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Abstract

In preference-based reinforcement learning
(PBRL), an agent interacts with the environment
while receiving preferences instead of absolute
feedback. While there is increasing research
activity in PBRL, the design of formal frame-
works that admit tractable theoretical analysis re-
mains an open challenge. We present DUELING
POSTERIOR SAMPLING (DPS), which employs
preference-based posterior sampling to learn both
the system dynamics and the underlying utility
function that governs the user’s preferences. To
solve the credit assignment problem, we develop
a Bayesian approach to translate user preferences
to a posterior distribution over state/action reward
models. We prove an asymptotic no-regret rate
for DPS with Bayesian logistic regression credit
assignment; to our knowledge, this is the first
regret guarantee for PBRL. We also discuss possi-
ble avenues for extending this proof methodology
to analyze other credit assignment models, and
finally, evaluate the approach empirically.

1. Introduction

In many domains, ranging from clinical trials (Sui et al.|
2018a) to autonomous driving (Sadigh et al., [2017) and
human-robot interaction (Kupcsik et al.,|2018), it can be un-
clear how to define a reward signal for reinforcement learn-
ing (RL). In such situations, the RL agent seeks to interact
optimally with a human user; thus, rewards should reflect
the extent to which the algorithm achieves the user’s goals.
Yet, for many systems, for instance in autonomous driving
(Basu et al.L 2017) and robotics (Argall et al.|[2009; |Akrour|
et al.l 2012), users have difficulty with both specifying nu-
merical reward functions and providing demonstrations of
desired behavior. In such cases, the user’s preferences form
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a more reliable measure of desired system behavior.

We thus study the problem of preference-based reinforce-
ment learning (PBRL), where the RL agent executes a pair
of trajectories, and the user provides (noisy) preference feed-
back regarding which trajectory has higher utility. While
the study of PBRL has seen increased interest in recent
years (Christiano et al., 2017 Wirth et al., [2017)), it remains
an open challenge to design formal frameworks that admit
tractable theoretical analysis. Compared to the preference-
based bandit setting, which has seen significant theoretical
progress (Yue et al., 2012; |Dudik et al., 2015; Wu & Liu,
2016; |Sui et al., 2017} |2018b)), one major challenge is how
to address credit assignment when only receiving feedback
at the trajectory level compared to the state/action level.

In this paper, we present DUELING POSTERIOR SAM-
PLING (DPS), which uses preference-based posterior sam-
pling to tackle the PBRL problem in the Bayesian regime.
Posterior sampling (also known as Thompson sampling)
(Thompson, |1933;|Osband et al., 2013} |Gopalan & Mannor,
2015 |Agrawal & Jia, [2017;|Osband & Van Roy, [2017) is
a Bayesian model-based approach to balancing exploration
and exploitation, enabling the algorithm to efficiently learn
models of both the environment’s state transition dynam-
ics and the reward function. Previous work on posterior
sampling in RL (Osband et al.| 2013} |Gopalan & Mannor,
2015 [Agrawal & Jia, 2017} |Osband & Van Roy, 2017) all
focused on learning from absolute rewards, while we show
how to extend posterior sampling to both elicit and learn
from trajectory-level preference feedback.

To elicit preference feedback, at every episode of learning,
DPS draws two independent samples from the posterior
to generate two trajectories. This approach is inspired by
the Self-Sparring algorithm proposed for the bandit setting
(Sui et al.; 2017); however, our theoretical analysis is quite
different, due to the need to incorporate trajectory-level
preference learning and state transition dynamics.

To learn from preference feedback, DPS internally main-
tains a Bayesian state/action reward model that explains the
preferences. This reward model is a solution to the temporal
credit assignment problem (Akrour et al., 2012} Zoghi et al.,
2014; Szorényi et al., [2015; (Christiano et al., 20175 |Wirth
et al., 2016;[2017) and determines which of the encountered
states and actions are responsible for the trajectory-level
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preference feedback. Learning from trajectory preferences
is in general a very challenging problem, as information
about rewards is sparse, is only relative to the pair of tra-
jectories being compared, and does not explicitly include
information about actions within trajectories.

We developed DPS concurrently with an analysis frame-
work for characterizing regret convergence in the episodic
learning setting. We evaluate several possible Bayesian
credit assignment models, and prove an asymptotic no-regret
rate for DPS using Bayesian logistic regression (Albert &
Chib, [1993; Murphy, [2012) as the credit assignment model.
To our knowledge, this is the first PBRL approach with the-
oretical guarantees. In addition, we also demonstrate that
DPS delivers competitive performance in simulation.

2. Problem Statement

Preliminaries. We consider fixed-horizon Markov Deci-
sion Processes (MDPs), in which rewards are replaced by
preferences over trajectories. This class of MDPs can be
represented as a tuple, M = (S, A, =, ¢, p, po, h), where
the state space S and action space A are finite sets. The
agent, using policy 7, episodically interacts with the en-
vironment with length-h roll-out trajectories of the form
7 ={s0, ao, S1, a1,...,Sh—1, an, Sp}. Since we are elic-
iting preference feedback, in each episode 7, the agent ex-
ecutes two roll-outs 7;; and 7,2, and observes a preference
between the two. The initial state is sampled from pg, while
p defines the transition dynamics: ;11 ~ p(-|s¢, at).

We use > to denote the stochastic preference relationship
between trajectories, and ¢(7,7') = P(r > 7') — 0.5 €
[—0.5,0.5] to capture the feedback generation mechanism.
We assume that > is a total ordering over trajectories, and
77 & ¢(r,7") > 0. We use 7 > 7’ to denote the event
that trajectory 7 was preferred over 7’ in a preference elicita-
tion, i.e., 7 > 7' is observed with probability ¢ (7, 7’) + 0.5.
We further assume an underlying utility function 7(7) for
each trajectory, such that 7 = 7/ < 7(7) > 7(7’), and
define ¢ using 7. For instance, if the preferences are noise-
less, then: ¢(7;, ;) = I[F(m;) > 7(r;)] — 0.5. We pri-
marily assume a logistic or Bradley-Terry link function:
Giin (73, 7j) == [1 + exp(—c(7(7;) — T(7;)))] ! with “tem-
perature” ¢ € (0,00). Our problem setting resembles the
PSDP defined in (Wirth & Fiirnkranz, 2013b), except that
we also incorporate the noise model through which the un-
derlying utilities are stochastically translated to preferences.
Finally, we assume that the utilities decompose additively:
7(r) = Z?zl 7(s;, a;) for state/action pairs in 7.

Given a policy 7, we can define the standard RL value
function as the expected total utility of being in state s at

Algorithm 1 DUELING POSTERIOR SAMPLING (DPS)

H = () {Initialize history}
T = ) {Initialize list of preference data}
Initialize prior for f {Initialize state transition model}
Initialize prior for g {Initialize utility model}
while True do
w1 < ADVANCE(H, T, f, g9)
T2 < ADVANCE(H, T, f, g)
Sample trajectories 71 and 72 from m; and w2
Observe feedback b = I(72 > 71)
H=HU(s{',al',s3")U...U(s;%2,,a;2,,5;2)
T=TU(11,72,b)
FEEDBACK(H, T, f, g)
end while

step 4, and following policy 7:

h

Vai(s) =E | > T(sj,m(s)lsi=s|, (D

i=i

and now we can define the optimal policy 7* as the
one with maximal value for all input states. Note that
Esympo [Vr,0(50)] = Eror,m [F(7)]. Given fully specified
dynamics and reward models, p and 7, it is straightforward
to apply standard dynamic programming approaches such
as value iteration to arrive at the optimal policy under p and
7 (Sutton & Bartol |2018)). The goal of learning, then, is infer
p and 7 to the extent necessary for good decision-making.

Learning Problem. In each iteration (or episode) 4, the
agent selects two policies, m;; and ;2. The two policies
are rolled out to obtain trajectories 7;; and 752, and a binary
preference b; € {0, 1} between them is sampled according
to the underlying utilities of 7;; and 7;2. We quantify the per-
formance of the learning agent using expected cumulative
regret relative to the optimal policy:

T/(2h)]
E[REGT}:E{ 3 Zp(s)[QVﬂ*,o(s) )
i=1 seS

- tho(s) - meo(s)} } (3)

To minimize regret, the agent must balance exploration (col-
lecting new data) with exploitation (behaving optimally w.r.t.
existing models). In contrast to the standard formulation
in RL (Osband et al.| [2013), at each iteration/episode we
compare the utilities of both selected policies.

3. Algorithm

As outlined in Algorithm [T} DUELING POSTERIOR SAM-
PLING (DPS) iterates over three main steps: (a) sample
two policies 71, o from the Bayesian posteriors of the dy-
namics and utility models (ADVANCE — Algorithm 2); (b)
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Algorithm 2 ADVANCE: Sample policy from dynamics and
utility models
Input: 4,7, f, g
Sample M ~ f(-|H) {Sample MDP transition dynamics from
posterior }
Sample R ~ g(-|T) {Sample utilities from posterior}
Compute m = argmax,. V (M, R) {Value iteration yields sam-
pled MDP’s optimal policy }
Return

Algorithm 3 FEEDBACK: Update dynamics and utility mod-
els based on new user feedback
Input: H, T, f, g
Apply Bayesian update to f, given H {Update dynamics model
given history }
Apply Bayesian update to g, given 17" {Update utility model
given preferences}
Return f, g

roll out 7 and 79 to obtain trajectories 7; and 79, and
receive preference feedback between them; (c) store the
new state transitions and feedback and update the posterior
(FEEDBACK — Algorithm [3). Compared to conventional
posterior sampling with absolute feedback (Osband et al.}
2013)), the two key differences are that: two policies are sam-
pled rather than one each iteration, and a credit assignment
problem is solved when learning from feedback.

ADVANCE (Algorithm[2) samples from the Bayesian pos-
teriors of the dynamics and utility models. The sampled
dynamics and utilities form an MDP, and value iteration is
used to derive the optimal policy 7 under the sample. Intu-
itively, peaked (i.e., certain) posteriors lead to less variability
when sampling 7, which implies less exploration, while dif-
fuse (i.e., uncertain) posteriors lead to greater variability
when sampling 7, which implies more exploration.

FEEDBACK (Algorithm [3) updates the Bayesian posteriors
of the dynamics and utility models based on new data. Up-
dating the dynamics posterior is relatively straightforward,
as we assume the dynamics are fully-observed; for instance,
the dynamics prior can be modeled via Dirichlet distribu-
tions with multinomial conjugate observation likelihoods
(Osband et al.,|2013). In contrast, performing Bayesian in-
ference over state/action utilities from trajectory-level feed-
back is much more challenging. Considering a range of
approaches (see Appendix Al), we found Bayesian logis-
tic regression (Section[3.1)) to both be well-performing and
admit tractable analysis within our theoretical framework.

3.1. Bayesian Logistic Regression for Utility Inference
and Credit Assignment

Credit assignment (Wirth, [2017)) is the problem of infer-
ring which state/action pairs are responsible for observed
trajectory-level preferences. We detail a Bayesian logis-

tic regression approach to address this task in our setting.
Logistic regression is a binary classification method that
learns a weight vector w for the model p(y = 1|z, w) =
m. Bayesian logistic regression (Albert & Chib),
1993; Murphy, |2012)) maintains a posterior over possible
weight vectors. Because there is no convenient prior yield-
ing a closed-form conjugate posterior, we use the Laplace
approximation to the posterior as specified below.

Preliminaries. Let IV be the number of trajectories pairs
observed so far, and D = SA be the total number of
state/action pairs. Let ;; € RP,j € {1,2} be the visi-
tation vector corresponding to trajectory 7;;, with the kt
element wg‘) being the number of times that state/action
pair k was visited in 7;;. Define x; := x;; — x;2. The

observation matrix X and label vector y are defined as:
(11 — 5B12)T Y1
: Y = ) (4)
(N1 — 33N2)T YN

X =

where y; = 2l};,,5,,) — 1, sothat y; € {—1,1}.

The observation matrix X € RY*P has rank at most D — 1,
since each row x; = ;1 — x;2 must sum to zero. To obtain
a full-row-rank observation matrix for Bayesian logistic
regression, we transform X € RV*P to W ¢ RN*(P—1)
via the matrix V = [v; vp_1] € RP*(P-1) where
v; € RP form an orthonormal basis spanning the (D — 1)-
dimensional, full possible row space of X. To obtain the
vector w; € RP~1! that expresses «; in this basis, apply:

T T T T
w; = [wi V... &; 'UD—l] =V i, (5)

while w; € RP~1 is converted to the original space via:
D-1
Ti= Y wyv; = Vw;, (6)
j=1

where w;; is the jth element of w;.

Utility Model & Posterior Inference. We fit a Bayesian
logistic regression model to the transformed data (W, y).
This model predicts the probability that 7 is preferred to 7/
as a logistic regression function of their visitation vector
differences . — x,/. The model parameters correspond
exactly to the state/action utilities 7. The model internally
computes an element-wise product between x., — ., and
estimated reward vector 7, within the (D — 1)-dimensional
space given by (5). Because (3) preserves inner products
(see Appendix A2), this is exactly the trajectory utility, and
taking the expectation over trajectories generated by a policy
is exactly the value function ().

We are chiefly interested in sampling from the posterior of
parameter/utility vector 7, which can be combined with the
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sampled dynamics to perform value iteration and obtain a
policy. As shown below, using the Laplace approximation,
the posterior is Gaussian distributed, from which samples
can easily be drawn. The internal utility representation lies
in7 € RP~1 and we convert to 7 € R via

We now describe the Bayesian logistic regression step. A
Gaussian prior is defined over utilities 7/ € RP~1: p(r’) ~
N (7’|, Vo). The logistic regression likelihood is:

p(W, —_ 7
yir’) 11;[1 1+exp yiwlr’) @
We model the posterior via the Laplace approximation:
p(r'|W,y) = N(r'|#', H™"), where: (8)
7' = argmin f(r’), 9

f(r") = —logp(r’) —log p(W,y|r"), (10)
H=V5f()| . (11)

To show a regret convergence using this approximate pos-
terior, we leverage asymptotic normality of the maximum
likelihood estimator of logistic regression in our proofs.

4. Theoretical Results

We now sketch our asymptotic no-regret analysis for DUEL-
ING POSTERIOR SAMPLING (DPS) with Bayesian logistic
regression; the full proof is in Appendix A2. Additionally,
Appendix A2.1 discusses possible avenues for extending
this proof methodology toward analyzing other credit assign-
ment models. The proof has two main parts: first proving
that DPS with logistic credit assignment is asymptotically
consistent (Theorem [I)), and then proving that DPS has
a sublinear regret rate (Theorem [2). Both parts leverage
results on the asymptotic behavior of logistic regression
(Gourteroux & Monfort, [1981). As before, we consider
Bayesian logistic regression with data W € RN*(P=1) and
labels y € RN, with [W];; = w;;. To show that DPS is
asymptotically consistent in learning the reward function,
we first provide some definitions and necessary conditions.

Definition 1 (Derivative of sigmoid). f: R — R, where
f= ﬁ Note that f(z) = f(—x).

Definition 2. Let ¥ € RP~! be the vector of true
state/action utilities; we assume T exists. Define 7y, € RDP-1
as the state/action rewards sampled from the posterior in
episode k, 7, € RP~1 as the maximum a posteriori (MAP)
estimate of the Bayesian logistic regression model at episode
k, and finally, Fprp 1 € RP-L as the maximum likelihood
estimate of the logistic regression model at k.

Condition 1. 3 My such that |w;;| < My for all i €
{1,...,N},je{1,...,D -1}

Condition 2. Let )\(k) and )\(k) 1 be the largest and smallest

eigenvalues, respectlvely, of ZZ 1 fwIF)w,wl. Then,

3 M such that (k) < My, for all k.

Proposition 1 (Asymptotic consistency of logistic regres-
sion (Gourieroux & Monfort, [1981)). If Conditions|[I|and
are satisfied, then the maximum likelihood estimator ¥y, i,
of T exists almost surely as k — oo, and T 1 con-
verges almost surely to the true values T if and only if
lim )\( ) — .

k— 00 D-1"

We first show that Proposition s final condition is satisfied
with known transition dynamics, and afterwards consider
the convergence of the dynamics model posterior.

Lemma 1. Under known transition dynamics, all eigenval-
ues of the matrix 25:1 f(wIF)w;w! approach infinity as
k — oo.

Lemma 2 (Convergence of dynamics model). Given
Lemma DPS’s dynamics model converges to the
true dynamics, and as it converges, all eigenvalues of
Zle fwIT)w,w! approach infinity.

Combining these results, we obtain:

Theorem 1 (Asymptotic consistency of DPS). If there
exists a reward function such that a logistic regression model
explains the preference feedback, then DPS with a Bayesian
logistic regression credit assignment model will learn an
asymptotically consistent reward model.

We turn next to characterizing the regret rate of DPS. We
apply two prior results, one from Gourieroux and Monfort
(1981) regarding the asymptotic distribution of the logistic
regression maximum likelihood estimate (Prop. [2), and the
other from Osband et al. (2013) regarding a regret bound
for posterior sampling RL (Prop. [3).

Proposition 2 (Asymptotic normality of logistic regression
maximum likelihood estimator (Gourieroux & Monfort,
1981)). If Conditions[l|and E] are satisfied, and if Fprp 1

converges almost surely to the true value T, then:

k 3
Z fw] Fypp)wiw! | (Faype —7) (12)
i=1

L5 N(0,T) as k —» oo, (13)
where implies convergence in distribution and Q% is

the positive definite matrix associated with positive definite
. 1
matrix Q such that [Q2]? = Q.

Proposition 3 (Expected regret of posterior sampling RL
(Osband et al., 2013)). Posterior sampling RL has expected
T-step regret O(hS+/ATlog(SAT)), with horizon h and

numbers of states and actions S and A.
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Leveraging these results, we show that under preference
feedback, the regret can be decomposed into two terms:
one that reflects the converging dynamics model, and one
that reflects the converging reward model (inferred from
trajectory-level preference feedback).

Lemma 3 (Regret decomposition). The expected regret
of DPS can be decomposed into two terms. One term
can be bounded by the regret bound of Osband et al.
(2013)), stated in Proposition @) The other is bounded
by: h Y BT =l loc] < BT E P~ o] +
B E s = il

The most burdensome part of our proof is analyzing con-
vergence of 7, to 7, and 7, to 7, which requires analyzing
convergence of credit assignment. Afterwards, we reach the
final result:

Theorem 2 (Asymptotic regret rate of DPS). If
there exists a reward function such that a logis-
tic regression model explains the preference feed-
back, then DPS has an asymptotic no-regret rate of

O <hS\/ATlog(SAT) + hy/ %Tlog(T)), where ¢ is
a minimum linear rate at which all eigenvalues of
Zle fwIF)w,w! must increase with k.

[

5. Experiments

We validate the empirical performance of DUELING POS-
TERIOR SAMPLING (DPS) on two simulated domains with
varying preference functions, and also evaluate DPS using
alternative credit assignment models. We find that DPS gen-
erally performs well, and outperforms standard PBRL base-
lines (Wirth & Fiirnkranz, [2013a)).

Experimental Setup. We evaluate on two simulated envi-
ronments: RiverSwim and random MDPs. The RiverSwim
environment (Osband et al., [2013) has six states and two
actions (actions 0 and 1); the optimal policy is to always
choose action 1, which maximizes the probability of reach-
ing a particular goal state/action pair. Meanwhile, a sub-
optimal policy—yielding a much smaller reward compared
to the goal—is quickly and easily discovered and incen-
tivizes the agent to always select action 0. The algorithm
must demonstrate sufficient exploration to have hope of
discovering the optimal policy quickly.

In the second simulated environment, we generate random
MDPs according to the procedure of Osband et al. (2013).
Each random MDP is generated with 50 states and 5 actions,
and the transition dynamics and rewards are generated from
Dirichlet and Normal-Gamma distributions, respectively.
All parameters of these two distributions were set to 1 to
obtain a diffuse distribution over possible MDPs. The sam-
pled reward vectors were shifted and normalized so that all
rewards fell between O and 1.

In both of these environments, preferences between pairs of
trajectories were generated by (noisily) comparing the total
rewards that they accumulated; this reward information was
hidden from the learning algorithm, which observed only the
trajectory preferences and state transitions. Preference noise
is generated according to a logistic model: for trajectories
7; and Tj» P(TZ > Tj) = {1 + exp[fc(?(n) — ?(Tj))}}il,
where 7(7;) and 7(7;) are the total rewards accrued by the
two trajectories, respectively, while the hyperparameter ¢
controls the degree of noisiness.

Methods Compared. We evaluate DPS under three noise
levels (¢ € {0.1,1,1000}) and three credit assignment mod-
els: 1) Bayesian logistic regression, 2) Bayesian linear re-
gression, and 3) Gaussian process regression, where the
latter two are described in Appendix Al. In addition, we
evaluate Every-Visit Preference Monte Carlo (EPMC) with
probabilistic credit assignment (Wirth & Fiirnkranz} 2013b;
Wirth, 2017) as a baseline. Lastly, we compare against
the posterior sampling RL algorithm (Osband et al.l 2013)),
which learns using the true numerical rewards at each step,
and thus yields an upper-bound on the performance that a
preference-based algorithm could achieve.

Results. Figure 1| shows the performance comparison for
c = 1 in both environments, as well as ¢ = 1, 000 in River-
Swim (additional results are in Appendix A3, including
hyperparameter details). DPS performs well in all simula-
tions, and sometimes significantly outperforms the EPMC
baseline. This may be because EPMC uses a uniform ex-
ploration strategy, while DPS prioritizes exploration by
sampling high rewards for more uncertain state/action pairs.
Notice that ¢ = 1,000 results in nearly-noiseless prefer-
ences; this can decrease performance in RiverSwim in some
cases, since preference noise can help the agent to escape
the local minimum. We also see that DPS is competitive
with PSRL, which has access to the full cardinal rewards
at each state/action. Finally, we see that the performance
of DPS is robust to the choice of credit assignment model,
and in fact using Gaussian process regression (for which
we do not have an end-to-end regret analysis) often leads to
the best empirical performance. These results suggest that
DPS is a practically promising approach that can robustly
incorporate many modeling approaches as subroutines.

6. Conclusion

We investigate the preference-based reinforcement learning
problem, which receives comparative preferences instead
of absolute real-valued rewards as feedback. We develop
the DUELING POSTERIOR SAMPLING (DPS) algorithm,
which optimizes policies in an highly efficient and flexible
way. To our knowledge, DPS is the first preference-based
RL algorithm with a regret guarantee. DP'S also performs
well in our simulations, and seems practically promising.
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Figure 1. Empirical performance of DPS. a) and b) show RiverSwim with noise hyperparameters ¢ = 1,000, 1. ¢) displays random
MDPs with ¢ = 1. Posterior sampling RL (PSRL) (Osband et al., 2013) is an upper-bound that receives numerical rewards; Gaussian
process regression (GPR), Bayesian linear regression, and Bayesian logistic regression are all instances of DPS. EPMC is a baseline from
Wirth and Fiirnkranz (2013b) as discussed. Plots display mean +/- one std over 100 runs of each algorithm tested. Additional results
(more values of ¢) are in Appendix A3. Overall, we see that DPS performs well and is robust to the choice of credit assignment model.
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