Automatic Migration from Synchronous to Asynchronous
JavaScript APIs

SATYAJIT GOKHALE, Northeastern University, USA
ALEXI TURCOTTE, Northeastern University, USA
FRANK TIP, Northeastern University, USA

The JavaScript ecosystem provides equivalent synchronous and asynchronous Application Programming
Interfaces (APIs) for many commonly used I/O operations. Synchronous APIs involve straightforward se-
quential control flow that makes them easy to use and understand, but their “blocking” behavior may result
in poor responsiveness or performance. Asynchronous APIs impose a higher syntactic burden that relies
on callbacks, promises, and higher-order functions. On the other hand, their nonblocking behavior enables
applications to scale better and remain responsive while I/O requests are being processed. While it is generally
understood that asynchronous APIs have better performance characteristics, many applications still rely
on synchronous APIs. In this paper, we present a refactoring technique for assisting programmers with the
migration from synchronous to asynchronous APIs. The technique relies on static analysis to determine
where calls to synchronous API functions can be replaced with their asynchronous counterparts, relying
on JavaScript’s async/await feature to minimize disruption to the source code. Since the static analysis is
potentially unsound, the proposed refactorings are presented as suggestions that must be reviewed and con-
firmed by the programmer. The technique was implemented in a tool named Desynchronizer. In an empirical
evaluation on 12 subject applications containing 316 synchronous API calls, Desynchronizer identified 256
of these as candidates for refactoring. Of these candidates, 244 were transformed successfully, and only 12
resulted in behavioral changes. Further inspection of these cases revealed that the majority of these issues can
be attributed to unsoundness in the call graph.

CCS Concepts: » Software and its engineering — Software evolution; Maintaining software; Software
maintenance tools; « Theory of computation — Program analysis.

Additional Key Words and Phrases: Refactoring, JavaScript, Static Analysis, Asynchronous Programming

ACM Reference Format:

Satyajit Gokhale, Alexi Turcotte, and Frank Tip. 2021. Automatic Migration from Synchronous to Asynchronous
JavaScript APIs. Proc. ACM Program. Lang. 5, OOPSLA, Article 160 (October 2021), 27 pages. https://doi.org/10.
1145/3485537

1 INTRODUCTION

The JavaScript ecosystem provides equivalent synchronous and asynchronous Application Pro-
gramming Interfaces (APIs) for many commonly used I/O operations. When faced with a choice,
programmers often favor the synchronous APIs because they enable solutions with simple se-
quential control flow and avoid the complexities of asynchronous programming. However, this
greater ease of use comes at a price, as synchronous solutions prevent applications from making

Authors’ addresses: Satyajit Gokhale, gokhale.sa@northeastern.edu, Northeastern University, Boston, MA, USA; Alexi
Turcotte, turcotte.al@northeastern.edu, Northeastern University, Boston, MA, USA; Frank Tip, f.tip@northeastern.edu,
Northeastern University, Boston, MA, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART160

https://doi.org/10.1145/3485537

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021. 160

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3485537
https://doi.org/10.1145/3485537
https://doi.org/10.1145/3485537

160:2 Satyajit Gokhale, Alexi Turcotte, and Frank Tip

progress while the I/O operation is pending, given that JavaScript does not support concurrency at
the language level. As a result, the use of synchronous I/O in client-side JavaScript applications
may cause user-interfaces to become non-responsive, while on the server-side the use of such APIs
may negatively affect both responsiveness and throughput. This paper explores the development
of automated tool support for assisting programmers with the migration from synchronous APIs
to equivalent asynchronous APIs.

As an example, consider the function fs.readFileSync in the fs (file system) package that is part
of the Node. js distribution [Open]S Foundation 2021]. This function, when given the name of a
file, will return a string value representing the file’s contents. The operation is synchronous in the
sense that, when this function is invoked, program execution will block until the read operation
has completed. At that time, the function returns a string containing the file contents or throws an
exception if an I/O error occurred. The use of blocking synchronous APIs such as fs.readFileSync
prevents any other event handler from executing, and is considered undesirable because it reduces
the application’s responsiveness.

To avoid blocking, programmers can use asynchronous APIs to perform I/O operations. Two
types of asynchronous APIs are commonly used:

o In event-based asynchronous APIs, a callback function must be provided that will be invoked
upon completion of the I/O operation. For example, the function fs.readFile takes a callback
as an argument that is invoked when the read operation completes. The callback is invoked
asynchronously with two arguments: an error object (or null if no error occurred), and a
string containing the file contents if no error occurred.

e In promise-based asynchronous APIs, a promise [ECM 2020, Section 25.6] is returned that is
settled upon completion of the I/O operation. For example, the function fs.promises.readFile
returns a promise that is eventually fulfilled with a string value representing the file contents,
or rejected with an error message if an I/O error occurred.

These two approaches are functionally equivalent, but promise-based APIs are rapidly gaining in
popularity due to the lower syntactic burden and improved facilities for error handling, especially
when used in combination with JavaScript’s recent async/await feature [ECM 2020, Section 25.7].

Despite the advantages of asynchronous APIs in terms of improved responsiveness and scalability,
many JavaScript applications continue to rely on synchronous APIs, presumably because of their
greater ease of use. This paper presents a semi-automatic refactoring to help users migrate from
synchronous APIs to promise-based asynchronous APIs, in combination with the async/await feature.
The refactoring replaces synchronous calls with asynchronous calls, and automatically determines
when functions need to become async so that asynchronous calls within their body can be awaited
using await. When functions become async, functions that invoke them may have to become async as
well, which is determined by inspecting the program’s call graph. The suggested refactorings may
fail to preserve behavior for several reasons. Most significantly, the call graph may be unsound—
nodes and edges may be missing because the analysis is unable to reason precisely about JavaScript’s
dynamic features. Unsoundness may also arise because, after the refactoring, interleavings will be
possible where event handlers are scheduled at times when an introduced asynchronous call is
being awaited, and we do not attempt to determine how this may impact program behavior. For
these reasons, the proposed transformations are presented as suggestions that the programmer
needs to inspect carefully and confirm, by running tests and inspecting the code.

We implemented the refactoring in a tool named Desynchronizer, which supports 51 different
synchronous APIs. In an empirical evaluation, we applied Desynchronizer to 12 subject applications
containing 316 synchronous API calls. Desynchronizer identified 256 of these calls as candidates
for refactoring. Of these candidates, 244 were transformed successfully, and only 12 resulted in

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

Automatic Migration from Synchronous to Asynchronous JavaScript APls 160:3

behavioral changes. Further inspection of these problems revealed that the majority of them can be
attributed to unsoundness in the call graph.
In summary, our work makes the following contributions.

(1) We present a technique to generate refactoring suggestions to help users migrate their use of
synchronous APIs to asynchronous equivalents.

(2) We implemented this approach in Desynchronizer.

(3) We present an empirical study where we apply Desynchronizer to 12 applications. In these
applications, Desynchronizer successfully transformed 244 of the 256 synchronous API calls
that were identified as candidates for refactoring. The majority of the 12 cases in which
Desynchronizer did not preserve behavior can be attributed to unsoundness in the static call
graphs upon which Desynchronizer relies.

2 BACKGROUND

Nearly all software relies on functions in I/O libraries to interact with file systems, databases, and
servers. In JavaScript, library I/O functions can be synchronous or asynchronous. In synchronous
I/O library functions, execution of the application’s source code is suspended until the I/O operation
has completed. At this time, the results of the I/O operation are returned as the function’s return
value. On the other hand, a call to an asynchronous I/O library function returns immediately. At a
later time, when the I/O operation completes, the application receives notification that the results
of the I/O operation have become available. Two mechanisms for providing such notifications are
in widespread use:

e In event-based asynchronous APIs, a callback function that was passed to the I/O library
function is invoked with the result of the I/O operation.

o In promise-based asynchronous APIs, the promise [ECM 2020, Section 25.6] that was returned
by the I/O library function is resolved or rejected with the value that represents the results
of the I/O operation.

Below, we briefly discuss synchronous and asynchronous I/O libraries using examples, and discuss
the tradeoffs of the two mechanisms.

2.1 Synchronous /O

Figure 1(a) shows a function compress that uses the gzipsync function provided by the built-in z1ib
package of Node.js to compress its argument input.

On line 12, compress is invoked on the string value "example", causing gzipSync to be invoked on
line 5 to compress this value. Execution of the program will be suspended until the compression
operation has completed, at which time a buffer containing the compressed string will be assigned
to variable output, which is then printed. If an error occurs, the handler on line 8 will execute.

As can be seen in the figure, the use of synchronous APIs such as gzipSync leads to code with
straightforward control flow that is easy to understand. However, use of such blocking I/O prevents
any event handler from executing, which, e.g., leads to applications becoming unresponsive while
I/0 is taking place, which can be problematic.

2.2 Event-Driven Asynchronous /O

Figure 1(b) shows a variation on the example of (a) in which an equivalent event-based asynchronous
API is used. Here, the function gzip is invoked on line 17, to start the compression operation. The
second argument is a callback function that is invoked asynchronously when the I/O operation has
completed. This callback takes two arguments, err and output. If the operation was successful, err

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

160:4 Satyajit Gokhale, Alexi Turcotte, and Frank Tip

1 let zlib = require('zlib');

2

3 function compress(input){

4 try {

5 let output = zlib.gzipSync(input);
6 console.log(output);

7 } catch (err){

8 console.log("Error:_" + err);
9 3

10 }

11

12 compress("example")

13

(@)

29 let util = require('util');

14 let zlib = i 'zlib'); . . L
etz require(’zlib’) 30 let gzip = util.promisify(

. . 31 require('zlib"').gzi
16 function compress(input){ 2, q (). gzip
17 zlib.gzip(input, (err, output) => { 33 ’
18 if (err){ . .
N N 34 async function compress(input){
19 console.log("Error:_" + 35 try {
20 err); y . . .
21 1 else ¢ 36 let output = await gzip(input)
22 console.log(output); 37 console. log(output);
» 3 - 108 P ! 38 } catch (err){
24 M 39 console.log("Error:_." + err);
40 ¥
25)
41 }
26 42
27 " le"
28 compress ("example”) 43 compress("example")
44
(b) (©)

Fig. 1. Example usage of gzip using synchronous and asynchrous APIs: (a) uses a synchronous API, (b) uses
an event-driven asynchronous API, (c) uses a promise-based asynchronous API.

has the value null and output contains the result of compressing the input value, which is then
printed on line 22. If the operation fails, an error message is printed on line 39.

The use of an asynchronous API such as gzip has the advantage that it is non-blocking, thus
preventing the responsiveness issues triggered by the use of synchronous APIs. However, the use
of event-based asynchronous APIs leads to convoluted and error-prone control flow [Madsen et al.
2015] sometimes referred to as “callback hell”.

An alternative asynchronous method of performing I/O uses promises and async/await, and is
depicted in Figure 1(c)—before describing that code, however, we will review JavaScript’s promises
and async/await features.

2.3 Brief Review of Promises and Async/Await

In recent years, the JavaScript community has rapidly adopted promises as a mechanism for
asynchronous programming that is more convenient and less error-prone than event-based pro-
gramming. Here, we present a very brief summary of promises. For complete details, the reader is
referred to the ECMAScript specification [ECM 2020, Section 25.6], and a formal account of the
semantics of promises can be found in [Madsen et al. 2017].

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

Automatic Migration from Synchronous to Asynchronous JavaScript APls 160:5

A promise represents the value computed by an asynchronous computation, and is one of three
states: pending, fulfilled, or rejected. Upon creation, a promise is in the pending state until it is
settled (i.e., fulfilled or rejected).

Creating promises. A promise is created by invoking the Promise constructor, e.g.:

let p = new Promise((resolve, reject) => {...3})

Here, resolve and reject are functions that must be invoked to resolve or reject a promise, respec-
tively. For example, the following code

let p1 = new Promise((resolve, reject) => resolve(17))

creates a promise that is fulfilled immediately with the value 17.

Registering reactions on promises. Programmers can register reactions on promises, i.e., func-
tions that are invoked asynchronously when a promise is fulfilled or rejected. This is accomplished
using the then method, e.g., extending the previous example with

pl.then((v) => v+1)

registers a reaction on p1 that is invoked with its argument v bound to the value that p1 was resolved
with (i.e., 17). This reaction will be executed asynchronously and return v+1, i.e., 18.

Creating promise chains. The then method returns a promise that is resolved with its reaction’s
return value, enabling the construction of promise chains. In the following example:

let p = new Promise((resolve, reject) => resolve(17))
p.then((v) => v + 1)
.then((v) => console.log(v))
a promise is created that is fulfilled with the value 17. The reaction registered on this promise
returns 18, causing the first invocation of then to return a promise that is resolved with that value.
On the last line, a reaction is registered on the latter promise, causing 18 to be printed.
Promises also support a method catch to facilitate error handling, which is typically used at the

end of a promise chain. For example, in the following example

let p = new Promise(...)
p.then(...)
.then(C ...)

.catch((err) => console.log("An_error_occurred"))

the reaction passed to catch will be executed if any of the previous promises in the chain are rejected
(e.g., if an uncaught exception occurs).

Promise linking. A special case arises when a reaction returns a value that is a promise p.
In such cases, the promise p’ returned by then or catch becomes linked with p. Concretely, if p is
resolved with a value v, then p’ is resolved with v as well, if p is rejected with value e, then p’
is rejected with e as well, and if p remains pending, so does p’. For example, the following code
fragment:

let p = Promise.resolve(17)
let g = new Promise((resolve, reject) =>

setTimeout(() => resolve(18) , 1000)
)

p.then(() => q) // the promise returned by p.then becomes linked with q
.then(console.log) // prints 18 after 1 second
creates promises p and q. When p is fulfilled, its reaction is executed and returns q, so q and the
promise returned by p. then() become linked. After 1 second, g resolves to 18, so the promise returned
by p.then() resolves to 18 as well, causing the second reaction to execute, which prints this value.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

160:6 Satyajit Gokhale, Alexi Turcotte, and Frank Tip

Synchronization using Promise.all. The Promise.all function provides a mechanism for waiting
for a set of promises to be fulfilled in no particular order. It takes as an argument an array of promises
p1,-++ , pn and returns a promise p’. If each p; is fulfilled with a value v;, then p’ is resolved with an
array [0y, - -+ ,0,]. If any p; is rejected, then p’ is immediately rejected with that value, regardless
of the disposition of the promises p; (j # i).

Interoperability with async/await. The async/await feature provides syntactic sugar on top of
promises. A function declared as async returns a promise that is fulfilled with the function’s return
value. Inside an async function, await-expressions may be used to wait for a promise to be settled.
If an awaited promise p is fulfilled with value v, then an expression await p evaluates to v; if it is
rejected with a value err, err is thrown as an exception that can be caught using standard try/catch
error handling.

2.4 Promise-Based Asynchronous I/O

Figure 1(c) shows another version of the example, in which a promise-based version of the asyn-
chronous gzip API is used. Here, the promisify function from the standard package util is used
to convert the callback-based gzip API into an equivalent promise-based API. Promisification is a
technique for converting an event-based API into an equivalent promise-based API, and involves
the creation of a promise that is fulfilled or rejected when the callback is invoked, depending on
whether an error occurred.

The use of a promise-based API enables us to turn compress into an async function, in which the
await-expression on line 36 will suspend execution of compress until the promise returned by gzip is
resolved or rejected. Standard try/catch syntax can be used for error handling, leading to code that
is very similar to that in Figure 1(a). Crucially, the use of the asynchronous gzip function does not
block program execution, allowing other event handlers to execute until the promise returned by
gzip has been settled.

In summary, promise-based asynchronous APIs share the convenient syntax and support for
error handling using try/catch with synchronous APIs, while providing the responsiveness benefits
of event-based asynchronous APIs.

2.5 Performance Benefits of Asynchronous APIs

Asynchronous APIs (both event-based and promise-based) may enable multiple I/O requests to
be processed concurrently. To illustrate this point, consider Figure 2, which shows the relevant
code fragments of two versions of a server application' that performs a compression operation to
elements of an array of files. Compression is widely used by server-side web applications, in order
to reduce the size (and hence the time needed to transfer) of the responses it sends.

Figure 2(a) shows a version that uses the synchronous API discussed in Section 2.1. Here, the
forEach-loop on line 65 is used to invoke gzipSync on each file in an input array files, storing the
result in a newly created array compressedFiles.

Figure 2(b) shows an alternative solution that uses the promise-based asynchronous API discussed
in Section 2.4. In this version, lines 75-76 create an array of promises that will eventually resolve
to the gzipped files. After creating all of these promises, the synchronization operation Promise.all
is used to wait for all of these promises to be fulfilled.

These two versions of the applications have very different performance characteristics. In
version (a), the gzip operations occur in strictly sequential order, with each gzip operation starting
after the previous one has finished.

I The full source code of this application is available as part of supplemental materials.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

Automatic Migration from Synchronous to Asynchronous JavaScript APls 160:7

61 const gzipSync = require('zlib').gzipSync; 70 let util = require('util');

62 71 let gzip =

63 function compressFiles(files) { 72 util.promisify(require('zlib').gzip);

64 const compressedFiles = []; 73

65 files.forEach(file => { 74 async function compressFiles(files) {

66 compressedFiles.push(gzipSync(file)); 75 const cFileProms =

67 DE 76 files.map(f => gzipPromise(f));

68 return compressedFiles; 77

69 } 78 return await Promise.all(cFileProms);
79)

(@) (b)

Fig. 2. Excerpt of a server application for compressing a list of files: (a) synchronous version using gzipSync
(b) promise-based asynchronous version using gzip

Gzip Comparison (Synchronous vs Asynchronous)

45

40

Time (ms)
- ~ N w w
G S & S &

.
o

1 2 3 4 5 6 7 8 9 10
Number of calls to API

==@==Synchronous ==@==Asynchronous

Fig. 3. Gzip performance comparison (sync vs async).

In version (b), all gzip operations are started at once, without waiting for the previous operation
to terminate. Although JavaScript does not have concurrency at the language level, it relies on I/O
libraries that take advantage of the fact that modern operating systems are capable of handling
multiple I/O requests concurrently.

While this suggests that asynchronous solutions might scale better than sequential ones, we are
not aware of published research in which this difference in performance is confirmed experimentally.
Therefore, we constructed a set of synthetic benchmarks in which the performance of synchronous
APIs such as the one in Figure 2(a) is compared against that of a corresponding asynchronous
API such as the one in Figure 2(b). Figure 3 below visualizes the results on such an experiment
for the gzipsync and promisified gzip APIs?. The figure shows that, if there is only one call to the
gzipSync/gzip API, the synchronous solution requires 5 msec and the asynchronous solution 8 msec.
However, as the number of API calls increases, the asynchronous solution quickly outperforms the

2The results for similar experiments involving 10 APIs can be found in the supplemental materials.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

160:8 Satyajit Gokhale, Alexi Turcotte, and Frank Tip

80 const express = require('express');

81 const fs = require('fs');

82 const zlib = require('zlib');

83

84 const processRequest = (basePath) => {

85 const variants = fs.readdirSync(basePath);

86 return variants.map(variant =>

87 JSON.parse(fs.readFileSync(basePath + variant, 'utf8'))
88 s

89 }

90

91 const app = express();

92 app.get('/product/details', (request, response) => {

93 const data = processRequest(__dirname + '/variants/');
94 response.send(zlib.gzipSync(JSON.stringify(data)));

95 DN

96

97 var port = process.env.PORT || 5000;

98 app.listen(port);

Fig. 4. Example server application that uses synchronous APIs.

synchronous one (e.g., 40 msec for the synchronous solution and only 15 msec for the asynchronous
solution if there are 10 API calls).

To obtain such performance benefits, programmers should refactor their code to migrate from
synchronous to asynchronous APIs. The next section presents such a refactoring.

3 MIGRATING FROM SYNCHRONOUS TO ASYNCHRONOUS APIS

This section explores the challenges associated with refactoring applications so that uses of syn-
chronous APIs are replaced with their promise-based asynchronous counterparts. Here, we will
illustrate the issues and review the code transformations involved in the refactoring using a moti-
vating example that represents a small server application®. Section 4 will present our approach for
automating this refactoring.

Figure 4 shows a simple server application that was built using the express framework [Exp
2021] on the Node.js platform [Open]S Foundation 2021]. The application responds to requests
for product details by invoking the processRequest function on line 93. This function obtains a list
of all files containing descriptions of different variants of the product by calling readdirsync on
line 85. Then, it relies on the Array.map function to read each file by invoking readFilesync and calls
JSON.parse to parse it and create its JSON representation on line 87. The resulting array is converted
to a string and then compressed by invoking gzipSync on line 94 before being returned to the user.

Note that the use of three synchronous APIs (readdirSync on line 85, readFileSync on line 87, and
gzipsync on line 94) will render the server unresponsive while it waits, e.g., for a file to be read.

To improve scalability, the application can be refactored using our Desynchronizer tool to use
the asynchronous counterparts for these APIs resulting in the code that is shown in Figure 5°.
The key steps in this refactoring include: replacing calls to synchronous API functions with await-
expressions that refer to the corresponding asynchronous API function, and changing functions
containing migrated API functions into async functions, as await-expressions can only be used inside
async functions [ECM 2020, Section 25.7]. In addition, the callers of functions that have become async

3This application is available as part of supplemental materials.
4The code shown here has been modified slightly for readability, by changing variable names and eliminating common
subexpressions. The original version produced by our tool is included as part of supplemental materials.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

Automatic Migration from Synchronous to Asynchronous JavaScript APls 160:9

101 const express = require('express');

102 const fs = require('fs');

103 const zlib = require('zlib');

104 const util = require('util');

105 const readdir = util.promisify(fs.readdir);
106 const readFile = util.promisify(fs.readFile);
107 const gzip = util.promisify(zlib.gzip);

108

109 const processRequest = async (basePath) => {

110 const variants = await readdir(basePath);

11 return Promise.all(variants.map(async (variant) =>

112 JSON.parse(await readFile(basePath + variant, 'utf8'))
113));

114 };

115
116 const app = express();
117 app.get('/product/details', async (request, response) => {

118 const data = await processRequest(__dirname + '/variants/');
119 response.send(await gzip(JSON.stringify(data)));

120 1});

121

122 var port = process.env.PORT || 5000;

123 app.listen(port);

Fig. 5. Refactored version of the server application that uses asynchronous APls.

may have to become async functions as well, depending on if and how they use the return value of
the invoked function; for example, if a function needs to await a call to an asynchronous function,
it will need to become async as well. In cases where API functions are invoked inside loops or in
invocations of callbacks passed to Array.forEach, we perform a simple analysis to determine whether
the loop iterations or callback invocations are independent (i.e., if they operate on different state in
each iteration or invocation). If so, we rely on Promise.all to enable each iteration or invocation
to proceed concurrently. If not, the loop order is preserved and the promises computed in each
iteration are awaited in succession.

Concretely, in the case of our motivating example, the source code changes can be summarized
as follows:

o The calls to readdirSync, readFileSync, and gzipSync are replaced with awaited calls to promisified
versions of the library functions readdir (line 110), readFile (line 112), and gzip (line 119,
respectively,

® processRequest has become an async function (lines 109-114), to enable the use of await-
expressions inside its body.

o Similarly, the callback functions passed to variants.map (lines 111-113) and app.get (lines 117-
120) are made async as well, to enable the use of await in their bodies.

o Finally, the synchronization function Promise.all is used on line 111 to wait until each element
of the array of promises returned by the call to variants.map has settled.

We constructed a set of synthetic benchmarks to measure the performance of the synchronous
implementation shown in Figure 4 and compared the results against the asynchronous implemen-
tation shown in Figure 5. The code in Figure 4 loops over user requests one-by-one, and blocks on
a file access needed to process the request, whereas the code in Figure 5 can processes requests
concurrently using promises and async/await.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

160:10

Satyajit Gokhale, Alexi Turcotte, and Frank Tip

Motivating Example (Performance Comparison)

70000
60000
50000

40000

30000

response Time (ms)

20000

10000

NI
NN
NN NN

Z 209
287
300
313
326
339
352
365
378
391
404
417
430
443
456
469
482
495

umber of Requests

s S\/NC e AS\/NC

Fig. 6. Performance of server example, comparing response time for synchronous and asynchronous imple-

mentations.

We observed that the synchronous implementation of the server performs better for a low
number of clients, whereas the asynchronous implementation performs much better when dealing
with a high number of concurrent clients. The performance breakdown can be seen in Figure 6.

The next section will present our approach for inferring these transformations.

4 APPROACH

We present a three-step approach for automatically determining how to migrate from synchronous
APISs to their asynchronous counterparts, consisting of the following steps:

Identify Transformation Candidates. The first step of our approach is to identify synchro-

nous API calls that we aim to transform, and determine the extent of the required transfor-
mations. Once a synchronous call is identified and made asynchronous, it must be enclosed
in an await expression to preserve the original semantics of the program: If the original,
synchronous call returned a value of type T, the now asynchronous call will return a value of
Promise<T>, and awaiting this call will ensure that the expected value becomes available. In
JavaScript, await expressions can only appear in async functions, so this transformation prop-
agates up from callee to caller until the top-level of the program or an already asynchronous
function is reached. The result of this step is a transformation set of functions that will need
to become async, and will be discussed in more detail in Section 4.1.

Discard Unsupported Transformations. Each transformation set is then checked to ensure

that all functions can be transformed, since the transformation to support asynchrony is
an all-or-nothing proposition. There are several reasons why such a set may need to be
discarded: for example, transformations that would require making a constructor into an
async function must be abandoned, as constructors cannot be async in JavaScript. Section 4.2
reviews the preconditions that must hold in order to allow migration to asynchronous APIs.

Transform Source Code. The last step is to analyze the transformation sets and apply the

necessary transformations to the code. These range from simple transformations, such as
turning calls to synchronous APIs into await-expressions, to more complex transformations,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

Automatic Migration from Synchronous to Asynchronous JavaScript APls 160:11

such as changing a map of a (now asynchronous) function into an array of promises that is
awaited simultaneously using Promise.all. Further details are presented in Section 4.3.

4.1 Identify Transformation Candidates

The first step in the approach is to identify transformation candidates and build a transformation
set for each synchronous API call. Algorithm 1 shows how transformation sets are constructed.

Algorithm 1: BuildTransformationSet

Data: ngy,: a synchronous API call
Data: CG: the call graph of the program
1 let T :=[];
2 let P := [ngyncl;
3 while P not empty do

4 let p := pop (P);

5 if p not visited then

6 if p is a reaction or p is argument to promise constructor then
7 L continue;

8 let callers := callers of p in CG;
9 for c in callers do
10 if ¢ test runner then

11 L L remove c¢ from callers;
12 T :=T U callers;
13 P :=P U callers;
14 mark p as visited;

15 return T;

On line 1, the algorithm initializes a list T, which will contain all functions requiring transfor-
mation, and line 2 initializes P, the list of functions that still need processing. While there are still
functions to process (line 3), a function p is popped from P (line 4). If it has not been visited (line 5),
the algorithm identifies all callers of p in the call graph (line 8), and adds them to the list T of
functions that would need to be transformed (line 12), and also to the list of functions P that still
need to be processed (line 13), as we need to recursively visit their callers. When no additional
functions can be found, T is returned.

There are a few situations where the traversal of the call graph can be ended early. The first
case we will discuss is depicted on lines 9-11 of the algorithm. If a function ¢ is part of a test
harness (like Jest [Jes 2021] or Mocha [Moc 2021]), there is no need to transform it or propagate
the transformation through it, as they are already equipped to handle asynchrony.

The next case, depicted on lines 6-7, is more subtle. If a function that is flagged for transformation
is either an argument to the promise constructor, or is a reaction registered through then or catch,
then the transformation need not be propagated further. Recall that when a function is made
async, its semantics are altered such that it will now return a promise. In the first case, the promise
constructor does not do anything with the return value of the function passed to it, and so no
further transformations are necessary. In the second case, reactions registered with then and catch
already return promises, and so the promise returned by the newly asynchronous reaction will be
linked with the promise that is already returned, which will preserve the original semantics.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

160:12 Satyajit Gokhale, Alexi Turcotte, and Frank Tip

To illustrate what a transformation set would look like, consider the following snippet:

124 function inner(listOfFiles) {

125 listOfFiles.map(readFileSync);
126 }

127 function outer(listOfFiles) {
128 inner(listOfFiles);

129 3}

130 outer(["a.txt", "b.txt"1);

We draw the reader’s attention to the synchronous API call inside of the call to Array.map in the
body of function inner. Since map invokes the callback function that is passed to it as an argument®,
our algorithm would add map to the transformation set for the call to readFilesync. Since map is called
by inner, which is called by outer, which is called at the top level of the program, the following
transformation set will be computed:

{fs. readFileSync, Array.map, inner, outer, program rOOt}.

4.2 Discard Unsupported Transformations

Once transformation sets have been constructed for each synchronous API call, it is necessary to
check if the associated transformations are feasible. In general, the transformation of a synchronous
API call must be abandoned if any function in its transformation set is called in a context which is
flagged as not transformable by Algorithm 2:

Algorithm 2: IsSetViable

Data: T: a transformation set
1 for function f inT do
if f is a constructor or

f returns a promise or

f unhandled extern

f does not support IIFE then
L return false;

A G e W N

7 return frue;

The cases where transformation sets are abandoned can be found on lines 2-5, and consist of:

constructors. Constructors cannot receive the async modifier. This precludes the transforma-
tion of synchronous API calls in constructors or in functions called by constructors because
await-expressions can only be used in the body of async functions.

functions already returning promises. Transformations involving functions that already
return promises are also rejected. If these functions were to be made async, they would return
a promise linked to another promise, and while this is not an issue in and of itself given the
behavior of linked promises, the insertion of await expressions at call sites to such functions
is fraught. To illustrate, consider the code in Figure 7, where the transformation would alter
the value stored in r (it would no longer be a promise). Determining the return type of a
function is difficult in JavaScript due to the dynamism of the language. In the case of this
example, our approach infers that the function returns a promise from the fact that reactions
are registered on it using then, and therefore abandons the transformation.

5To determine this, we rely on a call graph builder that is equipped with models for external functions such as map and
forEach.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

Automatic Migration from Synchronous to Asynchronous JavaScript APls 160:13

131 let n = "foo.txt"; 143 let n = "foo.txt";
132 let q; 144 let q;
133 function foo() { 145 async function foo() {
134 q = fs.readFileSync(n); 146 q = await fs.promises.readFile(n);
135 VA 147 VA
136 return some_promise; 148 return some_promise;
137} 149}
138 150
139 let r = foo(); // is a promise 151 let r = await foo(); // not a promise
140 /7 ... 152 /7 ...
141 r.then(() => { ... }); 153 r.then(() => { ... });
142 154
(a) Untransformed code. (b) Transformed code.

Fig. 7. A rejected transformation involving a function that already returned a promise.

unsupported external functions. The technique supports the external functions Array.map
and Array. forEach, as will be discussed in further detail in Section 4.3. If calls to synchro-
nous APIs occur in (functions invoked by) callbacks passed to other external functions, the
transformation is abandoned.

asynchronous calls at the top level. JavaScript only allows the use of await inside the body
of async functions. That said, if a transformation would require an await-expression at the
top-level of the program, our approach will attempt to introduce an immediately-invoked
(asynchronous) function expression (IIFE). Unfortunately, this is not always possible: ES6
introduced static import and export statements to JavaScript. import statements can be safely
hoisted outside of the IIFE (as one can only import string literals), but export statements
cannot be, as they can refer to values computed at run time that will be out-of-scope if
removed from the ITFE.

4.3 Transform Source Code

After eliminating the transformation candidates that do not satisfy the conditions presented in Sec-
tion 4.2, the final step is transformation of the source code. Figure 8 presents these transformations
as a set of rewrite rules. Throughout these rules, we make reference to Ty, the set of functions that
are to be made asynchronous, obtained by taking the union of all transformation sets that have not
been discarded. Note that these rules asbtract away from minor details in JavaScript syntax, e.g., in
rule Async-FuncTioN, fun f(A) {B} refers to any JavaScript function, including arrow functions.

The first two rules, Async-FuncTtion and Async-CALL, are concerned with making functions
asynchronous. These transformations simply add the async modifier to functions, and turn function
calls into await-expressions if the function is in Ty. All call sites identified by our call graph as
calling a newly asynchronous function are await-ed in this way.

Next, FOREAcH-FOROF defines translation of Array.forEach into an async-ready for ... of loop. If
the callback f is being made asynchronous, the body B of f is found, and the name e of the single
argument of f is extracted (note: the callback passed to Array.forEach must be a single-argument
function). Then, a for ... of loop is constructed as follows: the loop iterator variables are [i, e] (i
for the array index, which is unused, and e, the callback argument name extracted previously),
and the loop iterates over the entries of the array. Note that if the callback passed to Array.forEach
contains a return, we do not perform this transformation; typically, these callbacks do not contain
returns as Array. forEach does not return anything. The body of the loop is simply the body of the
callback, and requires no additional transformation.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

160:14 Satyajit Gokhale, Alexi Turcotte, and Frank Tip

fGTf fETf

fun f(A) {B} — async fun f(A) {B} f(args) — await f(args)
(Async-FuNcCTION)

(Async-CaLy)

feTy B body of f
no returns in B e = the single argument of

arr.forEach(f) — for([i,e] of arr.entries()) {B}

(FOREACH-FOROF)

feTy f equivalent to (v) => e
fa = transform(f)

- - (FOREACH-MAP)
arr.forEach(f) — await Promise.all(arr.map(fya))

IfeB|fely B’ = transform(B)
fa =async fun f,() {B'}

get p() {B} — get p() {return f1()}

(GETTER)

fely fa = transform(f)

; X (PROMISE-ALL)
arr.map(f) — await Promise.all(arr.map(fy))

PeTy imports = hoistimports(P)
P’ = removelmports(P)

(Top-LEVEL-IIFE)
P — imports; (async () => {P'})()

Fig. 8. Rewrite rules describing the sync-to-async transformation.

Another rule, FOREACH-MAP, depicts a special case of a forEach transformation, when the callback
passed to forEach is an arrow function expression with a single expression as its body. This situation
is more elegantly handled by a transformation to Array.map. There is nothing in principle preventing
a transformation to a for ... of loop like above, this is simply more in line with observed language
paradigms (programmers often use Array.forEach and Array.map with arrow functions of this style).

Rule PRoMISE-ALL depicts a case where Array.map is translated into an equivalent construct that
properly handles asynchronous function calls. If the callback f is being made asynchronous, the
required transformation (depicted here with f, = transform(f)) is applied, and the new call to
arr.map(f) is wrapped in an awaited Promise.all. This has the effect of waiting until the (now
asynchronous) applications of f, for each of arr’s elements completes, semantics similar to that

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

Automatic Migration from Synchronous to Asynchronous JavaScript APls 160:15

of the original map. The reasoning behind this transformation is that mapping an asynchronous
function on an array would result in an array of promises, and awaiting a call to Promise.all will
wait for all of the promises to settle.

GETTER defines the translation of a special case of function definitions. Here, if the body B of
some getter p contains a function to transform, the body is transformed into B’ and wrapped in a
new asynchronous function f4, and the body of the getter is changed to immediately return a call
to that function. Getters in JavaScript are forbidden from being made asynchronous, and so the
body of the getter is translated into an anonymous async function which is immediately called and
returned. This causes the getter to return a promise, and so calls to the getter can be awaited.

Finally, Top-LEVEL-IIFE depicts the transformation for introducing immediately invoked asyn-
chronous function expressions to the top level of the program. The transformation relies on an
external function, hoistImports, that simply identifies and collects all of the import statements from
the program body, P. P’ is the transformed program body with the import statements removed.
The transformed body is surrounded by an asynchronous IIFE, which in JavaScript looks like
(async () => {...}) (), which can accommodate await expressions in P’.

The motivating example in Figures 4 and 5 shows code examples of transformation rules Async-
FuncTION, AsyNc-CaLL, and FOREACH-FOROF.

4.4 Call Graph Construction

Our technique relies on call graphs to determine functions that transitively invoke methods con-
taining synchronous calls and that may need to be changed into async functions. In principle, any
call graph construction algorithm can be used for this purpose, allowing for a range of tradeoffs in
terms of cost and precision. In practice, the high level of dynamicity in the JavaScript language
makes it extremely challenging to compute call graphs soundly while at the same time computing
results that are sufficiently precise and scalable to be useful. Very few practical implementations of
call graph construction algorithms for JavaScript exist, and we are not aware of any that can easily
be applied to the Node.js applications that we consider.

In this project, we aim to use call graphs in an interactive tool that generates refactoring
suggestions that need to be reviewed and confirmed by the programmer. In this setting, some
unsoundness can be tolerated, but the analysis must complete in a reasonable amount of time.
We opted to design and implement a simple underapproximate algorithm, which is based on
the approximate call graph construction algorithm by Feldthaus et al. [2013]. The algorithm is
a constraint-based analysis that simultaneously constructs a data flow graph and a call graph.
The data flow graph shows how functions and classes flow from their declaration to expressions
that may hold a reference to them. The call graph shows, for each call-expression, what functions
may be invoked from that call site. Similar to Feldthaus et al.,, only the flow of functions and
classes is tracked (i.e., the flow of primitive values and objects is ignored). However, our algorithm
extends the algorithm by Feldthaus et al. in several signficant ways: it accommodates all features in
ECMAScript 2020 [ECM 2020], such as classes, the ECMAScript Module System (ESM) and many
other features that did not exist in JavaScript at the time of the work by Feldthaus et al.

The algorithm is specified as a set of constraint generation rules and implemented using GitHub’s
CodeQL language [Avgustinov et al. 2016]. While the exact details of the algorithm are not pertinent
to the scope of our project, the reader may find a comprehensive presentation in Appendix A.

4.5 Implementation

The technique described in this section was implemented in a tool named Desynchronizer. The
tool is implemented in JavaScript (running on Node]S v14.15.4), and uses the Babel [Babel]S 2021]
parser to build the program AST. The static call graph builder is implemented in version of CodeQL

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

160:16 Satyajit Gokhale, Alexi Turcotte, and Frank Tip

Table 1. Evaluation Subject Applications

Project H LOC [Files [Functions [Sync API Calls
deepforge 34,541 314 7,169 44
meteor-desktop 13,017 120 1,172 228
apps 2,349 26 179 46
switchBoard 14,476 268 426 70
flatsheet 28,701 32 3,129 20
bonescript 12,832 56 410 139
FiltersCompiler 3,115 25 174 49
ally-metrics 1,589 28 56 14
ember-watson 2,445 142 227 97
adapt_authoring 45,354 665 16,573 31
TurboScript 34,264 23 2,307 51
useragent 8,295 12 95 6

v2.2.4 wherein we modified a library, as by default CodeQL ignores externally defined functions
such as the synchronous APIs targeted by our approach, and has little support for externs such
as Array.map and Array. foreach. We modified CodeQL’s definitions for external library functions to
reflect how they invoke callback functions. The transformations themselves are carried out by
replacing subtrees in the AST and using Babel to regenerate the code afterwards. Our code and
experiments are available as an artifact °.

5 EVALUATION

In the previous two sections, we have described the approach behind Desynchronizer, as well as
the implementation of the tool itself. This section reports on an evaluation of Desynchronizer, in
which we aim to answer the following research questions:

RQ1 (Applicability) How many transformations are proposed by Desynchronizer?

RQ2 (Soundness) How often can the unsoundness of proposed transformations be detected
by running application test suites?

RQ3 (Performance) What is the impact of refactoring on the performance of applications?
e RQ4 (Processing Time) What is the performance of Desynchronizer?

We answer these through a series of experiments conducted on 12 subject applications from npm.

5.1 Subject Applications

Table 1 lists some general information about the projects selected for our evaluation. The first row
of the table reads: the deepforge project has 34,541 lines of code across 314 files, contains 7,169
functions, and 44 synchronous API calls.

To find these projects, we ran a QL query over some 50k projects that highlighted projects which
had calls to synchronous API functions’ supported by our tool. We designed our query to look for
calls to these functions in the main project sources (excluding test code, examples, config files, etc.).
To determine which of these projects to use in our evaluation, we cloned and built the projects
from Github and kept those which had tests that ran and passed (note: very few JavaScript projects

SLink to artifact: https://doi.org/10.5281/zenodo.5502210

7readFileSync, writeFileSync, readdirSync, accessSync, appendFileSync, chmodSync, fchmodSync, lchmodSync, chownSync,
fchownSync, lchownSync, mkdirSync, mkdtempSync, statSync, lstatSync, fstatSync, linkSync, symlinkSync, readlinkSync,
realpathSync, unlinkSync, rmdirSync, renameSync, openSync, closeSync, existsSync, copyFileSync, truncateSync,
ftruncateSync, utimesSync, futimesSync, fsyncSync, writeSync, readSync, fdatasyncSync, gzipSync, gunzipSync,
brotliCompressSync, brotliDecompressSync, deflateSync, inflateSync, deflateRawSync, inflateRawSync, unzipSync, execSync,
spawnSync, execFileSync, pbkdf2Sync, generateKeyPairSync, randomFillSync, scryptSync

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

https://doi.org/10.5281/zenodo.5502210

Automatic Migration from Synchronous to Asynchronous JavaScript APls 160:17

have test suites, fewer still have test suites where all tests pass). Concretely, the QL query identified
14k of the original 50k projects containing > 5 synchronous API calls, of which several hundred
built and had running tests—from these, we selected projects at random.

5.2 Experimental Design

We ran the call graph builder on each of the projects, choosing the application tests as the entry point
for our analysis. In a few cases (switchBoard and flatsheet), the test code invoked the application
code dynamically, which prevented the call graph builder from recognizing application code as
being reachable. In these cases, we selected all . js files as entry points.

We then ran Desynchronizer on each project, applied every transformation that Desynchronizer
suggested, and reran the application test suite on the transformed application. Desynchronizer
was configured to log when it abandoned transformations; this, together with the number of
synchronous API calls from Table 1, enables us to answer RQ1. To answer RQ2, instances where
Desynchronizer introduced failing tests were recorded. We timed the test execution time pre- and
post-transformation to help answer RQ3. Finally, the entire process was timed, from the beginning
of call graph construction to the end of the transformation, to answer RQ4.

Experiment Infrastructure. All of our experiments were performed on a server running CentOS Linux
release 7.8.2003 (Core), with 2x 32-core processors, running at 2.35GHz. The server is equipped
with 128GB of RAM. Timing tests were run on a quiet machine, with no other processes running.

5.3 Experimental Results

Table 2 summarizes the experimental results. The first row of the table reads: it took 222 seconds to
build the call graph for the deepforge project, and 0.9 seconds to apply the transformation; the call
graph is 1,020kB; in total, 14 synchronous API calls supported by Desynchronizer were detected in
the call graph, 13 were transformed, and 5 additional transformations were applied. The run time
of the deepforge test suite was 7.6 seconds before and after applying the transformations.

Table 2. Evaluation Results

Transformation Stats Sync Calls Related Fns | Test Run Time
Project Build (s) CG Size (kB) Trans (s) | Detected Trans Trans(%) Trans. | before after
deepforge 222 1,020 0.9 14 13 93 5 7.6 7.6
meteor-desktop 380 1,400 25.1 22 18 82 38 11.6 11.6
apps 75 52 0.4 13 8 62 13 10.8 10.5
switchBoard 3208 5,400 371.3 65 56 86 28 2.2 2.2
flatsheet 236 257 0.5 16 16 100 8 0.5 0.5
bonescript 83 160 0.3 11 11 100 6 1.3 1.3
FiltersCompiler 114 1,004 15.9 49 22 45 1 19.5 19.4
ally-metrics 73 99 0.2 5 3 60 2 1.1 1.1
ember-watson 89 397 0.8 96 96 100 52 1.6 1.6
adapt_authoring 1120 1,900 61.4 19 8 42 5 5.8 5.7
TurboScript 141 296 0.1 4 3 75 0 50.6 50.8
useragent 486 551 0.2 2 2 100 0 0.4 0.4
Total/Average 518.9 1044.6 39.7 316 256 81 158 9.4 9.3

RQ1: How many transformations are proposed by Desynchronizer?

Consider Table 2, particularly the columns under Sync Calls, which represent the total number
of synchronous API calls identified, and the total number that were successfully transformed by
Desynchronizer. In all, Desynchronizer suggested transformations for 256 of 316 synchronous API

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

160:18 Satyajit Gokhale, Alexi Turcotte, and Frank Tip

calls. To make sense of the landscape of abandoned transformations, we broke down the reasons
for abandonment by type. In total, 60 transformations were abandoned: 4 were due to a constructor
definition being in the transformation set, 5 were due to functions already returning promises,
and the remaining 51 were due to calls to unsupported external functions in the transformation
set (calls to readFile, writeFile, http.server.timeout, Array.reduce and Array.filter, and test related
functions such as describe.each and describe. skip).

Answer to RQ1: Desynchronizer identifies the majority of synchronous API calls (256 of 316) as
candidates for refactoring.

Table 3. Coverage Results

Test Coverage Sync Function coverage
Project Statement Branch Function Line | Trans covered Trans Total Trans % Total covered Total Total %
deepforge 49.52 73.41 24.60 49.52 13 13 100.0 14 14 100.0
meteor-desktop 58.21 50.56 62.41 58.30 05 08 27.77 6 22 27.27
apps 50.02 42.86 20.83 50.02 06 08 75.00 10 13 76.92
switchBoard 65.15 75.74 52.48 65.15 48 56 85.71 51 65 78.46
flatsheet 00.60 00.40 00.90 00.64 00 16 00.00 00 16 00.00
bonescript 88.85 71.24 66.67 88.85 11 11 100.0 11 11 100.0
FiltersCompiler 90.99 78.44 94.63 90.83 22 22 100.0 47 49 95.91
ally-metrics 56.06 51.47 28.21 55.90 00 03 00.00 00 05 00.00
ember-watson 93.76 96.08 90.23 93.76 95 96 98.95 95 96 98.95
adapt_authoring 51.82 66.55 55.67 51.82 08 08 100.0 18 19 94.73
TurboScript 49.86 34.93 50.81 50.40 00 03 00.00 01 04 25.00
useragent 92.32 68.87 66.67 92.32 01 02 50.00 01 02 50.00
Total/Average 62.26 59.21 51.17 62.29 209 256 81.64 254 316 80.37

RQ2: How often can the unsoundness of proposed transformations be detected by
running application test suites?

Desynchronizer relies on an unsound static call graph analysis, and the refactorings produced
by the tool may not preserve program behavior. To determine how often incorrect refactoring
suggestions are offered to the user, we applied every suggested transformation to the code, and ran
the application’s test suite after transformation to observe if test failures occurred.

We found that in 12 cases, Desynchronizer suggested transformations that resulted in behavioral
changes. In 9 of these cases, we determined that the problem could be attributed directly to
unsoundness in the call graph. In 3 cases, the problem related to the test infrastructure (in particular,
two cases because async/await cannot be used in conjunction with the done function in the test
framework, and one case where a mock function needed updating). While this is promising, we
must emphasize that, in general, running an application’s tests may not reveal all such incorrect
transformations. To provide a fuller picture, we have included the coverage of the application
test suites in Table 3, which quantify how much of an application’s code is exercised by the test
suite—e.g., 80% statement coverage means that 80% of an application’s statements are exercised
by the tests. On average, we found 62.26% statement coverage, 59.21% branch coverage, 51.17%
function coverage, and 62.29% line coverage. Further, we found that 254 (80.37%) of the identified
316 synchronous API calls were covered. Overall, we think this is reasonable coverage.

Answer to RQ2: Only 12 out of 256 transformations resulted in behavioral changes detectable by
running an application’s tests.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

Automatic Migration from Synchronous to Asynchronous JavaScript APls 160:19

RQ3: What is the impact of refactoring on the performance of applications?

Translation to asynchronous APIs may result in improved application performance by enabling the
application to take advantage of the underlying operating system to process multiple I/O requests
concurrently. As is suggested in Figure 3, asynchronous APIs outperform their synchronous
counterparts if many simultaneous requests are processed, though a slowdown may occur if there
is no concurrency. To measure the effect of our transformation on the performance of applications,
we collected the run times of the test suites before and after transformation. Table 2 summarizes
these results in the Test Run Time columns labeled ‘before’ and ‘after’. In each case, the original
and transformed code had similar execution times. While the code transformations do not improve
test suite run times in a meaningful way, we note that none of these tests exercised the application
at scale by processing many concurrent requests.

Answer to RQ3: The transformations suggested by Desynchronizer do not negatively impact the
run time of an application’s tests.

RQ4: What is the performance of Desynchronizer?

To assess the usability of Desynchronizer, we measured how long it took to run it on the applications
we selected for our evaluation. The results can again be found in Table 2, under the Transformation
Stats columns (see the ‘Build’ and ‘Refactoring’ subcolumns). The build time includes the time it
takes to build the QL database, which is required by QL to execute its queries.

We see that Desynchronizer generates the call graph in < 2 minutes for over half of the projects,
while in one case the call graph is generated in over 50 minutes. The performance varies highly from
one application to another, due to the nature of our call graph building algorithm. adapt_authoring
is a reasonably large project with 665 files and over 16,000 functions to be analyzed. switchBoard on
the other hand had poor performance due to the choice of entry point resulting in an exceedingly
large number of relevant files.

The time to actually build transformation chains and refactor a project is low on all projects save
for switchBoard. Longer refactoring times correlate with the larger number of related functions that
need to be transformed.

Answer to RQ4: The performance of Desynchronizer is mostly determined by the cost of call graph
construction, which is reasonable in most cases.

6 THREATS TO VALIDITY

The main threat to validity is the fact that the transformations proposed by our technique may not
preserve behavior. Loss of soundness may occur for various reasons, chiefly (i) the call graphs that
our technique relies on may be unsound, and (ii) replacing synchronous calls with asynchronous
calls may enable arbitrary event handlers to be interleaved when the de-synchronized call is awaited.
We view such unsoundness as inevitable, given the highly dynamic nature of JavaScript. We have
therefore expressly opted to focus on the development of a technique that is practical, and our
evaluation reports that refactorings that are not behavior-preserving are suggested only in a small
fraction of all cases.

Beyond concerns about soundness, it is possible that the set of subject applications is not
representative of JavaScript projects at large. However, the projects were chosen at random from a
pool of thousands of JavaScript projects that had synchronous API calls. This pool was pruned to

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

160:20 Satyajit Gokhale, Alexi Turcotte, and Frank Tip

include only projects with a test suite in which every test passed. We believe that we have mitigated
the risk of bias in our selection process through our random project selection.

To start call graph generation, we manually determined entry points for each application, and in
nearly all cases this consisted of the application’s tests. We assume that the tests are well written
and cover the majority of the application functionality. A sub-optimal test suite could result in the
failure of Desynchronizer to identify some synchronous API or potential semantics changes caused
by the refactoring. This has the potential of negatively impacting our evaluation results, though as
seen in Table 2, Desynchronizer transforms the majority of synchronous functions, and in Table 3
we see that most of our subject applications have good test coverage.

7 RELATED WORK

The work most closely related to ours can be subdivided into two broad categories. Some work
[Gallaba et al. 2017] [Okur et al. 2014a] [Lin et al. 2015] [Lin et al. 2014] is concerned with trans-
lating one asynchronous/concurrent programming paradigm to another, while others [Dig et al.
2009a] [Wloka et al. 2009] [Khatchadourian et al. 2019] [Dig et al. 2009b] [Okur et al. 2014a] focus
on introducing asynchrony or concurrency in synchronous code. To our knowledge, our work is
the first technique in the latter category that is concerned with refactoring synchronous APIs into
asynchronous equivalents, and that is concerned with JavaScript.

Gallaba et al. [2017] explored how to refactor older, callback-based JavaScript code to use promises.
Where their work is concerned with converting one style of asynchronous programming to another,
ours is concerned with converting synchronous code to asynchronous code.

Most previous research on refactoring of asynchronous or concurrent code is concerned with
languages such as C#, Java, and Android. Okur et al. [2014b] present Asyncifier, a tool that converts
callback-based code to use the .NET async/await constructs. Lin et al. [2014] present Asynchro-
nizer, a tool for extracting long running computations in Android applications using the AsyncTask
asynchronous programming construct, using a static points-to analysis to establish the safety of
transformations. Lin et al. [2015] also present a tool for correcting misuse of old asynchronous
programming idioms, and modernizing the code. These approaches focus on converting older
asynchronous code to newer asynchronous code, whereas Desynchronizer introduces asynchrony
where none was present.

Other work on C# includes work by Okur et al. [2014a] on two refactoring tools, Taskifier
and Simplifier, for introducing TAsk abstractions and transforming them into higher-level design
patterns. This is another example of a migration from one asynchronous paradigm to another (from
low level Thread abstractions to higher level asynchronous design patterns).

Dig et al. [2009b] present Relooper, a refactoring tool for converting sequential loops into parallel
loops in Java programs. Java introduced a ParallelArray, capable of applying a function to each
element in parallel, and their tool performs a variety of program analyses to establish the safety of
the transformation—both our and their tools present transformations as suggestions to mitigate
potential unsoundness.

When Java introduced parallel streams, Khatchadourian et al. [2019] proposed a refactoring tool
for migrating between sequential and parallel streams, in a similar spirit to how Desynchronizer
proposed refactorings from synchronous to asynchronous APIs. Wloka et al. [2009] is concerned
with a whole-program transformation to make programs reentrant, which crucially allows them to
be safely deployed in parallel. While this is a sync-to-async transformation tool like Desynchronizer,
the use case is quite different, as we introduce asynchrony on a smaller scale.

Dig et al. [2009a] introduce a refactoring tool called Concurrencer for introducing data structures
from the java.util.concurrent library. Concurrencer can parallelize arbitrary code, though users

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

Automatic Migration from Synchronous to Asynchronous JavaScript APls 160:21

need to explicitly specify shared data for Concurrencer to work. In contrast, Desynchronizer only
refactors synchronous API calls, but generates refactoring suggestions automatically.

As Java’s support for concurrent programming matured, tools were needed to help programmers
choose the right constructs: Schifer et al. [2011] present Relocker, an automated tool that assists
programmers with refactoring synchronized blocks into ReentrantLocks and ReadWriteLocks, to facili-
tate the performance tradeoffs associated with different types of locks. Other work by Schifer et al.
[2010] introduces synchronization dependencies that refactoring engines must respect to preserve
the correctness of commonly used refactorings in the presence of concurrency.

More abstractly, Song et al. [2018] propose a workflow refactoring to change the layout of regions
of code to maximize concurrency and block-structuredness of applications. Zhang et al. [2015] also
explore this abstract space, detailing tooling to separate concurrency from the application design.
This would allow programmers to decouple parallelism from core application functionality.

8 CONCLUSION

The JavaScript libraries provide synchronous and asynchronous APIs for many commonly used
I/O operations. While the asynchronous mechanisms are preferable because they enable better
responsiveness and performance in applications, programmers often opt for the synchronous APIs
because of their greater ease of use. We have presented a technique that analyzes an application
that uses synchronous APIs and automatically infers how it can be refactored to use asynchronous
APIs instead. The technique relies on a static call graph analysis that is unsound, so the inferred
refactorings are presented as suggestions that should be reviewed by the programmer.

We implemented the refactoring in a tool called Desynchronizer, which we evaluated on 12
subject applications containing 316 synchronous API calls. Desynchronizer identified 256 of these
as candidates for refactoring. Of these candidates, 244 were transformed successfully, and only 12
resulted in behavioral changes. Further inspection of these cases revealed that the majority of these
issues can be attributed to unsoundness in the call graph.

ACKNOWLEDGMENTS

This research was supported in part by National Science Foundation grants CCF-1715153 and
CCF-190772. The second author was also partially supported by NSERC.

A APPENDIX: CALL GRAPH CONSTRUCTION ALGORITHM

Our call graph construction algorithm performs a data-flow analysis to determine, for each expres-
sion e in the program, a set of classes and functions that e may refer to. The algorithm has the
following characteristics:

e the algorithm only tracks the data flow of classes and functions (i.e., the flow of primitive
values and objects is not tracked)

o the algorithm does not keep track of aliasing, and fields in objects are represented by their
name only

e the algorithm operates on an Abstract Syntax Tree A and constructs a data flow graph D
and a call graph C simultaneously

e The algorithm is specified declaratively, using rules that state when edges in the graph are
constructed.

A.1 Nodes

Figure 9 lists the types of nodes that occur in the data flow graph D = (V, &) constructed by the
algorithm. In the sequel, a € A represents an AST Node, 7 is a location in an AST, i is a number,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

160:22 Satyajit Gokhale, Alexi Turcotte, and Frank Tip

Import(n,v) Import of name v into module n
Export(n,v) Export of name v from module n

YV u= Exp(m) value of expression at 7
| Var () variable declared at 7
| Prop(n) prop with name n
| Fun () function declaration/expression at 7
| Class() class declaration at 7
| Callee () Callee of call at 77
| Arg(rm, i) it argument of call at 7
| Param (7, i) ith parameter of function at 7z
| Ret() return value of function at 7z
| Res () result of call at 7
|
|

Fig. 9. Nodes in the data flow graph D.

{Var(n’) } ifa=vand A(x,0) =7’

{Param (i) } if a = i parameter of function defined at 7
V(@) = {Prop(p) } U { Import(n, p)|e = v, NameSpaceVar(v,n) } ifa=e.p

{ Callee(r) } ifa=f(),new f()

{Fun(r) } ifa=function(---){---}

{Exp(n) } otherwise

Fig. 10. Mapping from AST nodes to nodes in the data flow graph.

7 €-¢ ’File(”,) €R (AssIGN) 7 ele e ,File(’l,r) €R (CONDITIONALEXPR)
V(') = V(e), V(e') - Exp(n) V(e') — Exp(n), V(e”) — Exp(r)

e 8& e’ File() € R e || e, File(r) €R

TV By esenA) Ve > Bxp(m), V(&) o Bl (L0400
e= (‘(/e(’e)/’)f . i’lfgz)e)e R (PARENTHESIZEDEXPR) % (OBJLITERAL)
Fan(7) :ugi;i(?),fi(fi i h)is an}a;:ll;l(lgzne) 5 Var(r) | (FUNCTIONEXPR)
functionFﬁi;(- ,[;{_> .VZ;’(};)IE(E) <R (FuncTIiONDECL)
T e et s Rt g (FocTionCaw)
% (FUNCTIONCALL-RECEIVER) rf;‘ég)‘ e_’: . ; ilte((g()ni)R (ReTuRw)
Fun(m) —° Callee(n").0 < i < NeArgs(n) \ orop.nany Fun(r) —" Callee(r) o rop o

Arg (', i) — Param(r, i) Ret(7) — Res(7)

Fig. 11. Rules for constructing edges that reflect intraprocedural data flow.

v is a name (i.e., a string value), and n is a module (identified by its file name). We will use a” to
indicate that AST node a occurs at location 7 in A.

A.2 Intraprocedural Data Flow

Figure 11 shows rules for constructing edges that capture intraprocedural control flow. The rules
rely on an auxiliary function V (shown in Figure 10) that maps nodes in the Abstract Syntax Tree
A to one or more nodes in the data flow graph D. Here, A(r,v) = 7’ denotes the fact that the
declaration of a variable v that is referenced at location & occurs at location 7’. In other words,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

Automatic Migration from Synchronous to Asynchronous JavaScript APls 160:23

variables have a unique representative whose location is associated with its declaration. In all but
one case, V maps an AST node to a single node in . The sole exception consists of property-
access expressions of the form e.p. Each such expression is mapped to a node Prop(p). However,
if the expression e is a variable v that is bound in file n using a namespace import of the form
import * as v from n’, the node is additionally mapped to a node Import(n,v). We will further
explain this case in Section A.4.

In the data-flow rules, File(r) represents the source file in which location 7 occurs. Furthermore,
e, e’ represent expressions, f represents a name of a function (excluding the require function),
p represents the name of a property, and R represents the set of reachable functions. We will use
subscripts and overbar notation to represent sequences, e.g., {p: e} represents an object literal that
initializes property po with expression ey, property p; with expression e;, and so forth. We will use
—* to reflect the transitive closure of —, and for a function call at location 7, NrArgs(r) denotes
the number of actual parameters passed in the call. Finally, for a return-expression at location 7,
¥ (r) will denote the location of the surrounding function.

As an example, consider the rule (AssIGN):

e=¢'", File(r) € R
V(e') > V(e), V(e') - Exp(n)

This rule states that, if an assignment e = e’ occurs at location 7 in a reachable file, then edges
V(e’) = V(e) and V(e’) — Exp(x) are constructed®.

As another example, consider the rule (FuncTioNCALL):

f(e)” ornew f(e)* orr.f(e)”, File(w) € R
V(f) — Callee(n), V(e;) — Arg(m, i), Res(r) — Exp(r)

This rule states that, if a function call f(€) or new f(e) or r.f(e) occurs at a location 7 that occurs
in a reachable file, then an edge V(f) — Callee(r) is constructed, reflecting the fact that any
function that may flow to data flow node representing f will flow to Callee(r). Furthermore,
the rule constructs edges V(e;) — Arg(r, i), connecting the data flow node constructed for each
argument e; to Arg(r, i). Finally, the rule constructs an edge Res(r) — Exp(x), reflecting data
flow from the node Res(r) that represents the value returned by the function to Exp(s), the node
that represents the entire call-expression.

As a final example, we consider the rule (ARGToPARAM):

Fun(r) —* Callee(n'),0 < i < NrArgs(n’)
Arg(n’,i) — Param (s, i)

This rule states that, if transitive data flow exists from a node Fun() to a node Callee(x’), then
edges Arg(n’,i) — Param(r, i) are constructed to reflect the flow from actual parameters to
corresponding formal parameters.

A.3 Rules for Exports

Figure 12 shows the rules for the various cases of exporting features from ECMAScript Modules.
For example, Rule (NAMEDEXPORT-VAR) has the following form:

export let v=---" or

export const v=---" or
export var ov=---", n=File(x) €R
Var () — Export(n, v)

and handles the cases where a named export is declared by having the declaration of a variable v be
preceded by the keyword export. In such cases, an edge Var(z) — Export(n,v) is constructed.
The rules (NAMEDEXPORT-FUN) and (NAMEDEXPORT-CLASS), are similar and handle cases where

8Here and in other rules, we slightly abuse notation by pretending that V maps an AST node to a single value. More
precisely, the rule constructs edges d’ — d and d’ — Exp () whered € V(e) and d’ € V(¢).

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

160:24 Satyajit Gokhale, Alexi Turcotte, and Frank Tip

ei;g?;tci:;tvv_* .. ~”02r export function f(---)%,
export var v=---% n=File(r) € R (NAMEDEXPORT-VAR) n = File() € R (NAMEDEXPORT-FUN)

Var(r) — Export(n, f)

Var () — Export(n, 0)

export class C { --- }",n=File(n) €R
Var(C) — Export(n, C)

(NAMEDEXPORT-CLASS)

export { v as v } 7,
(NAMEDEXPORT-SPEC) ¢ # default, n = File(r) € R (NAMEDEXPORT-SPEC-RENAME)
Var () — Export(n,v")

export { f } 7, n=File(r) €R
Var(7) — Export(n, f)

export default e”, export default function f7(---) ,
n = File() € R (DEFAULTEXPORT-EXP) n = File() € R (DEFAULTEXPORT-FUN)
V (e) — Export(n, default) Var () — Export(n, default)
export default class C { ---}7, export { o as default } ”/,
n = File(r) € R (DEFAULTEXPORT-CLASS) n = File(w) € R (DEFAULTEXPORT-SPEC)
Var () — Export(n, default) V() — Export(n, default)
export { v as ¢ } fromn™ export { default as o } fromn”™
n’ = File(rr) € R (SELECTIVEREEXPORT) n’ = File(r) € R (REEXPORTDEFAULT)
Export(n, v) — Export(n’,v’) Export(n, default) — Export(n’, v)

export * fromn”, Export(n, f) exists
n’ = File() € R (BULKREEXPORT)
Export(n, f) — Export(n’,)

Fig. 12. Rules for constructing edges for exports.

classes and functions are exported by name, and (NAMEDEXPORT-SPEC) handles the cases where
named exports are specified in an export specifier.
The next set of rules is concerned with default exports. For example, Rule (DEFAULTEXPORT-FUN)
takes the following form:
export default function f7(---) ,
n = File(r) € R
Var () — Export(n, default)

and states that for an export of the form export default function(){ ... } at location ,
an edge Var(r) — Export(n,default) is created. Similarly, Rules (DEFAULTEXPORT-EXP) and
(DeEFAULTEXPORT-CLASS) handle the case where an expression or a class is designated as the default,
respectively. Rule (DEFAULTEXPORT-SPEC) handles the case where a default export is specified as
part of an export specifier.

The last three rules are concerned with situation where a module re-exports features that it
imports from other modules. These rules are similar to those discussed above.

A.4 Rules for Imports

Figure 13 shows the rules for the various cases of importing features into ECMAScript Modules.
For example, Rule (NaAMEDIMPORT) handles the case where a specific named export is imported.
The rule states that if a module contains a code fragment import { v } from n, where n is
the name of a module a where x is the location of v, then an edge Import(r,v) — Var(x) is
constructed. Rule (NAMEDIMPORT-RENAME) handles the similar case where the variable is renamed
upon import. Rule (IMPorRTDEFAULT) handles situations where a module’s default export is imported.
The rule states that, if module n’s default export is imported and bound to variable v, then an
edge Import(n, default) — Var(v) is constructed. Rule (BuLkIMPORT) handles the case where
the imported module’s named exports are bound to the properties of a “namespace object”. Here,

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

Automatic Migration from Synchronous to Asynchronous JavaScript APls 160:25

import { ™ } from n”/,
File(7r’) € R (NAMEDIMPORT)
Export(n, v) — Import(r, v), Import(s,v) — Var(x),n € R

import { v as w” } from n”',
File(7’) € R (NAMEDIMPORT-RENAME)
Export(n, v) — Import(x, w), Import(x, w) — Var(x),n € R

import * as o from n”, File(x) € R
module n has export with name w, (BULKIMPORT)
Export(n, w) — Import(z, w) n € R

import v from n”, File(r) € R
Import(n,default) — Var(v),n € R

(IMPORTDEFAULT)

Fig. 13. Rules for constructing edges for imports.

class C{...}", File(r) € R
Class () — Var(r)

(CrassDEcL)

new e, class C{... constructor (...){... }”/ ...}, Class(C) —* Callee (), File(r) € R
Fun(r’) — Callee(n)

(CtorCALL)

class B{... constructor (... ... }”’ .}
class C{... constructor (...){ super (...)" } ... }, File(r) € R (SuPERCALL)
Fun(r’) — Callee(r)

Fig. 14. Rules for constructing edges for classes.

we rely on the fact that a reference to a variable v will be mapped to an Import node by the V
function if it was bound in a namespace import.

Note that each of the rules in Figure 13 adds the imported module’s file to the set of reachable
files, R.

A.5 Rules for Classes

Figure 14 shows the rules that show the generation of edges for features related to classes.
Rule (CrassDEec1) handles class declarations:

class C{--- }7, File(xr) € R
Class () — Var(r)

and states that, if a class declaration occurs at a location 7, then an edge Class(n) — Var(x) is
constructed.
Rule (CTorCarL) handles constructor calls:
new e”, class C{--- constructor (---){--- }”’ s h

Class(C) —* Callee(x), File() € R
Fun(r’) — Callee(r)

The rule states that if a constructor call new e occurs at a location 7, and there exists transitive data
flow Class(C) —* Callee(r) and class C has a constructor at location 7', then an edge Fun(z’) —
Callee(r) is constructed. Rule (SuPERCALL) handles super-calls that occur in a constructor.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

160:26 Satyajit Gokhale, Alexi Turcotte, and Frank Tip

A.6 Implementation

We have implemented this analysis in QL [Avgustinov et al. 2016]. Our implementation follows
the presented rules closely and handles a number of other features, including arrow functions,
getters/setters, function calls using call, apply, and bind, and imports using the Common]JS
require function. Our analysis also incorporates support for a range of methods in JavaScript’s
standard libraries, for which we rely on QL’s existing externs definitions. An open-source release
of the analysis can be found as part of the artifact associated wit this paper, which was submitted
for artifact evaluation.

REFERENCES

2020. ECMAScript 2020 Language Specification. https://www.ecma-international.org/ecma-262/11.0/.

2021. Express Web Framework for JavaScript. http://expressjs.com/.

2021. Jest: A delightful JavaScript Testing Framework. https://jestjs.io/.

2021. Mocha - the fun, simple, flexible JavaScript test framework. https://mochajs.org/.

Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schifer. 2016. QL: Object-oriented Queries on Relational
Data. In 30th European Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy. 2:1-2:25.
https://doi.org/10.4230/LIPIcs. ECOOP.2016.2

BabelJS. 2021. Babel Parser Documentation. https://babeljs.io/docs/en/babel-parser. Accessed 2021-03-20.

Danny Dig, John Marrero, and Michael D. Ernst. 2009a. Refactoring sequential Java code for concurrency via concurrent
libraries. In 31st International Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,
Proceedings. 397-407. https://doi.org/10.1109/ICSE.2009.5070539

Danny Dig, Mihai Tarce, Cosmin Radoi, Marius Minea, and Ralph E. Johnson. 2009b. Relooper: refactoring for loop
parallelism in Java. In Companion to the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA. 793-794. https://doi.org/10.1145/
1639950.1640018

Asger Feldthaus, Max Schifer, Manu Sridharan, Julian Dolby, and Frank Tip. 2013. Efficient construction of approximate
call graphs for JavaScript IDE services. In 35th International Conference on Software Engineering, ICSE 13, San Francisco,
CA, USA, May 18-26, 2013. 752-761. https://doi.org/10.1109/ICSE.2013.6606621

Keheliya Gallaba, Quinn Hanam, Ali Mesbah, and Ivan Beschastnikh. 2017. Refactoring Asynchrony in JavaScript. In 2017
IEEE International Conference on Software Maintenance and Evolution, ICSME 2017, Shanghai, China, September 17-22,
2017. IEEE Computer Society, 353-363. https://doi.org/10.1109/ICSME.2017.83

Raffi Khatchadourian, Yiming Tang, Mehdi Bagherzadeh, and Syed Ahmed. 2019. Safe automated refactoring for intelligent
parallelization of Java 8 streams. In Proceedings of the 41st International Conference on Software Engineering, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 619-630.
https://doi.org/10.1109/ICSE.2019.00072

Yu Lin, Semih Okur, and Danny Dig. 2015. Study and Refactoring of Android Asynchronous Programming (T). In 30th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015.
224-235. https://doi.org/10.1109/ASE.2015.50

Yu Lin, Cosmin Radoi, and Danny Dig. 2014. Retrofitting concurrency for Android applications through refactoring. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-22), Hong
Kong, China, November 16 - 22, 2014. 341-352. https://doi.org/10.1145/2635868.2635903

Magnus Madsen, Ondrej Lhotak, and Frank Tip. 2017. A model for reasoning about JavaScript promises. PACMPL 1, OOPSLA
(2017), 86:1-86:24. https://doi.org/10.1145/3133910

Magnus Madsen, Frank Tip, and Ondrej Lhotak. 2015. Static analysis of event-driven Node.js JavaScript applications. In Proc.
of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2015). 505-519. https://doi.org/10.1145/2814270.2814272

Semih Okur, Cansu Erdogan, and Danny Dig. 2014a. Converting Parallel Code from Low-Level Abstractions to Higher-Level
Abstractions. In ECOOP 2014 - Object-Oriented Programming - 28th European Conference, Uppsala, Sweden, July 28 - August
1, 2014. Proceedings. 515-540. https://doi.org/10.1007/978-3-662-44202-9_21

Semih Okur, David L. Hartveld, Danny Dig, and Arie van Deursen. 2014b. A study and toolkit for asynchronous programming
in C#. In 36th International Conference on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014.
1117-1127. https://doi.org/10.1145/2568225.2568309

Open]JS Foundation. 2021. Node.js. https://nodejs.org/en/.

Max Schifer, Julian Dolby, Manu Sridharan, Emina Torlak, and Frank Tip. 2010. Correct Refactoring of Concurrent Java
Code. In ECOOP 2010 - Object-Oriented Programming, 24th European Conference, Maribor, Slovenia, June 21-25, 2010.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

https://www.ecma-international.org/ecma-262/11.0/
http://expressjs.com/
https://jestjs.io/
https://mochajs.org/
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://babeljs.io/docs/en/babel-parser
https://doi.org/10.1109/ICSE.2009.5070539
https://doi.org/10.1145/1639950.1640018
https://doi.org/10.1145/1639950.1640018
https://doi.org/10.1109/ICSE.2013.6606621
https://doi.org/10.1109/ICSME.2017.83
https://doi.org/10.1109/ICSE.2019.00072
https://doi.org/10.1109/ASE.2015.50
https://doi.org/10.1145/2635868.2635903
https://doi.org/10.1145/3133910
https://doi.org/10.1145/2814270.2814272
https://doi.org/10.1007/978-3-662-44202-9_21
https://doi.org/10.1145/2568225.2568309
https://nodejs.org/en/

Automatic Migration from Synchronous to Asynchronous JavaScript APls 160:27

Proceedings. 225-249. https://doi.org/10.1007/978-3-642-14107-2_11

Max Schifer, Manu Sridharan, Julian Dolby, and Frank Tip. 2011. Refactoring Java programs for flexible locking. In Proceedings
of the 33rd International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011,
Richard N. Taylor, Harald C. Gall, and Nenad Medvidovic (Eds.). ACM, 71-80. https://doi.org/10.1145/1985793.1985804

W. Song, H. Jacobsen, S. C. Cheung, H. Liu, and X. Ma. 2018. Workflow Refactoring for Maximizing Concurrency and
Block-Structuredness. IEEE Transactions on Services Computing (2018), 1-1.

Jan Wloka, Manu Sridharan, and Frank Tip. 2009. Refactoring for reentrancy. In Proceedings of the 7th joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2009, Amsterdam, The Netherlands, August 24-28, 2009. 173-182. https://doi.org/10.1145/1595696.1595723

Yang Zhang, Dongwen Zhang, Weixing Ji, and Yizhuo Wang. 2015. Refactoring for Separation of Concurrent Concerns.
In Algorithms and Architectures for Parallel Processing, Guojun Wang, Albert Zomaya, Gregorio Martinez, and Kenli Li
(Eds.). Springer International Publishing, Cham, 105-118.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 160. Publication date: October 2021.

https://doi.org/10.1007/978-3-642-14107-2_11
https://doi.org/10.1145/1985793.1985804
https://doi.org/10.1145/1595696.1595723

	Abstract
	1 Introduction
	2 Background
	2.1 Synchronous I/O
	2.2 Event-Driven Asynchronous I/O
	2.3 Brief Review of Promises and Async/Await
	2.4 Promise-Based Asynchronous I/O
	2.5 Performance Benefits of Asynchronous APIs

	3 Migrating from Synchronous to Asynchronous APIs
	4 Approach
	4.1 Identify Transformation Candidates
	4.2 Discard Unsupported Transformations
	4.3 Transform Source Code
	4.4 Call Graph Construction
	4.5 Implementation

	5 Evaluation
	5.1 Subject Applications
	5.2 Experimental Design
	5.3 Experimental Results

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	A Appendix: Call Graph Construction Algorithm
	A.1 Nodes
	A.2 Intraprocedural Data Flow
	A.3 Rules for Exports
	A.4 Rules for Imports
	A.5 Rules for Classes
	A.6 Implementation

	References

