Affordance-Centric Policy Decomposition 7' :

Generalisable and Sample Efficient Robot Policy Learning for
Multi-Object, Long-Horizon Manipulation

Abstract:

Long-horizon manipulation tasks involving multiple different objects present sev-
eral challenges for imitation learning, with resulting policies exhibiting poor sam-
ple efficiency, generalisation, and modularity. Central to these limitations is the
use of images and absolute coordinate systems to capture the state of the world.
Without extensive demonstration datasets, these representations constrain the pol-
icy to operate over a closed set of spatial locations, intra-category instances, and
even task variations. In this paper, we present a method to address these chal-
lenges using affordance-centric coordinate frames. By appropriately reorienting
this frame and training a state-based policy using this relative coordinate system,
we demonstrate that we can not only learn highly sample-efficient manipulation
behaviours but also generalise to a wide range of spatial and intra-category ob-
ject variations. More importantly, we show that this representation allows us to
learn independent sub-policies that can be seamlessly composed together to solve
complex, long-horizon, multi-object tasks, with the modularity for compositional
generalisation to new task variations. We extensively validate our approach on a
real-world tea-serving task involving 5 different objects, 13 intra-category object
variations, and 7 different sub-tasks exhibiting a vast range of spatial variations,
demonstrating our ability to solve the entire long-horizon task with the equivalent
of only 10 demonstrations. Video demonstrations and code will be available at
policy-decomposition.github.io.

Keywords: sample-efficient imitation learning, relative action frames, long-
horizon manipulation

1 Introduction

To solve challenging household tasks such as cleaning dishes, serving tea, or packing away toys,
robots have to directly interact with multiple objects, facilitate their interaction, and compose sub-
tasks over relatively long time horizons. Fuelled by recent advances in policy representation [1]
and data collection methods [2, 3], imitation learning promises to solve such complex tasks but still
faces significant challenges in long-horizon multi-object settings with resulting policies exhibiting
poor sample efficiency, generalisation, and modularity. Specifically, the combinatorial explosion in
state variations associated with multiple objects requires an extensive number of demonstrations to
capture the vast range of object and inter-object spatial variations. This is further exacerbated when
learning policies to operate across intra-object category variations. Overall, the resulting policies
exhibit limited generalisation to task variations making it difficult to compose them to solve longer
horizon tasks. A key observation central to these limitations is the use of images and absolute
coordinates to capture the state of the world.

While images provide a rich state representation, they capture a considerable amount of task-
irrelevant information and require a significant number of demonstrations to cover all possible
downstream variations for policy learning, resulting in poor overall generalisation. Additionally,
using absolute coordinate systems for policy learning constrains the policy to operate over fixed
spatial locations captured in the training data. In the multi-object setting, the dimensionality of the
configuration space, representing the poses of all relevant objects, grows proportionally to the num-
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Figure 1: Affordance-Centric Policy Decomposition 7°. Our method decomposes long-horizon,
multi-object policy learning into a series of sub-policies that can be trained independently using an
oriented affordance-centric coordinate frame located on a sub-task-specific object. Each sub-policy
is both spatially and intra-category invariant allowing for compositional generalisation to a wide
range of variations in the downstream long-horizon task. The sub-policies are augmented to learn
a notion of self-progress allowing them to autonomously switch between sub-policies without the
need for a learned arbitrator.

ber of involved objects. This results in an exponential increase in the possible arrangements of the
objects relative to each other and to the robot, further complicating the learning process.

Recently, a large body of work has motivated the use of local object-centric representations [4, 5]
or keypoints [6], as alternative state representations to images for manipulation tasks. By placing
these keypoints at specific robot-object or object-object affordance regions, these representations
have been shown to enable intra-category generalisation of pick-and-place tasks using off-the-shelf
inverse kinematics and motion planning algorithms. In this work, we explore how these local repre-
sentations can be leveraged in imitation learning. More importantly, how these representations can
enable us to learn sample efficient and generalisable diffusion policies for long-horizon, multi-object
tasks.

We propose to decompose long-horizon, multi-object task learning, into a series of sub-policies each
trained with respect to a relative coordinate frame located at task-informed affordance regions on
objects. This object-centric perspective allows us to train independent sub-policies on a single object



for each sub-task, circumventing the combinatorial explosion associated with multi-object tasks. For
each sub-task, we reorient the affordance frame relative to the robot’s tool frame, ensuring that the
robot is always operating within the data support of the next sub-policy at the end of each sub-task.
This, together with our augmented action space indicating self-progress, facilitates the autonomous
composition of each sub-policy without requiring an additional arbitration policy — typically trained
in a hierarchical imitation learning setting requiring full long-horizon task demonstrations.

The advantages of our formulation are as follows: 1) by training the policy in a relative coordinate
frame, we decouple its learned behaviours from the fixed locations seen in the training dataset al-
lowing for spatial generalisation to new object locations, 2) the abstraction of policy learning from
images and the placement of the relative coordinate frame at the affordance centric region of objects,
allows for intra-category transfer of learned behaviours, 3) our oriented affordance frame formula-
tion allows us to learn highly sample efficient policies from as little as 10 demonstrations and 4) all
the above abstractions allow us to collect smaller and less tedious demonstration sequences for each
sub-task which can then be composed to solve longer horizon tasks.

We evaluate our proposed policy learning approach on a real-world tea-serving task involving 5 dif-
ferent objects, 13 intra-category object variations, and 7 different sub-tasks exhibiting a vast range
of spatial variations and demonstrate our ability to solve the entire long-horizon task with the equiv-
alent of only 10 demonstrations. Video demonstrations and code will be available on our project

page'.

2 Related Works

Long-Horizon Task Learning: Robotic manipulation has long struggled with learning long-
horizon skills[7, 8, 9, 10]. By discovering and planning over sub-skills, hierarchical reinforcement
learning enables exploration over extended timeframes [11, 12, 13, 14, 15, 7, 16, 17, 18]. How-
ever, the computational expense and real-world unsuitability of these algorithms often stem from
needing to learn subskills and overall policies from scratch. The hierarchical imitation learning lit-
erature has seen many efforts to learn or use subgoal decomposition to break up long tasks when
provided with full-task demonstrations to intermediate learning signals and mitigates compounding
action errors [19, 20, 21, 22, 23, 24]. Other work propose to generate sub-goals for long-horizon
tasks [10, 25, 26, 27, 28, 29], but this requires training an expensive generative model and a multi-
stage approach for collecting demonstrations. Universal Visual Decomposer proposes a method for
discovering sub-goals for decomposing long-horizon manipulation tasks by detecting phase shifts in
pre-trained vision embeddings [30]. A key limitation of all these methods is the need for full demon-
stration sequences of the long-horizon task which are tedious to collect and can require extensive
demonstrations to cover the vast state spaces associated with these tasks. This comes as a result
of the tight coupling between the state space of the full long-horizon task, and each sub-policy. In
this work, we explore how we can decouple sub-task learning without requiring full demonstration
sequences of the long-horizon task by rethinking the state representation of the policy.

Object-Centric Representations for Manipulation: Raw image observations are often preferred
for imitation learning because they do not depend on auxiliary perception systems, [1, 3, 31, 2]
however, they induce several limitations on the generalisation of the resulting policies requiring ex-
haustive amounts of demonstration data. There has been a growing body of work in the manipulation
literature exploring object-centric representations to address these challenges [5, 4, 32]. Object pose
is typically used as state information in simulation settings however a key challenge is transferring
these policies to instance variations of the object. More interestingly [6, 33, 34] have explored local
object correspondences to allow for this desired intra-category invariance. These local regions are
typically located around key affordance regions of an object and have been used for category in-
variant pick and place tasks using off-the-shelf inverse kinematics and motion planning algorithms.
Pre-trained models like DINO [35, 36] have improved this correspondence matching [37] and have
been used for retrieval, alignment and replay of manipulation demonstrations [38, 39]. In this work,
we explore how these local affordance-centric regions can be used in the imitation learning setting,
for sample efficient and generalisable policy learning of long-horizon, multi-object tasks.

Relative State and Action Spaces for Imitation Learning: In order to improve the spatial gener-
alisation of imitation learning policies, several works have investigated the effects of using specific
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Figure 2: Demonstration trajectory distributions for different frames of reference. Left: A
fixed global reference frame requires all spatial relative arrangements of both the end-effector and
the object. Middle: An end-effector or affordance-centric reference frame only requires one of them
to freely translate but both can freely rotate. Right: An oriented-affordance frame of reference only
requires the object (or end-effector) to freely translate and rotate.
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Figure 3: Affordance Frames, Oriented-Affordance Frames and Tool Frames. Left: Affordance
frames ( . ), oriented affordance frames ( .- ), and tool frame ( - ) for a typical pick task. Right:
Frames for the pour task. Notice how the oriented affordance frames are identical to the affordance

frames, but rotated such that the ’funnel’ axis (brown) points towards the origin of the tool frame at
the beginning of the task.

coordinate systems to express a policy’s state and action space. While it is common to use a fixed
global frame to capture object locations, the absolute nature of the resulting coordinates limits gen-
eralizability. Conversely, relative coordinate systems have been shown to improve efficiency and
generalizability as the resulting policies are no longer bound to absolute coordinates [40, 31]. In
this work, we explore how expressing state and actions with respect to a local frame attached to
affordance-centric regions on objects can help us decouple sub-policies from the long-horizon tasks
and allow for better spatial generalisation.

3 Affordance-Centric Policy Decomposition 7

3.1 Problem Formulation

Our goal is to learn a sample efficient and generalisable policy 7*(a|o) that can generate actions a
given observation o in order to solve multi-object, long horizon tasks 7*. To simplify the learning
problem, we decompose the long-horizon policy 7* into a series of sub-policies: {7y, 72, 73, ... }
such that: 7*(a | 0) = mi(a | 0) oma(a | 0) o...om(a | 0), where o denotes the chaining of
sub-policies. We aim to train independent sub-policies by collecting smaller and easier-to-collect
demonstration datasets D* = {D;,Ds, D5, ...Dy.}. Our desiderata in this setting is for each policy
to be spatially and intra-category invariant from the locations and instances that could be encountered
in the downstream long horizon task. This will ensure that the resulting policies can be composed for
solving extended tasks. Each sub-policy 7; is formulated as an imitation learning problem, where the
goal is to learn a mapping from observations to actions based on a set of demonstrations. Formally,
given a dataset of demonstrations D; = {(o, as)}1, for sub-task i, where o, is the observation at
time ¢, and a; is the corresponding action, we aim to minimise the discrepancy between the actions
taken by the policy 7; and the actions in the demonstration dataset. The objective function for
training each sub-policy ; can be defined as £;(6;) = E (o, a,)~p, [||ITi(04;6;) — a¢||?], where 6;
represents the parameters of the sub-policy 7;. The goal is to find the optimal parameters 6; that
minimise the objective function 6} = arg ming, £;(6;).



3.2 Affordance-Centric Policy Learning for Long-Horizon Tasks

Affordance Frames: The choice of reference frame for representing robot state and actions is
critical, as it significantly affects a policy’s ability to generalise to spatial variations in multi-object
tasks. When robot poses are represented as absolute coordinates in fixed global reference frames,
the policy’s operation is limited to a closed set of spatial locations with limited generality beyond
the training set. This requires the demonstrations to cover an exhaustive number of spatial locations
during training as illustrated in the left panel of Fig. 2. If an object appears in a previously unseen
position, the policy will be out of distribution and likely fail. Alternatively, relative coordinate
systems have been shown to yield better spatial generalisation of trained policies with the appropriate
placement of these frames allowing for better sample complexity as shown in the middle panel of
Fig. 2. In this work, we propose to place these relative coordinate frames on the affordance-centric
regions of objects. We call these task-dependent local coordinate frames affordance frames. Objects
can have multiple task-dependent affordance frames: e.g. a cup has an affordance frame on the
handle for the task of picking up, and an affordance frame in the centre of the cup for the task of
pouring.

Tool Frames: In multi-object tasks, a robot would either directly interact with an object (e.g. for
picking), or act on a target object while holding a tool object. In addition to the affordance frame
defined relative to the rarget object, we define a fool frame on the tool object. For simple pickup
tasks, the tool frame is identical to the robot’s end-effector frame, however for actions such as stirring
tea with a spoon or pouring from a teapot, the tool frame is placed on the scoop of the spoon or the
sprout of the teapot respectively as illustrated in Fig. 3.

Oriented-Affordance Frames Given affordance frames and tool frames, we can now introduce the
concept of the oriented-affordance frame. 1t is obtained by rotating the affordance frame on our
target object such that its *funnel’ axis (in our case we chose the x-axis) is directed towards the
origin of the tool frame. By defining the robot’s end effector state and actions in this frame (right
panel in Fig. 2), the resulting sub-policy ensures that the robot always falls within its data support
despite the end-effector location or the rotation of the target object. This further simplifies data
collection target object in a small set of locations with the ability to generalise to any new location
in the larger workspace of the robot. More importantly, when composing subsequent policies, the
oriented affordance frame ensures that the robot is always within the support of the next sub-policy
at the end of a sub-task.

State and Action Representation: We define a given sub-task by its corresponding affordance and
tool frame transforms as follows: 7; = {Tafrords Trool} Where Tafiora € SE(3) and Ty € SE(3).
We can then use these transforms to obtain our oriented affordance frame T, € SE(3). We
define the observation space for the corresponding sub-policy 7; as the pose of the tool-frame,
oaffp 1 € SE(3), represented in the oriented affordance frame, and the gripper state g; € {0,1}.
The action space of the policy consists of the desired next pose of the robot’s end effector ©*T, in
the oriented affordance frame, and the gripper action g, € {0, 1}.

Sub-Policy Arbitration using Self-Progress: In order to autonomously chain sub-policies to solve
a long-horizon task, we augment the sub-policy’s action space A to include a task-progress indicator
A" := AU {aprogress }- For each demonstration trajectory 7, we compute a task progress measure by
linearly interpolating progress values from O to 1 based on the length of 7. The policy is then trained
to output not only the action but also the corresponding task-progress value. During execution,
this task-progress value is used to determine when to transition from one sub-policy to the next.
Let p; € [0,1] denote the task progress at time step t. The action output of the sub-policy ; is
extended to include the task-progress value 7;(0;) = (at,p:) wWhere a; is the action and p; is the
task-progress value. The transition between sub-policies occurs when the task-progress value p;
exceeds a predefined threshold, indicating that the current sub-task is complete and the next sub-
policy should be activated. This allows us to compose sub-policies to solve complex long-horizon
tasks without training an additional arbitration policy.

4 Evaluation

We systematically evaluate the various components of our affordance-centric policy decomposition
framework across a complex, long-horizon, multi-object real-world manipulation task of serving a
cup of tea.
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Figure 4: Affordance-centric task decomposition for the tea serving task. Left: Task decomposi-
tion hierarchy; Top Right: Affordance-centric frames for each object; Bottom Right: Sub-task frame
definitions.

4.1 Experimental Setup

Task Description: To solve the full task of tea serving, the robot has to place a teacup on a
saucer, pour tea in the teacup and then finally add sugar and stir. This task consists of 5 different
objects including a teacup, saucer, teapot, sugar basin and teaspoon which can be decomposed into
7 different sub-tasks based on our affordance-centric perspective. For each object, we identify the
set of affordance-centric regions which could be used across various different tasks as shown in
Figure 4 (top-right). The full long-horizon task decomposition is given in Figure 4 (left) and we
identify both the affordance and tool frames which define each subtask in Figure 4 (bottom-right).
To thoroughly evaluate our ability to learn sample efficient and generalisable sub-policies and our
ability to compose these sub-policies across varying levels of long-horizon task complexity, we
conduct all evaluations across the task hierarchy shown in Figure 4.

Affordance-Centric Frame Extraction: As our system focuses on evaluating the utility of
affordance-centric coordinate frames to solve long-horizon, multi-object tasks, we decouple our
results from the performance of the detection system by utilising ground truth detections of these
frames. We note here however that any existing perception system including [6], [33], [39] could be
substituted in our framework.

Policy Training: We utilise Diffusion Policy [1] for imitation learning and train each policy for
4500 epochs with the same default parameters provided in the original implementation [1]. The
state space for all the affordance-centric policies comprises a 16-D vector consisting of the 3-D
position of the robot’s tool frame, a 6-D representation [41] of the tool frame and object rotation,
and the 1-D gripper state. For all the baselines, we additionally provide the position of the object
resulting in a 19-D state vector. The action space for all methods is the same and comprises a 11-D
vector consisting of the 3-D position of the robot’s end effector, a 6-D representation [41] of its
rotation, the 1-D gripper action and the 1-D policy’s self-progress.

Baselines: We focus our evaluation on the use of the oriented affordance frame and how it compares
to other frames of reference when learning sub-policies and composing them to solve long-horizon
tasks. These include the default global reference frame with absolute coordinates and the end-
effector relative reference frame suggested by Chi et.al. [31].

Evaluation Methodology: A key goal of this paper is to explore how long-horizon policy learning
can be made sample efficient with the ability to generalise beyond the training data distribution. To
this end, we limit our training of all sub-policies to only 10 demonstrations. This constraint allows
us to better understand the generalisation capabilities of our method in the low data regime while
trying to decouple its success from simple data scaling. We consider both in-domain (IND) and
out-of-distribution (OOD) task evaluations. In (IND) evaluation, the policy is evaluated in regions
and object arrangements it was explicitly trained on, whereas in (OOD) evaluation, we evaluate its
spatial and compositional generalisation to new object and inter-object locations. For the multi-step
tasks including the medium-horizon and full long-horizon tasks, we evaluate how each method’s
sub-policy can allow for compositionality to solve extended tasks. For each task, all objects start
with the same set of initial states, matched manually with reference markings. We illustrate all the
object configurations used for training and evaluation in Figure 9.



4.2 Experimental Results

We summarise our evaluation of each sub-policy in Table 1 and our compositional evaluation when
solving extended tasks in Table 2. Across all evaluations, our oriented affordance frame consistently
outperforms all alternative methods across both learning individual sub-tasks and when composing
these policies to solve long horizon tasks with an average success rate of 8§3.1% in the (OOD) for
each individual sub-policy and 70.2% in the compositional setting. We note here that all evaluations
are focused on the low data regime with each policy only trained with 10 demonstrations. More im-
portantly, we show in Figure 11 (c) that the overall performance of our method could be significantly
increased by increasing the number of demonstrations to >30.

4.2.1 Key Findings

Oriented affordance frames enables sample efficiency and better spatial generalisation. We
found that the oriented frame plays an important role in enabling sample-efficient learning of each
individual sub-policy, significantly outperforming all baselines in the (IND) setting. While both the
end effector frame and oriented affordance frame can enable the sub-policy to generalise beyond the
spatial variations captured by the demonstrations in the (OOD) setting, we note that our method still
attains a higher performance. We attribute this to two main reasons: 1) Firstly the oriented frame
allows use to maximise the efficacy of the limited 10 demonstrations by aligning the data support of
the policy towards the tool frame of the robot, ensuring that it is always in-distribution with respect
to this relative frame and 2) without the anchored oriented frame, the robot using the end-effector
frame tended to constantly violate joint limits — we discuss this in detail below.

As shown in Figure 11(b) we contrast the ability of our method to learn a spatially invariant policy
from the equivalent of just 10 demonstrations for the cup rearrangement task when compared to a

similar image-based policy [31] which required training on 305 demonstrations?.
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. L category variations The set of ob-
Compositional generalisation to new object arrange- jects used for training and evaluating

ments. An important objective of this research was to de-  the intra-category generalisation capa-
velop independent sub-policies that could effectively be  pilities of the trained sub-policies.
composed to solve extended tasks involving multiple ob-

jects. Across both in-domain (IND) and out-of-distribution (OOD) settings, our approach consis-
tently outperforms all baselines, as summarised in Table 2. This is a challenging task as it requires
each preceding sub-task to perform successfully in order for the subsequent sub-tasks to continue.
We can attribute the high success rate of our method to the oriented affordance frame which played
a crucial role in ensuring that the robot’s tool frame always landed within the support of the next
sub-policy, ensuring seamless composition and operation of each subsequent policy.

Intra-category invariance for imitation learning By attaching our relative frame for imitation
learning at the affordance-centric regions of an object, we gain the ability to transfer our trained
policy across a wide range of intra-category variations. We illustrate this in Figure 5 where we train

>We attempted to follow a similar evaluation protocol as per [31] with a broader set of spatial variations.



Oriented Affordance End Effector Global

Frame (Ours) Frame Frame
Task #of Demos IND Success OOD Success IND Success OOD Success IND Success OOD Success
rotate and grasp cup 10 81.8% 81.8% 45.5% 45.5% 45.5% 0.0%
place cup on saucer 10 100% 100% 100% 100% 9.1% 0.0%
rotate and grasp teapot 10 90.9% 81.8% 27.3% 27.3% 81.8% 0.0%
pour tea into cup 10 100% 81.8% 45.5% 27.3% 54.5% 0.0%
place teapot on table 10 90.9% 72.7% 54.5% 54.5% 90.9% 0.0%
pick up teaspoon with sugar 10 81.8% 81.8% 45.5% 27.3% 72.7% 0.0%
stir spoon in cup 10 90.9% 81.8% 18.2% 9.1% 72.7% 0.0%

Table 1: Sub-policy evaluation. Success rate across both in-distribution (IND) and out-of-
distribution (OOD) spatial configurations of objects for each sub-task.

Oriented Affordance Frame (Ours) Global Frame End Effector Frame
(Composition) (Composition) (Composition)
Task  #of D State IND (0]0))) State IND OOD  State IND [00)))
as oL Demos  nyim  Success Success Dim Success Success Dim Success Success
cup rearrangement 10 16 81.8% 81.8% 19 36.4% 0.0% 19 45.5% 0.0%
utilise teapot 10 16 81.8% 63.3% 19 45.5% 0.0% 19 18.2 9.1%
add sugar 10 16 72.2% 72.2% 19 63.6% 0.0% 19 9.1% 9.1%
serving a cup of tea 10 16 81.8% 63.3% 19 0.0% 0.0% 19 9.1% 9.1%

Table 2: Policy compositionality evaluation. Success rate across both in-distribution (IND) and
out-of-distribution (OOD) spatial configurations of multiple objects for compositional tasks.

both the cup rearrangement and teapot utilisation tasks on a single cup and teapot set as shown in
the right panels. The same trained policy was evaluated across a wide range of variations ranging
from colour, shape and size, with each policy achieving almost a perfect success rate. Allowing
the tool-frame state of the policy to vary based on the object’s shape played an important role in
generalising the policy to larger intra-category variations where the cup was significantly smaller or
the spout of the tea-pot retracted significantly as shown in the bottom right of Figure 5.

5 Limitations and Conclusion

In this paper, we introduced a novel method for factorising robot policy learning into independent,
affordance-centric sub-policies, aimed at addressing the challenges of sample efficiency and gen-
eralizability in long-horizon, multi-object manipulation tasks. By leveraging oriented affordance
frames, our approach enables robots to learn complex tasks from a minimal number of demonstra-
tions, generalise to new spatial configurations, and handle intra-category object variations effec-
tively. Our experimental results validate the effectiveness of our method, demonstrating substantial
improvements in both task performance and spatial generalisation compared to traditional global
and end-effector frames. The ability to seamlessly compose sub-policies to solve long-horizon tasks
without the need for exhaustive full-task demonstrations marks a significant step forward in imitation
learning for robotic manipulation.

While our approach is effective for learning long-horizon robotics tasks, we note several limitations
that warrant further exploration. Firstly, the current approach depends on reliable category-level
tracking for continually obtaining the affordance frames during a manipulation task. While a variety
of promising solutions exist for tracking even through occlusions [42, 43, 44], this is still an open
research area. Additionally, this makes our approach not directly applicable to non-rigid bodies,
where alternative state representations might be required. Moreover, the pose-based abstraction of
observations could limit the applicability to tasks not easily represented by object affordance frames
alone, potentially requiring additional modalities like tactile sensing. Despite these limitations,
our contribution offers a promising pathway to more sample-efficient and generalisable imitation
learning of complex long-horizon manipulation tasks.



Supplementary Material

A Implications of Affordance-Centric Imitation Learning

A.1 Closed Loop Control

Prior work have introduced the concept of local keypoints or regions on objects as compact repre-
sentations for manipulation tasks [33, 6, 39]. These systems have traditionally been used to define
start and end poses for simple pick-and-place operations, utilizing off-the-shelf inverse kinematics
and motion planners to move objects from one location to another in an open-loop manner [33, 6].
Other methods have incorporated these representations within the context of imitation learning, pri-
marily focusing on one-shot imitation learning [45, 46, 47]. In these cases, the keypoint locations
are used to define complex admittance controllers [45] or prompt large language model (LLM) [39]
to replicate a single trajectory, limiting their ability to react to changes or perturbations during policy
execution. Our approach in contrast, leverages these representations in a behaviour cloning setting
where we can learn closed-loop diffusion policies [1] that are robust to perturbations and allow us to
move beyond simple pick-and-place tasks to imitating more complex closed-loop tasks, including
non-prehensile manipulation, such as pushing objects as shown in Figure 6 below.

Object Perturbation

Task Progression

Figure 6: Closed-loop control. By extending the use of these affordance-centric keypoints to the
behaviour cloning setting we demonstrate our ability to learn robust policies that can react to object
perturbations during execution, with applicability to learning tasks beyond simple pick-and-place.

A.2 Intra-Category Generalisation

We provide additional qualitative results to demonstrate the ability of our trained affordance-centric
policy to adapt to a wide range of intra-category variations, specifically size and form factor as
shown in Figure 7. A key component to this generalisation comes from our task-informed use of
object affordances to define task-axes and tool-frames of the robot. For robot-object interaction
tasks such as rotating and grasping a cup, the placement of the relative affordance frame at the point
of interaction on the object (e.g. handle) allows the resulting policy to generalise across most intra-
object variations involving handles (e.g. mugs, teacups) as shown in the bottom row of Figure 7.
Once the robot grasps an object, a new set of affordances becomes available, enabling the robot to
perform different object-object tasks such as placing a cup on a saucer or pouring tea into a cup
where the specific task-relevant affordance for this object shifts from the handle to other parts of the
object, such as the base of the cup or spout of the teapot respectively. Re-targeting the tool-frame of
the robot to these task-informed affordances enables the policy to generalise to large shape and size
variations in object-object interaction tasks as demonstrated in Figure 8.

A.3 Spatial Generalisation Evaluation

All sub-policies were trained with a demonstration dataset collected within a small fixed set of spatial
locations allowing us to capture trajectory variations, recovery behaviours and inter-object variations
important for learning the sub-task using behaviour cloning. These spatial locations are illustrated
in the Training column of Figure 9. For the OOD evaluation of our system discussed in Section 4,
we expand the potential locations of the objects across a broader range of unseen locations as shown
in the Evaluation column of Figure 9. As we train our policy within a relative task coordinate frame



Pour Tea

Place Cup on Saucer

Figure 7: Intra-category generalisation. We demonstrate the ability of our approach to enable
generalisation across large shape and size intra-category variations.

that is located on the object, we gain spatial invariance to the location of the object. Note how these
smaller and simpler-to-collect sub-task demonstrations enable us to learn complex multiple-object
compositional policies that can operate over a vast range of inter-object spatial variations as shown
in the Long-Horizon Multi Task evaluation panel of Figure 9.

A.4 Applicability to Mobile Manipulation

By training our policy with respect to a relative frame attached to an object, the robot’s action and
state space remain consistent regardless of the position of the robot’s base. This allows for the policy
to continue operation while the base of the robot is in motion. We demonstrate this by running the
same policy trained in the tabletop setting on a mobile manipulator robot and show how the end
effector of the robot can maintain task performance regardless of the movement of the robot’s base
as illustrated by the discrepancy between the green and red robot base locations in Figure 10.

B Analysis of Coordinate Frames for Imitation Learning

In this section, we provide an analysis of the different coordinate frames explored in this work for
imitation learning, and their state space complexities.

B.1 Global Frame

Definition. The global frame represents both the end-effector and object positions and orientations
in a fixed, absolute coordinate system. This frame captures the complete spatial configuration of the
robot and the NV objects in the workspace.

Training Without Tool Frame Retargeting With Tool Frame Retargeting

Figure 8: Tool-Frame Re-targeting. We illustrate the importance of tool frame re-targeting to the
spout of the teapot to enable large intra-category variations based on the spout location.

10



Training Evaluation

Medium-Horizon Sub-Tasks Long-Horizon Multi-Step Task

Figure 9: Training and OOD Evaluation Object Start Configurations. Spatial start configura-
tions of objects across tasks used for training and evaluation in the out-of-distribution setting.

Task Progression

Rotate & Pick Cup

Place Cup on Saucer

Current Previous
Base Base

Figure 10: Robustness to moving base. We demonstrate our ability to maintain task performance
regardless of the robot’s moving base when operating with respect to an affordance-centric task
frame.

State Space:
Sglobal = {(Ttoola Tol ) T027 ) ToN)}

Tiool = (R(t)ool tti01> , To = <R60i t](_)i) fori=1,2,...,N

Tt0017 Toi S SE(3)7 Rtoola Roi S 80(3) and ttoohtoi S RS-

The dimensionality of this state space is the sum of the translational (t,,to;) and rotational
(Riool, Roi) components for both the end-effector tool frame and all N objects and encapsulates
the various degrees-of-freedom that have to be covered by the demonstrations:

where

dim(Sglobal) =6+6N

11
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Figure 11: Additional Comparisons. Left: Oriented affordance frame vs. affordance frame; Mid-
dle: Relative number of demonstrations required for standard image-based diffusion policy[31]
vs. Oriented affordance frame on the cup rearrangement task; Right: Success rate vs. Number
of demonstrations on the cup rearrangement task.

B.2 Affordance Frame

Definition. The affordance frame Tygrorg € SE(3) is a local frame attached to an object at a location
corresponding to its task-specific utility. When training policies within this frame, we only require
to capture the space corresponding to the relative position and orientation of the end-effector tool
frame with respect to this affordance-centric region. Training a policy using this relative coordinate
system as the origin provides it with spatial invariance to the location of the object, reducing the
effective space that the demonstrations have to cover to a local volume around the object. As each
affordance frame corresponds to a different object interaction, we decompose task learning into a
series of affordance-centric sub-tasks, significantly reducing the required state space coverage of
each sub-policy by a factor of N, simplifying data collection.

State Space:
Safford = {afforthool}

where

fford fford
affordT _ T—l T _ attor Rtool attor ttool
tool — L afford 1+ tool — 0 1

The dimensionality of this state space includes the translation and rotation of the end-effector relative
to the affordance frame corresponding to the subtask. This is a further reduction from the global state
space dimension by the 6 dimensions corresponding to the spatial location of the object:

dim(safford) =6

B.3 Oriented Affordance Frame

Definition. The oriented affordance frame

To.r € SE(3) is similar to the affordance frame

described above but is oriented such that its ’funnel’ unnel axis

axis (Figure 12) is aligned to point towards the robot’s

tool frame at the start of each sub-task. This alignment /
normalises the state space used for policy learning, /
simplifying the mapping function that the policy has to

learn and enhancing its ability to compose sub-tasks. The

alignment forces all demonstrations to concentrate along Figure 12: Funnel Axis. Illustration of
a known axis which increases the data support from the funnel axis and how all the demon-
the limited number of demonstrations within a known strations are densely concentrated along
volume. During inference, by aligning this axis with this axis.

the robot’s tool frame at the start of each sub-task, we

facilitate the robot to seamlessly continue operation from the previous sub-policy, by ensuring that
the end-effector always falls within this known volume of demonstrations. Furthermore, the fixed

12



Frame State Representation Dimensionality

Global Frame s = (Tiool, To1, Toz, ..., Ton) 646N
Affordance Frame s = afferdp 6
Oriented Affordance Frame s = 2T 6

Table 3: State-Space Complexity. Summary of state space complexities for the different coordinate
frames explored in this work.

rotation of this relative frame acts as an anchor for the rotations of the robot’s end effector reducing
kinematic joint violations when acting with respect to a relative task axes as discussed in Section 4.

State Space:

At the start of each episode, we perform an affine transformation to reorient the affordance frame
Tfrora such that its funnel’ axis is aligned with the end-effector tool frame T\, . To achieve this
reorientation, we apply a rotation Rjign (Algorithm 1) to Tagrorg:

Toatt = RalignTafford

This allows us to define our oriented affordance state space as:

So—aff = {O_afleool }

where

o-aff’ o-aff.
aff -1 R t
o-a Ttool _ To,afthool _ tool tool
0 1
The dimensionality of this state space is the same as in the affordance frame however this simple
augmentation allows us to control how demonstrations are distributed across this space, allowing us
to maximise the utility of as little as 10 demonstrations:

dim(SO_aff) =6

C Implementation Details

C.1 Experimental Setup

For all experiments, we utilise a Franka Panda manipulator arm equipped with two D405 Intel
Realsense cameras attached to the flange as shown in Figure 13. We utilised Cartesian impedance
control to control the robot with all demonstrations collected using a GELLO teleoperation device
[48]. During data collection, all objects are equipped with an independent ArUco marker (Figure 13)
which we use for identifying the affordance-centric frames via measured rigid transforms from this
marker as well as for tracking these frames across the demonstration. We chose this method to obtain
the affordance frame as it allowed us to decouple the performance of the perception system from the
utility of the affordance frames for policy learning and composition which was the main focus of
this work. While we did explore the use of existing methods [49, 6, 33] to acquire these affordance-
centric regions we found that they struggle with tracking objects, particularly in closed-loop tasks
involving non-prehensile manipulation. Concurrent work has been exploring the development of
a dense keypoint level detection system based on [44] with the ability to track these keypoints in
real-time regardless of occlusions and we demonstrate an integration of these methods in the videos
on our project page’.

3policy-decomposition. github.io
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Subtask Ctrl To Ta Tp #D-Params Lr WDecay Symm Do Da

Rotate and Grasp Cup Pos 2 8§ 16 8.08
Place Cup on Saucer Pos 2 8 16 8.08
Rotate and Grasp Teapot Pos 2 8 16 8.08
Pour Tea Into Cup Pos 2 8§ 16 8.08
Place Teapot on Table Pos 2 8 16 8.08
Pick Up Teaspoon with Sugar Pos 2 8 16 8.08
Stir Spoon in Cup Pos 2 8§ 16 8.08

le-4 le-6 No 16 11
le-4 le-6 Yes 10 11
le-4 le-6 No 16 11
le-4 le-6 Yes 10 11
le-4 le-6 Yes 10 11
le-4 le-6 No 16 11
le-4 le-6 Yes 10 11

Table 4: Hyperparameters for each subtask in the tea-serving task. Ctrl: position or velocity
control. To: observation horizon. Ta: action horizon. Tp: action prediction horizon. #D-Params:
diffusion network number of parameters in millions. Lr: learning rate. WDecay: weight decay.
Symm: if the affordance frame is at a location of symmetry on the object. Do: dimension of the
observation input vector. Da: dimension of the action output vector.

C.2 Policy Composition

Having trained each affordance-centric policy, we can
compose them to solve long-horizon, multi-object tasks.
We first define the order of sub-tasks and their associ-
ated affordance frames required to complete the full task.
The robot then performs an initialisation scan of the envi-
ronment to identify the initial locations of all objects and
their local affordance frames in the scene. Once identified
it runs the first policy corresponding to the first sub-task.
As the policy is trained to output end-effector poses de-
fined in the oriented affordance frame **fT,., we trans-
form these actions to the base frame of the robot T
before executing them with a Cartesian impedance con-
troller. If aprogress generated by the policy increases be-
yond a predefined threshold ¢, indicating sub-task com-
pletion, we switch affordance frames and repeat the pro-
cess with the next policy corresponding to the next sub-
task.

C.3 Diffusion Policy

Throughout this work, we leverage diffusion policies [1]
as our central behaviour cloning algorithm. Diffusion
policy models the conditional action distribution as a de-
noising diffusion probabilistic model (DDPM), allowing
for better representation of the multi-modality in human-
collected demonstrations. Specifically, diffusion policy
uses DDPM to model the action sequence p(A; | o, Xt),
where A; = {a¢,...,a;¢} represents a chunk of next
C actions. The final action is output of the following de-
noising process:

Afﬂ = Oz(Ai€ - 760(0t7xt,Af)) +N(0’U2I)’ 1)

ArUco
Markers

Figure 13: Experimental Setup.
Franka Panda manipulator robot
equipped with 2 D405 Realsense cam-
eras. Objects with ArUco markers for
affordance-centric frame detection and
tracking.

where A¥ is the denoised action sequence at time k. Denoising starts from AX sampled from Gaus-
sian noise and is repeated till k¥ = 1. In Equation (1), («, "y, o) are the parameters of the denoising
process and ¢ is the score function trained using the MSE loss £(0) = (ex — €g(0¢, X¢, AF + €1))2.
The noise at step k of the diffusion process, €y, is sampled from a Gaussian of appropriate variance.
We provide the important hyperparameters used for training the policy across each sub-task in Table
4 with the rest of the implementation identical to the original implementation [1].

14



1

10

11

12
13

Algorithm 1: Calculation of Rjign

InplIt: Ptool s Pafford
Output: Rjign
Function ComputeRotationMatrix (Psor, Paford) *
Define the Vectors:
Vfunnel < []—7 0, O}T
Puol < Position of the tool frame
Patford < Position of the affordance frame
Calculate the Direction Vector:
d <« Ptool — Pafford
dnorm & Hg‘
Find the Rotation Axis and Angle:
T < Viunnel X dnorm
rnorm <_ ”I.TH
COS(@) 4 Vunnel * Anorm
sin(f) «+ |[|r]]
Construct the Rotation Matrix:
T, Ty

K «+ [ T, 0 —Ty

—Ty Ty 0
Rutign < I +sin(0)K + (1 — cos(9))K?
return R ;g

Algorithm 2: Policy Composition for Long Horizon Tasks

Given: Initial state sg, Subpolicies 71, 7o, . . ., 7, Threshold ¢

IHPUt 50,71, T2, - - 7Tna¢
Output: Action sequence {ai,a2,...,ar}

1: Detect all affordance frames > Identify affordance frames

2: 54 So > Initialize state

3 A~ {} > Initialize action sequence

4: 1+ 1 > Set current subpolicy

5: while7 < ndo

6 Orient Ty o towards Too1 > Align affordance frame

7 Si — T;alfmeol > Transform tool frame

8 while Progress p < ¢ do

9 (ao-aft, D) < mi(8s) > Generate action and progress
10: a < ToaffGo-aff > Transform action to base frame
11: Execute a > Perform action
12: s < Observe new state > Update state
13: Append a to A > Record action
14: Orient To.air towards Too > Realign frame
15: Si — T;alfmeol > Update state input
16 1+i+1 > Next subpolicy
17: return A > Return action sequence
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