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(Symmetric) Lovasz local lemma (LLL)

Treat hyperedges being monochromatic as (random) “bad” events...
Local lemma: weak dependency — non-zero probability of being good.

« B;: bad events with Pr[B;] = p. number of colours; size of hyperedges

« Each depends on < D other events. maximum degree of vertices

Lemma (Symmetric Lovasz local lemma [Erdés-Lovasz’75])

If
€-p- (1) + 1) < 17

then there is a non-zero probability that no bad event happens.
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« Computational threshold (asymptotically) [Gebauer-Szab6-Tardos’16]
« Sampling
« Moser-Tardos does not generate uniform colourings.
« NP-hard, when A > 5 qlg/2 and g is even [Galanis-Guo-W.22]
« Tractable, when A < ¢*/3 [Jain-Pham-Vuong’21] (perfect sampler [He-Sun-Wu’21])

Open problem: computational threshold for sampling problem
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Better sampler for simple hypergraphs (than the A < ¢"/* one)? Yes.
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Our result

Sampling Sampling Searching

tractable | | intractable | intractable

|
Simple This paper _

e g/ ¢ A

Theorem
There exists an algorithm such that, for any 6 > 0, given a k-uniform A-degree
hypergraph as an input, the algorithm outputs an almost uniform random q-colouring, if

k>20(1+%)and A < 0.1%5¢#/2=(k9+1/9)  The running time is O (poly(Ak) - n'01).

7/18



Glauber dynamics

Natural approach: Glauber dynamics

~N
>
~
J

>
\

~
Z

s
-
I
O

8/18



Glauber dynamics

Natural approach: Glauber dynamics

~N
>
~
J

>
\

+ Uniformly choose one vertex

« Update its value according to its marginal

~

Z

r
-
QO

8/18



Glauber dynamics

Natural approach: Glauber dynamics

N
>
~
J

>
\

+ Uniformly choose one vertex <

« Update its value according to its marginal

~

Z

r
-
N\

8/18



Glauber dynamics

Natural approach: Glauber dynamics

N
>
~
J

>
\

+ Uniformly choose one vertex

+ Update its value according to its marginal <
1 1 1

Pr@ = -, Pr[® = -, Pr[@ = -

3 3 3

~
Z

00
()
O/e @

s
-
I
O

8/18



Glauber dynamics

Natural approach: Glauber dynamics

N
>
~
J

>
\

+ Uniformly choose one vertex

+ Update its value according to its marginal <

~

Z

r
-
QO

8/18



Glauber dynamics

Natural approach: Glauber dynamics

N
>
~
J

o
\

+ Uniformly choose one vertex <

« Update its value according to its marginal

~

Z

r
-
N\

8/18



Glauber dynamics

Natural approach: Glauber dynamics

N
>
A
J

>
\

+ Uniformly choose one vertex

+ Update its value according to its marginal <

Pr(®] = 0,Pr(®] = Pr(@] = |

~
Z

ON
()
@0 O

r
-
Y,
QO

8/18



Glauber dynamics

Natural approach: Glauber dynamics

N
>
~
J

>
\

+ Uniformly choose one vertex

+ Update its value according to its marginal <

~

Z

r
-
QO

8/18



Glauber dynamics

Natural approach: Glauber dynamics

N
>
~
J

>
\

+ Uniformly choose one vertex

« Update its value according to its marginal

~

Z

r
-
QO

8/18



Glauber dynamics

Natural approach: Glauber dynamics

~N
>
~
J

>
\

+ Uniformly choose one vertex

« Update its value according to its marginal

~
Z

s
-
I
O

Stationary distribution is uniform (the correct distribution).

8/18



Glauber dynamics

Natural approach: Glauber dynamics

~N
>
~
J

>
\

+ Uniformly choose one vertex

« Update its value according to its marginal

~
Z

s
-
I
O

Stationary distribution is uniform (the correct distribution).

Does this chain mix rapidly (i.e., converge to stationary distribution quickly)?
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Fast mixing Slow mixing Not mixing

Not that bad if there is a giant component — start from a random configuration

« Simple hypergraph with ¢ > max{©y(logn), @k(Aﬁ)} [Frieze-Anastos’17]

« Constant number of colours?
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Markov chain projection [Feng-Guo-Yin-Zhang’21]

=
=

. projection
« Disconnected / poorly connected ——— well connected

« Harder to simulate transition / recover a sample
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« Disconnection arises from hard constraints:

(XX X)

« Projection by bucketing:
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+ The constraint is soft (ensured by LLL), i.e.,
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The algorithm

Things to handle:
» Choose a proper projection
+ Bucketing
+ Analyse the mixing time of projected chain

« Simulate transition and get the final sample

Current A < ¢"/3 barrier: trade-off between mixing and implementation.

k/2

Improve both to get A < ¢"/“ on simple hypergraphs.

« We focus on implementation in this talk.
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Fast implementation

« How can we know the correct projected distribution?

« Inverse the projection independently!

« What if the inversion sample is not proper?

+ Repeat again! (rejection sampling)
« Expected number of trials?
+ Each hyperedge fails with constant probability.

« Expect ¢®™) rounds of resampling!

« Satisfied (by bucketing) hyperedges affect nothing.

- Disconnected components affect nothing.

« We are done if number of hyperedges is O(log n) w.h.p.
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Connected component

Union bound over all possible size-a(#edges) components:
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Connected component

Union bound over all possible size-a(#edges) components:

« Probability that a size-a: component fails?

« Impossible to argue exactly.
+ Independent hyperedges — probability upper bound
« Working on line graph L:
+ 2-tree [Alon’91] 1" of L:

+ Independent set
« Connected on L?

« Any size-o component has a size-a/(kA) 2-tree.

« Union bound over all 2-trees instead.
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Do 2-trees suffice?

Assuming bucketing into /q buckets.

Z Pr[size-¢ 2-tree exists] < 1.
L
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Do 2-trees suffice?

Assuming bucketing into /q buckets.

+ Union bound over all 2-trees.
o Local uniformity (ensured by LLL).
« 2-tree counting argument:

Lemma (Corollary of [Borgs-Chayes-Kahn-Lovasz’13])
Let G be a graph with maximum degree D and v is a vertex. Then the number of 2-trees in

G of size { containing v is at most (eD?)*~1 /2.

(e(kA)?)1 x (\/a)(l—k)ﬁ <ot
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Do 2-trees suffice?

Assuming bucketing into /q buckets.

« Union bound over all 2-trees.
o Local uniformity (ensured by LLL).
« 2-tree counting argument:
Lemma (Corollary of [Borgs-Chayes-Kahn-Lovasz’13])

Let G be a graph with maximum degree D and v is a vertex. Then the number of 2-trees in
G of size { containing v is at most (eD?)*~1 /2.

A< g

k/3

Best we can do using 2-trees: A < ¢/ [Jain-Pham-Vuong’21].
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Do 2-trees suffice?

Assuming bucketing into /q buckets.

+ Union bound over all 2-trees.
o Local uniformity (ensured by LLL).
« 2-tree counting argument:

Lemma (Corollary of [Borgs-Chayes-Kahn-Lovasz’13])
Let G be a graph with maximum degree D and v is a vertex. Then the number of 2-trees in
G of size { containing v is at most (eD?)*~1 /2.
A < qk/4
Best we can do using 2-trees: A < ¢*/3 [Jain-Pham-Vuong’21].

« ¢%/® buckets and trade-off with mixing.
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2-block-trees

Idea: utilising small overlaps!

« Single vertex in 2-tree — size-6 component (block)
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« Probability of each block:
~ (Vo) 0.

« Number of 2-block-trees:
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2-block-trees

Idea: utilising small overlaps!
« Single vertex in 2-tree — size-6 component (block)
« Probability of each block:
~ (\/E])—G(k—ﬁ).
« Number of 2-block-trees:
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Comparing with 2-trees (6 = 1):
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2-block-trees

Idea: utilising small overlaps!
« Single vertex in 2-tree — size-6 component (block)
« Probability of each block:
~ (\/E])—G(k—ﬁ).
« Number of 2-block-trees:
~ (960D9+1)e.
Comparing with 2-trees (6 = 1):
~ (eD*)".

Requires:
k

A 5 q2+0(1/0)
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Future directions

Establish computational threshold for sampling hypergraph colourings.
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Future directions

Establish computational threshold for sampling hypergraph colourings.

« Overcoming disconnectivity issue:

« Block dynamics, instead of updating only one vertex? [Chen-Liu-Vigoda’21]
« New methods: Recursive sampler [Anand-Jerrum’22]?

« Applications under LLL setting [He-Wang-Yin’22, He-Wu-Yang’22].

« Better condition?
« Utilising overlap information?

« Partial rejection sampling [Guo-Jerrum-Liu’19] gives transition at A ~ ¢*/? when
overlaps are large.
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Sampling Sampling

tractable intractable

Searching

| intractable

| |
S [JPV21, HSW21] > >>
| |

Simple This paper

> k/2 .

k/3 k/2

q
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Thank youl!

arXiv: 2202.05554




