
Git Cheat Sheet

Legend: <> required, [] optional

Common Terminology

commit ≙ object with annotated changes in

relation other commits

branch ≙ collection of commits

stage ≙ files earmarked for the next commit

HEAD ≙ reference to the top commit in the

current branch

remote = bookmark for a repository origin (a

repository may have several remotes)

Create & Clone

Clone an existing repository

git clone <URL> [folder]

Default protocoll is SSH, eg.

»git@example.com:repo.git«. HTTPS would be

»https://example.com/repo.git«, another local

repo »/home/user/repo.git«

Creates a subfolder with the repo, if the folder

name is not given, then the repo name is used

(»foo.git« = »./foo« subfolder)

Create a new local repository

git init <folder>

If a folder name is given, a subfolder is created,

otherwise the current folder is used

Send existing local repository to remote

git remote add origin <URL> && git

 push <remote> <branch>

Special: Create an empty repository on a

remote server

Connect with the remote server first

mkdir <repo>.git && cd <repo>.git &

& git init --bare

The remote repository has to be »bare« (does not

contain a working filetree, but a special .git

subdirectory only) in order to accept a push

Show changes

Show working status - show current branch

name and changed or new files

git status

Hint: Set a short alias for often used commands,

like git st for git status → see

»Configuration«

Difference between HEAD and files not yet

staged

git diff

Note: This ignores new files = files which were not

added to the repository yet and therefore arent

»tracked«

Difference between HEAD and staged files

git diff --cached

Difference between HEAD and all files

(staged and not staged)

git diff HEAD

Difference between branches, two commits,

etc

git diff <foo> <bar>

»+« line does exist in »bar« but not in »foo«, »-«

reverse

Difference to another branch and show

names of changed files only

git diff <branch> --name-status

Show all commits of current branch which

are not merged into another branch

git log <reference>.. --oneline

The reference may be a branch or a tag, note the

two dots at the end

Show branches in which one commit exists

git branch --contains <commit ID>

Show history

Show all commits of current branch

git log

Show all commits of current branch and

names of each changed file

git whatchanged

Show commits and each difference for a

specific file

git log -p <file>

Examination: Show who changed what and

when in a file

git blame <file>

Left side shows the last commit ID for the content

on the right side

Show a single commit and its differences

git show <commit ID>

Show all commits with a certain word in the

commit message

git log --grep=<searchword>

Commit

Stage all (even untracked) files

git add -A

Stage a tracked and modified file

git add <file>

Add hand-picked changes in a file to the next

commit (≙ partial commit)

git add -p <file>

y Yes, add this part to the next commit

n No, skip this part

d Don’t add this and all remaining parts of the

file

s Try to split the current part into smaller ones

e Manually edit the part

Stage all changes in tracked files and start a

commit

git commit -a

Commit all previously staged changes

git commit

 git commit -m "<message>"

Branches

List local branches

git branch

* marks the current branch

List remote branches

git branch -r

use -a to show local and remote branches at

once

Switch to a different branch

git checkout <branch>

 git checkout -t <remote>/<remote-

branch>

-t checkout a new branch based on remote

branch and save their connection

Create a new branch based on HEAD

git branch <new-branch>

use git checkout -b <branch> to

create a branch and switch right into it

Create a new branch based on a remote

branch

git branch --track <new-branch> <re

mote>/<remote-branch>

use --no-track to create a new branch

based on a remote branch, but don't save a

connection between both

Connect a remote branch with a local branch

git branch --track <local-branch> <

remote>/<remote-branch>

Show merged branches

git branch -a --merged

--no-merged will show branches not

merged yet

Delete a local branch

git branch -d <branch>

-d will only delete the branch if it is merged

with its remote branch (if set), -D will force the

deletion

Delete a remote branch

git push <remote> :<remote-branch>

Tags
Use tags to save a specific version (the commit

relations up to this point) of a project. Merging

older commits into the branch afterwards

hence wont affect the tag.

Show all tags

git tag -n

-l will show tag names only, -n<num> will

add a number of lines from the annotation

(default is one)

Mark the current commit with a tag

git tag <tag-name> -m "<annotation

>"

Hint: Use semantic version numbers as tags

Update

Download all changes from , but don't merge

to HEAD yet

git fetch <remote>

A manual merge is required now

Download changes and directly merge to

HEAD

git pull [<remote> <branch>]

If the connection between remote & local branch is

saved, then git pull is sufficient

List all currently configured remote

repositories

git remote -v

Show information about a remote, eg. which

branches exist in this remote

git remote show <remote>

Remove stale remote branch trackings

(outdated connections)

git remote prune <remote>

Remove connections to branches deleted on the

remote by now - does not delete the local branch

Add a new remote repository

git remote add <remote> <url>

Publish

Push local branch or tag to remote

git push [<remote> <branch|tag>]

use »-u« to push the branch and automatically

save the connection between local & remote

Push all local branches to remote

git push --all <remote>

Push all tags to remote

git push --tags <remote>

Merge

Merge a branch into your current HEAD

mailto:git@example.com
https://example.com/repo.git%C2%AB

git merge <branch>

Manually solve conflicts and mark file as

resolved

git add <resolved-file> && git comm

it -m 'Manual Merge'

Use a tool to solve merge conflicts

git mergetool

will use tool set in »merge.tool«, use »-t « to start a

custom tool

Use a merge strategy

git merge -s recursive -X <ours|the

irs|patience>

»recursive« is the default merge strategy when

pulling or merging one branch, so this param

may be redundant

»ours« merge commits but try to ignore all

conflicting changes from the other branch

»theirs« merge commits but try to ignore conflicts

introduced by the own branch

»patience« will cause GIT run rather time-

consuming intelligent merge routines to avoid

merge conflicts and errors in the first place

Cancel merge

git merge --abort

Rebase
Use rebase with care! It will rewrite the history

and therefore requires additional efforts when

working with a team! Dont rebase unless every

project member knows about the required

workflow!

Rewrite commits from HEAD until given

commit

git rebase -i <commit ID>

Opens an editable rebase command list - reorder

the commands to change commit order, remove a

line to delete the commit, change the preceded

keyword to change the command

p|pick keep commit

r|reword use commit, but edit the commit

message

e|edit use commit, but halt the rebase

sequence to change the commit (use git

commit --amend -a)

s|squash use commit, but meld into previous

commit

Rebase your current HEAD onto

git rebase <branch>

Merges all commits of given branch and applies

new commits of the local branch on top (creates

new commit IDs for these)

Abort a rebase

git rebase --abort

Continue a rebase after resolving conflicts

git rebase --continue

Stash
Use stash to save all current changes to a

clipboard and retrieve them later.

Stash all changes away

git stash save [comment]

Show all available stashes

git stash list

»stash@{0}« is the rather unreadable name of the

stash state, where 0 is the latest

Retrieve a state form the stash list

git stash apply <stash-name>

default is »stash@{0}«, use git stash pop

<stash-name> to apply changes and remove

the state from stash list

Remove a state from the stash list

git stash drop <stash-name>

Remove all the stashed states

git stash clear

Revert
Git is merciful and lets you undo allmost all

changes with ease.

Clear stage (≙ unadd files)

git reset HEAD --

Discard all changes

git checkout -- [file]

Change the last commit

git commit --amend -a

Replaces the last commit (new ID), so it should

only be used if the modified branch was not

pushed yet

Special: Change author of the last commit

git commit --amend --author "John D

oe <doe@example.com>"

Remove the last commit but keep all files

and changes

git reset HEAD~1

Removes the last commit from the local history

Revert a commit (≙ apply inversion)

git revert <commit-id>

Inverts changes of the given commit, applies them

to the working directory and starts a new commit

Undo a local merge

git reset --hard <merge commit ID>

Use only if the branch wasn't pushed yet,

otherwise rebase or revert

Remove a file

git rm --cached

Removes the file from the git repository index but

keeps it on the file system

Configuration

Get configuration option

git config <section>.<key>

Set configuration option

git config --local <section>.<key>

 <value>

»local« will write to ».git/config« in current

repository, »global« to »~/.gitconfig» and

»system« to your systems »/etc/gitconfig«

Set username and e-mail

git config --local user.name "<user

name>" && git config --local user.e

mail <e-mail>

Ignore mode changes (chmod)

git config --local core.filemode fa

lse

Set alias »st« for »status«

git config --global alias.st status

Commit Message Format

[BUGFIX] Short summary

Optional explanatory text. Separated b

y new line. Wrapped to 74 chars. Writt

en in imperative present tense ("Fix b

ug", not "Fixed bug").

Help others to understand what you did

 (Motivation for the change? Differenc

e to previous version?), but keep it s

imple.

Mandatory title prefix: [BUGFIX], [FEA

TURE] (also small additions) or [TASK]

 (none of the above, e.g. code cleanu

p). Additionall flags: [!!] (breaking

 change), [DB] (alter database definit

ion), [CONF] (configuration change),

 [SECURITY] (fix a security issue).

Bug tracker refs added at bottom (see

 http://is.gd/commit_refs).

Resolve #42

Ref #4 #8 #15 #16

shortened, detailed example at

http://is.gd/commitformat

Best practices

Commit related changes

Each commit should adress one logical

unit. Two different bugs should result

into two commits.

Commit early & often

Keep your commits small and

comprehensible, split large features into

logical chunks.

Test code before committing

Make sure the code works, don't guess. Or

let tools test your commit automatically.

Revert faulty commits if necessary.

Don't commit half-done work

Commit only complete, logical changes,

not half-done chunks. »Stash« changes if

applicable.

Don't commit hot files

Don't commit configuration files (commit

a config template instead), personal data,

temporary files (GIT is no backup system)

or things that can be regenerated form

other commited things.

Write good commit messages

Help others to understand what you did

(Motivation for the change? Whats the

difference to the previous version?)

Useless commit messages may be

forwarded to whatthecommit.com

Write in imperative present tense («change»,

not «changed» or «changes»)

A commit is a set of instructions for how

to go from a previous state to a new state,

so you should describe was the commit

does and not what it did to your

repository.

Don't panic

GIT lets you undo, fix or remove a bunch

of actions

Don't change published history

GIT allows you to rewrite public history,

but it is problematic for everyone and

thus it is just not best practice to do so.

Use branches

Branching is cheap. Use separate

branches for each bugfix, feature & idea.

Make branching a part of your local

workflow.

Merge regularly

Don't merge a huge feature into the

master, instead merge the master

regularly with your branch.

Use conventions

As with every development process: use

conventions. For naming of branches and

tags, how to write commit messages,

when to commit into what branch, etc.

Sources

Git Cheat Sheet by Ying Guo

Git Cheat Sheet by Git Tower

http://gitready.com/

http://git-scm.com/documentation

http://wiki.typo3.org/CommitMessage_Form

About

Supervisor: Dan Untenzu @pixelbrackets

License: CC-BY-SA 3.0

Download & Contribution:

pixelbrackets.de/git-cheat-sheet

http://is.gd/commitformat
https://github.com/yguo89/RTOS/wiki/Git-Cheat-Sheet
http://www.git-tower.com/files/cheatsheet/Git_Cheat_Sheet_grey.pdf
http://gitready.com/
http://git-scm.com/documentation
http://wiki.typo3.org/CommitMessage_Format_(Git)
https://twitter.com/pixelbrackets
https://creativecommons.org/licenses/by-sa/3.0/de/
https://pixelbrackets.de/git-cheat-sheet

