OCF Core Specification

VERSION 2.2.8 | June 2025

OPEN CONNECTIVITY
FOUNDATION™

CONTACT admin@openconnectivity.org
Copyright Open Connectivity Foundation, Inc. © 2025
All Rights Reserved.

mailto:admin@openconnectivity.org

w N

© 00 N O O A

10
11
12
13
14

15
16

17

18
19

Legal Disclaimer

NOTHING CONTAINED IN THIS DOCUMENT SHALL BE DEEMED AS GRANTING YOU ANY KIND
OF LICENSE IN ITS CONTENT, EITHER EXPRESSLY OR IMPLIEDLY, OR TO ANY
INTELLECTUAL PROPERTY OWNED OR CONTROLLED BY ANY OF THE AUTHORS OR
DEVELOPERS OF THIS DOCUMENT. THE INFORMATION CONTAINED HEREIN IS PROVIDED
ON AN "AS IS" BASIS, AND TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
THE AUTHORS AND DEVELOPERS OF THIS SPECIFICATION HEREBY DISCLAIM ALL OTHER
WARRANTIES AND CONDITIONS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT
COMMON LAW, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. OPEN CONNECTIVITY
FOUNDATION, INC. FURTHER DISCLAIMS ANY AND ALL WARRANTIES OF NON-
INFRINGEMENT, ACCURACY OR LACK OF VIRUSES.

The OCF logo is a trademark of Open Connectivity Foundation, Inc. in the United States or other
countries. *Other names and brands may be claimed as the property of others.

Copyright © 2016-2022 Open Connectivity Foundation, Inc. All rights reserved.

Copying or other form of reproduction and/or distribution of these works are strictly prohibited.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved i

20
21

22
23
24

25
26
27

28
29
30
31
32

33
34
35
36
37

38
39
40
41
42
43
44

45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

CONTENTS

4o Yo LU o o P xii
Y o 0 o 1 PP 1
L0180 Tz AR L= (= (=T (=] o= 1
Terms, definitions and abbreviated terMSo 3

3.1 Terms and definitioNS ... 3
3.2 Symbols and abbreviated termMSoooiii i 7
Document conventions and Organizationooiiuiiiiiiii e 7
4.1 (00] 0 1YY 01 1T] o = 7
4.2 NN [0 = oY o P 7
4.3 D = = 14 1= 8
4.4 RESOUICe NOTATION SYNTAX .uniiitiiii e e ana e 9
AT C I C U e e e e 10
5.1 L0 1Y 7= V1= 1 P 10
5.2 o o] 11
5.3 Functional bBIOCK diagram.........ooiuiii e 12
54 A B O K L 13
Identification and addreSSINGocuiiiiii e 13
6.1 0T 11T o o 13
6.2 TN CALION L. 14
6.2.1 Device and Platform identification.............ocooiii 14
6.2.2 Resource identification and addreSSingcccovviiiiiiiiiiiiiic e 14
6.3 =T g 1=TST o T o TP 15
6.4 N LY 0] = Yo [0 === o Vo 15
RESOUICE MOU B et e e ettt eens 16
7.1 oY 11 T {0 o 16
7.2 1T 01 1o = 16
7.3 o (0 1= 2 17
7.3.1 o o ¥ o 110 o 1P 17
7.3.2 COMMON PrOPEITIES ..ottt ees 18
7.4 R o 10T o =T I/ 0T P 19
7.4.1 T} {0 To [V To1 410 o JRPU PP 19
7.4.2 RESOUICE TY P PrOP eIy . e it 20
7.4.3 Resource Type definition.........oouiiiii e 20
7.4.4 MUII-VAIUE T RESOUIC e ittt e e e e e e es 21
7.5 DTN T 1Y/ o 1= 22
7.6 (0108 Sl 1] 1=] o - o] =Y PP 22
7.6.1)oY 11 0] o P 22
7.6.2 OCF INterfaCce PrOPertY ... 23
7.6.3 OCF Interface Methodsociiiiii e e 23
7.7 ReESOUICE rePrEeSENTAtiON ... 46
7.8 0o (0 46
7.8.1)oY 11 o] o P 46
7.8.2 Resource relationships (LINKS) ... e 46

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved i

64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

108

7.8.3 (OF0] 1113 1 0] o =3 52

7.8.4 ALOMIC MEASUIBIMENT. ...t e e et eaaenas 54
7.9 (O LU YA = =Y 1= (=] 56
7.9.1 1Yo o 11 T3 1T] o HO PO 56
7.9.2 Use of multiple parameters within @ qUErYcooeeiiiiiiiiiiiii e 56
7.9.3 Application to multi-value "rt" RESOUICEScviiviiiiiiii i 57
7.9.4 OCF Interface specific considerations for queriescocovcveiiiiiiiiiininenns, 57
7.9.5 The "action” QUErY Parametercciiriiiii e 58
7.10 Error response Payload 58
7.10.1 L@ 1T T 1 58
7.10.2 Error response payload CONteNt........coiiiiiiiiiii e 58
7.10.3 EXAMPIE Of USE et 60
0 R O T e |V [I I = 0 4T 2 60
7.11.1 INEFOAUCTION. .. et e e e e aeenas 60
7.11.2 RESOUICES fOr MO T T PrOXY . uitiuiiit ettt e e e e e e e e et e e e eaaenees 61
7.11.3 Connecting to an MQTT SEIVE ...uuiuiiii i e ea e 62
7.11.4 Proxying an OCF DEVICEuiuiiiiiiiiii et et 63
7.11.5 SECUNtY CONSIAEIALIONS ...t e ea e 63
S T O = U 1] 64
8.1 L@ V=T Y PP 64
8.2 CRE AT E ot e e e e e e e e 64
8.2.1 L@ Y= YT 64
8.2.2 (O8N I =Y o 11 == 65
8.2.3 Processing by the Server ... 65
8.2.4 LOF g Y I R =TT o To] 1] = PP 65
8.3 RET RIEVE ..o e e 65
8.3.1 L@ Y= YT 65
8.3.2 RETRIEVE TEQUEST .uuitiiiiii ettt e e e e et e e e e aneenes 66
8.3.3 Processing by the Server ... 66
8.3.4 RETRIEVE T8 PONSE ittt ettt ettt et e e e et e e e e et e et ae e aneaneenes 66
8.4 LI N I P 66
8.4.1 L@ Y= Y 66
8.4.2 UPDATE FEOUEST. ...ttt eae e 67
8.4.3 Processing by the Server ... 67
8.4.4 O] B YN I o =TS oTo]] = SO P PR 68
8.5 I3 I I P 68
8.5.1 L@ Y= Y 68
8.5.2 DELETE MBOUEBST ..ottt et et 68
8.5.3 Processing by the SErver ... 68
8.5.4 D] I I T o Lo [PP 68
8.6 N1 I P 69
8.6.1 L@ =T V1= 1 PP 69
8.6.2 NOTIFICATION F8SPONSE . ittt et en e 69
9 Network and CONNECTIVITY ..uniii e e e e e ans 69
9.1 H)1 oo [0 Tod {10} o AP P 69

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved iii

109
110
111
112
113

114
115
116
117
118
119
120
121
122
123
124
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

145
146
147
148
149
150
151
152
153

9.2 F N o] TR (<To (U1 = 69

9.3 IPV6 Network layer reqUIrEMENTS. i 70
9.3.1 [Yoo [T d 1T o FO PP 70
9.3.2 IPV6 NOAE rEQUITEMENTS ..ouiitit i et e e e e et e e e enas 71

L0 T @ 1@ e =T 1o Yo 11 0 71

10.1 OCF Endpoint definition ... e 71

10.2 OCF Endpoint informationc.ooniiii e 72
10.2.1 1Yo o 11 T3 1T] o HO PO 72
10.2.2 = PP 72
10.2.3 P 73
10.2.4 - P 73
10.2.5 OCF Endpoint information in "eps" Parameter..........ccccovviiviiiiiiiieinii e, 73

10.3 OCF ENAPOiNt diSCOVEIY ...ttt et e e 74
10.3.1 0T 11 1o} o T 74
10.3.2 Ly a¥] T o o LYoo V2= Y P 74
10.3.3 Explicit discovery with "/0IiC/reS" rESPONSE ..cuiuiiiii i 74

11 FUNCHONAl INTEIACTIONS . .eet it e e ees 76

0 T 1 0 Yo L1 o 1 o P 76

11.2 RESOUICE AiSCOVEIY ottt ittt e ettt e et e e e e e e et e e et et e e e et e et e et e e eaaanaenas 77
11.2.1 0T 11 1o} o P 77
11.2.2 Resource based discovery: mechaniSmsc.coooviiiiiiii i 77
11.2.3 Resource based discovery: Finding informationc.cooiiiiiine, 78
11.2.4 Resource discovery USiNg "fOIC/TES" e 84
11.2.5 Multicast discovery USINg "f0IC/reS"o 86
11.2.6 Multicast discovery using "/.well-known/core"ccocoiiiiiiiiiiiieeeas 86

0T T N[] 41 To¥= 14 [0] o P P 87
11.3.1 (O 17T V1= PP 87
11.3.2 (@ 4 1=T= T V= P 87
11.3.3 PUSH NOLFICAIION ...t e eas 89

114 INEEOSPECTION ettt ettt 104
11.4.1 L@ Y= P 104
11.4.2 Usage Of INTrOSPECHION ...ueinie e 107

T T S =Y o = 1) o = Vo 108
11.5.1 INEFOAUCTION. ..ot e e 108
11.5.2 Semantic Tag definitionNSiiiiii 109

A /=T =Y T Yo [1 4o PP 111

220 R [)1 e To [0 o] {0 o FAP PP 111

12.2 Mapping of CRUDN 0 COAP ...t 112
12.2.1 L@ 1T VT 1 112
12.2.2 LU PP 112
12.2.3 CoAP method with request and reSPONSEc.vvviiiiiiiiiie e 112
12.2.4 Content-Format Negotiationoviiiiii e 114
12.2.5 OCF-Content-Format-Version information.............oooiiiiiie, 114
12.2.6 Content-FOrmat POLICYuuei e 115
12.2.7 CRUDN t0 COAP reSPONSE COUBS . ouinitiiiiiiii ettt e e e 116

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved iv

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

12.2.8 COAP bIOCK tranS el .. 116
12.2.9 Generic requirements for COAP multicastcoooiiiiiiiii, 116
12.2.10 Setting timeout on response to a confirmable request.............coovvviiiiiinennn. 117
12.2.11 Mapping the error response payload...........ccooiiiiiiiiiiiiii e 117
12.2.12 Handling of non-confirmable requestS..........cooiiiiiii i 117
12.3 Mapping of CRUDN to CoAP serialization over TCP.....coccooiiiiiiiiiiiieieeceeea 118
12.3.1 (O 17T VT 1 PP 118
12.3.2 U RIS e 118
12.3.3 CoAP method with request and reSPONSEeociviiiiiiiiii e 118
12.3.4 Content-Format Negotiationc.iuiiiii e 118
12.3.5 OCF-Content-Format-Version information............cccocoviiiiniiniinii e, 118
12.3.6 Content-FOrmat POLICYuei e 118
12.3.7 CRUDN t0 COAP reSPONSE COUBS ..iuinitiiiiiiin et e et et e e s e e e e aeeaeaneens 118
12.3.8 COAP DBIOCK tranSTer ... o 118
12.3.9 Keep alive (connection health)ccooiiiiiiii i 118
12.3.10 COAP USING @ PrOXY tuituitiinetiitetiet e ee e et e et e et e e et e et a et e et rn e aeneananns 119
12.3.11 Mapping the error response payload............cooiiiiiiiiiiii e 119
12.3.12 Handling of non-confirmable requests.........cccoiiiiiiii i 119
12.4 Mapping of CRUDN 0 MO T T ..ttt e e e e e e e 119
12.4.1 L@ Y= Y P 119
12.4.2 Mapping OCF Devices and Resources to MQTT tOPICSoevvviniiiiniiniiienanee. 121
12.4.3 Mapping OCF Data to MQTT Datac.uvvuiiuiiiiiiiieieee e 123
12.4.4 Mapping OCF Discovery t0 MOTT ... 123
12.4.5 Error condition DEhavVIOUr 124
12.4.6 MOTT CONSIAEIALIONS .. ettt et e e e e aens 124
12.5 Payload ENcoding in CBOR ...t e 124
RS B ST Yol U 41 PP 125
Annex A (normative) Resource Type definitionS...........ooiuiiiiiiiiiini e 126
Al List of Resource Type definitionNScccoviiiiiiii e 126
A.2 Atomic Measurement links list representation.............ccoooviiiiiiiniinei i, 126
A.2.1 [F g} oo 1113 1T o FO PP 126
A.2.2 Y= 10 1] L= T U1 = PP 126
A.2.3 ==Y LU o = Y] 0 1= 126
A.2.4 OPENAPT 2.0 defiNitiON .uuiiei e 126
A.2.5 Property definition 132
A.2.6 CRUDN BENAVIOUL. ..ttt 134
A.3 Lo | 1= o 1o o 134
A.3.1 [} oo [T od 1T o FO PRI 134
A.3.2 Y= 10 ¥] L= T U1 = PP 134
A.3.3 ==Y LU o = Y] 0 1= 134
A.3.4 OPeNAPI 2.0 definition ... 134
A.3.5 Property definition 141
A.3.6 CRUDN BERAVIOUL 143
A4 D1 o ST 143
A4d.1l [} oo [Tod 1T o FO PPN 143

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved %

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

A.4.2 WEI-KNOWN URI Lot ae e 143

A.4.3 RS OUICE By ettt 143
A.4.4 OPeNAPT 2.0 definition ..o 143
A.4.5 Property definitiono 146
A.4.6 CRUDN BERAVIOUN....ee e 147
A.5 INtrOSPECTION RESOUICE ..uuiiiiiitiii ittt r e e e et e e anees 147
A5.1 INTFOAUCTION. ..ot e ee e 147
A.5.2 Well-KNOWN URI .o e e 147
A.5.3 RS OUICE By et e ettt 147
A5.4 OPeNAPT 2.0 definitionoeniiiii e 147
A.5.5 Property definition. ... 150
A.5.6 CRUDN DERAVIOULt e 150
A.6 o = 10 o 1 P 150
A.6.1 INEFOAUCTION. ..ot e e e 150
A.6.2 Well-KNOWN URI .o e e 150
A.6.3 RS OUICE Iy Pttt e 150
A.6.4 OPeNAPT 2.0 definitionoeniiiii e 150
A.6.5 Property definitiono 153
A.6.6 CRUDN BERNAVIOUT . c.e it 154
A7 DiSCOVEIraDIE RESOUICESttt it 154
A.7.1 INTFOAUCTION. ..ot e ee e 154
A.7.2 WeEll-KNOWN URI ..o e 154
A.7.3 RS OUI CE LY Pttt e 154
A.7.4 OPENAPT 2.0 defiNitiON .uuiuei e 154
A.7.5 Property definition.o 160
A.7.6 CRUDN BERNAVIOUT ...ttt 161
A.8 MQTT CONTIGUIALION .. ce e e 161
A.8.1 [F g} oo [T3 1T o O 161
A.8.2 EXAMPIE URI ..o e 161
A.8.3 ==Y T U1 o = Y/ 0 1= 161
A.8.4 OPENAPT 2.0 defiNitiON .uuiiei e 161
A.8.5 Property definition.o 164
A.8.6 CRUDN BENAVIOUL. ..ttt 165
A.9 Push Configuration RESOUICESt 165
A.9.1 [F g} oo [T3 1T o O 165
A.9.2 WEIl-KNOWN URI oo e e e e e e 165
A.9.3 ==Y LU o = Y] 0 1= 165
A.9.4 OPENAPT 2.0 defiNitiON .uuiieii e 165
A.10 Composition Resource of Notification Selector and Push Proxy............cc.coccunene. 173
A.10.1 [F g} oo 1113 1T o FO PP 173
A.10.2 WeEll-KNOWN URI .o e 173
A.10.3 ==Y LU o = Y] 0 1= 173
A.10.4 OPENAPT 2.0 defiNItiON ouuiee e 173
A.11l PUSHh RECEIVEI RESOUICE ...ttt aas 178
A.11.1 [F g} oo 1113 1T o FO PP 178

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved Vi

244
245
246
247
248
249
250
251
252
253
254

255

256

A.11.2 WEll-KNOWN URI ..o e 178

A.11.3 RS OUICE By ettt 178
A.11.4 OPeNAPT 2.0 definition ..o 178
Annex B (informative) OpenAPIl 2.0 Schema EXtENSION.......cociviiiiiiiiiiiiiier e 183
B.1 OpenAPI 2.0 Schema RefereNCEecvvieiii i 183
B.2 OpenAPI1 2.0 Introspection empty fileo 183
Annex C (normative) Semantic Tag enumeration SUPPOIt.......ccvviuieieneiiieiiiaeiieeieeeeeeneeennes 184
C.1 0T 11T 0 o 184
C.2 "tag-pos-desc"” supported eNUMEratioNccvvuiiiiiii e 184
C.3 "tag-loc” supported eNUMEratioNot 184

2 7T oo = o /P 186

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved Vi

257
258

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

286
287

288

289
290

291
292
293
294
295
296
297

Figures

Figure 1 — ArChitECtUIE - COMCEPES . ittt e et e e e e aeaeenas 11
Figure 2 — Functional Block diagramc.oiiiii e 12
Figure 3 — Communication layering model ... 13
Figure 4 — EXAmMPIE RESOUICEttt e et e e e et eaeenas 17
Figure 6 — CoAP domain and OCF MQTT domain interconnected by Proxycc.cocovevenis 61
Figure 7 — OCF extended with OCF Clients in the MQTT domaincocoviiiiiiiiiiiiiiieeens 61
Figure 8 — Registration of the MQTT proxy (as MQTT client) with an MQTT Server 62
Figure 9 — Device publication to an MQTT SEIVEI ...t 63
Figure 10 — CREATE OPEIatiON ..iuiiiii i e e et e e et e e e eaeenas 65
Figure 11 — RETRIEVE OP@IratiONt e e e e e e e e e e neaeenas 66
Figure 12 — UPDATE OPEIatioNcuiiiii ettt e 67
Figure 13 — DELETE OP@IatiONot e et e et eaeenas 68
Figure 14 — High level network and connectivity architecturecoooiiiiiiiiiiciens 70
Figure 15 — Resource based discovery: Finding information.............ccocoooiiiiiiiiiiiie e 78
Figure 16 — ObServe MmeChaniSm e 88
Figure 17 — PUSH ArChItECIUIE ..o e e 90
Figure 18 — EXample PUSH SEQUENCEii i e et aaas 91
Figure 19 — Example Pictorial Push Configuration Collectionccocoooviiiiiiiiiiiie e 92
Figure 20 — Push Proxy Operational State Machine ..o 96
Figure 21 — Creating @ PUSh ProXy RESOUICEcuiuiiiiiiii e 97
Figure 22 — Push Proxy Life Cycle EXamPle ... 98
Figure 23 — notification selector example for the given "prt" ... 100
Figure 24 — notification selector for the given "phref" ... 100
Figure 25 — Example composed notificationselector and pushproxycoooiiiiiiiiiininnn. 101
Figure 26 — example push receiver configurationccooiiiiiiiiiii e 102
Figure 27 — Example pushpayload CONteNtc.couiiiiii e 103
Figure 28 — Example usage of oneOf JSON SChema.........ccoiiiiiiiiiiiiii e 106
Figure 29 — Interactions to check Introspection support and download the Introspection

D BVICE DAL, ..ttt e aas 108
Figure 30 — "tag-pos-rel" definitionooiiii 110
Figure 31 — Content-Format Policy for backward compatible OCF Clients negotiating lower
(0103 S Ofe] o) (=T o) ol o] 0 F= L SA =T = o o 116
FIigure 32 — TYPIiCal MO T T .ttt e et e et e e e e aaaanas 119
Figure 33 — Publish interaction Model...........coiiiiiii e 120
Figure 34 — MQTT Request and Response interaction model............ccoooiiiviiiiiiicicii e, 120
Figure 35 — Example interaction model with an event subscriptionc.cociinn. 123
Figure C.1 — Enumeration for "tag-pos-desc” SemantiC Tagcocuveuriiiriiiiiiiiiiiiieeieeeeanes 184
Figure C.2 — Definition of "tag-pos-desc"” Semantic Tag valuesccoceeiviiiiiiiiieiiiienennns 184
Figure C.3 — Enumeration for "tag-locn"” Semantic Tag.......c.ccvvviiiiiiiiii e 185

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved viii

298

299

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

300
301

302
303
304
305
306
307
308
309
310
311
312
313
314

315
316

317
318

319

320
321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

L= Lo] LT RN [11 (o T g =Y I T O i 1Y o 1 9
Table 2 — Name Property definitioncoiiiii e 19
Table 3 — Resource identity Property definition...........cooiiiiiii e 19
Table 4 — Resource Type Common Property definition ..., 20
Table 5 — Example foobar RESOUICE TYPE c.uiiiiiiii i e 20
Table 6 — Example foobar Properties. ..o 21
Table 7 — Resource Interface Property definition ..o 23
Table 8 — Standard OCF INTEIACES i 23
Table 9 — Batch OCF Interface eXample ... 31
Table 10 — Link target attributes liSt ..o e 48
Table 11 — "bm" Property definition ... 49
Table 12 — Resource Types Property definition...... ..., 51
Table 13 — Mandatory Resource Types Property definition...........cooviiiiiiiiiiiieeeen, 52
Table 14 — Common Properties for Collections (in addition to Common Properties defined

T T P 53
Table 15 — Common Properties for Atomic Measurement (in addition to Common

Properties defined N 7.3.2) ... e 54
Table 16 — Atomic Measurement RESOUICE TYPE ...uiuiiiiiniiii e e 56
Table 17 — Properties for Atomic Measurement (in addition to Common Properties defined

T T P 56
Table 18 — Standardized erTOr MESSATEuuiu ittt ettt et eaas 58
Table 19 — Properties of "oic.r.mgtt.conf’ RESOUICEecciuiiiiiiii e, 62
Table 20 — Parameters of CRUDN MESSAQESvuiiiiriiiiiieii et ee e e ee e e e ae e ens 64
Table 21 — "ep" value for Transport ProtoCol SUIte.........cccoeiiiiiii e 73
Table 22 — LiSt Of COre RESOUICES ..uuiuiiiie it e e e ens 77
Table 23 — Mandatory diSCOVery COre RESOUITES ...c..uuiuiiiiit it eae e 79
Table 24 — "oic.wk.res" Resource Type definition..........ooiiiiiiiiii e, 80
Table 25 — Protocol SChemME reQiStIY ouiniiii i e e e 81
Table 26 — "oic.wk.d" Resource Type definitionocoiiiiiii e 81
Table 27 — "oic.wk.p" Resource Type definition ..., 83
Table 28 — Example Push Sequence DetailS.......cccoiiiiiiii e 91
Table 29 — Resource Types for PUSH ProXy ..o 93
Table 30 — Push Proxy Resource Property definition..........coooviiiiiiiii e 93
Table 31 — PUSH ProXy STateS ... e 94
Table 32 — Optional Push Notification Core Resources for Server Configuration................... 99
Table 33 — "oic.r.notificationselector” Resource Type definition"...............cooiiiiiinicnenen, 99
Table 34 — "oic.r.pushconfiguration” Resource Type definition"cc.oiiiiiiiiiiiins 99
Table 35 — Optional Push Receiver Core Resources for Target Server Configuration.......... 101
Table 36 — "oic.r.pushreceiver” Resource Type definition"..........ccooiiiiiiiiiiiieeea 101

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved X

341
342
343
344
345
346
347
348
349
350
351

352
353

354
355

356
357

358
359
360
361
362
363

364
365

366
367

368
369
370
371

372
373

374
375
376
377
378
379
380

381
382

Table 37 — "receivers" object definition 101

Table 38 — PUSh Payload RESOUICE 103
Table 39 — "oic.r. pushpayload” array entry definition.............cooiiii i 103
Table 40 — INtrOSPECTION RESOUICEiuiiii et e e et et e et e e e aneeaas 106
Table 41 — "oic.wk.introspection” Resource Type definition.........ccooviiiiiiiiciic e 106
Table 42 — "tag-pos-desc" Semantic Tag definitioncoooiiiiiiiiii e 109
Table 43 — "tag-pos-rel" Semantic Tag definition ... 110
Table 44 — "tag-func-desc" Semantic Tag definitioncoiiiiii e 111
Table 45 — "tag-locn" Semantic Tag definition ..o 111
Table 46 — COAP request and rESPONSE ...t 112
Table 47 — OCF CoNtent-FOIrMatS. e 114
Table 48 — OCF-Content-Format-Version and OCF-Accept-Content-Format-Version Option

AN T g o= =P 114
Table 49 — OCF-Accept-Content-Format-Version and OCF-Content-Format-Version

= 0 (=TT =] 1= 14 o1 115
Table 50 — Examples of OCF-Content-Format-Version and OCF-Accept-Content-Format-
VErSION REPIESENTATION. ...ttt e e e e e e e anas 115
Table 51 — COMMANG USAQE.....uiu ittt et et e e et e e e e e e e et e e et e e e et e e e et eaeaeanannas 121
Table 52 — Sending OPerationNs @S tOPIC ...uuiuiie it e e 121
Table 53 — tOPIC Wild CANUS.....uieiieieie e e 122
Table 54 — Subscription addressing scope and topic wild cardsc.cooiiiiiiiiiiiinenn. 122
Table 55 — EXamples 0f DiSCOVEIY 10PICS . .uiuiieiiiit e e e e e e ane e 124
Table A.1 — Alphabetized list Of COre RESOUICES ...cuiviieiiiiiie e 126
Table A.2 — The Property definitions of the Resource with type "rt" =

B 1 To T =Y (oY o T Lol g == T 0 =1 1 0= o 133
Table A.3 — The CRUDN operations of the Resource with type "rt" =

o T ToR Y =N o] a1 1ol == YU =] £ 1= o) PPN 134
Table A.4 — The Property definitions of the Resource with type "rt" = "oic.wk.col"............... 142
Table A.5 — The CRUDN operations of the Resource with type "rt" = "oic.wk.col". 143
Table A.6 — The Property definitions of the Resource with type "rt" = "oic.wk.d". 146
Table A.7 — The CRUDN operations of the Resource with type "rt" = "oic.wk.d".................. 147
Table A.8 — The Property definitions of the Resource with type "rt" =

B 1T S 1 o 1= L= o3 4 o 150

Table A.9 — The CRUDN operations of the Resource with type "rt" = "oic.wk.introspection".150

Table A.10 — The Property definitions of the Resource with type "rt" = "oic.wk.p"................ 153
Table A.11 — The CRUDN operations of the Resource with type "rt" = "oic.wk.p". 154
Table A.12 — The Property definitions of the Resource with type "rt" = "oic.wk.res"............. 160
Table A.13 — The CRUDN operations of the Resource with type "rt" = "oic.wk.res". 161
Table A.14 — The Property definitions of the Resource with type "rt" = "oic.r.mqtt.conf". 164
Table A.15 — The CRUDN operations of the Resource with type "rt" = "oic.r.mqtt.conf"....... 165

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved Xi

383

384
385
386
387

388
389
390
391
392
393

394
395
396

397
398
399
400
401

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

Introduction

This document, and all the other parts associated with this document, were developed in response
to worldwide demand for smart home focused Internet of Things (IoT) devices, such as appliances,
door locks, security cameras, sensors, and actuators; these to be modelled and securely controlled,
locally and remotely, over an IP network.

While some inter-device communication existed, no universal language had been developed for
the 10T. Device makers instead had to choose between disparate frameworks, limiting their market
share, or developing across multiple ecosystems, increasing their costs. The burden then falls on
end users to determine whether the products they want are compatible with the ecosystem they
bought into, or find ways to integrate their devices into their network, and try to solve interoperability
issues on their own.

In addition to the smart home, 10T deployments in commercial environments are hampered by a
lack of security. This issue can be avoided by having a secure loT communication framework, which
this standard solves.

The goal of these documents is then to connect the next 25 billion devices for the 10T, providing
secure and reliable device discovery and connectivity across multiple OSs and platforms. There
are multiple proposals and forums driving different approaches, but no single solution addresses
the majority of key requirements. This document and the associated parts enable industry
consolidation around a common, secure, interoperable approach.

The OCF specification suite is made up of nineteen discrete documents, the documents fall into
logical groupings as described herein:
— Core framework
— Core Specification
— Security Specification
— Onboarding Tool Specification
— Bridging framework and bridges
— Bridging Specification
— Resource to Alljoyn Interface Mapping Specification
— OCF Resource to oneM2M Resource Mapping Specification
— OCF Resource to BLE Mapping Specification
— OCF Resource to EnOcean Mapping Specification
— OCF Resource to LWM2M Mapping Specification
— OCF Resource to UPlus Mapping Specification
— OCF Resource to Zigbee Cluster Mapping Specification
— OCF Resource to Z-Wave Mapping Specification
— Resource and Device models
— Resource Type Specification
— Device Specification
— Core framework extensions
— Easy Setup Specification
— Core Optional Specification
— OCF Cloud

— Cloud API for Cloud Services Specification
Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved Xii

426 — Device to Cloud Services Specification
427 — Cloud Security Specification

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved Xiii

OCF Core Specification
1 Scope
The OCF Core specifications are divided into a set of documents:

— Core specification (this document): The Core specification document specifies the Framework,
i.e., the OCF core architecture, interfaces, protocols and services to enable OCF profiles
implementation for Internet of Things (IoT) usages and ecosystems. This document is
mandatory for all Devices to implement.

— Core optional specification: The Core optional specification document specifies the Framework,
i.e., the OCF core architecture, interfaces, protocols and services to enable OCF profiles
implementation for Internet of Things (IoT) usages and ecosystems that can optionally be
implemented by any Device.

— Core extension specification(s): The Core extension specification(s) document(s) specifies
optional OCF Core functionality that are significant in scope (e.g., Wi-Fi easy setup, Cloud).

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

ISO 8601, Data elements and interchange formats — Information interchange —Representation of
dates and times, International Standards Organization, December 3, 2004

ISO/IEC DIS 20924, Information Technology — Internet of Things — Vocabulary, June 2018
https://lwww.iso.org/standard/69470.html

ISO/IEC 30118-2, Information technology — Open Connectivity Foundation (OCF) Specification —
Part 2: Security specification

https://www.iso.org/standard/74239.html

Latest version available at: https://openconnectivity.org/specs/OCF_Security _Specification.pdf

IETF RFC 768, User Datagram Protocol, August 1980
https://www.rfc-editor.org/info/rfc768

IETF RFC 3339, Date and Time on the Internet: Timestamps, July 2002
https://www.rfc-editor.org/info/rfc3339

IETF RFC 3986, Uniform Resource Identifier (URI): General Syntax, January 2005.
https://lwww.rfc-editor.org/info/rfc3986

IETF RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace, July 2005
https://www.rfc-editor.org/info/rfc4122

IETF RFC 4287, The Atom Syndication Format, December 2005,
https://www.rfc-editor.org/info/rfc4287

IETF RFC 4941, Privacy Extensions for Stateless Address Autoconfiguration in IPv6, September
2007
https://lwww.rfc-editor.org/info/rfc4941

IETF RFC 5646, Tags for Identifying Languages, September 2009
https://www.rfc-editor.org/info/rfc5646

IETF RFC 6347, Datagram Transport Layer Security Version 1.2, January 2012
https://lwww.rfc-editor.org/info/rfc6347

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 1

https://www.iso.org/standard/69470.html
https://www.iso.org/standard/74239.html
https://openconnectivity.org/specs/OCF_Security_Specification.pdf
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4287
https://www.rfc-editor.org/info/rfc4941
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc6347

IETF RFC 6434, IPv6 Node Requirements, December 2011
https://www.rfc-editor.org/info/rfc6434

IETF RFC 6573, The Item and Collection Link Relations, April 2012
https://www.rfc-editor.org/info/rfc6573

IETF RFC 6690, Constrained RESTful Environments (CoRE) Link Format, August 2012
https://www.rfc-editor.org/info/rfc6690

IETF RFC 7049, Concise Binary Object Representation (CBOR), October 2013
https://lwww.rfc-editor.org/info/rfc7049

IETF RFC 7084, Basic Requirements for IPv6 Customer Edge Routers, November 2013
https://www.rfc-editor.org/info/rfc7084

IETF RFC 7159, The JavaScript Object Notation (JSON) Data Interchange Format, March 2014
https://lwww.rfc-editor.org/info/rfc7159

IETF RFC 7252, The Constrained Application Protocol (CoAP), June 2014
https://www.rfc-editor.org/info/rfc7252

IETF RFC 7301, Transport Layer Security (TLS) Application-Layer Protocol Negotiation
Extension, July 2014
https://www.rfc-editor.org/info/rfc7301

IETF RFC 7346, IPv6 Multicast Address Scopes, August 2014
https://www.rfc-editor.org/info/rfc7346

IETF RFC 7595, Guidelines and Registration Procedures for URI Schemes, June 2015
https://lwww.rfc-editor.org/info/rfc7595

IETF RFC 7641, Observing Resources in the Constrained Application Protocol
(CoAP), September 2015
https://www.rfc-editor.org/info/rfc7641

IETF RFC 7721, Security and Privacy Considerations for IPv6 Address Generation Mechanisms,
March 20016
https://lwww.rfc-editor.org/info/rfc7721

IETF RFC 7959, Block-Wise Transfers in the Constrained Application Protocol (CoAP), August
2016
https://www.rfc-editor.org/info/rfc7959

IETF RFC 8075, Guidelines for Mapping Implementations: HTTP to the Constrained Application
Protocol (CoAP), February 2017
https://www.rfc-editor.org/info/rfc8075

IETF RFC 8085, UDP Usage Guidelines, March 2017
https://www.rfc-editor.org/info/rfc8085

IETF RFC 8288, Web Linking, October 2017
https://www.rfc-editor.org/info/rfc8288

IETF RFC 8323, CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets,
February 2018
https://www.rfc-editor.org/info/rfc8323

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 2

https://www.rfc-editor.org/info/rfc6434
https://www.rfc-editor.org/info/rfc6573
https://www.rfc-editor.org/info/rfc6690
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7084
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7346
https://www.rfc-editor.org/info/rfc7595
https://www.rfc-editor.org/info/rfc7641
https://www.rfc-editor.org/info/rfc7721
https://www.rfc-editor.org/info/rfc7959
https://www.rfc-editor.org/info/rfc8075
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8288
https://www.rfc-editor.org/info/rfc8323

IANA ifType-MIB Definitions
https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib

IANA IPv6 Multicast Address Space Registry
http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml

IANA Link Relations, October 2017
http://www.iana.org/assignments/link-relations/link-relations.xhtml

JSON Schema Validation, JSON Schema: interactive and non-interactive validation, January 2013
http://json-schema.org/draft-04/json-schema-validation.html

MQTT Version 5.0 OASIS Standard 07 March 2019
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-0s.pdf

OpenAPI specification, fka Swagger RESTful APl Documentation Specification, Version 2.0
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

3 Terms, definitions and abbreviated terms

3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following
addresses:
— 1SO Online browsing platform: available at https://www.iso.org/obp.

— |EC Electropedia: available at http://www.electropedia.org/.

3.1.1

Atomic Measurement

design pattern that ensures that the Client (3.1.6) can only access the Properties (3.1.34) of linked
Resources (3.1.32) atomically, that is as a single group

3.1.2
Bridged Client
logical entity that accesses data via a Bridged Protocol (3.1.4)

Note 1 to entry: For example, an AllJoyn Consumer application is a Bridged Client (3.1.2)

3.1.3
Bridged Device
Bridged Client (3.1.2) or Bridged Server (3.1.5)

3.1.4
Bridged Protocol
another protocol (e.g., AllJoyn) that is being translated to or from OCF protocols

3.15
Bridged Server
logical entity that provides data via a Bridged Protocol (3.1.4)

Note 1 to entry: For example an AllJoyn Producer is a Bridged Server (3.1.5).

Note 2 to entry: More than one Bridged Server (3.1.5) can exist on the same physical platform.

3.1.6
Client
logical entity that accesses a Resource (3.1.32) on a Server (3.1.37)

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 3

https://www.iana.org/assignments/ianaiftype-mib/ianaiftype-mib
http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://json-schema.org/draft-04/json-schema-validation.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.pdf
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://www.iso.org/obp
http://www.electropedia.org/

3.1.7
Collection
Resource (3.1.32) that contains zero or more Links (3.1.22)

3.1.8
Common Properties
Properties (3.1.34) specified for all Resources (3.1.32)

3.1.9

Composite Device

Device (3.1.13) that is modelled as multiple Device Types (3.1.14); with each component Device
Type (3.1.14) being exposed as a Collection (3.1.7)

3.1.10

Configuration Source

cloud or service network or a local read-only file which contains and provides configuration related
information to the Devices (3.1.13)

3.1.11
Core Resources
those Resources (3.1.32) that are defined in this document

3.1.12

Default OCF Interface

OCF Interface (3.1.19) used to generate the response when an OCF Interface (3.1.19) is omitted
in a request

3.1.13
Device
logical entity that assumes one or more roles, e.g., Client (3.1.6), Server (3.1.37)

Note 1 to entry: More than one Device (3.1.13) can exist on a Platform (3.1.31).

3.1.14

Device Type

uniquely named definition indicating a minimum set of Resource Types (3.1.35) that a Device
(3.1.13) supports

Note 1 to entry: A Device Type (3.1.14) provides a hint about what the Device (3.1.13) is, such as a light or a fan, for
use during Resource (3.1.32) discovery.

3.1.15

Device UUID

stack instance identifier

3.1.16
Discoverable Resource
Resource (3.1.32) that is listed in "/oic/res"

3.1.17

OCF Endpoint

entity participating in the OCF protocol, further identified as the source or destination of a request
and response messages for a given Transport Protocol Suite

Note 1 to entry: Example of a Transport Protocol Suite would be CoAP over UDP over IPv6.

3.1.18

Framework

set of related functionalities and interactions defined in this document, which enable interoperability
across a wide range of networked devices, including loT

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 4

3.1.19

OCF Interface

interface description extended by OCF that provides a view to and permissible responses from a
Resource (3.1.32)

[SOURCE: IETF RFC 6690]

3.1.20
Introspection
mechanism to determine the capabilities of the hosted Resources (3.1.32) of a Device (3.1.13)

3.1.21

Introspection Device Data (IDD)

data that describes the payloads per implemented method of the Resources (3.1.32) that make up
the Device (3.1.13)

Note 1 to entry: See 11.4 for all requirements and exceptions.

3.1.22
Links
extends typed web links

[SOURCE: IETF RFC 8288]

3.1.23
Non-Discoverable Resource
Resource (3.1.32) that is not listed in "/oic/res"

Note 1 to entry: The Resource (3.1.32) can be reached by a Link (3.1.22) which is conveyed by another Resource
(3.1.32). For example a Resource (3.1.32) linked in a Collection (3.1.7) does not have to be listed in "/oic/res", since
traversing the Collection (3.1.7) would discover the Resource (3.1.32) implemented on the Device (3.1.13).

3.1.24

Notification

mechanism to make a Client (3.1.6) aware of state changes in a Resource (3.1.32)

3.1.25

Observe

act of monitoring a Resource (3.1.32) by sending a RETRIEVE operation which is cached by the
Server (3.1.37) hosting the Resource (3.1.32) and reprocessed on every change to that Resource
(3.1.32)

3.1.26
OpenAPIl 2.0
Resource (3.1.32) and Introspection Device Data (3.1.21) definitions used in this document

[SOURCE: OpenAPI specification]

3.1.27

Parameter

element that provides metadata about a Resource (3.1.32) referenced by the target URI of a Link
(3.1.22)

3.1.28

Partial UPDATE

UPDATE operation to a Resource (3.1.32) that includes a subset of the Properties (3.1.34) that are
visible via the OCF Interface (3.1.19) being applied for the Resource Type (3.1.35)

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 5

3.1.29
Permanent Immutable ID
identity for a Device (3.1.13) that cannot be altered

3.1.30
Physical Device
physical thing on which a Device(s) (3.1.13) is exposed

3.1.31
Platform
Physical Device (3.1.30) containing one or more Devices (3.1.13)

3.1.32
Resource
represents an entity modelled and exposed by the Framework (3.1.18)

3.1.33
Resource Interface
gualification of the permitted requests on a Resource (3.1.32)

3.1.34

Property

significant aspect or Parameter (3.1.27) of a Resource (3.1.32), including metadata, that is exposed
through the Resource (3.1.32)

3.1.35

Resource Type

uniquely named definition of a class of Properties (3.1.34) and the interactions that are supported
by that class

Note 1 to entry: Each Resource (3.1.32) has a Property (3.1.34) "rt" whose value is the unique name of the Resource
Type (3.1.35).

3.1.36

Secure OCF Endpoint

OCF Endpoint (3.1.17) with a secure connection (e.g., COAPS)

3.1.37

Semantic Tag

meta-information that provides additional contextual information with regard to the Resource
(3.1.32) that is the target of a Link (3.1.22)

3.1.38

Server

Device (3.1.13) with the role of providing Resource (3.1.32) state information and facilitating remote
interaction with its Resources (3.1.32)

3.1.39
Sleepy Server
Server (3.1.38) that will have latency in responding to requests

3.1.40
Unsecure OCF Endpoint
OCF Endpoint (3.1.17) with an unsecure connection (e.g., CoAP)

3.1.41
Vertical Resource Type
Resource Type (3.1.35) in a vertical domain specification

Note 1 to entry: An example of a Vertical Resource Type (3.1.41) would be "oic.r.switch.binary".
Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 6

3.2 Symbols and abbreviated terms

ACL Access Control List

BLE Bluetooth Low Energy

CBOR Concise Binary Object Representation
CoAP Constrained Application Protocol
CoAPs Secure Constrained Application Protocol
DTLS Datagram Transport Layer Security

IP Internet Protocol

ISP Internet Service Provider

JSON JavaScript Object Notation

MTU Maximum Transmission Unit

OCF Open Connectivity Foundation

REST Representational State Transfer
RESTful REST-compliant Web services

UDP User Datagram Protocol

URI Uniform Resource Identifier

uuibD Universal Unique ldentifier

4 Document conventions and organization

4.1 Conventions

In this document a number of terms, conditions, mechanisms, sequences, parameters, events,
states, or similar terms are printed with the first letter of each word in uppercase and the rest
lowercase (e.g., Network Architecture). Any lowercase uses of these words have the normal
technical English meaning.

In this document, to be consistent with the IETF usages for RESTful operations, the RESTful
operation words CRUDN, CREATE, RETRIEVE, UPDATE, DELETE, and NOTIFY will have all
letters capitalized. Any lowercase uses of these words have the normal technical English meaning.

The messaging payload examples in this document contain OCF Vertical Device Types and
Resource Types, which are used for illustrative purposes only.

4.2 Notation

In this document, features are described as required, recommended, allowed or DEPRECATED as
follows:

Required (or shall or mandatory)(M).

— These basic features shall be implemented to comply with Core Architecture. The phrases "shall
not", and "PROHIBITED" indicate behaviour that is prohibited, i.e. that if performed means the
implementation is not in compliance.

Recommended (or should)(S).
Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 7

— These features add functionality supported by Core Architecture and should be implemented.
Recommended features take advantage of the capabilities Core Architecture, usually without
imposing major increase of complexity. Notice that for compliance testing, if a recommended
feature is implemented, it shall meet the specified requirements to be in compliance with these
guidelines. Some recommended features could become requirements in the future. The phrase
"should not" indicates behaviour that is permitted but not recommended.

Allowed (may or allowed)(O).

— These features are neither required nor recommended by Core Architecture, but if the feature
is implemented, it shall meet the specified requirements to be in compliance with these
guidelines.

DEPRECATED.

— Although these features are still described in this document, they should not be implemented
except for backward compatibility. The occurrence of a deprecated feature during operation of
an implementation compliant with the current document has no effect on the implementation’s
operation and does not produce any error conditions. Backward compatibility may require that
a feature is implemented and functions as specified but it shall never be used by
implementations compliant with this document.

Conditionally allowed (CA).

— The definition or behaviour depends on a condition. If the specified condition is met, then the
definition or behaviour is allowed, otherwise it is not allowed.

Conditionally required (CR).

— The definition or behaviour depends on a condition. If the specified condition is met, then the
definition or behaviour is required. Otherwise the definition or behaviour is allowed as default
unless specifically defined as not allowed.

Strings that are to be taken literally are enclosed in "double quotes".
Words that are emphasized are printed in italic.

In all of the Property and Resource definition tables that are included throughout this document the
"Mandatory" column indicates that the item detailed is mandatory to implement; the mandating of
inclusion of the item in a Resource Payload associated with a CRUDN action is dependent on the
applicable schema for that action.

4.3 Datatypes

Resources are defined using data types derived from JSON values as defined in IETF RFC 7159.
However, a Resource can overload a JSON defined value to specify a particular subset of the
JSON value, using validation keywords defined in JSON Schema Validation.

Among other validation keywords, clause 7 in JSON Schema Validation defines a "format" keyword
with a number of format attributes such as "uri" and "date-time", and a "pattern" keyword with a
regular expression that can be used to validate a string. This clause defines patterns that are
available for use in describing OCF Resources. The pattern names can be used in document text
where JSON format names can occur. The actual JSON schemas shall use the JSON type and
pattern instead.

For all rows defined in Table 1, the JSON type is string.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 8

Table 1 — Additional OCF Types

Pattern Name

Pattern

Description

"csv <none> A comma separated list of values
encoded within a string. The value
type in the csv is described by the
Property where the csv is used. For
example, a csv of integers.

NOTE csv is considered
deprecated and an array of strings
should be used instead for new
Resources.
"date" ~([0-91{4})-(1[0-2]|0[1-9])-(3[0-1]|2[0- | The full-date format pattern
9]|1[0-9]|0[1-9])% according to IETF RFC 3339
"duration” NP(?!$)([0-9]1+Y)?([0-9]+M)?([O- A string representing duration
9]+W)?([0-9]+D)?((T(?=[0- formatted as defined in ISO 8601.
9]+[HMS])([0-9]+H)?([0-9]+M)?([0O- Allowable formats are:
9]+S)?)?))$|"(P[0-9]+W)$|*(P[O- P[n]Y[n]M[n]DT[n]H[N]M[n]S, P[n]W,
9]{4})-(1[0-2]|0[1-9])-(3[0-1]|2[0- P[n]Y[n]-M[n]-DT[0-23]H[0-59]:M[0-
9]]1[0-9]|0[1-9])T(2[0-3]|1[0-9]|O[1- 59]:S, and P[n]W, P[n]Y[n]M[n]DT[O-
9]):([0-5][0-9]):([0-5][0-9])$|~(P[O- 23]H[0-59]M[0-59]S. P is mandatory,
91{4})(1[0-2]|0[1-9])(3[0-1]|2[0-9]|1[0- | all other elements are optional, time
9]|0[1-9])T(2[0-3]|1[0-9]|0[1-9])([O- elements must follow a T.
5][0-9])([0-5][0-9])$
"int64" ~0|(-?[1-9][0-9]{0,18})$ A string instance is valid against this

attribute if it contains an integer in
the range [-(2**63), (2**63)-1]

NOTE |ETF RFC 7159 clause 6
explains that JSON integers outside
the range [-(2**53)+1, (2**53)-1] are
not interoperable and so JSON
numbers cannot be used for 64-bit
numbers.

"language-tag"”

"NA-Za-z]{1,8}(-[A-Za-z0-9]{1,8})*$

An IETF language tag formatted
according to IETF RFC 5646 clause
2.1.

FO0-9]{4}-[a-fA-F0-9]{4}-[a-fA-FO-
9){12}$

"uint64" ~0|([1-9][0-9]{0,19})$ A string instance is valid against this
attribute if it contains an integer in
the range [0, (2**64)-1]
Also see note for "int64"

"uuid" "a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA- A UUID string representation

formatted according to
IETF RFC 4122 clause 3.

Strings shall be encoded as UTF-8 unless otherwise specified.

In a JSON schema, "maxLength" for a string indicates the maximum number of characters not
octets. However, "maxLength" shall also indicate the maximum number of octets. If no "maxLength"
is defined for a string, then the maximum length shall be 64 octets.

4.4 Resource notation syntax

When it is desired to describe the Property of a Resource Type or the "anchor” Parameter value in

an abbreviated notation, it can be

described as follows:

— Avalue of the "rt" Property of the Resource Type or "anchor" Parameter value ":" Property name

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 9

- e.g., "oic.wk.d:di", which is the "di" Property of the Device Resource Type.

If Property name is a composite type (a type that is composed of several Properties), it can be
described in recursive way. The following expression describes this as a regular expression format:

— A value of the "rt" Property of the Resource Type or "anchor" Parameter value (":" Property
name)+

— e.g., "oic.r.pstat:dos:s", which is the "s" Property of the "dos" Property of the "pstat" Resource
Type (see 13.8 of ISO/IEC 30118-2).

If there is a Resource URI (i.e., The Resource instance for a specific Resource Type), it can be
used instead of using a value of "rt" Property of Resource Type or the “anchor” Parameter value
as follows:

— A Resource URI (":" Property name)+

— e.g., "/oic/d:di", which is the "di" Property of the Device Resource Type instance.

— e.g. "/oic/sec/pstat:dos:s”, which is the "s" Property of the "dos" Property of the "oic.r.pstat”
Resource Type instance.

In the auto-generated Annex's Property definition tables for Resource Types, the Property names
can be noted as belonging to the RETRIEVE schema or to the UPDATE schema by prefixing the
Property name with "RETRIEVE" or "UPDATE" followed with the ":" separator. This is to avoid
duplicate Property names appearing in the Property definition tables that are auto-generated. The
following are examples using this notation with the "locn" Property of the "oic.wk.con" Resource
Type:

— "RETRIEVE:locn"
- "UPDATE:locn"

5 Architecture

5.1 Overview

The architecture Datagram enables resource based interactions among loT artefacts, i.e. physical
devices or applications. The architecture leverages existing industry standards and technologies
and provides solutions for establishing connections (either wireless or wired) and managing the
flow of information among Devices, regardless of their form factors, operating systems or service
providers.

Specifically, the architecture provides:

A communication and interoperability framework for multiple market segments (Consumer,
Enterprise, Industrial, Automotive, Health, etc.), OSs, platforms, modes of communication,
transports and use cases.

— A common and consistent model for describing the environment and enabling information and
semantic interoperability.

— Common communication protocols for discovery and connectivity.
— Common security and identification mechanisms.
— Opportunity for innovation and product differentiation.

— A scalable solution addressing different Device capabilities, applicable to smart devices as well
as the smallest connected things and wearable devices.

The architecture is based on the Resource Oriented Architecture design principles and described
in the 5.2 through 5.4 respectively. 5.2 presents the guiding principles for OCF operations. 5.3
defines the functional block diagram and Framework.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 10

5.2 Principle

In the architecture, Entities in the physical world (e.g., temperature sensor, an electric light or a
home appliance) are represented as Resources. Interactions with an entity are achieved through
its Resource representations (see 7.6.3.9) using operations that adhere to Representational State
Transfer (REST) architectural style, i.e., RESTful interactions.

The architecture defines the overall structure of the Framework as an information system and the
interrelationships of the Entities that make up OCF. Entities are exposed as Resources, with their
unique identifiers (URIs) and support interfaces that enable RESTful operations on the Resources.
Every RESTful operation has an initiator of the operation (the Client) and a responder to the
operation (the Server). In the Framework, the notion of the Client and Server is realized through
roles. Any Device can act as a Client and initiate a RESTful operation on any Device acting as a
Server. Likewise, any Device that exposes Entities as Resources acts as a Server. Conformant to
the REST architectural style, each RESTful operation contains all the information necessary to
understand the context of the interaction and is driven using a small set of generic operations, i.e.,
CREATE, RETRIEVE, UPDATE, DELETE and NOTIFY (CRUDN) defined in clause 7.11, which
include representations of Resources.

Figure 1 depicts the architecture.

OCF Roles

Client Server
OCF RESTful CRUDN Operations
Resource Model
Layer
Entity
. (e.g. light bulb,
Resource Resource Mapping e ke
monitor)
OCF Device OCHDEEE
\ -
s ifi Abstractions
pecific
Implementation of D E.g. GET /s/data a
Data Protocol/ Protocol specific COAP Request Protocol specifi
. : rotocol speciric
Messaging Implementation of i Iementgtion o
CRUDN Operations 12
(e.g. CoAP, HTTP, XMPP) Server
COAP Response
JJ { “bulb”: “on” } L&

_ J

Figure 1 — Architecture - concepts

The architecture is organized conceptually into three major aspects that provide overall separation
of concern: Resource model, RESTful operations and abstractions.

— Resource model: The Resource model provides the abstractions and concepts required to
logically model, and logically operate on the application and its environment. The Core
Resource model is common and agnostic to any specific application domain such as smart
home, industrial or automotive. For example, the Resource model defines a Resource which
abstracts an entity and the representation of a Resource maps the entity’s state. Other
Resource model concepts can be used to model other aspects, for example behaviour.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 11

5.3

RESTful operations: The generic CRUDN operations are defined using the RESTful paradigm
to model the interactions with a Resource in a protocol and technology agnostic way. The
specific communication or messaging protocols are part of the protocol abstraction and
mapping of Resources to specific protocols is provided in 0.

Abstraction: The abstractions in the Resource model and the RESTful operations are mapped
to concrete elements using abstraction primitives. An entity handler is used to map an entity to
a Resource and connectivity abstraction primitives are used to map logical RESTful operations
to data connectivity protocols or technologies. Entity handlers may also be used to map
Resources to Entities that are reached over protocols that are not natively supported by OCF.

Functional block diagram

The functional block diagram encompasses all the functionalities required for operation. These
functionalities are categorized as L2 connectivity, networking, transport, Framework, and
application profiles. The functional blocks are depicted in Figure 2.

Application(s)

OCF Data Models

Industrial

]
= |
]

Vertical Domain [Smart
eHealth

Profiles Home

N\
ID & Resource
Addressing model
J

Framework
[Discovery]

L2 Connectivity Networking Transport

Figure 2 — Functional block diagram

|\ 7
)

Security

)

Device

management RSty

L J
)

L2 connectivity: Provides the functionalities required for establishing physical and data link
layer connections (e.g., Wi-Fi™ or Bluetooth® connection) to the network.

Networking: Provides functionalities required for Devices to exchange data among themselves
over the network (e.g., Internet).

Transport: Provides end-to-end flow transport with specific QoS constraints. Examples of a
transport protocol include TCP and UDP or new Transport protocols under development in the
IETF, e.g., Delay Tolerant Networking (DTN).

Framework: Provides the core functionalities as defined in this document. The functional block
is the source of requests and responses that are the content of the communication between
two Devices.

Vertical Domain profile: Provides market segment specific functionalities, e.g., functions for the
smart home market segment.

When two Devices communicate with each other, each functional block in a Device interacts with
its counterpart in the peer Device as shown in Figure 3.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 12

5.4

Device 1 Device 2

Vertical Domain Vertical Domain

Framework Resources Framework

Transport Transport

Networking Networking

1)

L2 Connectivity L2 Connectivity

Figure 3 — Communication layering model

Framework

Framework consists of functions which provide core functionalities for operation.

6

6.1

Identification and addressing. Defines the identifier and addressing capability. The Identification
and addressing function is defined in clause 6.

Discovery. Defines the process for discovering available.
— Devices (OCF Endpoint Discovery in clause 10) and
— Resources (Resource discovery in 11.2).

Resource model. Specifies the capability for representation of entities in terms of Resources
and defines mechanisms for manipulating the Resources. The Resource model function is
defined in clause 7.

CRUDN. Provides a generic scheme for the interactions between a Client and Server as defined
in clause 7.11.

Messaging. Provides specific message protocols for RESTful operation, i.e. CRUDN. For
example, CoAP is a primary messaging protocol. The messaging function is defined in 11.5.

Security. Includes authentication, authorization, and access control mechanisms required for
secure access to Entities. The security function is defined in clause 12.5.

Identification and addressing

Introduction

Facilitating proper and efficient interactions between elements in the Framework, requires a means
to identify, name and address these elements.

The identifier unambiguously identifies an element in a context or domain. The context or domain
may be determined by the use or the application. The identifier is expected to be immutable over

the

lifecycle of that element and is unambiguous within a context or domain.

The address is used to define a place, way or means of reaching or accessing the element in order
to interact with it. An address may be mutable based on the context.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 13

The name is a handle that distinguishes the element from other elements in the Framework. The
name may be changed over the lifecycle of that element.

There may be methods or resolution schemes that allow determining any of these based on the
knowledge of one or more of others (e.g., determine name from address or address from name).

Each of these aspects may be defined separately for multiple contexts (e.g., a context could be a
layer in a stack). So an address may be a URL for addressing Resource and an IP address for
addressing at the connectivity layer. In some situations, both these addresses would be required.
For example, to do RETRIEVE (see 8.3) operation on a particular Resource representation, the
Client needs to know the address of the target Resource and the address of the Server through
which the Resource is exposed.

In a context or domain of use, a name or address could be used as identifier or vice versa. For
example, a URL could be used as an identifier for a Resource and designated as a URI.

The remainder of this clause discusses the identifier, address and naming from the point of view
of the Resource model and the interactions to be supported by the Resource model. Examples of
interactions are the RESTful interactions, i.e. CRUDN operation (clause 7.11) on a Resource. Also
the mapping of these to transport protocols, e.g., CoOAP is described.

6.2 Identification

6.2.1 Device and Platform identification

This document defines three identifiers that are used for identification of the Device. All identifiers
are exposed via Resources that are also defined within this document (see clause 11.2).

The Permanent Immutable ID ("piid" Property of "/oic/d") is the immutable identity of the Device,
the persistent valid value of this property is typically only visible after the Device is on-boarded
(when not on-boarded the Device typically exposes a temporary value). This value does not change
across the life-cycle of the Device.

The Device UUID ("di" Property of "/oic/d") is a mutable identity. The value changes each time the
Device is on-boarded. It reflects a specific on-boarded instance of the Device.

The Platform ID ("pi" Property of "/oic/p") is the immutable identity of the Platform on which the
Device is resident. When multiple logical Devices are exposed on a single Platform (for example,
on a Bridge) then the "pi" exposed by each Device should be the same.

6.2.2 Resource identification and addressing

A Resource may be identified using a URI and addressed by the same URI if the URI is a URL. In
some cases, a Resource may need an identifier that is different from a URI; in this case, the
Resource may have a Property whose value is the identifier. When the URI is in the form of a URL,
then the URI may be used to address the Resource.

An OCF URI is based on the general form of a URI as defined in IETF RFC 3986 as follows (note
that the portion in square brackets is optional):

<scheme>://<authority>/<path>?<query>
Specifically, the OCF URI is specified in the following form:
ocf://<authority>/<path>?<query>

The following is a description of values that each component takes.

The "scheme" for the URI is "ocf". The "ocf" scheme represents the semantics, definitions and use
as defined in this document. If a URI has the portion preceding the "//" (double slash) omitted, then
the "ocf" scheme shall be assumed.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 14

Each transport binding is responsible for specifying how an OCF URI is converted to a transport
protocol URI before sending over the network by the requestor. Similarly on the receiver side, each
transport binding is responsible for specifying how an OCF URI is converted from a transport
protocol URI before handing over to the Resource model layer on the receiver.

The authority of an OCF URI shall be the Device UUID ("di") value, as defined in [OCF Security],
of the Server.

The "path" is a string that unambiguously identifies or references a Resource within the context of
the Server. In this version of the document, a path shall not include pct-encoded non-ASCII
characters or NUL characters. A path shall be preceded by a "/" (slash). The path may have "/"
(slash) separated segments for human readability reasons. In the OCF context, the "/" (slash)
separated segments are treated as a single string that directly references the Resources (i.e. a flat
structure) and not parsed as a hierarchy. On the Server, the path or some substring in the path
may be shortened by using hashing or some other scheme provided the resulting reference is
unique within the context of the host.

Once a path is generated, a Client accessing the Resource or recipient of the URI should use that
path as an opaque string and should not parse to infer a structure, organization or semantic.

The "query" is a string that shall contain one or more "<name>=<value>" constructs (aka name-
value pair). Where multiple such constructs are supported, each is separated by an "&"
(ampersand); this is not a logical "and" operation, but purely a delimiter. Where the use of a query
is supported, how the query is handled by the recipient thereof is explicitly defined by the relevant
clause in this document or other specifications. The query string will be mapped to the appropriate
syntax of the protocol used for messaging. (e.g., CoAP).

A URI may be either fully qualified or relative generation of URI.

A URI may be defined by the Client which is the creator of that Resource. Such a URI may be
relative or absolute (fully qualified). A relative URI shall be relative to the Device on which it is
hosted. Alternatively, a URI may be generated by the Server of that Resource automatically based
on a pre-defined convention or organization of the Resources, based on an OCF Interface, based
on some rules or with respect to different roots or bases.

The absolute path reference of a URI is to be treated as an opaque string and a Client should not
infer any explicit or implied structure in the URI — the URI is simply an address. It is also
recommended that Devices hosting a Resource treat the URI of each Resource as an opaque string
that addresses only that Resource. (e.g., URI's "/a" and "/a/b" are considered as distinct addresses
and Resource b cannot be construed as a child of Resource a).

6.3 Namespace:

The relative URI prefix "/oic/" is reserved as a namespace for URIs defined in OCF specifications
and shall not be used for URIs that are not defined in OCF specifications. The prefix "oic." used for
OCF Interfaces and Resource Types is reserved for OCF specification usage.

6.4 Network addressing
The following are the addresses used in this document:

IP address

— An IP address is used when the Device is using an IP configured interface.

— When a Device only has the identity information of its peer, a resolution mechanism is needed
to map the identifier to the corresponding address.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 15

7 Resource model

7.1 Introduction

The Resource model defines concepts and mechanisms that provide consistency and core
interoperability between Devices in the OCF ecosystems. The Resource model concepts and
mechanisms are then mapped to the transport protocols to enable communication between the
Devices — each transport provides the communication protocol interoperability. The Resource
model, therefore, allows for interoperability to be defined independent of the transports.

The primary concepts in the Resource model are: entity, Resources, Uniform Resource ldentifiers
(URI), Resource Types, Properties, Representations, OCF Interfaces, Collections and Links. In
addition, the general mechanisms are CREATE, RETRIEVE, UPDATE, DELETE and NOTIFY.
These concepts and mechanisms may be composed in various ways to define the rich semantics
and interoperability needed for a diverse set of use cases that the Framework is applied to.

In the OCF Resource model Framework, an entity needs to be visible, interacted with or
manipulated, it is represented by an abstraction called a Resource. A Resource encapsulates and
represents the state of an entity. A Resource is identified, addressed and named using URIs.

Properties are "key=value" pairs and represent state of the Resource. A snapshot of these
Properties is the Representation of the Resource. A specific view of the Representation and the
mechanisms applicable in that view are specified as OCF Interfaces. Interactions with a Resource
are done as Requests and Responses containing Representations.

A Resource instance is derived from a Resource Type. The uni-directional relationship between
one Resource and another Resource is defined as a Link. A Resource that has Properties and
Links is a Collection.

A set of Properties can be used to define a state of a Resource. This state may be retrieved or
updated using appropriate Representations respectively in the response from and request to that
Resource.

A Resource (and Resource Type) could represent and be used to expose a capability. Interactions
with that Resource can be used to exercise or use that capability. Such capabilities can be used to
define processes like discovery, management, advertisement etc. For example: discovery of
Resources on a Device can be defined as the retrieval of a representation of a specific Resource
where a Property or Properties have values that describe or reference the Resources on the Device.

The information for Request or Response with the Representation may be communicated on the
wire by serializing using a transfer protocol or encapsulated in the payload of the transport protocol
— the specific method is determined by the normative mapping of the Request or Response to the
transport protocol. See clause 12 for transport protocols supported.

The OpenAPI 2.0 definitions (Annex A) used in this document are normative. This includes that all
defined JSON payloads shall comply with the indicated OpenAPI 2.0 definitions. Annex A contains
all of the OpenAPI 2.0 definitions for Resource Types defined in this document.

7.2 Resource

A Resource shall be defined by one or more Resource Type(s) — see Annex A for Resource Type.
A request to CREATE a Resource shall specify one or more Resource Types that define that
Resource.

A Resource is hosted in a Device. A Resource shall have a URI as defined in clause 6. The URI

may be assigned by the Authority at the creation of the Resource or may be pre-defined by the
definition of the Resource Type. An example Resource representation is depicted in Figure 4.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 16

/my/resource/example URI

{

"rt": ["oic.r.foobar"], Properties
“if': ["oic.if.a"],

"value": "foo value"

}

Figure 4 — Example Resource

Core Resources are the Resources defined in this document to enable functional interactions as
defined in clause 10 (e.g., Discovery, Device management, etc.). Among the Core Resources,

"loic/res", "/oic/p", and "/oic/d" shall be supported on all Devices. Devices may support other Core
Resources depending on the functional interactions they support.

7.3 Property
7.3.1 Introduction

A Property describes an aspect that is exposed through a Resource including meta-information
related to that Resource.

A Property shall have a name i.e. Property Name and a value i.e. Property Value. The Property is
expressed as a key-value pair where key is the Property Name and value the Property Value like
<Property Name> = <Property Value>. For example, if the "temperature” Property has a Property
Name "temp" and a Property Value "30F", then the Property is expressed as "temp=30F". The
specific format of the Property depends on the encoding scheme. For example, in JSON, Property
is represented as "key": value (e.g., "temp": 30).

In addition, the Property definition shall have a

— Value Type — the Value Type defines the values that a Property Value may take. The Value
Type may be a simple data type (e.g. string, Boolean) as defined in 4.3 or may be a complex
data type defined with a schema. The Value Type may define

— Value Rules define the rules for the set of values that the Property Value may take. Such
rules may define the range of values, the min-max, formulas, the set of enumerated values,
patterns, conditional values, and even dependencies on values of other Properties. The
rules may be used to validate the specific values in a Property Value and flag errors.

— Mandatory — specifies if the Property is mandatory or not for a given Resource Type.

— Access modes - specifies whether the Property may be read, written or both. Updates are
equivalent to a write. "r" is used for read and "w" is used for write — both may be specified.
Write does not automatically imply read.

The definition of a Property may include the following additional information — these items are
informative:

— Property Title - a human-friendly name to designate the Property; usually not sent over the wire.
— Description — descriptive text defining the purpose and expected use of this Property.

In general, a Property is meaningful only within the Resource to which it is associated. However, a
base set of Properties that may be supported by all Resources, known as Common Properties,
keep their semantics intact across Resources i.e. their "key=value" pair means the same in any
Resource. Detailed tables for all Common Properties are defined in 7.3.2.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 17

7.3.2 Common Properties
7.3.2.1 Introduction

The mandatory Common Properties defined in clause 7.3.2 shall be exposed and the optional
Common Properties may be exposed in all Resources. The following Properties are defined as
Common Properties:

The Common Properties for all Resources are specified in 7.3.2.3 through 7.3.2.6 respectively and
summarized as follows:

— Resource Type ("rt") — this mandatory Property is used to declare the Resource Type of that
Resource. Since a Resource could be defined by more than one Resource Type the Property
Value of the Resource Type Property may be used to declare more than one Resource Type
(see clause 7.4.4). See 7.3.2.3 for details.

— OCEF Interface ("if") — this mandatory Property declares the OCF Interfaces supported by the
Resource. The Property Value of the OCF Interface Property may be multi-valued and lists all
the OCF Interfaces supported. See 7.3.2.4 for details.

— Name ("n") — this optional Property declares human-readable name assigned to the Resource.
See 7.3.2.5.

— Resource Identity ("id") — this optional Property Value shall be a unique (across the scope of
the host Server) identifier for a specific instance of the Resource. The encoding of this identifier
is Device and implementation dependent. See 7.3.2.6 for details.

An optional Common Property may be mandatory when explicitly specified in a particular Resource
Type definition (e.g., the "n" Common Property for the "oic.wk.d" Resource Type).

The name of a Common Property is unique and is not used by other Properties. When defining a
new Resource Type, its non-common Properties will not use the name of existing Common
Properties (e.g., "rt", "if", "n", and "id").

The ability to UPDATE a Common Property (that supports write as an access mode) is restricted
to the "oic.if.rw" (read-write) OCF Interface; thus a Common Property shall be updatable using the
read-write OCF Interface if and only if the Property supports write access as defined by the Property
definition and the associated schema for the read-write OCF Interface.

7.3.2.2 Property Name and Property Value definitions

The Property Name and Property Value as used in this document:

— Property Name- the key in "key=value" pair. Property Name is case sensitive and its data type

is "string". Property names shall contain only letters A to Z, a to z, digits 0 to 9, hyphen, and
dot, and shall not begin with a digit.

— Property Value — the value in "key=value" pair. Property Value is case sensitive when its data
type is "string".

7.3.2.3 Resource Type
Resource Type Property is specified in 7.4.

7.3.2.4 OCF Interface
OCF Interface Property is specified in 7.6.

7.3.2.5 Name

A human friendly name for the Resource, i.e. a specific resource instance name (e.g.,
MyLivingRoomLight), The Name Property is as defined in Table 2

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 18

Table 2 — Name Property definition

Property Property Value Value Unit | Access | Mandatory Description
title name type rule mode
Name “n" "string” | N/A N/A R, W No Human understandable name for
the Resource.

Note: This Property may be mandatory when specifically defined for a Resource Type (e.g., "oic.wk.d").

The Name Property is read-write unless otherwise restricted by the Resource Type (i.e. the
Resource Type does not support UPDATE or does not support UPDATE using the read-write OCF
Interface ("oic.if.rw")).

7.3.2.6 Resource ldentity

The Resource ldentity Property shall be a unique (across the scope of the host Server) instance
identifier for a specific instance of the Resource. The encoding of this identifier is Device and
implementation dependent as long as the uniqueness constraint is met, noting that an
implementation may use a uuid as defined in 4.3. The Resource ldentity Property is as defined in
Table 3.

Table 3 — Resource identity Property definition

Property Property Value Value rule Unit Access | Mandatory Description
title name type mode
Resource "id" "string" Implementation N/A R No Unique identifier of the
Identity or uuid Dependent Resource (over all
Resources in the
Device)

Note: This Property may be mandatory when specifically defined for a Resource Type.
7.4 Resource Type
7.4.1 Introduction

Resource Type is a class or category of Resources and a Resource is an instance of one or more
Resource Types.

The Resource Types of a Resource is declared using the Resource Type Common Property as
described in 7.3.2.3 or in a Link using the Resource Type Parameter.

A Resource Type may either be pre-defined by OCF or in custom definitions by manufacturers, end
users, or developers of Devices (vendor-defined Resource Types). Resource Types and their
definition details may be communicated out of band (i.e. in documentation) or be defined explicitly
using a meta-language which may be downloaded and used by APIs or applications. OCF has
adopted OpenAPI 2.0 as the specification method for OCF’'s RESTful interfaces and Resource
definitions.

Every Resource Type shall be identified with a Resource Type ID which shall be represented using
the requirements and ABNF governing the Resource Type attribute in IETF RFC 6690 (clause 2 for
ABNF and clause 3.1 for requirements) with the caveat that segments are separated by a "."
(period). The entire string represents the Resource Type ID. When defining the ID each segment
may represent any semantics that are appropriate to the Resource Type. For example, each
segment could represent a namespace. Once the ID has been defined, the ID should be used
opaquely and implementations should not infer any information from the individual segments. The
string "oic", when used as the first segment in the definition of the Resource Type ID, is reserved
for OCF-defined Resource Types. All OCF defined Resource Types are to be registered with the
IANA Core Parameters registry as described also in IETF RFC 6690.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 19

7.4.2 Resource Type Property

A Resource when instantiated or created shall have one or more Resource Types that are the
template for that Resource. The Resource Types that the Resource conforms to shall be declared
using the "rt" Common Property for the Resource as defined in Table 4. The Property Value for the
"rt* Common Property shall be the list of Resource Type IDs for the Resource Types used as
templates (i.e., "rt"=<list of Resource Type IDs>).

Table 4 — Resource Type Common Property definition

Property Property Value Value rule Unit Access | Mandatory Description
title name type mode
Resource "rt" "array" Array of strings, N/A R Yes The Property name rt
Type conveying is as described in
Resource Type IETF RFC 6690
IDs

Resource Types may be explicitly discovered or implicitly shared between the user (i.e. Client) and

the host (i.e. Server) of the Resource.

7.4.3 Resource Type definition

Resource Type is specified as follows:

— Pre-defined URI (optional) — a pre-defined URI may be specified for a specific Resource Type
in an OCF specification. When a Resource Type has a pre-defined URI, all instances of that

Resource Type shall use only the pre-defined URI. An instance of a different Resource Type
shall not use the pre-defined URI.

— Resource Type Title (optional) — a human friendly name to designate the Resource Type.

— Resource Type ID — the value of "rt" Property which identifies the Resource Type, (e.g.,
"oic.wk.p").

— Resource Interfaces — list of the OCF Interfaces that may be supported by the Resource Type.

— Properties — definition of all the Properties that apply to the Resource Type. The Resource Type
definition shall define whether a property is mandatory, conditional mandatory, or optional.

— Related Resource Types (optional) — the definition of other Resource Types that may be
referenced as part of the Resource Type, applicable to Collections.

— Mime Types (optional) — mime types supported by the Resource including serializations (e.g.,
application/cbor, application/json, application/xml).

Table 5 and Table 6 provides an example description of an illustrative foobar Resource Type and
its associated Properties.

Table 5 — Example foobar Resource Type

Pre-defined Resource Resource OCF Description Related M/CR/O
URI Type Title Type ID ("rt" Interfaces Functional
value) Interaction
none "foobar" "oic.r.foobar" "oic.if.a" Example Actuation O
"foobar"
Resource

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 20

Table 6 — Example foobar Properties

Property Property Value Value rule Unit Access | Mandatory Description
title name type mode

Resource “rt" "array" N/A N/A R Yes Resource Type
Type
OCF "if" "array" N/A N/A R Yes OCF Interface

Interface

Foo value value "string" N/A N/A R Yes Foo value

For example, an instance of the foobar Resource Type.

{

"rt": ["oic.r.foobar"],
“if": [Moic.if.a"],
"value': "foo value"

}

For example, a schema representation for the foobar Resource Type.

"$schema': "http://json-schema.org/draft-04/schema’”,
ntypeu: nobjectu)
"properties': {

"rt': {
"type': "array",
"items" - {
"type" : "string",
"maxLength™: 64
T,
"minltems" : 1,
"readOnly": true,
"description': "Resource Type of the Resource"
},
ifrs {
"type': "array",
"items™: {
"type' : "string",
“enum™ : [Toic.if_baseline™, "oic.if.1l", "oic.if.b", "oic.if.Ib", "oic.if.rw",
"oic.if.r", "oic.if.a", "oic.if.s"]
}.

"value": {"type'": "string"}
}

,equired": [re, "if', "value'™]
}
7.4.4 Multi-value "rt" Resource

Multi-value "rt" Resource means a Resource with multiple Resource Types where none of the
included Resource Types denote a well-known Resource Type (i.e. "oic.wk.<thing>"). Such a
Resource is associated with multiple Resource Types and so has an "rt" Property Value of multiple
Resource Type IDs (e.g. "rt": ["oic.r.switch.binary", "oic.r.light.brightness"]). The order of the
Resource Type |IDs in the "rt" Property Value is meaningless. For example, "rt":

["oic.r.switch.binary", "oic.r.light.brightness"] and "rt": ["oic.r.light.brightness", "oic.r.switch.binary"]
have the same meaning.

Resource Types for multi-value "rt" Resources shall satisfy the following conditions:

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 21

— Property Name — Property Names for each Resource Type shall be unique (within the scope of
the multi-value "rt" Resource) with the exception of Common Properties, otherwise there will be
conflicting Property semantics. If two Resource Types have a Property with the same Property
"Name, a multi-value "rt" Resource shall not be composed of these Resource Types.

A multi-value "rt" Resource satisfies all the requirements for each Resource Type and conforms to
the OpenAPI 2.0 definitions for each component Resource Type. Thus the mandatory Properties
of a multi-value "rt" Resource shall be the union of all the mandatory Properties of each Resource
Type. For example, mandatory Properties of a Resource with "rt": ["oic.r.switch.binary”,
"oic.r.light.brightness”] are "value" and "brightness", where the former is mandatory for
"oic.r.switch.binary" and the latter for "oic.r.light.brightness".

The multi-value "rt" Resource Interface set shall be the union of the sets of OCF Interfaces from
the component Resource Types. The Resource Representation in response to a CRUDN action on
an OCF Interface shall be the union of the schemas that are defined for that OCF Interface. The
Default OCF Interface for a multi-value "rt" Resource shall be the baseline OCF Interface
("oic.if.baseline™) as that is the only guaranteed common OCF Interface between the Resource
Types.

For clarity if each Resource Type supports the same set of OCF Interfaces, then the resultant multi-
value "rt" Resource has that same set of OCF Interfaces with a Default OCF Interface of baseline
("oic.if.baseline").

See 7.9.3 for the handling of query parameters as applied to a multi-value "rt" Resource.

7.5 Device Type

A Device Type is a class of Device. Each Device Type defined will include a list of minimum
Resource Types that a Device shall implement for that Device Type. A Device may expose
additional standard and vendor defined Resource Types beyond the minimum list. The Device Type
is used in Resource discovery as specified in 11.2.3.

Like a Resource Type, a Device Type can be used in the Resource Type Common Property or in a
Link using the Resource Type Parameter.

A Device Type may either be pre-defined by an ecosystem that builds on this document, or in
custom definitions by manufacturers, end users, or developers of Devices (vendor-defined Device
Types). Device Types and their definition details may be communicated out of band (like in
documentation).

Every Device Type shall be identified with a Resource Type ID using the same syntax constraints
as a Resource Type.

7.6 OCF Interface
7.6.1 Introduction

An OCF Interface provides first a view into the Resource and then defines the requests and
responses permissible on that view of the Resource. So this view provided by an OCF Interface
defines the context for requests and responses on a Resource. Therefore, the same request to a
Resource when targeted to different OCF Interfaces may result in different responses. Depending
on the view requested (i.e., OCF Interface), the Resource representation may not include all
mandatory Properties (e.g., the "rt" and "if* Common Properties). If Common Properties are desired
in the view requested, use the "oic.if.baseline” OCF Interface (see clause 7.6.3.2) which every
Resource Type shall implement.

An OCF Interface may be defined by either this document (a Core OCF Interface), manufacturers,
end users or developers of Devices (a vendor-defined OCF Interface).

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 22

The OCF Interface Property lists all the OCF Interfaces the Resource support. All Resources shall
have at least one OCF Interface. The Default OCF Interface shall be defined by the Resource Type
definition. The Default OCF Interface associated with all OCF-defined Resource Types shall be the
supported OCF Interface listed first within the applicable enumeration in the definition of the
Resource Type (see Annex A for the OCF-defined Resource Types defined in this document). The
applicable enumeration is in the "parameters" enumeration referenced from the first "get" method
in the first "path" in the OpenAPI 2.0 file ("post" method if no "get" exists) for the Resource Type.
All Default OCF Interfaces specified in an OCF specification shall be mandatory.

In addition to any defined OCF Interface in this document, all Resources shall support the baseline
OCF Interface ("oic.if.baseline") as defined in 7.6.3.2.

See 7.9.4 for the use of queries to enable selection of a specific OCF Interface in a request.

An OCF Interface may accept more than one media type. An OCF Interface may respond with more
than one media type. The accepted media types may be different from the response media types.
The media types are specified with the appropriate header parameters in the transfer protocol.
(NOTE: This feature has to be used judiciously and is allowed to optimize representations on the
wire) Each OCF Interface shall have at least one media type.

7.6.2 OCF Interface Property

The OCF Interfaces supported by a Resource shall be declared using the OCF Interface Common
Property (Table 7), e.g., ""if": ["oic.if.ll", "oic.if.baseline"]". The Property Value of an OCF Interface
Property shall be a lower case string with segments separated by a "." (dot). The string "oic", when
used as the first segment in the OCF Interface Property Value, is reserved for OCF-defined OCF
Interfaces. The OCF Interface Property Value may also be a reference to an authority similar to
IANA that may be used to find the definition of an OCF Interface. A Resource Type shall support
one or more of the OCF Interfaces defined in 7.6.3.

Table 7 — Resource Interface Property definition

Property Property Value Value rule Unit Access | Mandatory Description
title name type mode
OCF "if" "array" Array of strings, N/A R Yes Property to declare the
Interface conveying OCF OCF Interfaces
Interfaces supported by a
Resource.

7.6.3 OCF Interface methods
7.6.3.1 Overview

OCF Interface methods shall not violate the defined OpenAPI 2.0 definitions for the Resources as
defined in Annex A.

The defined OCF Interfaces are listed in Table 8:

Table 8 — Standard OCF Interfaces

OCF Name Applicable Description
Interface Operations
baseline "oic.if.baseline" RETRIEVE, NOTIFY, The baseline OCF Interface defines a view into all
UPDATE1L Properties of a Resource including the Common
Properties. This OCF Interface is used to operate on
the full Representation of a Resource.

1 The use of UPDATE with the baseline OCF Interface is not recommended, see clause 7.6.3.2.3.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 23

links list

"oic.if.1I"

RETRIEVE,
NOTIFY

The links list OCF Interface provides a view into Links
in a Collection (Resource).

Since Links represent relationships to other
Resources, the links list OCF Interfaces may be used
to discover Resources with respect to a context. The
discovery is done by retrieving Links to these
Resources. For example: the Core Resource "/oic/res"
uses this OCF Interface to allow discovery of
Resource hosted on a Device.

batch

oic.if.b"

RETRIEVE, NOTIFY,
UPDATE

The batch OCF Interface is used to interact with a
Collection of Resources at the same time. This also
removes the need for the Client to first discover the
Resources it is manipulating — the Server forwards the
requests and aggregates the responses

read-only

oic.if.r"

RETRIEVE NOTIFY

The read-only OCF Interface exposes the Properties
of a Resource that may be read. This OCF Interface
does not provide methods to update Properties, so
can only be used to read Property Values.

write-only

“oic.if.w”

UPDATE

The write-only OCF Interface writes the Property
Values of a Resource that may be ‘written'. This OCF
Interface does not provide methods to RETRIEVE
Properties of a Resource and so may only be used to
‘write' Property Values. Note that the UPDATE may
specify Properties to be returned in a response.

read-
write

oic.if.rw

RETRIEVE, NOTIFY,
UPDATE

The read-write OCF Interface exposes only those
Properties that may be read from a Resource during a
RETRIEVE operation and only those Properties that
may be written to a Resource during and UPDATE
operation.

actuator

oic.if.a

RETRIEVE, NOTIFY,
UPDATE

The actuator OCF Interface is used to read or write
the Properties of an actuator Resource.

sensor

oic.if.s

RETRIEVE, NOTIFY

The sensor OCF Interface is used to read the
Properties of a sensor Resource.

create

"oic.if.create"

CREATE

The create OCF Interface is used to create new
Resources in a Collection. Both the Resource and the
Link pointing to it are created in a single atomic
operation.

property
startup

oic.if.startup"

RETRIEVE, UPDATE

The property startup OCF Interface is used to set the
default values of Properties on a Resource that will be
applied on power-up of the Device hosting the
Resource

Property
revert

oic.if.startup.revert"

RETRIEVE, UPDATE

The property startup revert OCF Interface is used to
establish a revert state on a Resource such that on a
power-up of the Device hosting the Resource the
target Properties are populated with the values to
which they were set prior to the power-down.

7.6.3.2
7.6.3.2.1

Baseline OCF Interface

Overview

The Representation that is visible using the baseline OCF Interface includes all the Properties of
the Resource including the mandatory and implemented optional Common Properties. The baseline
OCF Interface shall be defined for all Resource Types. All Resources shall support the baseline
OCF Interface.

7.6.3.2.2 Use of RETRIEVE

The baseline OCF Interface is used when a Client wants to retrieve all Properties of a Resource;
that is the Server shall respond with a Resource representation that includes all of the implemented
Properties of the Resource. When the Server is unable to send back the whole Resource
Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 24

representation, it shall reply with an error message. The Server shall not return a partial Resource
representation.

An example response to a RETRIEVE request using the baseline OCF Interface:

"rt": ["oic.r.temperature'],

"if": [Toic.if.a","oic.if_baseline],
"temperature': 20,

"units': "C",

"range': [0,100]

¥

7.6.3.2.3 Use of UPDATE

Support for the UPDATE operation using the baseline OCF Interface should not be provided by a
Resource Type. Where a Resource Type needs to support the ability to be UPDATED this should
only be supported using one of the other OCF Interfaces defined in Table 8 that supports the
UPDATE operation.

If a Resource Type is required to support UPDATE using the baseline OCF Interface, then all
Properties of a Resource with the exception of Common Properties may be modified using an
UPDATE operation only if the Resource Type defines support for UPDATE using baseline in the
applicable OpenAPI 2.0 schema for the Resource Type. If the OCF Interfaces exposed by a
Resource in addition to the baseline OCF Interface do not support the UPDATE operation, then
UPDATE using the baseline OCF Interface shall not be supported.

7.6.3.3 Links list OCF Interface
7.6.3.3.1 Overview

The Links list OCF Interface is used to provide a view into a Collection, Atomic Measurement, or
"/oic.res" Resource. This view shall be an array of all Links for those Resources subject to any
applied filtering being applied. The Links list OCF Interface name is "oic.if.Il".

7.6.3.3.2 Use with RETRIEVE

The RETRIEVE operation is supported with the Links list OCF Interface. A successful RETRIEVE
operation shall return a status code indicating success (i.e. "Content") with a payload with the
Resource representation as an array of Links. If there are no Links present in a Resource
representation, then an empty array list shall be returned in response to a RETRIEVE operation
request.

An example of a RETRIEVE operation request using the Links list OCF Interface for a Collection is
as illustrated:

RETRIEVE /scenes/scenel?if=oic.if.ll

The RETRIEVE operation response will be the array of Links to all Resources in the Collection as
illustrated:

Response: Content
Payload:
L

"href": "/the/light/1",
"rt": ["oic.r.switch._binary"],
"if": [TMoic.if.a", "oic.if.baseline"],
"eps":[{"ep': "coaps://[2001:db8:a::bld4]:55555"}]

3

{
“href": "/the/light/2",
"rt": ["oic.r.switch.binary"],
“if': [Moic.if.a", "oic.if.baseline'],

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 25

"eps": [{ep'": "coaps://[2001:db8:a::bld4]:55555"}]

“href': "/my/fan/1",

"rt": ["oic.r.switch.binary'],

“if': [Moic.if.a", "oic.if.baseline],
"eps":[{"ep': "coaps://[2001:db8:a::bld4]:55555"}]

“"href': "/his/fan/2",

"rt": ["oic.r.switch.binary"],

“if': [Toic.if.a", "oic.if.baseline'],
"eps":[{"ep': '"coaps://[2001:db8:a::b1d4]:55555"}]

7.6.3.3.3 Use with NOTIFY

The NOTIFY operation is supported with the Links list OCF Interface. A successful NOTIFY
operation shall return a status code indicating success (i.e. "Content") with a payload with the
Resource representation as an array of Links. If there are no Links present in a Resource
representation, then an empty array list shall be returned in response to a NOTIFY operation
request. Future events that change the Resource representation (e.g. UPDATE operation) shall
return a status code indicating success (i.e. "Content") with a payload with the newly updated
Resource representation as an array of Links.

An example of a NOTIFY operation request using the Links list OCF Interface for a Collection is as
illustrated:

NOTIFY /scenes/scenel?if=oic.if.ll

The NOTIFY operation response will be the array of Links to all Resources in the Collection as
illustrated:

Response: Content
Payload:

L

"href": "/the/light/1",

"rt": ["oic.r.switch._binary"],

“if': [Moic.if.a", "oic.if.baseline],
"eps":[{"ep': "coaps://[2001:db8:a::bld4]:55555"}]

{

“href": "/the/light/2",

"rt": ["oic.r.switch.binary"],

“if': [Moic.if.a", "oic.if.baseline'],

"eps': [{"ep'": '"coaps://[2001:db8:a::b1d4]:55555"}]
{

“href": "/my/fan/1",

"rt": ["oic.r.switch.binary"],

“if": [Toic.if.a", "oic.if.baseline'],

"eps":[{"ep': "coaps://[2001:db8:a::b1d4]:55555"}]
3
{

“href: "/his/fan/2",

"rt": ["oic.r.switch.binary'],

"if": [Toic.if.a", "oic.if.baseline'],

“eps":[{ep': '"coaps://[2001:db8:a::bld4]:55555"}]
3

1

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 26

Later when the "/his/fan/2" Link is removed (e.g., UPDATE operation with the Link remove OCF
Interface) the response to the NOTIFY operation request is as illustrated:

Response: Content
Payload:

L

{
“href': "/the/light/1",

"rt": ["oic.r.switch.binary'],
“if': [Moic.if.a", "oic.if.baseline],
"eps":[{"ep': "coaps://[2001:db8:a::bld4]:55555"}]

“href": "/the/light/2",

"rt": ["oic.r.switch.binary"],

“if": [Toic.if.a", "oic.if.baseline'],

"eps": [{'ep': "coaps://[2001:db8:a::bld4]:55555"}]

“"href"': "/my/fan/1",
"rt": ["oic.r.switch.binary'],
"if": [Toic.if.a", "oic.if.baseline'],
"eps":i[{ep': '"coaps://[2001:db8:a::b1d4]:55555"}]
}
1

If the result of removing a Link results in no Links being present, then an empty array list shall be
sent in a notification. An example of a response with no Links being present is as illustrated:

Response: Content
Payload:

L
1

7.6.3.3.4Use with CREATE, UPDATE, and DELETE

The CREATE, UPDATE and DELETE operations are not allowed by the Links list OCF Interface.
Attempts to perform CREATE, UPDATE or DELETE operations using the Links list OCF Interface
shall return an appropriate error status code, for example "Method Not Allowed".

7.6.3.4 Batch OCF Interface

7.6.3.4.1 Overview

The batch OCF Interface is used to interact with a Collection of Resources using a single/same
Request. The batch OCF Interface can be used to RETRIEVE or UPDATE the Properties of the
linked Resources with a single request.

7.6.3.4.2 General requirements for realizations of the batch OCF Interface

All realisations of the batch OCF Interface adhere to the following:

— The batch OCF Interface name is "oic.if.b""

— A Collection Resource has linked Resources that are represented as URIs. In the "href"
Property of the batch payload the URI shall be fully qualified for remote Resources and a
relative reference for local Resources.

— The original request is modified to create new requests targeting each of the linked Resources
in the Collection by substituting the URI in the original request with the URI of the linked
Resource. The payload in the original request is replicated in the payload of the new requests.

— The requests shall be forwarded assuming use of the Default OCF Interface of the linked
Resources.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 27

Requests shall only be forwarded to linked Resources that are identified by relation types "item
or "hosts" ("hosts" is the default relation type value should the "'rel" Link Parameter not be
present). Requests shall not be forwarded to linked Resources that do not contain the "item" or
"hosts" relation type values.

Properties of the Collection Resource itself may be included in payloads using "oic.if.b™ OCF
Interface by exposing a single Link with the link relation "self" along with "item" within the
Collection, and ensuring that Link resolution cannot become an infinite loop due to recursive
references. For example, if the Default OCF Interface of the Collection is "oic.if.b", then the
Server might recursively include its batch representation within its batch representation, in an
endless loop. See 7.6.3.4.5 for an example of use of a Link containing "rel": ["self","item"] to
include Properties of the Collection Resource, along with linked Resources, in "oic.if.b"
payloads.

If the Default OCF Interface of a Collection Resource is exposed using the Link relation "self",
and the Default OCF Interface contains Properties that expose any Links, those Properties shall
not be included in a batch representation which includes the "self" Link.

Any request forwarded to a linked Resource that is a Collection (including a "self" Link reference)
shall have the Default OCF Interface of the linked Collection Resource applied.

All the responses from the linked Resources shall be aggregated into a single Response to the
Client. The Server may timeout the response to a time window, the Server may choose any
appropriate window based on conditions.

If a linked Resource cannot process the request, an empty response, i.e. a JSON object with
no content ("{}") as the representation for the "rep" Property, or error response should the linked
Resource Type provide an error schema or diagnostic payload, shall be returned by the linked
Resource. These empty or error responses for all linked Resources that exhibit an error shall
be included in the aggregated response to the original Client request. See the example in
7.6.3.4.5.

If any of the linked Resources returns an error response, the aggregated response sent to the
Client shall also indicate an error (e.g. 4.xx in CoAP). If all of the linked Resources return
successful responses, the aggregated response shall include the success response code.

The aggregated response shall be an array of objects representing the responses from each
linked Resource. Each object in the response shall include at least two items: (1) the URI of
the linked Resource (fully qualified for remote Resources, or a relative reference for local
Resources) as "href": <URI> and (2) the individual response object or array of objects if the
linked Resource is itself a Collection using "rep" as the key, e.g. "rep": { <representation of
individual response> }.

The Client may specify the Resource Type(s) of the linked Resources to which the request is
forwarded by including one or more "rt" query parameters in the request, each separated by an
"&" as a delimiter (e.g. "?if=oic.if.b&rt=oic.r.switch.binary"). The Server shall then process such
additional query parameters in a request that includes "oic.if.b", as selectors for the Linked
Resources that are to be processed by the request.

7.6.3.4.3 Observability of the batch OCF Interface

When a Collection supports the ability to be observed using the batch OCF Interface the following
apply:

If the Collection Resource is marked as Observable, linked Resources referenced in the
Collection may be Observed using the batch OCF Interface. If the Collection Resource is not
marked as Observable then the Collection cannot be Observed and Observe requests to the
Collection shall be handled as defined for the case where request validation fails in clause
11.3.2.4. The Observe mechanism shall work as defined in 11.3.2 with the Observe request
forwarded to each of the linked Resources. All responses to the request shall be aggregated
into a single response to the Client using the same representations and status codes as for
RETRIEVE operations using the batch OCF Interface.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 28

Should any one of the Observable linked Resources fail to honour the Observe request the
response to the batch Observe request shall also indicate that the entire request was not
honoured using the mechanism described in 11.3.2.4.

If any of the Observable Resources in a request to a Collection using the batch OCF Interface
replies with an error or Observe Cancel, the Observations of all other linked Resources shall
be cancelled and the error or Observe Cancel status shall be returned to the Observing Client.

NOTE Behaviour may be different for Links that do network requests vs. local Resources.

All notifications to the Client that initiated an Observe request using the batch OCF Interface
shall use the batch representation for the Collection. This is the aggregation of any individual
Observe notifications received by the Device hosting the Collection from the individual Observe
requests that were forwarded to the linked Resources.

Linked Resources which are not marked Observable in the Links of a Collection shall not trigger
Notifications, but may be included in the response to, and subsequent Notifications resulting
from, an Observe request to the batch OCF Interface of a Collection.

Each notification shall contain the most current values for all of the Linked Resources that would
be included if the original Observe request were processed again. The Server hosting the
Collection may choose to RETRIEVE all of the linked Resources each time, or may choose to
employ caching to avoid retrieving linked Resources on each Notification.

If a Linked Resource is Observable and has responded with a successful Observe response,
the most recently reported value of that Resource is considered to be the most current value
and may be reported in all subsequent Notifications.

Links in the Collection should be Observed by using the "oic.if.ll" OCF Interface. A notification
shall be sent any time the contents of the "oic.if.ll" OCF Interface representation are changed;
that is, if a Link is added, if a Link is removed, or if a Link is updated. Notifications on the
"oic.if.lI" OCF Interface shall contain all of the Links in the "oic.if.ll" OCF Interface representation.

Other Properties of the Collection Resource, if present, may be Observed by using the OCF
Interfaces defined in the definition for the Resource Type, including using the "oic.if.baseline"
OCF Interface.

7.6.3.4.4 UPDATE using the batch OCF Interface

When a Collection supports the ability for the linked Resources to be the subject of the UPDATE
operation using the batch OCF Interface the following apply:

A Client shall perform UPDATE operations using the batch OCF Interface by creating a payload
that is similar to a RETRIEVE response payload from a batch OCF Interface request. The Server
shall send a separate UPDATE request to each of the linked Resources according to each "href"
Property and the corresponding value of the "rep" Property.

Items shall always contain a link-specific "href".

An UPDATE received by a Server with an empty "href" shall be rejected with a response
indicating an appropriate error (e.g. bad request).

Each linked Resource shall follow the requirements for an UPDATE request may not be
supported by the linked Resource. In such cases, writable Properties in the UPDATE operation
as defined in clause 8.4.

The UPDATE response shall contain the updated values using the same payload schema as
RETRIEVE operations if provided by the linked Resource, along with the appropriate status
code. The aggregated response payload shall reflect the known state of the updated Properties
after the batch update was completed. If no payload is provided by the updated Resource, then
an empty response (i.e. "rep": {}) shall be provided for that Resource.

A Collection shall not support the use of the UPDATE operation to add, modify, or remove Links

in an existing Collection using the "oic.if.baseline", "oic.if.rw" or "oic.if.a" OCF Interfaces.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 29

— A Collection shall not support the use of the UPDATE operation using the batch OCF Interface
when the Collection contains Links that resolve to Resources that are not hosted on the Device
that also hosts the Collection. If such a Collection receives an UPDATE operation, the operation
shall be rejected with a response indicating an appropriate error (e.g. method not allowed). If
the ability to UPDATE linked remote Resources is desired, the use of the optional scene feature
(see clause 11.6 in [1]) to effect the UPDATE could be utilized.

7.6.3.4.5 Examples: Batch OCF Interface

Note that the examples provided in Table 9 are illustrative and do not include all mandatory schema
elements in all cases. It is assumed that the Default OCF Interface for the Resource Type
"x.org.example.rt.room" is specified in its Resource Type definition file as "oic.if.rw", which exposes
the Properties "x.org.example.colour" and "x.org.example.size".

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 30

Table 9 — Batch OCF Interface example

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

31

Resources /a/room/1
{
"rt': "x.org.example.rt.room"],
“if': [Moic.if.rw","oic.if.baseline","oic.if.b","oic.if.11"],
"x.org.example.colour™: "blue",
"x.org.example.dimension': ""15bx15wx10h",
“links": [

{*href": "“/a/room/1", “rel”: [“self", "item"], "rt":
["x.org.example.rt.room™], "if":
[foic.if.rw”,"oic.if.baseline","oic.if.b","oic.if.11'"],"p": {"bm™: 2} },

{"href: "/the/light/1", "rel”: ["item"], "rt": [Moic.r.switch.binary'"],
“if": [Toic.if.a","oic.if.baseline™], "ins: "11111", *p": {"bm": 2} },

{"href: "/the/light/2", "rel”: ["item"], "rt": [Moic.r.switch.binary'"],
“if": [Toic.if.a" ,"oic.if.baseline™], "ins": 22222, “p": {"bm": 2} },

{"href': "/my/fan/1", "rel": ["item"], "rt": [Toic.r.switch.binary'],
“if": [Toic.if.a", "oic.if.baseline™], "ins': ""33333", "p": {"bm": 2} },

{"href': "/his/fan/2", "rel": ["item"], "rt": [Toic.r.switch.binary"],
“if": [Toic.if.a", "oic.if_.baseline™], "ins": 44444, “p": {"bm": 2} },

{"href'": "/the/presence/1", "rel": ["item"], "rt":
"oic.r.sensor.presence™], "if": [Toic.if.s", "oic.if.baseline'], "ins'":
55555, "p": {"bm": 2} },

{"href': "/the/switches/1", "rel": ["item"], "rt": ["oic.wk.col'],

“if i [oic.if.1l", "oic.if.b", "oic.if.baseline™], "ins': "55555", "p": {"bm":
2} ¥

1
}
/the/light/1
{

"rt": [Yoic.r.switch.binary'],
“if': [Moic.if.a", "oic.if.baseline'],
"value': false

3

/the/light/2

{
“rt”: [oic.r.switch.binary'],
"if"': [Toic.if.a", "oic.if._baseline'],
“value': true

3

/my/fan/1

{
"rt': [Toic.r.switch.binary"],
“if': [Moic.if.a", "oic.if.baseline'],
"value': true

3

/his/fan/2

{
"rt": ["oic.r.switch.binary'],
“if': [Moic.if.a", "oic.if.baseline'],
"value': false

3

/the/presence/1

{
"rt'": ["oic.r.sensor.presence'],
"if": [Toic.if.s","oic.if.baseline],
“value': false

3

/the/switches/1

{

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 32

“rt: [foic.wk.col'],
“if o [Moic.if 11", "oic.if.b", "oic.if.baseline'],
“links™: [
{
“href: "/switch-1a",
"rt": [Moic.r.switch.binary'],
“if": [Toic.if.a","oic.if.baseline],
“pto {"bm": 2}

"href'": "/switch-1b",
"rt": [Moic.r.switch.binary'],
"if": [Toic.if.a","oic.if.baseline],
pto {"bm": 2 }
3

1
}

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

33

Use of batch,
successful
response

Request: GET /a/room/1?if=oic.if.b
Becomes the following individual request messages issued by the Device in the Client role

GET /a/room/1 (NOTE: uses the Default OCF Interface as specified for the
Collection Resource, in this example oic.if.rw)

GET /the/light/1 (NOTE: Uses the Default OCF Interface as specified for this
Resource)

GET /the/light/2 (NOTE: Uses the Default OCF Interface as specified for this
Resource)

GET /my/fan/1 (NOTE: Uses the Default OCF Interface as specified for this
Resource)

GET /his/fan/2 (NOTE: Uses the Default OCF Interface as specified for this
Resource)

GET /the/presence/1 (NOTE: Uses the Default OCF Interface as specified for
this Resource)

GET /the/switches/1 (NOTE: Uses the Default OCF Interface for the Collection
that is within the Collection)

Response:
L

"href': "/a/room/1",

“rep”: {""x.org.example.colour™: "blue","x.org.example._.dimension®:
""15bx15wx10h""}

3
{
“href': "/the/light/1",
"rep": {"value'": false}
3
{
“href: "/the/light/2",
"rep"”: {"value': true}
3
{
“"href": "/my/fan/1",
“"rep”: {"value': true}
3
{
"href'": "/his/fan/2",
“"rep”: {"value': false}
3
{
"href"': "/the/presence/1",
“"rep”: {"value": false}

3.
{

"href': "/the/switches/1",
“rep”: [
{
“"href': "/switch-1a",
"rt": ["oic.r.switch._binary'"],
“if': [Moic.if.a","oic.if.baseline™],
ptc {"bm": 2},
“eps:[
{"ep": "coaps://[2001:db8:a::bld4]:55555"}
1
3
{

"href": "/switch-1b",
"rt": ["oic.r.switch.binary'"],
“if": [Moic.if.a","oic.if_baseline"],
"o {"bm™: 2 },
“eps:[
{"ep": "coaps://[2001:db8:a::bld4]:55555"}

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 34

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

35

Use of batch,
error
response

Should any of the RETRIEVE requests in the previous example fail then the response includes an empty
payload for that Resource instance and an error code is sent. The following example assumes errors from

"Imy/fan/1" and "/the/switches/1"

Error Response:

L

"href': "/a/room/1",

"rep”: {"'x.org.example.colour™: "blue","x.org.example._dimension':

""15bx15wx10h"'}
3}
{

“"href": "/the/light/1",
“"rep”: {"value'": false}

3.
{

“href": "/the/light/2",
"rep": {"value': true}

3

{
“href": "/my/fan/1",
“rep”: {3

3

{
"href': "/his/fan/2",
"rep": {"value': false}

N

“href: "/the/presence/1",

"rep": {"value'": false}

3.
{

"href': "/the/switches/1",

"rep”: {3
}
]

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

36

Use of batch

(UPDATE has
POST
semantics)

UPDATE /a/room/1?if=oic.if.b

L
“href": "/the/light/1",
"rep”: {
"value'": false
ks
3
{
“href": "/the/light/2",
"rep”: {
"value': true
ks
3
{
“"href': "/a/room/1",
"rep”: {
"x.org.example.colour™: "red"
ks
}
1

This turns /the/light/1 off, turns /the/light/2 on, and sets the colour of /a/room/1 to "red".

The response will be same as response for GET /a/room/1?if=oic.if.b with the updated Property values as
shown.

L
{
"href': "/a/room/1",
"rep":{"x.org.example.colour™: "red",
"x.org.example.dimension™: "15bx15wx10h"}
3.
{
"href": "/the/light/1",
“"rep”: {"value': false}
3.
{
"href": "/the/light/2",
“rep”: {"value': true}
}
1

Example use of additional query parameters to select items by matching Link Parameters.

Retrieving all items that are Presence Sensors ("oic.r.sensor.presence"):
RETRIEVE /a/room/1?if=oic.if_b&rt=oic.r.sensor._presence

Response payload:

L
“href: "/the/presence/1",
"rep”: {
"value'": false
T
b
1

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 37

7.6.3.5 Actuator OCF Interface

The actuator OCF Interface is the OCF Interface for viewing Resources that may be actuated i.e.
changes some value within or the state of the entity abstracted by the Resource:

— The actuator OCF Interface name shall be "oic.if.a"

— The actuator OCF Interface shall expose in the Resource Representation all mandatory
Properties as defined by the applicable OpenAPI 2.0 schema; the actuator OCF Interface may
also expose in the Resource Representation optional Properties as defined by the applicable
OpenAPI 2.0 schema that are implemented by the target Device.

For example, a "Heater" Resource (for illustration only):

/a/act/heater
{
"rt": [""x.com.acme.gas'],
“if': [Toic.if.baseline”, "oic.if.r", "oic.if.a", "oic.if.s"],
"'X.com.acme.settemp': 10,
''Xx.com.acme.currenttemp” : 7

}
The actuator OCF Interface with respect to "Heater" Resource (for illustration only):

a) Retrieving values of an actuator.
Request: RETRIEVE /a/act/heater?if="oic.if.a"

Response: Content
Payload:

{

"X.com.acme.settemp™: 10,
"'X.com.acme.currenttemp' : 7

}

b) Correct use of actuator OCF Interface.

Request: UPDATE /a/act/heater?if="oic.if.a"

"'Xx.com.acme.settemp: 20

}

Response: Changed
Payload:
{

"X.com.acme.settemp™: 20

}
¢) Incorrect use of actuator OCF Interface.

Request: UPDATE /a/act/heater?if="oic.if.a"

{
"if': [Toic.if.s"] < this is visible through baseline OCF Interface
¥
Response:Bad Request
Payload:
{
¥

— A RETRIEVE request using this OCF Interface shall return the Representation for this Resource
as defined by the applicable OpenAPI 2.0 schema, subject to any query parameters that may
also be defined as part of the applicable OpenAPI 2.0 schema.

— An UPDATE request using this OCF Interface shall provide a payload or body that contains the
Properties that will be updated on the target Resource.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 38

7.6.3.6 Sensor OCF Interface

The sensor OCF Interface is the OCF Interface for retrieving measured, sensed or capability
specific information from a Resource that senses:

— The sensor OCF Interface name shall be "oic.if.s".

— The sensor OCF Interface shall expose in the Resource Representation all mandatory
Properties as defined by the applicable OpenAPI 2.0 schema; the sensor OCF Interface may
also expose in the Resource Representation optional Properties as defined by the applicable
OpenAPI 2.0 schema that are implemented by the target Device.

— A RETRIEVE request using this OCF Interface shall return this representation for the Resource
as defined by the applicable OpenAPI 2.0 schema, subject to any query parameters that may
also be defined as part of the applicable OpenAPIl 2.0 schema.

NOTE: The example here is with respect to retrieving values of a sensor

Request: RETRIEVE /a/act/heater?if="oic.if.s"

Response: Content
Payload:
{

'X.com.acme.currenttemp’: 7

}

Incorrect use of the sensor.

Request: UPDATE /a/act/heater?if="oic.if.s" <& UPDATE is not allowed
{

"X.com.acme.settemp: 20 & this is possible through actuator OCF Interface

}

Response: Bad Request
Payload:

{
+

Another incorrect use of the sensor.

Request: UPDATE /a/act/heater?if="oic.if.s" <& UPDATE is not allowed
{

"'X.com.acme.currenttemp': 15 < this is not possible to be updated

}

Response: Bad Request
Payload:

{
}

7.6.3.7 Read-only OCF Interface

The read-only OCF Interface exposes only the Properties that may be read. This includes
Properties that may be read-only, read-write but not Properties that are write-only or set-only. The
applicable operations that can be applied to a Resource are only RETRIEVE and NOTIFY. An
attempt by a Client to apply a method other than RETRIEVE or NOTIFY to a Resource shall be
rejected with an error response code.

The read-only OCF Interface with respect to "Heater" Resource (for illustration only):

Request: RETRIEVE /a/act/heater?if="oic.if.r"
Response: Content
Payload:

{

"X.com.acme.settemp': 10,

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 39

''X.com.acme.currenttemp" : 7

b
7.6.3.8 Read-write OCF Interface

The read-write OCF Interface is a generic OCF Interface to support reading and setting Properties
in a Resource. The applicable methods that can be applied to a Resource are only RETRIEVE,
NOTIFY, and UPDATE. For the RETRIEVE and NOTIFY operations, the behaviour is the same as
for the "oic.if.r" OCF Interface defined in 7.6.3.7. For the UPDATE operation, read-only Properties
(i.e. Properties tagged with "readOnly=true" in the OpenAPIl 2.0 definition) shall not be in the
UPDATE payload. An attempt by a Client to apply a method other than RETRIEVE, NOTIFY, or
UPDATE to a Resource shall be rejected with an error response code.

For example, a "Grinder" Resource (for illustration only):
/a/mygrinder
"rt": ["oic.r.grinder'],
“if': [TMoic.if.rw", "oic.if._baseline'],
"'coarseness'': 10,

"remaining': 50

}

The read-write OCF Interface with respect to “Grinder" Resource (for illustration only):

a) Retrieving the value with read-write OCF Interface

Request: RETRIEVE /a/mygrinder?if="oic.if.rw"

Response: Content
Payload:

{

"'coarseness': 10,
"remaining': 50

}

b) Updating the value with read-write OCF Interface

Request: UPDATE /a/mygrinder?if="oic.if.rw"

{ "‘coarseness': 20
ks
Response: Changed
Payload:
{

""coarseness'': 20
s

7.6.3.9 Create OCF Interface
7.6.3.9.1 Overview

The create OCF Interface is used to create Resource instances in a Collection. An instance of a
Resource and the Link pointing to the Resource are created together, atomically, according to a
Client-supplied representation. The create OCF Interface name is "oic.if.create". A Collection which
exposes the "oic.if.create" OCF Interface shall expose the "rts" Property (see clause 7.8.2.8) with
all Resource Types that can be hosted with the Collection. If a Client attempts to create a Resource
Type which is not supported by the Collection, the Server shall return an appropriate error status
code, for example "Bad Request". Successful CREATE operations shall return a success code, i.e.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 40

"Created". The IDD for all allowed Resource Types that may be created shall adhere to
Introspection for dynamic Resources (see clausell.4).

7.6.3.9.2 Data format for CREATE

The data format for the create OCF Interface is similar to the data format for the batch OCF
Interface. The create OCF Interface format consists of a set of Link Parameters and a "rep"
Parameter which contains a representation for the created Resource.

The representation supplied for the Link pointing to the newly created Resource shall contain at
least the "rt" and "if" Link Parameters.

The Link Parameter "p" should be included in representations supplied for all created Resources.
If the "Discoverable" bit is set, then the supplied Link representation shall be exposed in "/oic/res"
of the Device on which the Resource is being created. The Link Parameters representation in the
"/oic/res" Resource does not have to mirror the Link Parameters in the Collection of the created
Resource (e.g., "ins" Parameter).

Creating a discoverable Resource is the only way to add a Link to "/oic/res".

If the "p" Parameter is not included, the Server shall create the Resource using the default settings
of not discoverable, and not observable.

The representation supplied for a created Resource in the value of the "rep" Parameter shall
contain all mandatory Properties required by the Resource Type to be created excluding the
Common Properties "rt" and "if" as they are already included in the create payload.

Note that the "rt" and "if" Property Values are created from the supplied Link Parameters of the
Resource creation payload.

If the supplied representation does not contain all of the required Properties and Link Parameters,
the Server shall return an appropriate error status code, for example "Bad Request".

An example of the create OCF Interface payload is as illustrated:

{
"rt": ["oic.r.temperature'],
"if': [Moic.if.a","oic.if_baseline],
“p'": {"bm":3},
“"rep”: {
"temperature': 20
}
¥

The representation returned when a Resource is successfully created shall contain the "href", "if",
and "rt" Link Parameters and all other Link Parameters that were included in the CREATE operation.
In addition, the "rep" Link Parameter shall include all Resource Properties as well as the "rt" and
"if" Link Parameters supplied in the CREATE operation. The Server may include additional Link
Parameters and Properties in the created Resource as required by the application-specific
Resource Type. The Server shall assign an "ins" value to each created Link and shall include the
"ins" Parameter in the representation of each created Link as illustrated in the Collection that the
Link of the created Resource was created within:

"href'': "'/3755f3ac",
"rt": ["oic.r.temperature'],
“if': [Moic.if.a","oic.if._baseline],
""ins'': 39724818,
“ptz {"bm":3},
"rep': {
"rt': [oic.r.temperature'],

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 41

"if": [Moic.if.a","oic.if.baseline],
"temperature': 20

}
}

The Link Parameters representation in the "/oic/res" Resource, if the created Resource is
discoverable, may not mirror exactly all the Link Parameters added in the Collection; except it shall
expose at a minimum the mandatory Properties of the Link (i.e., "rt", "if", and "href") of the created
Resource.

7.6.3.9.3 Use with CREATE

The CREATE operation shall be sent to the URI of the Collection in which the Resource is to be
created. The query string "?if=oic.if.create" shall be included in all CREATE operations.

The Server shall generate a URI for the created Resource and include the URI in the "href"
Parameter of the created Link.

When a Server successfully completes a CREATE operation using the "oic.if.create" OCF Interface
addressing a Collection, the Server shall automatically modify the ACL Resource to provide initial
authorizations for accessing for the newly created Resource according to ISO/IEC 30118-2.

An example performing a CREATE operation is as illustrated:
CREATE /scenes/scenel?if=oic.if.create

"rt": ["oic.r.temperature'],
“if': [Moic.if.a","oic.if.baseline],

“ptc {"bm":3},
"rep”: {
"temperature': 20
}
}
Response: Created
Payload:
{
“href": "/3755f3ac",
"ins': 39724818,
“rt': [foic.r.temperature'],
"if': [Toic.if.a","oic.if._baseline'],
“pto {"bm:3},
"rep: {
“rt': [oic.r.temperature'],
"if": [Moic.if.a","oic.if._baseline'],
"temperature'': 20
}
}

7.6.3.9.4 Use with UPDATE and DELETE

The UPDATE and DELETE operations are not allowed by the create OCF Interface. Attempts to
perform UPDATE or DELETE operations using the create OCF Interface shall return an appropriate
error status code, for example "Method Not Allowed", unless the UPDATE and CREATE operations
map to the same transport binding method (e.g., CoAP with the POST method). In that situation
where the UPDATE and CREATE operations map to the same transport binding method, this shall
be processed as a CREATE operation according to clause 7.6.3.9.3.

7.6.3.10 Write-Only OCF Interface

The write-only OCF Interface is the OCF Interface for updating Property Values of a Resource that
can’'t be read back later i.e. changes some value within, or the state of the entity abstracted by the

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 42

Resource, but is not reflected as an OCF RESTful Property that can be read back with a RETRIEVE
operation:

— The write-only OCF Interface name shall be "oic.if.w".

— The write-only OCF Interface shall use in the Resource Representation all mandatory
Properties as defined by the OpenAPI 2.0 schema in the Introspection Device Data; the write-
only OCF Interface may also use in the Resource Representation optional Properties as defined
by the applicable OpenAPI 2.0 schema that are implemented by the target Device.

— A RETRIEVE request using the "oic.if.w" OCF Interface shall be rejected with an error response
code.

— An UPDATE request using the "oic.if.w" OCF Interface may provide a Resource Representation
that contains the Properties that are to be UPDATED on the target Resource. A Resource
Representation is included as a payload if the Resource Type defines the use thereof for
UPDATE using "oic.if.w" in the applicable OpenAPI 2.0 schema for the Resource Type.
Depending on the actual function of the Resource the request and/or response payload of the
UPDATE request may have no properties defined.

Use of a RETRIEVE using the baseline OCF Interface on a Resource that exposes "oic.if.w" shall
only return the Common Properties see Clause 7.3.2. A minimal implementation of a RETRIEVE
response using the baseline OCF Interface on a Resource that supports "oic.if.w" shall only contain
the Properties "if" and "rt".

Resource Types that have the write-only OCF Interface defined shall not be part of a Multi-value
"rt" Resource. See [7.4.4].

For example (for illustration only): setting a binary value to its opposite can be achieved by sending
a toggle request via an input argument (request payload) of an UPDATE operation using the write-
only OCF Interface, the defined return arguments (in this case on the assumption that the Resource
Type has defined a response payload) in the response payload contains information on the success
or otherwise of the toggle operation:

Request: UPDATE /a/toggle?if=oic.if.w

"do_toggle": true

Response: Changed
Payload:

"toggled": "ok"

7.6.3.11 Property Start-up and Property Revert OCF Interfaces
7.6.3.11.1 Overview

The Property start-up and Property revert OCF Interfaces allow a Client to determine the values
that will be set on a Resource following power-up of the Device. The Property start-up OCF
Interface allows for the establishment of a specific value that will be set on power-up. The Property
revert OCF Interface allows for the Property value on power-up to be the same as the value last
set before power-down.

7.6.3.11.2 Support on a Device

A Device shall only expose "oic.if.startup"” as part of the "if" Link Parameter or "if* Common Property
for a Resource if that Resource also supports either the "oic.if.a" or "oic.if.rw" OCF Interfaces.

A Device shall only expose "oic.if.startup.revert" as part of the "if" Link Parameter or "if* Common
Property for a Resource if that Resource also supports either the "oic.if.a" or "oic.if.rw" OCF
Interfaces.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 43

Neither the "oic.if.startup” OCF Interface nor the "oic.if.startup.revert" OCF Interface shall be
exposed for a Resource that is an Atomic Measurement or that follows the Collection pattern.

7.6.3.11.3 Governing State Machine

(Nnrmal@peratinn\——-.ﬂ \ " UPDATE
narma

\)

UPDATE via oic.if startup

\

\
StartupDefauitsSetO eratiurﬂ-— N
(P P __:} "normal” UPDATE H'rJF'DATE via oic. if. startup. revert
|

;- /
UPDATE via oic.if startup.revert ™ UPDATE via oic.if. starty/

-
-\-\--\-__-—_

\
‘“=——)(RevertSetOperatinn%] I UPDATE
L\- -)‘__; narma

Figure 5 illustrates the state machine supported by all Resources that exposes both the
"oic.if.startup" and "oic.if.startup.revert” OCF Interfaces. A Device that supports only one of the
defined OCF Interfaces will support only the state transitions appropriate to the OCF Interface that
is supported. A Client needs to have an observe relationship established using both the
"oic.if.startup” and "oic.if.startup.revert” OCF Interfaces for it to be fully aware of all state transitions
that are defined. Note that the entry point into the state machine may be any of the supported
states depending on the initial values supported by an implementation (see clause 7.6.3.11.4).

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 44

(Nn:urmal@peratiun)——-ﬂ

"normal” UPDATE
Q J

UPDATE via oic.if startup

P \

Y
StartupDefaultsSetO eratiun}——u \ L
(i & __:?- "normal” UPDATE 'PF'DATE via oic.if startup. revert
|

/

UPDATE via oic.if startup.revert ™ UPDATE via oic.if. starty/

.,
—

—---________)(REVEI’tSEtOpera“D”?“\ "normal” UPDATE

\)

Figure 5 — Property Start-up Defaults/Revert State Machine

Thus on a power cycle:

e If in "NormalOperation' Property values are implementation dependent.

e Ifin "StartupDefaultsSetOperation' Property Values shall be those set via the last UPDATE
operation using an OCF Interface of "oic.if.startup”; values for Properties that are not
included in the UPDATE operation are implementation dependent.

o If in "RevertSetOperation" Property Values shall be those prior to the power cycle.
¢ In all cases, the state of the Device shall be persisted across the power cycle
7.6.3.11.4 Use of RETRIEVE

A Device that supports the "oic.if.startup” or "oic.if.startup.revert" OCF Interfaces may have initial
Property values for a Resource for either of these OCF Interfaces, and is thus in either the
StartupDefaultsSetOperation or RevertSetOperation state from the point of initial power-up.

If the Device is in StartupDefaultsSetOperation state as defined in clause 7.6.3.11.3, then on
reception of a RETRIEVE using the "oic.if.startup” OCF Interface the Device shall respond with
success response and a payload containing the currently set default values for the Resource. On
reception of a RETRIEVE using the "oic.if.startup” OCF Interface when not in the
StartupDefaultsSetOperation state the Device shall respond with a failure response (e.g. service
unavailable).

If the Device is in RevertSetOperation state as defined in clause 7.6.3.11.3 then on reception of a
RETRIEVE using the "oic.if.startup.revert” OCF Interface the Device shall respond with a "Valid"
response with no payload. On reception of a RETRIEVE using the "oic.if.startup.revert” OCF
Interface when not in the RevertSetOperation state the Device shall respond with a failure response
(e.g. service unavailable).

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 45

7.6.3.11.5 Use of UPDATE and Property Start-up Interface

When a Device receives an UPDATE that uses the "oic.if.startup" OCF Interface, the Device shall
set the start-up default values for all Properties that are in the payload to be those provided in the
payload, the Device shall not change current values of the Resource.

Further, reception of such an UPDATE also moves the Resource into the
StartupDefaultsSetOperation state as defined in clause 7.6.3.11.3; such that on completion of a
power cycle the Resource shall be populated with the values that were set as defaults, for those
Properties that weren't explicitly set by such an UPDATE, their value is implementation dependent.
7.6.3.11.6 Use of UPDATE and Property Revert Interface

When a Device receives an UPDATE that uses the "oic.if.startup.revert” OCF Interface, the Device
shall set the current value for all Properties that are in the payload to be those provided in the
payload and moves the Resource into the RevertSetOperation state as defined in clause 7.6.3.11.3;
such that on completion of a power cycle the Resource shall be populated with the values that were
present prior to the initiation of the power cycle.

7.6.3.11.7 Observability of Property Defaults and Property Revert Interfaces

A Client may Observe a Resource using either of the "oic.if.startup” or "oic.if.startup.revert” OCF
Interfaces.

When Observing using "oic.if.startup” then the Server shall send a NOTIFICATION whenever there
is a change to the Resource using the "oic.if.startup" OCF Interface.

When Observing using "oic.if.startup.revert" the Server shall send a NOTIFICATION whenever
there is any change to the Resource as the revert behaviour in essence is a tracker for the currently
set Property value(s).

7.7 Resource representation

Resource representation captures the state of a Resource at a particular time. The Resource
representation is exchanged in the request and response interactions with a Resource. A Resource
representation may be used to retrieve or update the state of a Resource.

The Resource representation shall not be manipulated by the data connectivity protocols and
technologies (e.g., CoAP, UDP/IP or BLE).

7.8 Structure

7.8.1 Introduction

In many scenarios and contexts, the Resources may have either an implicit or explicit structure
between them. This may be achieved through the use of Collection (7.8.3) and Atomic
Measurement (7.8.4) Resources.

7.8.2 Resource relationships (Links)

7.8.2.1 Introduction

Resource relationships are expressed as Links. A Link is a hyperlink, which defines a typed
connection between two Resources. Hyperlinks, or web links, have the following components as
defined in IETF RFC 8288:

— Link context (URI reference) as defined in 7.8.2.2

— Link relation type as defined in 7.8.2.3

— Link target (URI reference) as defined in 7.8.2.4

— Link target attributes as defined in 7.8.2.5

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 46

The Link context is the Resource with which the Link is associated. A Link is viewed as a statement
of the form "(Link context) has a (Link relation type) to a Resource at (Link target), which has (Link
target attributes)" as per IETF RFC 8288 clause 2.

To paraphrase, the Link target is related to the Link context according to the Link relation type.
Additionally, the Link target attributes make semantic statements about the Link target, to identify
the content type, physical location, etc.

Links conform to the definitions in IETF RFC 8288, with an example JSON serialization with
associated Link Parameters as illustrated:

{
"anchor': "/some/ocf/resource", // Link context, optional
“rel”: ["hosts'], // Link relation Type, optional
"href": "/some/other/ocf/resource”™, // Link target, required
p: {"bm": 3}, // Link target attributes, optional
"if": ["oic.if.baseline'], // Link target attributes, required
"rt": ["oic.r.sensor"] // Link target attributes, required
}

Additional items in the Link may be made mandatory based on the use of the Links in different
contexts (e.g. in Collections, in discovery, in bridging etc.). The OpenAPI 2.0 file for the Link
payload is detailed in Annex A.

Another example of a Link is as illustrated:

{"href'": "/switch", "rt": ["oic.r.switch.binary'], "if": ["oic.if.a",
“oic.if.baseline™], "p": {"bm™: 3}, "rel™: “item"}

7.8.2.2 Link context

The Link context is defined in the Link using the "anchor" Parameter. If the Link doesn't contain an
"anchor" Parameter, the Link context shall be the Resource from which the Link was retrieved.

7.8.2.3 Link relation type

The Link relation type conveys the semantics of the Link. The Link relation type is defined in the
Link using the "rel" Parameter. If the Link doesn't contain a "rel" Parameter, the Link relation type
shall be assumed to have the default value "hosts", which means that the Resource at the Link
target is "hosted" by the Resource at the Link context. The set of Link relation types to be used to
describe various relationships between Resources are as listed:

"hosts"

— The Link target points to a Resource that is hosted at the Link context. This Link relation
type indicates that the Resource is allowed to be included in the batch representations of
the Link target. This Link relation type is defined by IETF RFC 6690.

- "self"

— The Link refers to the Link context, which allows a Link to describe the Resource at the Link
context, which is to say that the Link can describe the Collection or Atomic Measurement
Resource that the Link is retrieved from. The Link target points to the Link context, and the
Link target attributes describe the Link context. This Link relation type is defined by
IETF RFC 4287.

"item"

— The Link target points to a Resource that is a member of the Collection or Atomic
Measurement at the Link context, which might not specifically be hosted by the Collection
or Atomic Measurement Resource, and is allowed to be contained in batch representations
of the Collection or Atomic Measurement. An example is using "rel": "item" to declare that

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved a7

the Properties of the Collection or Atomic Measurement Resource itself should be included
in a batch representation of the Collection or Atomic Measurement. This Link relation type
is defined by IETF RFC 6573.

All of these Link relation types are registered in the IANA Registry for Link relations types defined
in IANA Link Relations. Other Link relation types may be included in Links, provided that they
conform to the requirements in IETF RFC 8288. Other Link relation types may be defined for
features contained in other specifications and may not be included in what is defined in this clause.
The presence of Link relation types not defined in this document does not affect the processing of
Link relation types defined in this document.

When there is more than one Link relation type value in a Link, all of the values apply to describe
the relationship between the Link context and the Link target. A Link with multiple Link relation type
values is equivalent to a set of Links having the same Link context and Link target, each having
one of the Link relation values.

7.8.2.4 Link target
The Link target is a URI reference to a Resource using the "href" Parameter.

7.8.2.5 Parameters for Link target attributes
7.8.2.5.1 Introduction

Link target attributes are specialisations of Link Parameters. Table 10 lists all the Link target
attributes defined in this document.

Table 10 — Link target attributes list

Parameter Parameter Mandatory Description
title name

Device UUID "di" No Defined in clause 7.8.2.5.5
OCF Endpoint "eps" No Defined in clause 7.8.2.5.6
information
OCEF Interface "if" Yes Defined in clause 7.6
Link instance "ins" No Defined in clause 7.8.2.5.2
Policy "p" No Defined in clause 7.8.2.5.3
Resource Type | "rt" Yes Defined in clause 7.4
Media type "type" No Defined in clause 7.8.2.5.4
Position "tag-pos-desc” No Defined in clause 11.5.2.1.2
description
Semantic Tag
Relative "tag-pos-rel” No Defined in clause 11.5.2.1.3
position
Semantic Tag
Function "tag-func-desc" No Defined in clause 11.5.2.2.2
description
Semantic Tag
Location "tag-locn" No Defined in clause 11.5.2.3.2
description

Semantic Tag

Note: Other Link target attributes may to defined for features in other specifications and may not be included in this table.
7.8.2.5.2 "ins" or Link instance Parameter

The "ins" Parameter identifies a particular Link instance in a list of Links. The "ins" Parameter may
be used to modify or delete a specific Link in a list of Links. The value of the "ins" Parameter is set

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 48

at instantiation of the Link by the OCF Device (Server) that is hosting the list of Links — once it has
been set, the "ins" Parameter shall not be modified for as long as the Link is a member of that list.
7.8.2.5.3 "p" or policy Parameter

The policy Parameter defines various rules for correctly accessing a Resource referenced by a
target URI. The policy rules are configured by a set of key-value pairs.

The policy Parameter "p" is defined by:

"bm" key: The "bm" key corresponds to an integer value that is interpreted as an 8-bit bitmask.
Each bit in the bitmask corresponds to a specific policy rule. The rules are specified for "bm" in
Table 11:

Table 11 — "bm" Property definition

Bit Position Policy rule Comment

Bit O (the LSB) discoverable The discoverable rule defines whether the Link is to be
included in the Resource discovery message via "/oic/res".

If the Link is to be included in the Resource discovery
message, then "p" shall include the "bm" key and set the
discoverable bit to value 1.

If the Link is NOT to be included in the Resource discovery
message, then "p" shall either include the "bm" key and set
the discoverable bit to value 0 or omit the "bm" key entirely.

Bit 1 (2" LSB) observable The Observable rule defines whether the Resource
referenced by the target URI supports the NOTIFY operation
using an observe pattern (see section 11.3.2).. With the self-
link, i.e. the Link with "rel" value of "self", "/oic/res" can have
a Link with the target URI of "/oic/res" and indicate itself
Observable. The "self" is defined by IETF RFC 4287 and
registered in the IANA Registry for "rel" value defined at
IANA Link Relations.

. If the Resource supports the NOTIFY operation via the
use of observe, then "p" shall include the "bm" key and
set the Observable bit to value 1.

. If the Resource does NOT support the NOTIFY operation
via the use of observe, then "p" shall either include the
"bm" key and set the Observable bit to value 0 or omit
the "bm" key entirely.

Bit 2 (3rd LSB) pushable The pushable bit defines whether the Resource referenced by
the target URI supports the NOTIFY operation using a push
pattern (see section 11.4.1). With the self-link, i.e. the Link
with "rel" value of "self", “/oic/res” can have a Link with the
target URI of “/oic/res” and indicates itself pushable. The
"self" is defined by IETF RFC 4287 and registered in the IANA
Registry for "rel" value defined at IANA Link Relations.

. If the Resource supports the NOTIFY operation via the
use of push, then "p” shall include the “bm” key and set
the pushable bit to value 1.

. If the Resource does NOT support the NOTIFY operation
via the use of push, then “p” shall either include the “bm”
key and set the pushable bit to value 0 or omit the “bm”
key entirely.

Bits 2-7 -- Reserved for future use. All reserved bits in "bm" shall be set
to value 0.

NOTE |If all the bits in "bm" are defined to value 0, then the "bm" key may be omitted entirely from "p" as an efficiency
measure. However, if any bit is set to value 1, then "bm" shall be included in "p" and all the bits shall be defined
appropriately.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 49

— In a payload sent in response to a request that includes an OCF-Accept-Content-Format-
Version option the "eps" Parameter shall provide the information for an encrypted connection.

— Note that access to the Resource is controlled by the ACL for the Resource. A successful
encrypted connection does not ensure that the requested action will succeed. See
ISO/IEC 30118-2 clause 12 for more information.

This shows the policy Parameter for a Resource that is discoverable but not Observable.
pt: {"bm": 1}
This shows a self-link, i.e. the "/oic/res" Link in itself that is discoverable and Observable.

{

"href': "/oic/res",
"rel": "self",
"rt": ["oic.wk.res],
"if: [Toic.if.Il1", "oic.if.baseline'],
"p: {"bm": 3}
}
7.8.2.5.4 "type" or media type Parameter

The "type" Parameter may be used to specify the various media types that are supported by a
specific target Resource. The default type of "application/vnd.ocf+cbor" shall be used when the
"type" element is omitted. Once a Client discovers this information for each Resource, it may use
one of the available representations in the appropriate header field of the Request or Response.

7.8.2.5.5 "di" or Device UUID Parameter

The "di" Parameter specifies the Device UUID of the Device that hosts the target Resource defined
in the in the "href" Parameter.

The Device UUID may be used to qualify a relative reference used in the "href" or to lookup OCF
Endpoint information for the relative reference.

7.8.2.5.6 "eps" Parameter
The "eps" Parameter indicates the OCF Endpoint information of the target Resource.

A Device shall populate all exposed "eps" Link Parameters with an array of items representing OCF
Endpoint information as specified in 10.2. Each entry in that array shall include an "ep" Property,
and may include the optional "pri" and "lat" Properties.

This is an example of "eps" with multiple OCF Endpoints.

“eps”: [
{"ep': "coap://[fe80::bld6]:1111", “pri™: 2, "lat'": 240},
{"ep": "coaps://[fe80::bld6]:1122", "lat": 240},
{"ep': "coap+tcp://[2001:db8:a::123]:2222", "pri': 3}

When "eps" is present in a link, the OCF Endpoint information in "eps" can be used to access the
target Resource referred by the "href" Parameter.

Note that the type of OCF Endpoint — Secure or Unsecure — that a Resource exposes merely
determines the connection type(s) guaranteed to be available for sending requests to the Resource.
For example, if a Resource only exposes a single CoAP "ep", it does not guarantee that the
Resource cannot also be accessed via a Secure OCF Endpoint (e.g. via a CoAPS "ep" from another
Resource’s "eps information). Nor does exposing a given type of OCF Endpoint ensure that access
to the Resource will be granted using the "ep" information. Whether requests to the Resource are
granted or denied by the Access Control layer is separate from the "eps" information, and is
determined by the configuration of the /acl2 Resource (see ISO/IEC 30118-2 clause 13.5.3 for
details).

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 50

When present, max-age information (e.g. Max-Age option for CoAP defined in IETF RFC 7252)
determines the maximum time "eps" values may be cached before they are considered stale.

7.8.2.6
When formatting in JSON, the list of Links shall be an array.

Formatting

7.8.2.7

A Resource that exposes one or more Properties that are defined to be an array of Links where
each Link can be discretely accessed is a Collection. The Property Name "links" is recommended
for such an array of Links.

List of Links in a Collection

This is an example of a Resource with a list of Links.

/Rooml
{

"rt': ["oic.wk.col"],

"if"': [Toic.if. 1", "oic.if.baseline”],
“color": "blue",

"links":

{
“"href'": "/switch",

"rt": [Moic.r.switch.binary'"],
“if": ["oic.if.a", "oic.if.baseline”],
p: {"bm": 3}

“href': "/brightness”,
"rt": [Toic.r.light.brightness'],
"if": ["oic.if.a", "oic.if.baseline"],
"p: {"bm": 3}
}
1
¥

7.8.2.8

If a Resource Type that defines an array of Links (e.g. Collections, Atomic Measurements) has
restrictions on the "rt" values that can be within the array of Links, the Resource Type will define
the "rts" Property. The "rts" Property as defined in Table 12 will include all "rt" values allowed for
all Links in the array. If the Resource Type does not define the "rts" Property or the "rts" Property
is an empty array, then any "rt" value is permitted in the array of Links.

Properties describing an array of Links

For all instances of a Resource Type that defines the "rts" Property, the "rt" Link Parameter in
every Link in the array of Links shall be one of the "rt" values that is included in the "rts"
Property.

Table 12 — Resource Types Property definition

Resource Type
IDs

Property Property Value Value rule Unit Access | Mandatory Description
title name type mode
Resource "rts" "array" Array of strings, N/A R No An array of Resource
Types conveying Types that are

supported within an
array of Links exposed
by a Resource.

If a Resource Type that defines an array of Links has "rt" values which are required to be in the
array, the Resource Type will define the "rts-m" Property, as defined in Table 13, which will contain

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 51

all of the "rt" values that are required to be in the array of Links. If "rts-m" is defined, and "rts" is
defined and is not an empty array, then the "rt" values present in "rts-m" will be part of the values
present in "rts". Moreover, if the "rts-m" Property is defined, it shall be mandated (i.e. included in
the "required" field of a JSON definition) in the Resource definition and Introspection Device Data
(seell.4q).

For all instances of a Resource Type that defines the "rts-m" Property, there shall be at least one
Link in the array of Links corresponding to each one of the "rt" values in the "rts-m" Property; for
all such Links the "rt" Link Parameter shall contain at least one of the "rt" values in the "rts-m"
Property.

Table 13 — Mandatory Resource Types Property definition

Property Property Value Value rule Unit Access | Mandatory Description
title name type mode
Mandatory | "rts-m" "array" Array of strings, N/A R No An array of Resource
Resource conveying Types that are
Types Resource Type mandatory to be

IDs exposed within an
array of Links exposed
by a Resource.

7.8.3 Collections
7.8.3.1

A Resource that contains one or more references (specified as Links) to other Resources is a
Collection. These references may be related to each other or just be a list; the Collection provides
a means to refer to this set of references with a single handle (i.e. the URI). A simple Resource is
kept distinct from a Collection. Any Resource may be turned into a Collection by binding Resource
references as Links. Collections may be used for creating, defining or specifying hierarchies,
indexes, groups, and so on.

Overview

A Collection shall have at least one Resource Type and at least one OCF Interface bound at all
times during its lifetime. During creation time of a Collection the Resource Type and OCF Interfaces
are specified. The initial defined Resource Types and OCF Interfaces may be updated during its
life time. These initial values may be overridden using mechanism used for overriding in the case
of a Resource. Additional Resource Types and OCF Interfaces may be bound to the Collection at
creation or later during the lifecycle of the Collection.

A Collection shall define a Property that is an array with zero or more Links. The target URIs in the
Links may reference another Collection or another Resource. The referenced Collection or
Resource may reside on the same Device as the Collection that includes that Link (called a local
reference) or may reside on another Device (called a remote reference). The context URI of the
Links in the array shall (implicitly) be the Collection that contains that Property. The (implicit)
context URI may be overridden with explicit specification of the "anchor" Parameter in the Link
where the value of "anchor" is the new base of the Link.

A Resource may be referenced in more than one Collection, therefore, a unique parent-child
relationship is not guaranteed. There is no pre-defined relationship between a Collection and the
Resource referenced in the Collection, i.e., the application may use Collections to represent a
relationship but none is automatically implied or defined. The lifecycles of the Collection and the
referenced Resource are also independent of one another.

In the following example a Property "links" represents the list of Links in a Collection. The "links"
Property has, as its value, an array of items and each item is a Link.

/my/house < This is URI of the Resource

{
Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 52

“rt': ["my.r_house"], < This and the next 3 lines are the Properties of the

Resource.
"color': "blue",
"n'": "myhouse",
“"links": [

{ < This and the next 4 lines are the Parameters of a Link
“href": */door",
"rt'": [“oic.r.door'],
"if": [Moic.if.a", "oic.if.baseline"]

}.

"href": "/door/lock.status",
"rt'': ["oic.r.lock'],
"if": [Moic.if.a", "oic.if.baseline"]

3.

"href': "/light",
“rt": [Moic.r.light'],
"iF': [Moic.if.s", "oic.if_baseline']

3.

“href": "/binarySwitch”,
"rt": ["oic.r.switch_binary'],
“if': [Moic.if.a", "oic.if.baseline']

}

1
}

A Collection may be:

— A pre-defined Collection where the Collection has been defined a priori and the Collection is
static over its lifetime. Such Collections may be used to model, for example, an appliance that
is composed of other Devices or fixed set of Resources representing fixed functions.

— A Device local Collection where the Collection is used only on the Device that hosts the
Collection. Such Collections may be used as a short-hand on a Client for referring to many
Servers as one.

— A centralized Collection where the Collection is hosted on a Device but other Devices may
access or update the Collection.

— A hosted Collection where the Collection is centralized but is managed by an authorized agent
or party.

7.8.3.2

A Collection shall define a Property that is an array of Links (the Property Name "links" is
recommended). In addition, other Properties may be defined for the Collection by the Resource
Type. The mandatory and recommended Common Properties for a Collection are shown in Table 14.
This list of Common Properties is in addition to those defined for Resources in 7.3.2.

Collection Properties

Table 14 — Common Properties for Collections (in addition to Common Properties defined

in 7.3.2)
Property Description Property Name Value Type Mandatory
Links The array of Links in | Per Resource Type json Yes
the Collection definition Array of Links
Resource Types The list of allowed As defined in As defined in No
Resource Types for Table 12 Table 12
Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 53

Links in the
Collection.

If this Property is not
defined or is null
string then any
Resource Type is

permitted
Mandatory The list of Resource As defined in As defined in No
Resource Types Types for Links that Table 13 Table 13

are mandatory in the

Collection.

7.8.3.3 Default Resource Type

A default Resource Type, "oic.wk.col", is available for Collections. This Resource Type shall be
used only when another type has not been defined on the Collection or when no Resource Type
has been specified at the creation of the Collection.

The default Resource Type provides support for the Common Properties including an array of Links
with the Property Name "links".

7.8.3.4 Default OCF Interface

All instances of a Collection shall support the links list ("oic.if.Il") OCF Interface in addition to the
baseline ("oic.if.baseline"”) OCF Interface. An instance of a Collection may optionally support
additional OCF Interfaces that are defined within this document. The Default OCF Interface for a
Collection shall be links list ("oic.if.1I") unless otherwise specified by the Resource Type definition.

7.8.4 Atomic Measurement
7.8.4.1 Overview

Certain use cases require that the Properties of multiple Resources are only accessible as a group
and individual access to those Properties of each Resource by a Client is prohibited. The Atomic
Measurement Resource Type is defined to meet this requirement. This is accomplished through
the use of the Batch OCF Interface.

7.8.4.2 Atomic Measurement Properties

An Atomic Measurement shall define a Property that is an array of Links (the Property Name "links"
is recommended). In addition, other Properties may be defined for the Atomic Measurement by the
Resource Type. The mandatory and recommended Common Properties for an Atomic
Measurement are shown in Table 15. This list of Common Properties is in addition to those defined
for Resources in 7.3.2.

Table 15 — Common Properties for Atomic Measurement (in addition to Common Properties
defined in 7.3.2)

Property Description Property Name Value Type Mandatory
Links The array of Links in | Per Resource Type json Yes
the Atomic definition Array of Links
Measurement
Resource Types The list of allowed As defined in As defined in No
Resource Types for Table 12 Table 12
Links in the Atomic
Measurement.

If this Property is not
defined or is null
string then any
Resource Type is
permitted

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 54

Mandatory The list of Resource As defined in As defined in No
Resource Types Types for Links that Table 13 Table 13

are mandatory in the
Atomic
Measurement.

7.8.4.3 Normative behaviour

The normative behaviour of an Atomic Measurement is as follows:

The behaviour of the Batch OCF Interface ("oic.if.b") on the Atomic Measurement is defined as
follows:

— Only RETRIEVE and NOTIFY operations are supported, for Batch OCF Interface, on Atomic
Measurement; the behaviour of the RETRIEVE and NOTIFY operations shall be the same
as specified in 7.6.3.4, with exceptions as provided for in 7.8.4.3.

— The UPDATE operation is not allowed, for Batch OCF Interface, on Atomic Measurement; if
an UPDATE operation is received, it shall result in a method not allowed error code.

— An error response shall not include any representation of a linked Resource (i.e. empty
response for all linked Resources).

Any linked Resource within an Atomic Measurement (i.e. the target Resource of a Link in an
Atomic Measurement) is subject to the following conditions:

— Linked Resources within an Atomic Measurement and the Atomic Measurement itself shall
exist on a single Server.

— CRUDN operations shall not be allowed on linked Resources and shall result in a forbidden
error code.

— Linked Resources shall not expose the "oic.if.ll" OCF Interface. Since CRUDN operations
are not allowed on linked Resources, the "oic.if.ll" OCF Interface would never be accessible.

Links to linked Resources in an Atomic Measurement shall only be accessible through the
"oic.if.ll" or the "oic.if.baseline" OCF Interfaces of an Atomic Measurement.

— The linked Resources shall not be listed in "/oic/res".

A linked Resource in an Atomic Measurement shall have defined one of "oic.if.a", "oic.if.s",
"oic.if.r", or "oic.if.rw" as its Default OCF Interface.

Not all linked Resources in an Atomic Measurement are required to be Observable. If an Atomic
Measurement is being Observed using the "oic.if.b" OCF Interface, notification responses shall
not be generated when the linked Resources which are not marked Observable are updated or
change state.

All linked Resources in an Atomic Measurement shall be included in every RETRIEVE and
Observe response when using the "oic.if.b" OCF Interface.

An Atomic Measurement shall support the "oic.if.b" and the "oic.if.Il" OCF Interfaces.

Filtering of linked Resources in an Atomic Measurement is not allowed. Query parameters that
select one or more individual linked Resources in a request to an Atomic Measurement shall
result in a "forbidden" error code.

If the "rel" Link Parameter is included in a Link contained in an Atomic Measurement, it shall
have either the "hosts" or the "item" value.

The Default OCF Interface of an Atomic Measurement is "oic.if.b".

7.8.4.4 Security considerations

Access rights to an Atomic Measurement Resource Type is as specified in clause 12.2.7.2 (ACL
considerations for batch request to the Atomic Measurement Resource Type) of ISO/IEC 30118-2).

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 55

7.8.4.5 Default Resource Type
The Resource Type is defined as "oic.wk.atomicmeasurement" as defined in Table 16.

Table 16 — Atomic Measurement Resource Type

Pre- Resource Resource Type OCF Interfaces Description Related M/CR/O
defined Type Title ID ("rt" value) Functional
URI Interaction
none Atomic "oic.wk.atomicme | "oic.if.ll" A specialisation of RETRIEVE, | O
Measurement | asurement” “oic.if.baseline" the Collection pattern | NOTIFY
e to ensure atomic
oic.if.b RETRIEVAL of its
referred Resources

The Properties for Atomic Measurement are as defined in Table 17.

Table 17 — Properties for Atomic Measurement (in addition to Common Properties defined

in 7.3.2)
Property Description Property name Value Type Mandatory
Links The set of links that Per Resource Type json Yes
point to the linked definition Array of Links
Resources

7.9 Query Parameters
7.9.1 Introduction

A query string is a fundamental part of the definition of a URI (see 6.2.2). The definition of a query
may include Properties and Link Parameters by declaring the Property or Link Parameter (i.e.
<Property name, Link Parameter name> = <desired Property value, Link Parameter value>) as one
of the segments of the query. Only ASCII strings are permitted in queries, and NULL characters
are disallowed in queries. This means that only Property and Link Parameter values with ASCII
characters may be matched in a query.

When a query is defined as a selector, a Resource is selected when all the declared Properties or
Link Parameters in the query match the corresponding Properties or Link Parameters in the target.

The processing of any query parameter by a Server is as specified in this document or other OCF
specifications. For any query parameters that are not explicitly specified, the Server may ignore
those query parameters and the request is processed as if the query parameter did not exist in the
request.

7.9.2 Use of multiple parameters within a query

When a query contains multiple separate query parameters these are delimited by an "&" as
described in 6.2.2. Multiple query parameters are only applicable to Collections or Resources with
a multi-value "rt".

A Client may select a specific Resource type using separate query parameters, for
example "?if=oic.if.b&rt=oic.r.switch.binary". If such queries are supported by the Server this shall
be accomplished by matching "all of* the different query parameter types received (i.e. "rt", "if")
against the target of the query. In the example, this resolves to a batch response that includes only
instances of oic.r.switch.binary. There is no significance applied to the order of the query
parameters.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 56

A Client may select more than one Resource Type using repeated query parameters, for example
"?rt=oic.r.switch.binary&rt=oic.r.ramptime". If such queries are supported by the Server, this shall
be accomplished by matching "any of" the repeated query parameters against the target of the
guery. In the example, any instances of "oic.r.switch.binary" and/or "oic.r.ramptime" that may exist
are selected.

A Client may select multiple Resource Types using multiple repeated "rt" parameters in addition to
a separate "if" parameter in a single query, for example
"?if=oic.if.b&rt=0ic.r.switch.binary&rt=oic.r.ramptime". If such queries are supported by the Server,
this shall be accomplished by matching "any of" the repeated query parameters and then matching
"all of" the different query parameter types. In the example any instances of "oic.r.switch.binary"
and/or "oic.r.ramptime" that may exist are selected in a batch response.

NOTE The parameters within a query string are represented within the actual messaging protocol as defined in clause
12.2.2.

7.9.3 Application to multi-value "rt" Resources

An "rt" query for a multi-value "rt" Resource with the Default OCF Interface of "oic.if.a", "oic.if.s",

"oic.if.r", "oic.if.rw" or "oic.if.baseline" is an extension of a generic "rt" query.

When a Server receives a RETRIEVE request for a multi-value "rt" Resource with an "rt" query,
(i.e. GET /ResExample?rt=oic.r.foo), the Server should respond only when the query value is an
item of the "rt" Property Value of the target Resource and should send back only the Properties
associated with the query value(s). For example, upon receiving GET
/ResExample?rt=oic.r.switch.binary targeting a Resource with "rt". ["oic.r.switch.binary",
"oic.r.light.brightness"], the Server responds with only the Properties of oic.r.switch.binary.

When a Server receives an UPDATE request for a multi-value "rt" Resource with an "rt" query,
(e.g.POST /ResExample?rt=oic.r.foo), the Server should only apply the payload received to the
Properties that are part of the "oic.r.foo" Resource.

7.9.4 OCF Interface specific considerations for queries
7.9.4.1 OCF Interface selection

When an OCF Interface is to be selected for a request, it shall be specified as a query parameter
in the URI of the Resource in the request message. If no query parameter is specified, then the
Default OCF Interface shall be used. If the selected OCF Interface is not one of the permitted OCF
Interfaces on the Resource, then selecting that OCF Interface is an error and the Server shall
respond with an error response code. A Client shall not include more than one OCF Interface in a
query parameter. If a Server receives a request that has more than one OCF Interface included in
a query parameter (e.g. "?if=oic.if.ll&if=oic.if.rw") then the Server may either reject the request with
an appropriate non-success path response, or the Server may attempt to process the request using
the first "if" received

For example, the baseline OCF Interface may be selected by adding "if=oic.if.baseline" to the list
of query parameters in the URI of the target Resource. For example: "GET
/oic/res?if=oic.if.baseline".

7.9.4.2 Batch OCF Interface

See 7.6.3.4 for details on the batch OCF Interface itself. Query parameters may be used with the
batch OCF Interface in order to select particular Resources in a Collection for retrieval or update;
these parameters are used to select items in the Collection by matching Link Parameter Values.

When Link selection query parameters are used with RETRIEVE operations applied using the batch
OCF Interface, only the Resources in the Collection with matching Link Parameters should be
returned.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 57

When Link selection query parameters are used with UPDATE operations applied using the batch
OCF Interface, only the Resources having matching Link Parameters should be updated.

See 7.6.3.4.5 for examples of RETRIEVE and UPDATE operations that use Link selection query
parameters.

7.9.5 The "action" Query Parameter

A fundamental tenet of this document is the use of REST architectural style and the use of RESTful
operations (see clause 5.2). However, there are use cases where a RESTful interaction is either
awkward or otherwise problematic to realize, for example, when functionality is needed that does
not map to state changes to the properties in the RESTful paradigm. Thus an action pattern
provides support for where a Client needs to invoke an action or operation on a Server that is
stateless or has an unknown state. A typical example of an action is the operation of a "gang"
switch, where the state of the switch (and thus the thing being controlled) is toggled to the inverse
of the current value.

The "action" Query Parameter may thus be realized by a Resource definition as part of UPDATE
operation handling, where that Resource represents some subsequent action that is then taken.
The generalized format of this Query Parameter is "action=<Resource defined value>". A request
that includes an "action" Query Parameter may or may not also include a payload; similarly, a
response to a request that includes an "action" Query Parameter may or may not also include a
payload. The set of possible values that may be present is up to the definition of the Resource.
Further, the behaviour of a Server on receipt of a request that contains an "action"” Query Parameter
is up to the definition of the Resource.

If a Server receives an "action" Query Parameter in a request other than an UPDATE operation,
the Server shall reject the request with an appropriate error response.

If a Server receives an "action” Query Parameter in a request to a Resource that does not define
such usage, the Server shall reject the request with an appropriate error response.

If a Server receives an "action" Query Parameter in a request to a Resource that supports actions,
but the action value is one that the Server does not recognize, the Server shall reject the request
with an appropriate error response.

7.10 Error response payload
7.10.10verview

Clause 7.10 describes a mechanism and payload to signal additional error information that may be
provided in addition to the response code when an error response is sent. The transport specific
response for a transport binding (e.g., CoAP) returns a status code that does not always provide
enough information on what has gone wrong.

7.10.2Error response payload content

The error response payload shall be an ASCII string that contains a brief, human-readable
diagnostic description as a string describing the details of the transport specific error response
code. Standardized messages for the error response payload are defined in Table 27. Vendors
may use these standardized messages or define their own messages. The messages contained
within an error response payload may be included with any transport specific response code.
English text is the only language supported for the message. If the error response payload is not
present in the response, a Client deals with the error based on only the transport specific response
code.

Table 18 — Standardized error message

Category Message

Error due to Client "Invalid parameter"”

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 58

"The mandatory parameter is missing"

"The parameter is not allowed"

"The token syntax is invalid"

"The message id syntax is invalid"

"Invalid permission”

"The service key is invalid"

"The token is not issued"

"The token user is not issued"

"Terms of service are not agreed"

"The API is not permitted"

"The API call count is exceeded"

"The country is not supported

"The Device is inaccessible"

"The token is invalid"

"The count of subscription has exceeded the limit"

“Invalid resource access"

"The admin is not registered"”

"The user is not registered"

"The service is not registered”

"The event is not subscribed"

"The Device is not registered"

"The admin is already registered.

"Internal Server operation error"

"Device profile error"”

"The model is not supported"

"Undefined enumeration”

"The value is out of range"

"Feature is not supported in the model"

"Integration Server error"

"The product is not supported for interworking with other companies"

"The Device status is abnormal”

"The Device is not connected (offline)"

"The Device control failed"

"The request is required to retry"

"Time out occurred”

Error due to Server

"Internal Server operation error"

"Device profile error"

"The model is not supported"

"Undefined enumeration”

"The value is out of range"

"Feature is not supported in the model"

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

59

"Integration Server error"

"The product is not supported for interworking with other companies”

"The Device status is abnormal”

"The Device is not connected (offline)"

"The Device control failed"

"The request is required to retry"

"Time out occurred”

7.10.3Example of use

The following example shows an example message exchange for a RETRIEVE operation sent from
a proximal Device to an OCF Cloud, with a target URI of:
"coaps+tcp://exampleCloudEndPoint//deviceld_001/somehref".

Client request:

Target URI: /deviceld_001/somehref
Operation: RETRIEVE

Host: coaps://exampleCloudEndPoint
Accept: application/vnd.ocf+cbor

Server response:

Status code: 4.04 (Not Found)
Response Body: {
"The device is not registered"

}
With the error response payload, the Client can recognize that the Device it tried to discover is not

registered on the OCF Cloud.
7.11 OCF MQTT Proxy
7.11.1 Introduction

An MQTT proxy is an OCF Device that acts as a proxy between MQTT and CoAP transports. An
MQTT proxy enables the ability for OCF clients in the MQTT domain to talk to OCF Devices in the
CoAP domain.

An MQTT proxy contains the following functionality:

— An OCF Client, talking to OCF Servers on the local network

— An MQTT Client that creates OCF Servers in the MQTT domain, e.g. it represents the proxied
devices in MQTT domain.

— This is depicted in Figure 6.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 60

Local Network

/ MQTT proxy \
OCF Server 1
% MQTT Client i
ocr e : MQTT Client
\ et () bl.e}:ve;). <lvar MQTT (OCF Client):
Q’ ublisher/ & MQ SErvEr Publisher 1/
o< Subscriber Subscriber 1
OCF Server N = \ /

Figure 6 — CoAP domain and OCF MQTT domain interconnected by Proxy
The OCF Servers to be proxied will be provisioned by an OCF (mediator) Client on the MQTT Proxy

7.11.2 Resources for MQTT proxy

/ MQTT Client
. MQTT proxy (OCF Client):
OCF Device 1 Publisher 1/
o - MQTT Client & Subscriber 1
(oN OCF | (OCF Server): NS
Client Publisher
\ ! MQTT
/ Subscriber [@—MQTT—» Server
<&) “ar,. MQTT Client
. (OCF Client):
OCF Device 2 OCF Publisher 2/
Device Subscriber 2

OCF (configuration) v

(OCF Client

for configuration)

OCF Domain MQTT domain

|
|
Mediator |
|
|
I

Figure 7 — OCF extended with OCF Clients in the MQTT domain

To represent the OCF CoAP Servers on the MQTT network, the following Resources are exposed
by the OCF Device “oic.d.mqttproxy” on the CoAP side of the MQTT proxy:

"oic.r.mqtt.conf" Resource Type
— "oic.r.d2dserverlist" Resource Type

The "oic.r.mqtt.conf" Resource Type is used to configure the MQTT client to connect to an MQTT
server. The Resource Type is available on the CoAP side so that proximal interaction is possible
to configure the MQTT proxy to connect to an MQTT server. The information supplied to the MQTT
client also includes security information. The connection to the MQTT server should be secured by
TLS. The information to be supplied to the Mediator to configure the "oic.r.mgtt.conf* Resource is
provided out of band; this information determines how the MQTT proxy is being used in a larger
setup. The "oic.r.d2dserverlist" Resource Type is used to list OCF Devices that will be proxied from
the CoAP domain to the MQTT domain. This list is maintained from the CoAP OCF domain.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 61

7.11.3 Connecting to an MQTT Server

The information of the MQTT client to connect to the MQTT server may be conveyed by an OCF
Resource. This means that the MQTT proxy may be headless and may be configured with a
Mediator (OCF client). The configuration information consists of data to contact the MQTT server
and also of data to secure the connection.

D20 Device MQTT-Proxy Mediator
(dii =d2d_di=) (dii <proxy_di=) (dii <med_di=) MQTT Server

User triggers authorization of the OCF MQTT User's Mediator B]

MQTT Proxy registration ./ |
1 Set access information |

2 Connect to MQTT Proxy >

3 check access

4 return <connection status = i

s e mmmmmm e mm mmmm i mm o e mm y
: : :

D20 Device MQTT-Proxy Mediator MQTT Server

(dii =d2d_di=) (dii <proxy_di=) (dii <med_di=)

Figure 8 — Registration of the MQTT proxy (as MQTT client) with an MQTT Server

Table 19 — Properties of "oic.r.mqtt.conf" Resource

Property Property Value type | Value Unit Access | Mandatory Description
title name rule mode to
implement
Server "server" string N/A N/A RW Yes The connection
address information of the

MQTT server may be
an ip address or a URI
e.g: "192.168.178.89"
"test.mosquitto.org"

connection "port" integer N/A N/A RW Yes The port number of the
MQTT server e.g. 1883
for unsecured ports or
8883 for secured ports

Keep alive "kai" integer N/A seconds | RW Yes The keep alive interval

interval for the MQTT client
server connection.

User "uid" string N/A RW Yes User ID, if supported

identifier by the MQTT server

password "pwd" string N/A RW Yes Password or token
belonging to the user
ID.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 62

certificate "cacert" string As R Yes The credential, if

authority file byte supported by the

of the MQTT array MQTT server

server

Client "clcert" string As R Yes The credential, if

certificate to byte supported by the

authenticate array MQTT server

the

connection

log “log” string NA R Yes Logging of the
connection status

MQTT “crcode” integer NA R Yes See MQTT table 3-1

connection Note that before

reason

connecting, the value
should be initialized on
-1 indicating, “not yet
connected”

codes

All Properties listed in Table 19 are required to be implemented, e.g., listed in the IDD as optional.
Not all Properties have to be on the wire though, the Property usage depends on the used MQTT
server.

7.11.4 Proxying an OCF Device

The OCF Devices to be proxied are listed in the d2dserver list Resource. Which Vertical Resources
are proxied per OCF Device is implementation dependent.

Mediator D2D Device MQTT Proxy
(di: «<med_di=) (di; =<d2d_di=) (di: <proxy_di=) MQTT server

Mediator provisions access control entries
to the D2D Device and peer Devices

I
|
i
|
L
ral

D2D Device registration {OCF Domain) ./ ! !

! 2 UPDATE /d2dsenerlistURIBdiE<d2d_di> !

'3 Adds received "di" to "oic.r.d2dserverlist:dis”

¥

A

4 RETRIEVE Joicires |

5 RETRIEVE Response

.....................................):

Device Publication (MQTT domain) / |

I 6 Publish Resources as MQTT topics

Mediator D2D Device MQTT Proxy MQTT server

(di: <med_di>) (di; <d2d_di>) (it <proxy_di>)

Figure 9 — Device publication to an MQTT server

7.11.5 Security considerations

The OCF Client in the MQTT proxy needs to be granted access to the D2D Device. Even if a
privileged OCF Client adds a D2D Device to the "oic.r.d2dserverlist" Resource, the access may
still be denied by the D2D Device. This is because the OCF Client in the MQTT proxy needs to be
given access to any of the D2D Devices in its list and having the correct access levels set up for
the OCF Client in the MQTT proxy.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 63

The connection from a MQTT client to the MQTT server needs to be secure, e.g., using a TLS
connection. However, MQTT specifies multiple mechanisms to create a secure connection from an
MQTT client to an MQTT server. The used MQTT server should only connect to other MQTT clients
via a secure connection.

8 CRUDN

8.1 Overview

CREATE, RETRIEVE, UPDATE, DELETE, and NOTIFY (CRUDN) are operations defined for
manipulating Resources. These operations are performed by a Client on the Resources contained
in a Server. All required Properties shall be present in the payloads for which they are defined for
the operations for which those payloads apply (see clause 7.1 regarding OpenAPI 2.0 definitions
requirement).

On reception of a valid CRUDN operation a Server hosting the Resource that is the target of the
request shall generate a response depending on the OCF Interface included in the request; or
based on the Default OCF Interface for the Resource Type if no OCF Interface is included.

CRUDN operations utilize a set of parameters that are carried in the messages and are defined in
Table 20. A Device shall use CBOR as the default payload (content) encoding scheme for Resource
representations included in CRUDN operations and operation responses; a Device may negotiate
a different payload encoding scheme (e.g, see in 12.2.4 for COAP messaging). Clauses 8.2 through
8.6 respectively specify the CRUDN operations and use of the parameters. The type definitions for
these terms will be mapped in the clause 12 for each protocol.

Table 20 — Parameters of CRUDN messages

Applicability Name Denotation Definition
fr From The URI of the message originator.
to To The URI of the recipient of the message.
All messages . . The identifier that uniquely identifies the message in the
ri Request Identifier L e
originator and the recipient.
cn Content Information specific to the operation.
op Operation gpecmc operation requested to be performed by the
Requests erver.
obs Observe Indicator for an Observe request.
Indicator of the result of the request; whether it was
accepted and what the conclusion of the operation was.
rs Response Code The values of the response code for CRUDN operations
Responses shall conform to those as defined in clause 5.9 and 12.1.2
in [ETF RFC 7252.
obs Observe Indicator for an Observe response.

8.2 CREATE
8.2.1 Overview

The CREATE operation is used to request the creation of new Resources on the Server. The
CREATE operation is initiated by the Client and consists of three steps, as depicted in Figure 10.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 64

Client Server

| 1. CREATE Request -

2: Processing

i
< 3. CREATE Response ,

Figure 10 — CREATE operation

8.2.2 CREATE request
The CREATE request message is transmitted by the Client to the Server to create a new Resource
by the Server. The CREATE request message will carry the following parameters:
— fr: Unique identifier of the Client
— to: URI of the target Resource responsible for creation of the new Resource.
— ri: Identifier of the CREATE request.
— cn: Information of the Resource to be created by the Server.
— cn will include the URI and Resource Type Property of the Resource to be created.
— c¢nh may include additional Properties of the Resource to be created.
— op: CREATE
8.2.3 Processing by the Server
Following the receipt of a CREATE request, the Server may validate if the Client has the
appropriate rights for creating the requested Resource. If the validation is successful, the Server
creates the requested Resource. The Server caches the value of ri parameter in the CREATE
request for inclusion in the CREATE response message.
8.2.4 CREATE response
The Server shall transmit a CREATE response message in response to a CREATE request
message from a Client. The CREATE response message will include the following parameters:
— fr: Unique identifier of the Server
— to: Unique identifier of the Client
— ri: Identifier included in the CREATE request
— cn: Information of the Resource as created by the Server.
— cn will include the URI of the created Resource.
— cn will include the Resource representation of the created Resource.
— rs: The result of the CREATE operation.
8.3 RETRIEVE
8.3.1 Overview

The RETRIEVE operation is used to request the current state or representation of a Resource. The
RETRIEVE operation is initiated by the Client and consists of three steps, as depicted in Figure 11.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 65

Client Seryer

 1: RETRIEVE Request)

2: Processing

i
< 3: RETRIEVE Response |

Figure 11 — RETRIEVE operation

8.3.2 RETRIEVE request
RETRIEVE request message is transmitted by the Client to the Server to request the representation
of a Resource from a Server. The RETRIEVE request message will carry the following parameters:
— fr: Unique identifier of the Client.
— to: URI of the Resource the Client is targeting.
— ri: Identifier of the RETRIEVE request.
— op: RETRIEVE.
8.3.3 Processing by the Server
Following the receipt of a RETRIEVE request, the Server may validate if the Client has the
appropriate rights for retrieving the requested data and the Properties are readable. The Server
caches the value of ri parameter in the RETRIEVE request for use in the response
8.3.4 RETRIEVE response
The Server shall transmit a RETRIEVE response message in response to a RETRIEVE request
message from a Client. The RETRIEVE response message will include the following parameters:
— fr: Unique identifier of the Server.
— to: Unique identifier of the Client.
— ri: Identifier included in the RETRIEVE request.
— cn: Information of the Resource as requested by the Client.
— cn should include the URI of the Resource targeted in the RETRIEVE request.
— rs: The result of the RETRIEVE operation.
8.4 UPDATE
8.4.1 Overview

The UPDATE operation is either a Partial UPDATE or a complete replacement of the information
in a Resource in conjunction with the OCF Interface that is also applied to the operation. The
UPDATE operation is initiated by the Client and consists of three steps, as depicted in Figure 12.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 66

Client Server

| 1. UFDATE Request -

2: Processing

i
< 3: UPDATE Response ,

Figure 12 — UPDATE operation

8.4.2 UPDATE request

The UPDATE request message is transmitted by the Client to the Server to request the update of
information of a Resource on the Server. The UPDATE request message, as indicated in 8.1,
contains all required Properties whether changed or not. The UPDATE request message will carry
the following parameters:

— fr: Unique identifier of the Client.

— to: URI of the Resource targeted for the information update.

— ri: Identifier of the UPDATE request.

— op: UPDATE.

— cn: Information, including Properties, of the Resource to be updated at the target Resource.
8.4.3 Processing by the Server

8.4.3.1 Overview

Following the receipt of an UPDATE request, the Server may validate if the Client has the
appropriate rights for updating the requested data. If the validation is successful, the Server
updates the target Resource information according to the information carried in cn parameter of
the UPDATE request message. The Server caches the value of ri parameter in the UPDATE request
for use in the response.

An UPDATE request that includes Properties that are read-only shall be rejected by the Server with
an rs indicating a bad request.

An UPDATE request shall be applied only to the Properties in the target Resource visible via the
applied OCF Interface that support the operation. An UPDATE of non-existent Properties is ignored.

An UPDATE request shall be applied to the Properties in the target Resource even if those Property
Values are the same as the values currently exposed by the target Resource.

8.4.3.2 Resource monitoring by the Server

The Server shall monitor the state the Resource identified in the Observe request from the Client.
Anytime there is a change in the state of the Observed Resource or an UPDATE operation applied
to the Resource, the Server sends another RETRIEVE response with the Observe indication. The
mechanism does not allow the Client to specify any bounds or limits which trigger a notification,
the decision is left entirely to the Server.

8.4.3.3 Additional RETRIEVE responses with Observe indication

The Server shall transmit updated RETRIEVE response messages following Observed changes in
the state of the Resources requested by the Client. The RETRIEVE response message shall include
the parameters listed in 11.3.2.4.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 67

8.4.4 UPDATE response
The UPDATE response message will include the following parameters:

— fr: Unique identifier of the Server.

— to: Unique identifier of the Client.

— ri: ldentifier included in the UPDATE request.

— rs: The result of the UPDATE request.

The UPDATE response message may also include the following parameters:

— c¢n: The Resource representation following processing of the UPDATE request.
8.5 DELETE
8.5.1 Overview

The DELETE operation is used to request the removal of a Resource. The DELETE operation is
initiated by the Client and consists of three steps, as depicted in Figure 13.

Client Server

| 1. DELETE Request >

2: Processing

¥
< 3: DELETE Response E

Figure 13 — DELETE operation

8.5.2 DELETE request

DELETE request message is transmitted by the Client to the Server to delete a Resource on the
Server. The DELETE request message will carry the following parameters:

— fr: Unique identifier of the Client.

— to: URI of the target Resource which is the target of deletion.

— ri: Identifier of the DELETE request.

— op: DELETE.

8.5.3 Processing by the Server

Following the receipt of a DELETE request, the Server may validate if the Client has the appropriate
rights for deleting the identified Resource, and whether the identified Resource exists. If the
validation is successful, the Server removes the requested Resource and deletes all the associated
information. The Server caches the value of ri parameter in the DELETE request for use in the
response.

8.5.4 DELETE response

The Server shall transmit a DELETE response message in response to a DELETE request message
from a Client. The DELETE response message will include the following parameters:

— fr: Unique identifier of the Server.

— to: Unique identifier of the Client.

— ri: Identifier included in the DELETE request.
Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 68

— rs: The result of the DELETE operation.
8.6 NOTIFY
8.6.1 Overview

The NOTIFY operation is used to request asynchronous notification of state changes. Complete
description of the NOTIFY operation is provided in 11.2.6. The NOTIFY operation uses the
NOTIFICATION response message which is defined here.

8.6.2 NOTIFICATION response

The NOTIFICATION response message is sent by a Server to notify the URLs identified by the
Client of a state change. The NOTIFICATION response message carries the following parameters:

— fr: Unique identifier of the Server.

— to: URI of the Resource target of the NOTIFICATION message.
— ri: Identifier included in the CREATE request.

— op: NOTIFY.

— c¢n: The updated state of the Resource.

9 Network and connectivity

9.1 Introduction

The Internet of Things is comprised of a wide range of applications which sense and actuate the
physical world with a broad spectrum of device and network capabilities: from battery powered
nodes transmitting 100 bytes per day and able to last 10 years on a coin cell battery, to mains
powered nodes able to maintain Megabit video streams. It is estimated that many 10s of billions of
loT devices will be deployed over the coming years.

It is desirable that the connectivity options be adapted to the IP layer. To that end, IETF has
completed considerable work to adapt Bluetooth®, Wi-Fi, 802.15.4, LPWAN, etc. to IPv6. These
adaptations, plus the larger address space and improved address management capabilities, make
IPv6 the clear choice for the OCF network layer technology.

9.2 Architecture

While the aging IPv4 centric network has evolved to support complex topologies, its deployment
was primarily provisioned by a single Internet Service Provider (ISP) as a single network. More
complex network topologies, often seen in residential home, are mostly introduced through the
acquisition of additional home network devices, which rely on technologies like private Network
Address Translation (NAT). These technologies require expert assistance to set up correctly and
should be avoided in a home network as they most often result in breakage of constructs like
routing, naming and discovery services.

The multi-segment ecosystem OCF addresses will not only cause a proliferation of new devices
and associated routers, but also new services introducing additional edge routers. All these new
requirements require advance architectural constructs to address complex network topologies like
the one shown in Figure 14.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 69

Interl_’let IPv6 Sensor Network
Services

Internet
User Core
Interface
Sensor Network
(6LowPan)
Monitoring /
Subnets
1PV6 + 1Pva IPv6 Local Border
\Y v
' Network Router
Intrusion
detection
SP CE
Router O
Private Q
VPN Service IPv6 Local Networ
Private O
Proxy
::fat_e‘_Nay IPv4-only or Legacy
iotivity+ (Zigbee, ...)
Smart plugins) '
o y
SP CE
Router
Power Grid
Smart Grid
(Energy segment) Non-IPv6 Network
Legend:
OCF
OCF aware

OCF plugged-in
Infrastructure

Figure 14 — High level network and connectivity architecture

In terms of IETF RFC 6434, IPv6 nodes assume either a router or host role. Nodes may further
implement various specializations of those roles:

— A Router may implement Customer Edge Router capabilities as defined in IETF RFC 7084.

— Nodes limited in processing power, memory, non-volatile storage or transmission capacity
requires special IP adaptation layers (6LoOWPAN) and/or dedicated routing protocols (RPL).
Examples include devices transmitting over low power physical layer like IEEE 802.14.5, ITU
G9959, Bluetooth Low Energy, DECT Ultra Low Energy, and Near Field Communication (NFC).

— A node may translate and route messaging between IPv6 and non-IPv6 networks.
9.3 IPv6 network layer requirements
9.3.1 Introduction

Projections indicate that many 10s of billions of new lIoT endpoints and related services will be
brought online in the next few years. These endpoint’s capabilities will span from battery powered
nodes with limited compute, storage, and bandwidth to more richly resourced devices operating
over Ethernet and Wi-Fi links.

Internet Protocol version 4 (IPv4), deployed some 30 years ago, has matured to support a wide
variety of applications such as Web browsing, email, voice, video, and critical system monitoring
and control. However, the capabilities of IPv4 are at the point of exhaustion, not the least of which
is that available address space has been consumed.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 70

The IETF long ago saw the need for a successor to IPv4, thus the development of IPv6. OCF
recommends IPv6 at the network layer. Amongst the reasons for IPv6 recommendations are:

— Larger address space. Side-effect: greatly reduce the need for NATSs.

— More flexible addressing architecture. Multiple addresses and types per interface: Link-local,
ULA, GUA, variously scoped Multicast addresses, etc. Better ability to support multi-homed
networks, better re-numbering capability, etc.

— More capable auto configuration capabilities: DHCPv6, SLAAC, Router Discovery, etc.

— Technologies enabling IP connectivity on constrained nodes are based upon IPv6.

— All major consumer operating systems (iOS, Android, Windows, Linux) are already IPv6 enabled.
— Major Service Providers around the globe are deploying IPv6.

9.3.2 IPv6 node requirements

9.3.2.1 Introduction

In order to ensure network layer services interoperability from node to node, mandating a common
network layer across all nodes is vital. The protocol should enable the network to be: secure,
manageable, and scalable and to include constrained and self-organizing meshed nodes. OCF
mandates IPv6 as the common network layer protocol to ensure interoperability across all Devices.
More capable Devices may also include additional protocols creating multiple-stack Devices. The
remainder of this clause will focus on interoperability requirements for IPv6 hosts, IPv6 constrained
hosts and IPv6 routers. The various protocol translation permutations included in multi-stack
gateway devices may be addresses in subsequent addendums of this document.

9.3.2.2 IP Layer

An IPv6 node shall support IPv6 and it shall conform to the requirements as specified in
IETF RFC 6434.

10 OCF Endpoint

10.1 OCF Endpoint definition

The specific definition of an OCF Endpoint depends on the Transport Protocol Suite being used.
For the example of CoAP over UDP over IPv6, the OCF Endpoint is identified by an IPv6 address
and UDP port number.

Each Device shall associate with at least one OCF Endpoint with which it can exchange request
and response messages. When a message is sent to an OCF Endpoint, it shall be delivered to the
Device which is associated with the OCF Endpoint. When a request message is delivered to an
OCF Endpoint, path component is enough to locate the target Resource.

A Device can be associated with multiple OCF Endpoints. For example, a Device can have several
IP addresses or port numbers or support both CoAP and HTTP transfer protocols. Different
Resources in a Device may be accessed with the same OCF Endpoint or need different ones. Some
Resources may use one OCF Endpoint and others a different one. It depends on the
implementation.

On the other hand, an OCF Endpoint can be shared among multiple Devices, only when there is a
way to clearly designate the target Resource with a request URI. For example, when multiple CoAP
servers use uniquely different URI paths for all their hosted Resources, and the CoAP
implementation demultiplexes by path, they can share the same CoAP OCF Endpoint. However,
this is not possible in this version of the document, because a pre-determined URI (e.g. "/oic/d") is
mandatory for some mandatory Resources (e.g. "oic.wk.d").

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 71

10.2 OCF Endpoint information
10.2.1Introduction

An OCF Endpoint is represented by OCF Endpoint information, which consists of the following key-
value pairs, "ep", "pri", and "lat".

10.2.2"ep"
"ep" represents Transport Protocol Suite and OCF Endpoint Locator specified as follows:

— Transport Protocol Suite - a combination of protocols (e.g. CoAP + UDP + IPv6) with which
request and response messages can be exchanged for RESTful transaction (i.e. CRUDN). A
Transport Protocol Suite shall be indicated by a URI scheme name. All scheme names
supported by this document are IANA registered, these are listed in Table 21. A vendor may
also make use of a non-IANA registered scheme name for their own use (e.g.
"com.example.foo"), this shall follow the syntax for such scheme names defined by
IETF RFC 7595. The behaviour of a vendor-defined scheme name is undefined by this
document. All OCF defined Resource Types when exposing OCF Endpoint Information in an
"eps" (see 10.2.4) shall include at least one "ep" with a Transport Protocol Suite as defined in
Table 21.

— OCF Endpoint Locator — an address (e.g. IPv6 address + Port number) or an indirect identifier
(e.g., DNS name) resolvable to an IP address, through which a message can be sent to the
OCF Endpoint and in turn associated Device. The OCF Endpoint Locator for "coap” and "coaps"
shall be specified as "IP address: port number". The OCF Endpoint Locator for "coap+tcp" or
"coaps+tcp” shall be specified as "IP address: port number" or "DNS name: port number" or
"DNS name" such that the DNS name shall be resolved to a valid IP address for the target
Resource with a name resolution service (i.e., DNS). For the 3rd case, when the port number
is omitted, the default port "5683" (and "5684") shall be assumed for "coap+tcp" (and for
"coaps+tcp") scheme respectively as defined in IETF RFC 8323.Temporary addresses should
not be used because OCF Endpoint Locators are for the purpose of accepting incoming
sessions, whereas temporary addresses are for initiating outgoing sessions (IETF RFC 4941).
Moreover, its inclusion in "/oic/res" can cause a privacy concern (IETF RFC 7721).

— OCF Latency — the maximum latency in seconds [sec] that the Server may take to respond to
a request.

"ep" shall have as its value a URI (as specified in IETF RFC 3986) with the scheme component
indicating Transport Protocol Suite and the authority component indicating the OCF Endpoint
Locator.

An "ep" example for "coap" and "coaps" is as illustrated:
"ep': "coap://[fe80::bld6]:1111"

An "ep" example for "coap+tcp" and "coaps+tcp" is as illustrated:
"ep'': "coap+tcp://[2001:db8:a::123]:2222"

“"ep'': "coap+tcp://foo.bar.com:2222"
""ep'': "coap+tcp://foo.bar.com”

The current list of "ep" with corresponding Transport Protocol Suite is shown in Table 21:

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 72

Table 21 —"ep" value for Transport Protocol Suite

Transport Protocol scheme OCF Endpoint "ep" Value example
Suite Locator

coap+udp+ip "coap" IP address + port "coap://[fe80::b1d6]:1111"
number

coaps + udp +ip "coaps” IP address + port "coaps://[fe80::b1d6]:1122"
number

coap +tcp +ip "coap+tcp” IP address + port "coap+tcp://[2001:db8:a::123]:2222"
number

"coap+tcp://foo.bar.com:2222"

DNS name: port "coap-+tcp://foo.bar.com”
number
DNS name

coaps +tcp +ip "coaps+tcp” IP address + port "coaps+tcp://[2001:db8:a::123]:2233"
number "coaps+tcp://[2001:db8:a::123]:2233"
DNS name: port "coaps+tcp://foo.bar.com:2233"
number
DNS name

10.2.3"pri"
When there are multiple OCF Endpoints, "pri" indicates the priority among them.

"pri" shall be represented as a positive integer (e.g. "pri": 1) and the lower the value, the higher the
priority.

The default "pri" value is 1, i.e. when "pri" is not present, it shall be equivalent to "pri": 1.

10.2.4"|at"

"lat" indicates the expected delay of the response. For example, when a Server implements a mode
to improve battery performance; the Server can expose this value, thereby providing a Client with
the ability to use this for the timeout on the connection. For example, the Thread "rx-off-when-idle"
link mode is an implementation of a battery performance improvement mechanism.

"lat" shall be represented as a positive integer (e.g. "lat": 240), and the value is specified in seconds.

10.2.50CF Endpoint information in "eps" Parameter

To carry OCF Endpoint information, a new Link Parameter "eps" is defined in 7.8.2.5.6. "eps" has
an array of items as its value and each item represents OCF Endpoint information with key-value

pairs, "ep", "pri", and "lat", of which "ep" is mandatory and "pri" and "lat" are optional.

OCF Endpoint Information in an "eps" Parameter is valid for the target Resource of the Link, i.e.,
the Resource referred by "href" Parameter. OCF Endpoint information in an "eps" Parameter may
be used to access other Resources on the Device, but such access is not guaranteed.

A Client may resolve the "ep" value to an IP address for the target Resource, i.e., the address to
access the Device which hosts the target Resource. A valid (transfer protocol) URI for the target
Resource can be constructed with the scheme, host and port components from the "ep" value and
the "path" component from the "href" value.

Links with an "eps":
"anchor': "ocf://e61c3e6b-9c54-4b81-8ce5-9039c1d04d9 ',
“href': "/myLightSwitch",

"rt': ["oic.r.switch._binary"],

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 73

“if': [Toic.if.a", "oic.if.baseline'],

“ptr {"bm": 3},

“eps': [
{"ep': "coap://[fe80::b1d6]:1111", “pri™: 2, "lat'": 240},
{"ep": "coaps://[fe80::bld6]:1122"}

1
¥
{
""anchor': "ocf://dc70373c-1e8d-4fh3-962e-017eaa863989"",
"href'": "/myTemperature",
"rt': [foic.r.temperature'],
"if": [Toic.if.a", "oic.if._baseline'],
p: {"bm": 3},
"eps": [
{"ep': "coap+tcp://foo.bar.com”, "pri': 2, "lat": 240},
{"ep': "coaps+tcp://foo.bar.com:1122"}
1
}

In the previous example, "anchor" represents the hosting Device, "href", target Resource and "eps"
the two OCF Endpoints for the target Resource. The (fully-qualified) URIs for the target Resource
are as illustrated:

coap://[fe80::b1d6]:1111/myLightSwitch
coaps://[fe80::b1d6]:1122/myLightSwitch
coap+tcp://foo_bar.com:5683/myTemperature

coaps+tcp://foo.bar.com:1122/myTemperaturelf the target Resource of a Link requires a secure
connection (e.g. CoAPS), "eps" Parameter shall be used to indicate the necessary information (e.g.
port number) in OCF 1.0 payload. For optional backward compatibility with OIC 1.1, the "sec" and
"port" shall only be used in OIC 1.1 payload.

10.3 OCF Endpoint discovery
10.3.1Introduction

OCF Endpoint discovery is defined as the process for a Client to acquire the OCF Endpoint
information for Device or Resource.

10.3.2Implicit discovery

If a Device is the source of a CoOAP message (e.g. "/oic/res" response), the source IP address and
port number may be combined to form the OCF Endpoint Locator for the Device. Along with a
"coap" scheme and default "pri" value, OCF Endpoint information for the Device may be constructed.

In other words, a "/oic/res"” response message with CoAP may implicitly carry the OCF Endpoint
information of the responding Device and in turn all the hosted Resources, which may be accessed
with the same transfer protocol of CoAP. In the absence of an "eps" Parameter, a Client shall be
able to utilize implicit discovery to access the target Resource.

10.3.3Explicit discovery with "/oic/res" response

OCF Endpoint information may be explicitly indicated with the "eps" Parameter of the Links in
"loic/res".

As in 10.3.2, an "/oic/res" response may implicitly indicate the OCF Endpoint information for some
Resources hosted by the responding Device. However implicit discovery, i.e., inference of OCF
Endpoint information from CoAP response message, may not work for some Resources on the
same Device. For example, some Resources may allow only secure access via CoAPS which
requires the "eps" Parameter to indicate the port number. Moreover "/oic/res” may expose a target
Resource which belongs to another Device.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 74

When the OCF Endpoint for a target Resource of a Link cannot be implicitly inferred, the "eps"
Parameter shall be included to provide explicit OCF Endpoint information with which a Client can
access the target Resource. In the presence of the "eps" Parameter, a Client shall be able to utilize
it to access the target Resource. For "coap" and "coaps", a Client may use the IP address in the
"ep" value in the "eps" Parameter to access the target Resource. For "coap+tcp" and "coaps+tcp",
a Client may use the IP address in the "eps" Parameter or resolve the DNS name in the "eps"
Parameter to acquire a valid IP address for the target Resource. If "eps" Parameter omits the port
number, then the default port "5683" (and "5684") shall be assumed for "coap+tcp" (and
"coaps+tcp”) scheme as defined in IETF RFC 8323.To access the target Resource of a Link, a

Client may use the "eps" Parameter in the Link, if it is present and fall back on implicit discovery if
not.

This is an example of an "/oic/res" response from a Device having the "eps" Parameter in Links.

' {
"anchor': "ocf://e61c3e6b-9c54-4b81-8ce5-9039c1d04d9™,
“"href': ""/oic/res",
“rel": "'self",
"rt": [oic.wk.res'],
“if': [Moic.if. 11", "oic.if.baseline],
"p: {"bm": 3},
"eps': [
{"ep": "coap://[2001:db8:a::bld4]:55555"},
{"ep": "coaps://[2001:db8:a::b1d4]:11111"}
1
%,
""anchor': "ocf://e61c3e6b-9c54-4b81-8ce5-t9039¢c1d04d9™",
“href': ""/oic/d",
rt': [Toic.wk.d"],
“if": [Moic.if.r", "oic.if.baseline"],
pt: {"bm': 33},
"eps': [
{"ep": "coap://[2001:db8:a::bld4]:55555"},
{"ep'": "coaps://[2001:db8:a::b1d4]:11111"}
1
%,
"anchor': "ocf://e61c3e6b-9c54-4b81-8ce5-9039c1d04d9™,
“"href": "/oic/p",
rt': [Toic.wk.p"],
“if": [Toic.if.r", "oic.if.baseline],
pto {"bm': 3},
"eps": [
{"ep'": "coap://[2001:db8:a::bld4]:55555"},
{"ep'": "coaps://[2001:db8:a::bld4]:11111"}
1
%,
"anchor': "ocf://e61c3e6b-9c54-4b81-8ce5-9039c1d04d9™,
"href'": "/oic/sec/doxm",
"rt": ["oic.r.doxm"],
"if": ["oic.if.baseline],
pto {"bm': 13},
“eps": [
{"ep'": "coap://[2001:db8:a::bld4]:55555"},
{"ep'": "coaps://[2001:db8:a::bld4]:11111"}
1
3,
{

"*anchor'': "ocf://e61c3e6b-9c54-4b81-8ce5-¥9039c1d04d9™,
Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 75

"href": "/oic/sec/pstat”,
"rt': [Moic.r._.pstat'],
"if": ["oic.if.baseline'],
“pto {"bm": 1},
"eps": [
{"ep": "coaps://[2001:db8:a::b1d4]:11111"}
1
3.
{
"*anchor': "ocf://e61c3e6b-9c54-4b81-8ce5-¥9039c1d04d9™,
"href": "/oic/sec/cred",
“rt': [oic.r.cred],
"if"': [Toic.if.baseline'],

o {"bm": 1},
“eps": [
{"ep": "coaps://[2001:db8:a::bld4]:11111"}
1
%,
"anchor': "ocf://e61c3e6b-9c54-4b81-8ce5-9039¢c1d04d9™",
"href': ""/oic/sec/acl2",

"rt'": ["oic.r.acl2"],
"if": ["oic.if_.baseline"],
"p: {"bm": 1},
“eps': [
{"ep": "coaps://[2001:db8:a::bl1d4]:11111"}

1
%,
"anchor': "ocf://e61c3e6b-9c54-4b81-8ce5-9039c1d04d9™,
“href": "/mylntrospection”,
"rt": [“oic.wk.introspection'],
“if": [Toic.if.r", "oic.if.baseline],
“p: {"bm": 3},
“eps'": [
{"ep": "coaps://[2001:db8:a::b1d4]:11111"}

1
3.
{
""anchor': "ocf://dc70373c-1e8d-4fbh3-962e-017eaa863989",
“href": "/myLight",
“rt': [Foic.r.switch_binary'"],
"if"': ["oic.if.a", "oic.if.baseline],
prt: {"bm': 33},
“eps": [
{"ep": "coaps://[2001:db8:a::bld4]:22222"}
1

}
1

The exact format of the "/oic/res" response and a way for a Client to acquire a "/oic/res" response
message is specified in Annex A and 11.2.4 respectively.

11 Functional interactions

11.1 Introduction

The functional interactions between a Client and a Server are described in 11.1 through O
respectively. The functional interactions use CRUDN messages (clause 7.11) and include
Discovery, Notification, and Device management. These functions require support of core defined
Resources as defined in Table 22.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 76

Table 22 — List of Core Resources

Pre-defined URI Resource Name Resource Type Related Functional Mandatory
Interaction
"loic/res" Default "oic.wk.res" Discovery Yes
"loic/p" Platform "oic.wk.p" Discovery Yes
"loic/d" Device "oic.wk.d" Discovery Yes
:jmf_len;entation Introspection "oic.wk.introspection” | Introspection Yes
efine

11.2 Resource discovery
11.2.1Introduction

Discovery is a function which enables OCF Endpoint discovery as well as Resource based
discovery. OCF Endpoint discovery is described in detail in clause 10. This clause mainly describes
the Resource based discovery.

11.2.2Resource based discovery: mechanisms

11.2.2.1 Overview

As part of discovery, a Client may find appropriate information about other OCF peers. This
information could be instances of Resources, Resource Types or any other information represented
in the Resource model that an OCF peer would want another OCF peer to discover.

At the minimum, Resource based discovery uses the following:
— A Resource to enable discovery shall be defined. The representation of that Resource shall

contain the information that can be discovered.

— The Resource to enable discovery shall be specified and commonly known a-priori. A Device
for hosting the Resource to enable discovery shall be identified.

— A mechanism and process to publish the information that needs to be discovered with the
Resource to enable discovery.

— A mechanism and process to access and obtain the information from the Resource to enable
discovery. A query may be used in the request to limit the returned information.

— A scope for the publication.

— A scope for the access.

— A policy for visibility of the information.

Depending on the choice of the base aspects, the Framework defines three Resource based

discovery mechanisms:

— Direct discovery, where the Resources are published locally at the Device hosting the
Resources and are discovered through peer inquiry.

— Indirect discovery, where Resources are published at a third party assisting with the discovery
and peers publish and perform discovery against the Resource to enable discovery on the
assisting 3" party.

— Advertisement discovery, where the Resource to enable discovery is hosted local to the initiator
of the discovery inquiry but remote to the Devices that are publishing discovery information.

A Device shall support direct discovery.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 77

11.2.2.2 Direct discovery
In direct discovery,

— The Device that is providing the information shall host the Resource to enable discovery.

— The Device publishes the information available for discovery with the local Resource to enable
discovery (i.e. local scope).

— Clients interested in discovering information about this Device shall issue RETRIEVE requests
directly to the Resource. The request may be made as a unicast or multicast. The request may
be generic or may be qualified or limited by using appropriate queries in the request.

— The Server Device that receives the request shall send a response with the discovered
information directly back to the requesting Client Device.

— The information that is included in the request is determined by the policies set for the Resource
to be discovered locally on the responding Device.

11.2.3Resource based discovery: Finding information

The discovery process (Figure 15) is initiated as a RETRIEVE request to the Resource to enable
discovery. The request may be sent to a single Device (as in a Unicast) or to multiple Devices (as
in Multicast). The specific mechanisms used to do Unicast or Multicast are determined by the
support in the data connectivity layer. The response to the request has the information to be
discovered based on the policies for that information. The policies can determine which information
is shared, when and to which requesting agent. The information that can be discovered can be
Resources, types, configuration and many other standards or custom aspects depending on the
request to appropriate Resource and the form of request. Optionally the requester may narrow the
information to be returned in the request using query parameters in the URI query.

Client Server(s)

1. RETRIEWVE Request >
2. Discovery
Inquiry processed

Figure 15 — Resource based discovery: Finding information

Discovery Resources
The following Core Resources shall be implemented on all Devices to support discovery:

— "loic/res" for discovery of Resources.

"loic/p" for discovery of Platform.

"/oic/d" for discovery of Device information.
Devices shall expose each of "/oic/res", "/oic/d", and "/oic/p" via an unsecured OCF Endpoint.
Further details for these mandatory Core Resources are described in Table 23.

Platform Resource

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 78

The OCF recognizes that more than one instance of Device may be hosted on a single Platform.
Clients need a way to discover and access the information on the Platform. The Core Resource,
"loic/p" exposes Platform specific Properties. All instances of Device on the same Platform shall
have the same values of any Properties exposed (i.e. a Device may choose to expose optional
Properties within "/oic/p" but when exposed the value of that Property should be the same as the
value of that Property on all other Devices on that Platform).

Device Resource

The Device Resource shall have the pre-defined URI "/oic/d", the Device Resource shall expose
the Properties pertaining to a Device as defined in Table 26. The Device Resource shall have a
default Resource Type that helps in bootstrapping the interactions with the Device (the default type
is described in Table 23).The Device Resource may have one or more Resource Type(s) that are
specific to the Device in addition to the default Resource Type or if present overriding the default
Resource Type. The base Resource Type "oic.wk.d" defines the Properties that shall be exposed
by all Devices. The Device specific Resource Type(s) exposed are dependent on the class of
Device (e.g. air conditioner, smoke alarm, etc. Since all the Resource Types of "/oic/d" are not
known a priori, the Resource Type(s) of "/oic/d" are determined by discovery through the Core
Resource "/oic/res".

Table 23 — Mandatory discovery Core Resources

Resource OCF Interfaces
Type ID

("rt" value)

Pre-defined Resource
URI Type Title

Related
Functional
Interaction

Description

"loic/res"

Default

"oic.wk.res"

"oic.if.1l",
"oic.if.b",
"oic.if.baseline"

The Resource through which the
corresponding Server is
discovered and introspected for
available Resources.

"loic/res" shall expose the
Resources that are discoverable
on a Device. When a Server
receives a RETRIEVE request
targeting "/oic/res" (e.g., "GET
loic/res"), it shall respond with the
links list of all the Discoverable
Resources of itself. The "/oic/d"
and "/oic/p" are Discoverable
Resources, hence their links are
included in "/oic/res" response.
The Properties exposed by
"/oic/res" are listed in Table 24.

Discovery

"loic/p"

Platform

"oic.wk.p"

"oic.if.r"

The Discoverable Resource
through which Platform specific
information is discovered.

The Properties exposed by
"loic/p" are listed in Table 27

Discovery

"loic/d"

Device

"oic.wk.d"
and/or one or
more Device
Specific
Resource Type
ID(s)

"oic.if.r"

The discoverable via "/oic/res"
Resource which exposes
Properties specific to the Device
instance.

The Properties exposed by
"/oic/d" are listed in Table 26.

Discovery

Table 24 defines "oic.wk.res" Resource Type.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

79

Table 24 —"oic.wk.res" Resource Type definition

Property
title

Property
name

Value
type

Value
rule

Unit

Access
mode

Mandatory

Description

Name

string

N/A

N/A

R

No

Human-friendly name
defined by the vendor

Links

"links"

array

See
7.8.2

N/A

Yes

The array of Links
describes the URI,
supported Resource
Types and OCF
Interfaces, and access
policy.

Security
Domain
uuID

"sduuid"

string

uuid

N/A

No

Unique identifier for the
Security Domain. This
value shall be the same
value (i.e. mirror) as the
"sdi.uuid" Property as
defined in

ISO/IEC 30118-2. It
shall be exposed if the
"sdi.priv" Property is set
to "false", and shall not
be exposed if the
"sdi.priv" Property is set
to "true".

Security
Domain
Name

"sdname”

string

N/A

N/A

No

Human-friendly name
for the Security
Domain. This value
shall be the same value
(i.e. mirror) as the
"sdi.name" Property as
defined in

ISO/IEC 30118-2. It
shall be exposed if the
"sdi.priv" Property is set
to "false", and shall not
be exposed if the
"sdi.priv" Property is set
to "true”.

Note: The "n", "sduuid", and "sdname" Property values for the "oic.wk.res" Resource Type are only in the response

payload when used with the "oic.if.baseline" OCF Interface (i.e., RETRIEVE /oic/res?if="oic.if.baseline").

A Device shall support CoAP based discovery as the baseline discovery mechanism (see 11.2.5).

The "/oic/res" shall list all Resources that are indicated as discoverable (see 11.2). Also the

following architecture Resource Types shall be listed:

— "loic/p" indicated with an "rt" value of "oic.wk.p".

— "/oic/d" indicated with an "rt" value of "oic.wk.d"

— "loic/sec/doxm" indicated with an "rt" value of "oic.r.doxm" as defined in ISO/IEC 30118-2.
— "loic/sec/pstat" indicated with an "rt" value of "oic.r.pstat" as defined in ISO/IEC 30118-2.
— "loic/sec/acl2" indicated with an "rt" value of "oic.r.acl2" as defined in ISO/IEC 30118-2.
"loic/sec/cred” indicated with an "rt" value of "oic.r.cred" as defined in ISO/IEC 30118-2.

Conditionally required:

"foic/res" with an "rt" value of "oic.wk.res" as self-reference, on the condition that "oic/res" has

to signal that it is Observable by a Client.

Introspection Resource indicated with an "rt" value of "oic.wk.introspection".

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

— if the Device supports batch retrieval of "/oic/res" then "oic.if.b" shall be included in the "if"
Property of "/oic/res".

— if the Device supports batch retrieval there shall be a self-reference that includes an "if" Link
Parameter containing "oic.if.b"; the self-reference shall expose a secure OCF Endpoint.

The Introspection Resource is only applicable for Devices that host Vertical Resource Types (e.g.
"oic.r.switch.binary”) or vendor-defined Resource Types. Devices that only host Resources
required to onboard the Device as a Client do not have to implement the Introspection Resource.

Table 25 provides an OCF registry for protocol schemes.

Table 25 — Protocol scheme registry

S| Number Protocol
1 "coap"
2 "coaps”
3 "http"
4 "https"
5 "coap+tcp"
6 "coaps+tcp"

NOTE The discovery of an OCF Endpoint used by a specific protocol is out of scope. The mechanism used by a Client
to form requests in a different messaging protocol other than discovery is out of scope.

The following applies to the use of "/oic/d":

— A vertical may choose to extend the list of Properties defined by the Resource Type "oic.wk.d".
In that case, the vertical shall assign a new Device Type specific Resource Type ID. The
mandatory Properties defined in Table 26 shall always be present.

— A Device may choose to expose a separate, Discoverable Resource with its Resource Type ID
set to a Device Type. In this case the Resource is equivalent to an instance of "oic.wk.d" and
adheres to the definition thereof. As such the Resource shall at a minimum expose the
mandatory Properties of "oic.wk.d". In the case where the Resource tagged in this manner is
defined to be an instance of a Collection in accordance with 7.8.3 then the Resources that are
part of that Collection shall at a minimum include the Resource Types mandated for the Device
Type.

Table 26 "oic.wk.d" Resource Type definition defines the base Resource Type for the "/oic/d"
Resource.

Table 26 — "oic.wk.d" Resource Type definition

Property Property Value Valu uUni Acces Mandator Description
title name type e t S y
rule mode
(Device) “n" "string: | N/A N/A | R Yes Human friendly name defined by
Name the vendor. In the presence of "n"

Property of "/oic/con”, both have
the same Property Value. When "n"
Property Value of "/oic/con" is
modified, it shall be reflected to "n"
Property Value of "/oic/d".

Spec "icv" "string N/A N/A | R Yes The specification version of this
Version " document that a Device is
implemented to. The syntax shall
be "ocf.<major>.<minor>.<sub-

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 81

version>" where <major>, <minor,
and <sub-version> are the major,
minor and sub-version numbers of
this document respectively. The
specification version number (i.e.,
<major>.<minor>.<sub-version>)
shall be obtained from the title page
of this document (e.g. "2.0.5"). An
example of the string value for this
Property is "ocf.2.0.5".

Device UUID

ngi

"uuid"

N/A

N/A

Yes

Unique identifier for Device. This
value shall be the same value (i.e.
mirror) as the "doxm.deviceuuid"
Property as defined in

ISO/IEC 30118-2. Handling privacy-
sensitivity for the "di" Property,
refer to clause 13.16 in

ISO/IEC 30118-2.

Data Model
Version

"dmv

Ccsv

N/A

N/A

Yes

Spec version of the Resource
specification to which this Device
data model is implemented; if
implemented against a Vertical
specific Device specification(s),
then the Spec version of the vertical
specification this Device model is
implemented to. The syntax is a
comma separated list of
<res>.<major>.<minor>.<sub-
version> or
<vertical>.<major>.<minor>.<sub-
version>. <res> is the string
"ocf.res" and <vertical> is the name
of the vertical defined in the
Vertical specific Resource
specification. The <major>,
<minor>, and <sub-version> are the
major, minor and sub-version
numbers of the specification
respectively. One entry in the csv
string shall be the applicable
version of the Resource Type
Specification for the Device (e.g.
"ocf.res.1.0.0"). If applicable,
additional entry(-ies) in the csv
shall be the vertical(s) being
realized (e.g. "ocf.sh.1.0.0"). This
value may be extended by the
vendor. The syntax for extending
this value, as a comma separated
entry, by the vendor shall be by
adding
x.<Domain_Name>.<vendor_string>
. For example, "ocf.res.1.0.0,
ocf.sh.1.0.0, x.com.example.string",
The order of the values in the
comma separated string can be in
any order (i.e. no prescribed order).
This Property shall not exceed 256
octets.

Permanent
Immutable
ID

"piid"

"uuid"

N/A

N/A

Yes

A unique and immutable Device
identifier. A Client can detect that a
single Device supports multiple
communication protocols if it
discovers that the Device uses a
single Permanent Immutable 1D
value for all the protocols it
supports. Handling privacy-
sensitivity for the "piid" Property,

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 82

refer to clause 13.16 in
ISO/IEC 30118-2.

Localized
Descriptions

“ld"

"array" | N/A

N/A

No

Detailed description of the Device,
in one or more languages. This
Property is an array of objects
where each object has a "language”
field (containing an IETF RFC 5646
language tag) and a "value" field
containing the Device description in
the indicated language.

Software
Version

"sv

"string N/A

N/A

No

Version of the Device software.

Manufacture
r Name

"dmn

"array" | N/A

N/A

No

Name of manufacturer of the
Device, in one or more languages.
This Property is an array of objects
where each object has a "language”
field (containing an IETF RFC 5646
language tag) and a "value" field
containing the manufacturer name
in the indicated language.

Model
Number

"dmno”

"string N/A

N/A

No

Model number as designated by
manufacturer.

Ecosystem
Name

"econame"

“string

enum

N/A

No

This is the name of ecosystem that
a Bridged Device belongs to. If a
Device has "oic.d.virtual" as one of
Resource Type values ("rt") the
Device shall contain this Property,
otherwise this Property shall not be
included.

This Property has enumeration
values: ["BLE", "oneM2M", "UPlus",
"Zighee", "Z-Wave"].

Version of
Ecosystem

"ecoversion

“string N/A

N/A

No

This is the version of ecosystem
that a Bridged Device belongs to. If
a Device has "oic.d.virtual" as one
of its Resource Type values ("rt")
the Device should contain this
Property, otherwise this Property
shall not be included.

Table 27 defines "oic.wk.p" Resource Type.

Table 27 — "oic.wk.p" Resource Type definition

Property title

Property
name

Value type

Value
rule

Unit

Access
mode

Mandatory Description

Platform ID

"pi

"uuid"

N/A

N/A

R

Yes Unique identifier for the
physical Platform
(UUID); this shall be a
UUID in accordance
with IETF RFC 4122. It
is recommended that
the UUID be created
using the random
generation scheme
(version 4 UUID)
specific in the RFC.
Handling privacy-
sensitivity for the "pi"
Property, refer to clause
13.16 in ISO/IEC 30118-
2.

Manufacturer
Name

"mnmn"

"string"

N/A

N/A

Yes Name of manufacturer.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 83

Manufacturer | "mnml" "uri” N/A N/A R No Reference to
Details Link manufacturer,
represented as a URI.

Model "mnmo" "string" N/A N/A R No Model number as

Number designated by
manufacturer.

Date of "mndt" "date" N/A Time | R No Manufacturing date of

Manufacture Platform.

Serial "mnsel "string" N/A S R No Serial number of the

number Platform, may be unique

for each Platform of the
same model number.

Platform "mnpv" "string" N/A N/A R No Version of Platform —

Version string (defined by
manufacturer).

OS Version "mnos" "string" N/A N/A R No Version of Platform
resident OS — string
(defined by
manufacturer).

Hardware "mnhw" "string" N/A N/A R No Version of Platform

Version hardware.

Firmware "mnfv" "string" N/A N/A R No Version of Platform

version firmware.

Support link "mnsl" "uri" N/A N/A R No URI that points to
support information from
manufacturer.

SystemTime "st" "date-time" N/A N/A R No Reference time for the
Platform.

Vendor ID "vid" "string" N/A N/A R No Vendor defined string

for the Platform. The
string is freeform and up
to the vendor on what
text to populate it.

Network "mnnct" "array" array R No An array of integer
Connectivity of where each integer
Type integer indicates the network

connectivity type based
on IANAIfType value as
defined by IANA ifType-
MIB Definitions, e.g.,
[71, 259] which
represents Wi-Fi and
Zigbee.

11.2.4Resource discovery using "/oic/res"
11.2.4.1 General Requirements

Discovery using "/oic/res" is the default discovery mechanism that shall be supported by all Devices.
General requirements for use of this mechanism are as follows:

— Every Device updates its local "/oic/res" with the Resources that are discoverable (see 7.3.2.2).
Every time a new Resource is instantiated on the Device and if that Resource is discoverable
by a remote Device then that Resource is published with the "/oic/res" Resource that is local to
the Device (as the instantiated Resource).

After performing discovery using "/oic/res", Clients may discover additional details about the Device
by performing discovery using "/oic/p”, "/oic/d", etc. If a Client already knows about the Device, it
may discover using other Resources without going through the discovery of "/oic/res”

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 84

11.2.4.2 Discovery using "oic.if.ll" (Default OCF Interface for "/oic/res")

If a Client does not explicitly include an OCF Interface as a query parameter in the request to
"loic/res" then the OCF Interface is taken to be "oic.if.ll" as that is the Default OCF Interface for
"loic/res". The requirements in this clause are thus applied. The requirements in this clause also
apply if an OCF Interface of "oic.if.ll" is explicitly requested by inclusion as a query parameter in
the RETRIEVE operation.

— A Device wanting to discover Resources or Resource Types on one or more remote Devices
makes a RETRIEVE request to "/oic/res" on the remote Devices. This request may be sent
multicast or unicast if a specific Device is to be probed. The RETRIEVE request may optionally
be restricted using appropriate clauses in the query portion of the request. Queries may select
based on requirements captured in this document (e.g. Resource Types).

— The Device receiving the RETRIEVE request responds with a list of Resources, the Resource
Type of each of the Resources and the OCF Interfaces that each Resource supports.
Additionally, information on the policies active on the Resource can also be sent (e.g. if the
Resource can be Observed, or if the Resource can be discovered).

— The receiving Device may invoke additional operations based on the Resources returned in the
request to "/oic/res".

The information that is returned on discovery against "/oic/res" is at minimum:
— The URI (relative or fully qualified URL) of the Resource.

— The Resource Type(s) of each Resource. More than one Resource Type may be returned if the
Resource enables more than one type. To access Resources of multiple types, the specific
Resource Type that is targeted shall be specified in the request.

— The OCF Interfaces supported by that Resource. Multiple OCF Interfaces may be returned. To
access a specific OCF Interface that OCF Interface shall be specified in the request. If the OCF
Interface is not specified, then the Default OCF Interface is assumed.

For Clients that do include the OCF-Accept-Content-Format-Version option, an "/oic/res" response
includes an array of Links to conform to IETF RFC 6690. Each Link shall use an "eps" Parameter
to provide the information for an encrypted connection and carry "anchor" containing an OCF URI
where the authority component of is the Device UUID of the Device hosting the target Resource.

The OpenAPI 2.0 file for discovery using "/oic/res" is described in Annex A. Also refer to clause 10
(OCF Endpoint discovery) for details of Multicast discovery using "/oic/res" on a CoAP transport.

An example response from a Device is shown below:

L

{
"href": "/oic/res",
"anchor': "ocf://dc70373c-1e8d-4fb3-962e-017€aa863989",
“"rel": "self",
"rt'": ["oic.wk.res'"],
i [Moic.if. 11", "oic.if_baseline],
"p': {"bm": 3},
"eps": [{'ep': "coap://[fe80::bld6]:44444"}]

},

{
"href'': "/oic/p",
"anchor': "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989"",
"rt': [Toic.wk.p'"],
“if': [Toic.if.r", "oic.if.baseline'],
“pto {"bm": 3},
“eps: [{ep': "coap://[Tfe80::bld6]:44444""},

{"ep': "coaps://[fe80::bld6]:11111"}
},

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 85

“href': ""/oic/d",
""anchor': "ocf://dc70373c-1e8d-4fb3-962e-017€aa863989",
"rt'': [Toic.wk.d"],
i [Moic.if.r", "oic.if.baseline'],
p: {"bm": 3},
"eps": [{"ep'": "coap://[fe80::bld6]:44444"},
{"ep': "coaps://[fe80::b1d6]:11111"}

3.
{
“href: "/myLightSwitch",
""anchor': "ocf://dc70373c-1e8d-4fb3-962e-017€aa863989",
"rt': [oic.r.switch.binary"],
"if': [Toic.if.a", "oic.if.baseline"],
"p": {"bm": 3},
“eps": [{ep'": "coap://[fe80::bld6]:44444"%,
{"ep': "coaps://[fe80::bld6]:11111"}
1
}

1
11.2.5Multicast discovery using "/oic/res"
11.2.5.1 General requirements

Generic requirements for use of CoAP multicast are provided in clause 12.2.9. Devices shall
support use of CoAP multicast to allow retrieving the "/oic/res" Resource from an unsecured OCF
Endpoint on the Device. Clients may support use of CoAP multicast to retrieve the "/oic/res"
Resource from other Devices. The CoAP multicast retrieval of "/oic/res" supports filtering Links
based on the "rt" Property in the Links:

— If the discovery request is intended for a specific Resource Type including as part of a multi-
value Resource Type, the query parameter "rt" shall be included in the request (see 6.2.2) with
its value set to the desired Resource Type. Only Devices hosting the Resource Type shall
respond to the discovery request.

— When the "rt" query parameter is omitted, all Devices shall respond to the discovery request.
11.2.5.2 Discovery using OCF Security Domain identifier

If OCF Security Domain Properties are exposed by the "/oic/res" Resource (see 11.2.3), the CoAP
multicast retrieval of "/oic/res" supports filtering based on the OCF Security Domain Identifier in
the "/oic/res" Resource:

— If the discovery request is intended for a specific OCF Security Domain, the query parameter
"sduuid" shall be included in the request (see 6.2.2) with its value set to the desired OCF
Security Domain UUID. Only Devices exposing the queried "sduuid" Property (i.e., the value
matches the OCF Security Domain UUID in the query parameter) in the "/oic/res" Resource
shall respond to the discovery request

11.2.6 Multicast discovery using "/.well-known/core"

Generic requirements for use of CoAP multicast are provided in clause 12.2.9. Devices that join
the All CoAP Nodes multicast group as optionally defined in clause 12.2.9 may also support
multicast retrieval from "/.well-known/core" (see IETF RFC 7252). A Server node shall join at
least both the link-local scoped address FFO2::FD and the site-local scoped address
FFO5::FD. IPv6 addresses of other scopes may also be enabled. A Device responding to a
request received on "/.well-known/core" shall encode the payload using the Core link format, which
is a Content-Format of "40" (application/link-format) as defined in IETF RFC 6690. Core links in
the response payload shall have a Content-Format code ("ct" attribute) of "10000"
("application/vnd.ocf+cbor"). This Content-Format code shall be used in subsequent requests and
responses to obtain further Device Resource information.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 86

A Client may send a multicast request to "/.well-known/core" to discover Devices that have joined
the All CoAP Nodes multicast group. However, non-OCF Devices may also respond to this request.
In order to filter out these non-OCF Devices, a Client may use "rt" query parameters so that only
OCF Devices respond. A Server shall support querying for the "oic.wk.res" Resource Type as an
"rt" query parameter value. A Client issuing such a request is equivalent to searching for all
Devices. The Server shall also support querying for a Device Type as an "rt" query parameter value
and respond when the Device Type matches the "rt" query parameter value.

Devices that support this optional discovery mechanism shall return as a minimum the Core link to
the "/oic/res" Resource so that discovery of further Resources may be performed with a RETRIEVE
operation to the URL of the discovered "/oic/res" Resource. The returned URL shall be fully
qualified.

The "rt" and "if" attribute shall also be included in the response. The "rt" attribute shall include
"oic.wk.res" and the "rt" value of the Device Type. The "if* attribute shall include the OCF Interfaces
exposed by "/oic/res".

Example of a query for all Devices:

Req: GET coap://[FF02::FD]:5683/.well-known/core?rt=oic.wk.res

Res: 2.05 Content, Content-Format: 40
<coap://[fe80::b1ld6]:1111/0ic/res>;ct=10000;rt="oic.wk.res oic.d.sensor";if="oic.if.11
oic.if.baseline”

Example of a query for a specific Device Type:

Req: GET coap://[FF02::FD]:5683/.well-known/core?rt=oic.d.sensor

Res: 2.05 Content, Content-Format: 40
<coap://[fe80::bld6]:1111/0ic/res>;ct=10000;rt="oic.wk.res oic.d.sensor"; if="oic.if.Il
oic.if.baseline"”

11.3 Notification
11.3.1 Overview

A Server shall support NOTIFY operation to enable a Client to request and be notified of desired
states of one or more Resources in an asynchronous manner. 11.3.2 specifies the Observe
mechanism in which updates are delivered to the requester.

11.3.2 Observe
11.3.2.1 Overview

In the Observe mechanism the Client utilizes the RETRIEVE operation to require the Server for
updates in case of Resource state changes. The Observe mechanism consists of five steps which
are depicted in Figure 16.

NOTE the Observe mechanism can only be used for a resource with a Property of Observable (see 7.3.2.2).

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 87

Client SENEr

1. RETRIEVE Request (Observe) >

| 2. Obsernve request
! cached

3. RETRIEVE Response (Ubserve) !

4. Chserve
condition satisfied

I
5. RETRIEVE Response (Cbserve) !

Figure 16 — Observe mechanism

11.3.2.2 RETRIEVE request with Observe indication

The Client transmits a RETRIEVE request message to the Server to request updates for the
Resource on the Server if there is a state change. The RETRIEVE request message carries the
following parameters:

— fr: Unique identifier of the Client.

— to: Resource that the Client is requesting to Observe.

— ri: Identifier of the RETRIEVE operation.

— op: RETRIEVE.

— obs: Indication for Observe operation.

11.3.2.3 Processing by the Server

Following the receipt of the RETRIEVE request, the Server may validate if the Client has the
appropriate rights for the requested operation and the Properties are readable and Observable. If
the validation is successful, the Server caches the information related to the Observe request. The
Server caches the value of the ri parameter from the RETRIEVE request for use in the initial
response and future responses in case of a change of state.

11.3.2.4 RETRIEVE response with Observe indication

The Server shall transmit a RETRIEVE response message in response to a RETRIEVE request
message from a Client. If validation succeeded, the response includes an Observe indication. If
not, the Observe indication is omitted from the response which signals to the requesting Client that
registration for notification was not allowed.

The RETRIEVE response message shall include the following parameters:

— fr: Unique identifier of the Server.

— to: Unique identifier of the Client.

— ri: Identifier included in the RETRIEVE operation.

— cn: Information Resource representation as requested by the Client.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 88

— rs: The result of the RETRIEVE operation.
— obs: Indication that the response is made to an Observe operation.
11.3.2.5 Resource monitoring by the Server

The Server shall monitor the state the Resource identified in the Observe request from the Client.
Anytime there is a change in the state of the Observed Resource, the Server sends another
RETRIEVE response with the Observe indication. The mechanism does not allow the client to
specify any bounds or limits which trigger a notification, the decision is left entirely to the server.

11.3.2.6 Additional RETRIEVE responses with Observe indication

The Server shall transmit updated RETRIEVE response messages following Observed changes in
the state of the Resources indicated by the Client. The RETRIEVE response message shall include
the parameters listed in 11.3.2.4.

11.3.2.7 Cancelling Observe

The Client can explicitly cancel Observe by sending a RETRIEVE request without the Observe
indication field to the same Resource on the Server which it was Observing. For certain protocol
mappings, the Client may also be able to cancel an Observe by ceasing to respond to the
RETRIEVE responses.

11.3.3 Push Notification
11.3.3.1 Overview

A Server may be configured to provide a NOTIFICATION via a push mechanism rather than a pull
mechanism (i.e. Observe, see Section 11.3.2). That is rather than a Client establishing one or
more discrete Observe transactions with a Server, a Client may configure a Server such that an
embedded Client within the Server pushes observable events to a defined destination.

The general principle is that a Server provides the representation of any Resource that is the
subject of an UPDATE operation or an internal (to the Server) change in the represented Properties
via the use of an embedded Client in an UPDATE operation to a pre-configured target (destination).
The set of Resources for which information is pushed in this manner is defined by configuration
that exists on the Server.

11.3.3.2 Architectural Model

There are four logical elements that make up the architecture for push notifications. These being:
the origin Server that hosts the Resources, an embedded Client within the origin Server that
originates the push notifications, a target Server that is the recipient of the push notifications, and
a Client that configures both the origin Server and (optionally) the target Server.

The Client providing configuration of the origin and target Servers may be a discrete Client or
embedded in the target Server.

This architecture is illustrated in Figure 17.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 89

Configuration Client

Configures
oic.r.pushconfiguration

/

Origin Server

Embedded Client

~

Pushes an instance of
nic_r niishnavlonad

S~y

Target Server

Configures

Nnir r niichraroiviar

Figure 17 — Push Architecture

As illustrated in Figure 17, a push relationship can be established by a 3rd party, that is by a Client
that is not part of the originator of the notifications nor part of the recipient of the notifications. This
further distinguishes the push model from an Observe model, for the latter the establishment of the
Observe transaction is done by the Client that is the intended recipient of the notifications.

Figure 18 is an example sequence diagram showing how the elements of the architecture may
interact in realising push notifications.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 90

Origin Server

Config Client Server Embedded Client Target Server

{ Configuration of Participants |

—
=

i 1 UPDATE Request (Crigin Configuratipn)

20k

' 3 UPDATE Request (Target Configuratfon) !

Y

4 ok

-
-

: Generation of Notifications

15 Some event

T Matification handling

. 6 Push nofification to configured target _

)
:{Bnk

[if error or u'ﬁher failure]

\
|
i
|
i
i
|
i
i
! |
: alt :[Response generation, success case] :
I 1
I i
i
|
i
i
|
i
i
T

T

]

. i

9 Failure response I
]

1

]

|

|
-

[

i

T

Figure 18 — Example Push Sequence

Table 28 provides additional details for the steps captured in Figure 18.

Table 28 — Example Push Sequence Details

Step Description

1 The Client configuring the Server that will originate the push notifications via an embedded Client provisions
the instance of "oic.r.pushconfiguration" with notification selectors(s); each notification selector identifies a
set of candidate Resources from which information may be pushed. The destination for the pushed
information is established by composing a Push Proxy with a specific notification selector(s).

2 The Server provides a success path response

& The Client configuring the Server that will be the recipient of the push notifications provisions the instance of
"oic.r.pushreceiver" with the URLs at which notifications may be received and if there are limitations, the
Resource Types that may be supported.

4 The Server provides a success path response

5 Some event occurs on the origin server that results in a state change in a Resource identified by one or more
notification selectors

6 The embedded Client within the origin Server generates an UPDATE request to destination identified by the
composed Push Proxy for the notification selector. The payload for the UPDATE request is an instance of
"oic.r.pushpayload"”

7 The target Server handles the received push notification in accordance with its own internal application logic

8 If no errors, the target Server provides a success path response

9 If errors occur, the target Server provides a non-success path response

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 91

11.3.3.3 Origin Server Configuration
11.3.3.3.1 Overview

A Server that allows for the configuration of one or more target Servers for push notifications shall
expose an instance of "oic.r.pushconfiguration”, this is a Collection containing instances of a
notification selector ("oic.r.notificationselector"). Composed with the instance of a notification
selector is a Push Proxy ("oic.r.pushproxy"); the Push Proxy provides the target for the information
that is pushed as a result of the application of the notification selector.

Please see Figure 19 — Example Pictorial Push Configuration Collection for a pictorial

Push
Canfiniratinn

Composed |

Selector

-

representation of "oic.r.pushconfiguration":

Push Proxv

Figure 19 — Example Pictorial Push Configuration Collection

The Push Proxy (see Section 11.3.3.3.2) defines the target of the pushed information, the instance
of "oic.r.notificationselector” provides Properties that allow for selection of specific Resources to
be pushed. Within an instance of "oic.r.notificationselector" are optional Properties "phref", "prt",
and "pif" which are applied in a similar manner to a query parameter in a URI (see clause 7.9),
and when applied, only Resources that are identified as a result of application of the Properties
may be pushed. When multiple Properties are present a logical "and" operation shall be applied
between them.

The set of Resources that may be pushed is established when the notification selector is configured.
The exception to this are any Resources that have been dynamically created on the Server via use
of the "oic.if.create” OCF Interface; these shall not be pushed even though there may be
notification selectors that match them.

NOTE: In all cases, only those Resources that are marked as "pushable” in the Policy Link Parameter in “/oic/res” may
be pushed.

11.3.3.3.2 Push Proxy Resource Type
The Push Proxy Resource Type is defined in Table 29.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 92

Table 29 — Resource Types for Push Proxy

Example URI Resource Type Resource Type ID | OCF Interfaces Description Related
Title (“rt” value) Functional
Interaction
/exampleRes Push Proxy "oic.r.pushproxy" "oic.if.rw", Adds Push Proxy Notifications
ourceURI "oic.if.baseline" functionality to a

Source Resource

The Push Proxy Resource Type is composed with a Notification Selector Resource Type, this
enables notifications to be pushed to a defined target Resource when the Resources identified by
applying the Notification Selector are updated, or when their state changes. Therefore an instance
of "oic.r.pushproxy" shall always be composed with an instance of "oic.r.notificationselector".

The Properties of the Push Proxy Resource Type are defined in Table 30.

Table 30 — Push Proxy Resource Property definition

Property Property Value Value rule Un Access Mandatory Description

title name type it mode

Push pushtarget | string URI RW yes Points to the

Target target of the

URI UPDATE

operation sent
as a notifcation

Source sourcert array RW yes Always set to

Resourc of "oic.r.pushpayl

e Type string oad"

State state string One of RW yes Current state
enumer | ["waitingforprovisioning","waiting (RETRIEVE), | of the Push
ation forupdate","waitingforresponse”, no Proxy

" waitingforupdatemitigation”, " (UPDATE)
waitingforresponsemitigation”,
"error","timeout"]

The "Push Target URI" Property, "pushtarget”, contains a pointer to the target Resource, that is
the Resource to which the notification shall be sent. The URI reference may be to either a local
resource name, for example "outputl”, or a URI on the local device, for example "/scenes/athome",
or a full URI including scheme and authority components, for example "ocf://850faa5d-ccaf-4293-
9452-f4fcab2e2c39/scenes/atwork”. Note that when the URI uses the "ocf" scheme then the URI
shall be resolved to a transport protocol URI as defined in the OCF Core Specification before use
in an UPDATE operation. The "pushtarget" may also be an empty string (""); in which case there is
no associated target Resource and so no notifications may be sent; this occurs when a Push Proxy
is pre-configured with other Resources on a Device.

The "Source Resource Type" Property, "sourcert”, shall be set to "oic.r.pushpayload"”. Future use
cases may be defined that add to the set of possible Resource Types, for the purposes of this
document, the Property shall only contain "oic.r.pushpayload".

The Property "state" contains the current or desired state of the Push Proxy. When provided in a
RETRIEVE response the value shall be one of defined enumeration values in Table 31. When used
in an UPDATE operation the only value that shall be accepted by a Device receiving the UPDATE
is "waitingforupdate", other values shall result in the UPDATE operation being rejected. Also, an
UPDATE that sets "state" is only valid when received by a Push Proxy in a state of "timeout" or
"error"; reception in any other state shall result in the operation being rejected.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 93

11.3.3.3.3 Push proxy state machine

The Device that exposes a Push Proxy Resource Type realizes an individual instance of a state
machine per Push Proxy.

Table 31 describes the states of which the state machine is composed.

Table 31 — Push Proxy States

State Friendly State

State enumeration Description
Name Acronym

Proxy exists but
the
"pushtarget"
waitingforprovisioning WFP Property is an
empty string
(i.e. not
populated).

Waiting for
Provisioning

Proxy has been
configured and
waitingforupdate WFU pending
Resource state
change.

Waiting for
Update

Resource state
has changed,
waitingforresponse WFER UPDATE sent
to the push
target.

Waiting for
Response

UPDATE has
been sent to
the push target
and error
situation occurs
(transport layer
timer expiration
or error
response) while
Proxy has an
error mitigation
algorithm to
handle this
situation.

Waiting for
Update waitingforupdatemitigation WFUM
Mitigation

Resource state
has changed.
Waiting for UPDATE sent
Response waitingforresponsemitigation WFRM to the push
Mitigation target by the
error mitigation
algorithm.

Non-success
path response
error ERR received for the
UPDATE
operation.

Error Response
Received

Transport layer
timeout
Timeout detected
Condition timeout TOUT waiting for a
Detected response to the
UPDATE
operation.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 94

The following provides more detail with respect to the behaviour of the push proxy in each defined
state:

"waiting for provisioning" (WFP) state shall be entered when the "pushtarget” Property of a
Resource that includes the Push Proxy Resource Type is an empty string (i.e. "). This may be
an initial state in the case where a Push Proxy is pre-configured on a Device, or a state that is
entered following configuration of the Property by a Client. In the WFP state no action shall be
taken on a state change. An existing Push Proxy not initially in this state may only enter this
state from the "waiting for update” (WFU) state.

"waiting for update" (WFU) state shall be entered after successful creation of a Resource that
includes a Push Proxy Resource Type, and also after the successful completion of an UPDATE
operation triggered by a state change of the source Resource. When the source Resource is
successfully updated or a state change occurs, an UPDATE request shall be constructed and
sent to the target Resource, and the "waiting for response" (WFR) state is entered. An UPDATE
request to the source Resource may be acknowledged before the triggered UPDATE request
to the target Resource is sent.

"waiting for response” (WFR) state shall be entered when an UPDATE request is sent to a
target Resource. If no response is received before any applicable transport layer timers expire,
then the "timeout" (TOUT) state is entered. If an error response is received, then the "error"
(ERR) state is entered. If a non-error response is received, then the "waiting for update" (WFU)
state is entered.

"waiting for update mitigation" (WFUM) state shall be entered from "waiting for response"
(WFR) state only if there is an error mitigation algorithm to handle error situations (transport
layer timer expiration or error response) when the error situation occurs. The algorithm starts
when the Push Proxy enters this state. In this state the Push Proxy may try to send another
UPDATE request and enter "waiting for response mitigation" (WFRM) state. The Push Proxy
enters this state from "waiting for response mitigation" (WFRM) state when the error situation
continues to occur.

"waiting for response mitigation" (WFRM) state shall be entered from "waiting for update
mitigation" (WFUM) state after an UPDATE request has been sent to a target Resource. If any
error situation (transport layer timer expiration or error response) occurs again, then "waiting
for update mitigation" (WFUM) state shall be entered to continue error mitigation algorithm. If
a non-error response is received, then the error mitigation algorithm is stopped and the "waiting
for update" (WFU) state shall be entered, or if the error mitigation algorithm fails in the end, the
proper error state (TOUT or ERR) is entered.

"timeout condition detected” (TOUT) state shall be entered when any applicable transport
layer response timer expires. A Client may force a transition from the "timeout condition
detected" (TOUT) state to the "waiting for update" (WFU) state by sending an UPDATE request
to the Push Proxy Resource that sets the "state" Property to "waiting for update" (WFU).
Otherwise, the Push Proxy remains in this state until the Push Proxy composition is deleted. .

"error response received" (ERR) state shall be entered when an error response is received
from the target Resource in response to an UPDATE request. A Client may force a transition
from the "error response received" (ERR) state to the "waiting for update" (WFU) state by
sending an UPDATE request to the Push Proxy Resource that sets the "state" Property to
"waiting for update" (WFU). Otherwise, the Push Proxy remains in this state until the Push
Proxy composition is deleted.

Figure 20 shows the Push Proxy operational state machine.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 95

Create with
empty "pushtarget”

|
\ Create with
//a—f—” - populated "pushtarget”
[Populate "pushtarget” Populate "pushtarget”
with target URI as an empty string {"")

[g
—
—
Send Reguest

Non-error
Response

[Optional]

Error Response
or

Timeout

Mon-Error

\Response

\ Client UPDATE
| of "state”

Client UPDATE

|
of "state”
// ﬁesponse

/ Transport layer timeout

ar
(Timeout, mitigation active
| —

while in mitigation
Delete Resource
.\ | -

w — r

|
\ /
ﬂspon Layer Timeout I Error respanse f
and end of mitigation and end of mitigation
TOUT

\ /

Send Request \ Error Response

-
-

/-
Delete Resource — Delete Resource

_—
e

Figure 20 — Push Proxy Operational State Machine

The Push Proxy is initialized when the multi-value "rt" Resource that is composed with the Push
Proxy Resource Type is created. This may be done by a Client using the "oic.if.create” OCF
Interface or may be already composed with other exposed Resources as part of the Device
implementation. With respect to the Client creation case, please see the example in Figure 21. In
all cases, a configured Push Proxy is in the "wait for update" state.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 96

Method = CREATE
URI = /dynamic/somecollection?if=oilc.if.create&rt=oic.wk.col
Payload =

{

"rt": [Toic.r.notificationselector™, "oic.r.pushproxy'"],
“if': [Toic.if.baseline”™, "oic.if.a", "oic.if.rw"],
"p: {"bm":3},

"rep": {
"value™: false,
"pushtarget™: " ocf://850faab5d-ccaf-4293-9452-

f4fcab2e2c39/power/switch",
"sourcert": ["oic.r.pushpayload"]

}
}

Response = CREATED
Payload =

“"href'": "02367721",

"ins'": 02367721,

"rt": [Toic.r.notificationselector™, "oic.r._pushproxy"],

"if': ["oic.if.baseline”™, "oic.if.a", "oic.if.rw"],

"p": {"bm":3%},

"rep”: {

"value™: false,

"pushtarget": "oc¥f://850faabd-ccaf-4293-9452-
f4fcab2e2c39/power/switch",

"sourcert'": ["oic.r.pushpayload]

+
+

Figure 21 — Creating a Push Proxy Resource

When a notification is triggered due to a change in the set of Resources identified by the Notification
Selector, an UPDATE request is sent to the target Resource, and the Push Proxy enters the "wait
for response"” state. When a non-error response is received, the Push Proxy returns to the "wait for
update"” state.

11.3.3.3.4 Push Proxy Life Cycle
Figure 22 shows a life cycle example of a Push Proxy

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 97

Configuring Client | ‘ Collection | ‘ Embedded Client | Target Resource

. . . [——
i Push Proxy Creation I

Cient creates the Source
Resource and Push Proxy
using cic.if.create

1 create

o

e
| | Resource created in collection H
' 2 created Source Resource
i 3 created | | | | Push Praxy |
E‘ 4 created E E E E
Client may interact with the . . . !)
Push Proxy Properties ! ! ! ! |
T i i i | i
| 5 RETRIEVE /sourceResourceURIrt=pic 1. pushproxy | | i
i 6 Content | i i |
e e eea e e \
1 _ UPDATE /sourceResourceURI?rt=oit.r.pushproxy ! !
1+ payload ' ' | - '
:‘ 8 Changed E E E !
i i i T 1 i

{ Some State Change at the Source Resource |=

9 some event

10

[l
‘ Push Proxy knows of Source Resource State Change B'

_ 11 trigger UPDATE

| Transition from WFL to WFR Iﬁ

Embedded Client sends UPDATE
to the target Resource
7

E 12 LPDATE ftargetResourceUR!
i payload

14 Response received o

Transition from WFR to WFLU Iﬁ

T
|
|
|
|
|
'
|
|
|
|
|
|
'
|
T
|
|
|
|
'
|
|
|
|
|
|
'
|
|
d
|
|
1
|
|

i
|
|
|
|
|

R | of the Push Proxy :-
T

15 DELETE /sourceresourcelJRI

16 Delete Resource and remaove Link

17 Delete

|
|
|
|
|
|
|
| >
|
|
|
|
|
|
!

1 18 Deleted

Configuring Client | ‘ Collection | ‘ Embedded Client | ‘ Target Resource | ‘ Saurce Resource Push Prawy

Figure 22 — Push Proxy Life Cycle Example

11.3.3.3.5 Security Considerations

— All requirements with regard to the behaviour of a Push Proxy as defined in the OCF Security
Specification shall be met.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 98

11.3.3.3.6

Push Configuration and Notification Selector Resource Types

The Push Configuration and Notification Selector Resource Types are as defined in Table 32.

Table 32 — Optional Push Notification Core Resources for Server Configuration

Resource Resource Interfaces Description Related
Type Title Type ID Functional
(“rt” value) Interaction
“/exam Notification “oic.r.notific | “oic.if.rw”, The Resource through which the Server is Notifications
p_Ie/n_oti Selector ationselecto | »yic if. pas confi_gur_ed with a selector for push
fication rr eline” notifications.
sele”ctor The Properties exposed by the Resource
URI are listed in Table 33.
“/exam Push “oic.r.pushc | “oic.if.ll", A specialization of a Collection that Notifications
ple/pus | Configuratio onfiguration | «yic if.crea | cOntains only instances of
hconfig n " te” "oic.r.notificationselector” with composed
uration . Push Proxy.
URI oic.if.bas
eline”

Table 33 defines the details for the “oic.r.notificationselector” Resource Type.
Table 33 — "oic.r.notificationselector” Resource Type definition"

Unit Access

mode

Value
rule

Property title Property

name

Value type

Mandatory Description

Pushed Resource | phref string RW no URI of a Resource to be

URI pushed

Pushed Resource | prt array array of RW no Resource type(s) of

Type strings Resource(s) to be pushed

Pushed Interface pif array array of RW no OCF Interface(s) of
strings Resource(s) to be pushed

The Push Configuration (“oic.r.pushconfiguration”) Resource Type defines no Properties additional
to those defined for all instances of a Collection in Table 9. However, the Push Configuration does
impose restrictions of the values that shall be populated in the “rt” and “rts” Properties. These are
described in Table 34 below.

Table 34 —"oic.r.pushconfiguration” Resource Type definition"

Property Property Value Value rule Unit Access Mandatory Description
title name type mode

Links links Array | See Table 10 RW yes See

Table 10
Resource | rt array | [“oic.r.pushconfiguration”] R yes See
Type Table 4
Resource | rts array | [“oic.r.notificationselector”,"oic.r.pushproxy"] R yes See
Types Table 12

11.3.3.3.7 Push Configuration Collection Manipulation

Instances of a notification selector with an optionally composed Push Proxy may be created using
the "oic.if.create" OCF Interface defined in 7.6.3.9.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 99

A Server may expose an instance of "oic.r.pushconfiguration"” with a pre-configured notification
selector and composed Push Proxy if the target is known via other means; in this case a Client
may be able to update the Push Proxy target via the "oic.if.rw" OCF Interface exposed by the
composed Resource.

11.3.3.3.8 Notification Selector Population

The notification selector Resource is an object that contains Properties that may be applied as a
selection filter to the set of possible Resources to be pushed. If the Resource is an empty object
(i.e. "{}") then nothing shall be pushed. As such, a selector does not necessarily correspond to a
single Resource on the origin Server, it may resolve to multiple Resources, and in the absence of
a selector, resolution results in no Resources.

The Properties within the notification selector align with the set of Link Parameters that may exist
for a Resource, thus matching semantically the actions of a query parameter.

Figure 23 shows an example notification selector that limits the Resources to be pushed to those
that have the Resource Type that is listed. The result of the use of this selector is that all Resources
on the origin Server, with an "rt" of "oic.r.sensor.carbonmonoxide", that are marked as "pushable”,
may have push notifications generated to the configured target Server whenever there is a state
change in those Resources.

| {"prt":["oic.r.sensor.carbonmonoxide"]} |

Figure 23 — notification selector example for the given "prt"

Figure 24 shows an example notification selector that limits the Resources to be pushed to the
Resource at the Resource URI that is listed. The result of the use of this selector is that the
Resource on the origin Server identified with an "href" of "/myDevice/mySelectedResource", if it is
marked as "pushable", may have push notifications generated to the configured target Server
whenever there is a state change in that Resource.

| {"phref":"/myDevice/mySelectedResource"} |

Figure 24 — notification selector for the given "phref"

11.3.3.3.9 Notification Selector Operational Considerations

11.3.3.3.9.1 No Resources Match the Selector

If no Resources match the provisioned notification selector, then the set of Resources to be pushed
is effectively an empty set and no notifications shall be generated by the Server.

If a Resource that was selected via application of the notification selector is deleted, leaving the
set of Resources to be pushed as an empty set, no notifications are generated by the Server.

11.3.3.3.9.2 Push Proxy Population Considerations
Associated with each Resource linked from the Push Configuration there shall be a composed Push
Proxy, and the following requirements apply to the Push Proxy Resource in such cases.

For each Push Proxy, the "pushtarget" Property is populated with the target URI for the push. The
target provided by the Push Proxy shall not be a multicast address. If a Client attempts to configure
such an address the Server shall reject the request with a response code indicating bad request.

For each Push Proxy, if a Client attempts to configure the "sourcert" Property to any value other
than "oic.r.pushpayload”, then the Server shall reject the request with a response code indicating
bad request.

Figure 25 provides an example of a notification selector Resource composed with a Push Proxy
that results the sending of notifications to the target identified by the "pushtarget” Property.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 100

“rt": ["oic.r.notificationselector”,"oic.r.pushproxy"],
"phref";"/myDevice/mySelectedResource",
"pushtarget": "ocf://myTarget/myTargetURI",
"sourcert": "oic.r.pushpayload”,

"state": "waitingforprovisioning"

Figure 25 — Example composed notificationselector and pushproxy

11.3.3.4 Target Server Configuration

All push notifications contain a payload of type "oic.r.pushpayload" (see clause 11.3.3.4.2). Within
the payload shall be the complete representation (i.e. all Properties including Common Properties)
of the Resource at the origin Server which experienced the state change that generated the
notification. Should the target Server have limitations with respect to the Resource Types that can
be received as part of an "oic.r.pushpayload"” representation that the Server may optionally be
explicitly configured to define which Resource Types it is capable of receiving. This is realized by
exposing an instance of "oic.r.pushreceiver" which is an object array, each object containing the
URI to which information may be pushed and an instance of the “rts” Property (see 7.8.2.8) listing
the Resource Types that can be received within a pushed payload representation. If the “rts”
Property is an empty array then there is no restriction in the Resource Types than can be received
in an "oic.r.pushpayload" representation. A target Server shall expose an instance of
"oic.r.pushreceiver" Resource.

The Push Receiver Resource Type is as defined in Table 35.

Table 35 — Optional Push Receiver Core Resources for Target Server Configuration

Exampl Resource Resource Interfaces Description Related

e URI Type Title Type ID Functional
(“rt” value) Interaction

“/exam Push “oic.r.pushr | “oic.if.rw”, The Resource through which a Device can | Notifications

ple/pus Receiver eceiver” "oic.if.bas be configured as a target for push

hreceiv notifications.

eline”

erurl” The Properties exposed by the Resource

are listed in Table 36.

Table 36 defines the details for the “oic.r.pushreceiver” Resource Type.

Table 36 —"oic.r.pushreceiver” Resource Type definition"

Property title Property Value Value Unit Access Mandatory Description
name type rule mode
Push Receivers receivers array of RW yes Resource set that can be
object received by the push target

Each object within the "receivers" array is made up of two Properties, these are defined in Table
37.

Table 37 — "receivers" object definition

Property title Property Value Value Unit Access Mandatory Description
name type rule mode

Receiver URI receiveruri | URI RW yes URI at which push
notifications may be
received

Resource Types rts array of RW yes Resource Type values that

string may be received at the

"receiveruri"

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 101

When the configuration Client sends an UPDATE to the target Server it may use a "receiveruri”
query parameter, otherwise the configuration Client should provide the whole list of the "receivers”
object array which shall replace existing "receivers" Property. When the push target receives an
UPDATE with a "receiveruri" query parameter, it shall only update receiver object which matches
the "receiveruri" query parameter. If there is no receiver object which matches the "receiveruri"
gquery parameter, a new receiver object shall be created.

When the configuration Client sends a DELETE to the target Server it may use a "receiveruri* query
parameter, otherwise the configuration Client shall remove whole receiver object array. When the
push target receives a DELETE with a "receiveruri" query parameter, it shall only remove the
receiver object which matches the "receiveruri" query parameter.

An example of an instance of "oic.r.pushreceiver" is provided in Figure 26.

"receivers"; [
{"receiveruri": "/mylocaltargeturiforthermostats”,

"rts": ["oic.r.temperature”,"oic.r.humidity"]
}1
{"receiveruri": "/mylocaltargeturifordontcare”,
"rts": []
}
]

Figure 26 — example push receiver configuration

11.3.3.4.1 Target Server Behaviour

If all "rt" values in the pushpayload are part of the configured "rts" Property against the target URI,
or if the "rts" Property is empty, then the push target shall handle the operation as an UPDATE
against the target URI with the caveat that the entirety of the received pushpayload is handled as
a writeable entity.

If a push target receives an UPDATE operation containing a pushpayload that it is not configured
to handle (i.e. an “rt” in the pushpayload is not part of the configured “rts” against the target URI)
then the push target shall respond with a response of "Forbidden".

If a push target receives an UPDATE operation containing a pushpayload that it is configured to
handle (i.e. all “rt” values in the pushpayload are part of the configured “rts” against the target URI)
but it is unable to parse a provided Resource Representation (contents of the “rep” Property) then
the push target shall respond with a response of "Bad Request".

A Server may choose to make the "receiveruri" discoverable or non-discoverable. However, if a
RETRIEVE to the "receiveruri" would return an empty payload (i.e. nothing has been pushed to it)
then the Resource shall be non-discoverable.

11.3.3.4.2 Notification Payload

Anytime there is a change in the state of the Resources that are subject to a push notification as
defined by the application of a specific notification selector, the Server shall send an UPDATE
operation to the target defined in the "pushtarget" Property of the Push Proxy that is composed
with the notification selector. The representation provided in the UPDATE operation shall be an
instance of an "oir.r.pushpayload" Resource. The Push Payload Resource is defined in Table AA;
this is an array of representations where for each representation the Resource also provides
additional meta-information to enable the target Server to understand the contents of the
representation itself (e.g. the Resource Type, the OCF Interface that has been applied). An array
is used as more than one Resource may be providing state information at any one time.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 102

Table 38 — Push Payload Resource

Description

Related
Functional
Interaction

Resource Resource Interfaces
Type Title Type ID
(“rt” value)
“/exam Push “oic.r.pushp | “oic.if.r”,
ple/pus Notification ayload” "0ic.if.bas
hpayloa | Payload eline”
dURI”

The Resource through which pushed
notification information is provided to the
push target

The Resource exposes an array of JSON
objects, the Properties exposed by the
objects are listed in Table 39.

Notifications

Table 39 defines the details for the JSON object that is carried as an array item within the

“oic.r.pushpayload” Resource Type.

Table 39 —"oic.r. pushpayload” array entry definition

Property Property Value type Value rule Access Mandatory Description
title name mode

Context anchor uri R yes Context URI of

URI the Resource
being pushed

URI href string R no Server URI of the
Resource being
pushed

Resource | rt array R yes Resource Type of

Type the Resource
being pushed

Interface | if array R yes OCF Interface(s)
that are valid for
the Resource
being pushed

Represen | rep object R yes Resource

tation representation

Note that the “href”, if included, is always a relative URI to the root of the source Device (i.e. the

Server that is originating the push request).

The "anchor" Property contains an OCF URI with the authority component set to the <devicelD> of

the Device hosting the source Resource.

An example of an instance of "oic.r.pushpayload" is provided in Figure 27.

[{
"anchor": "ocf://dc70373c-1e8d-4fb3-962e-017eaa863989",
"href": "/mysensor”,
"rt": ["oic.r.sensor.carbonmonoxide"],
"if": ["oic.if.s"],
"rep": {
"value": true
}
1

Figure 27 — Example pushpayload content

11.3.3.4.3 Observability of Notification Selectors

Notification selector does not support Observation because all

dynamically created and deleted ones.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

notification selectors are

103

11.3.3.5 Common requirement for origin Server and target Server

Origin Server and target Server shall expose "oic.d.push" as a value of "rt" of "/oic/d" to show that
they can push or receive push notifications.

11.4 Introspection
11.4.10Overview
Introspection is a mechanism to announce the capabilities of Resources hosted on the Device.

The intended usage of the Introspection Device Data (IDD) is to enable dynamic Clients e.g. Clients
that can use the IDD) to generate dynamically a Ul or dynamically create translations of the hosted
Resources to another eco-system. Another use of Introspection is that the information can be used
to generate Client code. The IDD is designed to augment the existing data already on the wire.
This means that existing mechanisms need to be used to get a full overview of what is implemented
in the Device. For example, the IDD does not convey information about Observability, since that is
already conveyed with the "p" Property on the Links in "/oic/res" (see 7.8.2.5.3).

The IDD is recommended to be conveyed as static data. Meaning that the data does not change
during the uptime of a Device. However, when the IDD is not static, the Introspection Resource
shall be Observable and the url Property Value of "oic.wk.introspection” Resource shall change to
indicate that the IDD is changed.

The IDD describes the Resources that make up the Device. For the complete list of included
Resources see Table 22. The IDD is described as a OpenAPI 2.0 in JSON format file. The text in
the following bulleted list contains OpenAPI 2.0 terms, such as paths, methods etc. The OpenAPI
2.0 file shall contain the description of the Resources:

— The IDD will use the HTTP syntax, e.g., define the CRUDN operation as HTTP methods and
use the HTTP status codes.

— The IDD does not have to define all the status codes that indicate an error situation.

— The IDD does not have to define a schema when the status code indicates that there is no
payload (see HTTP status code 204 as an example).

— The paths (URLSs) of the Resources in the IDD shall be without the OCF Endpoint description,
e.g. it shall not be a fully-qualified URL but only the relative path from the OCF Endpoint, aka
the "href". The relative path may include a query parameter (e.g. "?if=oic.if.ll"), in such cases
the text following (and including) the "?" delimiter shall be removed before equating to the "href"
that is conveyed by "/oic/res".

— The following Resources shall be excluded in the IDD:

— Resource with Resource Type: "oic.wk.res" unless 3rd party defined or optional Properties
are implemented.

— Resource with Resource Type: "oic.wk.introspection”.

— Resources explicitly identified within other specifications working in conjunction with this
document (e.g. Resources that handle Wi-Fi Easy Setup, see [2]).

— The following Resources shall be included in the IDD when optional or 3™ party defined
Properties are implemented:

— Resources with type: "oic.wk.p" and "oic.wk.d" (e.g. discovery related Resources).
— Security Virtual Resources from ISO/IEC 30118-2.

— When the Device does not expose instances of Vertical Resource Types, and does not have
any 3" party defined Resources (see 7.8.4.4), and does not need to include Resources in the
IDD due to other clauses in this clause, then the IDD shall be an empty OpenAPI 2.0 file. An
example of an empty OpenAPI 2.0 file can be found in found in Annex B.2.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 104

— All other Resources that are individually addressable by a Client (i.e. the "href" can be resolved
and at least one operation is supported with a success path response) shall be listed in the IDD.

— Per Resource the IDD shall include:

— All implemented methods

For an OCF defined Resource Type, only the methods that are listed in the OpenAPI 2.0
definition are allowed to exist in the IDD. For an OCF defined Resource Type, methods
not listed in the OpenAPI 2.0 definition shall not exist in the IDD. The supported methods
contained in the IDD shall comply with the listed OCF Interfaces. For example, if the
POST method is listed in the IDD, then an OCF Interface that allows UPDATE will be
listed in the IDD.

— Per supported method:

Implemented query parameters per method.
— This includes the supported OCF Interfaces ("if") as enum values.
Schemas of the payload for the request and response bodies of the method.

Where the schema provides the representation of a batch request or response ("oic.if.b")
the schema shall contain the representations for all Resource Types that may be
included within the batch representation. The representations shall be provided within
the IDD itself.

The schema data shall be conveyed by the OpenAPI 2.0 schema.
The OpenAPI 2.0 schema object shall comply with:

— The schemas shall be fully resolved, e.g. no references shall exist outside the
OpenAPI 2.0 file.

— The schemas shall list which OCF Interfaces are supported on the method.
— The schemas shall list if a Property is optional or required.

— The schemas shall include all Property validation keywords. Where an enum is
defined the enum shall contain the values supported by the Device. When vendor
defined extensions exist to the enum (defined in accordance to 7.8.4.4) these shall
be included in the enum.

— The schemas shall indicate if a Property is read only or read-write.
— By means of the readOnly schema tag belonging to the Property.
— Default value of readOnly is false as defined by OpenAPI 2.0.

— The default value of the "rt" Property shall be used to indicate the supported
Resource Types.

— oneOf and anyOf constructs are allowed to be used as part of a OpenAPI 2.0 schema
object. The OpenAPI 2.0 schema with oneOf and anyOf constructs can be found in
Annex B.1.

— For Atomic Measurements (see clause 7.8.4), the following apply:

— The "rts" Property Value in the IDD shall include only the Resource Types the instance
contains and not the theoretical maximal set allowed by the schema definition.

— The Resources that are part of an Atomic Measurement, excluding the Atomic Measurement
Resource itself, shall not be added to their own individual path in the IDD, as they are not
individually addressable; however, the schemas for the composed Resource Types shall be
provided in the IDD as part of the batch response definition along with the "href" for the
Resource.

Dynamic Resources (e.g. Resources that can be created on a request by a Client) shall have a
URL definition which contains a URL identifier (e.g. using the {} syntax). A URL with {} identifies

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 105

that the Resource definition applies to the whole group of Resources that may be created. The
actual path may contain the Collection node that links to the Resource.

Example of a URL with identifiers:

/SceneListResURI/{SceneCol lectionResURI}/{SceneMemberResURI}:

When different Resource Types are allowed to be created in a Collection, then the different
schemas for the CREATE method shall define all possible Resource Types that may be created.
The schema construct oneOf allows the definition of a schema with selectable Resources. The
oneOf construct allows the integration of all schemas and that only one existing sub schema shall
be used to indicate the definition of the Resource that may be created.

Example usage of oneOf JSON schema construct is shown in Figure 28:

"oneOf"": [
{ <<subschema 1 definition>> },
{ << sub schema 2 definition >> }

Figure 28 — Example usage of oneOf JSON schema

A Client using the IDD of a Device should check the version of the supported IDD of the Device.
The OpenAPIl 2.0 version is indicated in each file with the tag "swagger". Example of the 2.0
supported version of the tag is: "swagger": "2.0". Later versions of this document may reference
newer versions of the OpenAPI specification, for example 3.0.

A Device shall support one Resource with a Resource Type of "oic.wk.introspection” as defined in
Table 40. The Resource with a Resource Type of "oic.wk.introspection” shall be included in the
Resource "/oic/res".

An empty IDD file, e.g. no URLs are exposed, shall still have the mandatory OpenAPI 2.0 fields.
See OpenAPI specification. An example of an empty OpenAPI 2.0 file can be found in found in
Annex B.2.

Table 40 — Introspection Resource

announces the URL of
the Introspection file.

Pre-defined Resource Resource Type ID OCF Description Related
URI Type Title ("rt" value) Interfaces Functional
Interaction

none Introspection "oic.wk.introspection" | "oic.if.r" The Resource that Introspection

Table 41 defines "oic.wk.introspection" Resource Type.

Table 41 — "oic.wk.introspection” Resource Type definition

Property Property Value Value Unit Access Mandatory Description
title name type rule mode

urlinfo "urlinfo” "array” N/A N/A R Yes array of objects

url "url" "string" "uri" N/A Yes URL to the hosted payload

protocol "protocol” "string" "enum" N/A Yes Protocol definition to retrieve
the Introspection Device
Data from the url.

content- "content- "string" "enum" N/A R No content type of the url.

type type”

Copyright Open Connectivity Foundation, Inc. © 2016-2022.

All rights Reserved

106

version "version" "integer" | "enum" N/A R No Version of the Introspection
protocol, indicates which
rules are applied on the
Introspection Device Data
regarding the content of the
OpenAPI 2.0 file.

Current value is 1.

If the IDD is hosted on the local Device, then an additional "url" specified as an OCF URI should
be listed.

Example payload with an entry using a scheme of "coap" and an entry with an OCF URI:

{
"rt'": [“oic.wk.introspection'],
“urllnfo: [
{
“‘content-type': "application/cbor",
“protocol™: *coap",
"url™: "coap://[fe80::1]:1234/IntrospectionExampleURI""
3
“‘content-type': "application/cbor",
"protocol™: "coap",
"url™: "ocf://e61lc3e6b-9c54-4b81-8ce5-19039c1d04d9/ IntrospectionExampleURI™
}
1
3

11.4.2Usage of Introspection

The Introspection Device Data is retrieved in the following steps and as depicted in Figure 29:

— Check if the Introspection Resource is supported and retrieve the URL of the Resource.

— Retrieve the contents of the Introspection Resource

— Download the Introspection Device Data from the URL specified the Introspection Resource.
— Usage of the Introspection Device Data by the Client

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 107

Client

Server

check support introspection

checking if oic.wk.introspection is supported b]

get [foic/res?r="oic.wk.introspection”]

retrieve the introspection resource B]
i

url of the introspection device data is now known to the client b]

>

:{ links="/myintrospectionresource" :

usage of the introspection resource :
' retrieve [/fmyintrospectionresource] {} >

< Imyintraspectionresource data I

' retrieve [/myintrospectiondataurl] {} }:

' introspection device data
. p

usage of the introspection device data

use the introspection data:
1) construct payloads for methods
2) invoke those methods.

Figure 29 — Interactions to check Introspection support and download the Introspection

Device Data.

11.5 Semantic Tags
11.5.1Introduction

Semantic Tags are meta-information associated with a specific Resource instance that are
represented as both Link Parameters and Resource Properties that provide a mechanism whereby
the Resource be annotated with additional contextual metadata that helps describe the Resource.

When a Semantic Tag is defined for a Resource, it shall be present as a Link Parameter in all Links
that are present that target the Resource, including Links in "/oic/res" if the Resource is a
Discoverable Resource. The Semantic Tag is further treated as a Common Property associated
with the Resource and so shall be returned as part of the "baseline" response for the Resource if

a Semantic Tag has been populated.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

11.5.2Semantic Tag definitions
11.5.2.1 Relative and descriptive position Semantic Tags
11.5.2.1.1 Introduction

Consider where there may be multiple instances of the same Resource Type exposed by a Device;
or a case where there may be potentially ambiguity with regard to the physical attribute that a
Resource is representing. In such a case the ability to annotate the Links to the Resource with
information pertaining to the relative position of the Resource within the Physical Device becomes
useful.

11.5.2.1.2 "tag-pos-desc" or position description Semantic Tag

The "tag-pos-desc” Semantic Tag as defined in Table 42 describes the position of the Resource as
a descriptive position. If the tag is not exposed it conveys the same meaning as if the tag is exposed
with a value of "unknown". The value for the "tag-pos-desc" Semantic Tag if exposed, shall be a
string containing a value from the enumeration detailed in Annex C. The population of the Semantic
Tag is defined by the Device vendor and shall not be mutable by a Client.

Table 42 — "tag-pos-desc” Semantic Tag definition

Link Parameter Type Contents Value example
name
"tag-pos-desc" enum See Annex C "tag-pos-desc": "topleft"

11.5.2.1.3 "tag-pos-rel" or relative position Semantic Tag

The "tag-pos-rel" Semantic Tag describes the position of the Resource as a relative position in 3D
space against a known point defined by the Device vendor. The known point is defined using [x,y,z]
form as [0.0,0.0,0.0]. The position itself is then represented by the x-, y-, and z- plane relative
position from this known point using a bounded box of size +1.0/-1.0 in each plane.

Figure 30 illustrates the definition of "tag-pos-rel".

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 109

y-Plane

[-1.0,1.0,-1.0]
.0,1.0,-1.0]

[-1.0,1.0,1.0]

> x-Plane

[1.0,-1.0,-1.0]

[1.0,-1.0,1.0]

z-Plane

Figure 30 — "tag-pos-rel” definition

The "tag-pos-rel" Semantic Tag value is defined by the Device vendor and shall not be mutable by
a Client. This is detailed in Table 43.

Table 43 — "tag-pos-rel" Semantic Tag definition

Link Parameter Type Contents Value example
name
"tag-pos-rel” array Three element array of numbers defining "tag-pos-rel": [0.5,0.5,0.5]

the position relative to a known [0,0,0]
point within the context of an abstract box
[-1,-1,-1],[1,1,1].

11.5.2.2 Functional behaviour Semantic Tags
11.5.2.2.1 Introduction

Consider, for example, the case of a Device that supports two target temperatures simultaneously
for different modes of operation, for example a temperature for heating and a separate temperature
for cooling.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 110

There is then an ambiguity with respect to the target mode of the specific temperature Resource;
it isn't explicit which instance of temperature is associated with which Device function. In such a
case the ability to annotate the Links to the Resource with information pertaining to the function of
the Resource within the Physical Device becomes useful.

11.5.2.2.2 "tag-func-desc" or function description Semantic Tag

The "tag-func-desc" Semantic Tag describes the function of the Resource, if exposed it shall be
populated with a value from the currently supported set of standardized enumeration values defined
by the Device ecosystem specifications. If the tag is not exposed it conveys the same meaning as
if the tag is exposed with a value of "unknown". The value for the "tag-func-desc" Semantic Tag, if
exposed, is defined by the Device vendor and shall not be mutable by a Client.

This "tag-func-desc" Semantic Tag is detailed in Table 44.

Table 44 — "tag-func-desc" Semantic Tag definition

Link Parameter Type Contents Value example
name
"tag-func-rel" enum Defined by Device ecosystem "tag-func-desc": "cool"

11.5.2.3 Location Semantic Tags
11.5.2.3.1 Introduction

Consider a Bridge, Resource Directory or other similar concept whereby the Link to the Device
Resource ("oic.wk.d") that is exposed may reference or relate to a physically separate Device. In
such a case the ability to annotate the Link to the Device Resource with location information
becomes useful. Additionally, in a deployment of multiple similar or identical Devices, the ability to
annotate the Device with where it is deployed assists in disambiguation.

11.5.2.3.2 "tag-locn" or location description Semantic Tag

The “tag-locn” Semantic Tag may be exposed as a Link Parameter for the Device Resource, it
describes the physical location of the target Device, it shall not be exposed as a Link Parameter
for any other Resource Type. If the tag is not exposed it conveys the same meaning as if the tag
is exposed with a value of “unknown”. The initial value for the “tag-locn” Semantic Tag if exposed
shall be “unknown”. This Link Parameter shall not contain any 3" party defined values.

The "tag-locn" shall be exposed as string containing a value from the enumeration ("locn-
descriptions") defined in Annex C. The tag is detailed in Table 45.

An instance of "tag-locn" may be updated by a Client by modifying the reflected instance of this
value that is present in the Configuration Resource, see [1].

Table 45 — "tag-locn" Semantic Tag definition

Semantic Tag Name Type Contents Value example

tag-locn Enumeration | See Annex C “tag-locn”: “familyroom”

12 Messaging

12.1 Introduction

This clause specifies the protocol messaging mapping to the CRUDN messaging operations (clause
7.11) for each messaging protocol specified (e.g., CoAP.). Mapping to additional protocols is
expected in later version of this document. All the Property information from the Resource model
shall be carried within the message payload. This payload shall be generated in the Resource
model layer and shall be encapsulated in the data connectivity layer. The message header shall

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 111

only be used to describe the message payload (e.g., verb, mime-type, message payload format),
in addition to the mandatory header fields defined in a messaging protocol (e.g., CoAP)
specification. If the message header does not support this, then this information shall also be
carried in the message payload. Resource model information shall not be included in the message
header structure unless the message header field is mandatory in the messaging protocol
specification.

When a Resource is specified with a RESTful description language like OpenAPI 2.0 then the HTTP
syntax definitions are used in the description (e.g., HTTP syntax for the CRUDN operations, status
codes, etc.). The HTTP syntax will be mapped to the actual used web transfer protocol (e.g., CoAP).

The communication is largely based on UDP and UDP has defined the Maximum Transmission Unit
(MTU). All UDP payload size communications shall not exceed the MTU size as per by the
IETF RFC 8085 clause 3.2. This is to avoid being dependent on package reassembly by the
operating systems.

12.2 Mapping of CRUDN to CoAP
12.2.10verview

A Device implementing CoAP shall conform to IETF RFC 7252 for the methods specified in clause
12.2.3. A Device implementing CoAP shall conform to IETF RFC 7641 to implement the CoAP
Observe option. Support for CoAP block transfer when the payload is larger than the MTU is defined
in 12.2.8.

12.2.2URIs

An OCF: URI is mapped to a coap: URI by replacing the scheme name "ocf" with "coap" if unsecure
or "coaps" if secure before sending over the network by the requestor. Similarly, on the receiver
side, the scheme name is replaced with "ocf".

Any query string that is present within the URI is encoded as one or more URI-Query Options as
defined in IETF RFC 7252 clause 6.4.

12.2.3CoAP method with request and response
12.2.3.1

Every request has a CoAP method that realizes the request. The primary methods and their
meanings are shown in Table 46, which provides the mapping of GET/POST/DELETE methods to
CREATE, RETRIEVE, UPDATE, and DELETE operations. The associated text provides the generic
behaviours when using these methods, however Resource OCF Interfaces may modify these
generic semantics. The HTTP codes in the RESTful descriptions will be translated as described in
IETF RFC 8075 clause 7 Response Code Mapping. CoAP methods not listed in Table 46 are not
supported.

Overview

Table 46 — CoAP request and response

Method for CRUDN (mandatory) Request data (mandatory) Response data

GET for RETRIEVE - Method code: GET (0.01).

- Request URI: an existing URI for
the Resource to be retrieved

- Response code: success (2.xx) or
error (4.xx or 5.xx).

- Payload: Resource representation
of the target Resource (when
successful).

POST for CREATE

- Method code: POST (0.02).

- Request URI: an existing URI for
the Resource responsible for the
creation.

- Payload: Resource presentation of
the Resource to be created.

- Response code: success (2.xx) or
error (4.xx or 5.xx).

- Payload: the URI of the newly
created Resource (when successful).

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 112

POST for UPDATE - Method code: POST (0.02). - Response Code: success (2.xx) or

- Request URI: an existing URI for error (4.xx or 5.xx).
the Resource to be updated.

- Payload: representation of the
Resource to be updated.

DELETE for DELETE - Method code: DELETE (0.04). - Response code: success (2.xx) or

- Request URI: an existing URI for error (4.xx or 5.xx).
the Resource to be deleted.

12.2.3.2 CREATE with POST

POST with the "oic.if.create” OCF Interface query parameter (i.e., "POST ?if=oic.if.create") shall
be used only in situations where the request URI is valid, that is it is the URI of an existing Resource
on the Server that is processing the request. If no such Resource is present, the Server shall
respond with an error response code of 4.xx. The use of POST for CREATE shall use an existing
request URI which identifies the Resource on the Server responsible for creation. The URI of the
created Resource is determined by the Server and provided to the Client in the response.

A Client shall include the representation of the new Resource in the request payload. The new
resource representation in the payload shall have all the necessary Properties to create a valid
Resource instance, i.e. the created Resource should be able to properly respond to the valid
Request with mandatory OCF Interface (e.g., "GET with ?if=oic.if.baseline").

Upon receiving the POST request, the Server shall either:

— Create the new Resource with a new URI, respond with the new URI for the newly created
Resource and a success response code (2.xx); or

— respond with an error response code (4.xx or 5.xx).

12.2.3.3 RETRIEVE with GET

GET shall be used for the RETRIEVE operation. The GET method retrieves the representation of

the target Resource identified by the request URI.

Upon receiving the GET request, the Server shall either:

— Send back the response with the representation of the target Resource with a success response
code (2.xx); or

— respond with an error response code (4.xx or 5.xx) or ignore it (e.g. non-applicable multicast
GET).

GET is a safe method and is idempotent.

12.2.3.4 UPDATE with POST

POST shall be used only in situations where the request URI is valid, that is it is the URI of an
existing Resource on the Server that is processing the request. If no such Resource is present, the
Server shall respond with an error response code of 4.xx. A client shall use POST to UPDATE
Property values of an existing Resource.

Upon receiving the request, the Server shall either:

— Apply the request to the Resource identified by the request URI in accordance with the applied
OCF Interface (i.e. POST for non-existent Properties is ignored) and send back a response with
a success response code (2.xx); or

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 113

— respond with an error response code (4.xx or 5.xx). Note that if the representation in the payload
is incompatible with the target Resource for POST using the applied OCF Interface (i.e. the
overwrite semantic cannot be honoured because of read-only Property in the payload), then the
error response code 4.xx shall be returned.

12.2.3.5 DELETE with DELETE

DELETE shall be used for DELETE operation. The DELETE method requests that the Resource
identified by the request URI be deleted.

Upon receiving the DELETE request, the Server shall either:

— Delete the target Resource and send back a response with a success response code (2.xx); or
— respond with an error response code (4.xx or 5.xx).

DELETE is unsafe but idempotent (unless URIs are recycled for new instances).
12.2.4Content-Format negotiation

The Framework mandates support of CBOR, however it allows for negotiation of the payload body
if more than one Content-Format (e.g. CBOR and JSON) is supported by an implementation. In this
case the Accept Option defined in clause 5.10.4 of IETF RFC 7252 shall be used to indicate which
Content—Format (e.g. JSON) is requested by the Client.

The Content-Formats supported are shown in Table 47.

Table 47 — OCF Content-Formats

Media Type ID

"application/vnd.ocf+cbor" 10000

Clients shall include a Content-Format Option in every message that contains a payload. Servers
shall include a Content-Format Option for all success (2.xx) responses with a payload body. Per
IETF RFC 7252 clause 5.5.1, Servers shall include a Content-Format Option for all error (4.xx or
5.xx) responses with a payload body unless they include a Diagnostic Payload; error responses
with a Diagnostic Payload do not include a Content-Format Option. The Content-Format Option
shall use the ID column numeric value from Table 47. An OCF vertical may mandate a specific
Content-Format Option.

Clients shall also include an Accept Option in every request message. The Accept Option shall
indicate the required Content-Format as defined in Table 47 for response messages. The Server
shall return the required Content-Format if available. If the required Content-Format cannot be
returned, then the Server shall respond with an appropriate error message.

12.2.50CF-Content-Format-Version information

Servers and Clients shall include the OCF-Content-Format-Version Option in both request and
response messages with a payload. Clients shall include the OCF-Accept-Content-Format-Version
Option in request messages. The OCF-Content-Format-Version Option and OCF-Accept-Content-
Format-Version Option are specified as Option Numbers in the CoAP header as shown in Table 48.

Table 48 — OCF-Content-Format-Version and OCF-Accept-Content-Format-Version Option

Numbers
CoAP Option Number Name Format Length
(bytes)
2049 OCF-Accept-Content- uint 2
Format-Version

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 114

2053 OCF-Content-Format- uint 2
Version

The value of both the OCF-Accept-Content-Format-Version Option and the OCF-Content-Format-
Version Option is a two-byte unsigned integer that is used to define the major, minor and sub
versions. The major and minor versions are represented by 5 bits and the sub version is
represented by 6 bits as shown in Table 49.

Table 49 — OCF-Accept-Content-Format-Version and OCF-Content-Format-Version
Representation

Major Version Minor Version Sub Version

Bit 15|14‘13‘12‘11 10|9 |8 |7 ‘6 5‘4|3‘2|1‘0

Table 50 illustrates several examples:

Table 50 — Examples of OCF-Content-Format-Version and OCF-Accept-Content-Format-
Version Representation

OCF version Binary representation Integer value
"1.0.0" "0000 1000 0000 0000" 2048
"1.1.0" "0000 1000 0100 0000" 2112

The OCF-Accept-Content-Format-Version Option and OCF-Content-Format-Version Option for this
version of the document shall be "1.0.0" (i.e. "Ob0000 1000 0000 0000").

12.2.6 Content-Format policy

All Devices shall support the current Content-Format Option, "application/vnd.ocf+cbor", and OCF-
Content-Format-Version "1.0.0".

For backward compatibility with previous OCF-Content-Format-Version Options:

— All Client Devices shall support OCF-Content-Format-Version Option set to "1.0.0" and higher.

— All Client Devices shall support OCF-Accept-Content-Format-Version Option set to "1.0.0" and
higher.

— A Client shall send a discovery request message with its Accept Option set to
"application/vnd.ocf+cbor", and its OCF-Accept-Content-Format-Version Option matching its
highest supported version.

— A Server shall respond to a Client's discovery request that is higher than its OCF-Content-
Format-Version by responding with its Content-Format Option set to "application/vnd.ocf+cbor",
and OCF-Content-Format-Version matching its highest supported version. The response
representation shall be encoded with the OCF-Content-Format-Version matching the Server's
highest supported version.

— A Server may support previous Content-Formats and OCF-Content-Format-Versions to support
backward compatibility with previous versions.

— For a Server that supports multiple OCF-Content-Format-Version Options, the Server should
attempt to respond with an OCF-Content-Format-Version that matches the OCF-Accept-
Content-Format-Version of the request.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 115

To maintain compatibility between Devices implemented to different versions of this document,
Devices should follow the policy as described in Figure 31.

The OCF Clients in Figure 31 support sending Content-Format Option set to
"application/vnd.ocf+cbor", Accept Option set to "application/vnd.ocf+cbor", OCF-Content-Format-
Version Option set to "1.0.0", and OCF-Accept-Content-Format-Version Option set to "1.0.0"
(representing OCF 1.0 and later Clients). The OCF Servers in Figure 31 support sending Content-
Format Option set to "application/vnd.ocf+cbor” and OCF-Content-Format-Version Option set to
"1.0.0" (representing OCF 1.0 and later Servers).

OCF Client with newer
OCF-Content-Format-Version OCF Server
(supports "1.0.0" for compatibility) (only supports "1.0.0")

: OCF Server behavior :

GET /oic/res with Accept="application/wnd.ocf+cbor" and OCF-Accept-Content-Format-Version="7.5.2"

.
>

Joic/res response with Content-Format="application/wnd.ocf+cbor" and OCF-Content-Format-Version="1.0.0"

T
I
I
I
I
|
1
I
I
[
I~
I

Figure 31 — Content-Format Policy for backward compatible OCF Clients negotiating lower
OCF Content-Format-Version

12.2.7CRUDN to CoAP response codes

The mapping of CRUDN operations response codes to CoAP response codes are identical to the
response codes defined in IETF RFC 7252.

A Client that receives a CoAP response with a response code of 5.03 that also includes a Max-Age
option, should re-attempt the original request after waiting for a period of at least that provided in
the Max-Age option.

12.2.8CoAP block transfer

Basic CoAP messages work well for the small payloads typical of light-weight, constrained IoT
devices. However, scenarios can be envisioned in which an application needs to transfer larger
payloads.

CoAP block-wise transfer as defined in IETF RFC 7959 shall be used by all Servers which generate
a content payload that would exceed the size of a CoAP datagram as the result of handling any
defined CRUDN operation.

Similarly, CoAP block-wise transfer as defined in IETF RFC 7959 shall be supported by all Clients.
The use of block-wise transfer is applied to both the reception of payloads as well as transmission
of payloads that would exceed the size of a CoAP datagram.

A Client may support both the blockl (as descriptive) and block2 (as control) options as described
by IETF RFC 7959. A Server may support both the blockl (as control) and block2 (as descriptive)
options as described by IETF RFC 7959.

12.2.9Generic requirements for CoOAP multicast

A Client may use CoAP multicast to retrieve a target Resource with a fixed local path from multiple
other Devices. This clause provides generic requirements for this mechanism.

— Devices shall join the All OCF Nodes multicast groups (as defined in [IANA IPv6 Multicast
Address Space Registry]) with scopes 2, 3, and 5 (i.e., ff02::158, ff03::158 and ff05::158) and

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 116

shall listen on the port 5683. For compliance to IETF RFC 7252 a Device may additionally join
the All CoAP Nodes multicast groups.

— Clients intending to discover Resources shall join the multicast groups as defined in the first
bullet.

— Clients shall send multicast requests to the All OCF Nodes multicast group address with scope
2 ("ff02::158") or with scope 5 ("ff05::158") at port "5683". The requested URI shall be the fixed
local path of the target Resource optionally followed by query parameters. For compliance to
IETF RFC 7252 a Client may additionally send to the All CoAP Nodes multicast groups.

— To discover Devices on a low-rate wireless personal area network (LR-WPAN) [see
IETF RFC 7346], Clients should send additional discovery requests (GET request) to the All
OCF Nodes multicast group address with REALM_LOCAL scope 3 ("ff03::158") at port "5683".
The set of replying Devices then can be used to distinguish if the Device is SITE_LOCAL or
REALM_LOCAL to the Client discovering the Devices. Such request shall use the IPv6 hop limit
with a value of 255. If the Client sends discovery requests to All OCF Nodes, then for
compliance to IETF RFC 7252 a Client may additionally send to the All CoAP Nodes multicast
groups with the same REALM_LOCAL scope with the IPv6 hop limit value of 255.

— Clients should send discovery requests (GET request) to the All OCF Nodes multicast group
address with SITE_LOCAL scope 5 ("ff05::158") at port "5683". Such request shall use the IPv6
hop limit with a value of 255. If the Client sends discovery requests to All OCF Nodes, then for
compliance to IETF RFC 7252 a Client may additionally send to the All CoAP Nodes multicast
groups with the same SITE_LOCAL scope with the IPv6 hop limit value of 255.

— The multicast request shall be permitted by matching the request to an ACE which permits
unauthenticated access to the target Resource as described in ISO/IEC 30118-2.

— Handling of multicast requests shall be as described in clause 8 of IETF RFC 7252 and clause
4.1in IETF RFC 6690.

— Devices which receive the request shall respond, subject to query parameter processing
specific to the requested Resource.

— A Device may expose the All OCF Nodes multicast address as part of an OCF Endpoint "eps"
Link Parameter for a Resource, see clause 10. The behaviour of a Device that receives a
CRUDN operation on the exposed multicast address for such a Resource (outside of those
Resources explicitly defined as being for the purposes of discovery, see clause 11.2.3) is not
specified by this document.

12.2.10 Setting timeout on response to a confirmable request

The timeout specified by "oic.wk.res:eps[]:lat", when present, should only be taken into account by
the Client when the Server is in the "ready for normal operation state" [see clause 8.5 in
ISO/IEC 30118-2] and the request made is a confirmable request. The Server should only enable
the state that will cause latency when in "ready for normal operation state" [see clause 8.5 in
ISO/IEC 30118-2]. In all other states the Server should respond with timeouts as identified in
IETF RFC 7252.

12.2.11 Mapping the error response payload

The error response payload as defined in clause 7.10 shall be included as a diagnostic payload as
described in IETF RFC 7252 clause 5.5.2. The diagnostic payload shall be encoded in ASCII.
12.2.12 Handling of non-confirmable requests

IETF RFC 7252 explicitly notes that non-confirmable requests are appropriate in cases where
reliability of the delivery of the request is not an issue. However, all requests that are sent as a
result of a CRUDN operation (see clause 12.2.3) defined in this document should be sent as
confirmable requests, and non-confirmable requests should not be used.

If a Client makes use of a non-confirmable message in a request, , then the Client should realize
the mechanism defined in IETF RFC 7252 clause 4.3 to reduce the possibility of message loss.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 117

Further, a Client that makes use of non-confirmable requests shall not depend on a response being
provided for that request.

12.3 Mapping of CRUDN to CoAP serialization over TCP

12.3.10verview

In environments where TCP is already available, COAP can take advantage of it to provide reliability.
Also in some environments UDP traffic is blocked, so deployments may use TCP. For example,
consider a cloud application acting as a Client and the Server is located at the user’'s home. A
Server which already support CoAP as a messaging protocol could easily support CoAP
serialization over TCP rather than utilizing another messaging protocol. A Device implementing
CoAP Serialization over TCP shall conform to IETF RFC 8323.

12.3.2URIs

When UDP is blocked, Clients are dependent on pre-configured details of the Device to determine
if the Device supports CoAP serialization over TCP. When UDP is not-blocked, a Device which
supports CoAP serialization over TCP shall populate the "eps" Parameter in the "/oic/res" response,
as defined in 10.2, with the URI scheme(s) as defined in clause 8.1 or 8.2 of IETF RFC 8323. For
the "coaps+tcp" URI scheme, as defined in clause 8.2 of IETF RFC 8323, IETF RFC 7301 shall be
used. In addition, the URIs used for CoAP serialization over TCP shall conform to 12.2.2 by
substituting the scheme names with the scheme names defined in clauses 8.1 and 8.2 of
IETF RFC 8323 respectively.

12.3.3CoAP method with request and response

The CoAP methods used for CoAP serialization over TCP shall conform to 12.2.3.

12.3.4Content-Format negotiation
The Content Format negotiation used for CoAP serialization over TCP shall conform to 12.2.4.

12.3.50CF-Content-Format-Version information

The OCF Content Format Version information used for CoAP serialization over TCP shall conform
to 12.2.5.

12.3.6 Content-Format policy

The Content Format policy used for CoAP serialization over TCP shall conform to 12.2.6.

12.3.7CRUDN to CoAP response codes
The CRUDN to CoAP response codes for CoOAP serialization over TCP shall conform to 12.2.7.

12.3.8CoAP block transfer

The CoAP block transfer for CoAP serialization over TCP shall conform to clause 6 of
IETF RFC 8323.

12.3.9Keep alive (connection health)

The Device that initiated the CoAP over TCP connection shall send a Ping message as described
in clause 5.4 in IETF RFC 8323. The Device to which the connection was made may send a Ping
message. The recipient of any Ping message shall send a Pong message as described in clause
5.4 in IETF RFC 8323.

Both sides of an established CoAP over TCP connection may send subsequent Ping (and
corresponding Pong) messages.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 118

12.3.10 CoAP using a proxy

In cases that a request is made to a forwarding proxy, the option proxy-uri (clause 5.10.2 of
IETF RFC 7252) shall be used. The format of the information in the proxy-uri option includes the
OCF Device information. The proxy-uri shall have the format of an OCF URI as described in clause
6.2.2. The authority will have the same value as "oic.wk.d:uuid" of the targeted Device.

12.3.11 Mapping the error response payload

The mapping of the error response payload for COAP serialization over TCP shall conform to clause
12.2.11.

12.3.12 Handling of non-confirmable requests

The requirements defined in clause 12.2.12 with regard to non-confirmable requests do not apply
to CoAP serialization over TCP as TCP itself is inherently reliable.

12.4 Mapping of CRUDN to MQTT

12.4.1 Overview

MQTT contains the following entities:
— Client: Publisher

— Server
— Client: Subscriber
This is depicted in Figure 32.

Y
Client: Client:
Publisher 1 \) Subscriber 1
\—/ 470)), $\0-
Server
Y
o "
Client: / Client:
Publisher 2 Subscriber 2
N

Figure 32 — Typical MQTT
The interaction model involves a Client publishing data on a topic to the Server. The Server knows

which Clients subscribed to the topic and forwards the data to those Clients. This is depicted in
Figure 33.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 119

Client: Publisher SEMEr Client: Subscriber

subscribe topic [

' publish MQTT message (topic + data)

[
3
|

' find the subscriber to the topic

" MQTT message (topic + data) -

Figure 33 — Publish interaction model

An MQTT message contains payload data, a Quality of Service (Qo0S), a collection of Properties,
and a topic name. A more complex interaction involves a request which expects a return payload.
This is achieved by tagging the publish MQTT message with a return topic and correlation identifier.
The publisher tracks the correlation identifier and thus can match up the response with the request.
This is depicted in Figure 34.

MQTT Client {(Publisher) MQTT Server MQTT Client (Subscriber)
1 1 1
: ICOI‘II‘IEC‘I I :
I
connect -
| connect

subscribe return_topic <!
>
I

' subscribe topic

-

: initialisation |i ;

| A 1
{ normal operation |5
I

MQTT message: topic + data + [return_topic +id] ,_:

, find the subscriber to the topic

| MQTT message: topic + data + [return_topic +id]
i 1 create return_ data

return_topic + return data + [id] !

[

-
|
|

find the subscriber to the return_topic

return_topic + return_data + [id]

match return_topic and id |
I
I

EZI

Figure 34 — MQTT Request and Response interaction model

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 120

12.4.2Mapping OCF Devices and Resources to MQTT topics

The topic defined by MQTT is used to simulate the RESTful operations and Resource addressing
of the OCF architecture. To do this, the Resource address and CRUDN operation need to be
defined. The MQTT message data consists of the payload of the CRUDN operation. This allows

the payload defined in the Resource Types to be transported in the MQTT message.

MQTT topics are organized as a folder structure with "/" as a topic level separator.

Table 51 — Command usage

OCF operations operation in MQTT message return topic correlation ID
topic contents
CREATE "c" Request payload Required Required
RETRIEVE "R" - Required Required
UPDATE "y Request payload Required Required
DELETE "D" - Required Required
NOTIFY "N" - Required Required

Topics are represented as follows:
Topic = OCF/<OCF Device UUID>/<path?query>/<CRUDN operation>
Since the topic uses the same "/" separator as the path, the path is escaped.

The path?query is escaped by replacing the "/" character with "%2F". The first "/* of the local
path?query may be omitted. For example; the Resource path?query for "/oic/res" is conveyed as
"0ic%2Fres".

The operation is added to the topic when a MQTT actor wants to communicate with an OCF Device.
Since all subscribers do not know the origin of the publisher, there is a need to distinguish topics
as an operation. If an operation does not require a payload (like RETRIEVE) the request MQTT
message does not contain any data. If a response is expected, then the return topic and correlation
ID are required in the MQTT message (see Table 51 for more information).

Table 52 contains examples of path?query and operation to the MQTT topic.

Table 52 — Sending operations as topic

Addressing scope Topic for publishing

Retrieve of "/oic/res" on a specific OCF OCF/6ed4963b-5770-44ab-b61f-f6b7b0681933/0ic%2Fres/R

Device

Retrieve of "/oic/d" on a specific OCF OCF/6ed4963b-5770-44ab-b61f-f6b7b0681933/0ic%2Fd/R

Device

Retrieve of "/oic/p" on a specific OCF
Device

OCF/6ed4963b-5770-44ab-b61f-f6b7b0681933/0ic%2Fp/R

Sending the RETRIEVE to Resource URL
"blah" using the baseline OCF Interface

OCF/6ed4963b-5770-44ab-b61f-f6b7b0681933/blah?if=oic.if.baseline/R

Sending the UPDATE to change a Property OCF/6ed4963b-5770-44ab-b61f-f6b7b0681933/blah/U
value to a specific Resource URL "blah" on

a specific Device

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 121

A level may have a wild card. This is the "+" symbol. Wildcards, identified by the "#" symbol, may
be used in place of the level name to receive all topics at that level of the folder structure. Wild
cards may be used to simplify subscriptions on a topic. See clause 4.7 of [MQTT] for more details.

Table 53 — topic wild cards

MQTT wild card description

+ Single level wild card

Multi-level wild card

Table 54 — Subscription addressing scope and topic wild cards

Addressing scope Topic subscription
All OCF Devices OCF/#
Specific OCF Device OCF/6ed4963b-5770-44ab-b61f-f6b7b0681933/#
"/oic/res" on a specific OCF Device OCF/6ed4963b-5770-44ab-b61f-f6b7b0681933/0ic%2Fres/#
"/oic/d" on a specific OCF Device OCF/6ed4963b-5770-44ab-b61f-f6b7b0681933/0ic%2Fd/#

The NOTIFY operation in OCF is based on Observe, see 11.3.2 [CORE]. The MQTT Client as OCF
Client subscribes (registers) to receive notifications by sending a NOTIFY operation to the topic.
The MQTT Client as OCF Server sends updates to the MQTT Client as OCF Client by means of
the return topic and correlation id of the initial NOTIFY operation. The sequence of subscribing for
notifications with MQTT messages is depicted in Figure 33.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 122

MQTT Client MQTT Client
(OCF Client) MQTT Server (OCF Server)

: normal operation with event subscription :

i OCF/=UUID=/<URL=/M
t [<return topic> + correlation 1D |

OCF/<UUID=/<URL=/N
[<return topic> + correlation 1D]

o
o

create return_data <yyy>

<return_topic® + return_data <yyy=>
_ [correlation 1D]

-

<return_topics + data <yyy=
[correlation 0]

i
i
|
i
|
i
i
|
i
|
i
i
|
i
i
i
i
[
i
i

; Match Correlation ID to published operation
' event subscription

create return_data <yyy2=>

'«

<return_topic> + return_data <yyy2>
_ [carrelation ID]

<return_topic> + return_data <yyy2=
_ [correlation 1D]

! Match Correlation 1D to published operation !
i event subscription |

Figure 35 — Example interaction model with an event subscription

12.4.3Mapping OCF Data to MQTT Data

The OCF payload data is encoded in CBOR. Using MQTT as transport will use the OCF payload
data as MQTT messages (content in BOR). Transporting the data in CBOR simplifies the changing
in transports, it does not alter the data between the conversion of CoAP to MQTT as transport.
Furthermore, keeping the payload data unchanged enables end-to-end encryption.

Note that the MQTT Content Type is not used, the topic naming convention determines already the
content type of the payload This is achieved by having the "OCF" prefix on the topics.

12.4.4Mapping OCF Discovery to MQTT

MQTT does not support multicast, however a single MQTT message may be received by multiple
subscribers. Hence a topic where all OCF devices on the MQTT has to listen can simulate multicast
discovery.

Discovery of OCF Devices is achieved by sending a RETRIEVE MQTT message to the topic
"OCF/*/<discovery resource url>/R". The asterisk symbol ("*") is replacing the actual UUID of the
device in the topic. The asterisk is not an MQTT wild card and therefore this topic is a valid MQTT
topic that the MQTT client of the OCF device should subscribe and respond to. For example, the
MQTT client of the OCF Server should subscribe to the topics "OCF/*/#" and "OCF/<UUID>/#" to

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 123

be able to receive the operations targeted with the UUID and the operation targeted as discovery
operation.

Table 55 — Examples of Discovery topics

Description Topic in the request
RETRIEVE of "/oic/res" OCF/*/oic%2Fres/R
RETRIEVE of "/oic/res" with baseline OCF/*/oic%2Fres?if=oic.baseline/R
RETRIEVE of "/oic/d" OCF/*/oic%2Fres/R
RETRIEVE of "/oic/p" OCF/*/oic%2Fres/R

12.4.5Error condition behaviour

MQTT may signal errors between the client and server connection, see 3.4.2.1 [MQTT v5 Ref] .
However, the OCF request and response communication may have errors as well, Receiving CBOR
encoded MQTT messages will be regarded as a 2.xx OK response. When an actual error occurs,
the Error response payload should be used, See 7.10 [CORE SPEC REF]. The actual transport
binding status (error) code may be included in the error response payload.

Example CoAP error response payload:

Status code: 4.04 (Not Found)
Response Body:
"The device is not registered”

Translates to MQTT error response payload:

Publish MQTT message:
"4_.04 The device is not registered"

12.4.6 MQTT considerations

The MQTT configuration, e.g., where the MQTT server resides and how the security credentials
are distributed, is out of scope of the MQTT transport. This information is highly dependent on the
actual deployment, e.g., which MQTT server is being used and thus which security mechanisms
are available to protect the MQTT client-server connection.

The usage of the request-response sequences determines that version v5.0 MQTT and higher can
be used. The versions predating v5.0 does not have the functionality to implement the request-
response MQTT messages.

The deployment may use secure TLS (TCP port 8883) as indicated in clause 4.2 of the MQTT
specification. For additional security recommendations, see the security clause 4.12 and 5 of the
MQTT specification.

12.5 Payload Encoding in CBOR

OCF implementations shall perform the conversion to CBOR from JSON defined schemas and to
JSON from CBOR in accordance with IETF RFC 7049 clause 4 unless otherwise specified in this
clause.

Properties defined as a JSON integer shall be encoded in CBOR as an integer (CBOR major types
0 and 1). Properties defined as a JSON number shall be encoded as an integer, single- or double-
precision floating point (CBOR major type 7, sub-types 26 and 27); the choice is implementation
dependent. Half-precision floating point (CBOR major 7, sub-type 25) shall not be used. Integer
numbers shall be within the closed interval [-2753, 2753]. Properties defined as a JSON number
should be encoded as integers whenever possible; if this is not possible Properties defined as a
JSON number should use single-precision if the loss of precision does not affect the quality of
service, otherwise the Property shall use double-precision.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 124

On receipt of a CBOR payload, an implementation shall be able to interpret CBOR integer values
in any position. If a Property defined as a JSON integer is received encoded other than as an
integer, the implementation may reject this encoding using a final response as appropriate for the
underlying transport (e.g. 4.00 for CoAP) and thus optimise for the integer case. If a Property is
defined as a JSON number an implementation shall accept integers, single- and double-precision
floating point.

13 Security

The details for handling security and privacy are specified in ISO/IEC 30118-2.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 125

A.l

Annex A
(normative)

Resource Type definitions

List of Resource Type definitions

All the clauses in Annex A describe the Resource Types with a RESTful API definition language.
The Resource Type definitions presented in Annex A are formatted for readability, and so may
appear to have extra line breaks. Table A.1 contains the list of defined Core Common Resources

in this document.

Table A.1 — Alphabetized list of Core Resources

Friendly Name (informative) Resource Type (rt) Clause
Atomic Measurement "oic.wk.atomicmeasurement" A.2
Collections "oic.wk.col" A.3
Device "oic.wk.d" A.4
Discoverable Resource "oic.wk.res" A7
Introspection "oic.wk.introspection” A.5
Platform "oic.wk.p" A.6
MQTT Configuration "oic.r.mqtt.conf" A.8

A.2 Atomic Measurement links list representation

A.2.1

The oic.if.baseline OCF Interface exposes a representation of the links and
the Common Properties of the Atomic Measurement Resource.

Introduction

A.2.2
/[AtomicMeasurementResURI

Example URI

A.2.3
The Resource Type is defined as: "oic.wk.atomicmeasurement".

Resource type

A.2.4 OpenAPI 2.0 definition
{
“'swagger'': "2.0",
“info'": {
"title": "Atomic Measurement links list representation",
"version': '"2019-03-04",

“license": {
"name': "OCF Data Model License",
"url': "https://openconnectivityfoundation.github.io/core/LICENSE.md",
""x-copyright': ""Copyright 2018-2019 Open Connectivity Foundation, Inc. All rights reserved."

"termsOfService': "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md"
1.
"'schemes™: ["http'"],
“'consumes™: [“application/json'],
“produces': ["application/json'],
"paths": {
""/AtomicMeasurementResURI?if=oic.if.11": {
"get'": {
"description': "The oic.if.ll OCF Interface exposes a representation
of the Links",

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 126

“parameters': [

"$ref": "#/parameters/interface-all”
3
1.
"responses': {
"200": {
"description’: ",
"x-example: [{
"href": "/temperature",
"rt'": [Moic.r.temperature'],
"if": [Moic.if.s", "oic.if.baseline"]
1
{
“href'': "/bodylocation",
“rt": ["oic.r.body.location.temperature'],
“if": [Toic.if.s", "oic.if._baseline"]
3
{
“"href': "/timestamp",
"rt": [“oic.r.time.stamp'],
“if": [Toic.if.s", "oic.if.baseline]
1.
""'schema": {
"$ref'': "#/definitions/links"
3
¥
b
3
1.
"*/AtomicMeasurementResURI?if=oic.if.b": {
"get'": {

"description”: "The oic.if.b OCF Interface returns data items
retrieved from Resources pointed to by the Links.\n",
“parameters': [

"$ref'': "#/parameters/interface-all”
¥
1.
"responses': {
"200": {
"description’: "Normal response, no errors, all
Properties are returned correctly\n”,
"x-example": [{

"href'": "/temperature",
"rep”: {
"temperature': 38,
"units": "C",
"range': [25, 45]
3
1,
{
"href'": "/bodylocation",
“"rep”: {
"bloc': "ear"
}
3
{
"href'": "/timestamp",
"rep”: {
"timestamp': "2007-04-05T14:30+09:00"
1.

"schema': {
“$ref: "#/definitions/batch-retrieve”

}
}
}
}
T
""/AtomicMeasurementResURI?if=oic.if._baseline": {
"get": {

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 127

""description’: "The oic.if.baseline OCF Interface exposes a
representation of the links and\nthe Common Properties of the Atomic Measurement Resource.\n",
“parameters': [

"$ref'': "#/parameters/interface-all"
3
1.
"responses': {
"200": {
"description’: "',
"x-example': {
"rt": [“oic.wk.atomicmeasurement'],
i [Moic.if.b", "oic.if. 11",
"oic.if.baseline'],
"rts": [“oic.r.temperature”,

"oic.r.body.location.temperature", oic.r.time.stamp'],
"rts-m": ["oic.r.temperature”,
""oic.r.body.location.temperature”, "oic.r.time.stamp™],
"links": [{
"href": "/temperature",
"rt": ["oic.r.temperature],
“if": [Toic.if.s", "oic.if.baseline]
3
{

"href': "/bodylocation",
vt
["oic.r.body. location.temperature'],

“if": [Moic.if.s", "oic.if.baseline"]

3
{
“href": "/timestamp",
"rt": [Toic.r.time.stamp"],
“if"': [Toic.if.s", "oic.if._baseline"]
H
}.
"'schema': {
"$ref’: "#/definitions/baseline”
}
}
3
3
3
1.
"parameters': {
"interface-all': {
in": query",
“name': “if",
""type'': "string",
“"enum': [Yoic.if.b", "oic.if.11", "oic.if._baseline™]
3
T,
“definitions”: {
"links": {
"type': "array",
"items':
“$ref'': "#/definitions/oic.oic-link"
3
}.
“"batch-retrieve": {
“title": "Collection Batch Retrieve Format (auto merged)',
“"minltems™: 1,
“items": {

"additionalProperties': true,
"properties’: {
“href': {

“$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-
schema. json#/definitions/href"

¥

"rep": {
"oneOf": [{
"description”: "The response payload from a

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 128

single Resource",

Collection (batch) Resource",

""https://openconnectivityfoundation.github.
schema. json#/definitions/anchor"

"https://openconnectivityfoundation.github.

schema. json#/definitions/di"

"https://openconnectivityfoundation.github.

schema. json#/definitions/eps"

"https://openconnectivityfoundation.github.

schema. json#/definitions/href"

Interface set supported by this Resource',

“oic.if.baseline",

“'string”

""type'': "object"

"https://openconnectivityfoundation.github.io/core/schemas/oic.links._properties.core-

schema. json#/definitions/ins”

3
{
"description”: " The response payload from a
"items': {
"properties': {
"anchor': {
“$ref:
io/core/schemas/oic. links.properties.core-
e
"div:
“$ref:
io/core/schemas/oic.links.properties.core-
3,
"eps": {
"$ref':
io/core/schemas/oic.links.properties.core-
}.
“"href': {
"$ref':
io/core/schemas/oic.links.properties.core-
3.
i {
""description’: "The OCF
“items': {
“enum': [
“oic.if. 11",
"oic.if.b",
“oic.if.rw”,
“oic.if.r",
"oic.if.a",
"oic.if.s"],
"'"type':
T,
"minltems": 1,
"uniqueltems': true,
""type': "array"
"ins": {
“$ref:
T,
"prr {
"$ref':

"https://openconnectivityfoundation.github.io/core/schemas/oic

schema. json#/definitions/p™

referenced by the Link to the context URI",

"rel": {
""description’:

"oneOf"": [

"$ref':

"https://openconnectivityfoundation.github. io/core/schemas/oic

schema. json#/definitions/rel_array"

I
{
"$ref':

"https://openconnectivityfoundation.github. io/core/schemas/oic

schema. json#/definitions/rel_string"

}

-links._properties.core-

"The

-links

relation of the target URI

-properties.core-

-links._properties.core-

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 129

""Resource Type of the Resource",

64,

"'string"

"$ref':

retr {
“'description’:
"items': {
“"maxLength':
“type":

3.
"minltems'": 1,
"uniqueltems': true,
"type'': "array"

3,
“title": {

"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-

schema. json#/definitions/title"”

}

"type": {
"$ref':

"https://openconnectivityfoundation.github. io/core/schemas/oic. links.properties.core-

schema. json#/definitions/type"

¥
3,
"type':
H
3
3,
“required”: [
“href",
“rep”
1,
“type': "object"
T,
"type'': "array"

}

aseline”: {
“properties': {

T,
“required”: [
"href",
rt,

e

]

’ype": "object"

"array"

"description”: "A set of simple or individual Links.",

"links": {
"items": {
"$ref':
T,
"type'': "array"
3,
n": { "$ref"’ :

"#/definitions/oic.oic-link"

"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-

schema. json#/definitions/n"},
“id: { "Sref" :

"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-

schema. json#/definitions/id"},
rtt: {
""description': "Resource Type of this Resource",
"items'": {
"enum': [“"oic.wk.atomicmeasurement™],
"type'': "'string",
"maxLength": 64
T,
“"minltems': 1,
“readOnly*: true,
"uniqueltems': true,
"type'': "array”

}.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

130

"rts': {
"description: "An array of Resource Types that are supported
within an array of Links exposed by the Resource",
“items": {
"maxLength": 64,
"type': "string"
}.
"minltems": 1,
"readOnly": true,
"uniqueltems': true,
"type'': "array"

}.
"rts-m": {
"description: "An array of Resource Types that are mandatory
to be exposed within an array of Links exposed by the Resource",
“items": {
"maxLength': 64,
“type': “'string"
}.
"minltems": 1,
"readOnly": true,
"uniqueltems': true,
"type'': "array"
T
ifrs {
"description’: "The OCF Interface set supported by this
Resource”,
“items': {
“"enum": [Yoic.if.b", "oic.if.11", "oic.if.baseline"],
"type': "string"
T,
“"minltems": 3,
"readOnly": true,
"uniqueltems': true,
"type'': "array"
}
T
“type'': "object",
“"required": [
"rt',
"ifr,
"links"
]

}

"oic.oic-link": {
“properties': {
“anchor*: {

"$ref':
"https://openconnectivityfoundation.github.io/core/schemas/oic.links._properties.core-
schema. json#/definitions/anchor"

T,
"dit: {
"$ref':
"https://openconnectivityfoundation.github. io/core/schemas/oic.links.properties.core-
schema. json#/definitions/di"
T,
"eps': {
"$ref:
"https://openconnectivityfoundation.github. io/core/schemas/oic.links._properties.core-
schema. json#/definitions/eps"
T,
“href": {
“$ref:
"https://openconnectivityfoundation.github. io/core/schemas/oic.links._properties.core-
schema. json#/definitions/href"

3,
i {
"description”: "The OCF Interface set supported by this
Resource™,
"items": {
“enum': [

"oic.if.baseline",

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 131

"oic.if
“oic.if
“oic.if
"oic.if.
"oic.if
“oic.if
"type'': "'s
T,
"minltems": 1,
"uniqueltems': true,
"type'': "array"

ins": {

“$ref:
""https://openconnectivityfoundation.github. io/core/schemas/oic.links.properties.core-
schema. json#/definitions/ins"

3

p: {
“$ref':
"https://openconnectivityfoundation.github. io/core/schemas/oic.links.properties.core-
schema. json#/definitions/p"
¥
"rel": {
"description”: "The relation of the target URI referenced by the Link to the context URI",
"oneOf": [

"$ref':
"https://openconnectivityfoundation.github. io/core/schemas/oic.links.properties.core-
schema. json#/definitions/rel_array"

3.

"$ref':
"https://openconnectivityfoundation.github. io/core/schemas/oic.links._properties.core-
schema. json#/definitions/rel_string"

}
1
1.
et {
"description: "Resource Type of the Resource",
“items": {
"maxLength': 64,
“type': “'string”
1.
"minltems": 1,
"uniqueltems': true,
"type'': "array"
T
"title": {
"$ref'':

"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-
schema. json#/definitions/title”
}.
“type': {
“$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-
schema. json#/definitions/type"

T
3,
“required": [
“"href",
rt,
e
1.
“"type'': "object"
3
3

}

A.2.5 Property definition
Table A.2 defines the Properties that are part of the "oic.wk.atomicmeasurement" Resource Type.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 132

Table A.2 — The Property definitions of the Resource with type "rt" =
"oic.wk.atomicmeasurement".

schema

Property name Value type Mandatory Access mode Description
href multiple types: see Yes Read Write
schema
rep multiple types: see Yes Read Write
schema
links array: see schema Yes Read Write A set of simple or
individual Links.
n multiple types: see No Read Write
schema
id multiple types: see No Read Write
schema
rt array: see schema Yes Read Only Resource Type of
this Resource
rts array: see schema No Read Only An array of
Resource Types that
are supported within
an array of Links
exposed by the
Resource
rts-m array: see schema No Read Only An array of
Resource Types that
are mandatory to be
exposed within an
array of Links
exposed by the
Resource
if array: see schema Yes Read Only The OCF Interface
set supported by this
Resource
anchor multiple types: see No Read Write
schema
di multiple types: see No Read Write
schema
eps multiple types: see No Read Write
schema
href multiple types: see Yes Read Write
schema
if array: see schema Yes Read Write The OCF Interface
set supported by this
Resource
ins multiple types: see No Read Write
schema
p multiple types: see No Read Write
schema
rel multiple types: see No Read Write The relation of the
schema target URI
referenced by the
Link to the context
URI
rt array: see schema Yes Read Write Resource Type of
the Resource
title multiple types: see No Read Write

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 133

type multiple types: see No Read Write
schema

A.2.6 CRUDN behaviour

Table A.3 defines the CRUDN operations that are supported on the "oic.wk.atomicmeasurement”
Resource Type.

Table A.3 — The CRUDN operations of the Resource with type "rt" =
"oic.wk.atomicmeasurement".

Create Read Update Delete Notify

get observe

A.3 Collection

A.3.1 Introduction

Collection Resource Type contains Properties and Links.
The oic.if.baseline OCF Interface exposes a representation of
the Links and the Properties of the Collection Resource itself

A.3.2 Example URI
/CollectionResURI

A.3.3 Resource type
The Resource Type is defined as: "oic.wk.col".

A.3.4 OpenAPI 2.0 definition
{

“'swagger': "2.0",
“info": {
"“title": "Collection”,
“'version': ""2019-03-04",
“license": {
"name': "OCF Data Model License",
"url': "https://openconnectivityfoundation.github.io/core/LICENSE.md",
""x-copyright': ""Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved."

"termsOfService': "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md"
¥

,chemes": [
“http"”
1

onsumes': [
"application/json”

"6roduces": [
"application/json"

1,
"paths": {
*/CollectionResURI?if=oic.if.1lI" : {
"get”: {
"description': "Collection Resource Type contains Properties and Links.\nThe oic.if.l1l OCF
Interface exposes a representation of the Links\n",
“parameters': [

"$ref"’: "#/parameters/interface-all”
¥
1.
"responses': {
"200": {
“description”™ : ",

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 134

"x-example": [

"href'': ""/switch",

rt': [oic.r.switch.binary"],
"if [oic.if.a", "oic.if._baseline"],
"eps": [

{"ep": "coap://[fe80::b1ld6]:1111", “pri*: 2},
{"ep": "coaps://[feB80::b1d6]:1122"},
{"ep": "coap+tcp://[2001:db8:a::123]:2222", "pri': 3}

]
3.
{
“href'": “/airFlow",
rt't: [oic.r.airflow"],
tif [oic.if.a", "oic.if.baseline"],
"eps'": [

{"ep": "coap://[fe80::b1ld6]:1111", "pri': 2},
{"ep": "coaps://[fe80::b1ld6]:1122"},
{""ep": "coap+tcp://[2001:db8:a::123]:2222", “"pri'': 3}
1
¥

’chema": {
"$ref: "#/definitions/slinks"
3

1

}
}
}

""/CollectionResURI?if=oic.if.baseline” : {
"get": {
“"description': "Collection Resource Type contains Properties and Links.\nThe oic.if.baseline
OCF Interface exposes a representation of\nthe Links and the Properties of the Collection Resource
itself\n",
“parameters': [

"$ref": "#/parameters/interface-all”
3
1.
“responses': {
"'200": {
“description” : "',

"x-example™: {
"rt": [“oic.wk.col'],
i [Moic.if. 11", "oic.if.b", "oic.if.baseline"],
"rts": ["oic.r.switch.binary”, "oic.r.airflow"],
“rts-m": ["oic.r.switch.binary"],

"links": [
{
“"href'": "/switch",
rtt: ["oic.r.switch.binary"],
i [oic.if.a", "oic.if.baseline"],
“eps": [

{""ep": "coap://[fe80::b1ld6]:1111", "pri': 2},
{"ep"”: "coaps://[fe80::b1d6]:1122"},
{"ep": "coaps+tcp://[2001:db8:a::123]:2222", *"pri‘: 3}

1
3
{
"href': "/airFlow",
rt': ["oic.r.airflow'],
i ["oic.if.a", "oic.if._baseline™],
"eps":

{;ep": ""coap://[fe80::b1d6]:1111", "pri™: 2},
{"ep": "coaps://[fe80::b1d6]:1122"},
{"ep": "coaps+tcp://[2001:db8:a::123]:2222", *“pri': 3}
1
3
1

,chema": {
"$ref: "#/definitions/sbaseline”

}

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 135

}

3
¥
T,
"post': {
"description': "Update on Baseline OCF Interface\n",
“parameters': [
"$ref'': "#/parameters/interface-update"
3.
{
"name'': "‘body",
"in": "body",
“required”: true,
"'schema™: {
"$ref'': "#/definitions/sbaseline-update"
3
3
1.
"responses': {
"'200": {
"description” : """,
“schema": {
"$ref'': "#/definitions/sbaseline”
3
3
¥
}
T
""/CollectionResURI?if=oic.if.b" - {
"get": {
“"description': "Collection Resource Type contains Properties and Links.\nThe oic.if.b OCF

Interfacce exposes a composite representation of the\nResources pointed to by the Links\n",
"parameters': [

“$ref'': "#/parameters/interface-all"

3
1.
"responses”: {
"200": {
"description” : "All targets returned OK status",
“x-example': [
"href'": "/switch",
"rep”: {
"value': true
3
3
{
"href": "/airFlow",
“rep”: {
"“direction": "floor",
"'speed": 3
3
¥
1.
"schema': {
"$ref': "#/definitions/sbatch-retrieve"
}
T,
404" {
"description” : "One or more targets did not return an OK status, return a

representation containing returned Properties from the targets that returned OK",
"'x-example'": [

"href': "/switch",
"rep": {
"value': true
T
¥
1,
"'schema™: {

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 136

"$ref'': "#/definitions/sbatch-retrieve"
3
¥

b
T
"post: {

"description': "Update on Batch OCF Interface\n",

“parameters': [

"$ref": "#/parameters/interface-update”
3
{

"name': "body",

"in": "body",

“required": true,

"'schema': {

"$ref'': "#/definitions/sbatch-update"
¥

"x-example": [
"href'': "/switch",
"rep”: {
“value': true

3
3
{
“href": “/airFlow",
"rep”: {
“direction": "floor",
"'speed”: 3
¥
3
1
3
1.
"responses': {
"200": {
"description” : "All targets returned OK status, return a representation of the current

state of all targets”,
""x-example'": [

"href'': "/switch",
"rep": {
"value': true
T
3
{

“"href'': "/airFlow",
"rep”: {
"direction": "demist",
"'speed”: 5
3
3

chema': {
"$ref'': "#/definitions/sbatch-retrieve"

1

3
T,
"403": {
"description” : "One or more targets did not return OK status; return a retrieve
representation of the current state of all targets in the batch",
“x-example': [

“"href'': ""/switch",
"rep”: {
"value': true

}
I
{
"href': "/airFlow",
"rep”: {
"direction”: "floor",

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 137

""speed": 3
3
}
1,
"schema": {
"$ref': "#/definitions/sbatch-retrieve"
3
3
b
¥
}
T,
"parameters': {
“interface-all” : {
*in" 1 “query",
“name" : "if",
"type" : "'string",
“enum" : [Toic.if.ll", "oic.if.b", "oic.if.baseline']

}.

"“interface-update” : {
"in" : "query",
“name" : "if",
“type' : “'string",
“enum'" : [Moic.if.b", "oic.if.baseline']

3
T,
“definitions”: {
“'sbaseline” : {
"properties': {
"links" : {
"description”: "A set of simple or individual Links.",
“items": {
"$ref'': "#/definitions/oic.oic-link"
¥

"type'': "array"
s g
“$ref” :

"https://openconnectivityfoundation.github. io/core/schemas/oic.common.properties.core-
schema. json#/definitions/n"

Y,
midv: {
“$ref” :
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-

schema. json#/definitions/id"

1.
“rt': {
"$ref'': "#/definitions/oic.core.rt-col”
3
"rts': {
“$ref': "#/definitions/oic.core.rt"
3
"rts-m": {
“$ref'': "#/definitions/oic.core.rt”
“ifr {
"description': "The OCF Interfaces supported by this Resource",
"items": {
“enum': [
“oic.if. 11",
"oic.if.baseline",
"oic.if.b"
1.)
""type'': "'string”,
"maxLength': 64
3,
“"minltems': 2,
"uniqueltems': true,
"readOnly": true,
"type': "array"
3
3,

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 138

"additionalProperties': true,

"type" : "object",
“required”: [
rt',
i,
"links"
1

}.
"'sbaseline-update": {
"additionalProperties”: true

}.
"oic.core.rt-col":
"description': "Resource Type of the Resource",
"items”: {

“enum': [“oic.wk.col'],

"type': “'string",
"maxLength': 64
¥

inltems": 1,
"uniqueltems': true,
"readOnly': true,
"type'': "array"

3,
"oic.core.rt": {
""description’: "Resource Type or set of Resource Types",
"items": {

“type': ''string",
"maxLength': 64
T

inltems": 1,
“uniqueltems™: true,
"“readOnly': true,
"type': "array"

"'sbatch-retrieve” : {
"minltems™ : 1,
"items" : {

"additionalProperties': true,
“properties': {
“"href': {
"$ref:

"https://openconnectivityfoundation.github. io/core/schemas/oic. links.properties.core-

schema. json#/definitions/href"

T,
"rep”: {
"oneOf"": [
""description': "The response payload from a single Resource",
"type'': "object"
3
{
“description”: " The response payload from a Collection (batch) Resource",
"items': {
“$ref'': "#/definitions/oic.oic-link"
T,
"type': "array"
3
1
¥
3,
"required": [
“href",
“rep"”
1.
""type': "object"
"type' : "array"
3,
"'sbatch-update" : {
"title" : "Collection Batch Update Format",
"minltems™ : 1,
"items" : {

Copyright Open Connectivity Foundation, Inc. © 2016-2022

. All rights Reserved

139

"$ref'': "#/definitions/sbatch-update.item"
T

,ype" : Marray"

}.
"'sbatch-update.item”™ : {

"additionalProperties': true,

“description’: "Array of Resource representations to apply to the batch Collection, using href
to indicate which Resource(s) in the batch to update. If the href Property is empty, effectively
making the URI reference to the Collection itself, the representation is to be applied to all
Resources in the batch",

“properties”: {

“"href': {
"$ref:
"https://openconnectivityfoundation.github. io/core/schemas/oic.links.properties.core-
schema. json#/definitions/href"

T,
"rep”: {
"oneOf"': [
""description’: "The payload for a single Resource",
""type'': "object"
3,
{
"description: " The payload for a Collection (batch) Resource",
"items": {
“$ref'': "#/definitions/oic.oic-link"
3,
"type'': "array"
1
T
3,
"required": [
"href",
“rep"”
1,
""type': "object"
3.
"slinks"™ : {
"type" : "array',
"items" : {
“$ref'': "#/definitions/oic.oic-link"
¥
¥

"oic.oic-link": {
"properties': {
i {

"description': "The OCF Interfaces supported by the Linked target",
"items'": {
“"enum': [

‘'oic.

"oilcC.

"oilc.

"'oicC.

"'oicC.

"oicC.

"oilc.

-baseline",
B | e
-b",
rw',

= === =

re,
.a",
s"

1

’ype": “'string",
"maxLength": 64
}

inltems™: 1,
"uniqueltems': true,
“readOnly": true,
"type'': "array"

res g
“"$ref': "#/definitions/oic.core.rt"
T

"anchor™: {
“$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 140

schema. json#/definitions/anchor"
T,
“dit: {
“$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.links._properties.core-
schema. json#/definitions/di""

T,
"eps': {
"$ref':
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-
schema. json#/definitions/eps"
}.
“href': {
“$ref:
"https://openconnectivityfoundation.github. io/core/schemas/oic.links._properties.core-
schema. json#/definitions/href"
T,
“ins': {
“$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.links._properties.core-
schema. json#/definitions/ins"

3.

p: {

"$ref':
"https://openconnectivityfoundation.github.io/core/schemas/oic.links._properties.core-
schema. json#/definitions/p"

T,
"rel": {

"$ref':
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-
schema. json#/definitions/rel_array"

T,
“title: {

"$ref:

"https://openconnectivityfoundation.github. io/core/schemas/oic.links._properties.core-
schema. json#/definitions/title"”

T,
"type”: {
“$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.links._properties.core-
schema. json#/definitions/type"

}

ag-pos-desc': {
"$ref':
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-
schema. json#/definitions/tag-pos-desc'

}.
"tag-pos-rel': {

"$ref':
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-
schema. json#/definitions/tag-pos-rel™

}.
""tag-func-desc': {

"$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-
schema. json#/definitions/tag-func-desc"

}
}.
“required": [
“href",
rt,
i
1.
"type': "object”

}
}

A.3.5 Property definition
Table A.4 defines the Properties that are part of the "oic.wk.col" Resource Type.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 141

Table A.4 — The Property definitions of the Resource with type "rt"

"oic.wk.col".

Property name

Value type

Mandatory

Access mode

Description

links array: see schema Yes Read Write A set of simple or
individual Links.
n multiple types: see No Read Write
schema
id multiple types: see No Read Write
schema
rt multiple types: see Yes Read Write
schema
rts multiple types: see No Read Write
schema
rts-m multiple types: see No Read Write
schema
if array: see schema Yes Read Only The OCF Interfaces
supported by this
Resource
href multiple types: see Yes Read Write
schema
rep multiple types: see Yes Read Write
schema
href multiple types: see Yes Read Write
schema
rep multiple types: see Yes Read Write
schema
if array: see schema Yes Read Only The OCF Interfaces
supported by the
Linked target
rt multiple types: see Yes Read Write
schema
anchor multiple types: see No Read Write
schema
di multiple types: see No Read Write
schema
eps multiple types: see No Read Write
schema
href multiple types: see Yes Read Write
schema
ins multiple types: see No Read Write
schema
p multiple types: see No Read Write
schema
rel multiple types: see No Read Write
schema
title multiple types: see No Read Write
schema
type multiple types: see No Read Write
schema
tag-pos-desc multiple types: see No Read Write
schema
tag-pos-rel multiple types: see No Read Write

schema

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 142

tag-func-desc multiple types: see No Read Write
schema

A.3.6 CRUDN behaviour
Table A.5 defines the CRUDN operations that are supported on the "oic.wk.col" Resource Type.

Table A.5 — The CRUDN operations of the Resource with type "rt" = "oic.wk.col".

Create Read Update Delete Notify

get post observe

A.4 Device

A.4.1 Introduction

Known Resource that is hosted by every Server.
Allows for logical Device specific information to be discovered.

A.4.2 Well-known URI
/oic/d

A.4.3 Resource type
The Resource Type is defined as: "oic.wk.d".

A.4.4 OpenAPI 2.0 definition
{

"'swagger': "2.0",
“info": {
“title": "Device",
"version': '2019-03-13",
"license'": {
"name': "OCF Data Model License",
“url™: "https://openconnectivityfoundation.github.io/core/LICENSE.md",
""x-copyright": "Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved."

"iermsOfService": ""https://openconnectivityfoundation.github. io/core/DISCLAIMER.md"
¥

’chemes": [

“http"

1.

“consumes': [
"application/json"

1,

“"produces™: [

"application/json"

1.
"paths": {
“/oic/d" : {
“get": {
""description': "Known Resource that is hosted by every Server.\nAllows for logical Device
specific information to be discovered.\n",
“parameters': [

"$ref'': "#/parameters/interface"

3
1.
“responses': {
"'200": {
"description': "',
""x-example™:
{
n': "Device 1",
B g [oic.wk.d"],

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 143

di': "'54919CA5-4101-4AE4-595B-353C51AA983C"",

"icv": "ocf.2.0.2",
"ocf.res.1.0.0, ocf.sh.1.0.0",

dmvz
"piid": "6FOAAC04-2BB0-468D-B57C-16570A26AE48""
T
"'schema': {
"$ref'': "#/definitions/Device”
3
3
3
}
3
1.
"parameters': {
“interface" : {
"in": "query",
"name": "if",
“"type': "string",
enum": [“oic.if.r", "oic.if.baseline"]
3
T,
"definitions": {
“"Device": {
"properties': {
ret: {
"description': "Resource Type of the Resource",
"items: {
“type': ''string",
"maxLength": 64
3.
"minltems': 1,
“readOnly': true,
"uniqueltems': true,
"type': "array”
}
“Idv: {
"description': "Localized Descriptions.",
"items: {
“"properties”: {
"language': {
"allOf": [
"$ref"” - "http://openconnectivityfoundation.github.io/core/schemas/oic.types-
schema. json#/definitions/language-tag"
3
{
"description”: "An RFC 5646 language tag.",
"readOnly": true
3
1
T,
“value": {
"description’: "Device description in the indicated language.",
""maxLength': 64,
“readOnly': true,
“type'': "string”
3
T,
""type'': "object"
“"minltems': 1,
“readOnly": true,
"type'': "array"
"piidT: {
“allof'": [
"$ref” - "http://openconnectivityfoundation.github.io/core/schemas/oic.types-
schema. json#/definitions/uuid"
3.

{
"description': "Protocol independent unique identifier for the Device that is
144

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

immutable.",
"readOnly': true

3
1
T,
“dit: {
“allof": [
{
"$ref" - "http://openconnectivityfoundation.github.io/core/schemas/oic.types-
schema. json#/definitions/uuid"
3.
{
"description': "Unique identifier for the Device",
"readOnly': true
}
1
1.
“dmno: {
"description': "Model number as designated by manufacturer.',
"maxLength": 64,
"readOnly": true,
""type'': "string"
"sv': {
""description': "Software version.",
"maxLength': 64,
“readOnly': true,
"type': "string”
“dmn': {
""description’: "Manufacturer Name.",
“items": {
"properties”: {
"language': {
“allof": [
"$ref” - "http://openconnectivityfoundation.github.io/core/schemas/oic.types-
schema. json#/definitions/language-tag"
3.
{
"description: "An RFC 5646 language tag.",
"readOnly': true
}
1
T,
"value": {
"description’: "Manufacturer name in the indicated language.',

"maxLength": 64,
"readOnly': true,
""type': "string"”

}.
“type™: "object"

"minltems*: 1,
“"readOnly": true,
"type': "array"
“icv': {
""description': "The version of the Device",
"maxLength': 64,
"readOnly': true,
"type': "string”

dmv'': {
"description': "Specification versions of the Resource and Device Specifications to which
this device data model is implemented”,
"maxLength': 256,
"readOnly": true,
“type': "string”

"t {
Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 145

"$ref :
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-
schema. json#/definitions/n™
¥,
vides

"$ref” :
"https://openconnectivityfoundation.github. io/core/schemas/oic.common.properties.core-
schema. json#/definitions/id"

T,
it {
“description”: "The OCF Interfacces supported by this Resource",
“items'": {
“"enum": [
“oic.if.r
"oic.if.baseline”

1

ype': "string",
"maxLength': 64
}.
"minltems": 2,
"uniqueltems': true,
“"readOnly': true,
""type'': "array"

"econame" : {
"description’: "Ecosystem Name of the Bridged Device which is exposed by this VOD.",
“type': ‘'string",
“enum': [“BLE", *oneM2M", *"UPlus', "'Zigbee", "Z-Wave'],
"readOnly': true
1.
"ecoversion” I {
"description': "Version of ecosystem that a Bridged Device belongs to. Typical version
string format is like n.n (e.g. 5.0).",
"type': "'string",
"maxLength": 64,
“"readOnly': true

}

ype'': "object",

“required”: ['n", “di",
3

¥

}

icv', "dmv", "piid"]

A.45
Table A.6 defines the Properties that are part of the "oic.wk.d" Resource Type.

Property definition

Table A.6 — The Property definitions of the Resource with type "rt" = "oic.wk.d".

Property name Value type Mandatory Access mode Description
rt array: see schema No Read Only Resource Type of
the Resource
Id array: see schema No Read Only Localized
Descriptions
piid multiple types: see Yes Read Write
schema
di multiple types: see Yes Read Write
schema
dmno string No Read Only Model number as
designated by
manufacturer.
SV string No Read Only Software version.
dmn array: see schema No Read Only Manufacturer Name.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 146

icv string Yes

Read Only

The version of the
Device

dmv string Yes

Read Only

Specification
versions of the
Resource and
Device
Specifications to
which this device
data model is
implemented

n multiple types: see Yes
schema

Read Write

id multiple types: see No
schema

Read Write

if array: see schema No

Read Only

The OCF Interfacces
supported by this
Resource

econame string No

Read Only

Ecosystem Name of
the Bridged Device
which is exposed by
this VOD.

ecoversion string No

Read Only

Version of
ecosystem that a
Bridged Device
belongs to. Typical
version string format
is like n.n (e.g. 5.0).

A.4.6 CRUDN behaviour

Table A.7 defines the CRUDN operations that are supported on the "oic.wk.d" Resource Type.

Table A.7 — The CRUDN operations of the Resource with type "rt"

"oic.wk.d".

Create Read Update

Delete

Notify

get

observe

A.5 Introspection Resource

A.5.1 Introduction

This Resource provides the means to get the Introspection Device Data (IDD) specifying all the

OCF Endpoints of the Device.

The url hosted by this Resource is either a local or an external url.

A.5.2 Well-known URI
/IntrospectionResURI

A.5.3
The Resource Type is defined as: "oic.wk.introspection”.

Resource type

A.5.4 OpenAPI 2.0 definition
{
‘'swagger': "2.0",
"info'": {
"title": "Introspection Resource",

"version': "2019-03-04",
“license": {
“name’: "OCF Data Model License",

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 147

"url': "https://openconnectivityfoundation.github.io/core/LICENSE.md",
""x-copyright': ""Copyright 2016-2019 Open Connectivity Foundation, Inc. All rights reserved."

¥
"termsOfService': "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md"
¥

"'schemes': [
“http"
1.
"consumes': [
"application/json"

"5roduces": L
"application/json"
]

"paths': {
""/IntrospectionResURI": {
"get": {

"description': "This Resource provides the means to get the Introspection Device Data (1DD)
specifying all the OCF Endpoints of the Device.\nThe url hosted by this Resource is either a local
or an external url.\n",

"parameters': [

"$ref'': "#/parameters/interface"

b
1,
"responses': {
"200": {
“description’: ",
"x-example™: {
"rt": [“oic.wk.introspection'],
“urlinfo™: [
{
""content-type': "application/cbor",
"protocol™: "coap",
“url™: "coap://[fe80::1]:1234/1IntrospectionExampleURI""
3
1
3,
“'schema™: {
"$ref'': "#/definitions/oic.wk. introspectioninfo”
3
3
3
¥
}
}

“parameters': {
"interface": {
"in": “query",
"name": "if",
“type': "string",
“enum': [“oic.if.r", "oic.if.baseline]

3
T,
"definitions”: {
"oic.wk. introspectioninfo": {
"properties': {

“rtt: {
"description”: "Resource Type of the Resource",
"items": {

"enum": ["oic.wk.introspection'],
type': "string",
"maxLength™: 64

T,

"minltems": 1,
“readOnly": true,
"uniqueltems': true,
"type'': "array"

1.

"n": {

“$ref:

"https://openconnectivityfoundation.github

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

.io/core/schemas/oic.common.properties.core-
148

schema. json#/definitions/n"

“urllnfo”: {
"description”: "Information on the location of the Introspection Device Data (IDD).",
"items': {

"properties": {
"content-type': {
"default': "application/cbor",
"description': "content-type of the Introspection Device Data",
“enum": [
“application/json”,
"application/cbor"

1

'ype": "'string”

“protocol™: {
"description': "ldentifier for the protocol to be used to obtain the Introspection
Device Data",

“"enum': [
"‘coap",
"'coaps",
“http",
"https",
"'coap+tcp",
"'coaps+tcp”

1

’ype": "'string”

"arlt: {
"description”: "The URL of the Introspection Device Data.",
“format': "uri”,
"type': "'string"

}

"version": {
“default': 1,
""description’: "The version of the Introspection Device Data that can be
downloaded™,
“enum': [
1
1

’ype": "integer"

3,
“required": [
“url™,
“"protocol™
1.
“type": "object"

"minltems': 1,
“readOnly': true,
“type": “array"

T,
“id": {

“$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-
schema. json#/definitions/id"

3,

i {
""description’: "The OCF Interfaces supported by this Resource",
"items": {

“enum': [
“oic.if.r,
"oic.if._baseline"

1,

“type'': "string",

“"maxLength': 64

b

inltems": 2,
"readOnly': true,
uniqueltems': true,
"type': "array"

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 149

}

}.
ype” :

"object”,

“required”: [“"urlInfo']

}
¥
¥

A.5.5

Property definition

Table A.8 defines the Properties that are part of the "oic.wk.introspection" Resource Type.

Table A.8 — The Property definitions of the Resource with type "rt" =
"oic.wk.introspection".

Property name Value type Mandatory Access mode Description
rt array: see schema No Read Only Resource Type of
the Resource
n multiple types: see No Read Write
schema
urlinfo array: see schema Yes Read Only Information on the
location of the
Introspection Device
Data (IDD).
id multiple types: see No Read Write
schema
if array: see schema No Read Only The OCF Interfaces
supported by this
Resource
A.5.6 CRUDN behaviour

Table A.9 defines the CRUDN operations that are supported on the "oic.wk.introspection" Resource
Type.

Table A.9 — The CRUDN operations of the Resource with type "rt" = "oic.wk.introspection".

Create Read Update Delete Notify

get observe

A.6 Platform

A.6.1

Known Resource that is defines the Platform on which an Server is hosted.
Allows for Platform specific information to be discovered.

Introduction

A.6.2 Well-known URI
/oic/p
A.6.3 Resource type

The Resource Type is defined as: "oic.wk.p".

A.6.4 OpenAPI 2.0 definition
{

"'swagger': "2.0",

“info": {

“title": "Platform”,
"version': '2021-02-02",

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 150

"license": {
"name': "OCF Data Model License",
url™:
“"https://github.com/openconnectivityfoundation/core/blob/e28a9e0a92e17042ba3e83661e4cOfbce8bdcdbasL1
Inc. All rights

CENSE.md",
""x-copyright': ""Copyright 2016-2019, 2021 Open Connectivity Foundation,

reserved."
3,
ermsOfService': "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md"

¥,
"'schemes': [“"http"],
"consumes': ["application/json'],

"produces™: [“application/json'],

"paths": {
“/oic/p” : {
nget”: {
"description': "Known Resource that is defines the Platform on which an Server is

hosted.\nAllows for Platform specific information to be discovered.\n",

“parameters': [
{"$ref": "#/parameters/interface"}
1

"responses': {
"200": {
"description” : """,
"x-example": {
"'54919CA5-4101-4AE4-595B-353C51AA983C"",

Ypit:
rt': [oic.wk.p"],

“"mnmn™: "Acme, Inc"

}

T,
chema™: { "$ref": "#/definitions/Platform™ }

3
3
}
1.
"parameters': {
"interface" : {
"in" - "query",
“name" : “if",

“type" : “string"”,
"enum" : [oic.if.r", "oic.if.baseline']

}
1.
"definitions'": {
"Platform” : {
"properties': {
“rt" o {
"description': "Resource Type of the Resource",
"items": {
enum': [oic.wk.p"],
“type': "string",
“"maxLength': 64
T
“"minltems': 1,
uniqueltems': true,
“readOnly*: true,
"type'': "array"

it :
“pattern”: "A[a-FA-FO-9]{8}-[a-FA-FO-9]{4}-[a-FA-FO-9]{4}- [a-FA-FO-9]{4}-[a-FA-FO-

9]1{12}%",
“type': "string",
“description': "Platform ldentifier"”,

“readOnly': true

¥
“mnfvt o {
"description': "Manufacturer®s firmware version",
"maxLength": 64,
"readOnly": true,
""type': "'string"
"vidt : {
. All rights Reserved 151

Copyright Open Connectivity Foundation, Inc. © 2016-2022

"description': "Manufacturer®"s defined information for the Platform. The content i

freeform, with population rules up to the manufacturer",
"maxLength*: 64,
“readOnly': true,
"type': "string"

“mnmn** : {
"description’: "Manufacturer name",
"maxLength": 64,
"readOnly": true,
“type': "string”

“"mnmo** : {
"description’: "Model number as designated by the manufacturer™,
"maxLength™: 128,
"readOnly': true,
""type'': "string"

“mnhw' = {
""description’: "Platform Hardware Version",
"maxLength': 64,
“readoOnly': true,
"type'': "string"”

"mnos" : {
"description’: "Platform Resident OS Version",
"maxLength*: 64,
“readOnly': true,
"type': "string"

“mndt” @ {
"pattern™: "~([0-91{4})-(1[0-2]10[1-9])-(3[0-1]]2[0-9]]1[0-9]I0[1-9])%",
"type': "string",
""description': "Manufacturing Date.",
“readOnly': true

},
"id" - {

“$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-
schema. json#/definitions/id"

}

“mnsl*™ @ {

"description': "Manufacturer®s Support Information URL",
"format': "uri",

"maxLength': 256,

“readOnly': true,

"type'': "string"

“mnpv"" 1 {
"description': "Platform Version",
"maxLength*: 64,
“readOnly": true,
"type': "string"

st oo {
""description’: "The date-time format pattern according to IETF RFC 3339.",
"format": "date-time",
"readOnly': true,
type'': "'string"
"n" - {
“$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-
schema. json#/definitions/n"

}

“maml*t o {
"description”: "Manufacturer"s URL",
“format": "uri",

"maxLength': 256,
"readOnly™: true,
""type": "string"

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

152

"mnsel" : {
"description”: "Serial number as designated by the manufacturer™,
"maxLength*: 64,
“readOnly': true,
"type': "string"

B & -
""description’: "The OCF Interfaces supported by this Resource",
"items": {
"enum': [
“oic.if.r,
"oic.if._baseline"”

1

’ype": "'string”,
"maxLength™: 64
}

inltems": 2,
“"readOnly': true,
"uniqueltems': true,
"type': "array"

}

“mnnct” - {

“description’: "An array of integers and each integer indicates the network connectivity
type based on IANAITfType value as defined by: https://www.iana.org/assignments/ianaiftype-
mib/ianaiftype-mib, e.g., [71, 259] which represents Wi-Fi and Zigbee.",

"items': {
“type': "integer",
“minimum': 1,
""description: "The network connectivity type based on IANAIfType value as defined by:
https://www. iana.org/assignments/ianaiftype-mib/ianaiftype-mib."

"minltems”: 1,
"readOnly": true,
"type': "array”

}

ype" : "object",
“required”: [“pi*, "mnmn']
}
b
3

A.6.5 Property definition
Table defines the Properties that are part of the "oic.wk.p" Resource Type.

Table A.10 — The Property definitions of the Resource with type "rt" = "oic.wk.p".

Property name Value type Mandatory Access mode Description
rt array: see No Read Only Resource Type of the Resource
schema
pi string Yes Read Only Platform Identifier
mnfv string No Read Only Manufacturer's firmware version
vid string No Read Only Manufacturer's defined information for the

Platform. The content is freeform, with
population rules up to the manufacturer

mnmn string Yes Read Only Manufacturer name

mnmo string No Read Only Model number as designated by the
manufacturer

mnhw string No Read Only Platform Hardware Version

mnos string No Read Only Platform Resident OS Version

mndt string No Read Only Manufacturing Date.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 153

id multiple types: | No Read Write
see schema
mnsl string No Read Only Manufacturer's Support Information URL
mnpv string No Read Only Platform Version
st string No Read Only The date-time format pattern according to
IETF RFC 3339.
n multiple types: | No Read Write
see schema
mnml string No Read Only Manufacturer's URL
mnsel string No Read Only Serial number as designated by the
manufacturer
if array: see No Read Only The OCF Interfaces supported by this
schema Resource
mnnct array: see No Read Only An array of integers and each integer
schema indicates the network connectivity type
based on IANAIfType value as defined by
https://www.iana.org/assignments/ianaiftype-
mib/ianaiftype-mib, e.g., [71, 259] which
represents Wi-Fi and ZigBee.
A.6.6 CRUDN behaviour

Table A.11 defines the CRUDN operations that are supported on the "oic.wk.p" Resource Type.

Table A.11 — The CRUDN operations of the Resource with type "rt" ="oic.wk.p".

Create

Read

Update

Delete Notify

get

observe

A7

A.7.1

Introduction

Discoverable Resources

Baseline representation of /oic/res; list of discoverable Resources

A.7.2

loic/res

A.7.3

Well-known URI

Resource type

The Resource Type is defined as: "oic.wk.res".

A.7.4 OpenAPI 2.0 definition
{
"'swagger'': ""2.0",
“info": {
“title": "Discoverable Resources",

"version': ''2019-04-22",
"license": {
"name": "OCF Data Model License",

"url': "https://openconnectivityfoundation.github.io/core/LICENSE.md",

""x-copyright': "Copyright 2016-2019 Open Connectivity Foundation,

Inc. All rights reserved."

"iermsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md"

"échemes": [
“http"
1.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 154

"consumes': [
"application/json"

"6roduces": L
"application/json"

"paths™: {
"/oic/res?if=oic.if.11": {
"get”: {
"description': "Links list representation of /oic/res; list of discoverable Resources\n",

“parameters': [

"$ref": "#/parameters/interface-all”
3
1.
“responses': {
"200": {
“description” : "',
"x-example": [
"href'": "/oic/res",
rt't: ["oic.wk.res™],
i [oic.if.1l", "oic.if.b", "oic.if.baseline],
"rel": [“self'],
"p': {"bm": 3},
“eps': [
{"ep": "coaps://[fe80::b1ld6]:1122"} 1
3.
{
“"href'": "/humidity",
rtt: [oic.r.humidity"],
if [oic.if.s", "oic.if._baseline"],
"p': {"bm": 3},
“eps": [
{""ep": "coaps://[fe80::b1d6]:1111", “pri‘: 2},
{"ep": "coaps://[fe80::bld6]:1122"},
{"ep": "coaps+tcp://[2001:db8:a::123]:2222", "pri": 3}
]
3.
{
"href': "/temperature",
rt't: ["oic.r.temperature],
tif [oic.if.s", "oic.if.baseline"],
"p': {"bm": 3},
“eps': [
{"ep": "coaps://[[2001:db8:a::123]:2222"}
1
3
1.
"schema': {
"$ref'': "#/definitions/slinklist"”
b
3
3
}
}.
"/oic/res?if=oic.if.b" : {
"get: {
"description”: "Batch representation of /oic/res; list of discoverable Resources\n",
“parameters': [
{"$ref": "#/parameters/interface-all"}
1.
"responses: {
"200": {
"description” : "',

"x-example': [

“"href'": "/humidity",

"rep":{
rt't: [oic.r_humidity"],
“humidity": 40,
"desiredHumidity": 40

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 155

}

}s
{
“href': "/temperature’,
"rep”:{
rt': ["oic.r._.temperature'],

"temperature’: 20.0,
“units": "c"

3
3
1.
“"'schema': { "$ref": "#/definitions/sbatch" }
3
3
}
¥,
"/oic/res?if=oic.if.baseline": {
“get: {
"description”: "Baseline representation of /oic/res; list of discoverable Resources\n",
"parameters': [
"$ref": "#/parameters/interface-all”
3
1.
"responses': {
"200": {
“description*: ",
“x-example: [
"rt": ["oic.wk.res"],
“if: [Moic.if. 11", "oic.if.b", "oic.if._baseline™],
"links": [
“href": "/humidity",
ret: [foic.r.humidity'],
i [oic.if.s", "oic.if._baseline"],
ph: {"bm": 3},
“eps': [
{"ep": "coaps://[fe80::b1d6]:-1111", "pri‘: 2},
{"ep": "coaps://[fe80::b1d6]:1122"},
{"ep": "coap+tcp://[2001:db8:a::123]:2222", "pri'': 3}
]
3.
{
"href'": "/temperature",
rt't: ["oic.r.temperature™],
i [oic.if.s", "oic.if._baseline"],
"p*: {"bm": 3},
“eps': [
{"ep": "coaps://[[2001:db8:a::123]:2222"}
1
3
1
3
1.
"'schema': {
"$ref: "#/definitions/sbaseline”
¥
}
3
3
3
}.

"parameters': {
"interface-all': {
in'": "query",
“name': "if",
"type'': ''string",
"enum": [Toic.if.ll", "oic.if.b", "oic.if.baseline']
}
T

"definitions": {

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

156

"oic.oic-link": {
"type': "object",
“properties': {

"anchor': {

"$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-
schema. json#/definitions/anchor™

3.
“dit: {

"$ref:

"https://openconnectivityfoundation.github. io/core/schemas/oic.links._properties.core-
schema. json#/definitions/di"

T,

"eps': {

“$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.links._properties.core-
schema. json#/definitions/eps"

}.
“href': {

"$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-
schema. json#/definitions/href"

¥,
ifts {
""description’: "The OCF Interfaces supported by the Linked Resource",
"items": {
“enum': [
"oic.if._baseline”
"oic. II"
"oic.
“oic.
"oic.
"oic.
"oic.1i
1.)
“"type'': ''string",
"maxLength: 64

}.

"minltems™: 1,

"uniqueltems': true,

"type': "array"

SRS H A
U

(/)9)1

"ins": {
"$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-
schema. json#/definitions/ins™

}.

"$ref':
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-
schema. json#/definitions/p™

}.
"rel": {

"description”: "The relation of the target URI referenced by the Link to the context URI",

"oneOf": [
{

"$ref':
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-
schema. json#/definitions/rel_array"

}.

{
“$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.links._properties.core-
schema. json#/definitions/rel_string"”

}
1
rets
""description': "Resource Type of the Linked Resource",
"items': {

“"maxLength': 64,
"type'': "string"”

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 157

}

inltems™: 1,
“uniqueltems™: true,
"type'': "array"

¥,
“title": {
"$ref':

"https://openconnectivityfoundation.github. io/core/schemas/oic.

schema. json#/definitions/title"”

}

"type": {
"$ref:

"https://openconnectivityfoundation.github. io/core/schemas/oic.

schema. json#/definitions/type"

3,

"tag-pos-desc': {
"$ref:

"https://openconnectivityfoundation.github. io/core/schemas/oic.

schema. json#/definitions/tag-pos-desc"
¥,
"tag-pos-rel': {
“$ref:

"https://openconnectivityfoundation.github.io/core/schemas/oic.

schema. json#/definitions/tag-pos-rel”

}

’ag—func—desc": {
“$ref:

"https://openconnectivityfoundation.github. io/core/schemas/oic.

schema. json#/definitions/tag-func-desc"
3
T,
“"required": [
"href",
rt,
i
1
3.
“slinklist": {
"type" : "array',
“readOnly": true,
"items": {
“$ref'': "#/definitions/oic.oic-link"
}

baseline": {
"type': "array",
"minltems": 1,
"maxltems': 1,
“items": {
"type': "object",
“properties™: {
e

}

: {
“"$ref':

"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-

schema. json#/definitions/n™
3,
vides
“$ref:

"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-

schema. json#/definitions/id"

T,
ret: {
"description”: "Resource Type of this Resource",
“items": {
"enum": ["oic.wk.res'],
type': "string",
“"maxLength': 64
¥

inltems": 1,
“readOnly": true,
“uniqueltems': true,
""type': "array"

_properties.

_properties.

-properties.

.properties.

.properties.

core-

core-

core-

core-

core-

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

158

if': {
"description’”: "The OCF Interfaces supported by this Resource",
"items": {
“"enum": [
"oic. 1
“oic.
"oic.1

11",
f.b",
f.baseline"

1

,ype": "'string",
"maxLength": 64
}

inltems": 2,
"readOnly': true,
"uniqueltems": true,
"type': "array"

"links": {
""type'': "array",
"items': {
"$ref: "#/definitions/oic.oic-link"
3
3,
"sduuid": {

"description: "A UUID that identifies the Security Domain.",
"type': "string",
“pattern’: "~[a-fA-F0-9]{8}-[a-fA-F0-9]1{4}-[a-fA-F0-9]{4}-[a-fA-FO-9]{4}-[a-fA-FO-

91{12}$",
"readOnly': true
3,
"sdname™: {
“"description’: "Human-friendly name for the Security Domain.",
""type': "string",
"readOnly': true
}
T,
"required": [
re,
i,
"“links"
1
3
}.
"'sbatch” : {
"type"™ : "array",
“minltems” : 1,
“items" : {

"type'': "object",
"additionalProperties': true,
"properties": {
“href": {
“$ref:
"https://openconnectivityfoundation.github. io/core/schemas/oic.links.properties.core-
schema. json#/definitions/href"

}.
"rep”: {
"oneOf"': [
{
"description”: "The response payload from a single Resource",
"type': "object”
1
{
“description”: " The response payload from a Collection (batch) Resource",
“items': {
"$ref’: "#/definitions/oic.oic-link"
T
""type': "array"
1
}

}

",equired": [

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 159

"href",
"rep”

A.7.5 Property definition
Table A.12 defines the Properties that are part of the "oic.wk.res" Resource Type.

Table A.12 — The Property definitions of the Resource with type "rt" = "oic.wk.res".

Property name Value type Mandatory Access mode Description
anchor multiple types: see No Read Write
schema
di multiple types: see No Read Write
schema
eps multiple types: see No Read Write
schema
href multiple types: see Yes Read Write
schema
if array: see schema Yes Read Write The OCF Interfaces
supported by the
Linked Resource
ins multiple types: see No Read Write
schema
p multiple types: see No Read Write
schema
rel multiple types: see No Read Write The relation of the
schema target URI
referenced by the
Link to the context
URI
rt array: see schema Yes Read Write Resource Type of
the Linked Resource
title multiple types: see No Read Write
schema
type multiple types: see No Read Write
schema
tag-pos-desc multiple types: see No Read Write
schema
tag-pos-rel multiple types: see No Read Write
schema
tag-func-desc multiple types: see No Read Write
schema
n multiple types: see No Read Write
schema
id multiple types: see No Read Write
schema
rt array: see schema Yes Read Only Resource Type of
this Resource
if array: see schema Yes Read Only The OCF Interfaces

supported by this
Resource

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 160

links array: see schema Yes Read Write

sduuid string No Read Only A UUID that
identifies the
Security Domain.

sdname string No Read Only Human-friendly
name for the
Security Domain.

href multiple types: see Yes Read Write
schema

rep multiple types: see Yes Read Write
schema

A.7.6 CRUDN behaviour
Table A.13 defines the CRUDN operations that are supported on the "oic.wk.res" Resource Type.

Table A.13 — The CRUDN operations of the Resource with type "rt" = "oic.wk.res".

Create Read Update Delete Notify

get observe

A.8 MQTT configuration

A.8.1 Introduction
The Resource through which the MQTT server information can be set.

A.8.2 Example URI
/mgttconfResURI

A.8.3 Resource type
The Resource Type is defined as: "oic.r.mqtt.conf".

A.8.4 OpenAPI 2.0 definition
{

"swagger: "2.0",
"info": {
“title”: "MQTT configuration®”,
"version": "2022-01-11",
"“license": {
"name': "OCF Data Model License",
turl':
"https://github.com/openconnectivityfoundation/core/blob/e28a9e0a92e17042ba3e83661e4cOfbce8bdc4basLl
CENSE.md",
""x-copyright': ""Copyright 2022 Open Connectivity Foundation, Inc. All rights reserved."

"iermsOfService": "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md"
¥
""'schemes': ["'http'],

"consumes': [“application/json'],
“produces™: [“application/json'],

"paths': {
"/mgttconfResURI" : {
"get'": {
"description”: "The Resource through which the MQTT server information can be set.\n",

“parameters': [
{"$ref'"’: "#/parameters/interface-all"}
1

’esponses": {
200" {

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 161

"description" :
"x-example: {
rtt: ["oic.r.mgtt.conf"],
"'server': "y
"'port': 8,
"kai"™ : 60,
“urd™ - ",
“pwd'" - "™
"'cacert"” :
"clcert” :@ "',
"log" : "not connected",
“'crcode" : -1

e
"schema": { "$ref": "#/definitions/mgttconf" }

}
3
1.
"post: {
"description”: "Set information to connect to an MQTT server\n",
"parameters': [
{"$ref": "#/parameters/interface-all"},
{
“name': “‘body",
"in": "body",
"required": true,
"schema": { "$ref": "#/definitions/mgttconf" },
"x-example™: {
“'server': "test.mosquitto.org"”,
"port': 1883 ,
"kai" : 60
¥
3
1.
"responses': {
"200": {
"description™ : "',
""x-example': {
rt't: ["oic.r.mgtt.conf"],
"'server': "test.mosquitto.org"”,
"port': 8,
"kai" : 60,
“urd™ - "M,
“pwd™ oz "Mtt,
‘cacert” : "',
"clcert" :@ "',
"log"™ : "connected",
“'crcode™ : O

T,
"schema': { "$ref'": "#/definitions/mqttconf" }

}
}
}
}

arameters™: {
"“interface-all™ : {
"in" : "query",
“name* : “if",
“"type'" : “'string",
“enum" : [Moic.if.rw", "oic.if.baseline']

}

}
T,
“definitions": {
"mgttconf" : {
"properties': {

"server'” : {
"description': "The connection information of the MQTT server. Can be a URI or IP
address",
""type'': "string"
“port" : {
""description': "The port to connect too",

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 162

"type'': "integer"
T

",ai" - {
"description’: "The
"type'': "integer"

"id" ;|
""description’: "The
"type'': "string"

"5Wd" - {
""description’: "The
""type'': "string"

¥

“cacert” : {
""description’: "The

the MQTT server",
""type'': "string"

“clcert"”

: {
"description': "The
""type'': "string"

"iog" - {
"description': "Logg

defined”

"type'': "string"

crcode" : {
""description’: "MQTT
-1 indicates "not yet connecte
"type'': "integer"
T,
ret o:
"description': "Reso
"items": {
"enum': ["oic.r.mq
"type'': 'string",
"maxLength": 64
}

inltems": 1,
"uniqueltems™: true,
“readOnly': true,
""type'': "array"

3,
“id" o {
"$ref':
"https://openconnectivityfound
schema. json#/definitions/id"

3,

e g

"$ref:

"https://openconnectivityfound
schema. json#/definitions/n"

T,

“if oo {
""description': "The
"items": {

“enum": [
“oic.if.rw",
"oic.if.baseline

1.

“type'': “'string",

"maxLength": 64

¥

inltems": 1,
“readOnly': true,
"uniqueltems': true,
"type': "array"

}

’ype" : "object",

Copyright Open Connectivity

keep alive interval, in seconds",

user id to be supplied when connecting to the MQTT server',

password to be supplied when connecting to the MQTT server",

certificate authority certificate to be supplied when connecting to

client certificate to be supplied when connecting to the MQTT server",

ing information, giving status information back, formatting not

connection reason codes, see MQTT v5 table 3-1 for values. note that
dr "

urce Type of the Resource",

tt.conf"],

ation.github. io/core/schemas/oic.common.properties.core-

ation.github. io/core/schemas/oic.common.properties.core-

OCF Interfaces supported by this Resource",

Foundation, Inc. © 2016-2022. All rights Reserved 163

“required": [“server", "port']

}
¥
¥

A.8.5 Property definition

Table A.14 defines the Properties that are part of the "oic.r.mqtt.conf" Resource Type.

Table A.14 — The Property definitions of the Resource with type "rt"

"oic.r.mqtt.conf".

Property name

Value type

Mandatory

Access mode

Description

server

string

Yes

Read Write

The connection
information of the
MQTT server. Can
be a URI or IP
address

port

integer

Yes

Read Write

The port to connect
too

kai

integer

No

Read Write

The keep alive
interval, in seconds

uid

string

No

Read Write

The user id to be
supplied when
connecting to the
MQTT server

pwd

string

No

Read Write

The password to be
supplied when
connecting to the
MQTT server

cacert

string

No

Read Write

The certificate
authority certificate
to be supplied when
connecting to the
MQTT server

clcert

string

No

Read Write

The client certificate
to be supplied when
connecting to the
MQTT server

log

string

No

Read Write

Logging information,
giving status
information back,
formatting not
defined

crcode

integer

No

Read Write

MQTT connection
reason codes, see
MQTT v5 table 3-1
for values. note that
-1 indicates 'not yet
connected'

rt

array: see schema

No

Read Only

Resource Type of
the Resource

multiple types: see
schema

No

Read Write

multiple types: see
schema

No

Read Write

array: see schema

No

Read Only

The OCF Interfaces
supported by this
Resource

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 164

A.8.6 CRUDN behaviour

Table defines the CRUDN operations that are supported on the "oic.r.mqtt.conf" Resource Type.

Table A.15 — The CRUDN operations of the Resource with type "rt" = "oic.r.mqtt.conf".

Create Read Update Delete Notify

get post observe

A.9 Push Configuration Resources

A.9.1 Introduction

A specialization of a Collection that contains only instances of "oic.r.notificationselector” composed
with "oic.r.pushproxy". Each instance of them includes filtering parameters for the Resources to be
pushed and Target Resource to which updated Resource of origin Server will be pushed.

A.9.2 Well-known URI
None

A.9.3 Resource type
The Resource Type is defined as: "oic.r.pushconfiguration”.

A.9.4 OpenAPI 2.0 definition

"swagger: "2.0",
"info": {
“title": "Push Configuration”,
"version": "2022-06-15",
"license": {
"name': "OCF Data Model License",
turl':
"https://github.com/openconnectivityfoundation/core/blob/e28a9e0a92e17042ba3e83661e4cOfbce8bdc4bar/L 1l
CENSE.md",
""x-copyright': "Copyright 2019 Open Connectivity Foundation, Inc. All rights reserved."

"termsOfService': "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md"
¥

"’chemes": [
“http"

1

onsumes': [
"application/json”

1

’roduces": L
"application/json"

1,
"paths": {
*"/PushConfigurationResURI" : {
"get”: {
"description': "Collection of oic.r.notificationselector with associated push

proxies.\nAllows a Server to be configured with one or more Push Notification destinations.\n",
“parameters': [
{"$ref'"': "#/parameters/interface-11"}

1.
"responses': {
"200": {
"description” : ",
"x-example'™: [
{"href": "/pushconfig/1", "rt": ["oic.r.notificationselector","oic.r.pushproxy'],
"if': [Moic.if.rw","oic.if.baseline"], "eps': [{'"ep'": "coaps://[fe80::b1ld6]:1122"}]},
{"href": "/pushconfig/2", "rt": ["oic.r.notificationselector", "oic.r.pushproxy'"],
"1 [Moic.if.rw”,"oic.if.baseline™], "eps": [{"ep": "coaps://[fe80::b1d6]:1122"}]1}
1.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 165

"schema": { "$ref": "#/definitions/links-in-response" }

ks
}
}
"}PushConfigurationResURI?if:oic.if.baseline" - {
“get: {
""description’: "Collection of oic.r.notificationselector and associated push

proxies.\nAllows a Server to be configured with one or more Push Notification destinations.\n",
"parameters': [

{"$ref": "#/parameters/interface-baseline'}
1,
"responses': {
200" {
“description”™ : ",

""x-example'": {
"rt": ["oic.r.pushconfiguration],
"1 [Moic.if. 11", oic.if.create”,"oic.if._baseline],
"rts'": [Moic.r.notificationselector', "oic.r.pushproxy"],

"links": [
{"href": "/pushconfig/1", "rt": ["oic.r.notificationselector","oic.r._pushproxy'],
i [Moic.if.rw”,"oic.if.baseline], "eps": [{"ep': "coaps://[fe80::b1ld6]:1122"}]},
{"href": "/pushconfig/2", "rt": ["oic.r.notificationselector", "oic.r.pushproxy'],
"if': [Moic.if.rw","oic.if.baseline"], "eps": [{"ep': "coaps://[fe80::bl1d6]:1122"}]1}
1
3,
"schema": { "$ref': "#/definitions/get-baseline-response" }
b
3
}
"}PushConfigurationResURI?if=oic.if.create" - {
"post': {
"description’: "Collection of oic.r._notificationselector and associated push

proxies_\nAllows a Server to be configured with one or more Push Notification destinations.\n",
“parameters': [

"$ref"’: "#/parameters/interface-create”
3.
{
“"$ref’: "#/parameters/body-create"
}
1.
"responses': {
201" {
"description” : "new link and corresponding target Resource are created”,
“x-example: {
"href': "/pushconfig/1",
"rt'": [Moic.r.notificationselector'”, "oic.r.pushproxy'],
"if": [Toic.if.baseline”, "oic.if.rw'"],
"ins': 4213291245,
p: { "bm': 3 3},
"rep": {
"rt": [Toic.r.notificationselector"™, "oic.r.pushproxy"],
“if': [foic.if.rw"”, "oic.if._baseline™],
"phref*: "/myAirquality",
“prtt: [
"oic.r.airquality”
1

"’ushtarget" : "coaps://[2001::200]:49355/pushed-resource-airquality",
"sourcert": [

""oic.r.pushpayload"
1

",tate": "waitingforupdate"
3
T

",chema": { "$ref": "#/definitions/post-create-response” }

}
}
}
¥
}

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 166

“"parameters': {

"interface-baseline” : {
*in" : "query",
“name" : "if",
“type" : "'string",
"enum” : ["oic.if.baseline]
1,
"“interface-11" : {
"in" : "query",
"name" : "if",
“"type'" : “'string",
“enum" : [oic.if.1l1"]
3,
"“interface-create” : {
*in" : “query",
“name" : "if",
"type" : "'string",
"enum" : ["oic.if.create"]
}.
"body-create" : {
"in" : "body",
"name" : "notificationselector-pushproxy",
“required" : true,
"schema" : {
"$ref" : "#/definitions/post-create-request"
T,
"x-example™ : {

“rt": ["oic.r.notificationselector", "oic.r.pushproxy"”],
“if': ["oic.if.rw", "oic.if.baseline"],
“"rep”: {
“phref": "/myFilterResURI",
“prevt: [
"oic.r.airquality"”
1

"pushtarget” : "coaps://[2001::200]:49355/pushed-resource-filter",
"sourcert": [
""oic.r.pushpayload"
1
}
3
3

efinitions": {
"oic.oic-link": {
""type'': "object",
"properties’: {
i {
"description': "The OCF Interface set supported by the target Resource",
"type': "array",
“"minltems': 1,
uniqueltems': true,
“readOnly*: true,
"items'": {
"type': "string",
“"maxLength': 64,

}

“enum": [
"oic.if.baseline"”,
“oic.if.rw”
]
b
1.
"ret: {
"description: "Resource Type of the target Resource",

"type': "array",

“"minltems': 1,

"uniqueltems': true,

“readOnly*: true,

"items": {

"enum': [

"oic.r.notificationselector",
"oic.r.pushproxy"

1.
Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

167

"type': “'string",
"maxLength': 64
¥
T,
"anchor': {
"$ref:

"https://openconnectivityfoundation
schema. json#/definitions/anchor"

}
“dit: {

“$ref:
"https://openconnectivityfoundation
schema. json#/definitions/di"

}.
"eps": {

"$ref':
"https://openconnectivityfoundation
schema. json#/definitions/eps"

}.
“"href': {

"$ref:
"https://openconnectivityfoundation
schema. json#/definitions/href"

¥,
"ins'": {

"$ref:
"https://openconnectivityfoundation
schema. json#/definitions/ins"

T,

" {
“$ref:
"https://openconnectivityfoundation
schema. json#/definitions/p"

T,
“rel": {

"$ref':
"https://openconnectivityfoundation
schema. json#/definitions/rel_array"

}.
"title": {

"$ref:
"https://openconnectivityfoundation
schema. json#/definitions/title"”

T,
"type™: {
“$ref:
""https://openconnectivityfoundation
schema. json#/definitions/type"
3
1.
“required”: [
“href",
rt,
i
1
}.
"links-in-response': {
"type': "array",

-github.

-github.

-github.

-github.

-github.

-github.

-github.

-github.

.github.

io/core/schemas/oic

io/core/schemas/oic

io/core/schemas/oic

io/core/schemas/oic

io/core/schemas/oic

io/core/schemas/oic

io/core/schemas/oic

io/core/schemas/oic

io/core/schemas/oic

“items': {
"$ref'': "#/definitions/oic.oic-link"
}
}.
"'get-baseline-response’” : {
""type" : "object",
"properties': {

rtt: {
""type': "array",
"minltems": 1,
"uniqueltems': true,
"items': {
“type'': "string",
"maxLength™: 64,

Copyright Open Connectivity Foundation, Inc. © 2016-2022

_.links

.links.

.links.

.links.

links.

-links.

.links.

-links.

_links.

.properties.

properties.

properties.

properties.

properties.

properties.

properties.

properties.

properties.

core-

core-

core-

core-

core-

core-

core-

core-

core-

. All rights Reserved

168

"enum': ["oic.r.pushconfiguration']
T
3,
i {
"description”: "The OCF Interface set supported by this Resource",
"type'': "array",
"minltems": 1,
"readOnly': true,
"items": {
"type'': 'string",
"maxLength": 64,
“enum': [
"oic.if. 11",
"oic.if.create"”,
“oic.if.baseline”
1
b
3,
n": {
"$ref':

"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-

schema. json#/definitions/n"
¥,
vides
"$ref':

"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-

schema. json#/definitions/id"
}.
"rts': {
"type'': "array",
"minltems™: 1,
"uniqueltems': true,
"items": {
"type'': 'string",
“"maxLength": 64,
"enum": [
"oic.r.notificationselector",
"'oic.r.pushproxy"
1
3
T,
“links": {
"$ref'': "#/definitions/links-in-response"

}

equired”: [
rt,

i
"links"

}

1
T,
“rep-in-request': {
""type'': "object",
"properties': {
“phref”: {
""description”: "URI of a Resource to be pushed",
"type': "'string",
"maxLength™: 256

}.

“prtt: {
"description': "Resource type(s) of Resource(s) to be pushed",
"type': "array",
"uniqueltems™: true,
"items'": {

"type': "string",
"maxLength': 64
}
}.
"pift: {

""description”: "OCF Interface(s) of Resource(s) to be pushed",
""type': "array",
"uniqueltems': true,

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

169

"items": {
"type'': "'string",
"maxLength': 64

}

T,

"pushtarget': {
""description’: "Points to the target of the UPDATE operation sent as a notifcation”,
"type': "string",

"maxLength": 256
}

ourcert”: {

"description” : "Always set to oic.r.pushpayload",
"type' : "array",

"uniqueltems' : true,

“items" : {

“type'': ''string",
""maxLength': 64,
“"enum"™ : [
"oic.r.pushpayload"
1
3

T,

“state": {

"description': "Current state of the Push Proxy",

"type': "string",

“enum': [
"waitingforprovisioning",
“waitingforupdate",
"waitingforresponse",
"waitingforupdatemitigation”,
"waitingforresponsemitigation®,
“error",

"timeout"

1

}

equired”: [
"pushtarget”,
"'sourcert™
1
1.
"rep-in-response’: {
"type'': "object",
"properties': {
rt': {
""description’: "Resource Type of the target Resource",
""type': "array',
"minltems": 1,
"uniqueltems': true,
"readOnly": true,
"items: {
“enum': [
"oic.r.notificationselector",
"'oic.r._pushproxy"

}

1

ype'': "'string",
"maxLength": 64

}

}.

i {
"description”: "The OCF Interface set supported by the target Resource",
"type': "array",

“minltems": 1,
“"uniqueltems': true,
"readOnly": true,
"items': {
"type'': "'string",
"maxLength": 64,
"enum': [
“oic.if.rw",
"oic.if._baseline"

1

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 170

}

3,

“phref”: {
"description”: "URI of a Resource to be pushed",
"type'': "'string",
"maxLength™: 256

T

“prtt: {
""description': "Resource type(s) of Resource(s) to be pushed",
"type'': "array",
“"uniqueltems': true,
“items'": {
"type'': "'string",
"maxLength': 64
}
T
"pift: {
""description’: "OCF Interface(s) of Resource(s) to be pushed",
""type'': "array",
"uniqueltems': true,
"items': {
"type'': 'string",
"maxLength": 64
3
T
"pushtarget': {
""description’: "Points to the target of the UPDATE operation sent as a notifcation”,
“type': “'string",
"maxLength': 256
T,
“sourcert': {
"description” : "Always set to oic.r.pushpayload",
"type'" : "array",
"uniqueltems" : true,
“items" : {

"type'': "'string",
""maxLength': 64,
“"enum”™ : [

"oic.r.pushpayload"
1

3
T,
"state": {

"description': "Current state of the Push Proxy",

""type": "'string",

“enum': [
“waitingforprovisioning",
"waitingforupdate",
"waitingforresponse",
"waitingforupdatemitigation”,
"waitingforresponsemitigation®,
"error",

"timeout"

1

¥

T
“"required": [

re,

"ifr,

"pushtarget”,

"'sourcert',

"'state”

1

ost-create-request™: {

“type'" : “object",

"properties": {

rt': {

""description': "Resource Type of the target Resource",
"type': "array",
"minltems™: 1,
"uniqueltems': true,

}

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 171

"readOnly': true,
"items': {
“enum': [
"oic.r.notificationselector",
""oic.r.pushproxy"

1

ype': "'string”,
"maxLength': 64
3
¥,
i {
""description’: "The OCF Interface set supported by the target Resource",
""type'': "array",
"minltems™: 1,
“"uniqueltems': true,
"readOnly': true,
"items': {
type'': 'string",
“"maxLength': 64,
"enum": [
"oic.if.rw",
"oic.if._baseline"”
1
3
T
"rep”: {
"$ref'': "#/definitions/rep-in-request”

}

equired”: [
re,
tifr,
“rep”

}

1

}.

"'post-create-response’: {
""type" : "object",
"properties’: {

“href': {

"$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-
schema. json#/definitions/href"

rt': {
""description': "Resource Type of the target Resource",
"type'': "array",
"minltems': 1,
"uniqueltems': true,
"readOnly": true,
"items': {
“enum': [
"oic.r.notificationselector",
"'oic.r.pushproxy"

1

ype': "'string”,
"maxLength': 64
3
}.
i {
"description': "The OCF Interface set supported by the target Resource",
"type': "array",
“"minltems': 1,
"uniqueltems™: true,
“readOnly': true,
"items": {
“type': "string",
“"maxLength': 64,
"enum": [
"oic.1i
"oic.1i
]
b

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

172

T,
"ins'": {
"$ref:
"https://openconnectivityfoundation.github. io/core/schemas/oic.links.properties.core-
schema. json#/definitions/ins"

3
pr {
"$ref':
"https://openconnectivityfoundation.github.io/core/schemas/oic.links._properties.core-
schema. json#/definitions/p"

3,
“rep”: {
"$ref'': "#/definitions/rep-in-response”
}
}

“required”: [
"href",
rte,

i,
"ins',
“rep"”
1
}
¥
¥

A.10 Composition Resource of Notification Selector and Push Proxy

A.10.1 Introduction

Each instance of composition Resource of Notification Selector and Push Proxy includes filtering
parameters for the Resources to be pushed and Target Resource to which updated Resource of
origin Server will be pushed.

A.10.2 Well-known URI
None

A.10.3 Resource type
The Resource Type is defined as: ["oic.r.pushconfiguration”, "oic.r.pushproxy"]

A.10.4 OpenAPI 2.0 definition

{
‘'swagger'': ""2.0",
"info'": {
“title": "Notification Selector-Push Proxy",

“'version': ""2022-06-15",
“license'": {

"name': "OCF Data Model License",

“url':
"https://github.com/openconnectivityfoundation/core/blob/e28a9e0a92e17042ba3e83661e4cOfbce8bdcdbarsLl
CENSE.md",

""x-copyright': "Copyright 2019 Open Connectivity Foundation, Inc. All rights reserved."

3
"termsOfService': "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md""
¥

’chemes": [
"http"

1

onsumes': [
"“application/json"

“produces™: [
“application/json"

1.
"paths": {
"/NotificationSelectorPushproxyResURI?if=oic.if.rw" - {
"get'": {
"description': "Resource that defines the selector for Push Notifications",

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 173

"parameters': [
{"$ref": "#/parameters/interface-rw"}
]

esponses': {

"200": {
"description™ : "
"x-example':

"oic.r.airquality”

,ushtarget" : "coaps://[2001::200]:49355/pushed-resource-airquality’,
"sourcert": [

"'oic.r.pushpayload"

1.
"state': "waitingforupdate"
3,
"schema": { "$ref": "#/definitions/get-nspp-rw-response’ }
}
¥
3,
"post”: {
“"description’: "Updates the current notification selector information.\n",
"parameters': [
{ "$ref'": "#/parameters/interface-rw" },

{ "$ref'": "#/parameters/body-update" }
]

“responses': {
204" {
"description” : "the notification selector-push proxy is updated successfully\n"
}
}
b
}

NotificationSelectorPushproxyResURI?if=oic.if.baseline” : {
nget': {

"description': "Resource that defines the selector for Push Notifications",
“parameters': [

{"$ref: "#/parameters/interface-baseline'}
1

esponses': {

"200": {
“description” : """
"x-example': {

"rt": [“oic.r.notificationselector”, "oic.r.pushproxy'],
“if': [foic.if.rw"”, "oic.if_baseline™],
“phref: "/myAirquality",
"pret: [
"oic.r.airquality”
1.
"pushtarget” : "‘coaps://[2001::200]:49355/pushed-resource-airquality",
“sourcert'": [

"oic.r.pushpayload"

1.
"state': "wailtingforupdate™
3,
“"'schema: { "$ref": "#/definitions/get-nspp-baseline-response’ }
3
¥
¥
¥
3,
“"parameters': {
"“interface-rw" : {
"in" : "query",
"name" : "if",
"type'" : "string",
"enum" : [Moic.if.rw']
3,
“interface-baseline” : {
"in" : "query",
“"name" : "if",

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 174

“type” : "string”,

"enum" : [“oic.if.baseline™]

3.

"body-update': {
“name': "notificationselector-pushproxy",
"in": "body",

“required”: true,
“schema': { "$ref'": "#/definitions/post-nspp-rw-request"” },
"x-example": {
“phref": "/myFilterResURI",
“pushtarget” : "coaps://[2001::200]:49355/pushed-resource-filter",
“sourcert': [
""oic.r._pushpayload"

1
}
¥
T,
"definitions': {
"'get-nspp-baseline-response” : {

"type'': "object",
"properties': {

“rtt: {
""description': "Resource Type of the Resource',
"items'": {

"enum': ["oic.r.notificationselector', "oic.r.pushproxy'],

"type': "string",

“"maxLength': 64
T,
“"minltems': 1,
"uniqueltems': true,
“readOnly™: true,
"type'': "array"

1,
mif {
“"description”: "The interface set supported by this resource",
"items": {
"enum': [
“oic.if.rw",
"oic.if.baseline"

1

ype'': "'string”,
"maxLength': 64
3
"minltems": 1,
"readOnly": true,
"uniqueltems': true,
"type': "array"

s
“$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-
schema. json#/definitions/n"
},
"idT: {
“$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-
schema. json#/definitions/id"

}.
"phref” : {

"$ref':
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-
schema. json#/definitions/href"

}.
“prtt: {

"description': "Resource Type(s) of the Resource(s) to be pushed",
"type': "array",
"items" : {

“"type'" : ''string",

"maxLength': 64
}

1.
Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 175

inltems"™ :© 1

i {
description”: "The OCF Interface(s) of the Resource(s) to be pushed”,

"type'': "array",
“items": {
"type" : "string",
“enum" : [“oic.if.baseline', "oic.if_11", "oic.if.b", "oic.if.Ib", "oic.if.rw",
“oic.if.r", "oic.if.a", "oic.if.s"]
T,
"minltems": 1

}

“pushtarget”: {
""description': "Points to the target of the UPDATE operation sent as a notification”,

""type'': "'string",
"maxLength™: 256

}.
“sourcert": {
"description” : "Always set to oic.r._pushpayload",
"type' : "array",
"uniqueltems" : true,
"items" - {
"type'': "string",
""maxLength': 64,
“enum" : [
"oic.r.pushpayload"
1
3
}.
“state": {

"description': "Current state of the Push Proxy",

"type': "'string",

“enum': [
"waitingforprovisioning",
"waitingforupdate",
"waitingforresponse’,
“"waitingforupdatemitigation”,
"waitingforresponsemitigation”,
error’,

"timeout"

]

3

1.

“required”: [
re,
“ifr,

"pushtarget”,

"'sourcert',

"'state"

1
}.
"'get-nspp-rw-response’ : {

“type'': "object",
“properties': {
"phref" - {
$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties

schema. json#/definitions/href"

-core-

“pretr {
“"description”: "Resource Type(s) of the Resource(s) to be pushed”,
"type'': "array",
"items" - {
“type" : “string",
"maxLength™: 64
T,
"minltems™ : 1

3.
Upift: {
"description”: "The OCF Interface(s) of the Resource(s) to be pushed”,

"type': "array",
"items': {
"type" : "string",
Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 176

“"enum" : [“oic.if_.baseline', "oic.if_I1l", "oic.if.b", "oic.if.Ib", "oic.if.rw",
"oic.if.r", "oic.if.a", "oic.if.s"]

}

inltems": 1

}

ushtarget': {

""description’: "Points to the target of the UPDATE operation sent as a notification”,
"type': "'string",

"maxLength": 256

Y
“sourcert": {
"description” : "Always set to oic.r._pushpayload",
"type'" : "array",
"uniqueltems' : true,
“items" : {

"type'': "'string",
""maxLength': 64,
“"enum"™ : [

""oic.r.pushpayload"
1

¥
T,
“state": {

"description': "Current state of the Push Proxy",

"type': "string",

“enum': [
"waitingforprovisioning",
“waitingforupdate",
"waitingforresponse",
"waitingforupdatemitigation”,
"waitingforresponsemitigation®,
“error",

"timeout"

1

}

’equired": L
"pushtarget”,

}

"'sourcert',
"'state"
1
}.
"'post-nspp-rw-request"” : {

""type'': "object",
"properties': {
“phref" : {

"$ref:
"https://openconnectivityfoundation.github.io/core/schemas/oic.links.properties.core-
schema. json#/definitions/href"

T,
“prev: {

""description’: "Resource Type(s) of the Resource(s) to be pushed",
""type'': "array",
"items" : {

“type' : "string"”,

"maxLength": 64
T

inltems™ - 1
}.
pift: {

"description”: "The OCF Interface(s) of the Resource(s) to be pushed",
"type': "array',
"items': {
“type'" : ''string",
"enum" : [“oic.if.baseline”, "oic.if.11", "oic.if.b", "oic.if.lb", "oic.if.rw",
“oic.if.r", "oic.if.a", "oic.if.s"]
}.
"minltems": 1

}

ushtarget': {
"description': "Points to the target of the UPDATE operation sent as a notification",
"type': "string",

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 177

"maxLength': 256

¥,
“sourcert': {
"description” : "Always set to oic.r.pushpayload",
“type" : “array",
"uniqueltems" : true,
"items™ - {

“type'': "string",
"maxLength": 64,
"enum"™ : [
"oic.r.pushpayload"
1
3

T,

"state'": {

"description': "Current state of the Push Proxy",

""type'': "'string",

“enum': [
"waitingforprovisioning",
"waitingforupdate",
"waitingforresponse",
"waitingforupdatemitigation”,
"waitingforresponsemitigation”,
"error",

"timeout"

1

¥

}.

“"required": [
"pushtarget”,
"'sourcert™

1
¥

3

}

A.11 Push Receiver Resource

A.11.1 Introduction
The Resource through which a Device can be configured as a target Server for push notifications.

A.11.2 Well-known URI
None

A.11.3 Resource type
The Resource Type is defined as: "oic.r.pushreceiver"”

A.11.4 OpenAPIl 2.0 definition

{
"'swagger'': ""2.0",
"info": {
"title": "Push Receiver",

"'version": "2022-06-15",
"license": {
"name': "OCF Data Model License",
turl':
"https://github.com/openconnectivityfoundation/core/blob/e28a9e0a92e17042ba3e83661e4cOfbce8bdc4basLl
CENSE.md",
"x-copyright': "Copyright 2019 Open Connectivity Foundation, Inc. All rights reserved."

"termsOfService': "https://openconnectivityfoundation.github.io/core/DISCLAIMER.md"

T
"'schemes": ["'http'],
"consumes': [“application/json],
“produces™: [“application/json'],
"paths': {

""/PushReceiverResURI": {

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 178

"get”: {
"description': "Resource that defines the receiver for Push Notifications",
“parameters': [

"$ref'': "#/parameters/interface-rw"

3
1.
“responses': {
"200": {
"description': "',
"x-example™: {
“receivers': [
{
"receiveruri': "/mylocaltargeturiforthermostats",
"rts'": [Moic.r.temperature’, "oic.r.humidity']
3
{
"receiveruri': "/mylocaltargeturifordontcare",
"rts': [
1
T,
“'schema: { "$ref": "#/definitions/get-rw-response" }
3
3
1.
"post”: {
"description”: "replace whole push receiver objects\n",
"parameters': [
{ "$ref'": "#/parameters/interface-rw" },
{ "$ref'": "#/parameters/body-receivers-update” }
1.
"responses': {
204" {
"description”: "whole receiver objects are replaced successfully\n"
b
3
T
“delete": {
"description’: "delete whole push receiver objects\n",
"parameters': [
"$ref"’: "#/parameters/interface-rw"
3
1.
"responses': {
204" {
"description': "whole receiver objects are removed successfully\n"
3
}
¥
T
""/PushReceiverResURI?receiveruri=<uri>": {
"post': {
"description’: "Updates a push receiver object which has ~“receiveruri ™ \n",
“parameters': [
{ "$ref'': "#/parameters/interface-rw" },
{ "$ref'": "#/parameters/receiveruri’ },
{ "$ref": "#/parameters/body-receiver-update” }
1.
"responses': {
204" {
"description': "a receiver object is updated successfully\n"
¥
3
T,
"delete'": {
"description’: "delete a push receiver object which has “receiveruri \n",
"parameters": [
{ "$ref": "#/parameters/interface-rw" },
{ "$ref": "#/parameters/receiveruri’ }
1.

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 179

"responses': {

204" {
"description’: "a receiver object was removed successfully\n"
}
}
}
"'/PushReceiverResURI?if=oic.if._baseline": {
"get': {
"description': ""Resource that defines the receiver for Push Notifications",
“parameters': [
{ "$ref": "#/parameters/interface-baseline" }
1.
"responses': {
"200": {
"description’: """,
"x-example™: {
"rt': ["oic.r.pushreceiver'],
"if'": [Moic.if.rw", "oic.if.baseline'],
"receivers": [
{
"receiveruri': "/mylocaltargeturiforthermostats",
"rts': [oic.r.temperature”, "oic.r.humidity']
3
{
"receiveruri': "/mylocaltargeturifordontcare",
“rts': [1
1
T,
"schema": { "$ref'": "#/definitions/get-baseline-response" }
}
}
ks

}

arameters': {
"interface-baseline”: {

"in": "query",

“name”: “if",

"'type'': ''string",

“enum': [“oic.if.baseline']

}

3.
"interface-rw": {
"in": "query",
"name": "if",

“"type': "string",
“enum': [Moic.if.rw"]

"receiveruri': {
"in": “query”,
“name': ‘‘receiveruri’,

""type': "'string"

""body-receiver-update”: {
"in'": "body",
"name': "'receiver",
"required": true,
"'schema™: {
“$ref’: "#/definitions/receiver"

}s
"x-example™: {
“receiveruri': "/mylocaltargeturifordontcare",
"rts": [
}s
"body-receivers-update': {
“in": “body",
“"name': “‘receivers”,

"required": true,
"'schema™: {
"$ref'': "#/definitions/post-rw-request"

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 180

}

-example™: {
“receivers': [

{
"receiveruri': "/mylocaltargeturifordontcare",
rts": [

3.

{
"receiveruri': "/mylocaltargeturifordontcare-2",
"rts": [1

}

1
}
¥

}.
"definitions'": {
"receiver': {
"description’: "a definition of URIs at which push payloads may be received”,
"type'': "object",
"properties': {
"receiveruri': {
“format": "‘uri’,
"type'': "string"

"rts': {
"description: "The list of allowable Resource Types for this instance of a push
receiver",
""type'': "array",
"items': {
"type': "string",
"maxLength': 64
T,
"minltems": O
}
}.
"required": [“receiveruri”, "rts"]

}

eceivers': {
“description': "Definitions of URIs at which push payloads may be received",
"type'': "array",
"items": {
"$ref’: "#/definitions/receiver”
}

"minltems™: 0O

}

et-rw-response™: {
“"type'': "object",
"properties': {
"receivers': {
“$ref'': "#/definitions/receivers”
}
3,
"required"”: [“receivers']

}

et-baseline-response™: {
""type'': "object",
"properties': {
rt': {
""type': "array",
“"minltems™: 1,
"uniqueltems': true,
“items": {
"type'': "'string",
"maxLength": 64,
"enum': [“oic.r.pushreceiver']

}

3.
ifrs {
"description”: "The OCF Interface set supported by this Resource",
"type': "array",
"minltems™: 1,
"readOnly": true,

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 181

"items": {
"type'': "'string",
"maxLength*: 64,

“enum': [oic.if.rw'", "oic.if.baseline™]

b
¥,
"n": {
"$Sref':

"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-

schema. json#/definitions/n"
.
vides
"$ref:

"https://openconnectivityfoundation.github.io/core/schemas/oic.common.properties.core-

schema. json#/definitions/id"

}

eceivers': {
“"$ref'': "#/definitions/receivers”

}

equired”: [
“rt, "if"', "receivers"
1
T
""post-rw-request': {
"type': "object",
“properties': {
“receivers': {
“$ref: "#/definitions/receivers”

}

“required”: [“receivers']

}

}

}
}

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved

182

Annex B
(informative)

OpenAPI 2.0 Schema Extension
B.1 OpenAPI 2.0 Schema Reference
OpenAPI 2.0 does not support allOf and anyOf JSON schema valiation constructs; this document
has extended the underlying OpenAPI 2.0 schema to enable these, all OpenAPI 2.0 files are valid
against the extended schema. Reference the following location for a copy of the extended schema:
— https://github.com/openconnectivityfoundation/OCFswagger2.0-schema
B.2 OpenAPIl 2.0 Introspection empty file

Reference the following location for a copy of an empty OpenAPI 2.0 file:

— https://github.com/openconnectivityfoundation/DeviceBuilder/blob/master/introspection-
examples/introspection-empty.txt

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 183

https://github.com/openconnectivityfoundation/OCFswagger2.0-schema
https://github.com/openconnectivityfoundation/DeviceBuilder/blob/master/introspection-examples/introspection-empty.txt
https://github.com/openconnectivityfoundation/DeviceBuilder/blob/master/introspection-examples/introspection-empty.txt

Annex C
(normative)

Semantic Tag enumeration support
C.1 Introduction
This Annex defines the enumerations that are applicable to defined Semantic Tags.
C.2 '"tag-pos-desc" supported enumeration

Figure C.1 defines the enumeration from which a value populated within an instance of the "tag-
pos-desc” Semantic Tag is taken.

""pos-descriptions™: {

"enum':

["unknown™,*top", " bottom™, " left","right","centre", " topleft”, "bottomleft", "centreleft"
,"'centreright”,"bottomright", "topright', "topcentre", ""bottomcentre']

}

Figure C.1 — Enumeration for "tag-pos-desc" Semantic Tag

Figure C.2 provides an illustrative representation of the definition of the values that can be
represented within an instance of "tag-pos-desc".

= -

bottom

centreleft centre centreright

bottomleft bottomcentre bottomright

Figure C.2 — Definition of "tag-pos-desc" Semantic Tag values
C.3 "tag-loc" supported enumeration

Figure C.3 defines the enumeration from which a value populated within an instance of the "tag-
locn" Semantic Tag is taken.

"locn-descriptions: {

"enum™:

[*unknown,"attic",balcony", " bal lroom", "bathroom","bedroom,*border", *boxroom",*cellar","cloakr
oom",''conservatory","corridor',"deck”, " den",""diningroom", *drawingroom’, "'driveway","'dungeon’,ens
uite","entrance","familyroom","'garage", ""garden’, ""guestroom,"hal 1", " indoor","kitchen","larder","
lawn™,"library","livingroom","lounge",""mancave","'masterbedroom",'musicroom", "office", "outdoor",""

pantry",“parkinglot”, " "parlour’,"patio", "receiptionroom", " restroom”, " roof", " "roofterrace", " sauna",

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 184

“scullery","shed", "sittingroom”,"snug", " spa", " 'studio’, "suite", "'swimmingpool","terrace","toi let",
"utilityroom”, "vegetableplot","ward","yard"]

}

Figure C.3 — Enumeration for "tag-locn" Semantic Tag

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 185

Bibliography
The following are documents that are informatively (but not normatively) referenced herein.

[1] OCF Core - Optional, Information technology — Open Connectivity Foundation (OCF)
Specification — Part 9: Core - Optional specification
Latest version available at:
https://openconnectivity.org/specs/OCF_Core_Optional_Specification.pdf

[2] OCF Easy Wi-Fi Setup, Information technology — Open Connectivity Foundation (OCF)
Specification — Part 7: Wi-Fi Easy Setup specification
Latest version available at: https://openconnectivity.org/specs/OCF_Wi-
Fi_Easy_ Setup_Specification.pdf

Copyright Open Connectivity Foundation, Inc. © 2016-2022. All rights Reserved 186

	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviated terms
	3.1 Terms and definitions
	3.2 Symbols and abbreviated terms

	4 Document conventions and organization
	4.1 Conventions
	4.2 Notation
	4.3 Data types
	4.4 Resource notation syntax

	5 Architecture
	5.1 Overview
	5.2 Principle
	5.3 Functional block diagram
	5.4 Framework

	6 Identification and addressing
	6.1 Introduction
	6.2 Identification
	6.2.1 Device and Platform identification
	6.2.2 Resource identification and addressing

	6.3 Namespace:
	6.4 Network addressing

	7 Resource model
	7.1 Introduction
	7.2 Resource
	7.3 Property
	7.3.1 Introduction
	7.3.2 Common Properties
	7.3.2.1 Introduction
	7.3.2.2 Property Name and Property Value definitions
	7.3.2.3 Resource Type
	7.3.2.4 OCF Interface
	7.3.2.5 Name
	7.3.2.6 Resource Identity

	7.4 Resource Type
	7.4.1 Introduction
	7.4.2 Resource Type Property
	7.4.3 Resource Type definition
	7.4.4 Multi-value "rt" Resource

	7.5 Device Type
	7.6 OCF Interface
	7.6.1 Introduction
	7.6.2 OCF Interface Property
	7.6.3 OCF Interface methods
	7.6.3.1 Overview
	7.6.3.2 Baseline OCF Interface
	7.6.3.2.1 Overview
	7.6.3.2.2 Use of RETRIEVE
	7.6.3.2.3 Use of UPDATE

	7.6.3.3 Links list OCF Interface
	7.6.3.3.1 Overview
	7.6.3.3.2 Use with RETRIEVE
	7.6.3.3.3 Use with NOTIFY
	7.6.3.3.4 Use with CREATE, UPDATE, and DELETE

	7.6.3.4 Batch OCF Interface
	7.6.3.4.1 Overview
	7.6.3.4.2 General requirements for realizations of the batch OCF Interface
	7.6.3.4.3 Observability of the batch OCF Interface
	7.6.3.4.4 UPDATE using the batch OCF Interface
	7.6.3.4.5 Examples: Batch OCF Interface

	7.6.3.5 Actuator OCF Interface
	7.6.3.6 Sensor OCF Interface
	7.6.3.7 Read-only OCF Interface
	7.6.3.8 Read-write OCF Interface
	7.6.3.9 Create OCF Interface
	7.6.3.9.1 Overview
	7.6.3.9.2 Data format for CREATE
	7.6.3.9.3 Use with CREATE
	7.6.3.9.4 Use with UPDATE and DELETE

	7.6.3.10 Write-Only OCF Interface
	7.6.3.11 Property Start-up and Property Revert OCF Interfaces
	7.6.3.11.1 Overview
	7.6.3.11.2 Support on a Device
	7.6.3.11.3 Governing State Machine
	7.6.3.11.4 Use of RETRIEVE
	7.6.3.11.5 Use of UPDATE and Property Start-up Interface
	7.6.3.11.6 Use of UPDATE and Property Revert Interface
	7.6.3.11.7 Observability of Property Defaults and Property Revert Interfaces

	7.7 Resource representation
	7.8 Structure
	7.8.1 Introduction
	7.8.2 Resource relationships (Links)
	7.8.2.1 Introduction
	7.8.2.2 Link context
	7.8.2.3 Link relation type
	7.8.2.4 Link target
	7.8.2.5 Parameters for Link target attributes
	7.8.2.5.1 Introduction
	7.8.2.5.2 "ins" or Link instance Parameter
	7.8.2.5.3 "p" or policy Parameter
	7.8.2.5.4 "type" or media type Parameter
	7.8.2.5.5 "di" or Device UUID Parameter
	7.8.2.5.6 "eps" Parameter

	7.8.2.6 Formatting
	7.8.2.7 List of Links in a Collection
	7.8.2.8 Properties describing an array of Links

	7.8.3 Collections
	7.8.3.1 Overview
	7.8.3.2 Collection Properties
	7.8.3.3 Default Resource Type
	7.8.3.4 Default OCF Interface

	7.8.4 Atomic Measurement
	7.8.4.1 Overview
	7.8.4.2 Atomic Measurement Properties
	7.8.4.3 Normative behaviour
	7.8.4.4 Security considerations
	7.8.4.5 Default Resource Type

	7.9 Query Parameters
	7.9.1 Introduction
	7.9.2 Use of multiple parameters within a query
	7.9.3 Application to multi-value "rt" Resources
	7.9.4 OCF Interface specific considerations for queries
	7.9.4.1 OCF Interface selection
	7.9.4.2 Batch OCF Interface

	7.9.5 The "action" Query Parameter

	7.10 Error response payload
	7.10.1 Overview
	7.10.2 Error response payload content
	7.10.3 Example of use

	7.11 OCF MQTT Proxy
	7.11.1 Introduction
	7.11.2 Resources for MQTT proxy
	7.11.3 Connecting to an MQTT Server
	7.11.4 Proxying an OCF Device
	7.11.5 Security considerations

	8 CRUDN
	8.1 Overview
	8.2 CREATE
	8.2.1 Overview
	8.2.2 CREATE request
	8.2.3 Processing by the Server
	8.2.4 CREATE response

	8.3 RETRIEVE
	8.3.1 Overview
	8.3.2 RETRIEVE request
	8.3.3 Processing by the Server
	8.3.4 RETRIEVE response

	8.4 UPDATE
	8.4.1 Overview
	8.4.2 UPDATE request
	8.4.3 Processing by the Server
	8.4.3.1 Overview
	8.4.3.2 Resource monitoring by the Server
	8.4.3.3 Additional RETRIEVE responses with Observe indication

	8.4.4 UPDATE response

	8.5 DELETE
	8.5.1 Overview
	8.5.2 DELETE request
	8.5.3 Processing by the Server
	8.5.4 DELETE response

	8.6 NOTIFY
	8.6.1 Overview
	8.6.2 NOTIFICATION response

	9 Network and connectivity
	9.1 Introduction
	9.2 Architecture
	9.3 IPv6 network layer requirements
	9.3.1 Introduction
	9.3.2 IPv6 node requirements
	9.3.2.1 Introduction
	9.3.2.2 IP Layer

	10 OCF Endpoint
	10.1 OCF Endpoint definition
	10.2 OCF Endpoint information
	10.2.1 Introduction
	10.2.2 "ep"
	10.2.3 "pri"
	10.2.4 "lat"
	10.2.5 OCF Endpoint information in "eps" Parameter

	10.3 OCF Endpoint discovery
	10.3.1 Introduction
	10.3.2 Implicit discovery
	10.3.3 Explicit discovery with "/oic/res" response

	11 Functional interactions
	11.1 Introduction
	11.2 Resource discovery
	11.2.1 Introduction
	11.2.2 Resource based discovery: mechanisms
	11.2.2.1 Overview
	11.2.2.2 Direct discovery

	11.2.3 Resource based discovery: Finding information
	11.2.4 Resource discovery using "/oic/res"
	11.2.4.1 General Requirements
	11.2.4.2 Discovery using "oic.if.ll" (Default OCF Interface for "/oic/res")

	11.2.5 Multicast discovery using "/oic/res"
	11.2.5.1 General requirements
	11.2.5.2 Discovery using OCF Security Domain identifier

	11.2.6 Multicast discovery using "/.well-known/core"

	11.3 Notification
	11.3.1 Overview
	11.3.2 Observe
	11.3.2.1 Overview
	11.3.2.2 RETRIEVE request with Observe indication
	11.3.2.3 Processing by the Server
	11.3.2.4 RETRIEVE response with Observe indication
	11.3.2.5 Resource monitoring by the Server
	11.3.2.6 Additional RETRIEVE responses with Observe indication
	11.3.2.7 Cancelling Observe

	11.3.3 Push Notification
	11.3.3.1 Overview
	11.3.3.2 Architectural Model
	11.3.3.3 Origin Server Configuration
	11.3.3.3.1 Overview
	11.3.3.3.2 Push Proxy Resource Type
	11.3.3.3.3 Push proxy state machine
	11.3.3.3.4 Push Proxy Life Cycle
	11.3.3.3.5 Security Considerations
	11.3.3.3.6 Push Configuration and Notification Selector Resource Types
	11.3.3.3.7 Push Configuration Collection Manipulation
	11.3.3.3.8 Notification Selector Population
	11.3.3.3.9 Notification Selector Operational Considerations
	11.3.3.3.9.1 No Resources Match the Selector
	11.3.3.3.9.2 Push Proxy Population Considerations

	11.3.3.4 Target Server Configuration
	11.3.3.4.1 Target Server Behaviour
	11.3.3.4.2 Notification Payload
	11.3.3.4.3 Observability of Notification Selectors

	11.3.3.5 Common requirement for origin Server and target Server

	11.4 Introspection
	11.4.1 Overview
	11.4.2 Usage of Introspection

	11.5 Semantic Tags
	11.5.1 Introduction
	11.5.2 Semantic Tag definitions
	11.5.2.1 Relative and descriptive position Semantic Tags
	11.5.2.1.1 Introduction
	11.5.2.1.2 "tag-pos-desc" or position description Semantic Tag
	11.5.2.1.3 "tag-pos-rel" or relative position Semantic Tag

	11.5.2.2 Functional behaviour Semantic Tags
	11.5.2.2.1 Introduction
	11.5.2.2.2 "tag-func-desc" or function description Semantic Tag

	11.5.2.3 Location Semantic Tags
	11.5.2.3.1 Introduction
	11.5.2.3.2 "tag-locn" or location description Semantic Tag

	12 Messaging
	12.1 Introduction
	12.2 Mapping of CRUDN to CoAP
	12.2.1 Overview
	12.2.2 URIs
	12.2.3 CoAP method with request and response
	12.2.3.1 Overview
	12.2.3.2 CREATE with POST
	12.2.3.3 RETRIEVE with GET
	12.2.3.4 UPDATE with POST
	12.2.3.5 DELETE with DELETE

	12.2.4 Content-Format negotiation
	12.2.5 OCF-Content-Format-Version information
	12.2.6 Content-Format policy
	12.2.7 CRUDN to CoAP response codes
	12.2.8 CoAP block transfer
	12.2.9 Generic requirements for CoAP multicast
	12.2.10 Setting timeout on response to a confirmable request
	12.2.11 Mapping the error response payload
	12.2.12 Handling of non-confirmable requests

	12.3 Mapping of CRUDN to CoAP serialization over TCP
	12.3.1 Overview
	12.3.2 URIs
	12.3.3 CoAP method with request and response
	12.3.4 Content-Format negotiation
	12.3.5 OCF-Content-Format-Version information
	12.3.6 Content-Format policy
	12.3.7 CRUDN to CoAP response codes
	12.3.8 CoAP block transfer
	12.3.9 Keep alive (connection health)
	12.3.10 CoAP using a proxy
	12.3.11 Mapping the error response payload
	12.3.12 Handling of non-confirmable requests

	12.4 Mapping of CRUDN to MQTT
	12.4.1 Overview
	12.4.2 Mapping OCF Devices and Resources to MQTT topics
	12.4.3 Mapping OCF Data to MQTT Data
	12.4.4 Mapping OCF Discovery to MQTT
	12.4.5 Error condition behaviour
	12.4.6 MQTT considerations

	12.5 Payload Encoding in CBOR

	13 Security
	Annex A (normative) Resource Type definitions
	A.1 List of Resource Type definitions
	A.2 Atomic Measurement links list representation
	A.2.1 Introduction
	A.2.2 Example URI
	A.2.3 Resource type
	A.2.4 OpenAPI 2.0 definition
	A.2.5 Property definition
	A.2.6 CRUDN behaviour

	A.3 Collection
	A.3.1 Introduction
	A.3.2 Example URI
	A.3.3 Resource type
	A.3.4 OpenAPI 2.0 definition
	A.3.5 Property definition
	A.3.6 CRUDN behaviour

	A.4 Device
	A.4.1 Introduction
	A.4.2 Well-known URI
	A.4.3 Resource type
	A.4.4 OpenAPI 2.0 definition
	A.4.5 Property definition
	A.4.6 CRUDN behaviour

	A.5 Introspection Resource
	A.5.1 Introduction
	A.5.2 Well-known URI
	A.5.3 Resource type
	A.5.4 OpenAPI 2.0 definition
	A.5.5 Property definition
	A.5.6 CRUDN behaviour

	A.6 Platform
	A.6.1 Introduction
	A.6.2 Well-known URI
	A.6.3 Resource type
	A.6.4 OpenAPI 2.0 definition
	A.6.5 Property definition
	A.6.6 CRUDN behaviour

	A.7 Discoverable Resources
	A.7.1 Introduction
	A.7.2 Well-known URI
	A.7.3 Resource type
	A.7.4 OpenAPI 2.0 definition
	A.7.5 Property definition
	A.7.6 CRUDN behaviour

	A.8 MQTT configuration
	A.8.1 Introduction
	A.8.2 Example URI
	A.8.3 Resource type
	A.8.4 OpenAPI 2.0 definition
	A.8.5 Property definition
	A.8.6 CRUDN behaviour

	A.9 Push Configuration Resources
	A.9.1 Introduction
	A.9.2 Well-known URI
	A.9.3 Resource type
	A.9.4 OpenAPI 2.0 definition

	A.10 Composition Resource of Notification Selector and Push Proxy
	A.10.1 Introduction
	A.10.2 Well-known URI
	A.10.3 Resource type
	A.10.4 OpenAPI 2.0 definition

	A.11 Push Receiver Resource
	A.11.1 Introduction
	A.11.2 Well-known URI
	A.11.3 Resource type
	A.11.4 OpenAPI 2.0 definition
	Annex B (informative) OpenAPI 2.0 Schema Extension

	B.1 OpenAPI 2.0 Schema Reference
	B.2 OpenAPI 2.0 Introspection empty file
	Annex C (normative) Semantic Tag enumeration support

	C.1 Introduction
	C.2 "tag-pos-desc" supported enumeration
	C.3 "tag-loc" supported enumeration

	Bibliography

