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Hypergraph (proper) colouring

Classical combinatorial/computational problem!

• Hypergraph (V, E)
• Hyperedge e ∈ E : e ⊆ V

• Proper colouring
• Forbidding monochromatic hyperedges
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Computational problems

Three computational problems:

• Deciding

(hard)

• Decide if a colouring exists

• Searching

(hard)

• Construct a colouring

• Sampling / approximate counting (hard)
• Output a uniform random colouring
• Estimate the number of colourings
• Self-reduction [Jerrum-Vazirani-Vigoda’86]

Deciding is NP-hard in general (3-colourings on graphs).

Posing restrictions to input instances?
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(Symmetric) Lovász local lemma (LLL)

Treat hyperedges being monochromatic as (random) “bad” events…

Local lemma: weak dependency → non-zero probability of being good.

• Bi: bad events with Pr[Bi] = p. number of colours; size of hyperedges

• Each depends on ≤ D other events. maximum degree of vertices

Lemma (Symmetric Lovász local lemma [Erdős-Lovász’75])
If

e · p · (D + 1) ≤ 1,

then there is a non-zero probability that no bad event happens.
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LLL on hypergraph colourings

Parameters:

• q: Number of colours

• k: Size of hyperedges (k-uniform)

• Degree of a vertex: number of its incident hyperedges

• ∆: Maximum degree of vertices

Apply LLL: a colouring exists if
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Computational problems: Lovász local lemma regime

Assuming LLL (∆ ≤ qk−1/(ek)) on input instances:

• Deciding

• Trivial! Just output YES

• Searching

• Easy: Moser-Tardos algorithm [Moser-Tardos’10]

• Computational threshold (asymptotically) [Gebauer-Szabó-Tardos’16]

• Sampling

• Moser-Tardos does not generate uniform colourings.
• NP-hard, [Galanis-Guo-W.’22]
• Tractable, when ∆ ≲ qk/3 [Jain-Pham-Vuong’21] (perfect sampler [He-Sun-Wu’21])

Open problem: computational threshold for sampling problem

5 / 18



Computational problems: Lovász local lemma regime

Assuming LLL (∆ ≤ qk−1/(ek)) on input instances:

• Deciding
• Trivial! Just output YES

• Searching

• Easy: Moser-Tardos algorithm [Moser-Tardos’10]

• Computational threshold (asymptotically) [Gebauer-Szabó-Tardos’16]

• Sampling

• Moser-Tardos does not generate uniform colourings.
• NP-hard, [Galanis-Guo-W.’22]
• Tractable, when ∆ ≲ qk/3 [Jain-Pham-Vuong’21] (perfect sampler [He-Sun-Wu’21])

Open problem: computational threshold for sampling problem

5 / 18



Computational problems: Lovász local lemma regime

Assuming LLL (∆ ≤ qk−1/(ek)) on input instances:

• Deciding
• Trivial! Just output YES

• Searching
• Easy: Moser-Tardos algorithm [Moser-Tardos’10]

• Computational threshold (asymptotically) [Gebauer-Szabó-Tardos’16]

• Sampling

• Moser-Tardos does not generate uniform colourings.
• NP-hard, [Galanis-Guo-W.’22]
• Tractable, when ∆ ≲ qk/3 [Jain-Pham-Vuong’21] (perfect sampler [He-Sun-Wu’21])

Open problem: computational threshold for sampling problem

5 / 18



Computational problems: Lovász local lemma regime

Assuming LLL (∆ ≤ qk−1/(ek)) on input instances:

• Deciding
• Trivial! Just output YES

• Searching
• Easy: Moser-Tardos algorithm [Moser-Tardos’10]
• Computational threshold (asymptotically) [Gebauer-Szabó-Tardos’16]

• Sampling

• Moser-Tardos does not generate uniform colourings.
• NP-hard, [Galanis-Guo-W.’22]
• Tractable, when ∆ ≲ qk/3 [Jain-Pham-Vuong’21] (perfect sampler [He-Sun-Wu’21])

Open problem: computational threshold for sampling problem

5 / 18



Computational problems: Lovász local lemma regime

Assuming LLL (∆ ≤ qk−1/(ek)) on input instances:

• Deciding
• Trivial! Just output YES

• Searching
• Easy: Moser-Tardos algorithm [Moser-Tardos’10]
• Computational threshold (asymptotically) [Gebauer-Szabó-Tardos’16]

• Sampling
• Moser-Tardos does not generate uniform colourings.

• NP-hard, [Galanis-Guo-W.’22]
• Tractable, when ∆ ≲ qk/3 [Jain-Pham-Vuong’21] (perfect sampler [He-Sun-Wu’21])

Open problem: computational threshold for sampling problem

5 / 18



Computational problems: Lovász local lemma regime

Assuming LLL (∆ ≤ qk−1/(ek)) on input instances:

• Deciding
• Trivial! Just output YES

• Searching
• Easy: Moser-Tardos algorithm [Moser-Tardos’10]
• Computational threshold (asymptotically) [Gebauer-Szabó-Tardos’16]

• Sampling
• Moser-Tardos does not generate uniform colourings.
• NP-hard, even when significantly below LLL threshold [Galanis-Guo-W.’22]

• Tractable, when ∆ ≲ qk/3 [Jain-Pham-Vuong’21] (perfect sampler [He-Sun-Wu’21])

Open problem: computational threshold for sampling problem

5 / 18



Computational problems: Lovász local lemma regime

Assuming LLL (∆ ≤ qk−1/(ek)) on input instances:

• Deciding
• Trivial! Just output YES

• Searching
• Easy: Moser-Tardos algorithm [Moser-Tardos’10]
• Computational threshold (asymptotically) [Gebauer-Szabó-Tardos’16]

• Sampling
• Moser-Tardos does not generate uniform colourings.
• NP-hard, when ∆ ≥ 5 · qk/2 and q is even [Galanis-Guo-W.’22]

• Tractable, when ∆ ≲ qk/3 [Jain-Pham-Vuong’21] (perfect sampler [He-Sun-Wu’21])

Open problem: computational threshold for sampling problem

5 / 18



Computational problems: ����XXXXLovász local lemma regime

Assuming LLL (∆ ≤ qk−1/(ek)) on input instances:

• Deciding
• Trivial! Just output YES

• Searching
• Easy: Moser-Tardos algorithm [Moser-Tardos’10]
• Computational threshold (asymptotically) [Gebauer-Szabó-Tardos’16]

• Sampling
• Moser-Tardos does not generate uniform colourings.
• NP-hard, when ∆ ≥ 5 · qk/2 and q is even [Galanis-Guo-W.’22]

• Tractable, when ∆ ≲ qk/3 [Jain-Pham-Vuong’21] (perfect sampler [He-Sun-Wu’21])

Open problem: computational threshold for sampling problem

5 / 18



Computational problems: ����XXXXLovász local lemma regime

Assuming LLL (∆ ≤ qk−1/(ek)) on input instances:

• Deciding
• Trivial! Just output YES

• Searching
• Easy: Moser-Tardos algorithm [Moser-Tardos’10]
• Computational threshold (asymptotically) [Gebauer-Szabó-Tardos’16]

• Sampling
• Moser-Tardos does not generate uniform colourings.
• NP-hard, when ∆ ≥ 5 · qk/2 and q is even [Galanis-Guo-W.’22]
• Tractable, when ∆ ≲ qk/3 [Jain-Pham-Vuong’21] (perfect sampler [He-Sun-Wu’21])

Open problem: computational threshold for sampling problem

5 / 18



Computational problems: ����XXXXLovász local lemma regime

Assuming LLL (∆ ≤ qk−1/(ek)) on input instances:

• Deciding
• Trivial! Just output YES

• Searching
• Easy: Moser-Tardos algorithm [Moser-Tardos’10]
• Computational threshold (asymptotically) [Gebauer-Szabó-Tardos’16]

• Sampling
• Moser-Tardos does not generate uniform colourings.
• NP-hard, when ∆ ≥ 5 · qk/2 and q is even [Galanis-Guo-W.’22]
• Tractable, when ∆ ≲ qk/3 [Jain-Pham-Vuong’21] (perfect sampler [He-Sun-Wu’21])

Open problem: computational threshold for sampling problem

5 / 18



Simple (aka. linear) hypergraphs

Simple hypergraph:

• Overlap of two hyperedges ≤ 1

•

•

• Searching is NP-hard when ∆ ≥ 2kqk ln q + 2q

• Sampling is NP-hard when ∆ ≥ Ckqk−1 ln q

[Galanis-Guo-W.’22]

∆ ≥ 5 · qk/2 hardness for sampling requires overlap = k/2.

Better sampler for simple hypergraphs (than the ∆ ≲ qk/3 one)? Yes.
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Our result

General

Simple

∆qkqk/2qk/3

Sampling
tractable

Sampling
intractable

Searching
intractable

[JPV21, HSW21]

Theorem
There exists an algorithm such that, for any δ > 0, given a k-uniform∆-degree
hypergraph as an input, the algorithm outputs an almost uniform random q-colouring, if
k ≥ 20

(
1 + 1

δ

)
and∆ ≤ 0.1kqk/2−(kδ+1/δ). The running time is Õ(poly(∆k) · n1.01).
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Glauber dynamics

Natural approach: Glauber dynamics

•

•

Stationary distribution is uniform (the correct distribution).

Does this chain mix rapidly (i.e., converge to stationary distribution quickly)?
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Dystopia of MCMC?

Well connected

Poorly connected

Fast mixing

Slow mixing

Not that bad if there is a giant component — start from a random configuration

• Simple hypergraph with q ≥ max{Θk(log n),Θk(∆
1

k−1 )} [Frieze-Anastos’17]

• Constant number of colours?
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Markov chain projection [Feng-Guo-Yin-Zhang’21]

• Disconnected / poorly connected
projection
−−−−−−−→ well connected

• Harder to simulate transition / recover a sample

10 / 18



Markov chain projection [Feng-Guo-Yin-Zhang’21]

• Disconnected / poorly connected
projection
−−−−−−−→ well connected

• Harder to simulate transition / recover a sample

10 / 18



Markov chain projection [Feng-Guo-Yin-Zhang’21]

• Disconnected / poorly connected
projection
−−−−−−−→ well connected

• Harder to simulate transition / recover a sample

10 / 18



Markov chain projection [Feng-Guo-Yin-Zhang’21]

?

• Disconnected / poorly connected
projection
−−−−−−−→ well connected

• Harder to simulate transition / recover a sample

10 / 18



Markov chain projection [Feng-Guo-Yin-Zhang’21]

?

• Disconnected / poorly connected
projection
−−−−−−−→ well connected

• Harder to simulate transition / recover a sample
10 / 18



The algorithm

Algorithm:

• Run Glauber dynamics on the projected distribution to get a projected sample Y

• Sample a proper colouring X conditioned on its projection being Y

Things to handle:

• Choose a proper projection

• Analyse the mixing time of projected chain

• Simulate transition and get the final sample

11 / 18



The algorithm

Algorithm:

• Run Glauber dynamics on the projected distribution to get a projected sample Y

• Sample a proper colouring X conditioned on its projection being Y

Things to handle:

• Choose a proper projection

• Analyse the mixing time of projected chain

• Simulate transition and get the final sample

11 / 18



The algorithm

Algorithm:

• Run Glauber dynamics on the projected distribution to get a projected sample Y

• Sample a proper colouring X conditioned on its projection being Y

Things to handle:

• Choose a proper projection

• Analyse the mixing time of projected chain

• Simulate transition and get the final sample

11 / 18



The algorithm

Algorithm:

• Run Glauber dynamics on the projected distribution to get a projected sample Y

• Sample a proper colouring X conditioned on its projection being Y

Things to handle:

• Choose a proper projection

• Analyse the mixing time of projected chain

• Simulate transition and get the final sample

11 / 18



The algorithm

Algorithm:

• Run Glauber dynamics on the projected distribution to get a projected sample Y

• Sample a proper colouring X conditioned on its projection being Y

Things to handle:

• Choose a proper projection

• Analyse the mixing time of projected chain

• Simulate transition and get the final sample

11 / 18



Bucketing [Feng-He-Yin’21]

• Disconnection arises from hard constraints:

• Projection by bucketing:

• The constraint is soft (ensured by LLL), i.e.,

Pr
[ ]

> 0

despite that

Pr
[ ]

< Pr
[ ]

= Pr
[ ]

12 / 18



Bucketing [Feng-He-Yin’21]

• Disconnection arises from hard constraints:

• Projection by bucketing:

• The constraint is soft (ensured by LLL), i.e.,

Pr
[ ]

> 0

despite that

Pr
[ ]

< Pr
[ ]

= Pr
[ ]

12 / 18



Bucketing [Feng-He-Yin’21]

• Disconnection arises from hard constraints:

• Projection by bucketing:

• The constraint is soft (ensured by LLL), i.e.,

Pr
[ ]

> 0

despite that

Pr
[ ]

< Pr
[ ]

= Pr
[ ]

12 / 18



Bucketing [Feng-He-Yin’21]

• Disconnection arises from hard constraints:

• Projection by bucketing:

• The constraint is soft (ensured by LLL), i.e.,

Pr
[ ]

> 0

despite that

Pr
[ ]

< Pr
[ ]

= Pr
[ ]

12 / 18



The algorithm

Things to handle:

• Choose a proper projection
• Bucketing

• Analyse the mixing time of projected chain

• Simulate transition and get the final sample

Current ∆ ≲ qk/3 barrier: trade-off between mixing and implementation.

Improve both to get ∆ ≲ qk/2 on simple hypergraphs.

• We focus on implementation in this talk.
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Fast implementation

• How can we know the correct projected distribution?

• Inverse the projection independently!

• What if the inversion sample is not proper?

• Repeat again! (rejection sampling)

• Expected number of trials?

• Each hyperedge fails with constant probability.
• Expect cΘ(n) rounds of resampling!

• Satisfied (by bucketing) hyperedges affect nothing.

• Disconnected components affect nothing.

• We are done if number of hyperedges is O(log n) w.h.p.
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Connected component

Union bound over all possible size-α(#edges) components:

• Probability that a size-α component fails?

• Impossible to argue exactly.

• Independent hyperedges → probability upper bound

• Working on line graph L:

• 2-tree [Alon’91] T of L:

• Independent set
• Connected on L2

• Any size-α component has a size-α/(k∆) 2-tree.

• Union bound over all 2-trees instead.

15 / 18



Connected component

Union bound over all possible size-α(#edges) components:

• Probability that a size-α component fails?

• Impossible to argue exactly.

• Independent hyperedges → probability upper bound

• Working on line graph L:

• 2-tree [Alon’91] T of L:

• Independent set
• Connected on L2

• Any size-α component has a size-α/(k∆) 2-tree.

• Union bound over all 2-trees instead.

15 / 18



Connected component

Union bound over all possible size-α(#edges) components:

• Probability that a size-α component fails?
• Impossible to argue exactly.

• Independent hyperedges → probability upper bound

• Working on line graph L:

• 2-tree [Alon’91] T of L:

• Independent set
• Connected on L2

• Any size-α component has a size-α/(k∆) 2-tree.

• Union bound over all 2-trees instead.

15 / 18



Connected component

Union bound over all possible size-α(#edges) components:

• Probability that a size-α component fails?
• Impossible to argue exactly.

• Independent hyperedges → probability upper bound

• Working on line graph L:

• 2-tree [Alon’91] T of L:

• Independent set
• Connected on L2

• Any size-α component has a size-α/(k∆) 2-tree.

• Union bound over all 2-trees instead.

15 / 18



Connected component

Union bound over all possible size-α(#edges) components:

• Probability that a size-α component fails?
• Impossible to argue exactly.

• Independent hyperedges → probability upper bound

• Working on line graph L:

• 2-tree [Alon’91] T of L:

• Independent set
• Connected on L2

• Any size-α component has a size-α/(k∆) 2-tree.

• Union bound over all 2-trees instead.

15 / 18



Connected component

Union bound over all possible size-α(#edges) components:

• Probability that a size-α component fails?
• Impossible to argue exactly.

• Independent hyperedges → probability upper bound

• Working on line graph L:

• 2-tree [Alon’91] T of L:

• Independent set
• Connected on L2

• Any size-α component has a size-α/(k∆) 2-tree.

• Union bound over all 2-trees instead.

15 / 18



Connected component

Union bound over all possible size-α(#edges) components:

• Probability that a size-α component fails?
• Impossible to argue exactly.

• Independent hyperedges → probability upper bound

• Working on line graph L:

• 2-tree [Alon’91] T of L:
• Independent set
• Connected on L2

• Any size-α component has a size-α/(k∆) 2-tree.

• Union bound over all 2-trees instead.

15 / 18



Connected component

Union bound over all possible size-α(#edges) components:

• Probability that a size-α component fails?
• Impossible to argue exactly.

• Independent hyperedges → probability upper bound

• Working on line graph L:

• 2-tree [Alon’91] T of L:
• Independent set
• Connected on L2

• Any size-α component has a size-α/(k∆) 2-tree.

• Union bound over all 2-trees instead.

15 / 18



Connected component

Union bound over all possible size-α(#edges) components:

• Probability that a size-α component fails?
• Impossible to argue exactly.

• Independent hyperedges → probability upper bound

• Working on line graph L:

• 2-tree [Alon’91] T of L:
• Independent set
• Connected on L2

• Any size-α component has a size-α/(k∆) 2-tree.

• Union bound over all 2-trees instead.

15 / 18



Connected component

Union bound over all possible size-α(#edges) components:

• Probability that a size-α component fails?
• Impossible to argue exactly.

• Independent hyperedges → probability upper bound

• Working on line graph L:

• 2-tree [Alon’91] T of L:
• Independent set
• Connected on L2

• Any size-α component has a size-α/(k∆) 2-tree.

• Union bound over all 2-trees instead.

15 / 18



Connected component

Union bound over all possible size-α(#edges) components:

• Probability that a size-α component fails?
• Impossible to argue exactly.

• Independent hyperedges → probability upper bound

• Working on line graph L:

• 2-tree [Alon’91] T of L:
• Independent set
• Connected on L2

• Any size-α component has a size-α/(k∆) 2-tree.

• Union bound over all 2-trees instead.

15 / 18



Do 2-trees suffice?

Assuming bucketing into
√
q buckets.

• Union bound over all 2-trees.

• Local uniformity (ensured by LLL).

• 2-tree counting argument:

Lemma (Corollary of [Borgs-Chayes-Kahn-Lovász’13])
Let G be a graph with maximum degreeD and v is a vertex. Then the number of 2-trees in
G of size ℓ containing v is at most (eD2)ℓ−1/2.

∑
ℓ

Pr[size-ℓ 2-tree exists] < 1.

Best we can do using 2-trees: ∆ ≲ qk/3 [Jain-Pham-Vuong’21].

• q2/3 buckets and trade-off with mixing.
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2-block-trees

Idea: utilising small overlaps!

• Single vertex in 2-tree → size-θ component (block)

• Probability of each block:

≈ (
√
q)−θ(k−θ).

• Number of 2-block-trees:

≈ (θeθDθ+1)ℓ.

Comparing with 2-trees (θ = 1):

≈ (eD2)ℓ.

Requires:

∆ ≲ q
k

2+O(1/θ)
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Future directions

Establish computational threshold for sampling hypergraph colourings.

• Overcoming disconnectivity issue:
• Block dynamics, instead of updating only one vertex? [Chen-Liu-Vigoda’21]

• New methods: Recursive sampler [Anand-Jerrum’22]?
• Applications under LLL setting [He-Wang-Yin’22, He-Wu-Yang’22].
• Better condition?

• Utilising overlap information?
• Partial rejection sampling [Guo-Jerrum-Liu’19] gives transition at ∆ ≈ qk/2 when

overlaps are large.
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General

Simple

Overlap
≥ k/2

∆qkqk/2qk/3

Sampling
tractable

Sampling
intractable

Searching
intractable

[JPV21, HSW21]

This paper

[GJL19]
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Thank you!
arXiv: 2202.05554


