Encryption using ad-hoc random algorithm
generation

Linus Lee

June 24, 2016

Abstract

Most modern-day symmetric-key block cipher encryption schemes
use a base set of key(s) as numerical parameter(s) of mathematical op-
erations to obscure plaintext. However, a different class of symmetric-
key encryption schemes could be conceptualized where, rather than an
encryption function manipulating the bit-level data in a predictable
way belonging to a family of functions, the encryption key is used as a
seed to a (pseudo)randomly generated bitwise manipulation function.
In this article we introduce a method of generating ad-hoc encryption
functions for each instance of encryption taking the key as a seed.
Using this concept, we then propose a possible symmetric-key block
cipher around it, and observe the implicatinos of such a symmetric-key
method through its cryptoanalysis.

Contents

1

Functional encryption
1.1 Methods of instance-specific algorithm composition (ISAC)
using bitwise operations

Structure of the ISAC encryption scheme

2.1 The G-algorithm
2.1.1 On-the-fly constructionof G

22 TheHround

Design motivations

3.1 addsubroundo
3.2 cyclesubroundo
3.3 reversesubround
3.4 splitsubroundo
35 Hround

Statistical security
Cryptographic security
Nonmalleability

Conclusions

12

12

1 Functional encryption

With the growing importance of digital and storage security and threats that
attempt to decrypt local storage rather than transport layer data, symmetric
encryption is of growing importance. But as the spotlight continues to be on
transport layer security and asymmetric ciphers, there has been less focus on
symmetric-key ciphers in the last few years than they warrant, in no small
part due to the fact that they standard of technologies in this space has been
rather stagnant. In this space, rather than iterate or attempt to improve on
a current standard, we may look to more experimental concepts on different
paradigms of symmetric encryption.

Traditional methods of encryption use a pre-determined algorithm, tak-
ing the encryption key and the plaintext as numerical parameters. Indeed,
traditional encryption methods are defined by their corresponding families of
functions. For example, the Rijndael / AES cipher uses predefined byte-level
operations, SubBytes, ShiftRows, MixCols, and AddRoundKey, acting on a
substitution-permutation matrix [1].

While the use of predefined algorithms simplifies the structure of the en-
cryption scheme, it also makes for a simpler cryptoanalysis of the scheme and
creates a predictable algorithm to be analyzed and attacked by an adversary.
Moreover, it lends certain uniform mathematical properties to the algorithm
that may lead to a universal vulnerability.

To further obfuscate cryptoanalysis and minimize room for cryptographic
breaks, we may attempt to create an algorithm without a preestablished set of
operations. In other words, we may posit an encryption scheme that creates a
new, unique bit-level encryption function at each instance of encryption from
the key. Such an instance-specific, ad-hoc cipher algorithm would not only
easily elevate the trapdoor-ness of the cipher, but create a complex algorithm
for cryptoanalysis and consistent attacks without substantially increasing
computation time.

In structure, a symmetric-key algorithm of such a functional encryption
cipher may be 1) derive a unique, key-specific encryption algorithm from the
key or subkeys, 2) encrypt the plaintext using the custom algorithm, and then
3) impose an extra layer of security by applying a second-layer algorithm on
top. This is the structure we follow in this investigation of an experimental
algorithm, where the main cryptographic algorithm is generated on the fly,
as specific and unique to the key.

1.1 Methods of instance-specific algorithm composi-
tion (ISAC) using bitwise operations

One of the simplest possible ways of constructing an ad-hoc algorithm gen-
eration scheme is by sequentially chaining together a string of a series of
elementary bitwise operations like addition, subtraction, and inversion ac-
cording to a predefined lookup table associating each subkey derived from
the key to a specific operation.

Already it is possible to see that even with such a basic construction, given
long-enough keys, a ciphertext generated by such an algorithm would be
nearly impossible to reverse in polynomial time, let alone easily. To “break”
the cipher via either plaintext or key identification, the adversary must re-
cover the entire series of elementary bitwise operations underwent in the
entire algorithm, since it is impossible to assume any pattern in the series of
sequential bitwise operations executed.

While these “elementary operations” could theoretically be any operation
on a bit stream that could be composited in sequence with other operations,
bitwise operations have a particular appeal because of their inherent simplic-
ity — meaning they make for a better trapdoor function when used in random
sequence, because of their inherently elementary nature, and bitwise opera-
tions are inherently fast in any modern computing hardware and low-level
programming languages.

However, in compiling a set of possible operations for the creation of a
standard encryption scheme, the set of possible operations must be chosen
carefully as to allow for several possiblilities. The reason for selection of the
particular elementary operations chosen for ISAC will be explained later.

2 Structure of the ISAC encryption scheme

The design of the ISAC encryption algorithm is built with the core goals of re-
sistance to computational abbreviation and lowering computational overhead
in mind. The full ISAC encryption process occurs in two main steps, the first
of which is intended to do the bulk of encryption with higher computational
overhead and the second of which is intended to provide additional statistical
security with far lower computational overhead. Both stages can be hardware
accelerated or designed into a dedicated processing core’s fabrication.

The algorithm is a block-level encryption algorithm, operating on a 64-

byte block at a time with a key of any 8n-bit length key! In the particu-
lar implementation investigated in this article, we have used an encryption
scheme with the key length of 256 bits operating in blockchain mode? in C
for x86_64 platforms.

The scheme uses a standard CBC (blockchain) implementation with the
64-byte blocks, using xor operations between the previous plaintext block
and the current block as the current block’s plaintext.

2.1 The G-algorithm

The defining feature of ISAC is its on-the-fly composition of an encryption
"algorithm”. Within the stack and source, this instance-specific encryption
algorithm is a bit-level sequence of operations operating altogether on each
64-byte block of the ciphertext at a time, referred to as G. G is generated
as a sequence of randomly ordered, randomly selected, four different simpler
elementary bit-flicking operations. These bit-flicking operations each take a
single power-of-two parameter, and operate on an n-bit section of a binary
stream, where n is the operational argument given in the last six bits of each
byte of the key. (The process of the construction of the G algorithm from
the key will be elaborated further in a later section.) They are?.

1. add(n): adds 1 bit to every nth byte, e.g. 01101001 — 01101010

2. cycle(n): equivalent to a circular rotation of the bits right by a single
bit for every nth byte, e.g. 01101001 — 10110100

3. reverse(n): reverses the order of the bytes in nth-bytes of the block

4. split(n): splits and juxtaposes a section by even/odd-number byte
pairs for every nth-byte

and the entire instance-specific algorithm is generated as a sequence of a com-
pound of these operations. For instance, a particular G may take the form
add(4) reverse(2) split(16) add(8) reverse(2) cycle(32) add(4) cycle(8).
In effect, this can be operated upon the entire binary stream in sequence,

IHere, n corresponds to the number of bitwise operations conducted in the G step.

2The open-sourced code may be found at https://github.com/thesephist/voyage/.

3here, the nth byte begins count with 1, going up as every 1 + in bytes where i is an
integer, for brevity in code.

iterating over each block (and ideally in a stateless blockchain manner), over-
coming the problem of necessitating a key as long as the encrypted data itself
while preserving the same, inherent and security from randomness.

2.1.1 On-the-fly construction of G

The G algorithm is constructed as a sequential set of operations of the four
elementary bit-flicking operators presented above. In the model investigated
here, the construction is derived directly from the 256-bit encryption key.
However, a subkey or set of subkeys derived from the main key may also be
used here. The only technical requirement here is that the key be a stream
of bytes.

G is constructed sequentially from the key. As a consequence, the equiv-
alent operation of creating the algorithm G and then implementing it can be
performed simultaneously, with the elementary operators acting on a 64-byte
block sequentially as the key is being read.

Each byte of the key corresponds to a single elementary operation, re-
sulting in a total of 32 operations for a 256-bit key as we have used here.

For each byte of the key, the first two bits, taken together as an unsigned
integer 0 - 3, denotes the kind of elementary operator used, where the last
6 bits, taken together as an unsigned integer 0-63, denotes the parameter of
the particular operator as it is executed on the block.

2.2 The H round

The H algorithm is, by definition, simply any algorithm that juxtaposes the
bit-level output of G and the encryption key in a way similar to OTP with
round keys to create further obfuscation of pattern recognition to any extent.
The simplest implementation, would, for example, be a simple xor-with-key
operation for each bit, where the key has been repeated to match the length
of the encrypted output of G.

For the purposes of this investigation, the H round algorithm employed
was a modified version of it, such that after the xor step, the ciphertext was
bit-circulated right an arbitrary number of bits.

3 Design motivations

Each of the elements in the high-level design of the algorithm, specifically the
execution of the add, cycle, split, reverse operations, was considered
carefully for their role in the larger context of the algorithm before being
integrated into the scheme, and each of the four were chosen for a variety
of different contributions and effects to the overall security of the main en-
crypting round G.

The same can be said for the construction of the arbitrary juxtaposition
operation H, where, in the case of the scheme’s implementation investigated
here, the algorithm is simply an xor pass over the output of G with respect to
a rounded-length key. In more secure implementations, this may be altered.

Let us explore the motivation for each element of the scheme’s design in
both of the above cases.

3.1 add subround

Among the four elements of the G round, the add operation is the only
one that flips bit values; all other operations merely generate permutations
of bits. Thus the add subround is integral to the round in introducing an
additional factor of complexity through (pseudo-)randomly changing certain
bit values according to the key.

Although the add operation in itself only increments the numerical value
of a byte by a unit in a predictable fashion, through permutation of bits and
bytes introduced in other rounds and through multiple executions of the step
with varying parameters, the operation generates an element of randomness
vital to the set of G operations.

3.2 cycle subround

The cycle operation strikes a balance between keeping performance high and
effective obfuscation equally high. The operation takes place at the bit-level,
performing RCIRC(1) for each applicable byte of information. The resultant
change in information contrasts sharply with the previous add operation —
cycle introduces a change in the magnitude of the byte-level numbers that
is fundamentally different in scale than add, because while the former adds
a single unit, the latter changes the numerical value of the byte arbitrarily
and entirely.

3.3 reverse subround

The general effect of the reverse operation is the same as those of the cycle
operation, and the operator functions as a second and juxtaposing way to
cause a different kind of large perturbations in byte-level data. In practical
applications, reverse is implemented through a lookup table.

3.4 split subround

The split subround is the most complex of the four, and as such, adds the
most complex permutations to the plaintext. The previous three subrounds
alter byte-level information very regularly. While one alters the byte barely
by a couple of bits and the other two merely transform the bit orders, split
introduces a different kind of bit-level juxtaposition into the mix, and this
added complexity adds to the difficulty of cryptoanalysis of the encryption.

3.5 H round

The H round in this implementation has two distinct steps: the xor and the
rcirc steps. The main design goal of the H round is to add a layer of basic
obfuscation so the ciphertext is not malleable (and the possibility of leakage
of plaintext information is minimal). This is done in two steps, both of which
adds a factor of randomness and chaotic behavior to the plaintext-ciphertext
relation.

In the xor step, a roundkey is generated from the given key simply by
repeating the key until the length of the key is equal to the length of the
ciphertext output from G. Then this preliminary ciphertext is xor’d with
the roundkey.

In the rcirc step, the sum of each individual bit in the result of the
xor step, times 72, is divided by the ciphertext bitwise length, leaving a
remainder. Then the entire preliminary ciphertext is bitwise-rotated by the
remainder.

This sequence of step produces a concluding step to the encryption al-
gorithm such that a small change in either the ciphertext or the key will
generate a deviation in the final ciphertext that is large beyond any remedi-
ation.

Sampled block size ‘ frequencies of occurence? o

1-bit 102990, 105686 1.35

2-bit 18218, 18723 1.11
18373, 19566

3-bit 6158, 6222, 6044 1.243
6084, 6172, 6052
6046, 7142

4-bit 2473, 2101, 2218 1.251

2316, 2150, 2382
2223, 2298, 2093
2185, 2533, 2089
92290, 2449, 2551
2189

Table 1: Statistical distributions of various blocks’ occurences in an ISAC-
encrypted binary stream

4 Statistical security

While the complete properties of a supposedly secure encryption scheme
ought to be examined through various cryptoanalytic techniques rigorously
and mathematically, due to a number of mechanical and time barriers, we
neither have the time nor the resources to conduct a comprehensive cryp-
toanalysis of ISAC. For this reason, a more complete cryptoanalysis will be
delegated to a future study, while here, we merely examine certain common
adversaries as well as the statistical properties and pseudorandom advantages
of various ISAC schemes.

Here we use the term statistical security to mean the independence of
statistical properties between the plaintext and the generated ciphertext.

As a brief demonstration, a sample of around 18K bytes was encrypted
with the given algorithm and randomly generated keys to obtain a sample
of an equivalent length of ciphertext. The statistical frequencies of unique
bit-sequences appearing in the ciphertext is noted in Table 1, alongside the
frequencies of equivalent bit-sequences in a pseudorandomly generated 18KB
binary.

In simple terms, the apparently high entropy in the ciphertext signifies
the lack of dirrect correspondences between the cipher and the plaintext,
and makes it naturally more difficult to search for keys that match the plain-

Occurence Frequencies Distribution

Frequency
2
|

2000 2200 2400 2600 2800 3000

occrences4

Figure 1: Histogram of occurences of 4-bit binary blocks” occurence frequen-
cies in an ISAC-encrypted binary stream.

10

text. In essence, the pseudorandom nature of the ciphertext resists faster
decryption.

5 Cryptographic security

In this investigation we examine the cryptographic security of ISAC in the
following ways. First we will look into ISAC’s resistance against traditional
non-quantum cryptoanalysis. Then we will discuss various attack vectors into
ISAC’s construction from known- plaintext, chosen-plaintext, and chosen-
ciphertext attack perspectives.

Tranditionally, on algorithms such as DES and AES / Rijndael, crypto-
analysis is performed at the algorithm level. In other words, any attempt
at finding vulnerabilities within the algorithm only required using one of
the aforementioned common methods to discover properties about the algo-
rithm being used (such as, for example, exploiting the properties of a Feistel
network, which is the same for all AES ciphers). The fact that traditional
cryptography almost always resorts to some fixed element and fixed order of
execution upon those elements meant that a cryptoanalysis on the general
cipher was easily a cryptoanalysis on any one specific instance of the cipher.

In stark contrast, ISAC is designed precisely to be resistant to a one-time
crytoanalysis. In other words, because 1) multiple different permutations of
G lead to the same ciphertext from the same plaintext frequently and 2) the
precise permutation of the base algorithms inside G is unique each run of the
ISAC encryption process (assuming distinct keys), a cryptoanalysis against
one instance of the cipher is merely an attack on one particular instance.

However, while the core of the ISAC cipher is resistant to any attacks
against a nonexistent fixed property of the algorithm, depending on the im-
plementation of the H algorithm, a differential cryptoanalysis with chosen
plaintexts may leak certain properties about a given plaintext®.

Conducting a known-plaintext attack (KPA) on ISAC requires...

A chosen-plaintext attack on ISAC is...

A chosen-ciphertext attack on ISAC...

5Note that while the chosen-plaintext attack on H leaks some information, without
resorting to an equivalent of a brute-force search, due to the redudancy in many permu-
tations of the G algorithms, it is effectively impossible to recover the plaintext, in part or
in entirety, through this method.

11

6 Nonmalleability

In the construction of ISAC, effort has been put in to harden the algorithm
against malleability, or the possibility of modifying ciphertext while preserv-
ing the decrypt-ability of the ciphertext. A malleable cipher is exposed to
attacks where the adversary is able to change the plaintext in arbitrary ways,
even if the key is not recoverable.

ISAC defends against malleability attacks in two ways.

First, by nature of its construction, each bit or pattern in the ciphertext is
not traceable to any initial bit or character, as the bit sequence is put out of
order and switched around as a consequence of the randomized juxtaposition
process in the G round.

However, the G process by itself fails to completely mask the relation
between plain- and ciphertext, as a small change in the plaintext maps to a
small change in the ciphertext. Though the bits are not correlated in position,
they are correlated in the degree to which the information changes. In order
to offset that relation, the H round adds a secondary layer of re-hashing the
ciphertext into a less correlatable form.

7 Conclusions

ISAC is, more than an attempt to construct a fully working implementation of
a cryptographic system that can be integrated into a production environment,
a proof-of-concept (POC) for a different way of conceptualizing mapping
between cryptographic keys, the algorithms, and the ciphertext.

Rather than the conventional and most frequently seen key-ciphertext re-
lationship where the key is simply a numeric value (or the origin of numeric-
value subkey sets, as in AES) as the parameter of a set sequence of sub-
processes inside the master cryptographic algorithm, ISAC is a POC of a
cryptographic algorithm that directly maps a unique and distinct algorithm
to each key, dramatically increasing the complexity of the key-ciphertext and
key-algorithm mappiong without significant drawbacks in speed of execution
and complexity of the algorithm.

This form of constructing cryptographic algorithms, here called func-
tional cryptography, may provide other avenues of exploration as traditional
techniques of cryptography is broken by quantum computing and massively
parallel GPU-driven systems. Functional cryptoalgorithms’ extremely high

12

nonlinearity and abundance of plaintext collisions may prove useful against
quantum cryptoanalyses.

References

[1] Shafi Goldwasser, Mihir Bellare, July 2008. Lecture Notes on Cryptog-
raphy. MIT OpenCourseware.

13

