

⟦Γ ⊢tru [] ≈ [] : (Γ′ ⊲ 𝜏) ⇝ 𝜏⟧𝑇𝐶

Proof. Let 𝑒, 𝑒′ such that ⟦Γ′ ⊢tru 𝑒 ≈ 𝑒′ : 𝜏⟧.
We want to show ⟦Γ ⊢tru 𝑒 ≈ 𝑒′ : 𝜏⟧.
Note ∀(𝑘,𝛾,𝛾 ′) ∈ G𝑇 ⟦Γ⟧, (𝑘,𝛾 |dom(Γ′ ) , 𝛾 ′ |dom(Γ′ ) ) ∈ G𝑇 ⟦Γ′⟧.
And note 𝛾 (𝑒) = 𝛾 |dom(Γ′ ) (𝑒) and similarly for 𝑒′.
Then given such 𝑘,𝛾,𝛾 ′, we can apply the hypothesis to get that (𝑘,𝛾 (𝑒), 𝛾 ′ (𝑒′)) ∈ E𝑇 ⟦𝜏⟧, which is sufficient to

complete the proof. □

Lemma 8.51 (T-Ctx-Lam compatibility).
⟦Γ, (𝑥 :𝐾) ⊢tru 𝐸 ≈ 𝐸′ : (Γ′, (𝑥 :𝐾) ⊲ 𝜏) ⇝ 𝜏 ′⟧𝑇𝐶

⟦Γ ⊢tru 𝜆(𝑥 :𝐾) . 𝐸 ≈ 𝜆(𝑥 :𝐾). 𝐸′ : (Γ′, (𝑥 :𝐾) ⊲ 𝜏) ⇝ ∗→𝜏 ′⟧𝑇𝐶

Proof. Let 𝑒, 𝑒′ such that ⟦Γ′, (𝑥 :𝐾) ⊢tru 𝑒 ≈ 𝑒′ : 𝜏⟧.
We want to show ⟦Γ ⊢tru 𝜆(𝑥 :𝐾). 𝑒 ≈ 𝜆(𝑥 :𝐾) . 𝑒′ : ∗ → 𝜏 ′⟧.
From our hypothesis we get ⟦Γ′, (𝑥 :𝐾) ⊢tru 𝐸 [𝑒] ≈ 𝐸 [𝑒′] : 𝜏 ′⟧.
Then the case follows from Lemma 8.36. □

Lemma 8.52 (T-Ctx-Pair-1 compatibility).
⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ′ ⊲ 𝜏) ⇝ 𝜏1⟧𝑇𝐶 ⟦Γ ⊢tru 𝑒 ≈ 𝑒′ : 𝜏2⟧𝑇𝐶

⟦Γ ⊢tru ⟨𝐸, 𝑒⟩ ≈ ⟨𝐸′, 𝑒′⟩ : (Γ′ ⊲ 𝜏) ⇝ 𝜏1×𝜏2⟧𝑇𝐶

Proof. Let 𝑒, 𝑒′ such that ⟦Γ′ ⊢tru 𝑒1 ≈ 𝑒′1 : 𝜏⟧.
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We want to show ⟦Γ′ ⊢tru ⟨𝐸 [𝑒1], 𝑒⟩ ≈ ⟨𝐸′ [𝑒′1], 𝑒⟩ : 𝜏1 × 𝜏2⟧.
From our first hypothesis, we have ⟦Γ′ ⊢tru 𝐸 [𝑒1] ≈ 𝐸′ [𝑒′1] : 𝜏1⟧.
Then the case follows by Lemma 8.37. □

Lemma 8.53 (T-Ctx-Pair-2 compatibility).
⟦Γ ⊢tru 𝑒 ≈ 𝑒′ : 𝜏1⟧𝑇𝐶 ⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ′ ⊲ 𝜏) ⇝ 𝜏2⟧𝑇𝐶

⟦Γ ⊢tru ⟨𝑒, 𝐸⟩ ≈ ⟨𝑒′, 𝐸′⟩ : (Γ′ ⊲ 𝜏) ⇝ 𝜏1×𝜏2⟧𝑇𝐶
Proof. Analagous to T-Ctx-Pair-1. □

Lemma 8.54 (T-Ctx-App-1 compatibility).
⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ′ ⊲ 𝜏) ⇝ ∗→𝜏1⟧𝑇𝐶 ⟦Γ ⊢tru 𝑒 ≈ 𝑒′ : 𝜏2⟧𝑇𝐶
⟦Γ ⊢tru app{𝐾} 𝐸 𝑒 ≈ app{𝐾} 𝐸′ 𝑒′ : (Γ′ ⊲ 𝜏) ⇝ 𝐾 ⊓ 𝜏1⟧𝑇𝐶

Proof. Let 𝑒, 𝑒′ such that ⟦Γ′ ⊢tru 𝑒1 ≈ 𝑒′1 : ∗ → 𝜏1⟧.
We want to show ⟦Γ ⊢tru app{𝐾} 𝐸 [𝑒1] 𝑒 ≈ app{𝐾} 𝐸′ [𝑒′1] 𝑒

′ : 𝐾 ⊓ 𝜏1⟧.
By the first hypothesis, we have ⟦Γ ⊢tru 𝐸 [𝑒1] ≈ 𝐸′ [𝑒′1] : ∗ → 𝜏1⟧.
Then the case follows by Lemma 8.22. □

Lemma 8.55 (T-Ctx-AppBot-1 compatibility).
⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ′ ⊲ 𝜏) ⇝ ⊥⟧𝑇𝐶 ⟦Γ ⊢tru 𝑒 ≈ 𝑒′ : 𝜏2⟧𝑇𝐶
⟦Γ ⊢tru app{𝐾} 𝐸 𝑒 ≈ app{𝐾} 𝐸′ 𝑒′ : (Γ′ ⊲ 𝜏) ⇝ ⊥⟧𝑇𝐶

Proof. Analogous to T-Ctx-App-1. □

Lemma 8.56 (T-Ctx-App-2 compatibility).
⟦Γ ⊢tru 𝑒 ≈ 𝑒′ : ∗→𝜏1⟧𝑇𝐶 ⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ′ ⊲ 𝜏) ⇝ 𝜏2⟧𝑇𝐶
⟦Γ ⊢tru app{𝐾} 𝑒 𝐸 ≈ app{𝐾} 𝑒′ 𝐸′ : (Γ′ ⊲ 𝜏) ⇝ 𝐾 ⊓ 𝜏1⟧𝑇𝐶

Proof. Analogous to T-Ctx-App-1. □

Lemma 8.57 (T-Ctx-AppBot-2 compatibility).
⟦Γ ⊢tru 𝑒 ≈ 𝑒′ : ⊥⟧𝑇𝐶 ⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ′ ⊲ 𝜏) ⇝ 𝜏2⟧𝑇𝐶
⟦Γ ⊢tru app{𝐾} 𝑒 𝐸 ≈ app{𝐾} 𝑒′ 𝐸′ : (Γ′ ⊲ 𝜏) ⇝ ⊥⟧𝑇𝐶

Proof. Analogous to T-Ctx-App-1. □

Lemma 8.58 (T-Ctx-Fst compatibility).
⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ ⊲ 𝜏) ⇝ 𝜏1×𝜏2⟧𝑇𝐶

⟦Γ ⊢tru fst{𝐾} 𝐸 ≈ fst{𝐾} 𝐸′ : (Γ ⊲ 𝜏) ⇝ 𝐾 ⊓ 𝜏1⟧𝑇𝐶
Proof. Let 𝑒, 𝑒′ such that ⟦Γ ⊢tru 𝑒 ≈ 𝑒′ : 𝜏1 × 𝜏2⟧.
We want to show ⟦Γ ⊢tru fst{𝐾} 𝐸 [𝑒] ≈ fst{𝐾} 𝐸′ [𝑒′] : 𝐾 ⊓ 𝜏1⟧.
By the hypothesis, we get ⟦Γ ⊢tru 𝐸 [𝑒] ≈ 𝐸′ [𝑒′] : 𝜏1 × 𝜏2⟧.
Then the case follows by Lemma 8.25. □

Lemma 8.59 (T-Ctx-FstBot compatibility).
⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ ⊲ 𝜏) ⇝ ⊥⟧𝑇𝐶

⟦Γ ⊢tru fst{𝐾} 𝐸 ≈ fst{𝐾} 𝐸′ : (Γ ⊲ 𝜏) ⇝ ⊥⟧𝑇𝐶
Proof. Analagous to T-Ctx-Fst. □

Lemma 8.60 (T-Ctx-Snd compatibility).
⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ ⊲ 𝜏) ⇝ 𝜏1×𝜏2⟧𝑇𝐶

⟦Γ ⊢tru snd{𝐾} 𝐸 ≈ snd{𝐾} 𝐸′ : (Γ ⊲ 𝜏) ⇝ 𝐾 ⊓ 𝜏2⟧𝑇𝐶
Proof. Analagous to T-Ctx-Fst. □
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Lemma 8.61 (T-Ctx-SndBot compatibility).
⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ ⊲ 𝜏) ⇝ ⊥⟧𝑇𝐶

⟦Γ ⊢tru snd{𝐾} 𝐸 ≈ snd{𝐾} 𝐸′ : (Γ ⊲ 𝜏) ⇝ ⊥⟧𝑇𝐶
Proof. Analagous to T-Ctx-Fst. □

Lemma 8.62 (T-Ctx-Binop-1 compatibility).
⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ ⊲ 𝜏) ⇝ 𝜏1⟧𝑇𝐶 ⟦Γ ⊢tru 𝑒 ≈ 𝑒′ : 𝜏2⟧𝑇𝐶
⟦Γ ⊢tru binop𝐸 𝑒 ≈ binop𝐸′ 𝑒′ : (Γ ⊲ 𝜏) ⇝ Δ(binop, 𝜏1, 𝜏2)⟧𝑇𝐶

Proof. Let 𝑒1, 𝑒′1 such that ⟦Γ ⊢tru 𝑒1 ≈ 𝑒′1 : 𝜏⟧.
We want to show ⟦Γ ⊢tru binop𝐸 [𝑒1] 𝑒 ≈ binop𝐸′ [𝑒′1] 𝑒

′ : Δ(binop, 𝜏1, 𝜏2)⟧.
By the first hypothesis, ⟦Γ ⊢tru 𝐸 [𝑒1] ≈ 𝐸′ [𝑒′1] : 𝜏1⟧.
Then the case follows by Lemma 8.45.

□

Lemma 8.63 (T-Ctx-Binop-2 compatibility).
⟦Γ ⊢tru 𝑒 ≈ 𝑒′ : 𝜏1⟧𝑇𝐶 ⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ ⊲ 𝜏) ⇝ 𝜏2⟧𝑇𝐶
⟦Γ ⊢tru binop𝐸 𝑒 ≈ binop𝐸′ 𝑒′ : (Γ ⊲ 𝜏) ⇝ Δ(binop, 𝜏1, 𝜏2)⟧𝑇𝐶

Proof. Analagous to T-Ctx-Binop-1. □

Lemma 8.64 (T-Ctx-Bnd-1 compatibility).
⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ ⊲ 𝜏) ⇝ 𝜏 ′⟧𝑇𝐶

⟦Γ ⊢tru cast {𝐾2 ⇐ 𝐾1} 𝐸 ≈ cast {𝐾2 ⇐ 𝐾1} 𝐸′ : (Γ ⊲ 𝜏) ⇝ 𝐾2 ⊓ 𝐾1 ⊓ 𝜏 ′⟧𝑇𝐶
Proof. □

Lemma 8.65 (T-Ctx-If-1 compatibility).
⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ ⊲ 𝜏) ⇝ Bool⟧𝑇𝐶 ⟦Γ ⊢tru 𝑒1 ≈ 𝑒′1 : 𝜏1⟧

𝑇
𝐶 ⟦Γ ⊢tru 𝑒2 ≈ 𝑒′2 : 𝜏2⟧

𝑇
𝐶

⟦Γ ⊢tru if 𝐸 then 𝑒1 else 𝑒2 ≈ if 𝐸′ then 𝑒′1 else 𝑒
′
2 : (Γ ⊲ 𝜏) ⇝ 𝜏1 ⊔ 𝜏2⟧𝑇𝐶

Proof. Let 𝑒0, 𝑒′0 such that ⟦Γ ⊢tru 𝑒0 ≈ 𝑒′0 : 𝜏⟧.
We want to show ⟦Γ ⊢tru if 𝐸 [𝑒0] then 𝑒1 else 𝑒2 ≈ if 𝐸′ [𝑒′0] then 𝑒

′
1 else 𝑒

′
2 : 𝜏1 ⊔ 𝜏2⟧.

By the first hypothesis, ⟦Γ ⊢tru 𝐸 [𝑒0] ≈ 𝐸′ [𝑒′0] : Bool⟧.
The case follows by Lemma 8.46. □

Lemma 8.66 (T-Ctx-IfBot-1 compatibility).
⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ ⊲ 𝜏) ⇝ ⊥⟧𝑇𝐶 ⟦Γ ⊢tru 𝑒1 ≈ 𝑒′1 : 𝜏1⟧

𝑇
𝐶 ⟦Γ ⊢tru 𝑒2 ≈ 𝑒′2 : 𝜏2⟧

𝑇
𝐶

⟦Γ ⊢tru if 𝐸 then 𝑒1 else 𝑒2 ≈ if 𝐸′ then 𝑒′1 else 𝑒
′
2 : (Γ ⊲ 𝜏) ⇝ ⊥⟧𝑇𝐶

Proof. Analagous to T-Ctx-If-1 □

Lemma 8.67 (T-Ctx-If-2 compatibility).
⟦Γ ⊢tru 𝑒𝑏 ≈ 𝑒′𝑏 : Bool⟧𝑇𝐶 ⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ ⊲ 𝜏) ⇝ 𝜏1⟧𝑇𝐶 ⟦Γ ⊢tru 𝑒2 ≈ 𝑒′2 : 𝜏2⟧

𝑇
𝐶

⟦Γ ⊢tru if 𝑒𝑏 then 𝐸 else 𝑒2 ≈ if 𝑒′
𝑏
then 𝐸′ else 𝑒′2 : (Γ ⊲ 𝜏) ⇝ 𝜏1 ⊔ 𝜏2⟧𝑇𝐶

Proof. Analagous to T-Ctx-If-1 □

Lemma 8.68 (T-Ctx-IfBot-2 compatibility).
⟦Γ ⊢tru 𝑒𝑏 ≈ 𝑒′𝑏 : ⊥⟧𝑇𝐶 ⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ ⊲ 𝜏) ⇝ 𝜏1⟧𝑇𝐶 ⟦Γ ⊢tru 𝑒2 ≈ 𝑒′2 : 𝜏2⟧

𝑇
𝐶

⟦Γ ⊢tru if 𝑒𝑏 then 𝐸 else 𝑒2 ≈ if 𝑒′
𝑏
then 𝐸′ else 𝑒′2 : (Γ ⊲ 𝜏) ⇝ ⊥⟧𝑇𝐶

Proof. Analagous to T-Ctx-If-1 □

Lemma 8.69 (T-Ctx-If-3 compatibility).
⟦Γ ⊢tru 𝑒𝑏 ≈ 𝑒′𝑏 : Bool⟧𝑇𝐶 ⟦Γ ⊢tru 𝑒1 ≈ 𝑒′1 : 𝜏1⟧

𝑇
𝐶 ⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ ⊲ 𝜏) ⇝ 𝜏2⟧𝑇𝐶

⟦Γ ⊢tru if 𝑒𝑏 then 𝑒1 else 𝐸 ≈ if 𝑒′
𝑏
then 𝑒′1 else 𝐸

′ : (Γ ⊲ 𝜏) ⇝ 𝜏1 ⊔ 𝜏2⟧𝑇𝐶
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Proof. Analagous to T-Ctx-If-1 □

Lemma 8.70 (T-Ctx-IfBot-3 compatibility).
⟦Γ ⊢tru 𝑒𝑏 ≈ 𝑒′𝑏 : ⊥⟧𝑇𝐶 ⟦Γ ⊢tru 𝑒1 ≈ 𝑒′1 : 𝜏1⟧

𝑇
𝐶 ⟦Γ ⊢tru 𝐸 ≈ 𝐸′ : (Γ ⊲ 𝜏) ⇝ 𝜏2⟧𝑇𝐶

⟦Γ ⊢tru if 𝑒𝑏 then 𝑒1 else 𝐸 ≈ if 𝑒′
𝑏
then 𝑒′1 else 𝐸

′ : (Γ ⊲ 𝜏) ⇝ ⊥⟧𝑇𝐶

Proof. Analagous to T-Ctx-If-1 □

8.5.2 Context relation: Fundamental Property

Theorem 8.71 (Context relation is reflexive). If Γ ⊢tru 𝐶 : (Γ′ ⊲𝜏) ⇝ 𝜏 ′, then ⟦Γ ⊢tru 𝐶 ≈ 𝐶 : (Γ′ ⊢tru 𝜏) ⇝ 𝜏 ′⟧.

Proof. By induction over the typing derivation, using the compatibility lemmata. □

8.6 Check optimization

𝐾 \ 𝜏 =

∗ if 𝜏 ≤ 𝐾

𝐾 otherwise
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Γ ⊢tru 𝑒 : 𝜏 ⇝ 𝑒 optimization

T-Var
(𝑥0 :𝐾0) ∈ Γ0

Γ0 ⊢tru 𝑥0 : 𝐾0 ⇝ 𝑥0

T-Nat

Γ0 ⊢tru 𝑛0 : Nat ⇝ 𝑛0

T-Int

Γ0 ⊢tru 𝑖0 : Int ⇝ 𝑖0

T-True

Γ0 ⊢tru True : Bool ⇝ True

T-False

Γ0 ⊢tru False : Bool ⇝ False

T-Lam
Γ0, (𝑥0 :𝐾0) ⊢tru 𝑒0 : 𝜏1 ⇝ 𝑒′0

Γ0 ⊢tru 𝜆(𝑥0 :𝐾0) . 𝑒0 : ∗→𝜏1 ⇝ 𝜆(𝑥0 :𝐾0) . 𝑒′0

T-Pair
Γ0 ⊢tru 𝑒0 : 𝜏0 ⇝ 𝑒′0
Γ0 ⊢tru 𝑒1 : 𝜏1 ⇝ 𝑒′1

Γ0 ⊢tru ⟨𝑒0, 𝑒1⟩ : 𝜏0×𝜏1 ⇝ ⟨𝑒′0, 𝑒
′
1⟩

T-Cast
Γ0 ⊢tru 𝑒0 : 𝜏0 ⇝ 𝑒′0

Γ0 ⊢tru cast {𝐾1 ⇐ 𝐾0} 𝑒0 : 𝐾1 ⊓ 𝐾0 ⊓ 𝜏0 ⇝ cast {𝐾1 \ (𝐾0 ⊓ 𝜏0) ⇐ 𝐾0 \ 𝜏0} 𝑒′0

T-App
Γ0 ⊢tru 𝑒0 : ∗→𝜏1 ⇝ 𝑒′0
Γ0 ⊢tru 𝑒1 : 𝜏 ′0 ⇝ 𝑒′1

Γ0 ⊢tru app{𝐾1} 𝑒0 𝑒1 : 𝐾1 ⊓ 𝜏1 ⇝ app{𝐾1 \ 𝜏1} 𝑒′0 𝑒
′
1

T-AppBot
Γ0 ⊢tru 𝑒0 : ⊥⇝ 𝑒′0
Γ0 ⊢tru 𝑒1 : 𝜏 ′0 ⇝ 𝑒′1

Γ0 ⊢tru app{𝐾1} 𝑒0 𝑒1 : ⊥⇝ app{𝐾1 \ ⊥} 𝑒′0 𝑒
′
1

T-Fst
Γ0 ⊢tru 𝑒0 : 𝜏0×𝜏1 ⇝ 𝑒′0

Γ0 ⊢tru fst{𝐾0} 𝑒0 : 𝐾0 ⊓ 𝜏0 ⇝ app{𝐾0 \ 𝜏0} 𝑒′0

T-FstBot
Γ0 ⊢tru 𝑒0 : ⊥⇝ 𝑒′0

Γ0 ⊢tru fst{𝐾0} 𝑒0 : ⊥⇝ fst{𝐾0 \ ⊥} 𝑒′0

T-Snd
Γ0 ⊢tru 𝑒0 : 𝜏0×𝜏1 ⇝ 𝑒′0

Γ0 ⊢tru snd{𝐾1} 𝑒0 : 𝐾1 ⊓ 𝜏1 ⇝ snd{𝐾1 \ 𝜏1} 𝑒′0

T-SndBot
Γ0 ⊢tru 𝑒0 : ⊥⇝ 𝑒′0

Γ0 ⊢tru snd{𝐾1} 𝑒0 : ⊥⇝ snd{𝐾1 \ ⊥} 𝑒′0

T-Binop
Γ0 ⊢tru 𝑒0 : 𝜏0 ⇝ 𝑒′0
Γ0 ⊢tru 𝑒1 : 𝜏1 ⇝ 𝑒′1

Γ0 ⊢tru binop 𝑒0 𝑒1 : Δ(binop, 𝜏0, 𝜏1) ⇝ binop 𝑒′0 𝑒
′
1

T-If
Γ0 ⊢tru 𝑒0 : Bool ⇝ 𝑒′0
Γ0 ⊢tru 𝑒1 : 𝜏0 ⇝ 𝑒′1
Γ0 ⊢tru 𝑒2 : 𝜏1 ⇝ 𝑒′2

Γ0 ⊢tru if 𝑒0 then 𝑒1 else 𝑒2 : 𝜏0 ⊔ 𝜏1 ⇝ if 𝑒′0 then 𝑒
′
1 else 𝑒

′
2

T-IfBot
Γ0 ⊢tru 𝑒0 : ⊥⇝ 𝑒′0
Γ0 ⊢tru 𝑒1 : 𝜏0 ⇝ 𝑒′1
Γ0 ⊢tru 𝑒2 : 𝜏1 ⇝ 𝑒′2

Γ0 ⊢tru if 𝑒0 then 𝑒1 else 𝑒2 : ⊥⇝ if 𝑒′0 then 𝑒
′
1 else 𝑒

′
2

T-Sub
Γ0 ⊢tru 𝑒0 : 𝜏0 ⇝ 𝑒′0

𝜏0 ⩽: 𝜏1

Γ0 ⊢tru 𝑒0 : 𝜏1 ⇝ 𝑒′0

Theorem 8.72 (Check-Elision Correctness). If Γ ⊢tru 𝑒 : 𝜏 ⇝ 𝑒′, then Γ ⊢tru 𝑒 ≈ctx 𝑒′ : 𝜏 .

Proof. Consider arbitrary Γ, 𝑒, 𝜏, 𝑒′ s.t. Γ ⊢tru 𝑒 : 𝜏 ⇝ 𝑒′. By Lemma 8.92, ⟦Γ ⊢tru 𝑒 ≈ 𝑒′ : 𝜏⟧𝑇𝐶 . By Theorem 8.3,
Γ ⊢tru 𝑒 ≈ctx 𝑒′ : 𝜏 , which is what was to be shown. □
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8.7 Check-elision—Proofs
Lemma 8.73 (𝐾 \ 𝜏 preserves meets). 𝐾 ⊓ 𝜏 = (𝐾 \ 𝜏) ⊓ 𝜏 .

Proof. Immediate by unfolding and lattice properties. □

8.7.1 Check-elision: Compatibility Lemmata

Lemma 8.74 (T-Var compatibility).
(𝑥0 :𝐾0) ∈ Γ0

⟦Γ0 ⊢tru 𝑥0 ≈ 𝑥0 : 𝐾0⟧𝑇𝐶
Proof. By unfolding and Lemma 8.31. □

Lemma 8.75 (T-Nat compatibility).
⟦Γ0 ⊢tru 𝑛0 ≈ 𝑛0 : Nat⟧𝑇𝐶

Proof. By unfolding and Lemma 8.32. □

Lemma 8.76 (T-Int compatibility).
⟦Γ0 ⊢tru 𝑖0 ≈ 𝑖0 : Int⟧𝑇𝐶

Proof. By unfolding and Lemma 8.32. □

Lemma 8.77 (T-True compatibility).
⟦Γ0 ⊢tru True ≈ True : Bool⟧𝑇𝐶

Proof. By unfolding and Lemma 8.34. □

Lemma 8.78 (T-False compatibility).
⟦Γ0 ⊢tru False ≈ False : Bool⟧𝑇𝐶

Proof. By unfolding and Lemma 8.35. □

Lemma 8.79 (T-Lam compatibility).
⟦Γ0, (𝑥0 :𝐾0) ⊢tru 𝑒0 ≈ 𝑒′0 : 𝜏1⟧

𝑇
𝐶

⟦Γ0 ⊢tru 𝜆(𝑥0 :𝐾0). 𝑒0 ≈ 𝜆(𝑥0 :𝐾0). 𝑒′0 : ∗→𝜏1⟧𝑇𝐶
Proof. By unfolding and Lemma 8.36. □

Lemma 8.80 (T-Pair compatibility).

⟦Γ0 ⊢tru 𝑒0 ≈ 𝑒′0 : 𝜏0⟧
𝑇
𝐶

⟦Γ0 ⊢tru 𝑒1 ≈ 𝑒′1 : 𝜏1⟧
𝑇
𝐶

⟦Γ0 ⊢tru ⟨𝑒0, 𝑒1⟩ ≈ ⟨𝑒′0, 𝑒
′
1⟩ : 𝜏0×𝜏1⟧

𝑇
𝐶

Proof. By unfolding and Lemma 8.37. □

Lemma 8.81 (T-Cast compatibility).
⟦Γ ⊢tru 𝑒1 ≈ 𝑒2 : 𝜏⟧𝑇𝐶

⟦Γ ⊢tru cast {𝐾 ′ ⇐ 𝐾} 𝑒1 ≈ cast {𝐾 ′ \ (𝐾 ⊓ 𝜏) ⇐ 𝐾 \ 𝜏} 𝑒2 : 𝐾 ′ ⊓ 𝐾 ⊓ 𝜏⟧𝑇𝐶
Proof. Follows immediately from lattice properties and Lemma 8.21. □

Lemma 8.82 (T-App compatibility).

⟦Γ0 ⊢tru 𝑒0 ≈ 𝑒′0 : ∗→𝜏1⟧𝑇𝐶
⟦Γ0 ⊢tru 𝑒1 ≈ 𝑒′1 : 𝜏

′
0⟧

𝑇
𝐶

⟦Γ0 ⊢tru app{𝐾1} 𝑒0 𝑒1 ≈ app{𝐾1 \ 𝜏1} 𝑒′0 𝑒
′
1 : 𝐾1 ⊓ 𝜏1⟧

𝑇
𝐶
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Proof. Follows immediately from lattice properties and Lemma 8.23. □

Lemma 8.83 (T-AppBot compatibility).

⟦Γ0 ⊢tru 𝑒0 ≈ 𝑒′0 : ⊥⟧
𝑇
𝐶

⟦Γ0 ⊢tru 𝑒1 ≈ 𝑒′1 : 𝜏
′
0⟧

𝑇
𝐶

⟦Γ0 ⊢tru app{𝐾1} 𝑒0 𝑒1 ≈ app{𝐾1 \ ⊥} 𝑒′0 𝑒
′
1 : ⊥⟧

𝑇
𝐶

Proof. Follows immediately from Lemma 8.24. □

Lemma 8.84 (T-Fst compatibility).
⟦Γ0 ⊢tru 𝑒0 ≈ 𝑒′0 : 𝜏0×𝜏1⟧

𝑇
𝐶

⟦Γ0 ⊢tru fst{𝐾0} 𝑒0 ≈ fst{𝐾0 \ 𝜏0} 𝑒′0 : 𝐾0 ⊓ 𝜏0⟧
𝑇
𝐶

Proof. Follows immediately from lattice properties and Lemma 8.26. □

Lemma 8.85 (T-FstBot compatibility).
⟦Γ0 ⊢tru 𝑒0 ≈ 𝑒′0 : ⊥⟧

𝑇
𝐶

⟦Γ0 ⊢tru fst{𝐾0} 𝑒0 ≈ fst{𝐾0 \ ⊥} 𝑒′0 : ⊥⟧
𝑇
𝐶

Proof. Follows immediately from Lemma 8.27. □

Lemma 8.86 (T-Snd compatibility).
⟦Γ0 ⊢tru 𝑒0 ≈ 𝑒′0 : 𝜏0×𝜏1⟧

𝑇
𝐶

⟦Γ0 ⊢tru snd{𝐾1} 𝑒0 ≈ snd{𝐾1 \ 𝜏1} 𝑒′0 : 𝐾1 ⊓ 𝜏1⟧
𝑇
𝐶

Proof. Follows immediately from lattice properties and Lemma 8.29. □

Lemma 8.87 (T-SndBot compatibility).
⟦Γ0 ⊢tru 𝑒0 ≈ 𝑒′0 : ⊥⟧

𝑇
𝐶

⟦Γ0 ⊢tru snd{𝐾1} 𝑒0 ≈ snd{𝐾1 \ ⊥} 𝑒′0 : ⊥⟧
𝑇
𝐶

Proof. Follows immediately from Lemma 8.30. □

Lemma 8.88 (T-Binop compatibility).

⟦Γ0 ⊢tru 𝑒0 ≈ 𝑒′0 : 𝜏0⟧
𝑇
𝐶

⟦Γ0 ⊢tru 𝑒1 ≈ 𝑒′1 : 𝜏1⟧
𝑇
𝐶

⟦Γ0 ⊢tru binop 𝑒0 𝑒1 ≈ binop 𝑒′0 𝑒
′
1 : Δ(binop, 𝜏0, 𝜏1)⟧

𝑇
𝐶

Proof. By unfolding and Lemma 8.45. □

Lemma 8.89 (T-If compatibility).

⟦Γ0 ⊢tru 𝑒0 ≈ 𝑒′0 : Bool⟧
𝑇
𝐶

⟦Γ0 ⊢tru 𝑒1 ≈ 𝑒′1 : 𝜏0⟧
𝑇
𝐶

⟦Γ0 ⊢tru 𝑒2 ≈ 𝑒′2 : 𝜏1⟧
𝑇
𝐶

⟦Γ0 ⊢tru if 𝑒0 then 𝑒1 else 𝑒2 ≈ if 𝑒′0 then 𝑒
′
1 else 𝑒

′
2 : 𝜏0 ⊔ 𝜏1⟧

𝑇
𝐶

Proof. By unfolding and Lemma 8.46. □

Lemma 8.90 (T-IfBot compatibility).

⟦Γ0 ⊢tru 𝑒0 ≈ 𝑒′0 : ⊥⟧
𝑇
𝐶

⟦Γ0 ⊢tru 𝑒1 ≈ 𝑒′1 : 𝜏0⟧
𝑇
𝐶

⟦Γ0 ⊢tru 𝑒2 ≈ 𝑒′2 : 𝜏1⟧
𝑇
𝐶

⟦Γ0 ⊢tru if 𝑒0 then 𝑒1 else 𝑒2 ≈ if 𝑒′0 then 𝑒
′
1 else 𝑒

′
2 : ⊥⟧

𝑇
𝐶

Proof. By unfolding and Lemma 8.47. □

Lemma 8.91 (T-Sub compatibility).

⟦Γ0 ⊢tru 𝑒0 ≈ 𝑒′0 : 𝜏0⟧
𝑇
𝐶

𝜏0 ⩽: 𝜏1

⟦Γ0 ⊢tru 𝑒0 ≈ 𝑒′0 : 𝜏1⟧
𝑇
𝐶

Proof. By unfolding and Lemma 8.48. □
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8.7.2 Check-elision: Fundamental Property

Theorem 8.92 (Check-elision is correct for Binary LR). If Γ ⊢tru 𝑒 : 𝜏 ⇝ 𝑒′, then ⟦Γ ⊢tru 𝑒 ≈ 𝑒′ : 𝜏⟧𝑇𝐶 .

Proof. By induction over the check-elision judgment derivation, using the compatibility lemmata. □
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9 GTL
Surface language

𝑡 F 𝑥 | 𝑛 | 𝑖 | True | False | 𝜆(𝑥 :𝐾) → 𝜏 . 𝑡 | ⟨𝑡, 𝑡⟩ | 𝑡 𝑡 | fst 𝑡 | snd 𝑡 | binop 𝑡 𝑡 | if 𝑡 then 𝑡 else 𝑡
𝜏 F Nat | Int | Bool | 𝜏×𝜏 | ∗→𝜏 | ∗
binop F sum | quotient
Γ F · | Γ, (𝑥 :𝜏)
𝑛 F N

𝑖 F Z

Δ−1 (binop, 𝜏) =

Int, Int if 𝜏 = Int

Nat,Nat if 𝜏 = Nat
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9.1 Universal Translation

[𝜏 ↙ 𝜏 ′]𝑒

[𝜏 ↙ 𝜏 ′]𝑒 =

𝑒 if 𝜏 :⩾ 𝜏 ′

cast {𝜏 ⇐ 𝜏 ′} 𝑒 if 𝜏 ̸:⩾ 𝜏 ′ ∧ 𝜏 ∼ 𝜏 ′

𝜏 ∼ 𝜏 ′

𝜏 ∼ ∗ Nat ∼ Int

𝜏0 ∼ 𝜏2 𝜏1 ∼ 𝜏3

𝜏0×𝜏1 ∼ 𝜏2×𝜏3

𝜏0 ∼ 𝜏2 𝜏1 ∼ 𝜏3

𝜏0→𝜏1 ∼ 𝜏2→𝜏3 𝜏 ∼ 𝜏

𝜏 ∼ 𝜏 ′

𝜏 ′ ∼ 𝜏

⊔̃, ⊓̃: 𝜏 × 𝜏 −→ 𝜏

Nat ⊔̃ Int = Int

𝜏0→𝜏1 ⊔̃ 𝜏2→𝜏3 = 𝜏0 ⊓̃ 𝜏2→𝜏1 ⊔̃ 𝜏3
𝜏0×𝜏1 ⊔̃ 𝜏2×𝜏3 = 𝜏0 ⊔̃ 𝜏2×𝜏1 ⊔̃ 𝜏3

𝜏 ⊔̃ ∗ = 𝜏

𝜏 ⊔̃ 𝜏 ′ = 𝜏 ′ ⊔̃ 𝜏

𝜏 ⊔̃ 𝜏 = 𝜏

𝜏 ⊔̃ 𝜏 ′undefined otherwise

Nat ⊓̃ Int = Nat

𝜏0→𝜏1 ⊓̃ 𝜏2→𝜏3 = 𝜏0 ⊔̃ 𝜏2→𝜏1 ⊓̃ 𝜏3
𝜏0×𝜏1 ⊓̃ 𝜏2×𝜏3 = 𝜏0 ⊓̃ 𝜏2×𝜏1 ⊓̃ 𝜏3

𝜏 ⊓̃ ∗ = 𝜏

𝜏 ⊓̃ 𝜏 ′ = 𝜏 ′ ⊓̃ 𝜏

𝜏 ⊓̃ 𝜏 = 𝜏

𝜏 ⊓̃ 𝜏 ′undefined otherwise

2024-04-22 00:20. Page 97 of 1–108.



98

Γ ⊢Uni 𝑡 : 𝜏 ⇝ 𝑒

(𝑥 :𝜏) ∈ Γ

Γ ⊢Uni 𝑥 : 𝜏 ⇝ 𝑥 Γ ⊢Uni 𝑛 : Nat ⇝ 𝑛 Γ ⊢Uni 𝑖 : Int ⇝ 𝑖

Γ, (𝑥 :𝜏) ⊢Uni 𝑡 : 𝜏 ′′ ⇝ 𝑒

Γ ⊢Uni 𝜆(𝑥 :𝜏) → 𝜏 ′ . 𝑡 : 𝜏→𝜏 ′ ⇝ 𝜆(𝑥 :𝜏). ( [𝜏 ′ ↙ 𝜏 ′′]𝑒)

Γ ⊢Uni 𝑡1 : 𝜏1 ⇝ 𝑒1 Γ ⊢Uni 𝑡2 : 𝜏2 ⇝ 𝑒2

Γ ⊢Uni ⟨𝑡1, 𝑡2⟩ : 𝜏1×𝜏2 ⇝ ⟨𝑒1, 𝑒2⟩

Γ ⊢Uni 𝑡1 : 𝜏→𝜏 ′ ⇝ 𝑒1 Γ ⊢Uni 𝑡2 : 𝜏 ′′ ⇝ 𝑒2

Γ ⊢Uni 𝑡1 𝑡2 : 𝜏 ′ ⇝ app{𝜏 ′} 𝑒1 ( [𝜏 ↙ 𝜏 ′′]𝑒2)

Γ ⊢Uni 𝑡1 : ∗⇝ 𝑒1 Γ ⊢Uni 𝑡2 : 𝜏 ′

Γ ⊢Uni 𝑡1 𝑡2 : ∗⇝ app{∗} (cast {∗→∗ ⇐ ∗} 𝑒1) [∗ ↙ 𝜏 ′]𝑒2

Γ ⊢Uni 𝑡 : 𝜏×𝜏 ′ ⇝ 𝑒

Γ ⊢Uni fst 𝑡 : 𝜏 ⇝ fst{𝜏} 𝑒

Γ ⊢Uni 𝑡 : ∗⇝ 𝑒

Γ ⊢Uni fst 𝑡 : ∗⇝ fst{∗} (cast {∗×∗ ⇐ ∗} 𝑒)

Γ ⊢Uni 𝑡 : 𝜏×𝜏 ′ ⇝ 𝑒

Γ ⊢Uni snd 𝑡 : 𝜏 ′ ⇝ snd{𝜏 ′} 𝑒

Γ ⊢Uni 𝑡 : ∗⇝ 𝑒

Γ ⊢Uni snd 𝑡 : ∗⇝ snd{∗} (cast {∗×∗ ⇐ ∗} 𝑒)

Γ ⊢Uni 𝑡1 : 𝜏1 ⇝ 𝑒1 Γ ⊢Uni 𝑡2 : 𝜏2 ⇝ 𝑒2 Δ(binop, 𝜏1 ⊔̃ 𝜏2, 𝜏1 ⊔̃ 𝜏2) = 𝜏 ′ 𝜏1 ⩽: Int ∧ 𝜏2 ⩽: Int

Γ ⊢Uni binop 𝑡1 𝑡2 : 𝜏 ′ ⇝ binop 𝑒1 𝑒2

Γ ⊢Uni 𝑡1 : 𝜏1 ⇝ 𝑒1 Γ ⊢Uni 𝑡2 : 𝜏2 ⇝ 𝑒2

Γ ⊢Uni binop 𝑡1 𝑡2 : 𝜏 ′ ⇝ binop ( [Int↙ 𝜏1]𝑒1) ( [Int↙ 𝜏2]𝑒2)

Γ ⊢Uni 𝑡𝑏 : Bool ⇝ 𝑒𝑏 Γ ⊢Uni 𝑡1 : 𝜏1 ⇝ 𝑒1 Γ ⊢Uni 𝑡2 : 𝜏2 ⇝ 𝑒2

Γ ⊢Uni if 𝑡𝑏 then 𝑡1 else 𝑡2 : 𝜏1 ⊔̃ 𝜏2 ⇝ if 𝑒𝑏 then ( [𝜏1 ⊔̃ 𝜏2 ↙ 𝜏1]𝑒1) else ( [𝜏1 ⊔̃ 𝜏2 ↙ 𝜏2]𝑒2)
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Theorem 9.1 (Universal Translation Implies Simple Typing). If Γ ⊢Uni 𝑡 : 𝜏 ⇝ 𝑒 then Γ ⊢Uni 𝑒 : 𝜏 .

Proof. Proceed by induction on the typed translation.

(𝑥 :𝜏) ∈ Γ

Γ ⊢Uni 𝑥 : 𝜏 ⇝ 𝑥 Γ ⊢Uni 𝑛 : Nat ⇝ 𝑛 Γ ⊢Uni 𝑖 : Int ⇝ 𝑖

These cases are all immediate.

Γ ⊢Uni 𝑡1 : 𝜏1 ⇝ 𝑒1 Γ ⊢Uni 𝑡2 : 𝜏2 ⇝ 𝑒2

Γ ⊢Uni ⟨𝑡1, 𝑡2⟩ : 𝜏1×𝜏2 ⇝ ⟨𝑒1, 𝑒2⟩

Γ ⊢Uni 𝑡 : 𝜏×𝜏 ′ ⇝ 𝑒

Γ ⊢Uni fst 𝑡 : 𝜏 ⇝ fst{𝜏} 𝑒

Γ ⊢Uni 𝑡 : 𝜏×𝜏 ′ ⇝ 𝑒

Γ ⊢Uni snd 𝑡 : 𝜏 ′ ⇝ snd{𝜏 ′} 𝑒

These cases are all immediate by the IH applied to their premises and their corresponding typing rule in Uni.

Γ, (𝑥 :𝜏) ⊢Uni 𝑡 : 𝜏 ′′ ⇝ 𝑒

Γ ⊢Uni 𝜆(𝑥 :𝜏) → 𝜏 ′ . 𝑡 : 𝜏→𝜏 ′ ⇝ 𝜆(𝑥 :𝜏) . ( [𝜏 ′ ↙ 𝜏 ′′]𝑒)

Γ ⊢Uni 𝑡1 : 𝜏→𝜏 ′ ⇝ 𝑒1 Γ ⊢Uni 𝑡2 : 𝜏 ′′ ⇝ 𝑒2

Γ ⊢Uni 𝑡1 𝑡2 : 𝜏 ′ ⇝ app{𝜏 ′} 𝑒1 ( [𝜏 ↙ 𝜏 ′′]𝑒2)

These cases proceed similarly.
First we apply the IH to all premises.
Then we either use subsumption to typecheck the body or argument respectively if the types are subtype related, or
use T-Cast if they’re instead compatible subtypes.
Finally, we use the corresponding typing rule to typecheck the elimination form.

Γ ⊢Uni 𝑡1 : ∗⇝ 𝑒1 Γ ⊢Uni 𝑡2 : 𝜏 ′

Γ ⊢Uni 𝑡1 𝑡2 : ∗⇝ app{∗} (cast {∗→∗ ⇐ ∗} 𝑒1) [∗ ↙ 𝜏 ′]𝑒2

Γ ⊢Uni 𝑡 : ∗⇝ 𝑒

Γ ⊢Uni fst 𝑡 : ∗⇝ fst{∗} (cast {∗×∗ ⇐ ∗} 𝑒)

Γ ⊢Uni 𝑡 : ∗⇝ 𝑒

Γ ⊢Uni snd 𝑡 : ∗⇝ snd{∗} (cast {∗×∗ ⇐ ∗} 𝑒)

All of these cases proceed similarly.
First, we apply the IH to all premises.
Then we typecheck the casts with T-Cast.
Finally we use the corresponding typing rule to typecheck the elimination form.

Γ ⊢Uni 𝑡1 : 𝜏1 ⇝ 𝑒1 Γ ⊢Uni 𝑡2 : 𝜏2 ⇝ 𝑒2 Δ(binop, 𝜏1 ⊔̃ 𝜏2, 𝜏1 ⊔̃ 𝜏2) = 𝜏 ′ 𝜏1 ⩽: Int ∧ 𝜏2 ⩽: Int

Γ ⊢Uni binop 𝑡1 𝑡2 : 𝜏 ′ ⇝ binop 𝑒1 𝑒2

By the IH, we have Γ ⊢Uni 𝑒1 : 𝜏1.
By the IH, we have Γ ⊢Uni 𝑒2 : 𝜏2.
Then we can use subsumption to get both Γ ⊢Uni 𝑒1 : 𝜏1 ⊔̃ 𝜏2 and Γ ⊢Uni 𝑒2 : 𝜏1 ⊔̃ 𝜏2.
Finally we can typecheck with T-Binop.
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Γ ⊢Uni 𝑡1 : 𝜏1 ⇝ 𝑒1 Γ ⊢Uni 𝑡2 : 𝜏2 ⇝ 𝑒2

Γ ⊢Uni binop 𝑡1 𝑡2 : 𝜏 ′ ⇝ binop ( [Int↙ 𝜏1]𝑒1) ( [Int↙ 𝜏2]𝑒2)

By the IH, we have Γ ⊢Uni 𝑒1 : 𝜏1.
By the IH, we have Γ ⊢Uni 𝑒2 : 𝜏2.
If 𝜏1 ⩽: Int, then [Int↙ 𝜏1]𝑒1 = cast {Int⇐ 𝜏1} 𝑒1, and by the IH we have Γ ⊢Uni cast {Int⇐ 𝜏1} 𝑒1 : Int.
Otherwise, [Int↙ 𝜏1]𝑒1 = 𝑒1.
If 𝜏2 ⩽: Int, then [Int↙ 𝜏2]𝑒2 = cast {Int⇐ 𝜏2} 𝑒2, and by the IH we have Γ ⊢Uni cast {Int⇐ 𝜏2} 𝑒2 : Int.
Otherwise, [Int↙ 𝜏2]𝑒2 = 𝑒2.
Finally we can typecheck with T-Binop and potentially T-Subsumption.

Γ ⊢Uni 𝑡𝑏 : Bool ⇝ 𝑒𝑏 Γ ⊢Uni 𝑡1 : 𝜏1 ⇝ 𝑒1 Γ ⊢Uni 𝑡2 : 𝜏2 ⇝ 𝑒2

Γ ⊢Uni if 𝑡𝑏 then 𝑡1 else 𝑡2 : 𝜏1 ⊔̃ 𝜏2 ⇝ if 𝑒𝑏 then ( [𝜏1 ⊔̃ 𝜏2 ↙ 𝜏1]𝑒1) else ( [𝜏1 ⊔̃ 𝜏2 ↙ 𝜏2]𝑒2)

By the IH, we have Γ ⊢Uni 𝑒𝑏 : Bool.
By the IH, we have Γ ⊢Uni 𝑒1 : 𝜏1.
By the IH, we have Γ ⊢Uni 𝑒2 : 𝜏2.
If 𝜏1 ⩽: 𝜏1 ⊔̃ 𝜏2, then by subsumption, we have Γ ⊢Uni 𝑒1 : 𝜏1 ⊔̃ 𝜏2.
Otherwise, by T-Cast, we have Γ ⊢Uni cast {𝜏1 ⊔̃ 𝜏2 ⇐ 𝜏1} 𝑒1 : 𝜏1 ⊔̃ 𝜏2.
If 𝜏2 ⩽: 𝜏1 ⊔̃ 𝜏2, then by subsumption, we have Γ ⊢Uni 𝑒2 : 𝜏1 ⊔̃ 𝜏2.
Otherwise, by T-Cast, we have Γ ⊢Uni cast {𝜏1 ⊔̃ 𝜏2 ⇐ 𝜏2} 𝑒2 : 𝜏1 ⊔̃ 𝜏2.
Finally, we can typecheck with T-If. □
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Theorem 9.2 (Universal Translation Implies Tag Typing). If Γ ⊢FO 𝑡 : 𝐾 ⇝ 𝑒 then Γ ⊢FO 𝑒 : 𝐾 .

Proof. By Theorem 9.1 and Theorem 3.1. □

9.2 Flow-Sensitive Translation

𝜏 \ 𝐾 =


∗ if 𝐾 ≤ 𝜏

𝜏 otherwise

2024-04-22 00:20. Page 101 of 1–108.



102

Γ ⊢Flow 𝑡 ⇒ 𝜏 ⇝ 𝑒 : 𝜏 ′

(𝑥 :𝐾) ∈ Γ

Γ ⊢Flow 𝑥 ⇒ 𝐾 ⇝ 𝑥 : 𝐾 Γ ⊢Flow 𝑛 ⇒ Nat ⇝ 𝑛 : Nat Γ ⊢Flow 𝑖 ⇒ Int ⇝ 𝑖 : Int

Γ, (𝑥 :𝐾) ⊢Flow 𝑡 ⇐+ 𝜏 ⇝ 𝑒 : 𝜏 ′

Γ ⊢Flow 𝜆(𝑥 :𝐾) → 𝜏 . 𝑡 ⇒ ∗→𝜏 ⇝ 𝜆(𝑥 :𝐾) . 𝑒 : ∗→𝜏 ′

Γ ⊢Flow 𝑡1 ⇒ 𝜏1 ⇝ 𝑒1 : 𝜏 ′1 Γ ⊢Flow 𝑡2 ⇒ 𝜏2 ⇝ 𝑒2 : 𝜏 ′2
Γ ⊢Flow ⟨𝑡1, 𝑡2⟩ ⇒ 𝜏1×𝜏2 ⇝ ⟨𝑒1, 𝑒2⟩ : 𝜏 ′1×𝜏

′
2

Γ ⊢Flow 𝑡1 ⇒ ∗→𝜏 ⇝ 𝑒1 : ∗→𝜏 ′ Γ ⊢Flow 𝑡2 ⇒ 𝜏2 ⇝ 𝑒2 : 𝜏 ′2
Γ ⊢Flow 𝑡1 𝑡2 ⇒ 𝜏 ⇝ app{∗} 𝑒1 𝑒2 : 𝜏 ′

Γ ⊢Flow 𝑡1 ⇒ ∗⇝ 𝑒1 : 𝜏1 Γ ⊢Flow 𝑡2 ⇒ 𝜏 ′ ⇝ 𝑒2 : 𝜏2 𝜏1 ⊓ ∗→∗ = ∗ → 𝜏 ′1

Γ ⊢Flow 𝑡1 𝑡2 ⇒ ∗⇝ app{∗} (cast {∗→∗ ⇐ ∗} 𝑒1) 𝑒2 : 𝜏 ′1

Γ ⊢Flow 𝑡1 ⇒ ∗⇝ 𝑒1 : 𝜏1 Γ ⊢Flow 𝑡2 ⇒ 𝜏 ′ ⇝ 𝑒2 : 𝜏2 𝜏1 ⊓ ∗→∗ = ⊥

Γ ⊢Flow 𝑡1 𝑡2 ⇒ ∗⇝ app{∗} (cast {∗→∗ ⇐ ∗} 𝑒1) 𝑒2 : ⊥

Γ ⊢Flow 𝑡 ⇒ 𝜏×𝜏 ′ ⇝ 𝑒 : 𝜏 ′′

Γ ⊢Flow fst 𝑡 ⇒ 𝜏 ⇝ fst{∗} 𝑒 : fst(𝜏 ′′)

Γ ⊢Flow 𝑡 ⇒ ∗⇝ 𝑒 : 𝜏 𝜏 ⊓ ∗×∗ = 𝜏1×𝜏2

Γ ⊢Flow fst 𝑡 ⇒ ∗⇝ fst{∗} (cast {∗×∗ ⇐ ∗} 𝑒) : 𝜏1

Γ ⊢Flow 𝑡 ⇒ ∗⇝ 𝑒 : 𝜏 𝜏 ⊓ ∗×∗ = ⊥

Γ ⊢Flow fst 𝑡 ⇒ ∗⇝ fst{∗} (cast {∗×∗ ⇐ ∗} 𝑒) : ⊥

Γ ⊢Flow 𝑡 ⇒ 𝜏×𝜏 ′ ⇝ 𝑒 : 𝜏 ′′

Γ ⊢Flow snd 𝑡 ⇒ 𝜏 ⇝ snd{∗} 𝑒 : snd(𝜏 ′′)

Γ ⊢Flow 𝑡 ⇒ ∗⇝ 𝑒 : 𝜏 𝜏 ⊓ ∗×∗ = 𝜏1×𝜏2

Γ ⊢Flow snd 𝑡 ⇒ ∗⇝ snd{∗} (cast {∗×∗ ⇐ ∗} 𝑒) : 𝜏2

Γ ⊢Flow 𝑡 ⇒ ∗⇝ 𝑒 : 𝜏 𝜏 ⊓ ∗×∗ = ⊥

Γ ⊢Flow snd 𝑡 ⇒ ∗⇝ snd{∗} (cast {∗×∗ ⇐ ∗} 𝑒) : ⊥

Γ ⊢Flow 𝑡1 ⇒ 𝜏1 ⇝ 𝑒1 : 𝜏 ′1 Γ ⊢Flow 𝑡2 ⇒ 𝜏2 ⇝ 𝑒2 : 𝜏 ′2 Δ(binop, 𝜏1, 𝜏2) = 𝜏 ′ Δ(binop, 𝜏 ′1, 𝜏
′
2) = 𝜏

′′

Γ ⊢Flow binop 𝑡1 𝑡2 ⇒ 𝜏 ′ ⇝ binop 𝑒1 𝑒2 : 𝜏 ′′

Γ ⊢Flow 𝑡𝑏 ⇒ Bool ⇝ 𝑒𝑏 : Bool Γ ⊢Flow 𝑡1 ⇒ 𝜏1 ⇝ 𝑒1 : 𝜏 ′1 Γ ⊢Flow 𝑡2 ⇒ 𝜏2 ⇝ 𝑒2 : 𝜏 ′2
Γ ⊢Flow if 𝑒𝑏 then 𝑡1 else 𝑡2 ⇒ 𝜏1 ⊔ 𝜏2 ⇝ if 𝑒𝑏 then 𝑒1 else 𝑒2 : 𝜏 ′1 ⊔ 𝜏

′
2

Γ ⊢Flow 𝑡𝑏 ⇒ Bool ⇝ 𝑒𝑏 : ⊥ Γ ⊢Flow 𝑡1 ⇒ 𝜏1 ⇝ 𝑒1 : 𝜏 ′1 Γ ⊢Flow 𝑡2 ⇒ 𝜏2 ⇝ 𝑒2 : 𝜏 ′2
Γ ⊢Flow if 𝑡𝑏 then 𝑡1 else 𝑡2 ⇒ 𝜏1 ⊔ 𝜏2 ⇝ if 𝑒𝑏 then 𝑒1 else 𝑒2 : ⊥

Γ ⊢Flow 𝑡 ⇐⇒ 𝜏 ⇝ 𝑒 : 𝜏 ′

Γ ⊢Flow 𝑡 ⇒ 𝜏 ′ ⇝ 𝑒 : 𝜏 ′′ 𝜏 ′ ≤ 𝜏

Γ ⊢Flow 𝑡 ⇐⇒ 𝜏 ⇝ 𝑒 : 𝜏 ′′
Γ ⊢Flow 𝑡 ⇒ 𝜏 ′ ⇝ 𝑒 : 𝜏 ′′ 𝜏 ′ ⪯̸ 𝐾

Γ ⊢Flow 𝑡 ⇐⇒ 𝐾 ⇝ cast {𝐾 ⇐ ⌊𝜏 ′⌋} 𝑒 : 𝐾 ⊓ ⌊𝜏 ′⌋ ⊓ 𝜏 ′′
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Γ ⊢Flow 𝑡 ⇐+ 𝜏 ⇝ 𝑒 : 𝜏 ′

Γ ⊢Flow 𝑡 ⇐ 𝜏 ⇝ 𝑒 : 𝜏 ′

Γ ⊢Flow 𝑡 ⇐+ 𝜏 ⇝ 𝑒 : 𝜏 ′
¬(∃𝑒, 𝜏 ′ . Γ ⊢Flow 𝑡 ⇐ 𝜏 ⇝ 𝑒 : 𝜏 ′) Γ ⊢Flow 𝑡 ⇐⇒ 𝜏 ⇝ 𝑒 : 𝜏 ′

Γ ⊢Flow 𝑡 ⇐+ 𝜏 ⇝ 𝑒 : 𝜏 ′

Γ ⊢Flow 𝑡 ⇐ 𝜏 ⇝ 𝑒 : 𝜏 ′

Γ ⊢Flow 𝑡1 ⇐+ 𝜏1 ⇝ 𝑒1 : 𝜏 ′1 Γ ⊢Flow 𝑡2 ⇐+ 𝜏2 ⇝ 𝑒2 : 𝜏 ′2
Γ ⊢Flow ⟨𝑡1, 𝑡2⟩ ⇐ 𝜏1×𝜏2 ⇝ ⟨𝑒1, 𝑒2⟩ : 𝜏 ′1×𝜏

′
2

Γ ⊢Flow 𝑡 ⇐+ (𝜏 \ ⌊𝜏⌋)×∗⇝ 𝑒 : 𝜏1×𝜏2

Γ ⊢Flow fst 𝑡 ⇐ 𝜏 ⇝ fst{⌊𝜏⌋} 𝑒 : 𝜏1 ⊓ ⌊𝜏⌋

Γ ⊢Flow 𝑡 ⇐+ ∗×(𝜏 \ ⌊𝜏⌋) ⇝ 𝑒 : 𝜏1×𝜏2

Γ ⊢Flow snd 𝑡 ⇐ 𝜏 ⇝ snd{⌊𝜏⌋} 𝑒 : 𝜏2 ⊓ ⌊𝜏⌋

Γ ⊢Flow 𝑡𝑏 ⇐+ Bool ⇝ 𝑒𝑏 : Bool Γ ⊢Flow 𝑡1 ⇐+ 𝜏 ⇝ 𝑒1 : 𝜏 ′1 Γ ⊢Flow 𝑡2 ⇐+ 𝜏 ⇝ 𝑒2 : 𝜏 ′2
Γ ⊢Flow if 𝑒𝑏 then 𝑡1 else 𝑡2 ⇐ 𝜏 ⇝ if 𝑒𝑏 then 𝑒1 else 𝑒2 : 𝜏 ′1 ⊔ 𝜏

′
2

Γ ⊢Flow 𝑡𝑏 ⇐+ Bool ⇝ 𝑒𝑏 : ⊥ Γ ⊢Flow 𝑡1 ⇐+ 𝜏 ⇝ 𝑒1 : 𝜏 ′1 Γ ⊢Flow 𝑡2 ⇐+ 𝜏 ⇝ 𝑒2 : 𝜏 ′2
Γ ⊢Flow if 𝑒𝑏 then 𝑡1 else 𝑡2 ⇐ 𝜏 ⇝ if 𝑒𝑏 then 𝑒1 else 𝑒2 : ⊥

Γ ⊢Flow 𝑡1 ⇐+ 𝜏1 ⇝ 𝑒1 : 𝜏 ′1 Γ ⊢Flow 𝑡2 ⇐+ 𝜏2 ⇝ 𝑒2 : 𝜏 ′2 Δ−1 (binop, 𝜏 ′) = 𝜏1, 𝜏2 Δ(binop, 𝜏 ′1, 𝜏
′
2) = 𝜏

′′

Γ ⊢Flow binop 𝑡1 𝑡2 ⇐ 𝜏 ′ ⇝ binop 𝑒1 𝑒2 : 𝜏 ′′

Γ ⊢Flow 𝑡 ⇒ 𝜏 ⇝ 𝑒

Γ ⊢Flow 𝑡 ⇒ 𝜏 ⇝ 𝑒 iff Γ ⊢Flow 𝑡 ⇒ 𝜏 ⇝ 𝑒 : _

Γ ⊢Flow 𝑡 ⇐⇒ 𝜏 ⇝ 𝑒

Γ ⊢Flow 𝑡 ⇐⇒ 𝜏 ⇝ 𝑒 iff Γ ⊢Flow 𝑡 ⇐⇒ 𝜏 ⇝ 𝑒 : _

Γ ⊢Flow 𝑡 ⇐+ 𝜏 ⇝ 𝑒

Γ ⊢Flow 𝑡 ⇐+ 𝜏 ⇝ 𝑒 iff Γ ⊢Flow 𝑡 ⇐+ 𝜏 ⇝ 𝑒 : _

Γ ⊢Flow 𝑡 ⇐ 𝜏 ⇝ 𝑒

Γ ⊢Flow 𝑡 ⇐ 𝜏 ⇝ 𝑒 iff Γ ⊢Flow 𝑡 ⇐ 𝜏 ⇝ 𝑒 : _
For the purpose of the following proof, assume the Flow rules are used in each judgement.

Lemma 9.3 (Typed Flow Translations Imply Truer Transient Typing).

(1) If Γ ⊢ 𝑡 ⇒ 𝜏 ⇝ 𝑒 : 𝜏 ′ then Γ ⊢ 𝑒 : 𝜏 ′ with 𝜏 ′ ≤ 𝜏 .
(2) If Γ ⊢ 𝑡 ⇐⇒ 𝜏 ⇝ 𝑒 : 𝜏 ′ then Γ ⊢ 𝑒 : 𝜏 ′ with 𝜏 ′ ≤ 𝜏 .
(3) If Γ ⊢ 𝑡 ⇐+ 𝜏 ⇝ 𝑒 : 𝜏 ′ then Γ ⊢ 𝑒 : 𝜏 ′ with 𝜏 ′ ≤ 𝜏 .
(4) If Γ ⊢ 𝑡 ⇐ 𝜏 ⇝ 𝑒 : 𝜏 ′ then Γ ⊢ 𝑒 : 𝜏 ′ with 𝜏 ′ ≤ 𝜏 .
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Proof. All cases proceed by induction over their respective judgement derivations.
This is well founded by the size of the term 𝑒 , with the caveat that (2) will call into (1) with the same term, but (1) will
then reduce the size before calling back into (2) (in the lambda case, through (3)).
Similarly, (3) will call into (2), but by the time it gets back to (3), the term will have been reduced in size in (1) (in the
lambda case).
And similarly, (3) will call into (4), but by the time it gets back to (3), the term will have reduced in size.

(𝑥 :𝐾) ∈ Γ

Γ ⊢ 𝑥 ⇒ 𝐾 ⇝ 𝑥 Γ ⊢ 𝑛 ⇒ Nat ⇝ 𝑛 Γ ⊢ 𝑖 ⇒ Int ⇝ 𝑖

All of the above cases follow immediately.

Γ ⊢ 𝑡1 ⇒ 𝜏1 ⇝ 𝑒1 Γ ⊢ 𝑡2 ⇒ 𝜏2 ⇝ 𝑒2

Γ ⊢ ⟨𝑡1, 𝑡2⟩ ⇒ 𝜏1×𝜏2 ⇝ ⟨𝑒1, 𝑒2⟩

Follows immediately by the induction hypotheses.

Γ ⊢ 𝑡1 ⇒ ∗→𝜏 ⇝ 𝑒1 Γ ⊢ 𝑡2 ⇒ 𝜏 ′

Γ ⊢ 𝑡1 𝑡2 ⇒ 𝜏 ⇝ app{∗} 𝑡1 𝑡2

Γ ⊢ 𝑡 ⇒ 𝜏×𝜏 ′ ⇝ 𝑒

Γ ⊢ fst 𝑡 ⇒ 𝜏 ⇝ fst{∗} 𝑒

Γ ⊢ 𝑡 ⇒ 𝜏×𝜏 ′ ⇝ 𝑒

Γ ⊢ snd 𝑡 ⇒ 𝜏 ⇝ snd{∗} 𝑒

All of the above cases follow similar reasoning.
We apply the induction hypothesis to each premise.
If the term being eliminated is at type ⊥, then we use the corresponding ⊥ rule.
Otherwise we use the corresponding elimination rule with check ∗.

Γ ⊢ 𝑡1 ⇒ ∗⇝ 𝑒1 Γ ⊢ 𝑡2 ⇒ 𝜏 ′

Γ ⊢ 𝑡1 𝑡2 ⇒ ∗⇝ app{∗} (cast {∗→∗ ⇐ ∗} 𝑡1) 𝑡2

Γ ⊢ 𝑡 ⇒ ∗⇝ 𝑒

Γ ⊢ fst 𝑡 ⇒ ∗⇝ fst{∗} (cast {∗×∗ ⇐ ∗} 𝑒)

Γ ⊢ 𝑡 ⇒ ∗⇝ 𝑒

Γ ⊢ snd 𝑡 ⇒ ∗⇝ snd{∗} (cast {∗×∗ ⇐ ∗} 𝑒)

All of the above cases follow similar reasoning.
The reasoning is identical to the previous case, with the note that the boundary term also sends the type below the tag
corresponding to the kind of elimination form.

Γ ⊢ 𝑡1 ⇒ 𝜏1 ⇝ 𝑒1 Γ ⊢ 𝑡2 ⇒ 𝜏2 ⇝ 𝑒2 Δ(binop, 𝜏1, 𝜏2) = 𝜏

Γ ⊢ binop 𝑡1 𝑡2 ⇒ 𝜏 ′ ⇝ binop 𝑒1 𝑒2

From (1) we get that there is a 𝜏 ′1 ≤ 𝜏1 such that Γ ⊢ 𝑒1 : 𝜏 ′1.
From (1) we get that there is a 𝜏 ′2 ≤ 𝜏2 such that Γ ⊢ 𝑒2 : 𝜏 ′2.
If 𝜏 ′1 = ⊥ or 𝜏 ′2 = ⊥ then were done, because Δ(binop, 𝜏 ′1, 𝜏

′
2) = ⊥.
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Otherwise, 𝜏 ′1 = Int or Nat and 𝜏 ′2 = Int or Nat. If 𝜏 ′1 ≠ 𝜏 ′2, we can use subsumption to get both 𝑒1 and 𝑒2 at Int to
complete the case.
Otherwise they’re both at Nat or Int, which is sufficient to complete the case.

Γ ⊢ 𝑡𝑏 ⇒ Bool ⇝ 𝑒𝑏 Γ ⊢ 𝑡1 ⇒ 𝜏1 ⇝ 𝑒1 Γ ⊢ 𝑡2 ⇒ 𝜏2 ⇝ 𝑒2

Γ ⊢ if 𝑡𝑏 then 𝑡1 else 𝑡2 ⇒ 𝜏1 ⊔ 𝜏2 ⇝ if 𝑒𝑏 then 𝑒1 else 𝑒2

By (1) we have ∃𝜏𝑏 ≤ Bool such that Γ ⊢ 𝑒𝑏 : 𝜏𝑏 .
By (1) we have ∃𝜏1 ≤ 𝜏 such that Γ ⊢ 𝑒1 : 𝜏1.
By (1) we have ∃𝜏2 ≤ 𝜏 such that Γ ⊢ 𝑒2 : 𝜏2.
If 𝜏𝑏 = ⊥, then were done by the if bot rule.
Otherwise, we get by the if rule that Γ ⊢ if 𝑒𝑏 then 𝑒1 else 𝑒2 : 𝜏1 ⊔ 𝜏2, and that 𝜏1 ⊔ 𝜏2 ≤ 𝜏 by the fact that ⊔ is a
greatest lower bound.

Γ, (𝑥 :𝐾) ⊢ 𝑡 ⇐+ 𝜏 ⇝ 𝑒

Γ ⊢ 𝜆(𝑥 :𝐾) → 𝜏 . 𝑡 ⇒ ∗→𝜏 ⇝ 𝜆(𝑥 :𝐾). 𝑒

By the lambda typing rule for truer typing, we want to show there is a 𝜏 ′ ≤ 𝜏 such that Γ, (𝑥 :𝐾) ⊢ 𝑒 : 𝜏 ′.
This is immediate from (3) applied to the premise.

Γ ⊢ 𝑡 ⇒ 𝜏 ′ ⇝ 𝑒 𝜏 ′ ≤ 𝜏

Γ ⊢ 𝑡 ⇐⇒ 𝜏 ⇝ 𝑒

By (1), we have there is a 𝜏 ′′ ≤ 𝜏 ′ such that Γ ⊢ 𝑡 : 𝜏 ′′.
Since ≤ is transitive, this completes the case.

Γ ⊢ 𝑡 ⇒ 𝜏 ′ ⇝ 𝑒 𝜏 ′ ⪯̸ 𝐾

Γ ⊢ 𝑡 ⇐⇒ 𝐾 ⇝ cast {𝐾 ⇐ ⌊𝜏 ′⌋} 𝑒

From (1) we have 𝜏 ′′ ≤ 𝜏 ′ such that Γ ⊢ 𝑒 : 𝜏 ′′.
We want to show there is a 𝑡𝑎𝑢′′′ ≤ 𝐾 such that Γ ⊢ cast {𝐾 ⇐ ⌊𝜏 ′⌋} 𝑒 : 𝜏 ′′′.
Set 𝜏 ′′′ ⊓ ⌊𝜏 ′⌋ ⊓ 𝐾 to be 𝜏 ′′′.
By the boundary typing rule of truer typing, this typechecks.
The last condition is that 𝜏 ′′′ ≤ 𝐾 , which is immediate by the fast that ⊓ is the greatest lower bound.

¬(∃𝑒. Γ ⊢ 𝑡 ⇐ 𝜏 ⇝ 𝑒) Γ ⊢ 𝑡 ⇐⇒ 𝜏 ⇝ 𝑒

Γ ⊢ 𝑡 ⇐+ 𝜏 ⇝ 𝑒

Immediate by (2).
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Γ ⊢ 𝑡 ⇐ 𝜏 ⇝ 𝑒

Γ ⊢ 𝑡 ⇐+ 𝜏 ⇝ 𝑒

Immediate by (4).

Γ ⊢ 𝑡1 ⇐+ 𝜏1 ⇝ 𝑒1 Γ ⊢ 𝑡2 ⇐+ 𝜏2 ⇝ 𝑒2

Γ ⊢ ⟨𝑡1, 𝑡2⟩ ⇐ 𝜏1×𝜏2 ⇝ ⟨𝑒1, 𝑒2⟩

Immediate by (3) and induction.

Γ ⊢ 𝑡 ⇐+ (𝜏 \ ⌊𝜏⌋)×∗⇝ 𝑒

Γ ⊢ fst 𝑡 ⇐ 𝜏 ⇝ fst{⌊𝜏⌋} 𝑒

By our induction hypothesis, we have that there is some 𝜏 ′ ≤ (𝜏 \ ⌊𝜏⌋) × ∗ such that Γ ⊢ 𝑒 : 𝜏 ′.
If 𝜏 ′ = ⊥, then were done by the fst bot rule.
Otherwise, 𝜏 ′ = 𝜏 ′1 × 𝜏

′
2, and 𝜏

′
1 ≤ 𝜏 \ ⌊𝜏⌋.

By the fst projection typing rule, we have that Γ ⊢ fst{⌊𝜏⌋} 𝑒 : 𝜏 ′1 ⊓ ⌊𝜏⌋.
It suffices to show that 𝜏 ′1 ⊓ ⌊𝜏⌋ ≤ 𝜏 .
If 𝜏 \ ⌊𝜏⌋ = ∗, then ⌊𝜏⌋ ≤ 𝜏 , which means 𝜏 ′1 ⊓ ⌊𝜏⌋ ≤ ⌊𝜏⌋ ≤ 𝜏 .
Otherwise, 𝜏 \ ⌊𝜏⌋ = 𝜏 , which means 𝜏 ′1 ≤ 𝜏 and therefore 𝜏 ′1 ⊓ ⌊𝜏⌋ ≤ 𝜏 .

Γ ⊢ 𝑡 ⇐+ ∗×(𝜏 \ ⌊𝜏⌋) ⇝ 𝑒

Γ ⊢ snd 𝑡 ⇐ 𝜏 ⇝ snd{⌊𝜏⌋} 𝑒

Not meaningfully different from the previous case regarding fst .

Γ ⊢ 𝑡𝑏 ⇐+ Bool ⇝ 𝑒𝑏 Γ ⊢ 𝑡1 ⇐+ 𝜏 ⇝ 𝑒1 Γ ⊢ 𝑡2 ⇐+ 𝜏 ⇝ 𝑒2

Γ ⊢ if 𝑒𝑏 then 𝑡1 else 𝑡2 ⇐ 𝜏 ⇝ if 𝑒𝑏 then 𝑒1 else 𝑒2

By (3) we have ∃𝜏𝑏 ≤ Bool such that Γ ⊢ 𝑒𝑏 : 𝜏𝑏 .
By (3) we have ∃𝜏1 ≤ 𝜏 such that Γ ⊢ 𝑒1 : 𝜏1.
By (3) we have ∃𝜏2 ≤ 𝜏 such that Γ ⊢ 𝑒2 : 𝜏2.
If 𝜏𝑏 = ⊥, then were done by the if bot rule.
Otherwise, we get by the if rule that Γ ⊢ if 𝑒𝑏 then 𝑒1 else 𝑒2 : 𝜏1 ⊔ 𝜏2, and that 𝜏1 ⊔ 𝜏2 ≤ 𝜏 by the fact that ⊔ is a
greatest lower bound.

Γ ⊢ 𝑡1 ⇐+ 𝜏1 ⇝ 𝑒1 Γ ⊢ 𝑡2 ⇐+ 𝜏2 ⇝ 𝑒2 Δ−1 (binop, 𝜏 ′) = 𝜏1, 𝜏2

Γ ⊢ binop 𝑡1 𝑡2 ⇐ 𝜏 ′ ⇝ binop 𝑒1 𝑒2

By (3) we have ∃𝜏 ′1 ≤ 𝜏1 such that Γ ⊢ 𝑒1 : 𝜏 ′1.
By (3) we have ∃𝜏 ′2 ≤ 𝜏2 such that Γ ⊢ 𝑒2 : 𝜏 ′2.
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By the definition of Δ−1, either 𝜏1 = 𝜏2 = Int or 𝜏1 = 𝜏2 = Nat.
If 𝜏 ′1 = ⊥ or 𝜏 ′2 = ⊥, then were done because Δ(binop, 𝜏 ′1, 𝜏

′
2) = ⊥.

Otherwise, we have 𝜏 ′1 = Int or Nat and similarly for 𝜏 ′2.
If 𝜏 ′1 ≠ 𝜏

′
2, then we can use subsumption to get both at Int and complete the case.

Otherwise, we get that both are Int or Nat, which is sufficient to complete the case. □

Theorem 9.4 (Typed Flow Translation Implies Truer Transient Typing).
If Γ ⊢ 𝑡 ⇒ 𝜏 ⇝ 𝑒 then Γ ⊢ 𝑒 : 𝜏 .

Proof. Follows from Lemma 9.3 and T-Sub □
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10 Vigilance Results for GTLs

10.1 GTL Vigilance for Simple Typing with Natural Semantics
Theorem 10.1 (Vigilance for Simple Typing with Natural Semantics). If Γ ⊢Uni 𝑡 : 𝜏 ⇝ 𝑒 then ⟦Γ ⊢sim 𝑒 : 𝜏⟧𝑁

Proof. By Theorem 9.1 and Theorem 5.40. □

10.2 GTL Vigilance for Tag Typing with Transient Semantics
Theorem 10.2 (Vigilance for Tag Typing with Transient Semantics). If Γ ⊢Uni 𝑡 : 𝐾 ⇝ 𝑒 then ⟦Γ ⊢tag 𝑒 : 𝐾⟧𝑇

Proof. By Theorem 9.2 and Theorem 7.4. □

10.3 GTL Vigilance for Truer Transient Typing with Transient Semantics
Theorem 10.3 (Vigilance for Truer Typing with Transient Semantics). If Γ ⊢tru 𝑡 : 𝜏 ⇝ 𝑒 then ⟦Γ ⊢tru 𝑒 : 𝜏⟧𝑇

Proof. By Theorem 9.4 and Theorem 6.49. □
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