Improved bounds for randomly colouring
simple hypergraphs

Weiming Feng Heng Guo Jiaheng Wang
University of Edinburgh

RANDOM 2022

Hypergraph (proper) colouring

Classical combinatorial/computational problem!

O
O
O

\

O 040
O

~
Z

O
O
OorO
OO O

-
N
I
&

1/18

Hypergraph (proper) colouring

Classical combinatorial/computational problem!

O
O
O

\

« Hypergraph (V. &)
« Hyperedgeec £:e CV

O 040
O

~
Z

O
O
OorO
OO O

-
N
I
&

1/18

Hypergraph (proper) colouring

Classical combinatorial/computational problem!

~N
A
~
J

o
\

« Hypergraph (V. &)
« Hyperedgeec £:e CV

« Proper colouring

~
Z

-
N
I
O

« Forbidding monochromatic hyperedges

1/18

Computational problems

Three computational problems:

~N
>
~
J

>
\

~
i

s
-
I
O

2/18

Computational problems

Three computational problems:

~N
>
~
J

+ Deciding

« Decide if a colouring exists

>
\

~
i

s
-
I
O

2/18

Computational problems

Three computational problems:

+ Deciding

~N
>
~
J

« Decide if a colouring exists

>
\

« Searching

« Construct a colouring

~
i

s
-
I
O

2/18

Computational problems

Three computational problems:

+ Deciding

~N
>
~
J

« Decide if a colouring exists

>
\

« Searching
« Construct a colouring
« Sampling / approximate counting

« Output a uniform random colouring

~
i

« Estimate the number of colourings

s
-
I
O

2/18

Computational problems

Three computational problems:

+ Deciding

~N
>
~
J

« Decide if a colouring exists

>
\

« Searching
« Construct a colouring
« Sampling / approximate counting

« Output a uniform random colouring

~
i

« Estimate the number of colourings

s
-
I
O

« Self-reduction [Jerrum-Vazirani-Vigoda’s6]

2/18

Computational problems

Three computational problems:

~N
>
~
J

+ Deciding

« Decide if a colouring exists

>
\

« Searching
« Construct a colouring
« Sampling / approximate counting

« Output a uniform random colouring

~
i

« Estimate the number of colourings

s
-
I
O

« Self-reduction [Jerrum-Vazirani-Vigoda’s6]

Deciding is NP-hard in general (3-colourings on graphs).

2/18

Computational problems

Three computational problems:

« Deciding (hard)

« Decide if a colouring exists

~N
>
~
J

>
\

« Searching (hard)
« Construct a colouring
« Sampling / approximate counting (hard)

« Output a uniform random colouring

~
i

« Estimate the number of colourings

s
-
I
O

« Self-reduction [Jerrum-Vazirani-Vigoda’s6]

Deciding is NP-hard in general (3-colourings on graphs).

2/18

Computational problems

Three computational problems:

~N
>
~
J

« Deciding (hard)

« Decide if a colouring exists

>
\

« Searching (hard)
« Construct a colouring
« Sampling / approximate counting (hard)

« Output a uniform random colouring

~
i

« Estimate the number of colourings

s
-
I
O

« Self-reduction [Jerrum-Vazirani-Vigoda’s6]

Deciding is NP-hard in general (3-colourings on graphs).

Posing restrictions to input instances?

2/18

(Symmetric) Lovasz local lemma (LLL)

Treat hyperedges being monochromatic as (random) “bad” events...

3/18

(Symmetric) Lovasz local lemma (LLL)

Treat hyperedges being monochromatic as (random) “bad” events...

Local lemma: weak dependency — non-zero probability of being good.

3/18

(Symmetric) Lovasz local lemma (LLL)

Treat hyperedges being monochromatic as (random) “bad” events...

Local lemma: weak dependency — non-zero probability of being good.

« B;: bad events with Pr[B;] = p.

3/18

(Symmetric) Lovasz local lemma (LLL)

Treat hyperedges being monochromatic as (random) “bad” events...

Local lemma: weak dependency — non-zero probability of being good.

« B;: bad events with Pr[B;] = p.
« Each depends on < D other events.

3/18

(Symmetric) Lovasz local lemma (LLL)

Treat hyperedges being monochromatic as (random) “bad” events...
Local lemma: weak dependency — non-zero probability of being good.

« Bj;: bad events with Pr[B;] = p.
« Each depends on < D other events.

Lemma (Symmetric Lovasz local lemma [Erdés-Lovasz’75])

If

then there is a non-zero probability that no bad event happens.

3/18

(Symmetric) Lovasz local lemma (LLL)

Treat hyperedges being monochromatic as (random) “bad” events...
Local lemma: weak dependency — non-zero probability of being good.

« B;: bad events with Pr[B;] = p. number of colours; size of hyperedges

« Each depends on < D other events. maximum degree of vertices

Lemma (Symmetric Lovasz local lemma [Erdés-Lovasz’75])

If
€-p- (1) + 1) < 17

then there is a non-zero probability that no bad event happens.

3/18

LLL on hypergraph colourings

~N
>
~
J

Parameters:

o
\

~
Z

s
-
I
O

4/18

LLL on hypergraph colourings

~N
>
~
J

Parameters:

o
\

« q: Number of colours

~
Z

s
-
I
O

4/18

LLL on hypergraph colourings

~N
>
~
J

Parameters:

o
\

« q: Number of colours

o k: Size of hyperedges (k-uniform)

Z

fl\
-

-
N\

4/18

LLL on hypergraph colourings

~N
>
~
J

Parameters:

o
\

« q: Number of colours

o k: Size of hyperedges (k-uniform)

« Degree of a vertex: number of its incident hyperedges

~
Z

s
-
I
O

4/18

LLL on hypergraph colourings

~N
>
~
J

Parameters:

o
\

« q: Number of colours

o k: Size of hyperedges (k-uniform)

« Degree of a vertex: number of its incident hyperedges

~
Z

« A: Maximum degree of vertices

s
-
I
O

4/18

LLL on hypergraph colourings

~N
>
~
J

Parameters:

o
\

« q: Number of colours

o k: Size of hyperedges (k-uniform)

« Degree of a vertex: number of its incident hyperedges

~
Z

« A: Maximum degree of vertices

s
-
I
O

Apply LLL: a colouring exists if
A < g" 1/ (ek)

4/18

LLL on hypergraph colourings

~N
>
~
J

Parameters:

o
\

« q: Number of colours

o k: Size of hyperedges (k-uniform)

« Degree of a vertex: number of its incident hyperedges

~
Z

« A: Maximum degree of vertices

s
-
I
O

Apply LLL: a colouring exists if
A < g1/ (ek)

4/18

Computational problems: Lovasz local lemma regime

Assuming LLL (A < ¢"~1/(ek)) on input instances:

«+ Deciding

« Searching

« Sampling

5/18

Computational problems: Lovasz local lemma regime
Assuming LLL (A < ¢"~1/(ek)) on input instances:
«+ Deciding

« Trivial! Just output YES

« Searching

« Sampling

5/18

Computational problems: Lovasz local lemma regime

Assuming LLL (A < ¢"~1/(ek)) on input instances:

«+ Deciding
« Trivial! Just output YES
« Searching

« Easy: Moser-Tardos algorithm [Moser-Tardos’10]

« Sampling

5/18

Computational problems: Lovasz local lemma regime

Assuming LLL (A < ¢"~1/(ek)) on input instances:

«+ Deciding
« Trivial! Just output YES
« Searching

« Easy: Moser-Tardos algorithm [Moser-Tardos’10]
« Computational threshold (asymptotically) [Gebauer-Szab6-Tardos’16]

« Sampling

5/18

Computational problems: Lovasz local lemma regime

Assuming LLL (A < ¢"~1/(ek)) on input instances:

«+ Deciding
« Trivial! Just output YES
« Searching

« Easy: Moser-Tardos algorithm [Moser-Tardos’10]
« Computational threshold (asymptotically) [Gebauer-Szab6-Tardos’16]

« Sampling

« Moser-Tardos does not generate uniform colourings.

5/18

Computational problems: Lovasz local lemma regime

Assuming LLL (A < ¢"~1/(ek)) on input instances:

«+ Deciding
« Trivial! Just output YES
« Searching

« Easy: Moser-Tardos algorithm [Moser-Tardos’10]
« Computational threshold (asymptotically) [Gebauer-Szab6-Tardos’16]

« Sampling
« Moser-Tardos does not generate uniform colourings.
« INP-hard, even when significantly below LLL threshold [Galanis-Guo-W.22]

5/18

Computational problems: Lovasz local lemma regime

Assuming LLL (A < ¢"~1/(ek)) on input instances:

«+ Deciding
« Trivial! Just output YES
« Searching

« Easy: Moser-Tardos algorithm [Moser-Tardos’10]
« Computational threshold (asymptotically) [Gebauer-Szab6-Tardos’16]

« Sampling
« Moser-Tardos does not generate uniform colourings.
« NP-hard, when A > 5 q"“/2 and g is even [Galanis-Guo-W.22]

5/18

Computational problems: Lovasz local lemma regime

Assuming LLL (A < ¢"~1/(ek)) on input instances:

«+ Deciding
« Trivial! Just output YES
« Searching

« Easy: Moser-Tardos algorithm [Moser-Tardos’10]
« Computational threshold (asymptotically) [Gebauer-Szab6-Tardos’16]

« Sampling
« Moser-Tardos does not generate uniform colourings.
« NP-hard, when A > 5 q"“/2 and g is even [Galanis-Guo-W.22]

5/18

Computational problems: Lovasz local lemma regime

Assuming LLL (A < ¢"~1/(ek)) on input instances:

«+ Deciding
« Trivial! Just output YES
« Searching
« Easy: Moser-Tardos algorithm [Moser-Tardos’10]
« Computational threshold (asymptotically) [Gebauer-Szab6-Tardos’16]
« Sampling
« Moser-Tardos does not generate uniform colourings.
« NP-hard, when A > 5 q"“/2 and g is even [Galanis-Guo-W.22]
« Tractable, when A < ¢*/3 [Jain-Pham-Vuong’21] (perfect sampler [He-Sun-Wu’21])

5/18

Computational problems: Lovasz local lemma regime

Assuming LLL (A < ¢"~1/(ek)) on input instances:

«+ Deciding
« Trivial! Just output YES
« Searching
« Easy: Moser-Tardos algorithm [Moser-Tardos’10]
« Computational threshold (asymptotically) [Gebauer-Szab6-Tardos’16]
« Sampling
« Moser-Tardos does not generate uniform colourings.
« NP-hard, when A > 5 qlg/2 and g is even [Galanis-Guo-W.22]
« Tractable, when A < ¢*/3 [Jain-Pham-Vuong’21] (perfect sampler [He-Sun-Wu’21])

Open problem: computational threshold for sampling problem

5/18

Simple (aka. linear) hypergraphs

J

Simple hypergraph: 7o ”

\

+ Overlap of two hyperedges < 1 N\

Lz

r
N
I
N\

6/18

Simple (aka. linear) hypergraphs

Simple hypergraph:

+ Overlap of two hyperedges < 1

6/18

Simple (aka. linear) hypergraphs

Simple hypergraph:

+ Overlap of two hyperedges < 1
« Chromatic number by LLL: x(H) < CAFT

6/18

Simple (aka. linear) hypergraphs

Simple hypergraph:
« Overlap of two hyperedges < 1
« Chromatic number by LLL: x(H) < CAFT

1
« Refined: X(H) < C} (ﬁ) M [Frieze-Mubayi’13]

6/18

Simple (aka. linear) hypergraphs

Simple hypergraph:
+ Overlap of two hyperedges < 1
o LLL: A < ¢"~1/(ek) guarantees a solution
« Refined: A < Cjkq" 1 log ¢ [Frieze-Mubayi’13]

6/18

Simple (aka. linear) hypergraphs

Simple hypergraph:
+ Overlap of two hyperedges < 1

o LLL: A < ¢"~1/(ek) guarantees a solution
« Refined: A < Ckk‘qk_l log q [Frieze-Mubayi’13]
« Searching is NP-hard when A > 2k¢" In ¢ + 2¢

« Sampling is NP-hard when A > Ckq¢"'Ingq
[Galanis-Guo-W.'22]

6/18

Simple (aka. linear) hypergraphs

Simple hypergraph:
+ Overlap of two hyperedges < 1

o LLL: A < ¢"~1/(ek) guarantees a solution
« Refined: A < Ckk‘qk_l log q [Frieze-Mubayi’13]
« Searching is NP-hard when A > 2k¢" In ¢ + 2¢

« Sampling is NP-hard when A > Ckq¢"'Ingq
[Galanis-Guo-W.'22]

A > 5 - ¢*/? hardness for sampling requires overlap = k/2.

6/18

Simple (aka. linear) hypergraphs

Simple hypergraph:
+ Overlap of two hyperedges < 1

o LLL: A < ¢"~1/(ek) guarantees a solution
« Refined: A < Ckk‘qk_l log q [Frieze-Mubayi’13]
« Searching is NP-hard when A > 2k¢" In ¢ + 2¢

« Sampling is NP-hard when A > Ckq¢"'Ingq
[Galanis-Guo-W.'22]

A > 5 - ¢*/? hardness for sampling requires overlap = k/2.

k/3

Better sampler for simple hypergraphs (than the A < ¢"/° one)?

6/18

Simple (aka. linear) hypergraphs

Simple hypergraph:
+ Overlap of two hyperedges < 1

o LLL: A < ¢"~1/(ek) guarantees a solution
« Refined: A < Ckk‘qk_l log q [Frieze-Mubayi’13]
« Searching is NP-hard when A > 2k¢" In ¢ + 2¢

« Sampling is NP-hard when A > Ckq¢"'Ingq
[Galanis-Guo-W.'22]

A > 5 - ¢*/? hardness for sampling requires overlap = k/2.

k/3

Better sampler for simple hypergraphs (than the A < ¢"/* one)? Yes.

6/18

Our result

Sampling

tractable |

I
General 207485710

Simple

Sampling Searching

intractable | intractable

D 4

k/3

q

¢* A

7/18

Our result

Sampling Sampling Searching

tractable | | intractable | intractable

|
Simple This paper _

e g/ ¢ A

Theorem
There exists an algorithm such that, for any 6 > 0, given a k-uniform A-degree
hypergraph as an input, the algorithm outputs an almost uniform random q-colouring, if

k>20(1+%)and A < 0.1%5¢#/2=(k9+1/9) The running time is O (poly(Ak) - n'01).

7/18

Glauber dynamics

Natural approach: Glauber dynamics

~N
>
~
J

>
\

~
Z

s
-
I
O

8/18

Glauber dynamics

Natural approach: Glauber dynamics

~N
>
~
J

>
\

+ Uniformly choose one vertex

« Update its value according to its marginal

~

Z

r
-
QO

8/18

Glauber dynamics

Natural approach: Glauber dynamics

N
>
~
J

>
\

+ Uniformly choose one vertex <

« Update its value according to its marginal

~

Z

r
-
N\

8/18

Glauber dynamics

Natural approach: Glauber dynamics

N
>
~
J

>
\

+ Uniformly choose one vertex

+ Update its value according to its marginal <
1 1 1

Pr@ = -, Pr[® = -, Pr[@ = -

3 3 3

~
Z

00
()
O/e @

s
-
I
O

8/18

Glauber dynamics

Natural approach: Glauber dynamics

N
>
~
J

>
\

+ Uniformly choose one vertex

+ Update its value according to its marginal <

~

Z

r
-
QO

8/18

Glauber dynamics

Natural approach: Glauber dynamics

N
>
~
J

o
\

+ Uniformly choose one vertex <

« Update its value according to its marginal

~

Z

r
-
N\

8/18

Glauber dynamics

Natural approach: Glauber dynamics

N
>
A
J

>
\

+ Uniformly choose one vertex

+ Update its value according to its marginal <

Pr(®] = 0,Pr(®] = Pr(@] = |

~
Z

ON
()
@0 O

r
-
Y,
QO

8/18

Glauber dynamics

Natural approach: Glauber dynamics

N
>
~
J

>
\

+ Uniformly choose one vertex

+ Update its value according to its marginal <

~

Z

r
-
QO

8/18

Glauber dynamics

Natural approach: Glauber dynamics

N
>
~
J

>
\

+ Uniformly choose one vertex

« Update its value according to its marginal

~

Z

r
-
QO

8/18

Glauber dynamics

Natural approach: Glauber dynamics

~N
>
~
J

>
\

+ Uniformly choose one vertex

« Update its value according to its marginal

~
Z

s
-
I
O

Stationary distribution is uniform (the correct distribution).

8/18

Glauber dynamics

Natural approach: Glauber dynamics

~N
>
~
J

>
\

+ Uniformly choose one vertex

« Update its value according to its marginal

~
Z

s
-
I
O

Stationary distribution is uniform (the correct distribution).

Does this chain mix rapidly (i.e., converge to stationary distribution quickly)?

8/18

Dystopia of MCMC?

Well connected

Fast mixing

9/18

Dystopia of MCMC?

Well connected Poorly connected

Fast mixing Slow mixing

9/18

Dystopia of MCMC?

Well connected Poorly connected Not connected

Fast mixing Slow mixing Not mixing

9/18

Dystopia of MCMC?

Well connected Poorly connected Not connected

Fast mixing Slow mixing Not mixing

9/18

Dystopia of MCMC?

Well connected Poorly connected Not connected

Fast mixing Slow mixing Not mixing

Not that bad if there is a giant component — start from a random configuration

9/18

Dystopia of MCMC?

[
o°®
Well connected Poorly connected Not connected

Fast mixing Slow mixing Not mixing

Not that bad if there is a giant component — start from a random configuration

« Simple hypergraph with ¢ > max{©y(logn), @k(Aﬁ)} [Frieze-Anastos’17]

9/18

Dystopia of MCMC?

Well connected Poorly connected Not connected

Fast mixing Slow mixing Not mixing

Not that bad if there is a giant component — start from a random configuration

« Simple hypergraph with ¢ > max{©y(logn), @k(Aﬁ)} [Frieze-Anastos’17]

« Constant number of colours?

9/18

Markov chain projection [Feng-Guo-Yin-Zhang’21]

10/18

Markov chain projection [Feng-Guo-Yin-Zhang’21]

10/18

Markov chain projection [Feng-Guo-Yin-Zhang’21]

=

. projection
« Disconnected / poorly connected ——— well connected

10/18

Markov chain projection [Feng-Guo-Yin-Zhang’21]

. projection
« Disconnected / poorly connected ——— well connected

10/18

Markov chain projection [Feng-Guo-Yin-Zhang’21]

=
=

. projection
« Disconnected / poorly connected ——— well connected

« Harder to simulate transition / recover a sample
10/18

The algorithm

Algorithm:

« Run Glauber dynamics on the projected distribution to get a projected sample Y

11/18

The algorithm

Algorithm:

« Run Glauber dynamics on the projected distribution to get a projected sample Y

« Sample a proper colouring X conditioned on its projection being Y’

11/18

The algorithm

Algorithm:

« Run Glauber dynamics on the projected distribution to get a projected sample Y

« Sample a proper colouring X conditioned on its projection being Y’
Things to handle:

+ Choose a proper projection

11/18

The algorithm

Algorithm:

« Run Glauber dynamics on the projected distribution to get a projected sample Y

« Sample a proper colouring X conditioned on its projection being Y’
Things to handle:

+ Choose a proper projection

« Analyse the mixing time of projected chain

11/18

The algorithm

Algorithm:

« Run Glauber dynamics on the projected distribution to get a projected sample Y

« Sample a proper colouring X conditioned on its projection being Y’
Things to handle:

+ Choose a proper projection
« Analyse the mixing time of projected chain

« Simulate transition and get the final sample

11/18

Bucketing [Feng-He-Yin’21]

« Disconnection arises from hard constraints:

(XX X)

12/18

Bucketing [Feng-He-Yin’21]

« Disconnection arises from hard constraints:

(XX X)

« Projection by bucketing:

@0 000000 0

L] = il

12/18

Bucketing [Feng-He-Yin’21]

« Disconnection arises from hard constraints:

(XX X)

« Projection by bucketing:
@000 00 Q\Q%Q
A N il

+ The constraint is soft (ensured by LLL), i.e.,

ol B)]

12/18

Bucketing [Feng-He-Yin’21]

« Disconnection arises from hard constraints:

(XX X)

« Projection by bucketing:
@000 00 Q\Q%Q
A N il

+ The constraint is soft (ensured by LLL), i.e.,

ol B)]

despite that

WEEEE <@L O-~EXR D]

12/18

The algorithm

Things to handle:

» Choose a proper projection
+ Bucketing
+ Analyse the mixing time of projected chain

« Simulate transition and get the final sample

13/18

The algorithm

Things to handle:

» Choose a proper projection

+ Bucketing
+ Analyse the mixing time of projected chain

« Simulate transition and get the final sample

Current A < ¢"/3 barrier: trade-off between mixing and implementation.

13/18

The algorithm

Things to handle:

» Choose a proper projection

+ Bucketing
+ Analyse the mixing time of projected chain

« Simulate transition and get the final sample

Current A < ¢"/3 barrier: trade-off between mixing and implementation.

Improve both to get A < ¢*/2 on simple hypergraphs.

13/18

The algorithm

Things to handle:
» Choose a proper projection
+ Bucketing
+ Analyse the mixing time of projected chain

« Simulate transition and get the final sample

Current A < ¢"/3 barrier: trade-off between mixing and implementation.

k/2

Improve both to get A < ¢"/“ on simple hypergraphs.

« We focus on implementation in this talk.

13/18

Fast implementation

(@] @ ® 10
000
@0
o/e @

14/18

Fast implementation

« How can we know the correct projected distribution?

14/18

Fast implementation

« How can we know the correct projected distribution?

« Inverse the projection independently!

14/18

Fast implementation

« How can we know the correct projected distribution?

« Inverse the projection independently!

\

‘ ‘\

@ |

~

00 e
NS

14/18

Fast implementation

« How can we know the correct projected distribution?

« Inverse the projection independently!

14/18

Fast implementation

« How can we know the correct projected distribution?

« Inverse the projection independently!

9
00 @ O
A0

« What if the inversion sample is not proper?

\

~

/
L
O

o0
0@

14/18

Fast implementation

« How can we know the correct projected distribution?

« Inverse the projection independently!

9
00 @ O
A0

« What if the inversion sample is not proper?

\

+ Repeat again! (rejection sampling)

~

/
L
O

o0
0@

14/18

Fast implementation

« How can we know the correct projected distribution?

« Inverse the projection independently!

9
00 @ O
A0

« What if the inversion sample is not proper?

\

+ Repeat again! (rejection sampling)

« Expected number of trials?

~

/
L
O

o0
0@

14/18

Fast implementation

« How can we know the correct projected distribution?

« Inverse the projection independently!

9
00 @ O
A0

« What if the inversion sample is not proper?

\

+ Repeat again! (rejection sampling)
« Expected number of trials?

+ Each hyperedge fails with constant probability.

~

/
L
O

o0
0@

14/18

Fast implementation

« How can we know the correct projected distribution?

« Inverse the projection independently!

9
00 @ O
A0

« What if the inversion sample is not proper?

\

+ Repeat again! (rejection sampling)
« Expected number of trials?

+ Each hyperedge fails with constant probability.
« Expect ¢®™) rounds of resampling!

~

/
L
O

o0
0@

14/18

Fast implementation

« How can we know the correct projected distribution?

« Inverse the projection independently!

TN
« What if the inversion sample is not proper? O (O O

+ Repeat again! (rejection sampling)
« Expected number of trials?

O
®NO

+ Each hyperedge fails with constant probability. —
® @

« Expect ¢®™) rounds of resampling!

« Satisfied (by bucketing) hyperedges affect nothing. " ‘J

14/18

Fast implementation

« How can we know the correct projected distribution?

« Inverse the projection independently!

« What if the inversion sample is not proper?

+ Repeat again! (rejection sampling)
« Expected number of trials?
+ Each hyperedge fails with constant probability.

« Expect ¢®™) rounds of resampling!

« Satisfied (by bucketing) hyperedges affect nothing.

14/18

Fast implementation

« How can we know the correct projected distribution?

« Inverse the projection independently!

« What if the inversion sample is not proper?

+ Repeat again! (rejection sampling)
« Expected number of trials?
+ Each hyperedge fails with constant probability.

« Expect ¢®™) rounds of resampling!

« Satisfied (by bucketing) hyperedges affect nothing.

- Disconnected components affect nothing.

14/18

Fast implementation

« How can we know the correct projected distribution?

« Inverse the projection independently!

« What if the inversion sample is not proper?

+ Repeat again! (rejection sampling)
« Expected number of trials?
+ Each hyperedge fails with constant probability.

« Expect ¢®™) rounds of resampling!

« Satisfied (by bucketing) hyperedges affect nothing.

- Disconnected components affect nothing.

14/18

Fast implementation

« How can we know the correct projected distribution?

« Inverse the projection independently!

« What if the inversion sample is not proper?

+ Repeat again! (rejection sampling)
« Expected number of trials?
+ Each hyperedge fails with constant probability.

« Expect ¢®™) rounds of resampling!

« Satisfied (by bucketing) hyperedges affect nothing.

- Disconnected components affect nothing.

« We are done if number of hyperedges is O(log n) w.h.p.

14/18

Connected component

Union bound over all possible size-a(#edges) components:

o/
O\

NC_O/0)
I

\O

O

;
/0

/O O\Q

15/18

Connected component

Union bound over all possible size-a(#edges) components:

« Probability that a size-a: component fails?

o
NC_O/0)

\O
O
;

/0

/O _ONO)
O\

15/18

Connected component

Union bound over all possible size-a(#edges) components:

« Probability that a size-a: component fails?

« Impossible to argue exactly.

o/

O/Q)

/O ONOJ
O\

\O
S
O

/0

15/18

Connected component

Union bound over all possible size-a(#edges) components:

« Probability that a size-a: component fails?

« Impossible to argue exactly.

+ Independent hyperedges — probability upper bound

O/O)
/O _ONO)
O\

\O
S
O

/0

15/18

Connected component

Union bound over all possible size-a(#edges) components:

« Probability that a size-a: component fails?

« Impossible to argue exactly.
+ Independent hyperedges — probability upper bound
« Working on line graph L:

15/18

Connected component

Union bound over all possible size-a(#edges) components:

« Probability that a size-a: component fails?

« Impossible to argue exactly.
+ Independent hyperedges — probability upper bound
« Working on line graph L:
+ 2-tree [Alon’91] 1" of L:

15/18

Connected component

Union bound over all possible size-a(#edges) components:

« Probability that a size-a: component fails?

« Impossible to argue exactly.
+ Independent hyperedges — probability upper bound
« Working on line graph L:
+ 2-tree [Alon’91] 1" of L:

+ Independent set
« Connected on L?

15/18

Connected component

Union bound over all possible size-a(#edges) components:

« Probability that a size-a: component fails?

« Impossible to argue exactly.
+ Independent hyperedges — probability upper bound
« Working on line graph L:
+ 2-tree [Alon’91] 1" of L:

+ Independent set
« Connected on L?

15/18

Connected component

Union bound over all possible size-a(#edges) components:

« Probability that a size-a: component fails?

« Impossible to argue exactly.
+ Independent hyperedges — probability upper bound
« Working on line graph L:
+ 2-tree [Alon’91] 1" of L:

+ Independent set
« Connected on L?

15/18

Connected component

Union bound over all possible size-a(#edges) components:

« Probability that a size-a: component fails?

« Impossible to argue exactly.
+ Independent hyperedges — probability upper bound
« Working on line graph L:
+ 2-tree [Alon’91] 1" of L:

+ Independent set
« Connected on L?

« Any size-o component has a size-a/(kA) 2-tree.

15/18

Connected component

Union bound over all possible size-a(#edges) components:

« Probability that a size-a: component fails?

« Impossible to argue exactly.
+ Independent hyperedges — probability upper bound
« Working on line graph L:
+ 2-tree [Alon’91] 1" of L:

+ Independent set
« Connected on L?

« Any size-o component has a size-a/(kA) 2-tree.

« Union bound over all 2-trees instead.

15/18

Do 2-trees suffice?

Assuming bucketing into /q buckets.

Z Pr[size-¢ 2-tree exists] < 1.
L

16/18

Do 2-trees suffice?

Assuming bucketing into /q buckets.

Pr[size-¢ 2-tree exists| < 27

16/18

Do 2-trees suffice?

Assuming bucketing into /q buckets.

« Union bound over all 2-trees.

Number of 2-trees x Pr[A size-¢ 2-tree survives] < 27

16/18

Do 2-trees suffice?

Assuming bucketing into /q buckets.

« Union bound over all 2-trees.

o Local uniformity (ensured by LLL).

Number of 2-trees x (\/a)(l_k)Z <27t

16/18

Do 2-trees suffice?

Assuming bucketing into /q buckets.

+ Union bound over all 2-trees.
o Local uniformity (ensured by LLL).
« 2-tree counting argument:

Lemma (Corollary of [Borgs-Chayes-Kahn-Lovasz’13])
Let G be a graph with maximum degree D and v is a vertex. Then the number of 2-trees in

G of size { containing v is at most (eD?)*~1 /2.

(e(kA)?)1 x (\/a)(l—k)ﬁ <ot

16/18

Do 2-trees suffice?

Assuming bucketing into /q buckets.

+ Union bound over all 2-trees.
o Local uniformity (ensured by LLL).
« 2-tree counting argument:

Lemma (Corollary of [Borgs-Chayes-Kahn-Lovasz’13])
Let G be a graph with maximum degree D and v is a vertex. Then the number of 2-trees in

G of size { containing v is at most (eD?)*~1 /2.

A< g

16/18

Do 2-trees suffice?

Assuming bucketing into /q buckets.

« Union bound over all 2-trees.
o Local uniformity (ensured by LLL).
« 2-tree counting argument:
Lemma (Corollary of [Borgs-Chayes-Kahn-Lovasz’13])

Let G be a graph with maximum degree D and v is a vertex. Then the number of 2-trees in
G of size { containing v is at most (eD?)*~1 /2.

A< g

k/3

Best we can do using 2-trees: A < ¢/ [Jain-Pham-Vuong’21].

16/18

Do 2-trees suffice?

Assuming bucketing into /q buckets.

+ Union bound over all 2-trees.
o Local uniformity (ensured by LLL).
« 2-tree counting argument:

Lemma (Corollary of [Borgs-Chayes-Kahn-Lovasz’13])
Let G be a graph with maximum degree D and v is a vertex. Then the number of 2-trees in
G of size { containing v is at most (eD?)*~1 /2.
A < qk/4
Best we can do using 2-trees: A < ¢*/3 [Jain-Pham-Vuong’21].

« ¢%/® buckets and trade-off with mixing.

16/18

2-block-trees

Idea: utilising small overlaps!

« Single vertex in 2-tree — size-6 component (block)

17/18

2-block-trees

Idea: utilising small overlaps!
« Single vertex in 2-tree — size-6 component (block)

« Probability of each block:
~ (VA

17/18

2-block-trees

Idea: utilising small overlaps!
« Single vertex in 2-tree — size-6 component (block)
« Probability of each block:
~ (Vo) 0.

« Number of 2-block-trees:

~ (6’ DO,

17/18

2-block-trees

Idea: utilising small overlaps!
« Single vertex in 2-tree — size-6 component (block)
« Probability of each block:
~ (\/E])—G(k—ﬁ).
« Number of 2-block-trees:
~ (960D9+1)e.
Comparing with 2-trees (6 = 1):
~ (eD*)".

17/18

2-block-trees

Idea: utilising small overlaps!
« Single vertex in 2-tree — size-6 component (block)
« Probability of each block:
~ (\/E])—G(k—ﬁ).
« Number of 2-block-trees:
~ (960D9+1)e.
Comparing with 2-trees (6 = 1):
~ (eD*)".

Requires:
k

A 5 q2+0(1/0)

17/18

Future directions

Establish computational threshold for sampling hypergraph colourings.

18/18

Future directions

Establish computational threshold for sampling hypergraph colourings.

« Overcoming disconnectivity issue:

« Block dynamics, instead of updating only one vertex? [Chen-Liu-Vigoda’21]

18/18

Future directions

Establish computational threshold for sampling hypergraph colourings.

« Overcoming disconnectivity issue:
« Block dynamics, instead of updating only one vertex? [Chen-Liu-Vigoda’21]
« New methods: Recursive sampler [Anand-Jerrum’22]?

« Applications under LLL setting [He-Wang-Yin’22, He-Wu-Yang’22].
« Better condition?

18/18

Future directions

Establish computational threshold for sampling hypergraph colourings.

« Overcoming disconnectivity issue:

« Block dynamics, instead of updating only one vertex? [Chen-Liu-Vigoda’21]
« New methods: Recursive sampler [Anand-Jerrum’22]?

« Applications under LLL setting [He-Wang-Yin’22, He-Wu-Yang’22].

« Better condition?
« Utilising overlap information?

« Partial rejection sampling [Guo-Jerrum-Liu’19] gives transition at A ~ ¢*/? when
overlaps are large.

18/18

Sampling Sampling

tractable intractable

Searching

| intractable

| |
S [JPV21, HSW21] > >>
| |

Simple This paper

> k/2 .

k/3 k/2

q

18/18

Thank youl!

arXiv: 2202.05554

