What is the gridstatus library?#

gridstatus logo

Tests Code Coverage PyPI Version

The gridstatus open-source library is a Python library maintained by Grid Status that provides a consistent API for accessing raw electricity supply, demand, and pricing data for the major Independent System Operators (ISOs) in the United States and Canada. It currently supports data from CAISO, SPP, ISONE, MISO, ERCOT, NYISO, PJM, IESO, AESO, and the EIA.

GridStatus.io and Hosted API#

This library provides minimally-processed data. If you need production-ready data, consider using our hosted API or visit GridStatus.io to see the data in a web interface.

If you are trying to use our hosted API, you might want to check out the gridstatusio library.

5 Minute Overview#

First, we can see all of the ISOs that are supported

import gridstatus
gridstatus.list_isos()
Name Id Class
0 Midcontinent ISO miso MISO
1 California ISO caiso CAISO
2 PJM pjm PJM
3 Electric Reliability Council of Texas ercot Ercot
4 Southwest Power Pool spp SPP
5 New York ISO nyiso NYISO
6 ISO New England isone ISONE
7 Independent Electricity System Operator ieso IESO

Next, we can select an ISO we want to use

caiso = gridstatus.CAISO()

Fuel Mix#

ISOs share a common API with methods like get_fuel_mix and get_load. Here is how we can get the fuel mix

caiso.get_fuel_mix("today")
2026-02-10 19:27:44 - INFO - Fetching URL: https://www.caiso.com/outlook/current/fuelsource.csv?_=1770751664
Time Interval Start Interval End Solar Wind Geothermal Biomass Biogas Small Hydro Coal Nuclear Natural Gas Large Hydro Batteries Imports Other
0 2026-02-10 00:00:00-08:00 2026-02-10 00:00:00-08:00 2026-02-10 00:05:00-08:00 -54 2408 763 212 160 309 0 2262 5635 1872 -177 8349 0
1 2026-02-10 00:05:00-08:00 2026-02-10 00:05:00-08:00 2026-02-10 00:10:00-08:00 -53 2455 763 211 161 310 0 2261 5933 1532 156 8343 0
2 2026-02-10 00:10:00-08:00 2026-02-10 00:10:00-08:00 2026-02-10 00:15:00-08:00 -53 2468 763 212 159 311 0 2262 6292 1195 248 8296 0
3 2026-02-10 00:15:00-08:00 2026-02-10 00:15:00-08:00 2026-02-10 00:20:00-08:00 -53 2478 763 211 160 311 0 2261 6334 1225 203 8205 0
4 2026-02-10 00:20:00-08:00 2026-02-10 00:20:00-08:00 2026-02-10 00:25:00-08:00 -53 2463 763 210 159 310 0 2261 6228 1328 251 8143 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
132 2026-02-10 11:00:00-08:00 2026-02-10 11:00:00-08:00 2026-02-10 11:05:00-08:00 8520 895 751 229 157 285 0 2258 6533 1695 -3660 4822 0
133 2026-02-10 11:05:00-08:00 2026-02-10 11:05:00-08:00 2026-02-10 11:10:00-08:00 8497 947 752 227 158 284 0 2258 6515 1604 -3784 5107 0
134 2026-02-10 11:10:00-08:00 2026-02-10 11:10:00-08:00 2026-02-10 11:15:00-08:00 8726 962 751 228 158 284 0 2259 6482 1555 -3664 4962 0
135 2026-02-10 11:15:00-08:00 2026-02-10 11:15:00-08:00 2026-02-10 11:20:00-08:00 8919 977 750 228 158 284 0 2258 6469 1572 -3891 5001 0
136 2026-02-10 11:20:00-08:00 2026-02-10 11:20:00-08:00 2026-02-10 11:25:00-08:00 9263 993 751 228 157 284 0 2257 6460 1571 -3994 4932 0

137 rows × 16 columns

Load#

or the energy demand throughout the current day as a Pandas DataFrame

caiso.get_load("today")
2026-02-10 19:27:44 - INFO - Fetching URL: https://www.caiso.com/outlook/current/demand.csv?_=1770751664
Time Interval Start Interval End Load
0 2026-02-10 00:00:00-08:00 2026-02-10 00:00:00-08:00 2026-02-10 00:05:00-08:00 20913.0
1 2026-02-10 00:05:00-08:00 2026-02-10 00:05:00-08:00 2026-02-10 00:10:00-08:00 21267.0
2 2026-02-10 00:10:00-08:00 2026-02-10 00:10:00-08:00 2026-02-10 00:15:00-08:00 21353.0
3 2026-02-10 00:15:00-08:00 2026-02-10 00:15:00-08:00 2026-02-10 00:20:00-08:00 21245.0
4 2026-02-10 00:20:00-08:00 2026-02-10 00:20:00-08:00 2026-02-10 00:25:00-08:00 21227.0
... ... ... ... ...
132 2026-02-10 11:00:00-08:00 2026-02-10 11:00:00-08:00 2026-02-10 11:05:00-08:00 22358.0
133 2026-02-10 11:05:00-08:00 2026-02-10 11:05:00-08:00 2026-02-10 11:10:00-08:00 22435.0
134 2026-02-10 11:10:00-08:00 2026-02-10 11:10:00-08:00 2026-02-10 11:15:00-08:00 22580.0
135 2026-02-10 11:15:00-08:00 2026-02-10 11:15:00-08:00 2026-02-10 11:20:00-08:00 22524.0
136 2026-02-10 11:20:00-08:00 2026-02-10 11:20:00-08:00 2026-02-10 11:25:00-08:00 22663.0

137 rows × 4 columns

Load Forecast#

Another dataset we can query is the load forecast

nyiso = gridstatus.NYISO()
nyiso.get_load_forecast("today")
2026-02-10 19:27:45 - INFO - Requesting http://mis.nyiso.com/public/csv/isolf/20260210isolf.csv
/home/docs/checkouts/readthedocs.org/user_builds/isodata/checkouts/latest/gridstatus/nyiso.py:1226: FutureWarning: Parsed string "02/09/26 07:10 EST" included an un-recognized timezone "EST". Dropping unrecognized timezones is deprecated; in a future version this will raise. Instead pass the string without the timezone, then use .tz_localize to convert to a recognized timezone.
  return pd.Timestamp(last_updated_date, tz=self.default_timezone)
Time Interval Start Interval End Forecast Time Load Forecast
0 2026-02-10 00:00:00-05:00 2026-02-10 00:00:00-05:00 2026-02-10 01:00:00-05:00 2026-02-09 07:10:00-05:00 18703
1 2026-02-10 01:00:00-05:00 2026-02-10 01:00:00-05:00 2026-02-10 02:00:00-05:00 2026-02-09 07:10:00-05:00 18241
2 2026-02-10 02:00:00-05:00 2026-02-10 02:00:00-05:00 2026-02-10 03:00:00-05:00 2026-02-09 07:10:00-05:00 17971
3 2026-02-10 03:00:00-05:00 2026-02-10 03:00:00-05:00 2026-02-10 04:00:00-05:00 2026-02-09 07:10:00-05:00 17868
4 2026-02-10 04:00:00-05:00 2026-02-10 04:00:00-05:00 2026-02-10 05:00:00-05:00 2026-02-09 07:10:00-05:00 18058
... ... ... ... ... ...
139 2026-02-15 19:00:00-05:00 2026-02-15 19:00:00-05:00 2026-02-15 20:00:00-05:00 2026-02-09 07:10:00-05:00 19326
140 2026-02-15 20:00:00-05:00 2026-02-15 20:00:00-05:00 2026-02-15 21:00:00-05:00 2026-02-09 07:10:00-05:00 18917
141 2026-02-15 21:00:00-05:00 2026-02-15 21:00:00-05:00 2026-02-15 22:00:00-05:00 2026-02-09 07:10:00-05:00 18352
142 2026-02-15 22:00:00-05:00 2026-02-15 22:00:00-05:00 2026-02-15 23:00:00-05:00 2026-02-09 07:10:00-05:00 17601
143 2026-02-15 23:00:00-05:00 2026-02-15 23:00:00-05:00 2026-02-16 00:00:00-05:00 2026-02-09 07:10:00-05:00 16858

144 rows × 5 columns

Historical Data#

You can use the historical method calls to get data for a specific day in the past. For example,

caiso.get_load("Jan 1, 2020")
2026-02-10 19:27:45 - INFO - Fetching URL: https://www.caiso.com/outlook/history/20200101/demand.csv?_=1770751665
Time Interval Start Interval End Load
0 2020-01-01 00:00:00-08:00 2020-01-01 00:00:00-08:00 2020-01-01 00:05:00-08:00 21533
1 2020-01-01 00:05:00-08:00 2020-01-01 00:05:00-08:00 2020-01-01 00:10:00-08:00 21429
2 2020-01-01 00:10:00-08:00 2020-01-01 00:10:00-08:00 2020-01-01 00:15:00-08:00 21320
3 2020-01-01 00:15:00-08:00 2020-01-01 00:15:00-08:00 2020-01-01 00:20:00-08:00 21272
4 2020-01-01 00:20:00-08:00 2020-01-01 00:20:00-08:00 2020-01-01 00:25:00-08:00 21193
... ... ... ... ...
283 2020-01-01 23:35:00-08:00 2020-01-01 23:35:00-08:00 2020-01-01 23:40:00-08:00 20494
284 2020-01-01 23:40:00-08:00 2020-01-01 23:40:00-08:00 2020-01-01 23:45:00-08:00 20383
285 2020-01-01 23:45:00-08:00 2020-01-01 23:45:00-08:00 2020-01-01 23:50:00-08:00 20297
286 2020-01-01 23:50:00-08:00 2020-01-01 23:50:00-08:00 2020-01-01 23:55:00-08:00 20242
287 2020-01-01 23:55:00-08:00 2020-01-01 23:55:00-08:00 2020-01-02 00:00:00-08:00 20128

288 rows × 4 columns

Frequently, we want to get data across multiple days. We can do that by providing a start and end parameter to any iso.get_* method

caiso_load = caiso.get_load(start="Jan 1, 2021", end="Feb 1, 2021")
caiso_load
Time Interval Start Interval End Load
0 2021-01-01 00:00:00-08:00 2021-01-01 00:00:00-08:00 2021-01-01 00:05:00-08:00 21937.0
1 2021-01-01 00:05:00-08:00 2021-01-01 00:05:00-08:00 2021-01-01 00:10:00-08:00 21858.0
2 2021-01-01 00:10:00-08:00 2021-01-01 00:10:00-08:00 2021-01-01 00:15:00-08:00 21827.0
3 2021-01-01 00:15:00-08:00 2021-01-01 00:15:00-08:00 2021-01-01 00:20:00-08:00 21757.0
4 2021-01-01 00:20:00-08:00 2021-01-01 00:20:00-08:00 2021-01-01 00:25:00-08:00 21664.0
... ... ... ... ...
8923 2021-01-31 23:35:00-08:00 2021-01-31 23:35:00-08:00 2021-01-31 23:40:00-08:00 20054.0
8924 2021-01-31 23:40:00-08:00 2021-01-31 23:40:00-08:00 2021-01-31 23:45:00-08:00 19952.0
8925 2021-01-31 23:45:00-08:00 2021-01-31 23:45:00-08:00 2021-01-31 23:50:00-08:00 19859.0
8926 2021-01-31 23:50:00-08:00 2021-01-31 23:50:00-08:00 2021-01-31 23:55:00-08:00 19763.0
8927 2021-01-31 23:55:00-08:00 2021-01-31 23:55:00-08:00 2021-02-01 00:00:00-08:00 19650.0

8928 rows × 4 columns

We can now see there is data for all of January 2021

import plotly.express as px

fig = px.line(caiso_load, x="Time", y="Load", title="CAISO Load - Jan '21")
fig

Next Steps#

The best part is these APIs work in the same way across all the supported ISOs!

Examples