Git Cheat Sheet

Legend: <> required, [] optional

Common Terminology

commit £ object with annotated changes in
relation other commits

branch £ collection of commits

stage £ files earmarked for the next commit
HEAD £ reference to the top commit in the
current branch

remote = bookmark for a repository origin (a
repository may have several remotes)

Create & Clone

Clone an existing repository

git clone <URL> [folder]

Default protocoll is SSH, eg.
»git@example.com:repo.git«. HTTPS would be

repo »/home/user/repo.git«

Creates a subfolder with the repo, if the folder
name is not given, then the repo name is used
(»foo.git« = »./foo« subfolder)

Create a new local repository

git init <folder>

Ifa folder name is given, a subfolder is created,
otherwise the current folder is used
Send existing local repository to remote

git remote add origin <URL> && git
push <remote> <branch>

Special: Create an empty repository on a
remote server

Connect with the remote server first

mkdir <repo>.git && cd <repo>.git &
& git init --bare

The remote repository has to be »bare« (does not
contain a working filetree, but a special .git
subdirectory only) in order to accept a push

Show changes

Show working status - show current branch
name and changed or new files

git status

Hint: Set a short alias for often used commands,
like git st for git status - see
»Configuration«

Difference between HEAD and files not yet
staged

git diff

Note: This ignores new files = files which were not
added to the repository yet and therefore arent
»tracked«

Difference between HEAD and staged files
git diff --cached

Difference between HEAD and all files
(staged and not staged)

git diff HEAD

Difference between branches, two commits,
etc

git diff <foo> <bar>

»+« line does exist in »bar« but not in »foo«, »-«
reverse

Difference to another branch and show
names of changed files only

git diff <branch> --name-status

Show all commits of current branch which
are not merged into another branch

git log <reference>.. --oneline

The reference may be a branch or a tag, note the
two dots at the end

Show branches in which one commit exists

git branch --contains <commit ID>

Show history

Show all commits of current branch

git log
Show all commits of current branch and
names of each changed file

git whatchanged

Show commits and each difference for a
specific file

git log -p <file>

Examination: Show who changed what and
when in a file

git blame <file>

Left side shows the last commit ID for the content
on the right side

Show a single commit and its differences

git show <commit ID>

Show all commits with a certain word in the
commit message

git log --grep=<searchword>

Commit

Stage all (even untracked) files

git add -A

Stage a tracked and modified file

git add <file>

Add hand-picked changes in a file to the next
commit (£ partial commit)

git add -p <file>

y Yes, add this part to the next commit

n No, skip this part

d Don’t add this and all remaining parts of the
file

s Try to split the current part into smaller ones

e Manually edit the part
Stage all changes in tracked files and start a
commit

git commit -a

Commit all previously staged changes

git commit
git commit -m "<message>"

Branches

List local branches

git branch

* marks the current branch

List remote branches

git branch -r

use -a toshow local and remote branches at
once
Switch to a different branch

git checkout <branch>
git checkout -t <remote>/<remote-
branch>

-t checkout a new branch based on remote
branch and save their connection

e Create a new branch based on HEAD

git branch <new-branch>

use git checkout -b <branch> to
create a branch and switch right into it

e Create a new branch based on a remote
branch

git branch --track <new-branch> <re
mote>/<remote-branch>

use --no-track tocreateanew branch
based on a remote branch, but don't save a
connection between both

o Connect a remote branch with a local branch
git branch --track <local-branch> <
remote>/<remote-branch>

o Show merged branches

git branch -a --merged

--no-merged will show branches not
merged yet

e Delete alocal branch

git branch -d <branch>

-d will only delete the branch if it is merged
with its remote branch (if set), -D will force the
deletion

e Delete a remote branch

git push <remote> :<remote-branch>

Tags

Use tags to save a specific version (the commit
relations up to this point) of a project. Merging
older commits into the branch afterwards
hence wont affect the tag.

o Showall tags

git tag -n

-1 will show tag names only, -n<num> will
add a number of lines from the annotation
(default is one)

o Mark the current commit with a tag

git tag <tag-name> -m "<annotation
n

Hint: Use semantic version numbers as tags

Update

Download all changes from , but don't merge
to HEAD yet

git fetch <remote>

A manual merge is required now

o Download changes and directly merge to

HEAD

git pull [<remote> <branch>]

If the connection between remote & local branch is
saved, then git pull issufficient

o Listall currently configured remote

repositories

git remote -v

o Show information about a remote, eg. which

branches exist in this remote

git remote show <remote>

o Remove stale remote branch trackings

(outdated connections)

git remote prune <remote>

Remove connections to branches deleted on the
remote by now - does not delete the local branch

o Add a new remote repository

git remote add <remote> <url>

Publish

o Push local branch or tag to remote

git push [<remote> <branch|tag>]

use »u« to push the branch and automatically
save the connection between local & remote

e Push alllocal branches to remote

git push --all <remote>

o Push all tags to remote

git push --tags <remote>

Merge

e Merge a branch into your current HEAD

mailto:git@example.com
https://example.com/repo.git%C2%AB

git merge <branch>

o Manually solve conflicts and mark file as
resolved

git add <resolved-file> && git comm
it -m 'Manual Merge'

e Useatool to solve merge conflicts

git mergetool

will use tool set in »merge.tool«, use »t « to start a
custom tool

o Useamerge strategy

git merge -s recursive -X <ours|the
irs|patience>

»recursive« is the default merge strategy when
pulling or merging one branch, so this param
may be redundant
»ours« merge commits but try to ignore all
conflicting changes from the other branch
»theirs« merge commits but try to ignore conflicts
introduced by the own branch
»patience« will cause GIT run rather time-
consuming intelligent merge routines to avoid
merge conflicts and errors in the first place

o Cancel merge

git merge --abort

Rebase

Use rebase with care! It will rewrite the history
and therefore requires additional efforts when
working with a team! Dont rebase unless every
project member knows about the required
workflow!

e Rewrite commits from HEAD until given
commit

git rebase -i <commit ID>

Opens an editable rebase command list - reorder
the commands to change commit order, remove a
line to delete the commit, change the preceded
keyword to change the command

plpick keep commit

r|reword usecommit, but edit the commit
messaqe

e|edit usecommit, but halt the rebase
sequence to change the commit (use git
commit --amend -a)

s|squash use commit, but meld into previous
commit

e Rebase your current HEAD onto

git rebase <branch>

Merges all commits of given branch and applies
new commits of the local branch on top (creates
new commit IDs for these)

e Abort arebase

git rebase --abort

o Continue a rebase after resolving conflicts

git rebase --continue

Stash

Use stash to save all current changes to a
clipboard and retrieve them later.

o Stash all changes away

git stash save [comment]

o Show all available stashes

git stash list

»stash@{o}« is the rather unreadable name of the
stash state, where 0 is the latest

e Retrieve a state form the stash list

git stash apply <stash-name>

default is »stash@{o}«, use git stash pop
<stash-name> to apply changes and remove
the state from stash list

e Remove a state from the stash list

git stash drop <stash-name>

e Remove all the stashed states

git stash clear

Revert

Git is merciful and lets you undo allmost all
changes with ease.

o Clear stage (£ unadd files)
git reset HEAD --

o Discard all changes

git checkout -- [file]

o Change the last commit

git commit --amend -a

Replaces the last commit (new ID), so it should
only be used if the modified branch was not
pushed yet

o Special: Change author of the last commit

git commit --amend --author "John D
oe <doe@example.com>"

o Remove the last commit but keep all files

and changes

git reset HEAD~1

Removes the last commit from the local history

 Revert a commit (£ apply inversion)

git revert <commit-id>

Inverts changes of the given commit, applies them
to the working directory and starts a new commit

e Undo alocal merge

git reset --hard <merge commit ID>

Use only if the branch wasn't pushed yet,
otherwise rebase or revert

e Removeafile

git rm --cached

Removes the file from the git repository index but
keeps it on the file system

Configuration

e Get configuration option

git config <section>.<key>

o Set configuration option

git config --local <section>.<key>
<value>

»local«will write to ».git/config«in current
repository, »global« to »~/.gitconfig» and
»system« to your systems »/etc/gitconfig«

e Setusername and e-mail

git config --local user.name "<user
name>" && git config --local user.e
mail <e-mail>

o Ignore mode changes (chmod)

git config --local core.filemode fa
lse

o Setalias »st« for »status«

git config --global alias.st status

Commit Message Format

[BUGFIX] Short summary

Optional explanatory text. Separated b
y new line. Wrapped to 74 chars. Writt
en in imperative present tense ("Fix b
ug", not "Fixed bug").

Help others to understand what you did

(Motivation for the change? Differenc
e to previous version?), but keep it s
imple.

Mandatory title prefix: [BUGFIX], [FEA
TURE] (also small additions) or [TASK]
(none of the above, e.g. code cleanu
p). Additionall flags: [!!] (breaking
change), [DB] (alter database definit
ion), [CONF] (configuration change),
[SECURITY] (fix a security issue).

Bug tracker refs added at bottom (see
http://is.gd/commit_refs).

Resolve #42
Ref #4 #8 #15 #16

shortened, detailed example at
hitp://is.gd/commitformat

Best practices

Commit related changes
o Each commit should adress one logical
unit. Two different bugs should result
into two commits.

Commit early & often

o Keep your commits small and
comprehensible, split large features into
logical chunks.

Test code before committing

o Make sure the code works, don't guess. Or
let tools test your commit automatically.
Revert faulty commits if necessary.

Don't commit half-done work
o Commit only complete, logical changes,
not half-done chunks. »Stash« changes if
applicable.

Don't commit hot files
o Don't commit configuration files (commit
a config template instead), personal data,
temporary files (GIT is no backup system)
or things that can be regenerated form
other commited things.

Write good commit messages

o Help others to understand what you did
(Motivation for the change? Whats the
difference to the previous version?)

o Useless commit messages may be
forwarded to whatthecommit.com

e Write in imperative present tense («change»,
not «changed» or «changes»)

o Acommitis a set of instructions for how
to go from a previous state to a new state,
so you should describe was the commit
does and not what it did to your
repository.

e Don't panic
o GIT lets you undo, fix or remove a bunch
of actions

o Don't change published history
o GIT allows you to rewrite public history,
but it is problematic for everyone and
thus it is just not best practice to do so.

o Use branches
o Branching is cheap. Use separate
branches for each bugfix, feature & idea.
Make branching a part of your local
workflow.

o Merge regularly
o Don't merge a huge feature into the
master, instead merge the master
regularly with your branch.

e Use conventions
o Aswith every development process: use
conventions. For naming of branches and
tags, how to write commit messages,
when to commit into what branch, etc.

Sources

e Git Cheat Sheet by Ying Guo

e Git Cheat Sheet by Git Tower

e http://gitready.com/

o http://git-scm.com/documentation

» http://wiki.typo3.org/CommitMessage Form

About

o Supervisor: Dan Untenzu @pixelbrackets

o License: CC-BY-SA 3.0

e Download & Contribution:
pixelbrackets.de/git-cheat-sheet

http://is.gd/commitformat
https://github.com/yguo89/RTOS/wiki/Git-Cheat-Sheet
http://www.git-tower.com/files/cheatsheet/Git_Cheat_Sheet_grey.pdf
http://gitready.com/
http://git-scm.com/documentation
http://wiki.typo3.org/CommitMessage_Format_(Git)
https://twitter.com/pixelbrackets
https://creativecommons.org/licenses/by-sa/3.0/de/
https://pixelbrackets.de/git-cheat-sheet

