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1. Face Alignment

We used the MTCNN method [6] to detect 5 points land-
marks (two eyes, nose and mouth corners) and aligned faces
by similarity transformation from detected landmarks to
face template. The original images and aligned faces are
shown in Figure 1. All faces were cropped and resized to
96 x 112. The 5 landmarks coordinates of face template are
presented in Table 1, which is determined according to the
mean information of some selected front faces.

2. Feature Extraction Network

Table 1. The 5 landmarks coordinates of face template.

[ x [ v |
left eye 303 | 51.5
right eye 65.5 | 51.5
nose 48.0 | 71.7

left mouth corner 33,5 | 922
right mouth corner | 62.7 | 92.2

We used the feature extraction network ' provided by
authors of [5]. Architecture of the network is illustrated in
Figure 2, where the kernel size and stride of convolutional
layers are 3 x 3 and 1 respectively, and the kernel size and
stride of max pooling layers are 2 x 2 and 2 respectively.
The network used the PReLLU function [2] as activations.
We present the detailed information of the network in Ta-
ble 2. For face verification results, we followed the standard
protocol of the LFW [3] and the YTF [3] dataset, which is
the same as mentioned in experiment section. Note that we
computed the cosine similarity by using feature vectors of
frames or images directly, and we did not use the horizontal
flip, cropping or PCA tricks for all experiments in experi-
ment section and supplementary material.

https://github.com/ydwen/caffe-face

Figure 1. Face alignment examples from the Youtube face dataset
(YTF) [3], the Youtube Celebrities dataset (YTC) [4] and Point-
and- Shoot Challenge (PaSC) [1].

Table 2. Detailed information of feature extraction network. We
present the number of parameters and face verification accuracy
(%) on widely used LFW and YTF dataset.

# Parameters | 2.75 x 107
LFW accuracy 97.96
YTF accuracy 93.16
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228 Figure 3. The examples of original video frames (on the left) and the aggregated images (on the rlg??. fI; ncl::: be observed that the 222
269 synthesized images are visually better than input frames and our proposed DAN can denoise the low-quality fT: .



