
Windows Script Host
In This Section

Getting Started

WSH Basics

Running Your Scripts

Basic Windows Script Host Tasks

Security and Windows Script Host

Reference

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Getting Started
In This Section

What's New in WSH
Description of the new features in WSH 5.6.

Document Conventions

Windows Script Host

Windows Script Host

Page 1 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Description of the syntax and conventions used in WSH 5.6 help documentation.

Related Sections

WSH Reference
List of elements that make up WSH Reference.

WSH Basics
Learn the basics of WSH.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

What's New In WSH 5.6
Several areas of functionality have been addressed in this latest version of the Windows Script Host (version 5.6).

l Argument handling has been improved — Handling and documenting command line arguments is simpler. The process of
integrating your scripts with other command line scripts has been simplified, and it is easier to create scripts that can supply the user
with help information. Refer to the following table for information on the WSH language features that connect you to this new
functionality.

Windows Script Host

To Learn About See
Grouping your script's switches together. <runtime> Element
Defining your script's named switches. <named> Element
Defining your script's unnamed switches. <unnamed> Element
Making your script self-documenting. <example> Element

<description> Element
Sharing the environment of the current
process (IOW, WSH) with a spawned

Exec Method

Page 2 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

l You can run scripts remotely — You can load scripts onto several remote computer systems and start them all running
simultaneously. While a remote script is running, you can check its progress. After it has finished, you can ensure that it ran correctly or
determine the cause of its premature termination. There is a new dispatch object used to create remote WSH objects — the Controller
object. In addition, there is a new object that represents an instance of a running script — the Remote WSH object.

process.
Accessing the standard streams
programmatically.

Exec Method

WshScriptExec Object
Accessing environment variables
programmatically.

Environment Property

WshEnvironment Object

ExpandEnvironmentStrings Method

Remove Method
Determining whether a spawned script
process is currently running.

Status Property (WshScriptExec)

Accessing the spawned script process's
StdIn input stream.

StdIn Property (WshScriptExec)

Accessing the spawned script process's
StdOut output stream.

StdOut Property (WshScriptExec)

Accessing the spawned script process'
StdErr output stream.

StdErr Property (WshScriptExec)

Terminating a spawned script process. Terminate Method (WshScriptExec)
Accessing the named command-line
script arguments.

WshNamed Object

Determining whether a specific key value
exists in the WshNamed object.

Exists Method

Determining the number of switches in
the WshNamed or WshUnnamed objects.

Count Method

To Learn About See
Creating a remote script object — the remote WSH interface. WshController Object
Creating a remote script object — using remote WSH interface. CreateScript Method
Creating a remote script object — getting a handle. WshRemote Object
Starting a remote script process. Execute Method

Page 3 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

l When you start new processes, you can treat them as objects — You determine the status of spawned processes and access their
standard I/O streams.

l You can access the current working directory — You can determine/modify the active process's current working directory.

l Security issues unique to scripts have been addressed — A new security model makes distributing and running scripts safer.

© 2001 Microsoft Corporation. All rights reserved.

Determining whether a remote script is currently running. Status Property (WshRemote)
Determining why a remote script terminated. Description Property (WshRemoteError)
Identifying which statement in your remote script caused it to
terminate.

Line Property (WshRemoteError)

Accessing error information after a remote script terminates. WshRemoteError Object
Identifying the character in the line of code that contained the
error.

Character Property

Identifying the error number representing a script error. Number Property
Identifying the source of the script error. Source Property
Identifying the line of source code that caused an error. SourceText Property
Handling remote object events. Start Event

End Event

Error Event

To Learn About See
Spawning a process. Exec Method
Accessing the object that represents running processes.WshScriptExec Object
Accessing process status information. Status Property (WshScriptExec)
Accessing the standard I/O streams. StdOut Property (WshScriptExec)
 StdIn Property (WshScriptExec)
 StdErr Property (WshScriptExec)

To Learn About See
Accessing the active directory information. CurrentDirectory Property

To Learn About See
Script signing and verification. Security and Windows Script Host

Page 4 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Build: Topic Version 5.6.9309.1546

Upgrading Windows Script Host
If you are currently using Windows 2000 or Windows ME, you have version 2.0 of WSH installed on your computer system. If you are
running Windows 95, 98, or Windows NT 4.0, you have version 1.0. To upgrade to WSH 5.6, visit the Microsoft Windows Script
Technologies Web site at (http://msdn.microsoft.com/scripting/).

Note The latest version of WSH is 5.6 due to a file versioning issue that was easiest to resolve by skipping some version
numbers.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Document Conventions
Throughout the Windows Script Host 5.6 Help documentation, different fonts, weights, and colors are used to draw your attention to text of
interest.

Examples of Text Styles

Windows Script Host

Windows Script Host

Type of Information Sample
Code snippets appear in Courier blue WScript.Echo "Hello from VBScript"

Featured elements in code snippets appear bolded in Courier blueWScript.Echo "Hello from VBScript"
Keywords appear bolded in the Script tab within the Properties dialog…
Links appear underlined WshNetwork Object

Page 5 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WSH Version Information
The following table lists the version of Windows Script Host implemented by Microsoft host applications.

The following table lists Windows Script Host language elements and the version in which they were introduced.

Pop-up links appear italicized, and underlined <?job error="flag" debug="flag" ?>

Windows Script Host

Host Application 1.0 2.0 5.6
Microsoft Windows 98 x
Microsoft Windows NT 4 Option Packx
Microsoft Windows 2000 X

Language Element 1.0 2.0 5.6
<?job ?> Element X
<?XML ?> Element X
AddPrinterConnection Method x
AddWindowsPrinterConnection Method X
AppActivate Method X
Arguments Property x
AtEndOfLine Property X
AtEndOfStream Property X
Character Property x
Close Method X
Column Property X
ComputerName Property x

Page 6 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

ConnectObject Method x
Count Method x
CreateObject Method x
CreateScript Method x
CreateShortcut Method x
Description Property x
Description Property (WshRemote) x
DisconnectObject Method x
Echo Method x
EnumNetworkDrives Method x
EnumPrinterConnections Method x
Environment Property x
Error Property (WshRemote) x
<example> Element x
Exec Method x
Execute Method x
Exists Method x
ExitCode Property x
ExpandEnvironmentStrings Method x
FullName Property x
GetObject Method x
GetResource Method x
HotKey Property x
IconLocation Property x
Item Property x
Item Property (WshNamed) x
Item Property (WshUnnamed) x
<job> Element x x
Length Property x
Line Property x
Line Property (WshRemote) x
LogEvent Method x
MapNetworkDrive Method x
Name Property x

Page 7 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

<named> Element x
Number Property x
<object> Element x
<package> Element x
Path Property x
Popup Method x
ProcessID Property x
Quit Method x
Read Method x
ReadAll Method x
ReadLine Method x
<reference> Element x
RegDelete Method x
RegRead Method x
RegWrite Method x
Remove Method x
RemoveNetworkDrive Method x
RemovePrinterConnection Method x
<resource> Element
Run Method x
<runtime> Element x
Save Method x
<script> Element x
ScriptFullName Property x
ScriptName Property x
SendKeys Method x
SetDefaultPrinter Method x
ShowUsage Method x
Skip Method x
SkipLine Method x
Sleep Method x
Source Property x
SourceText Property x
SpecialFolders Property x

Page 8 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Status Property (WshRemote) x
Status Property (WshScriptExec) x
StdErr Property x
StdErr Property (WshScriptExec) x
StdIn Property x
StdIn Property (WshScriptExec) x
StdOut Property x
StdOut Property (WshScriptExec) x
TargetPath Property x
Terminate Method (WshScriptExec) x
<usage> Element x
UserDomain Property x
UserName Property x
Version Property x
WindowStyle Property x
WorkingDirectory Property x
Write Method x
WriteBlankLines Method x
WriteLine Method x
WScript Object x
WshArguments Object x
WshController Object x
WshEnvironment Object x
WshNamed Object x
WshNetwork Object x
WshRemote Object x
WshRemoteError Object x
WshScriptExec Object x
WshShell Object x
WshShortcut Object x
WshSpecialFolders Object x
WshUnnamed Object x
WshUrlShortcut Object x

Page 9 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host Basics
Microsoft® Windows® Script Host (WSH) is a language-independent scripting host for Windows Script compatible scripting engines. It
brings simple, powerful, and flexible scripting to the Windows 32-bit platform, allowing you to run scripts from both the Windows desktop
and the command prompt.

Windows Script Host is ideal for non-interactive scripting needs, such as logon scripting, administrative scripting, and machine automation.

In the Section

What Is WSH?
General overview of Windows Script Host

Hosting Environments and Script Engines
About the WSH Host environment and the script engines you can use

Creating Scripts that Can Be Used with WSH
How to create a WSH-compatible script

Windows Script Host Object Model
A roadmap to the architecture

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Windows Script Host

Page 10 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

What Is WSH?
Windows Script Host (WSH) is a Windows administration tool.

WSH creates an environment for hosting scripts. That is, when a script arrives at your computer, WSH plays the part of the host — it makes
objects and services available for the script and provides a set of guidelines within which the script is executed. Among other things,
Windows Script Host manages security and invokes the appropriate script engine.

WSH is language-independent for WSH-compliant scripting engines. It brings simple, powerful, and flexible scripting to the Windows
platform, allowing you to run scripts from both the Windows desktop and the command prompt.

Windows Script Host is ideal for noninteractive scripting needs, such as logon scripting, administrative scripting, and machine automation.

WSH Objects and Services

Windows Script Host provides several objects for direct manipulation of script execution, as well as helper functions for other actions. Using
these objects and services, you can accomplish tasks such as the following:

l Print messages to the screen
l Run basic functions such as CreateObject and GetObject
l Map network drives
l Connect to printers
l Retrieve and modify environment variables
l Modify registry keys

Where Is WSH?

Windows Script Host is built into Microsoft Windows 98, 2000, and Millennium Editions. If you are running Windows 95, you can download
Windows Script Host 5.6 from the Microsoft Windows Script Technologies Web site (http://msdn.microsoft.com/scripting).

Note You can also go to the web site listed above to upgrade your current engines. The version of WSH in Windows 98, 2000,
and Millennium Editions is either version 1.0 or 2.0. You must upgrade to version 5.6 to get the new features.

See Also

Page 11 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Windows Script Host Object Model | CreateObject | GetObject

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Scripts and Automating Windows
Computers are wonderful tools that perform repetitive tasks. But what if you need to perform a series of repetitive tasks? The answer lies in
scripting.

What Is a Script?

A script is a program written in a scripting language, such as JScript and VBScript. Alternative script languages include Rexx, Python, and
Perl. When compared to programming languages such as C++ and Visual Basic, scripting languages are better suited to creating short
applications that provide quick solutions to small problems.

Automating Windows

In many cases, scripts are used to automate manual tasks, much like a macro. Scripts are well suited for:

l Manipulating the Windows environment
l Running other programs
l Automating logon procedures
l Sending key sequences to an application

For example, if you have several similar tasks, you can write one generalized script that can handle all of them.

You can write scripts that start an action in response to an event. You can write scripts that keep a running tally of events and trigger some

Windows Script Host

Page 12 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

action only when certain criteria are met.

Scripts are also useful for nonrepetitive tasks as well. If a task requires you to do many things in sequence, you can turn that sequence of tasks
into just one task by scripting it.

See Also

Types of Script Files

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Types of Script Files
Stand-alone scripts come in several varieties, and each has its own extension. The following table is a list of some common types.

Each script type is suited to different application needs, and each has strengths and weaknesses. The script type you choose depends on your
needs.

Windows Script Host

Extension Script Type Description
.bat MS-DOS batch file MS-DOS operating system batch file
.asp ASP page Active Server Page file
.html HTML file Web page
.js JScript file Windows script
.vbs VBScript file Windows script
.wsf Windows Script Host file Container or project file for a Windows script; supported by

WSH 2.0 and later.
.wsh Windows Script Host files Property file for a script file; supported by WSH 1.0 and later.

Page 13 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Still, there are certain scenarios where you could divide your overall problem into several smaller parts, writing a separate script for each part
with each script written in the most suitable scripting language.

This is where Windows Script Host files (WSF files) are useful. WSF files may include other script files as part of the script. Consequently,
multiple WSF files can reference libraries of useful functions, which may be created and stored in a single place.

See Also

Windows Script Host Object Model

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Hosting Environments and Script Engines
Scripts are often embedded in Web pages, either in an HTML page (on the client side) or in an ASP page (on the server side). In the case of a
script embedded in an HTML page, the engine component that interprets and runs the script code is loaded by the Web browser, such as
Internet Explorer. In the case of a script embedded in an ASP page, the engine that interprets and runs the script code is built into Internet
Information Services (IIS).

Windows Script Host executes scripts that exist outside an HTML or ASP page and that stand on their own as text files.

Available Script Engines

Generally, you write scripts in either Microsoft JScript or VBScript, the two script engines that ship with Microsoft Windows 98, 2000 and
Millennium Editions. You can use other script engines, such as Perl, REXX, and Python, with Windows Script Host.

Note For more information, see Microsoft Developer Network (MSDN)
(http://msdn.microsoft.com/workshop/languages/clinic/vbsvjs.asp).

Windows Script Host

Page 14 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

A stand-alone script written in JScript has the .js extension; a stand-alone script written in VBScript has the .vbs extension. These extensions
are registered with Windows. When you run one of these types of files, Windows starts Windows Script Host, which invokes the associated
script engine to interpret and run the file.

Note If you need to run another engine, that engine must be registered properly.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Creating Scripts that Can Be Used by WSH
A Windows script is a text file. You can create a script with any text editor as long as you save your script with a WSH-compatible script
extension (.js, vbs, or .wsf).

The most commonly available text editor is already installed on your computer — Notepad. You can also use your favorite HTML editor,
Microsoft Visual C++, or Visual InterDev.

To create a script with Notepad

1. Start Notepad.
2. Write your script. For example purposes, type WScript.Echo("Hello World!");
3. Save this text file with a .js extension (instead of the default .txt extension). For example, Hello.js.
4. Navigate to the file you just saved, and double-click it.
5. Windows Script Host invokes the JScript engine and runs your script. In the example, a message box is displayed with the message

"Hello World!"

© 2001 Microsoft Corporation. All rights reserved.

Windows Script Host

Page 15 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Build: Topic Version 5.6.9309.1546

Dividing Scripts into Reusable Parts
To simplify your script writing, you can divide a script into more than one part. With this approach, you would create a .wsf file and use it as
the starting point of execution. The other parts could be .js or .vbs files. You would reference these files from the .wsf file.

This approach makes your code more robust because it isolates pieces of it, allowing you to debug one piece at a time. It also makes your
code reusable because it allows you to create functions that can be called again and again.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host Object Model
The Windows Script Host object model consists of 14 objects. The root object is the WScript object.

The illustration that follows represents the Windows Script Host Object Model hierarchy. Click an object in the diagram to see its associated
Help topic.

Windows Script Host

Windows Script Host

Page 16 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

The Windows Script Host object model provides a logical, systematic way to perform many administrative tasks. The set of COM interfaces
it provides can be placed into two main categories:

l Script Execution and Troubleshooting

This set of interfaces allows scripts to perform basic manipulation of the Windows Script Host, output messages to the screen, and
perform basic COM functions such as CreateObject and GetObject.

l Helper Functions

Helper functions are properties and methods for performing actions, such as mapping network drives, connecting to printers, retrieving
and modifying environment variables, and manipulating registry keys. Administrators can also use the Windows Script Host helper
functions to create simple logon scripts.

WSH Objects and Associated Tasks

The following table is a list of the WSH objects and the typical tasks associated with them.

Object What you can do with this object

Page 17 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

In addition to the object interfaces provided by Windows Script Host, administrators can use any ActiveX control that exposes automation
interfaces to perform various tasks on the Windows platform. For example, administrators can write scripts to manage the Windows Active
Directory Service Interface (ADSI).

Wscript l Set and retrieve command line arguments
l Determine the name of the script file
l Determine the host file name (wscript.exe or cscript.exe)
l Determine the host version information
l Create, connect to, and disconnect from COM objects
l Sink events
l Stop a script's execution programmatically
l Output information to the default output device (for example, a dialog box or the command line)

WshArguments Access the entire set of command-line arguments
WshNamed Access the set of named command-line arguments
WshUnnamed Access the set of unnamed command-line arguments
WshNetwork l Connect to and disconnect from network shares and network printers

l Map and unmap network shares
l Access information about the currently logged-on user

WshController Create a remote script process using the Controller method CreateScript()
WshRemote l Remotely administer computer systems on a computer network

l Programmatically manipulate other programs/scripts
WshRemote Error Access the error information available when a remote script (a WshRemote object) terminates as a result

of a script error
WshShell l Run a program locally

l Manipulate the contents of the registry
l Create a shortcut
l Access a system folder
l Manipulate environment variables (such as WINDIR, PATH, or PROMPT)

WshShortcut Programmatically create a shortcut
WshSpecialfolders Access any of the Windows Special Folders
WshURLShortcut Programmatically create a shortcut to an Internet resource
WshEnvironment Access any of the environment variables (such as WINDIR, PATH, or PROMPT)
WshScriptExec Determine status and error information about a script run with Exec()

Access the StdIn, StdOut, and StdErr channels

Page 18 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Running Your Scripts
There are three ways to run your scripts.

l In the Windows environment, double-click the icon of the script (you run script files the same way you run regular executable files).
l In the Windows environment, click the Start button, and then click Run. In the Open field of the Run dialog box, type the full path of

the script, and click OK.
l From the command line, type the name of the script.

See Also

Running Scripts with WScript.exe | Running Scripts with CScript.exe | What to Include to Run a Script | Drag and Drop Support

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Using Windows Script Files (.wsf)
A Windows script (*.wsf) file is a text document containing Extensible Markup Language (XML) code. It incorporates several features that

Windows Script Host

Windows Script Host

Page 19 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

offer you increased scripting flexibility. Because Windows script files are not engine-specific, they can contain script from any Windows
Script compatible scripting engine. They act as a container.

With .wsf files, you can take advantage of the following features as you create your scripts:

Include Statements

If you have .js and .vbs files from previous Windows Script Host projects, a .wsf file enables you to use them with Windows Script Host.
A .wsf file encapsulates a library of functions that can in turn be used by multiple .wsf files.

The following example shows a .wsf file that includes a JScript file (fso.js), plus a VBScript function that calls a function (GetFreeSpace) in
the included file. The contents of fso.js are also shown.

<job id="IncludeExample">
 <script language="JScript" src="FSO.JS"/>
 <script language="VBScript">
 ' Get the free space for drive C.
 s = GetFreeSpace("c:")
 WScript.Echo s
 <sScript>
</job>

The fso.js file contains the following:

function GetFreeSpace(drvPath) {
 var fs, d, s;
 fs = new ActiveXObject("Scripting.FileSystemObject");
 d = fs.GetDrive(fs.GetDriveName(drvPath));
 s = "Drive " + drvPath + " - " ;
 s += d.VolumeName;

.wsf files support You can
Include statements Incorporate functions from VBScript or JScript files into your

Windows Script Host project.
Multiple engines Use more than one scripting language per file.
Type libraries Add constants to your code.
Tools Edit files with any XML editor.
Multiple jobs in one file Store all of your code in a single location.

Page 20 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 s += " Free Space: " + d.FreeSpace/1024 + " Kbytes";
 return s;
}

Multiple-Engine Support

Since one scripting language may not have all the functionality you need, Windows Script Host allows you to combine multiple languages in
a single .wsf file. The following example shows a .wsf file that includes both VBScript and PerlScript code:

<job id="PERLandVBS">
 <script language="PerlScript">
 sub PerlHello {
 my $str = @_[0];
 $WScript->Echo($str);
 }
 </script>

 <script language="VBScript">
 WScript.Echo "Hello from VBScript"
 PerlHello "Hello from PERLScript"
 </script>
</job>

Type Library Support

In the following example, "MyComponent" was developed with Microsoft Visual Basic 5.0. "MyComponent" defines the constant MyError
with the following statement.

Public Const MyError = "You are not using MyComponent correctly"

The type library is contained in mycomponent.lib, which is installed in C:\MyComponent.

<job id="IncludeExample">
 <reference progid="MyComponent.MyClass">
 <script language="VBScript">
 Dim MyVar
 Set MyVar = CreateObject("MyComponent.MyClass")
 Currentreturn = MyVar.MyMethod
 If Currentreturn = False then
 WScript.Echo MyError

Page 21 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 End If
 </script>
</job>

Tools Support

Since the .wsf file is in XML format, you can use any editor that supports XML to edit .wsf files. This includes text editors, such as Notepad.

Multiple Jobs in One File

Instead of keeping all your scripts in separate files, you can incorporate them all into one .wsf file and break them into several different jobs.
You can then run each job separately using syntax similar to the following example, where "MyFirstJob" is the name of the job contained in
the MyScripts.wsf file.

CScript //Job:MyFirstJob MyScripts.wsf

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WSH Drag and Drop Support
You can drag files onto a WSH script. The file names are translated into arguments on the command line. These file names can be displayed
in a list, which you can use to manipulate files with any scripting object.

To display a script's argument list

1. Create a file and give it a name with a script extension (for example, DragDrop.vbs).
2. Add code to the script file, for example:

Windows Script Host

Page 22 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Set objArgs = WScript.Arguments
For I = 0 to objArgs.Count - 1
 WScript.Echo objArgs(I)
Next

3. Save the file to your hard disk.
4. Drag and drop any file or files onto your saved file. In the example, the file names are echoed back to the screen.

The number of files you can drag onto a script is limited by the your system's maximum command-line length. If the total number of
characters in all file names being dragged exceeds this limit, the drag and drop operation fails.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Setting and Customizing Script Properties (.wsh)
You can record specific settings for each of your individual scripts by means of a Windows Script Host control (.wsh) file. The .wsh file is a
text document in which you can customize execution of one or more of your scripts. It is created automatically when you set the properties for
a supported script file.

If you create multiple .wsh files for a single script, you can tailor the way the script runs to the needs of specific groups or even individuals
within an organization. For example, you could create a single logon script that is invoked by two different .wsh files that contain different
settings and parameters.

When you double-click a .wsh file or run it from the command line, CScript.exe or WScript.exe reads the .wsh file to determine the specific
settings that should be used to execute the script. CScript/WScript executes the original script, passing in the properties that are defined within
the .wsh file.

To create a .wsh file for a given script

Windows Script Host

Page 23 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

1. Right-click the script file in Windows Explorer.
2. Click Properties on the shortcut menu.
3. Choose the settings you want for the script.
4. Click OK or Apply.

A .wsh file is created with the same name as the script file you selected.

The following example illustrates a typical .wsh file:

[ScriptFile]
Path=C:\WINNT\Samples\WSH\showprop.vbs
[Options]
Timeout=0
DisplayLogo=1
BatchMode=0

The path information in the [ScriptFile] section identifies the script file that is associated with the .wsh file. The keys in the [Options]
section correspond to settings in the Script tab within the Properties dialog box.

Note You must have the original script file present when executing the .wsh file. If the .wsh file fails to run the script, check the
Path= information in the .wsh file to ensure that it points to the script you are attempting to run.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Running Scripts from the Command Prompt
Windows Script Host enables you to run scripts from the command prompt. CScript.exe provides command-line switches for setting script
properties.

Windows Script Host

Page 24 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

To run scripts using CScript.exe

l Type a command at the command prompt using the following syntax:

cscript [host options...] [script name] [script options and parameters]

Host Options enable or disable various Windows Script Host features. Host options are preceded by two slashes (//).Script name is the name
of the script file with extension and necessary path information, for example, d:\admin\vbscripts\chart.vbs. Script options and
parameters are passed to the script. Script parameters are preceded by a single slash (/).

Each parameter is optional; however, you cannot specify script options without specifying a script name. If you do not specify parameters,
CScript displays the CScript syntax and the valid host parameters.

CScript Example

Several sample scripts, which are installed along with Windows Script Host, are also available for download at
(http://msdn.microsoft.com/scripting).

Suppose, for the purposes of this example, that you have copied the Chart.vbs sample script to the following folder on your computer:

c:\sample scripts\chart.vbs

You can run the script with and without a logo as follows.

To run a script with or without a logo

1. Start the MS-DOS command prompt.
2. Enter the following commands at the command prompt (modify accordingly if your sample scripts are located in a different folder):

cscript //logo c:\"sample scripts"\chart.vbs
cscript //nologo c:\"sample scripts"\chart.VBScript

See Also

Running Scripts from Windows | What to Include to Run a Script | WScript.exe and CScript.exe Options

Page 25 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Running Scripts from Windows
Windows Script Host enables you to run scripts from Windows. WScript.exe provides a Windows-based dialog box for setting script
properties. Using WScript.exe, you can run scripts under Windows in the following ways. Whether you use WScript or CScript, you still run
the scripts in the same manner. The difference is only in the output — WScript generates windowed output, while CScript sends its output to
the command window in which it was started.

On initial installation, the default host is WScript. To change it to CScript, type the following at the command line:

cscript //h:cscript

Or, to change it from Cscript to Wscript:

wscript //h:cscript

To run a script using the default engine:

1. Double click the script in Windows Explorer or on the desktop.
2. Click Start, select Run, and enter the script name.

Note On Windows NT and Windows 2000 only, simply enter the script name on a command line.

To run a script using a particular engine:

l Right-click the script in Windows Explorer and select Open to run in WScript or Open in MS-DOS Window (Windows 9x) or Open
in Command Window (Windows NT and Windows 2000) to run in CScript.

Windows Script Host

Page 26 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

-or-

l Click Start, select Run, enter "cscript" or "wscript" followed by the script name.

-or-

l Enter "cscript" or "wscript" on the command line, followed by the script name.

To run scripts using WScript.exe

l Double-click files or icons. These can be files or icons listed in My Computer, Windows Explorer, the Find window, the Start menu,
or on the desktop.

-or-

1. Click the Start button, and then click Run.
2. In the Open field, type the full path of the script, and then click OK. You can also type WScript followed by the full name and path of

the script you want to run.

If you double-click a script file whose extension has not yet been associated with WScript.exe, the Open With dialog box appears and asks
which program to use to open the file. Choose WScript and check Always use this program to open this file to register WScript as the
default application for all files with that extension.

The WScript.exe and CScript.exe properties dialog box provides the following options:

Using the WScript.exe Properties dialog box, you can set global scripting options for all scripts that WScript runs on the local machine. You

Property Description
Stop script after specified number of seconds. Specifies the maximum number of seconds that a script can run. The

default is no limit.

CScript.exe equivalent: //T:nn
Display logo when script is executed in command console. Displays a banner before running the script. This is the default. The

opposite is //nologo.

CScript.exe equivalent: //logo or //nologo

Page 27 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

can also set options for individual scripts using a .wsf file.

See Also

Running Scripts from the Command Prompt | What to Include to Run a Script | WScript.exe and CScript.exe Options

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WScript.exe and CScript.exe Options
For the most part, options listed in the following table are applicable to both WScript.exe and CScript.exe. Exceptions are noted.

Windows Script Host

Parameter Description
//B Batch mode; suppresses command-line display of user prompts and script errors. Default is Interactive mode.
//D Turns on the debugger.
//E:engine Executes the script with the specified script engine.
//H:CScript or //H:Wscript Registers CScript.exe or WScript.exe as the default application for running scripts. If neither is specified,

WScript.exe is assumed as the default.
//I Default. Interactive mode; allows display of user prompts and script errors Opposite of Batch mode.
//Job:<JobID> Runs the specified JobID from the .wsf file.
//logo Default. Displays a banner. Opposite of nologo.
//nologo Prevents display of an execution banner at run time. Default is logo.
//S Saves the current command-line options for this user.
//T:nn Enables time-out: the maximum number of seconds the script can run. The default is no limit. The //T

parameter prevents excessive execution of scripts by setting a timer. When execution time exceeds the specified
value, CScript interrupts the script engine using the IActiveScript::InterruptThread method and terminates
the process.

Page 28 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

What to Include to Run a Script
The information that you type when you run a script by typing its name depends on which version of Windows you are running and on the
method you use to run the script.

See Also

Running Scripts with WScript.exe | Running Scripts with CScript.exe | Drag and Drop Support

//U Used with Windows NT and Windows 2000 to force the command line output to be in Unicode. There is no
way for CScript to determine whether to output in Unicode or ANSI; it defaults to ANSI.

//X Launches the program in the debugger.
//? Displays a brief description of and usage information for command parameters (the usage information).

Windows Script Host

WSH Executable File Windows Version Include
Command prompt Windows NT or 2000 Specify the script name without the file

extension. Example: myScript.

Note If you specify the WSH executable file
name, you must also include the script's file
extension. Example: cscript myScript.wsf.

Command prompt Windows 9x or Millennium Specify the script's file extension and precede
the script name with the WSH executable
filename.

Example: cscript myScript.wsf
Run command from Open box Windows NT, 2000, 9x, or Millennium Specify the script's file extension.

Page 29 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Setting up Remote WSH
Remote WSH, which is a new technology included in WSH 5.6, provides the ability to run a script on a remote machine or machines. With
Remote WSH, the script is physically copied from the local machine to the remote machine before executing. In order to enable Remote WSH
functionality, you must first set up the remote machine with the proper security settings. The steps below perform the tasks that enable
Remote WSH.

Note Both the remote and local machines must be running Windows NT 4 SP3 or greater in order to use Remote WSH.

To enable a machine to run remote scripts

1. Install WSH V5.6 on the machine. If you are using Windows 2001 or have installed Internet Explorer 6 or greater, WSH 5.6 has
already been installed.

Note WSH 5.6 is available for download from the web at http://msdn.microsoft.com/scripting

2. Add yourself to the remote machine's Local Administrators group.
3. To enable Remote WSH, use Poledit.exe on the server.

Note An administrator who wants to enable Remote WSH must either acquire the Windows 2000 resource kit, or use
http://msdn.microsoft.com/scripting to acquire the necessary windowsscript.adm file that contains the WSH settings. The
windowsscript.adm file must be copied to the server that sets the gapplicabel group's policies. Although it is not necessary
to copy the file to the server's \WINNT\INF directory, this is nonetheless where the default adm files are located.

Note For more information on Poledit.exe, see the Poledit.exe's online help system.

Windows Script Host

Page 30 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

4. WSH should now be enabled on the machine. To test it, see Running Scripts Remotely.

See Also

Security and Windows Script Host | Running Scripts Remotely

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Basic Windows Script Host Tasks
This section contains several commonly used Windows Scripting Host 5.6 scripts, which demonstrate basic functions.

Note The scripts presented in the following tasks are virtually the same for developers using JScript or VBScript. When
applicable, differences between the scripting models are noted. In addition, each task is written in both JScript and VBScript.

In this Section

l Accessing Networks
l Creating an Automated Login Script
l Driving Applications
l Executing File Management Operations
l Managing Shortcuts
l Manipulating the System Registry
l Running Scripts Remotely
l Signing a Script
l WSH and Windows Management Instrumentation (WMI)

Windows Script Host

Page 31 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Accessing Networks
With WSH you can easily access a network programmatically. The following tasks demonstrate some of these capabilities.

In this Section

Accessing Network Connections

Controlling Networked Printers

See Also

WSH Samples

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Accessing Network Connections
The Network object enables you to access information about your network. The following scripts demonstrate how to map a network drive. In
the first step, the script creates a Network Object. Next, the MapNetworkDrive method, one of the Network object's methods, performs the
mapping operation. The MapNetworkDrive method takes five arguments:

Windows Script Host

Windows Script Host

Page 32 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

l The local drive assignment (I:, for example)
l The Universal Naming Convention (UNC) path to the mapped remote drive
l An optional Boolean indicating whether the drive will be persistently connected
l An optional user name if you want to use different credentials
l An optional password for use with the alternate user name

// JScript.
var net;
net = new ActiveXObject("WScript.Network");
net.MapNetworkDrive("I:", "\\\\computer2\\public","True","jdoe","jdoepassword");

' VBScript.
Dim net
Set net = CreateObject("WScript.Network")
net.MapNetworkDrive "I:", "\\computer2\public","True","jdoe","jdoepassword"

See Also

Accessing Networks

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Controlling Networked Printers
The Network object enables you to access printing devices on your network. The following scripts demonstrate the use of the Network
object to control a network printer device.

Connecting to a Remote Printer

Windows Script Host

Page 33 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

The following scripts demonstrate how to connect to a network shared printing device. In the first step, the script creates a Network Object.
Next, the AddWindowsPrinterConnection method, one of the Network object's methods, performs the connection operation. The
AddWindowsPrinterConnection method takes two parameters: the name you wish to call the printer and the Universal Naming Convention
(UNC) path to the printing device.

// JScript.
var net;
net = new ActiveXObject("WScript.Network");
net.AddWindowsPrinterConnection("\\\\ServerName\\PrinterName");

' VBScript.
Dim net
Set net = CreateObject("WScript.Network")
net.AddWindowsPrinterConnection "\\ServerName\PrinterName"

Setting Default Printer

The following script demonstrates how to set the desired default printing device. In the first step, the script creates a Network Object. Next,
the SetDefaultPrinter method, one of the Network object's methods, performs the operation. The SetDefaultPrinter method takes a single
parameter, the name of the printer, which is either the local printer name or a remote printer name using the Universal Naming Convention
(UNC) path to the printing device.

// JScript.
var net;
net = new ActiveXObject("WScript.Network");
net.SetDefaultPrinter("\\\\ServerName\\PrinterName");

' VBScript.
Dim net
Set net = CreateObject("WScript.Network")
net.SetDefaultPrinter "\\ServerName\PrinterName"

See Also

Accessing Networks | AddWindowsPrinterConnection Method | SetDefaultPrinter Method | RemovePrinterConnection Method

Page 34 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Creating an Automated Login Script
With WSH you can create automated login scripts. The following example assumes that a company has two file servers (named "server1" and
"server2"), and two print servers (named "printer1" and "printer2"). To balance usage of the servers, everyone whose login name starts with A
- K goes to the first file and print server, and everyone whose login name starts with L - Z goes to the second one.

Note In Windows 9x, include a delay so user logon takes affect.

// JScript.
var oNet, sUser, cInitial, startTime;
oNet = new ActiveXObject("WScript.Network");
// Get the user name. On Windows 98 and Windows ME, the use may not be logged
// on when the script starts running; keep checking every 1/2 a
// second until they are logged on
sUser = oNet.UserName;
startTime = new Date();
while (sUser == "")
{
 var curTime = new Date();
 if (curTime – startTime > 30000) WScript.Quit();
 WScript.Sleep(500);
 sUser = oNet.UserName;
}
// Add a share for the "h" drive and the printer, based on the
// first letter of the user's name
cInitial = sUser.charAt(0).toUpperCase();
if (cInitial < "L")
{
 oNet.MapNetworkDrive("h:", "\\\\server1\\users\\" + sUser);
 oNet.AddWindowsPrinterConnection("\\\\printer1\\hp", "HP LaserJet 4");
}
else
{
 oNet.MapNetworkDrive("h:", "\\\\server2\\users\\" + sUser);

Windows Script Host

Page 35 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 oNet.AddWindowsPrinterConnection("\\\\printer2\\hp", "HP LaserJet 4");
}

' VBScript.

Option Explicit
Dim oNet, sUser, cInitial, startTime
' Helper object
Set oNet = CreateObject("WScript.Network")
' Get the user name. On Windows 9x, the use may not be logged
' on when the script starts running; keep checking every 1/2 a
' second until they are logged on.
sUser = oNet.UserName
startTime = Now
Do While sUser = ""
 If DateDiff("s", startTime, Now) > 30 Then Wscript.Quit
 Wscript.Sleep 500
 sUser = oNet.UserName
Loop
' Add a share for the "h" drive and the printer, based on the
' first letter of the user's name
cInitial = UCase(Left(sUser, 1))
If (cInitial < "L") Then
 oNet.MapNetworkDrive "h:", "\\server1\users\" & sUser
 oNet.AddWindowsPrinterConnection "\\printer1\hp", "HP LaserJet 4"
Else
 oNet.MapNetworkDrive "h:", "\\server2\users\" & sUser
 oNet.AddWindowsPrinterConnection "\\printer2\hp", "HP LaserJet 4"
End If

See Also

WSH Samples

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Page 36 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Driving Applications
With WSH you can start applications. The following scripts demonstrate some of these capabilities.

Creating a Local Server Application

Some applications, such as Microsoft Word, expose objects which can be accessed programmatically. The following script uses Word's spell
checker.

// JScript.
var Word, Doc, Uncorrected, Corrected;
var wdDialogToolsSpellingAndGrammar = 828;
var wdDoNotSaveChanges = 0;
Uncorrected = "Helllo world!";
Word = new ActiveXObject("Word.Application");
Doc = Word.Documents.Add();
Word.Selection.Text = Uncorrected;
Word.Dialogs(wdDialogToolsSpellingAndGrammar).Show();
if (Word.Selection.Text.length != 1)
 Corrected = Word.Selection.Text;
else
 Corrected = Uncorrected;
Doc.Close(wdDoNotSaveChanges);
Word.Quit();

' VBScript.

Dim Word, Doc, Uncorrected, Corrected
Const wdDialogToolsSpellingAndGrammar = 828
Const wdDoNotSaveChanges = 0

Uncorrected = "Helllo world!"
Set Word = CreateObject("Word.Application")
Set Doc = Word.Documents.Add
Word.Selection.Text = Uncorrected
Word.Dialogs(wdDialogToolsSpellingAndGrammar).Show

If Len(Word.Selection.Text) <> 1 Then

Windows Script Host

Page 37 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Corrected = Word.Selection.Text
Else
 Corrected = Uncorrected
End If

Doc.Close wdDoNotSaveChanges
Word.Quit

Spawning Programs with Shell.Exec Command

The Shell.Exec command provides additional capability beyond the Shell.Run method. These abilities include:

l Improved environment variable passing
l Ability to access the standard streams of the executable

The following VBScript sample demonstrates how to use standard streams and the Shell.Exec command to search a disk for a file name that
matches a regular expression.

First, here's a small script that dumps to StdOut the full path of every file in the current directory and below:

' VBScript.
' MYDIR.VBS
Option Explicit
Dim FSO
Set FSO = CreateObject("Scripting.FileSystemObject")
DoDir FSO.GetFolder(".")
Sub DoDir(Folder)
 On Error Resume Next
 Dim File, SubFolder
 For Each File In Folder.Files
 WScript.StdOut.WriteLine File.Path
 Next
 For Each SubFolder in Folder.SubFolders
 DoDir SubFolder
 Next
End Sub

Next, this script searches StdIn for a pattern and dumps all lines that match that pattern to StdOut.

' MyGrep.VBS

Page 38 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Option Explicit
Dim RE, Line
If WScript.Arguments.Count = 0 Then WScript.Quit
Set RE = New RegExp
RE.IgnoreCase = True
RE.Pattern = WScript.Arguments(0)
While Not WScript.StdIn.AtEndOfStream
 Line = WScript.StdIn.ReadLine
 If RE.Test(Line) Then WScript.StdOut.WriteLine Line
WEnd

Together these two scripts do what we want — one lists all files in a directory tree and one finds lines that match a regular expression. Now
we write a third program which does two things: it uses the operating system to pipe one program into the other, and it then pipes the result of
that to its own StdOut:

// MyWhere.JS
if (WScript.Arguments.Count() == 0)
 WScript.Quit();
var Pattern = WScript.Arguments(0);
var Shell = new ActiveXObject("WScript.Shell");
var Pipe = Shell.Exec("%comspec% /c \"cscript //nologo mydir.vbs | cscript //nologo mygrep.vbs " + Pattern + "\"");
while(!Pipe.StdOut.AtEndOfStream)
 WScript.StdOut.WriteLine(Pipe.StdOut.ReadLine());

See Also

WSH Samples | Exec Method | Run Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Executing File Management Operations

Windows Script Host

Page 39 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

With WSH you can easily create, copy, move, and delete files and folders programmatically. The following tasks demonstrate these
capabilities.

In this Section

Copying Files and Folders

Mapping to a Special Folders

See Also

WSH Samples

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Copying Files and Folders
File system manipulation, such as copying files and folders, requires the use of the File System Object (FSO). The following scripts
demonstrate the use of the FSO to copy both files and folders.

Copying Files

The following scripts demonstrate how to copy a file from one local folder to another. In the first step, the script creates a File System
Object. The CopyFile method, a file system object method, performs the file copy operation. The CopyFile method takes two parameters,
the source file and the destination.

// JScript.
var FSO = WScript.CreateObject("Scripting.FileSystemObject");

Windows Script Host

Page 40 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

FSO.CopyFile("c:\\COMPlusLog.txt", "c:\\x\\");

' VBScript.
Dim FSO
Set FSO = CreateObject("Scripting.FileSystemObject")
FSO.CopyFile "c:\COMPlusLog.txt", "c:\x\"

Copying Folders

The following script demonstrates how to copy the contents of one local folder to another folder on the local machine.

Note The destination folder must already exist for this method to succeed. For information on how to create a directory using
WSH, see CreateFolder Method.

In the first step, the script creates a File System Object. The CopyFolder method, a file system object method, performs the folder copy
operation. The CopyFolder method takes two parameters, the source folder and the destination.

// JScript.
var FSO = WScript.CreateObject("Scripting.FileSystemObject");
FSO.CopyFolder("c:\\x", "c:\\y");

' VBScript.
Dim FSO
Set FSO = CreateObject("Scripting.FileSystemObject")
FSO.CopyFolder "c:\x", "c:\y"

See Also

Executing File Management Operations | FileSystemObject | CopyFile Method | CopyFolder Method | CreateFolder Method | MoveFolder
Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Page 41 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Mapping to a Special Folder
Mapping special folders, such as the My Documents desktop folder, requires the use of the Shell object. The following scripts demonstrate
the use of the Shell object to create a shortcut to a folder on the desktop.

// JScript.
var Shell, DesktopPath, URL;
Shell = new ActiveXObject("WScript.Shell");
DesktopPath = Shell.SpecialFolders("Desktop");
URL = Shell.CreateShortcut(DesktopPath + "\\MSDN Scripting.url");
URL.TargetPath = "HTTP://MSDN.Microsoft.com/scripting/";
URL.Save();

' VBScript.
Dim Shell, DesktopPath, URL
Set Shell = CreateObject("WScript.Shell")
DesktopPath = Shell.SpecialFolders("Desktop")
Set URL = Shell.CreateShortcut(DesktopPath & "\MSDN Scripting.URL")
URL.TargetPath = "HTTP://MSDN.Microsoft.com/scripting/"
URL.Save

See Also

Executing File Management Operations

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Managing Shortcuts

Windows Script Host

Windows Script Host

Page 42 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

With WSH you can easily create, delete, move, and copy shortcuts programmatically. The following tasks demonstrate some of these
capabilities.

In this Section

Copying a Shortcut

Creating a Shortcut

Deleting a Shortcut

Moving a Shortcut

See Also

WSH Samples

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Copying a Shortcut
Copying shortcuts requires the use of the File System Object (FSO). The following scripts demonstrate the use of the File System Object to
copy shortcuts.

// JScript.
Shell = new ActiveXObject("WScript.Shell");
FSO = new ActiveXObject("Scripting.FileSystemObject");
DesktopPath = Shell.SpecialFolders("Desktop") + "\\MSDN Scripting url";
MyDocumentsPath = Shell.SpecialFolders("MyDocuments") + "\\"

Windows Script Host

Page 43 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

FSO.CopyFile(DesktopPath, MyDocumentsPath);

' VBScript.
Set Shell = CreateObject("WScript.Shell")
Set FSO = CreateObject("Scripting.FileSystemObject")
DesktopPath = Shell.SpecialFolders("Desktop") + "\MSDN Scripting.url"
MyDocumentsPath = Shell.SpecialFolders("MyDocuments") + "\\"
FSO.CopyFile DesktopPath, MyDocumentsPath

See Also

Managing Shortcuts

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Creating a Shortcut
Creating shortcuts requires the use of the File Shell object. The following scripts demonstrate the use of the File Shell object to create
shortcuts.

// JScript.
Shell = new ActiveXObject("WScript.Shell");
DesktopPath = Shell.SpecialFolders("Desktop");
link = Shell.CreateShortcut(DesktopPath + "\\test.lnk");
link.Arguments = "1 2 3";
link.Description = "test shortcut";
link.HotKey = "CTRL+ALT+SHIFT+X";
link.IconLocation = "foo.exe,1";
link.TargetPath = "c:\\blah\\foo.exe";
link.WindowStyle = 3;
link.WorkingDirectory = "c:\\blah";
link.Save();

Windows Script Host

Page 44 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

' VBScript.
Set Shell = CreateObject("WScript.Shell")
DesktopPath = Shell.SpecialFolders("Desktop")
Set link = Shell.CreateShortcut(DesktopPath & "\test.lnk")
link.Arguments = "1 2 3"
link.Description = "test shortcut"
link.HotKey = "CTRL+ALT+SHIFT+X"
link.IconLocation = "foo.exe,1"
link.TargetPath = "c:\blah\foo.exe"
link.WindowStyle = 3
link.WorkingDirectory = "c:\blah"
link.Save

See Also

Managing Shortcuts

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Deleting a Shortcut
Deleting shortcuts requires the use of the File System Object (FSO). The following scripts demonstrate the use of the File System Object to
delete shortcuts.

// JScript.
Shell = new ActiveXObject("WScript.Shell");
FSO = new ActiveXObject("Scripting.FileSystemObject");
DesktopPath = Shell.SpecialFolders("Desktop");
FSO.DeleteFile(DesktopPath + "\\test.lnk")

' VBScript.

Windows Script Host

Page 45 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Set Shell = CreateObject("WScript.Shell")
Set FSO = CreateObject("Scripting.FileSystemObject")
DesktopPath = Shell.SpecialFolders("Desktop")
FSO.DeleteFile DesktopPath & "\test.lnk"

See Also

Managing Shortcuts

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Moving a Shortcut
Moving shortcuts requires the use of the File System Object (FSO). The following scripts demonstrate the use of the File System Object to
move shortcuts.

// JScript.

Shell = new ActiveXObject("WScript.Shell");
FSO = new ActiveXObject("Scripting.FileSystemObject");
DesktopPath = Shell.SpecialFolders("Desktop") + "\\test.lnk";
MyDocumentsPath = Shell.SpecialFolders("MyDocuments") + "\\test.lnk";
FSO.MoveFile(DesktopPath, MyDocumentsPath);
' VBScript.

Set Shell = CreateObject("WScript.Shell")
Set FSO = CreateObject("Scripting.FileSystemObject")
DesktopPath = Shell.SpecialFolders("Desktop") & "\test.lnk"
MyDocumentsPath = Shell.SpecialFolders("MyDocuments") & "\test.lnk"
FSO.MoveFile DesktopPath, MyDocumentsPath

Windows Script Host

Page 46 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

See Also

Managing Shortcuts

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Manipulating the System Registry
With WSH you can manage the system registry. The following scripts demonstrate some of these capabilities.

// JScript.
Sh = new ActiveXObject("WScript.Shell");
key = "HKEY_CURRENT_USER\\"
Sh.RegWrite(key + "WSHTest\\", "testkeydefault");
Sh.RegWrite(key + "WSHTest\\string1", "testkeystring1");
Sh.RegWrite(key + "WSHTest\\string2", "testkeystring2", "REG_SZ");
Sh.RegWrite(key + "WSHTest\\string3", "testkeystring3", "REG_EXPAND_SZ");
Sh.RegWrite(key + "WSHTest\\int", 123, "REG_DWORD");
WScript.Echo(Sh.RegRead(key + "WSHTest\\"));
WScript.Echo (Sh.RegRead(key + "WSHTest\\string1"));
WScript.Echo (Sh.RegRead(key + "WSHTest\\string2"));
WScript.Echo (Sh.RegRead(key + "WSHTest\\string3"));
WScript.Echo (Sh.RegRead(key + "WSHTest\\int"));
Sh.RegDelete(key + "WSHTest\\");

' VBScript.
Set Sh = CreateObject("WScript.Shell")
key = "HKEY_CURRENT_USER\"
Sh.RegWrite key & "WSHTest\", "testkeydefault"
Sh.RegWrite key & "WSHTest\string1", "testkeystring1"
Sh.RegWrite key & "WSHTest\string2", "testkeystring2", "REG_SZ"
Sh.RegWrite key & "WSHTest\string3", "testkeystring3", "REG_EXPAND_SZ"

Windows Script Host

Page 47 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Sh.RegWrite key & "WSHTest\int", 123, "REG_DWORD"
WScript.Echo Sh.RegRead(key & "WSHTest\")
WScript.Echo Sh.RegRead(key & "WSHTest\string1")
WScript.Echo Sh.RegRead(key & "WSHTest\string2")
WScript.Echo Sh.RegRead(key & "WSHTest\string3")
WScript.Echo Sh.RegRead(key & "WSHTest\int")
Sh.RegDelete key & "WSHTest\"

See Also

WSH Samples

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Running Scripts Remotely
WSH 5.6 can run scripts that reside on remote systems. The following scripts demonstrate this capability. These scripts make the assumption
that the files are located on a local machine directory called "c:\wsh5.6"; change the local path and the remote machine name as necessary.

After initially running RemoteTest.WSF on the local machine, there may be a small pause as DCOM verifies your identity. After you see the
"Done" message, a file named "c:\beenhere.txt" on the remote machine indicates the time that you executed the command (from the remote
computer's clock).

// JScript.
RemoteTest.WSF

<package>
<job>
<script language="JScript">
var oController = new ActiveXObject("WSHController");
var oProcess = oController.CreateScript("c:\\wsh5.6\\beenhere.wsf", "remmachine");

Windows Script Host

Page 48 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

oProcess.Execute();
while (oProcess.Status != 2) WScript.Sleep(100);
WScript.Echo("Done");
</script>
</job>
</package>

BeenHere.WSF

<package>
<job>
<script language="JScript">
var fso = new ActiveXObject("Scripting.FileSystemObject");
var fout = fso.CreateTextFile("c:\\beenhere.txt", true);
fout.WriteLine(new Date);
fout.Close();
</script>
</job>
</package>

' VBScript.
RemoteTest.WSF

<package>
<job>
<script language="VBScript">
set oController = CreateObject("WSHController")
set oProcess = oController.CreateScript("c:\wsh5.6\beenhere.wsf", "remmachine")
oProcess.Execute
While oProcess.Status <> 2
 WScript.Sleep 100
WEnd
WScript.Echo "Done"
</script>
</job>
</package>

BeenHere.WSF

<package>
<job>

Page 49 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

<script language="VBScript">
set fso = CreateObject("Scripting.FileSystemObject")
set fout = fso.CreateTextFile("c:\beenhere.txt", true)
fout.WriteLine Now
fout.Close
</script>
</job>
</package>

See Also

WSH Samples | Setting up Remote WSH | WshRemote Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Signing a Script
The following scripts demonstrate the creation of a signature, which is used in a verification process. The script uses the Signer Object and
the SignFile method to create a digital signature.

// JScript.
<job>
<runtime>
 <named name="file" helpstring="the file to sign" required="true" type="string"/>
 <named name="cert" helpstring="the name of the signing certificate" required="true" type="string"/>
 <named name="store" helpstring="the name of the certificate store" required="false" type="string"/>
</runtime>
<script language="JScript">
 var Signer, File, Cert, Store;
 if (!(WScript.Arguments.Named.Exists("cert") && WScript.Arguments.Named.Exists("file")))
 {
 WScript.Arguments.ShowUsage();

Windows Script Host

Page 50 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 WScript.Quit();
 }
 Signer = new ActiveXObject("Scripting.Signer");
 File = WScript.Arguments.Named("file");
 Cert = WScript.Arguments.Named("cert");
 Store = WScript.Arguments.Named("store");
 Signer.SignFile(File, Cert, Store);
</script>
</job>

'VBScript
<job>
<runtime>
 <named name="file" helpstring="the file to sign" required="true" type="string"/>
 <named name="cert" helpstring="the name of the signing certificate" required="true" type="string"/>
 <named name="store" helpstring="the name of the certificate store" required="false" type="string"/>
</runtime>
<script language="VBScript">
 Dim Signer, File, Cert, Store
 If Not (WScript.Arguments.Named.Exists("cert")) And WScript.Arguments.Named.Exists("file")) Then
 WScript.Arguments.ShowUsage
 WScript.Quit
 End If
 Set Signer = CreateObject("Scripting.Signer")
 File = WScript.Arguments.Named("file")
 Cert = WScript.Arguments.Named("cert")
 Store = WScript.Arguments.Named("store")
 Signer.SignFile File, Cert, Store
</script>
</job>

See Also

WSH Samples | Verifying a Script | Signing a Script

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Page 51 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WSH and Windows Management Instrumentation (WMI)
With WSH you can easily use Windows Management Instrumentation (WMI). The following scripts demonstrate using WSH and WMI to
retrieve a user's logon time via ADSI.

Note For more information on WMI, see the WMI SDK at (http://msdn.microsoft.com).

// JScript.
LoginProfiles = GetObject("winmgmts:").InstancesOf ("Win32_NetworkLoginProfile");
for(e = new Enumerator(LoginProfiles) ; !e.atEnd() ; e.moveNext())
{
 Profile = e.item();
 WScript.Echo(Profile.Name);
 WScript.Echo(Profile.LastLogon);
}

' VBScript.
Set LoginProfiles = GetObject("winmgmts:").InstancesOf ("Win32_NetworkLoginProfile")
 for each Profile in LoginProfiles
 WScript.Echo Profile.Name
 WScript.Echo Profile.LastLogon
 next

See Also

Basic Windows Script Host Tasks

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Windows Script Host

Page 52 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WSH Walkthrough
The following walkthrough describes how a typical Network Administrator or other IT professional might use WSH 5.6 to create procedures
that accomplish useful tasks.

Note The walkthrough is presented in VBScript. The process for creating these scripts is nearly the same for developers using
VBScript or JScript.

During the course of this walkthrough, you will perform the following activities:

l Create a script that creates a common share on several remote machines and populate it with files.
l Create a script that creates a common Printing Device connection on several remote machines and establish it as the default printing

device.

To complete the walkthrough, all remote machines must be properly configured to enable Remote WSH. For more information on enabling
these security settings, see Setting up Remote WSH.

Note The following code is from the sample included in this documentation. To view the entire sample, see WSH Network
Administrator Sample Script.

Create Variables and Constants

To create the necessary variables and constants

1. In your text-scripting editor, enter the variables.

Dim FSO
Dim Services
Dim SecDescClass
Dim SecDesc
Dim Trustee
Dim ACE
Dim Share
Dim InParam
Dim Network

Page 53 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

2. In your text-scripting editor, enter the constants, changing the values to reflect the UNC names and paths applicable to your network
environment.

Const FolderName = "C:\Public"
Const AdminServer = "\\AdminMachine"
Const ShareName = "Pubs"
Const PrinterShare = "\\CorpPrinters\PrinterShare"

Connecting to a printer and setting it as default

To connect the machine to a common printing device

l In your text-scripting editor, enter the code that creates a printing device. This code uses the Network variable and PrinterShare
constant initialized in the previous step.

Set Network = CreateObject("Wscript.Network")
Network.AddWindowsPrinterConnection PrinterShare

To set the machines default printing device

l In your text-scripting editor, enter the code that sets the default printing device. This code uses the Network variable and PrinterShare
constant initialized in the first step.

Network.SetDefaultPrinter PrinterShare

Creating a common share, copying files to it, and sharing it

To create a common share on the machine

l In your text-scripting editor, enter the code that creates a File System Object (FSO) and creates a folder. The script verifies the
existence of the folder. If the folder does not exist, the script creates it. This code uses the FSO variable and the FolderName constant
initialized in the first step.

Set FSO = CreateObject("Scripting.FileSystemObject")
If Not FSO.FolderExists(FolderName) Then
 FSO.CreateFolder(FolderName)
End If

Page 54 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

To copy files to the newly created folder

l In your text-scripting editor, enter the code that creates a File System Object (FSO) and copies files from your local machine to the
remote machine. This code uses the FSO variable and the FolderName constant initialized in the first step.

Call FSO.CopyFile(AdminServer & "\Public\Images*.*", FolderName)

To establish the newly created folder as a share with WMI

l In your text-scripting editor, enter the code that creates a share using Windows Management Instrumentation (WMI). The share is
established on the folder generated above. The script first connects to WMI. Next, it sets the security impersonation level and the
Windows NT privilege that lets you set Discretionary Access Control Lists (DACLs) and Security Access Control Lists (SACLs). Next,
it creates a new security descriptor and sets up a couple of Access Control Entries (ACEs) for the new share. Finally, it creates a new
share with the new security descriptor. This code uses the Services, SecDescClass, SecDesc , Trustee, ACE, Share, and InParam
variables, and the FolderName, AdminShare, and ShareName constants initialized in the first step.

Note WMI is a powerful, sophisticated technology based on Web Based Enterprise Management (WBEM). WMI is
primarily used for accessing and instrumenting management information in an enterprise environment. For more
information on WMI, see Microsoft Windows Management Instrumentation: Background and Overview at
(http://msdn.microsoft.com/library/default.asp?URL=/library/backgrnd/html/wmixwdm.htm).

Set Services = GetObject("WINMGMTS:{impersonationLevel=impersonate,(Security)}!" & AdminServer & "\ROOT\CIMV2")
Set SecDescClass = Services.Get("Win32_SecurityDescriptor")
Set SecDesc = SecDescClass.SpawnInstance_()
Set Trustee = Services.Get("Win32_Trustee").SpawnInstance_
Trustee.Domain = Null
Trustee.Name = "EVERYONE"
Trustee.Properties_.Item("SID") = Array(1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)
Set ACE = Services.Get("Win32_Ace").SpawnInstance_
ACE.Properties_.Item("AccessMask") = 2032127
ACE.Properties_.Item("AceFlags") = 3
ACE.Properties_.Item("AceType") = 0
ACE.Properties_.Item("Trustee") = Trustee
SecDesc.Properties_.Item("DACL") = Array(ACE)
Set Share = Services.Get("Win32_Share")
Set InParam = Share.Methods_("Create").InParameters.SpawnInstance_()
InParam.Properties_.Item("Access") = SecDesc
InParam.Properties_.Item("Description") = "Public Share"
InParam.Properties_.Item("Name") = ShareName
InParam.Properties_.Item("Path") = FolderName

Page 55 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

InParam.Properties_.Item("Type") = 0
Share.ExecMethod_("Create", InParam)

Running the Completed Script

The sample included in this documentation contains a complete, executable script with all of the functionality above. See WSH Network
Administrator Sample Script.

Before running the script, ensure that all remote machines have been properly configured to run remote scripts. This is accomplished with
Poledit.exe on the server. For more information, see Setting up Remote WSH.

When running remote WSH, the script is copied to the remote machines. Once the remote machine's security settings have been verified and
the script is successfully copied, a return indicates success or failure. If successful, the script is then executed on the remote machines. For
more information on running a remote WSH script, see Running Scripts Remotely.

See Also

Setting up Remote WSH | Accessing Networks | Running Scripts Remotely

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WSH Network Administrator Sample Script
This WSH network sample demonstrates how a typical network administrator may use a script on several remote machines on the network.
The sample script performs useful administrative tasks including:

l Connecting the machines to a network printing device
l Setting the newly connected printing device as the default printer

Windows Script Host

Page 56 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

l Creating a common public folder on the machines
l Copying files to the newly created folder
l Establishing the newly created folder as a share using Windows Management Instrumentation (WMI).

Note WMI is a powerful, sophisticated technology based on Web Based Enterprise Management (WBEM). WMI is
primarily used for accessing and instrumenting management information in an enterprise environment. For more
information on WMI, see Microsoft Windows Management Instrumentation: Background and Overview at
(http://msdn.microsoft.com/library/default.asp?URL=/library/backgrnd/html/wmixwdm.htm).

The Administrator must establish the necessary security settings on the remote machines. For more information, see Setting up Remote WSH.
Next the administrator must copy and paste the sample into the scripting editor and change the constants to reflect the corresponding network
paths and machine names. Finally the administrator can run the script.

To run this sample

1. Establish the necessary security settings on the remote machines.
2. Copy the AdminScript.vbs script below into your scripting text editor.
3. Change the constants to reflect your network paths and machine names.
4. Replace remmachine with the applicable remote machine name and run the script:

var oController = new ActiveXObject"WSHController"
var oProcess = oController.CreateScript "c:\MyLocalDir\\AdminScript.vbs", "remmachine"
oProcess.Execute()
while (oProcess.Status != 2)
 WScript.Sleep(100)
WScript.Echo"Done"

AdminScript.vbs Sample
' Remote WSH Admin Sample AdminScript.vbs
'
' This sample code does a few common administrative tasks which a
' network administrator might want to do to a number of the machines
' on his or her network: it creates a public directory, populates
' it with some files and shares the directory out. It also sets
' up the machines default printer connection.

' Note that in the interests of keeping this example code small, error
' handling has been omitted. Actual production code should use

Page 57 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

' appropriate error handling as many of these operations could fail;
' the disks could run out of space, for instance.

Option Explicit

Dim FSO
Dim Services
Dim SecDescClass
Dim SecDesc
Dim Trustee
Dim ACE
Dim Share
Dim InParam
Dim Network

Const FolderName = "C:\Public"
Const AdminServer = "\\AdminMachine"
Const ShareName = "Pubs"
Const PrinterShare = "\\CorpPrinters\PrinterShare"

' First we add a printer to this machine and make it the default.

Set Network = CreateObject("Wscript.Network")
Network.AddWindowsPrinterConnection PrinterShare
Network.SetDefaultPrinter PrinterShare

' Next we create a folder and populate it with some files.

Set FSO = CreateObject("Scripting.FileSystemObject")
If Not FSO.FolderExists(FolderName) Then
 FSO.CreateFolder(FolderName)
End If

Call FSO.CopyFile(AdminServer & "\Public\Images*.*", FolderName)

' Make the folder into a share using WMI
' See the WMI SDK for information on how this code works.

Set Services = GetObject("WINMGMTS:{impersonationLevel=impersonate,(Security)}!" & AdminServer & "\ROOT\CIMV2")
Set SecDescClass = Services.Get("Win32_SecurityDescriptor")
Set SecDesc = SecDescClass.SpawnInstance_()
Set Trustee = Services.Get("Win32_Trustee").SpawnInstance_
Trustee.Domain = Null
Trustee.Name = "EVERYONE"

Page 58 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Trustee.Properties_.Item("SID") = Array(1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)
Set ACE = Services.Get("Win32_Ace").SpawnInstance_
ACE.Properties_.Item("AccessMask") = 2032127
ACE.Properties_.Item("AceFlags") = 3
ACE.Properties_.Item("AceType") = 0
ACE.Properties_.Item("Trustee") = Trustee
SecDesc.Properties_.Item("DACL") = Array(ACE)
Set Share = Services.Get("Win32_Share")
Set InParam = Share.Methods_("Create").InParameters.SpawnInstance_()
InParam.Properties_.Item("Access") = SecDesc
InParam.Properties_.Item("Description") = "Public Share"
InParam.Properties_.Item("Name") = ShareName
InParam.Properties_.Item("Path") = FolderName
InParam.Properties_.Item("Type") = 0
Share.ExecMethod_("Create", InParam)

' And we're done.

See Also

WSH Walkthrough | Accessing Networks | Setting up Remote WSH | Running Scripts Remotely

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Security and Windows Script Host
Windows Script Host, which is a flexible tool for automating Windows, can be dangerous in the hands of someone who is bent on wreaking
havoc.

To prevent abuse of Windows Script Host without stifling its power, Windows Script Host 5.6 employs a new security model.

Windows Script Host

Page 59 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Script users can now verify the authenticity of a script before running it. Script developers can sign their scripts to prevent unauthorized
modifications. Administrators can enforce strict policies that determine which users have privileges to run scripts locally or remotely.

In this Section

CryptoAPI Tools

Signing a Script

Signature Verification Policy

Verifying a Script

Software Restriction Policies

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

CryptoAPI Tools
The CryptoAPI Tools are used to create and verify digital signatures in *.exe, *.cab, *.dll, *.ocx, and script (*js, *.vbs, and *.wsf) files.

CryptoAPI Tools are used to digitally sign files to be used with Microsoft® Authenticode®, and to view and manage certificates, certificate
revocation lists (CRLs), and certificate trust lists (CTLs). For more information on CrptoAPI Tools, see the CryptoAPI Start Page at
(http://msdn.microsoft.com/library/psdk/crypto/portalapi_3351.htm?RLD=290).

See Also

Security and Windows Script Host | Signing a Script | Verifying a Script | Signature Verification Policy

Windows Script Host

Page 60 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Signing a Script
Signing a script writes a digital signature block of comments in a script. The signature, which contains encoded information about the identity
of the author, also encapsulates encoded information about the script itself. Consequently, any attempt to change the script invalidates the
signature.

Script signing is programmatically accomplished with the Scripting.Signer object's SignFile method.

<job>
<runtime>
 <named name="file" helpstring="the file to sign" required="true" type="string"/>
 <named name="cert" helpstring="the name of the signing certificate" required="true" type="string"/>
 <named name="store" helpstring="the name of the certificate store" required="false" type="string"/>
</runtime>
<script language="JScript">
 var Signer, File, Cert, Store;
 if (!(WScript.Arguments.Named.Exists("cert") && WScript.Arguments.Named.Exists("file")))
 {
 WScript.Arguments.ShowUsage();
 WScript.Quit();
 }
 Signer = new ActiveXObject("Scripting.Signer");
 File = WScript.Arguments.Named("file");
 Cert = WScript.Arguments.Named("cert");
 if (WScript.Arguments.Named.Exists("store"))
 {
 Store = WScript.Arguments.Named("store");
 }
 else
 {

Windows Script Host

Page 61 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 Store = "";
 }
 Signer.SignFile(File, Cert, Store);
</script>
</job>

Note In order to sign a script, you must have a valid certificate. Ask your Administrator about your certification policy or
contact a commercial certification authority.

See Also

Security and Windows Script Host | Verifying a Script | Signature Verification Policy | WinTrust | Signing a Script

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Software Restriction Policies
Software Restriction Policies are trust policies, which are regulations set by an administrator to restrict scripts that are not fully trusted from
performing unauthorized actions within the operating system.

The following three criteria are used by Software Restriction Policies in determining a trust level:

l Any signature information in the script
l The path from which the script is running
l File content

Software Restriction Policies define the following default containers:

l Domain Administrator

Windows Script Host

Page 62 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

l Machine Administrator
l Machine User
l Guest User
l Denied

Additionally, you can define your own custom container and set your own policies.

See Also

Security and Windows Script Host

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Signature Verification Policy
In WSH, administrators have the choice to turn signature verification either on or off. If an administrator turns signature verification on, then
the machine will only run scripts signed by trusted authorities. With signature verification turned on, there are two possible scenarios:

l If the trust can't be determined, then the user is prompted to confirm that the script should run.
l If the trust can't be determined, then the script does not run.

If an administrator turns signature verification off, the machine permits users to run any script.

In Windows 2000, the signature verification policy is set through the Local Security Policy editor. For more information on the Local
Security Policy Editor and WSH settings, see the online Windows help system.

The signature verification policy registry key is located in the following hive:

Windows Script Host

Page 63 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

\HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows Script Host\Settings\TrustPolicy

The key is set to one of the following REG_DWORD values:

l 0 Run all scripts
l 1 Prompt user if script is untrusted
l 2 Run only trusted scripts

See Also

Security and Windows Script Host | Signing a Script | Verifying a Script | WinTrust

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Verifying a Script
Verifying a script determines whether the script that you are about to run is from a trusted source. It also allows you to confirm the integrity
of the script. WSH verifies scripts before it attempts to run them, but you may have your own reason to verify a script.

Script verification is accomplished programmatically with the Signer object's VerifyFile method.

The VerifyFile method:

l Verifies the validity of the signature.
l Verifies that the signature belongs to a person who is trusted in your Trusted Publishers List.
l Verifies that the script has not been changed since it was signed.

Note Although the VerifyFile method programmatically confirms the digital signature, you should always ensure that you

Windows Script Host

Page 64 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

really trust the trusted roots in the Trusted Publishers List.

See Also

Security and Windows Script Host | Signing a Script | Signature Verification Policy | WinTrust

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Reference
In this Section

XML Elements
List of WSH XML Elements.

Objects
List of WSH Objects.

Properties
List of WSH Properties.

Methods
List of WSH Methods.

Events
List of WSH Events

Error Messages
List of WSH Error Messages.

Related Sections

WSH Basics
Learn the basics of WSH.

Windows Script Host

Page 65 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

XML Elements
In this Section

<?job?> Element
XML processing instruction that specifies attributes for error handling.

<?XML?> Element
Indicates that a file should be parsed as XML.

<description> Element
Marks the descriptive text that appears when the user runs ShowUsage() or runs the script with the /? command line switch.

<example> Element
Makes your script self documenting.

<job> Element
Marks the beginning and the end of a job within a Windows Script file (*.wsf).

<named> Element
Marks a particular named argument to the script.

<object> Element
XML element that is used in Windows Script component files and that defines objects that can be referenced by script.

<package> Element
Encloses multiple job definitions in a Windows Script Host control (.wsf) file.

<reference> Element
XML element that includes a reference to an external type library.

<resource> Element
XML element that isolates textual or numeric data that should not be hard-coded into a script.

<runtime> Element
Groups together the set of run-time arguments for a script.

<script> Element

Windows Script Host

Page 66 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

XML element that contains script to define the behavior of a Windows Script component.

Related Sections

WSH Reference
List of elements that make up WSH Reference.

WSH Basics
Learn the basics of WSH.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

<?job?> Element
Specifies attributes for error handling.

<?job error="flag" debug="flag" ?>

Arguments

error
A Boolean value. False is the default value for all attributes. Set to true to allow error messages for syntax or run-time errors in the
Windows Script (.wsf) file.

Debug
A Boolean value. False is the default value for all attributes. Set to true to enable debugging. If debugging is not enabled, you will be
unable to launch the script debugger for a Windows Script file.

Remarks

Although most Windows Script files normally run silently during production, you might find it useful to be notified of errors in the Windows

Windows Script Host

Page 67 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Script (.wsf) file as you are developing it.

Example

The following example incorporates two jobs into one .wsf file that uses two different scripting languages.

<package>
 <job id="DoneInVBS">
 <?job debug="true"?>
 <script language="VBScript">
 WScript.Echo "This is VBScript"
 </script>
 </job>

 <job id="DoneInJS">
 <?job debug="true"?>
 <script language="JScript">
 WScript.Echo("This is JScript");
 </script>
 </job>
</package>

See Also

<runtime> Element | <named> Element | <description> Element | <example> Element | <object> Element | <package> Element | <resource>
Element | <?XML?> Element

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

<?XML?> Element

Windows Script Host

Page 68 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Indicates that a file should be parsed as XML.

<?XML version="version" [standalone="DTDflag"] ?>

Arguments

version
A string in the form n.n specifying the XML level of the file. Use the value 1.0.

DTDflag
Optional. Boolean value indicating whether the XML file includes a reference to an external Document Type Definition (DTD). Script
component XML files do not include such a reference, so the value for this attribute is always "yes."

Remarks

This declaration must be the first element in the file and cannot be preceded by any blank lines.

The existence of this declaration puts the script component compiler into strict XML mode, where element types and attribute names are case-
sensitive, attribute values are enclosed in single or double quotation marks, and all elements are parsed. If the declaration is not included, the
compiler allows syntax that is less strict.

You should include this declaration and follow XML conventions if your script component file will be edited in an editor that supports XML.

Example

The following example demonstrates the use of the <?XML?> Element:

<?XML version="1.0" standalone="yes" ?>

See Also

<runtime> Element | <named> Element | <description> Element | <example> Element | <object> Element | <package> Element | <resource>
Element | <?job?> Element

© 2001 Microsoft Corporation. All rights reserved.

Page 69 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Build: Topic Version 5.6.9309.1546

<description> Element
Marks the descriptive text that is displayed when the ShowUsage method is executed or when the script is run with the /? command line
switch.

<description>
 This section describes the script
</description>

Remarks

Your description can be more than one line long.

Do not include quotes in your description if you do not want them to appear in the usage. All text between the description tags appears in the
usage listing. This includes, among others, tabs, new lines, and special characters.

The <description> element is similar to the <example> element, except it appears at the start of the usage, whereas the <example> element
appears at the end.

Example

The following script demonstrates the use of the <description> Element:

<runtime>
 <description>
 This script reboots a server
 </description>
 <!--...etc...-->
</runtime>

See Also

ShowUsage Method | <runtime> Element | <named> Element | <unnamed> Element | <example> Element

Windows Script Host

Page 70 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

<example> Element
Provides an example of usage for the job.

<example>
 Example text
</example>

Remarks

The <example> element is enclosed within the <runtime> element.

Example

The following script demonstrates the use of the <example> Element:

<job>
 <runtime>
 <description>This script reboots a server</description>
 <named
 name = "Server"
 helpstring = "Server to run the script on"
 type = "string"
 required = "true"
 />
 <example>Example: reboot.wsf /Server:scripting</example>
 </runtime>
</job>

Windows Script Host

Page 71 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Everything between <example> and </example> tags gets picked up, including new lines and extra white space. Calling the ShowUsage
method from this script results in the following output:

This script reboots a server

Usage: reboot.wsf /server:value

Options:

server : Server to run the script on

Example:

reboot.wsf /server:scripting

See Also

ShowUsage Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

<job> Element
Marks the beginning and the end of a job within a Windows Script file (*.wsf).

<job [id=JobID]>
 job code
</job>

Windows Script Host

Page 72 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Arguments

JobID
Optional. Uniquely identifies the job within the scope of the Windows Script file.

Remarks

Each jobID within a Windows Script file must be unique.

Each script within a set of job tags is executed in sequence, from top to bottom.

A job contains one or more script blocks. A script block is any script code between a set of <script> tags. A script block can contain several
scripts, and each script can be in a different scripting language.

To run a specific job or to run multiple jobs, use the //Job switch. If you specify more than one job, the jobs are executed in sequential order.
(This is shown in the example below.). If you do not specify a job, only the first job is run. If you have two or more jobs in your Windows
Script file, they must be enclosed in a <package> tag.

Example

The following script example is a Windows Script file called myScript.wsf. This file contains two separate jobs, each written in a different
scripting language. The first job, written in VBScript, is given the identifier DoneInVBS. The second job, written in JScript, is given the
identifier DoneInJS.

<package>
 <job id="DoneInVBS">
 <?job debug="true"?>
 <script language="VBScript">
 WScript.Echo "This is VBScript"
 </script>
 </job>
 <job id="DoneInJS">
 <?job debug="true"?>
 <script language="JScript">
 WScript.Echo("This is JScript");
 </script>
 </job>
</package>

Page 73 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

To run the second job in the Windows Script file, myScript.wsf, type the following at the command prompt.

cscript myScript.wsf //job:DoneInJS

To run both jobs in myScript.wsf, type the following at the command prompt.

cscript myScript.wsf //job:DoneInVBS //job:DoneInJS

See Also

ShowUsage Method | <runtime> Element | <named> Element | <unnamed> Element | <description> Element | <example> Element

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

<named> Element
Describes a named argument for the script.

<named
 name = namedname
 helpstring = helpstring
 type = "string|boolean|simple"
 required = boolean
/>

Arguments

name
String that represents the name of the argument you are describing. Defines the argument at the command line and in the script.

helpstring

Windows Script Host

Page 74 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

String that represents the help description for the argument. The WSH runtime provides the help description using the ShowUsage
method or the /? argument.

type
Optional. Describes the type of argument, which defines how the argument will be parsed from the command line. The default value is
simple.

required
Optional. A Boolean value that indicates whether an argument is required or not. Affects the display of the usage only.

Remarks

The <named> element is contained by (enclosed within) a set of runtime tags.

An argument with the name server would provide a /server argument at the command line as well as an argument named server in the
WSHNamed arguments collection.

If the type is string, the argument is a string. The argument is passed to the script as /named:stringvalue.

If the type is Boolean, the argument is Boolean. The argument is passed to the script as /named+ to turn it on, or /named- to turn it off.

If the type is simple, the argument takes no additional value and is passed as just the name, /named.

Example

The following script demonstrates the use of the <named> Element:

<job>
<runtime>
 <named
 name="server"
 helpstring="Server to access"
 type="string"
 required="true"
 />
 <named
 name="user"
 helpstring="User account to use on server. Default is current account."
 type="string"
 required="false"
 />

Page 75 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 <named
 name="enable"
 helpstring="If true (+), enables the action. A minus(-) disables."
 type="boolean"
 required="true"
 />
 <named
 name="verbose"
 helpstring="If specified, output will be verbose."
 type="boolean"
 required="false"
 />
</runtime>
<script language="JScript">
 WScript.Arguments.ShowUsage();
</script>
</job>

This will produce the following output when usage is shown:

Usage: example.wsf /server:value [/user:value] /enable[+|-] [/verbose]

Options:

server : Server to access
user : User account to use on server. Default is current account.
enable : If true (+), enables the action. A minus(-) disables.
verbose : If specified, output will be verbose.

See also

ShowUsage Method | <runtime> Element | <unnamed> Element | <description> Element | <example> Element

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Page 76 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

<object> Element
Defines objects in Windows Script (.wsf) files that can be referenced by a script.

<object id="objID" [classid="clsid:GUID" | progid="progID"] />

Arguments

objID
Required. A name that references the object in your script. Object ID values must begin with a letter and can include letters, digits, and
underscores (_). The object ID must be unique throughout the scope of the Windows Script file.

GUID
Optional. The class ID (GUID) of the object.

progID
Optional. Program ID of the object, which can be specified as an alternative to the class ID.

Remarks

The <object> element provides a way to expose objects globally for use in scripting within the Windows Script file without using functions
such as CreateObject(). Using an <object> element makes the object available with global scope and enables scripting tools to provide
statement completion for the object's members.

You must specify either a classid or a progid.

Example

<job>
<obect id="fso" progid="Scripting.FileSystemObject"/>
<script language="Jscript">

var a = fso.CreateTextFile("c:\\testfile.txt", true);
a.WriteLine("This is a test.");
a.Close();

</script>
</job>

Page 77 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

See Also

<runtime> Element | <named> Element | <description> Element | <example> Element | <package> Element

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

<package> Element
Encloses multiple job definitions in a Windows Script (.wsf) file.

<package>
 code for one or more jobs
</package>

Remarks

The <package> element is optional when a .wsf file contains only one job.

Example

The following example incorporates two jobs into one .wsf file that uses two different scripting languages:

<package>
 <job id="DoneInVBS">
 <?job debug="true"?>
 <script language="VBScript">
 WScript.Echo "This is VBScript"
 </script>
 </job>

Windows Script Host

Page 78 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 <job id="DoneInJS">
 <?job debug="true"?>
 <script language="JScript">
 WScript.Echo("This is JScript");
 </script>
 </job>
</package>

See Also

<runtime> Element | <named> Element | <description> Element | <example> Element | <object> Element

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

<reference> Element
Includes a reference to an external type library.

<reference [object="progID"|guid="typelibGUID"] [version="version"] />

Arguments

progID
Program ID from which the type library can be derived. It can include either a version number (for example, ADO.Recordset.2.0), the
explicit program ID of a type library, or the program ID of the executable (such as a .DLL) that incorporates the type library. If you use
the object attribute, you do not need to specify a version attribute because the version can be inferred from the program ID. If the object
attribute is specified, you cannot also specify a GUID attribute.

typelibGUID
The GUID of the type library to reference. If the GUID attribute is specified, you cannot also specify an object attribute.

version

Windows Script Host

Page 79 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Optional. Version number of the type library to use. It must be in the form <major version>[.<minor version>]. If a version is not
specified, the default version is 1.0. If the object attribute is used to specify the type library and the version is not specified, the version
is derived from the registry key for the specified program ID. If none can be found, the default is 1.0.

Remarks

Referencing a type library in your Windows Script (.wsf) file enables you to use constants defined in the type library in your scripts. The
<reference> element looks up and makes available the type library associated with a specific program ID or type library name. Type library
information can be available in .tlb, .olb, or .dll files.

See Also

<runtime> Element | <named> Element | <description> Element | <example> Element | <object> Element | <package> Element

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

<resource> Element
Isolates textual or numeric data that should not be hard-coded into a script.

<resource id="resourceID">
 text or number
</resource>

Arguments

resourceID
Unique identifier for the resource within the script.

Windows Script Host

Page 80 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Remarks

The <resource> element allows you to isolate strings or numbers in your Windows Script (.wsf) file that you want to reference in your
scripts. For example, resource elements are typically used to maintain strings that may be localized into other languages.

To get the value of a resource, call the getResource method, passing it the ID of the resource you want to use.

Everything within the elements gets used including white space (tabs, new lines, etc.).

Example

The following code defines a resource (errNonNumeric) and returns its value if the variable upperBound is not numeric.

<resource id="errNonNumeric">
 Non-numeric value passed
</resource>

<script language="VBScript">
 <![CDATA[
 Function getRandomNumber(upperBound)
 If IsNumeric(upperBound) Then
 getRandomNumber = CInt(upperBound * Rnd + 1)
 Else
 getRandomNumber=getResource("errNonNumeric")
 End If
 End Function
]]>
</script>

See Also

<runtime> Element | <named> Element | <description> Element | <example> Element | <object> Element | <package> Element | getResource
Method

© 2001 Microsoft Corporation. All rights reserved.

Page 81 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Build: Topic Version 5.6.9309.1546

<runtime> Element
Groups together the set of run-time arguments for a script.

<runtime>
 <named attributes etc. />
 <unnamed attributes etc. />
 <example>Example Text</example>
 …
</runtime>

Remarks

The ShowUsage method uses the information enclosed by the <runtime> element to display the runtime parameters for a script.

Since the <runtime> element is enclosed within a set of job tags, the defined run-time arguments apply to that job only.

Note With version 5.6, the data enclosed by the <runtime> element is used only for self-documentation and to format the data
displayed by ShowUsage. The <runtime> element does not enforce the values set for the arguments it contains (i.e. a "required"
argument that is missing from the command line does not cause an error). If the <runtime> element is included in a .wsf file,
then running the script with the "/?" argument will show the usage and quit.

Example

The following script demonstrates the use of the <runtime> Element:

<job>
 <runtime>
 <named
 name="server"
 helpstring="The server to run the script on"
 type="string"
 required="true"
 />

Windows Script Host

Page 82 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 </runtime>
<script language="JScript">
 if (!WScript.Arguments.Named.Exists("server"))
 {
 WScript.Arguments.ShowUsage();
 }
// ... some script here
</script>
</job>

See Also

ShowUsage Method | <named> Element | <unnamed> Element | <description> Element | <example> Element

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

<script> Element
Contains script that defines the behavior of a Windows Script (.wsf) file.

<script language="language" [src="strFile"]>
 script here
</script>

Arguments

language
The name of the scripting language, such as VBScript or JScript, used in the script block.

strFile
The name of the script file to include into the script block.

Windows Script Host

Page 83 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Remarks

If XML validation is not enabled, the XML parser ignores all lines inside the <script> element. However, if XML validation is enabled by
including the <?XML?> element at the top of the Windows Script (.wsf) file, the XML parser can misinterpret greater than (>), less than (<),
and other symbols used in script as XML delimiters.

If you are creating a file that conforms closely to XML syntax, you must ensure that characters in your script element are not treated as XML-
reserved characters. To do this, enclose the actual script in a <![CDATA[...]]> section. This applies to all data blocks - <example>,
<description>, and <resource>. All may need CDATA markers if <?XML?> is specified and if they include XML-reserved characters.

Note Do not include a CDATA section unless you also include the <?XML?> declaration.

Example

The following example incorporates two jobs into one .wsf file, using two different scripting languages:

<package>
 <job id="DoneInVBS">
 <?job debug="true"?>
 <script language="VBScript">
 WScript.Echo "This is VBScript"
 </script>
 </job>

 <job id="DoneInJS">
 <?job debug="true"?>
 <script language="JScript">
 WScript.Echo("This is JScript");
 </script>
 </job>
</package>

See Also

<runtime> Element | <named> Element | <description> Element | <example> Element | <object> Element | <package> Element | <resource>
Element | <?XML?> Element

Page 84 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

<unnamed> Element
Describes an unnamed argument for the script.

<unnamed
 name = unnamedname
 helpstring = helpstring
 many = boolean
 required = boolean or integer
/>

Arguments

name
The string that is used in the usage to represent this argument. This value is not used elsewhere.

helpstring
String that represents the help description for the argument. The WSH runtime provides the help description using the ShowUsage
method or the /? argument.

many
Optional. Boolean value. If true, then this argument may be repeated more times than specified by the required attribute. Otherwise, the
required attribute represents the exact number of the argument that is required. See the example below for more details.

required
Optional. An integer value indicating how many times this argument should appear in the command line.

Remarks

The <unnamed> element is contained by (enclosed within) a set of runtime tags.

An argument with the name server would provide a /server argument at the command line and an argument named server in the
WSHNamed arguments collection.

Windows Script Host

Page 85 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Note The name attribute of the unnamed element is just for display purposes.

When setting the "required" attribute, a Boolean value will be converted to an integer; "true" becomes 1 and
"false" becomes 0.

Example

Here are a couple of examples of how the various attributes affect the usage with unnamed elements. First, a simple case:

<runtime>
<unnamed
 name="filename"
 helpstring="The file to process"
 many="false"
 required="true"
</>
</runtime>

This would produce the following:

Usage: example.wsf filename

Options:

filename : The file to process

Change it to:

<runtime>
<unnamed
 name="filename"
 helpstring="The files to process"
 many="false"
 required="3"
</ >
</runtime>

and the output changes to:

Page 86 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Usage: example.wsf filename1 filename2 filename3

Options:

filename : The files to process

The many switch will display ellipses to indicate you can enter more files than indicated. If the example changes to:

<runtime>
<unnamed
 name="filename"
 helpstring="The file(s) to process"
 many="true"
 required="1"
</>
</runtime>

then the output changes to:

Usage: example.wsf filename1 [filename2...]

Options:

filename: The file to process.

See also

ShowUsage Method | <runtime> Element | <named> Element | <description> Element | <example> Element

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Page 87 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

<usage> Element
Allows user to override default usage display.

<usage>
 This section describes the script
</usage>

Remarks

The <usage> element is similar to the <example> and <description> elements — it contains text that the developer can include in the usage.
The difference is that if a <usage> element exists, everything else in the <runtime> element is ignored, and only the text in the <usage>
element is displayed. This is so you can completely override the usage display.

Note The <usage> Element should always be enclosed by a <runtime> Element.

Example

The following script demonstrates the use of the <usage> Element:

<job>
<runtime>
<named name="arg1" helpstring="the first arg"/>
<usage>
Your usage text goes here.
</usage>
</runtime>
<script language="vbscript">
WScript.Arguments.ShowUsage
</script>
</job>

This produces the following:

Your usage text goes here.

See Also

Page 88 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

<runtime> Element | <named> Element | <description> Element | <example> Element | <package> Element | <resource> Element | <?XML?>
Element

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Objects
In this Section

WScript Object
Provides access to most of the objects, methods, and properties in the WSH object model.

WshArguments Object
Gives you access to the entire collection of command-line parameters — in the order in which they were originally entered.

WshController Object
Exposes the method CreateScript() that creates a remote script process.

WshEnvironment Object
Gives you access to the collection of Microsoft Windows system environment variables.

WshNamed Object
Provides access to the named command-line script arguments within the WshArguments object.

WshNetwork Object
Gives you access to the shared resources on the network to which your computer is connected.

WshRemote Object
Provides access to the remote script process.

WshRemoteError Object
Exposes the error information available when a remote script (a WshRemote object) terminates as a result of a script error.

WshScriptExec Object
Provides status and error information about a script run with Exec, along with access to the stdIn, stdOut, and stdErr channels.

WshShell Object
Gives you access to the native Windows shell functionality.

Windows Script Host

Page 89 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WshShortcut Object
Allows you to create a shortcut programmatically.

WshSpecialFolders Object
Allows you to access the Windows Special Folders.

WshUnnamed Object
Provides access to the unnamed command-line script arguments within the WshArguments object.

WshUrlShortcut Object
Allows you to create a shortcut to an Internet resource, programmatically.

Related Sections

WSH Reference
List of elements that make up WSH Reference.

WSH Basics
Learn the basics of WSH.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Scripting.Signer Object
The Scripting.Signer object enables an author to sign a script with a digital signature and a recipient to verify the signature's authenticity and
trustworthiness.

Remarks

The Scripting.Signer object requires a valid certificate.

Example

Windows Script Host

Page 90 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

The following JScript code shows the Scripting.Signer object digitally signing a script.

<job>
<runtime>
 <named name="file" helpstring="the file to sign" required="true" type="string"/>
 <named name="cert" helpstring="the name of the signing certificate" required="true" type="string"/>
 <named name="store" helpstring="the name of the certificate store" required="false" type="string"/>
</runtime>
<script language="JScript">
 var Signer, File, Cert, Store = "my";
 if (!(WScript.Arguments.Named.Exists("cert") && WScript.Arguments.Named.Exists("file")))
 {
 WScript.Arguments.ShowUsage();
 WScript.Quit();
 }
 Signer = new ActiveXObject("Scripting.Signer");
 File = WScript.Arguments.Named("file");
 Cert = WScript.Arguments.Named("cert");
 if (WScript.Arguments.Named.Exists("store"))
 {
 Store = WScript.Arguments.Named("store");
 }

 Signer.SignFile(File, Cert, Store);
</script>
</job>

See Also

Signing a Script | Sign Method | SignFile Method | Verify Method | VerifyFile Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Page 91 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Scripting.Signer Object Methods
Methods

Sign Method

SignFile Method

Verify Method

VerifyFile Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WScript Object

Provides access to root object for the Windows Script Host object model.

Remarks

The WScript object is the root object of the Windows Script Host object model hierarchy. It never needs to be instantiated before invoking its
properties and methods, and it is always available from any script file. The WScript object provides access to information such as:

l command-line arguments,
l the name of the script file,

Windows Script Host

Page 92 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

l the host file name,
l and host version information.

The WScript object allows you to:

l create objects,
l connect to objects,
l disconnect from objects,
l sync events,
l stop a script's execution programmatically,
l output information to the default output device (either a Windows dialog box or the command console).

The WScript object can be used to set the mode in which the script runs (either interactive or batch).

Example

Since the WScript object is the root object for the Windows Script Host object model, many properties and methods apply to the object. For
examples of specific syntax, visit the properties and methods links.

Properties

Arguments Property | FullName Property (WScript Object) | Interactive Property | Name Property | Path Property | ScriptFullName Property |
ScriptName Property | StdErr Property | StdIn Property | StdOut Property | Version Property

Methods

CreateObject Method | ConnectObject Method | DisconnectObject Method | Echo Method | GetObject Method | Quit Method | Sleep Method

See Also

Running Your Scripts | WshShell Object | WshNetwork Object

© 2001 Microsoft Corporation. All rights reserved.

Page 93 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Build: Topic Version 5.6.9309.1546

WScript Object Properties and Methods
Properties

Arguments Property

FullName Property

Name Property

Path Property

ScriptFullName Property

ScriptName Property

StdErr Property

StdIn Property

StdOut Property

Version Property

Methods

CreateObject Method

ConnectObject Method

DisconnectObject Method

Windows Script Host

Page 94 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Echo Method

GetObject Method

Quit Method

Sleep Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshArguments Object

Provides access to the entire collection of command-line parameters — in the order in which they were originally entered.

Remarks

The WshArguments object is a collection returned by the WScript object's Arguments property (WScript.Arguments). Two of the
WshArguments object's properties are filtered collections of arguments — one contains the named arguments (querying this property returns
a WshNamed object), the other contains the unnamed arguments (querying this property returns a WshUnnamed object). There are three
ways to access sets of command-line arguments.

l You can access the entire set of arguments (those with and without names) with the WshArguments object.
l You can access the arguments that have names with the WshNamed object.
l You can access the arguments that have no names with the WshUnnamed object.

Windows Script Host

Page 95 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Example

The following code displays the command-line parameters in the WshArguments object.

[VBScript]

Set objArgs = WScript.Arguments
For I = 0 to objArgs.Count - 1
 WScript.Echo objArgs(I)
Next

[JScript]

objArgs = WScript.Arguments;
for (i = 0; i < objArgs.length; i++)
{
 WScript.Echo(objArgs(i));
}

Properties

Item Property | Length Property (WshArguments object) | Count Property | Named Property | Unnamed Property

Methods

Count Method | ShowUsage Method

See Also

Arguments Property | WshNamed Object | WshUnnamed Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Page 96 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WshArguments Object Properties and Methods
Properties

Item Property

Length Property

Methods

Count Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshController Object

Provides access to the CreateScript() method (for creating a remote script process).

Example

The following example uses a controller object to create a WshRemote object.

Windows Script Host

Windows Script Host

Page 97 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

[VBScript]

Dim Controller, RemoteScript
Set Controller = WScript.CreateObject("WSHController")
Set RemoteScript = Controller.CreateScript("remote1.js")
RemoteScript.Execute

Do While RemoteScript.Status <> 2
 WScript.Sleep 100
Loop

[JScript]

var Controller = WScript.CreateObject("WSHController");
var RemoteScript = Controller.CreateScript("test.js", "remoteserver");
RemoteScript.Execute();

while (RemoteScript.Status != 2) {
 WScript.Sleep(100);
}

Methods

CreateScript Method

See Also

CreateObject Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Page 98 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WshController Object Methods
Methods

CreateScript Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshEnvironment Object

Provides access to the collection of Windows environment variables.

Remarks

The WshEnvironment object is a collection of environment variables that is returned by the WshShell object's Environment property. This
collection contains the entire set of environment variables (those with names and those without). To retrieve individual environment variables
(and their values) from this collection, use the environment variable name as the index.

Example

The following code displays an environment variable.

[VBScript]

Windows Script Host

Page 99 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Set WshShell = WScript.CreateObject("WScript.Shell")
Set WshSysEnv = WshShell.Environment("SYSTEM")
WScript.Echo WshSysEnv("NUMBER_OF_PROCESSORS")

[JScript]

var WshShell = WScript.CreateObject("WScript.Shell");
var WshSysEnv = WshShell.Environment("SYSTEM");
WScript.Echo(WshSysEnv("NUMBER_OF_PROCESSORS"));

Properties

Item Property | Length Property (WshEnvironment object)

Methods

Count Method | Remove Method

See Also

Environment Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshEnvironment Object Properties and Methods
Properties

Item Property

Windows Script Host

Page 100 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Length Property

Methods

Count Method

Remove Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshNamed Object

Provides access to the named arguments from the command line.

Remarks

The Named property of the WshArguments object returns the WshNamed object, which is a collection of arguments that have names. This
collection uses the argument name as the index to retrieve individual argument values. There are three ways to access sets of command-line
arguments.

l You can access the entire set of arguments (those with and without names) with the WshArguments object.
l You can access the arguments that have names with the WshNamed object.
l You can access the arguments that have no names with the WshUnnamed object.

Windows Script Host

Page 101 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Example

The following code displays the number of named and unnamed command-line arguments.

<package>
<job id="JS">
<script language="JScript">

var argsNamed = WScript.Arguments.Named;
var argsUnnamed = WScript.Arguments.Unnamed;

WScript.Echo("There are " + argsNamed.length + " named arguments.");
WScript.Echo("There are " + argsUnnamed.length + " unnamed arguments.");

</script>
</job>

<job id="VBS">
<script language="VBScript">

Dim argsNamed, argsUnnamed
Set argsNamed = WScript.Arguments.Named
Set argsUnnamed = WScript.Arguments.Unnamed

WScript.Echo "There are " & argsNamed.Count & " named arguments."
WScript.Echo "There are " & argsUnnamed.Count & " unnamed arguments."

</script>
</job>
</package>

Properties

Item Property | Length Property

Methods

Count Method | Exists Method

See Also

Page 102 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WshArguments Object | WshUnnamed Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshNamed Object Properties and Methods
Properties

Item Property

Length Property

Methods

Count Method

Exists Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Windows Script Host

Page 103 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WshNetwork Object

Provides access to the shared resources on the network to which your computer is connected.

Remarks

You create a WshNetwork object when you want to connect to network shares and network printers, disconnect from network shares and
network printers, map or remove network shares, or access information about a user on the network.

Example

The following example demonstrates displaying the domain name, computer name, and user name for the current computer system using the
WshNetwork object.

<package>
 <job id="vbs">
 <script language="VBScript">
 Set WshNetwork = WScript.CreateObject("WScript.Network")
 WScript.Echo "Domain = " & WshNetwork.UserDomain
 WScript.Echo "Computer Name = " & WshNetwork.ComputerName
 WScript.Echo "User Name = " & WshNetwork.UserName
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshNetwork = WScript.CreateObject("WScript.Network");
 WScript.Echo("Domain = " + WshNetwork.UserDomain);
 WScript.Echo("Computer Name = " + WshNetwork.ComputerName);
 WScript.Echo("User Name = " + WshNetwork.UserName);
 </script>
 </job>
</package>

Properties

Page 104 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

ComputerName Property | UserDomain Property | UserName Property

Methods

AddWindowsPrinterConnection Method | AddPrinterConnection Method | EnumNetworkDrives Method | EnumPrinterConnection Method |
MapNetworkDrive Method | RemoveNetworkDrive Method | RemovePrinterConnection Method | SetDefaultPrinter Method

See Also

Running Your Scripts | WScript Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshNetwork Object Properties and Methods
Properties

ComputerName Property

UserDomain Property

UserName Property

Methods

AddPrinterConnection Method

EnumNetworkDrives Method

Windows Script Host

Page 105 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

EnumPrinterConnection Method

MapNetworkDrive Method

RemoveNetworkDrive Method

RemovePrinterConnection Method

SetDefaultPrinter Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshRemote Object

Provides access to the remote script process.

Remarks

The WshRemote object allows you to remotely administer computer systems on a computer network. It represents an instance of a WSH
script, i.e., a script file with one of the following extensions: .wsh, .wsf, .js, .vbs, .jse, .vbe, and so on. An instance of a running script is a
process. You can run the process either on the local machine or on a remote machine. If you do not provide a network path, it will run locally.
When a WSHRemote object is created (by using the CreateScript() method), the script is copied to the target computer system. Once there,
the script does not begin executing immediately; it begins executing only when the WSHRemote method Execute is invoked. Through the
WshRemote object interface, your script can manipulate other programs or scripts. Additionally, external applications can also manipulate
remote scripts. The WshRemote object works asynchronously over DCOM.

Windows Script Host

Page 106 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Example

The following example demonstrates how the WshRemote object is used to start a remote script.

[VBScript]

Dim Controller, RemoteScript
Set Controller = WScript.CreateObject("WSHController")
Set RemoteScript = Controller.CreateScript("test.js", "remoteserver")
RemoteScript.Execute

Do While RemoteScript.Status <> 2
 WScript.Sleep 100
Loop

[JScript]

var Controller = WScript.CreateObject("WSHController");
var RemoteScript = Controller.CreateScript("test.js", "remoteserver");
RemoteScript.Execute();

while (RemoteScript.Status != 2) {
 WScript.Sleep(100);
}

Properties

Status Property | Error Property

Methods

Execute Method | Terminate Method

Events

Start Event | End Event | Error Event

See Also

Page 107 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WshController Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshRemote Object Properties, Methods, and Events
Properties

Status Property

Error Property

Methods

Execute Method

Terminate Method

Events

Start Event

End Event

Error Event

Windows Script Host

Page 108 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshRemoteError Object

Provides access to the error information available when a remote script (a WshRemote object) terminates as a result of a script error.

Remarks

The WshRemoteError object is returned by the Error property of the WshRemote object.

Example

The following example demonstrates how the WshRemoteError object is used to show where the error occurred in the script along with a
description of the error.

[VBScript]

Dim Controller, RemoteScript
Set Controller = WScript.CreateObject("WSHController")
Set RemoteScript = Controller.CreateScript("test.js", "remoteserver")
WScript.ConnectObject RemoteScript, "remote_"
RemoteScript.Execute

Do While RemoteScript.Status <> 2
 WScript.Sleep 100
Loop

WScript.DisconnectObject RemoteScript

Windows Script Host

Page 109 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Sub remote_Error
 Dim theError
 Set theError = RemoteScript.Error
 WScript.Echo "Error " & theError.Number & " - Line: " & theError.Line & ", Char: " & theError.Character & vbCrLf & "Description: " & theError.Description
 WScript.Quit -1
End Sub

[JScript]

var Controller = WScript.CreateObject("WSHController");
var RemoteScript = Controller.CreateScript("test.js", "remoteserver");
WScript.ConnectObject(RemoteScript, "remote_");
RemoteScript.Execute();

while (RemoteScript.Status != 2) {
 WScript.Sleep(100);
}

WScript.DisconnectObject(RemoteScript);

function remote_Error()
{
 var theError = RemoteScript.Error;
 WScript.Echo("Error " + theError.Number + " - Line: " + theError.Line + ", Char: " + theError.Character + "\nDescription: " + theError.Description);
 WScript.Quit(-1);
}

Properties

Description Property | Line Property | Character Property | SourceText Property | Source Property | Number Property

See Also

WshRemote Object

© 2001 Microsoft Corporation. All rights reserved.

Page 110 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Build: Topic Version 5.6.9309.1546

WshRemoteError Object Properties
Properties

Description Property

Line Property

Character Property

SourceText Property

Source Property

Number Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshScriptExec Object

Windows Script Host

Windows Script Host

Page 111 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Provides status information about a script run with Exec along with access to the StdIn, StdOut, and StdErr streams.

Remarks

The WshScriptExec object is returned by the Exec method of the WshShell object. The Exec method returns the WshScriptExec object
either once the script or program has finished executing, or before the script or program begins executing.

Example

The following code runs calc.exe and echoes the final status to the screen.

[VBScript]

Dim WshShell, oExec
Set WshShell = CreateObject("WScript.Shell")

Set oExec = WshShell.Exec("calc")

Do While oExec.Status = 0
 WScript.Sleep 100
Loop

WScript.Echo oExec.Status

[JScript]

var WshShell = new ActiveXObject("WScript.Shell");
var oExec = WshShell.Exec("calc");

while (oExec.Status == 0)
{
 WScript.Sleep(100);
}

WScript.Echo(oExec.Status);

Properties

Status Property | StdOut Property | StdIn Property | StdErr Property

Page 112 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Methods

Terminate Method

See Also

WScript Object | Exec Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshScriptExec Object Properties and Methods
Properties

ExitCode Property

ProcessID Property

Status Property

StdOut Property

StdIn Property

StdErr Property

Methods

Windows Script Host

Page 113 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Terminate Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshShell Object

Provides access to the native Windows shell.

Remarks

You create a WshShell object whenever you want to run a program locally, manipulate the contents of the registry, create a shortcut, or
access a system folder. The WshShell object provides the Environment collection. This collection allows you to handle environmental
variables (such as WINDIR, PATH, or PROMPT).

Example

The following example demonstrates the creation of a shortcut to the script being run and a URL shortcut to www.microsoft.com:

<package>
 <job id="vbs">
 <script language="VBScript">
 set WshShell = WScript.CreateObject("WScript.Shell")
 strDesktop = WshShell.SpecialFolders("Desktop")
 set oShellLink = WshShell.CreateShortcut(strDesktop & "\Shortcut Script.lnk")
 oShellLink.TargetPath = WScript.ScriptFullName
 oShellLink.WindowStyle = 1
 oShellLink.Hotkey = "CTRL+SHIFT+F"

Windows Script Host

Page 114 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 oShellLink.IconLocation = "notepad.exe, 0"
 oShellLink.Description = "Shortcut Script"
 oShellLink.WorkingDirectory = strDesktop
 oShellLink.Save
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshShell = WScript.CreateObject("WScript.Shell");
 strDesktop = WshShell.SpecialFolders("Desktop");
 var oShellLink = WshShell.CreateShortcut(strDesktop + "\\Shortcut Script.lnk");
 oShellLink.TargetPath = WScript.ScriptFullName;
 oShellLink.WindowStyle = 1;
 oShellLink.Hotkey = "CTRL+SHIFT+F";
 oShellLink.IconLocation = "notepad.exe, 0";
 oShellLink.Description = "Shortcut Script";
 oShellLink.WorkingDirectory = strDesktop;
 oShellLink.Save();
 </script>
 </job>
</package>

Properties

CurrentDirectory Property | Environment Property | SpecialFolders Property

Methods

AppActivate Method | CreateShortcut Method | ExpandEnvironmentStrings Method | LogEvent Method | Popup Method | RegDelete Method
| RegRead Method | RegWrite Method | Run Method | SendKeys Method | Exec Method

See Also

Running Your Scripts

© 2001 Microsoft Corporation. All rights reserved.

Page 115 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Build: Topic Version 5.6.9309.1546

WshShellObject Properties and Methods
Properties

CurrentDirectory Property

Environment Property

SpecialFolders Property

Methods

AppActivate Method

CreateShortcut Method

ExpandEnvironmentStrings Method

LogEvent Method

Popup Method

RegDelete Method

RegRead Method

RegWrite Method

Run Method

SendKeys Method

Windows Script Host

Page 116 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshShortcut Object

Allows you to create a shortcut programmatically.

Example

The following example demonstrates the creation of a shortcut to the script being run:

<package>
 <job id="vbs">
 <script language="VBScript">
 set WshShell = WScript.CreateObject("WScript.Shell")
 strDesktop = WshShell.SpecialFolders("Desktop")
 set oShellLink = WshShell.CreateShortcut(strDesktop & "\Shortcut Script.lnk")
 oShellLink.TargetPath = WScript.ScriptFullName
 oShellLink.WindowStyle = 1
 oShellLink.Hotkey = "CTRL+SHIFT+F"
 oShellLink.IconLocation = "notepad.exe, 0"
 oShellLink.Description = "Shortcut Script"
 oShellLink.WorkingDirectory = strDesktop
 oShellLink.Save
 </script>
 </job>

 <job id="js">
 <script language="JScript">

Windows Script Host

Page 117 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 var WshShell = WScript.CreateObject("WScript.Shell");
 strDesktop = WshShell.SpecialFolders("Desktop");
 var oShellLink = WshShell.CreateShortcut(strDesktop + "\\Shortcut Script.lnk");
 oShellLink.TargetPath = WScript.ScriptFullName;
 oShellLink.WindowStyle = 1;
 oShellLink.Hotkey = "CTRL+SHIFT+F";
 oShellLink.IconLocation = "notepad.exe, 0";
 oShellLink.Description = "Shortcut Script";
 oShellLink.WorkingDirectory = strDesktop;
 oShellLink.Save();
 </script>
 </job>
</package>

Properties

Arguments Property | Description Property | FullName Property (WshShortcut Object) | Hotkey Property | IconLocation Property | TargetPath
Property | WindowStyle Property | WorkingDirectory Property

Methods

Save Method

See Also

Running Your Scripts | CreateShortcut Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshShortcut Object Properties and Methods

Windows Script Host

Page 118 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Properties

Arguments Property

Description Property

FullName Property

Hotkey Property

IconLocation Property

TargetPath Property

WindowStyle Property

WorkingDirectory Property

Methods

Save Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshSpecialFolders Object

Windows Script Host

Page 119 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Provides access to the collection of Windows special folders.

Remarks

The WshShell object's SpecialFolders property returns the WshSpecialFolders object, which is a collection of special folders. This
collection contains references to Windows special folders (for example, the Desktop folder, Start Menu folder, and Personal Documents
folder). This collection retrieves paths to special folders using the special folder name as the index. A special folder's path depends on the user
environment. The information stored in a special folder is unique to the user logged onto the computer system. If several different users have
accounts on the same computer system, several different sets of special folders are stored on the hard disk.

The following special folders are available:

l AllUsersDesktop
l AllUsersStartMenu
l AllUsersPrograms
l AllUsersStartup
l Desktop
l Favorites
l Fonts
l MyDocuments
l NetHood
l PrintHood
l Programs
l Recent
l SendTo
l StartMenu
l Startup
l Templates

Example

The following script demonstrates the use of the WshSpecialFolders Object:

Page 120 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

<package>
 <job id="vbs">
 <script language="VBScript">
 set WshShell = WScript.CreateObject("WScript.Shell")
 strDesktop = WshShell.SpecialFolders("Desktop")
 set oShellLink = WshShell.CreateShortcut(strDesktop & "\Shortcut Script.lnk")
 oShellLink.TargetPath = WScript.ScriptFullName
 oShellLink.WindowStyle = 1
 oShellLink.Hotkey = "CTRL+SHIFT+F"
 oShellLink.IconLocation = "notepad.exe, 0"
 oShellLink.Description = "Shortcut Script"
 oShellLink.WorkingDirectory = strDesktop
 oShellLink.Save
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshShell = WScript.CreateObject("WScript.Shell");
 strDesktop = WshShell.SpecialFolders("Desktop");
 var oShellLink = WshShell.CreateShortcut(strDesktop + "\\Shortcut Script.lnk");
 oShellLink.TargetPath = WScript.ScriptFullName;
 oShellLink.WindowStyle = 1;
 oShellLink.Hotkey = "CTRL+SHIFT+F";
 oShellLink.IconLocation = "notepad.exe, 0";
 oShellLink.Description = "Shortcut Script";
 oShellLink.WorkingDirectory = strDesktop;
 oShellLink.Save();
 </script>
 </job>
</package>

Properties

Item Property

Methods

Count Method

See Also

Page 121 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Running Your Scripts | SpecialFolders Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshSpecialFolders Object Properties and Methods
Properties

Item Property

Length Property

Methods

Count Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshUnnamed Object

Windows Script Host

Windows Script Host

Page 122 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Provides access to the unnamed arguments from the command line.

Remarks

The WshUnnamed object is a read-only collection that is returned by the Unnamed property of the WshArguments object. Individual
argument values are retrieved from this collection using zero-based indexes. Two of the WshArguments object's properties are filtered
arguments collections — one contains the named arguments (the WshNamed object), the other contains the unnamed arguments (the
WshUnnamed object). In total, this gives you three ways to access sets of command-line arguments.

l You can access the entire set of arguments (those with and without names) with the WshArguments object.
l You can access the arguments that have names with the WshNamed object.
l You can access the arguments that have no names with the WshUnnamed object.

Example

The following code displays the number of named and unnamed command-line arguments.

<package>
<job id="JS">
<script language="JScript">

var argsNamed = WScript.Arguments.Named;
var argsUnnamed = WScript.Arguments.Unnamed;

WScript.Echo("There are " + argsNamed.length + " named arguments.");
WScript.Echo("There are " + argsUnnamed.length + " unnamed arguments.");

</script>
</job>

<job id="VBS">
<script language="VBScript">

Dim argsNamed, argsUnnamed
Set argsNamed = WScript.Arguments.Named

Page 123 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Set argsUnnamed = WScript.Arguments.Unnamed

WScript.Echo "There are " & argsNamed.Count & " named arguments."
WScript.Echo "There are " & argsUnnamed.Count & " unnamed arguments."

</script>
</job>
</package>

Properties

Item Property | Length Property (WshArguments object)

Methods

Count Method

See Also

WshArguments Object | WshNamed Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshUnnamed Object Properties and Methods
Properties

Item Property

Length Property

Windows Script Host

Page 124 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Methods

Count Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshUrlShortcut Object

Allows you to create a shortcut to an Internet resource programmatically.

Remarks

The WshUrlShortcut object is a child object of the WshShell object — you must use the WshShell method CreateShortcut to create a
WshUrlShortcut object (e.g., WshShell.CreateShortcut(strDesktop & "\Shortcut Script.lnk")).

Example

The following example demonstrates the creation of a URL shortcut to www.microsoft.com.

<package>
 <job id="vbs">
 <script language="VBScript">
 set WshShell = WScript.CreateObject("WScript.Shell")
 set oUrlLink = WshShell.CreateShortcut(strDesktop & "\Microsoft Web Site.url")
 oUrlLink.TargetPath = "http://www.microsoft.com"
 oUrlLink.Save

Windows Script Host

Page 125 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshShell = WScript.CreateObject("WScript.Shell");
 var oUrlLink = WshShell.CreateShortcut(strDesktop + "\\Microsoft Web Site.url");
 oUrlLink.TargetPath = "http://www.microsoft.com";
 oUrlLink.Save();
 </script>
 </job>
</package>

Properties

FullName Property (WshUrlShortcut Object) | TargetPath Property

Methods

Save Method

See Also

Running Your Scripts | CreateShortcut Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WshUrlShortcut Object Properties and Methods
Properties

Windows Script Host

Page 126 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

FullName Property

TargetPath Property

Methods

Save Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Properties
In this Section

Arguments Property
Returns the WshArguments object.

AtEndOfLine Property
Returns a Boolean value indicating whether the end of an input line has been reached.

AtEndOfStream Property
Returns a Boolean value indicating whether the end of an input stream has been reached.

Character Property
Reports the specific character in the line of code that contained the error.

Column Property
Returns the column number of the current character position in an input stream.

ComputerName Property
Returns the name of the computer.

CurrentDirectory Property
Allows you to set or retrieve the active script's current working folder.

Description Property

Windows Script Host

Page 127 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Returns the description of a shortcut.
Environment Property

Returns the WshEnvironment object.
Error Property (WshRemote)

Exposes a WshRemoteError object.
ExitCode Property

Returns the exit code set by a script/program run using the Exec() method.
FullName Property

Returns a fully qualified path name.
Hotkey Property

Allows you to assign a key combination to a shortcut and determine the key combination to a shortcut.
IconLocation Property

Allows you to assign an icon to a shortcut and determine which icon has been assigned to a shortcut.
Interactive Property

Allows you to set the script mode programmatically, as well as determine the script mode programmatically.
Item Property

Exposes a specified item from a collection.
Item Property (WshNamed)

Provides access to the items in the WshNamed object.
Item Property (WshUnnamed)

Returns an item using a zero-based index.
Length Property

Returns the number of items in a collection.
Line Property (WScript)

Returns the current line number in an input stream.
Line Property (WshRemote)

Identifies the line in a script that contains an error-causing statement.
Name Property

Returns the friendly name of the WScript object (the host executable file).
Number Property

Reports the error number representing a script error.
Path PropertyPath

Returns the name of the directory containing the WScript object (the host executable file).
ProcessID Property

Reports the process ID (PID) of a process started with the WshScriptExec object.
ScriptFullName Property

Returns the full path-name of the currently running script.

Page 128 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

ScriptName Property
Returns the file name of the currently running script.

Source Property
Identifies the COM object responsible for causing the script error.

SourceText Property
Contains the line of source code that caused an error.

SpecialFolders Property
Returns the WshSpecialFolders object.

Status Property (WshRemote)
Reports the current running-condition of the remote script.

Status Property (WshScriptExec)
Provides status information about a script run with the Exec() method.

StdErr Property (WScript)
Exposes the write-only error output stream for the current script.

StdErr Property (WshScriptExec)
Exposes the read-only stderr output stream of the Exec object.

StdIn Property (WScript)
Exposes the read-only input stream for the current script.

StdIn Property (WshScriptExec)
Exposes the write-only stdin input stream of the Exec object.

StdOut Property (WScript)
Exposes the write-only output stream for the current script.

StdOut Property (WshScriptExec)
Exposes the write-only stdout output stream of the Exec object.

TargetPath Property
Allows you to assign a path to the executable file to which a shortcut points, as well as a determine the path to the executable file
pointed to by a shortcut.

UserDomain Property
Returns the user's domain name.

UserName Property
Returns the name of the user.

Version Property
Returns the version of WSH.

WindowStyle Property
Allows you to assign a window style to a shortcut, as well as determine the type of window style used by a shortcut.

WorkingDirectory Property
Allows you to assign a working directory to a shortcut, as well as determine the working directory used by a shortcut.

Page 129 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Related Sections

WSH Language
List of elements that make up WSH Reference.

WSH Basics
Learn the basics of WSH.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Arguments Property (Shortcut Object)
Sets the arguments for a shortcut, or identifies a shortcut's arguments.

object.Arguments

Arguments

object
WshShortcut object.

Remarks

The Arguments property returns a string.

Example

The following code sets the Arguments property.

Windows Script Host

Page 130 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

[VBScript]

set WshShell = WScript.CreateObject("WScript.Shell")
strDesktop = WshShell.SpecialFolders("Desktop")
set oShellLink = WshShell.CreateShortcut(strDesktop & "\Shortcut Script.lnk")
oShellLink.TargetPath = WScript.ScriptFullName
oShellLink.WindowStyle = 1
oShellLink.Hotkey = "Ctrl+Alt+f"
oShellLink.IconLocation = "notepad.exe, 0"
oShellLink.Description = "Shortcut Script"
oShellLink.WorkingDirectory = strDesktop
oShellLink.Arguments = "C:\myFile.txt"
oShellLink.Save

[JScript]

var WshShell = WScript.CreateObject("WScript.Shell");
var strDesktop = WshShell.SpecialFolders("Desktop");
var oShellLink = WshShell.CreateShortcut(strDesktop + "\\Shortcut Script.lnk");
oShellLink.TargetPath = WScript.ScriptFullName;
oShellLink.WindowStyle= 1;
oShellLink.Hotkey= "Ctrl+Alt+f";
oShellLink.IconLocation= "notepad.exe, 0";
oShellLink.Description= "Shortcut Script";
oShellLink.WorkingDirectory= strDesktop;
oShellLink.Arguments = "C:\\myFile.txt"; oShellLink.Save();

See Also

WshShortcut Object | WshShell Object | CreateShortcut Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Page 131 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Arguments Property (WScript Object)
Returns the WshArguments object (a collection of arguments).

object.Arguments

Arguments

object
WScript object.

Remarks

The Arguments property contains the WshArguments object (a collection of arguments). Use a zero-based index to retrieve individual
arguments from this collection.

Example

The following code samples display the entire set of command-line parameters associated with a script.

[VBScript]

Set objArgs = WScript.Arguments
For I = 0 to objArgs.Count - 1
 WScript.Echo objArgs(I)
Next

[JScript]

objArgs = WScript.Arguments;
for (i = 0; i < objArgs.length; i++)
{
 WScript.Echo(objArgs(i));
}

See Also

Page 132 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WScript Object | WshArguments Object | WshNamed Object | WshUnnamed Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

AtEndOfLine Property
Returns a Boolean value indicating whether the end of a line in an input stream has been reached.

object.AtEndOfLine

Arguments

object
StdIn text stream object.

Remarks

The AtEndOfLine property contains a Boolean value indicating whether the end of a line in an input stream has been reached. The
AtEndOfLine property returns True if the stream pointer immediately precedes the end-of-line marker in an input stream, False if it does
not. The StdIn, StdOut, and StdErr properties and methods work only when the script is run with CScript.exe. If the script is run with
WScript.exe, an error occurs.

Example

The following samples will read a line of text from the keyboard and display whatever was typed when the end of the line is seen.

[VBScript]

Dim Input

Windows Script Host

Page 133 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Input = ""

Do While Not WScript.StdIn.AtEndOfLine
 Input = Input & WScript.StdIn.Read(1)
Loop
WScript.Echo Input

[JScript]

var input = "";
while (!WScript.StdIn.AtEndOfLine)
{
 input += WScript.StdIn.Read(1);
}
WScript.Echo(input);

See Also

StdIn Property | Error Messages

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

AtEndOfStream Property
Returns a Boolean value indicating whether the end of an input stream has been reached.

object.AtEndOfStream

Arguments

Windows Script Host

Page 134 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

object
StdIn text stream object.

Remarks

The AtEndOfStream property contains a Boolean value indicating whether the end of an input stream has been reached. The
AtEndOfStream property returns True if the stream pointer is at the end of an input stream, False if not. The StdIn, StdOut, and StdErr
properties and methods work only when the script is run with CScript.exe. If the script is run with WScript.exe, an error occurs.

Example

The following code samples demonstrate the AtEndOfStream property by reading a standard directory listing from "dir", stripping the top
and bottom lines that aren't actual entries, and double spacing the directory entries.

[VBScript]

Dim StdIn, StdOut, Str1, Str2

Set StdIn = WScript.StdIn
Set StdOut = WScript.StdOut

Str1 = ""
Str2 = ""For i = 0 to 4
 StdIn.SkipLine
Next

i = 0
Do While Not StdIn.AtEndOfStream
 If i >= 2 Then
 StdOut.WriteLine Str1
 End If
 i = i + 1
 Str1 = Str2
 Str2 = StdIn.ReadLine
Loop

[JScript]

var stdin = WScript.StdIn;
var stdout = WScript.StdOut;

Page 135 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

var str1, str2 = "";
var i;
for (i = 0; i < 5; i++)
 stdin.SkipLine();
i = 0;
while (!stdin.AtEndOfStream)
{
 if (i++ >= 2)
 {
 stdout.WriteLine(str1);
 }
 str1 = str2;
 str2 = stdin.ReadLine();
}

See Also

StdIn Property | Error Messages

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

BuildVersion Property
Returns the Windows Script Host build version number.

Object.BuildVersion

Parameters

Object
WScript object.

Windows Script Host

Page 136 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Remarks

The BuildVersion property returns an integer value.

The full version number of Windows Script Host consists of the product release version number followed by the build version number. For
example, if the Windows Script Host product release version number is 5.6, and the build version number is 6626, the full version number is
5.6.6626.

Example

The following code returns the full version number of the Windows Script Host. This consists of the product release version number plus the
build version number.

WScript.Echo WScript.Version & "." & WScript.BuildVersion;

See Also

Version Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Character Property
Reports the specific character in a line of code that contains an error.

Object.Character

Arguments

Windows Script Host

Page 137 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Object
WshRemoteError object.

Remarks

The Character property returns a signed long integer.

Some errors are not associated with a particular character position. For example, consider the error Expected End If. In this case, there is no
line (a line of code is missing). In such a case, the Character property returns zero (0).

The character position is based on an offset of one (1) (the first character in a line resides at position one).

Example

The following JScript code demonstrates how the WshRemoteError object exposes the character in the line of code that contained the error.

[VBScript]

Dim Controller, RemoteScript
Set Controller = WScript.CreateObject("WSHController")
Set RemoteScript = Controller.CreateScript("test.js", "remoteserver")
WScript.ConnectObject RemoteScript, "remote_"
RemoteScript.Execute

Do While RemoteScript.Status <> 2
 WScript.Sleep 100
Loop

Sub remote_Error
 Dim theError
 Set theError = RemoteScript.Error
 WScript.Echo "Error - Line: " & theError.Line & ", Char: " & theError.Character & vbCrLf & "Description: " & theError.Description
 WScript.Quit -1
End Sub

[JScript]

var Controller = WScript.CreateObject("WSHController");
var RemoteScript = Controller.CreateScript("test.js", "remoteserver");
WScript.ConnectObject(RemoteScript, "remote_");

Page 138 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

RemoteScript.Execute();

while (RemoteScript.Status != 2) {
 WScript.Sleep(100);
}

function remote_Error()
{
 var theError = RemoteScript.Error;
 WScript.Echo("Error - Line: " + theError.Line + ", Char: " + theError.Character + "\nDescription: " + theError.Description);
 WScript.Quit(-1);
}

See Also

WshRemote Object | WshRemoteError Object | Line Property| Description Property | SourceText Property | Number Property | Source
Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Column Property
Returns the column number of the current character position in an input stream.

object.Column

Arguments

object
StdIn text stream object.

Windows Script Host

Page 139 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Remarks

The Column property contains a read-only integer value indicating the column number of the current character position in an input stream.
The Column property is equal to 1 after a newline character is written (even before any other character is written). The StdIn, StdOut, and
StdErr properties and methods work only when the script is run with CScript.exe. If the script is run with WScript.exe, an error occurs.

Example

The following code demonstrates the use of the Column property by reading input from the keyboard and breaking it into lines of 20
characters.

[VBScript]

Dim Input
Input = ""

Do While Not WScript.StdIn.AtEndOfLine
 Input = Input & WScript.StdIn.Read(1)
 If (WScript.StdIn.Column - 1) Mod 20 = 0 Then
 Input = Input & vbCrLf
 End If
Loop
WScript.Echo Input

[JScript]

var input = "";
while (!WScript.StdIn.AtEndOfLine)
{
 input += WScript.StdIn.Read(1);
 if ((WScript.StdIn.Column - 1) % 20 == 0)
 input += "\n";
}
WScript.Echo(input);

See Also

StdIn Property | Error Messages

Page 140 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

ComputerName Property
Returns the name of the computer system.

object.ComputerName

Arguments

object
WshNetwork object.

Remarks

The ComputerName property contains a string value indicating the name of the computer system.

Example

The following example demonstrates the use of the ComputerName property.

<package>
 <job id="vbs">
 <script language="VBScript">
 Set WshNetwork = WScript.CreateObject("WScript.Network")
 WScript.Echo "Domain = " & WshNetwork.UserDomain
 WScript.Echo "Computer Name = " & WshNetwork.ComputerName
 WScript.Echo "User Name = " & WshNetwork.UserName
 </script>
 </job>

Windows Script Host

Page 141 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 <job id="js">
 <script language="JScript">
 var WshNetwork = WScript.CreateObject("WScript.Network");
 WScript.Echo("Domain = " + WshNetwork.UserDomain);
 WScript.Echo("Computer Name = " + WshNetwork.ComputerName);
 WScript.Echo("User Name = " + WshNetwork.UserName);
 }
 </script>
 </job>
</package>

See Also

Running Your Scripts | WshNetwork Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

CurrentDirectory Property
Retrieves or changes the current active directory.

object.CurrentDirectory

Arguments

object
WshShell object.

Remarks

Windows Script Host

Page 142 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

The CurrentDirectory returns a string that contains the fully qualified path of the current working directory of the active process.

Example

The following code displays the current active directory.

[VBScript]

Dim WshShell
Set WshShell = WScript.CreateObject("WScript.Shell")
WScript.Echo WshShell.CurrentDirectory

[JScript]

var WshShell = WScript.CreateObject ("WScript.Shell");
WScript.Echo (WshShell.CurrentDirectory);

See Also

WshShell Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Description Property
Returns a shortcut's description.

object.Description

Windows Script Host

Page 143 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Arguments

object
WshShortcut object.

Remarks

The Description property contains a string value describing a shortcut.

Example

The following example demonstrates the use of the Description Property.

<package>
 <job id="vbs">
 <script language="VBScript">
 set WshShell = WScript.CreateObject("WScript.Shell")
 strDesktop = WshShell.SpecialFolders("Desktop")
 set oShellLink = WshShell.CreateShortcut(strDesktop & "\Shortcut Script.lnk")
 oShellLink.TargetPath = WScript.ScriptFullName
 oShellLink.WindowStyle = 1
 oShellLink.Hotkey = "Ctrl+Alt+e"
 oShellLink.IconLocation = "notepad.exe, 0"
 oShellLink.Description = "Shortcut Script"
 oShellLink.WorkingDirectory = strDesktop
 oShellLink.Save
 set oUrlLink = WshShell.CreateShortcut(strDesktop & "\Microsoft Web Site.url")
 oUrlLink.TargetPath = "http://www.microsoft.com"
 oUrlLink.Save
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshShell = WScript.CreateObject("WScript.Shell");
 strDesktop = WshShell.SpecialFolders("Desktop");
 var oShellLink = WshShell.CreateShortcut(strDesktop + "\\Shortcut Script.lnk");
 oShellLink.TargetPath = WScript.ScriptFullName;
 oShellLink.WindowStyle = 1;
 oShellLink.Hotkey = "Ctrl+Alt+e";
 oShellLink.IconLocation = "notepad.exe, 0";

Page 144 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 oShellLink.Description = "Shortcut Script";
 oShellLink.WorkingDirectory = strDesktop;
 oShellLink.Save();
 var oUrlLink = WshShell.CreateShortcut(strDesktop + "\\Microsoft Web Site.url");
 oUrlLink.TargetPath = "http://www.microsoft.com";
 oUrlLink.Save();
 </script>
 </job>
</package>

See Also

Running Your Scripts | WshShortcut Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Description Property (WshRemoteError)
Contains a brief description of the error that caused the remote script to terminate.

Object.Description

Arguments

Object
WshRemoteError object.

Remarks

The Description property returns a string.

Windows Script Host

Page 145 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

If an error description is not available, the Description property returns an empty string.

Example

The following JScript code demonstrates how the WshRemoteError object exposes the description of the error.

[VBScript]

Dim Controller, RemoteScript
Set Controller = WScript.CreateObject("WSHController")
Set RemoteScript = Controller.CreateScript("test.js", "remoteserver")
WScript.ConnectObject RemoteScript, "remote_"
RemoteScript.Execute

Do While RemoteScript.Status <> 2
 WScript.Sleep 100
Loop

Sub remote_Error
 Dim theError
 Set theError = RemoteScript.Error
 WScript.Echo "Error - Line: " & theError.Line & ", Char: " & theError.Character & vbCrLf & "Description: " & theError.
 WScript.Quit -1
End Sub

[JScript]

var Controller = WScript.CreateObject("WSHController");
var RemoteScript = Controller.CreateScript("test.js", "remoteserver");
WScript.ConnectObject(RemoteScript, "remote_");
RemoteScript.Execute();

while (RemoteScript.Status != 2) {
 WScript.Sleep(100);
}

function remote_Error()
{
 var theError = RemoteScript.Error;
 WScript.Echo("Error - Line: " + theError.Line + ", Char: " + theError.Character + "\nDescription: " + theError.
 WScript.Quit(-1);
}

Page 146 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

See Also

WshRemote Object | WshRemoteError Object | Line Property | Character Property | SourceText Property | Number Property | Source Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Environment Property
Returns the WshEnvironment object (a collection of environment variables).

object.Environment ([strType])

Arguments

object
WshShell object.

strType
Optional. Specifies the location of the environment variable.

Remarks

The Environment property contains the WshEnvironment object (a collection of environment variables). If strType is supplied, it specifies
where the environment variable resides with possible values of System, User, Volatile, or Process. If strType is not supplied, the
Environment property returns different environment variable types depending on the operating system.

Windows Script Host

Type of Environment Variable Operating System
System Microsoft Windows NT/2000
Process Windows 95/98/Me

Page 147 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Note For Windows 95/98/Me, only one strType is permitted — Process.

The following table lists some of the variables that are provided with the Windows operating system. Scripts can access environment
variables that have been set by other applications.

Note None of the following variables are available from the Volatile type.

Name Description System User Process (NT/
2000)

Process (98/ME)

NUMBER_OF_PROCESSORS Number of processors
running on the machine.

X - X -

PROCESSOR_ARCHITECTURE Processor type of the
user's workstation.

X - X -

PROCESSOR_IDENTIFIER Processor ID of the
user's workstation.

X - X -

PROCESSOR_LEVEL Processor level of the
user's workstation.

X - X -

PROCESSOR_REVISION Processor version of the
user's workstation.

X - X -

OS Operating system on the
user's workstation.

X - X -

COMSPEC Executable file for the
command prompt
(typically cmd.exe).

X - X X

HOMEDRIVE Primary local drive
(typically the C drive).

- - X -

HOMEPATH Default directory for
users (typically
\users\default in
Windows 2000).

- - X -

PATH PATH environment
variable.

X X X X

PATHEXT Extensions for
executable files
(typically .com, .exe,
.bat, or .cmd).

X - X -

Page 148 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Example

The following code retrieves the system environment variable NUMBER_OF_PROCESSORS.

[VBScript]

Set WshShell = WScript.CreateObject("WScript.Shell")
Set WshSysEnv = WshShell.Environment("SYSTEM")
WScript.Echo WshSysEnv("NUMBER_OF_PROCESSORS")

[JScript]

var WshShell = WScript.CreateObject("WScript.Shell");
var WshSysEnv = WshShell.Environment("SYSTEM");
WScript.Echo(WshSysEnv("NUMBER_OF_PROCESSORS"));

See Also

PROMPT Command prompt
(typically PG).

- - X X

SYSTEMDRIVE Local drive on which the
system directory resides
(typically c:\).

- - X -

SYSTEMROOT System directory (for
example, c:\winnt). This
is the same as WINDIR.

- - X -

WINDIR System directory (for
example, c:\winnt). This
is the same as
SYSTEMROOT.

X - X X

TEMP Directory for storing
temporary files (for
example, c:\temp).

- X X X

TMP Directory for storing
temporary files (for
example, c:\temp).

- X X X

Page 149 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WshEnvironment Object | WshShell Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Error Property (WshRemote)
Exposes the WshRemoteError object, which holds information about the error that caused the remote script to terminate prematurely.

Object.Error

Arguments

Object
WshRemote object.

Remarks

The Error property returns a WshRemoteError object.

Example

The following code demonstrates how the Error property of the WshRemote object exposes a WshRemoteError object, which exposes the
line, character, and description of the error.

[VBScript]

Dim Controller, RemoteScript
Set Controller = WScript.CreateObject("WSHController")
Set RemoteScript = Controller.CreateScript("test.js", "remoteserver")

Windows Script Host

Page 150 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WScript.ConnectObject RemoteScript, "remote_"
RemoteScript.Execute

Do While RemoteScript.Status <> 2
 WScript.Sleep 100
Loop

Sub remote_Error
 Dim theError
 Set theError = RemoteScript.Error
 WScript.Echo "Error - Line: " & theError.Line & ", Char: " & theError.Character & vbCrLf & "Description: " & theError.Description
 WScript.Quit -1
End Sub

[JScript]

var Controller = WScript.CreateObject("WSHController");
var RemoteScript = Controller.CreateScript("test.js", "remoteserver");
WScript.ConnectObject(RemoteScript, "remote_");
RemoteScript.Execute();

while (RemoteScript.Status != 2) {
 WScript.Sleep(100);
}

function remote_Error()
{
 var theError = RemoteScript.Error;
 WScript.Echo("Error - Line: " + theError.Line + ", Char: " + theError.Character + "\nDescription: " + theError.Description);
}

See Also

WshController Object | WshRemote Object | WshRemoteError Object | Status Property | Execute Method | Terminate Method | Start Event |
End Event | Error Event

© 2001 Microsoft Corporation. All rights reserved.

Page 151 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Build: Topic Version 5.6.9309.1546

ExitCode Property
Returns the exit code set by a script or program run using the Exec() method.

Object.ExitCode

Parameters

Object
WshScriptExec Object

Remarks

Executables set an exit code when they finish running. This conveys the status information when a process ends. Often, it is used to send an
error code (or some other piece of information) back to the caller. If the process has not finished, the ExitCode property returns 0. The values
returned from ExitCode depend on the application that was called.

Example

The following code shows an example of the ExitCode property.

[VBScript]

Dim WshShell, oExec
Set WshShell = CreateObject("WScript.Shell")
Set oExec = WshShell.Exec("%comspec% /c dire")

Function ReadAllFromAny(oExec)

 If Not oExec.StdOut.AtEndOfStream Then
 ReadAllFromAny = oExec.StdOut.ReadAll
 Exit Function
 End If

Windows Script Host

Page 152 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 If Not oExec.StdErr.AtEndOfStream Then
 ReadAllFromAny = oExec.StdErr.ReadAll
 Exit Function
 End If

 ReadAllFromAny = -1
End Function

Dim allInput, tryCount

allInput = ""
tryCount = 0

Do While True

 Dim input
 input = ReadAllFromAny(oExec)

 If -1 = input Then
 If tryCount > 10 And oExec.Status = 1 Then
 Exit Do
 End If
 tryCount = tryCount + 1
 WScript.Sleep 100
 Else
 allInput = allInput & input
 tryCount = 0
 End If
Loop

If oExec.ExitCode <> 0 Then
 WScript.Echo "Warning: Non-zero exit code"
End If

WScript.Echo allInput

[JScript]

var WshShell = new ActiveXObject("WScript.Shell");
var oExec = WshShell.Exec("%comspec% /c dire");

function ReadAllFromAny(oExec)

Page 153 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

{
 if (!oExec.StdOut.AtEndOfStream)
 return oExec.StdOut.ReadAll();

 if (!oExec.StdErr.AtEndOfStream)
 return oExec.StdErr.ReadAll();

 return -1;
}

var allInput = "";
var tryCount = 0;

while (true)
{
 var input = ReadAllFromAny(oExec);
 if (-1 == input)
 {
 if (tryCount++ > 10 && oExec.Status == 1)
 break;
 WScript.Sleep(100);
 }
 else
 {
 allInput += input;
 tryCount = 0;
 }
}

if (oExec.ExitCode != 0)
{
 WScript.Echo("Warning: Non-zero exit code");
}

WScript.Echo(allInput);

See Also

Exec Method | WshScriptExec Object

Page 154 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

FullName Property (WScript Object)
Returns the fully qualified path of the host executable (CScript.exe or WScript.exe).

object.FullName

Arguments

object
WScript object.

Remarks

The FullName property is a read-only string representing the fully qualified path of the host executable.

Example

The following JScript code uses the FullName property:

WScript.Echo (WScript.FullName);

produces the following output.

C:\WINNT\System32\cscript.exe

See Also

Path Property | WScript Object | WshShortcut Object | WshUrlShortcut Object

Windows Script Host

Page 155 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

FullName Property (WshShortcut Object)
Returns the fully qualified path of the shortcut object's target.

object.FullName

Arguments

object
WshShortcut object.

Remarks

The FullName property contains a read-only string value indicating the fully qualified path to the shortcut's target.

Example

The following code retrieves the fully qualified path of a shortcut.

[VBScript]

set WshShell = WScript.CreateObject("WScript.Shell")
strDesktop = WshShell.SpecialFolders("Desktop")
set oShellLink = WshShell.CreateShortcut(strDesktop & "\Shortcut Script.lnk")
oShellLink.TargetPath = WScript.ScriptFullName
oShellLink.WindowStyle = 1
oShellLink.Hotkey = "CTRL+SHIFT+F"
oShellLink.IconLocation = "notepad.exe, 0"
oShellLink.Description = "Shortcut Script"

Windows Script Host

Page 156 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

oShellLink.WorkingDirectory = strDesktop
oShellLink.Save
WScript.Echo oShellLink.FullName

[JScript]

var WshShell = new ActiveXObject("WScript.Shell");
strDesktop = WshShell.SpecialFolders("Desktop");
var oShellLink = WshShell.CreateShortcut(strDesktop + "\\Shortcut Script.lnk");
oShellLink.TargetPath = WScript.ScriptFullName;
oShellLink.WindowStyle = 1;
oShellLink.Hotkey = "CTRL+SHIFT+F";
oShellLink.IconLocation = "notepad.exe, 0";
oShellLink.Description = "Shortcut Script";
oShellLink.WorkingDirectory = strDesktop;
oShellLink.Save();
WScript.Echo(oShellLink.FullName);

See Also

Path Property | WScript Object | WshShortcut Object | WshUrlShortcut Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

FullName Property (WshUrlShortcut Object)
Returns the fully qualified path of the shortcut object's target.

object.FullName

Arguments

Windows Script Host

Page 157 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

object
WshUrlShortcut object.

Remarks

String. Read-only.

The FullName property is a read-only string representing the fully qualified path to the shortcut's target.

Example

The following code retrieves the fully qualified path of a URL shortcut.

[VBScript]

set oUrlLink = WshShell.CreateShortcut(strDesktop & "\Microsoft Web Site.url")
oUrlLink.TargetPath = "http://www.microsoft.com"
oUrlLink.Save
WScript.Echo oUrlLink.FullName

[JScript]

var oUrlLink = WshShell.CreateShortcut(strDesktop + "\\Microsoft Web Site.url");
oUrlLink.TargetPath = "http://www.microsoft.com";
oUrlLink.Save();
WScript.Echo (oUrlLink.FullName);

See Also

Path Property | WScript Object | WshShortcut Object | WshUrlShortcut Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Page 158 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Hotkey Property
Assigns a key-combination to a shortcut, or identifies the key-combination assigned to a shortcut.

object.Hotkey = strHotkey

Arguments

object
WshShortcut object.

strHotkey
A string representing the key-combination to assign to the shortcut.

Syntax

The syntax of strHotkey is:

[KeyModifier]KeyName

KeyModifier
Can be any one of the following: ALT+, CTRL+ , SHIFT+, EXT+.

Note EXT+ means "Extended key." — it appears here in case a new type of SHIFT-key is added to the character set in the future.

KeyName
a ... z, 0 ... 9, F1 … F12, ...

The KeyName is not case-sensitive.

Remarks

A hotkey is a combination of keys that starts a shortcut when all associated keys are held down at the same time.

l Hotkeys can be used to start shortcuts located on your system's desktop and in the Windows Start menu.

Windows Script Host

Page 159 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Note Another name for a hotkey is a Keyboard Shortcut .

In Windows 2000, valid Hotkeys always begin with CTRL + ALT.

Example

The following example demonstrates the use of the HotKey property.

<package>
 <job id="vbs">
 <script language="VBScript">
 set WshShell = WScript.CreateObject("WScript.Shell")
 strDesktop = WshShell.SpecialFolders("Desktop")
 set oShellLink = WshShell.CreateShortcut(strDesktop & "\Shortcut Script.lnk")
 oShellLink.TargetPath = WScript.ScriptFullName
 oShellLink.WindowStyle = 1
 oShellLink.Hotkey = "Ctrl+Alt+e"
 oShellLink.IconLocation = "notepad.exe, 0"
 oShellLink.Description = "Shortcut Script"
 oShellLink.WorkingDirectory = strDesktop
 oShellLink.Save
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshShell = WScript.CreateObject("WScript.Shell");
 strDesktop = WshShell.SpecialFolders("Desktop");
 var oShellLink = WshShell.CreateShortcut(strDesktop + "\\Shortcut Script.lnk");
 oShellLink.TargetPath = WScript.ScriptFullName;
 oShellLink.WindowStyle = 1;
 oShellLink.Hotkey = "Ctrl+Alt+e";
 oShellLink.IconLocation = "notepad.exe, 0";
 oShellLink.Description = "Shortcut Script";
 oShellLink.WorkingDirectory = strDesktop;
 oShellLink.Save();
 </script>
 </job>
</package>

See Also

Page 160 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Running Your Scripts | Running Your Scripts | WshSpecialFolders Object | WshShortcut Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

IconLocation Property
Assigns an icon to a shortcut, or identifies the icon assigned to a shortcut.

object.IconLocation = strIconLocation

Arguments

object
WshShortcut object.

strIconLocation
A string that locates the icon. The string should contain a fully qualified path and an index associated with the icon. See example for
more details.

Remarks

String.

Example

The following example demonstrates the use of the IconLocation property.

<package>
 <job id="vbs">
 <script language="VBScript">

Windows Script Host

Page 161 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 set WshShell = WScript.CreateObject("WScript.Shell")
 strDesktop = WshShell.SpecialFolders("Desktop")
 set oShellLink = WshShell.CreateShortcut(strDesktop & "\Shortcut Script.lnk")
 oShellLink.TargetPath = WScript.ScriptFullName
 oShellLink.WindowStyle = 1
 oShellLink.Hotkey = "Ctrl+Alt+e"
 oShellLink.IconLocation = "notepad.exe, 0" 'Zero is the index
 oShellLink.Description = "Shortcut Script"
 oShellLink.WorkingDirectory = strDesktop
 oShellLink.Save
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshShell = WScript.CreateObject("WScript.Shell");
 strDesktop = WshShell.SpecialFolders("Desktop");
 var oShellLink = WshShell.CreateShortcut(strDesktop + "\\Shortcut Script.lnk");
 oShellLink.TargetPath = WScript.ScriptFullName;
 oShellLink.WindowStyle = 1;
 oShellLink.Hotkey = "Ctrl+Alt+e";
 oShellLink.IconLocation = "notepad.exe, 0"; //Zero is the index
 oShellLink.Description = "Shortcut Script";
 oShellLink.WorkingDirectory = strDesktop;
 oShellLink.Save();
 </script>
 </job>
</package>

See Also

Running Your Scripts | WshShortcut Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Page 162 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Interactive Property
Sets the script mode, or identifies the script mode.

object.Interactive

Arguments

object
WScript object.

Remarks

The Interactive Property returns a Boolean value.

There are two modes, batch and interactive. In interactive mode (the default), the script provides user interaction. Input to and output from the
Windows Script Host is enabled. The script can echo information to dialog boxes and can wait for the user to provide feedback. In batch
mode, this type of user interaction is not supported — all input and output to WSH is disabled. You can also set the script mode using the
Windows Script Host command line switches //I (for Interactive), and //B (for Batch).

Example

The following JScript code displays the script mode.

WScript.Echo WScript.Interactive;

The following JScript code sets the script mode to batch.

WScript.Interactive = false;

See Also

WScript Object

Page 163 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Item Property
Exposes a specified item from a collection.

Object.Item(natIndex)

Arguments

Object
The result of the EnumNetworkDrive or EnumPrinterConnections methods, or the object returned by the Environment or
SpecialFolders properties.

natIndex
Item to retrieve.

Remarks

Item is the default property for each collection. For EnumNetworkDrive and EnumPrinterConnections collections, index is an integer; for
the Environment and SpecialFolders collections, index is a string.

WshShell.SpecialFolders.Item (strFolderName) returns "Empty" in VBScript and "undefined" in JScript if the requested folder
(strFolderName) is not available.

The following table lists special folders along with the version of Windows that supports them.

Windows Script Host

Folder Windows version
AllUsersDesktop Windows 2000
AllUsersStartMenu Windows 2000
AllUsersPrograms Windows 2000
AllUsersStartup Windows 2000

Page 164 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Example

The following code displays network mapping information for the drives and printers.

<package>
 <job id="vbs">
 <script language="VBScript">
 Set WshNetwork = WScript.CreateObject("WScript.Network")
 Set oDrives = WshNetwork.EnumNetworkDrives
 Set oPrinters = WshNetwork.EnumPrinterConnections
 WScript.Echo "Network drive mappings:"
 For i = 0 to oDrives.Count - 1 Step 2
 WScript.Echo "Drive " & oDrives.Item(i) & " = " & oDrives.Item(i+1)
 Next
 WScript.Echo
 WScript.Echo "Network printer mappings:"
 For i = 0 to oPrinters.Count - 1 Step 2
 WScript.Echo "Port " & oPrinters.Item(i) & " = " & oPrinters.Item(i+1)
 Next
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshNetwork = WScript.CreateObject("WScript.Network");
 var oDrives = WshNetwork.EnumNetworkDrives();

Desktop Windows 98/ME, Windows 2000
Favorites Windows 98/ME, Windows 2000
Fonts Windows 98/ME, Windows 2000
My Documents Windows 98/ME, Windows 2000
NetHood Windows 98/ME, Windows 2000
PrintHood Windows 98/ME, Windows 2000
Programs Windows 98/ME, Windows 2000
Recent Windows 98/ME, Windows 2000
SendTo Windows 98/ME, Windows 2000
Start Menu Windows 98/ME, Windows 2000
StartupB Windows 2000
Templates Windows 2000

Page 165 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 var oPrinters = WshNetwork.EnumPrinterConnections();
 WScript.Echo();
 WScript.Echo("Network drive mappings:");
 for(i = 0; i < oDrives.length; i += 2){
 WScript.Echo("Drive " + oDrives.Item(i) + " = " + oDrives.Item(i + 1));
 }
 WScript.Echo();
 WScript.Echo("Network printer mappings:");
 for(i = 0; i < oPrinters.length; i += 2){
 WScript.Echo("Port " + oPrinters.Item(i) + " = " + oPrinters.Item(i + 1));
 }
 </script>
 </job>
</package>

See Also

EnumNetworkDrive Method | EnumPrinterConnections Method | Environment Property | SpecialFolders Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Item Property (WshNamed)
Provides access to the items in the WshNamed object.

Object.Item(key)

Parameters

Object
WshNamed object

Windows Script Host

Page 166 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

key
The name of the item you want to retrieve.

Remarks

The Item property returns a string. For collections, it returns an item based on the specified key. When entering the arguments at the
command line, you can use blanks in string arguments if you enclose the string in quotes. Consider the following example:
myscript.vbs /stringarg:"This string has spaces"

The quotes will be removed in the WshNamed collection. For an argument to be in the WshNamed collection, it must have been used on the
command line. If the argument has no value (such as a simple argument or an empty string), the Item property returns an empty string.
Requesting a non-existent named argument from the Item property causes an error. To check if an argument exists, use the Exists method.

Example 1

In the following example, two named arguments are supplied to run a script. Inside the script, code causes the named arguments to be output.
The Item property is used to index into the named arguments collection.

The following line is typed at the command prompt to run the script.

myScript.vbs /c:arg1 /d:arg2

If the following code is executed inside the script:

WScript.Echo WScript.Arguments.Named.Item("c")
WScript.Echo WScript.Arguments.Named.Item("d")

then the following output is produced:

arg1
arg2

See Also

WshNamed Object | WshUnnamed Object | Count Method | Item Property | Exists Method

Page 167 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Item Property (WshUnnamed)
Returns an item using a zero-based index.

Object.Item(key)

Parameters

Object
WshUnnamed object.

key
Associated with either a collection or a WshUnnamed object.

Remarks

The Item property returns a string. For collections, it returns an item based on the specified key.

For the unnamed object, items are not named, so you cannot pass the name of the WshUnnamed argument.

The WshUnnamed argument items are stored in the order that they were included on the command line.

When entering the WshUnnamed argument at the command line, you can use blanks in string arguments if you enclose them in quotes.

The quotes are removed in the WshUnnamed collection.

Example

Windows Script Host

Page 168 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

The following example demonstrates how the Item property can be used to return items in the WshUnnamed collection. In this example, two
unnamed arguments are supplied to run a script. Inside the script, code causes the unnamed arguments to be output. The Item property is used
to index into the unnamed arguments collection.

The following line is typed at the command prompt to run the script.

myScript.vbs arg1 arg2

When the following code is executed inside the script:

WScript.Echo WScript.Arguments.Unnamed.Item(0)
WScript.Echo WScript.Arguments.Unnamed.Item(1)

the following output is produced:

arg1
arg2

See Also

Arguments Property | WshUnnamed Object | WshUnnamed Object | Count Method | Item Property (WshNamed) | Exists Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

length Property (WshArguments object)
Returns the number of command-line parameters belonging to a script (the number of items in an argument's collection).

object.length

Windows Script Host

Page 169 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Arguments

object
WshArguments object.

Remarks

The length property is a read-only integer that you use in scripts when you write in JScript. It is similar to VBScript's Count method.

See Also

WshArguments Object | Arguments Property | Count Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

length Property (WshEnvironment object)
Returns the number of Windows environment variables on the local computer system (the number of items in an Environment collection).

object.length

Arguments

object
WshEnvironment object.

Remarks

Windows Script Host

Page 170 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

The length property is a read-only integer that you use in scripts when you write in JScript. It is similar to VBScript's Count method.

See Also

WshEnvironment Object | Count Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

length Property (WshSpecialFolders object)
Returns the number of Windows special folders on the local computer system (the number of items in a SpecialFolders collection).

object.length

Arguments

object
WshSpecialFolders object.

Remarks

The length property is a read-only integer that you use in scripts when you write in JScript. It is similar to VBScript's Count method.

See Also

WshSpecialFolders Object | Count Method

Windows Script Host

Page 171 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Line Property (WScript)
Returns the current line number in an input stream.

object.strStream.Line

Arguments

object
WScript object.

strStream
StdIn property.

Remarks

The Line property is a read-only integer.

After a stream is first opened, Line will initially be 1.

The StdIn, StdOut, and StdErr properties and methods work only when the script is run with CScript.exe. If the script is run with
WScript.exe, an error occurs.

Example

The following code demonstrates the use of the Line property.

[VBScript]

Windows Script Host

Page 172 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Dim StdIn, StdOut
Set StdIn = WScript.StdIn
Set StdOut = WScript.StdOut

Do While Not StdIn.AtEndOfStream
 str = StdIn.ReadLine
 StdOut.WriteLine "Line " & (StdIn.Line - 1) & ": " & str
Loop

[JScript]

var stdin = WScript.StdIn;
var stdout = WScript.StdOut;

while (!stdin.AtEndOfStream)
{
 var str = stdin.ReadLine();
 stdout.WriteLine("Line " + (stdin.Line - 1) + ": " + str);
}

See Also

Error Messages | StdIn Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Line Property (WshRemoteError)
Identifies the line in a script that contains an error.

Object.Line

Windows Script Host

Page 173 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Arguments

Object
WshRemoteError object.

Remarks

The Line property returns an unsigned long integer.

Notice that some errors do not occur on a particular line. For example, consider the error Expected End If . In this case, there is no line (a line
of code is missing). In such a case, the Line property returns zero (0).

Example

The following JScript code demonstrates how the WshRemoteError object exposes the line in which the error occurred.

[VBScript]

Dim Controller, RemoteScript
Set Controller = WScript.CreateObject("WSHController")
Set RemoteScript = Controller.CreateScript("test.js", "remoteserver")
WScript.ConnectObject RemoteScript, "remote_"
RemoteScript.Execute

Do While RemoteScript.Status <> 2
 WScript.Sleep 100
Loop

Sub remote_Error
 Dim theError
 Set theError = RemoteScript.Error
 WScript.Echo "Error - Line: " & theError.Line & ", Char: " & theError.Character & vbCrLf & "Description: " & theError.Description
 WScript.Quit -1
End Sub

[JScript]

var Controller = WScript.CreateObject("WSHController");
var RemoteScript = Controller.CreateScript("test.js", "remoteserver");
WScript.ConnectObject(RemoteScript, "remote_");

Page 174 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

RemoteScript.Execute();

while (RemoteScript.Status != 2) {
 WScript.Sleep(100);
}

function remote_Error()
{
 var theError = RemoteScript.Error;
 WScript.Echo("Error - Line: " + theError.Line + ", Char: " + theError.Character + "\nDescription: " + theError.Description);
 WScript.Quit(-1);
}

See Also

WshRemote Object | WshRemoteError Object | Character Property | Description Property | Line Property | SourceText Property | Number
Property | Source Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Name Property (WScript Object)
Returns the name of the WScript object (the host executable file).

object.Name

Arguments

object
WScript object.

Windows Script Host

Page 175 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Remarks

The Name property is a read-only string.

Example

The following JScript code shows how to use the Name property.

WScript.Echo (WScript.Name);

See Also

WScript Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Named Property
Returns the WshNamed object (a collection of named arguments).

Object.Named

Parameters

Object
WshArguments object.

Remarks

Windows Script Host

Page 176 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

The Named property returns the WshNamed collection, the collection of named arguments. Use the name of the argument to find out if the
argument was included and to access its value.

Example

The following code displays the number of named and unnamed command-line arguments.

<package>
<job id="JS">
<script language="JScript">

var argsNamed = WScript.Arguments.Named;
var argsUnnamed = WScript.Arguments.Unnamed;

WScript.Echo("There are " + argsNamed.length + " named arguments.");
WScript.Echo("There are " + argsUnnamed.length + " unnamed arguments.");

</script>
</job>

<job id="VBS">
<script language="VBScript">

Dim argsNamed, argsUnnamed
Set argsNamed = WScript.Arguments.Named
Set argsUnnamed = WScript.Arguments.Unnamed

WScript.Echo "There are " & argsNamed.Count & " named arguments."
WScript.Echo "There are " & argsUnnamed.Count & " unnamed arguments."

</script>
</job>
</package>

See Also

WshArguments Object | WshNamed Object | Unnamed Property

Page 177 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Number Property
Reports the error number representing a script error.

Object.Number

Arguments

Object
WshRemoteError object.

Remarks

That Number property returns an unsigned long integer.

Example

The following JScript code demonstrates how the WshRemoteError object exposes the error number.

[VBScript]

Dim Controller, RemoteScript
Set Controller = WScript.CreateObject("WSHController")
Set RemoteScript = Controller.CreateScript("test.js", "remoteserver")
WScript.ConnectObject RemoteScript, "remote_"
RemoteScript.Execute

Do While RemoteScript.Status <> 2
 WScript.Sleep 100
Loop

Windows Script Host

Page 178 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Sub remote_Error
 Dim theError
 Set theError = RemoteScript.Error
 WScript.Echo "Error " & theError.Number & " - Line: " & theError.Line & ", Char: " & theError.Character & vbCrLf & "Description: " & theError.Description
 WScript.Quit -1
End Sub

[JScript]

var Controller = WScript.CreateObject("WSHController");
var RemoteScript = Controller.CreateScript("test.js", "remoteserver");
WScript.ConnectObject(RemoteScript, "remote_");
RemoteScript.Execute();

while (RemoteScript.Status != 2) {
 WScript.Sleep(100);
}

function remote_Error()
{
 var theError = RemoteScript.Error;
 WScript.Echo("Error " + theError.Number + " - Line: " + theError.Line + ", Char: " + theError.Character + "\nDescription: " + theError.Description);
 WScript.Quit(-1);
}

See Also

WshRemote Object | WshRemoteError Object | Description Property | Line Property | Character Property| SourceText Property| Source
Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Page 179 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Path Property
Returns the name of the directory containing the host executable (CScript.exe or WScript.exe).

object.Path

Arguments

object
WScript object.

Remarks

The Path property is a read-only string.

Example

The following VBScript code echoes the directory where the executable file resides.

WScript.Echo (WScript.Path);

See Also

FullName Property | WScript Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

ProcessID Property

Windows Script Host

Page 180 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

The process ID (PID) for a process started with the WshScriptExec object.

Object.ProcessID

Parameters

Object
WshScriptExec object.

Remarks

You can use the ProcessID property to activate an application (as an argument to the AppActivate method).

Example

The following code uses the ProcessID property to activate the calculator and notepad applications.

[VBScript]

Sub delayedSendKeys(str)
 WScript.Sleep 100
 WshShell.SendKeys str
End Sub

Dim WshShell, oCalc, oNotepad
Set WshShell = CreateObject("WScript.Shell")
Set oCalc = WshShell.Exec("calc")
Set oNotepad = WshShell.Exec("notepad")
WScript.Sleep 500

WshShell.AppActivate oCalc.ProcessID
delayedSendKeys "1{+}1~"
delayedSendKeys "^C"
delayedSendKeys "%{F4}"

WshShell.AppActivate oNotepad.ProcessID
delayedSendKeys "1 {+} 1 = ^V"

[JScript]

Page 181 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

function delayedSendKeys(str)
{
 WScript.Sleep(100);
 WshShell.SendKeys(str);
}

var WshShell = new ActiveXObject("WScript.Shell");
var oCalc = WshShell.Exec("calc");
var oNotepad = WshShell.Exec("notepad");
WScript.Sleep(500);

WshShell.AppActivate(oCalc.ProcessID);
delayedSendKeys("1{+}1~");
delayedSendKeys("^C");
delayedSendKeys("%{F4}");

WshShell.AppActivate(oNotepad.ProcessID);
delayedSendKeys("1 {+} 1 = ^V");

See Also

WshScriptExec Object | AppActivate Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

RelativePath Property
Assigns a relative path to a shortcut, or identifies the relative path of a shortcut.

object.RelativePath

Windows Script Host

Page 182 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Arguments

object
WshShortcut object.

Remarks

String.

Example

The following code sets the relative path of a shortcut.

[VBScript]

Dim WshShell, WshShortcut
Set WshShell = WScript.CreateObject ("WScript.Shell")
Set WshShortcut = WshShell.CreateShortcut("MyScript.lnk")
WshShortcut.RelativePath = "C:\Scripts\"

[JScript]

var WshShell = WScript.CreateObject ("WScript.Shell");
var WshShortcut = WshShell.CreateShortcut("MyScript.lnk");
WshShortcut.RelativePath = "C:\\Scripts\\";

See Also

WshShortcut Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Page 183 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

ScriptFullName Property
Returns the full path of the currently running script.

object.ScriptFullName

Arguments

object
WScript object.

Remarks

The ScriptFullName property is a read-only string.

Example

The following example demonstrates the use of the ScriptFullName property.

<package>
 <job id="vbs">
 <script language="VBScript">
 set WshShell = WScript.CreateObject("WScript.Shell")
 strDesktop = WshShell.SpecialFolders("Desktop")
 set oShellLink = WshShell.CreateShortcut(strDesktop & "\Shortcut Script.lnk")
 oShellLink.TargetPath = WScript.ScriptFullName
 oShellLink.WindowStyle = 1
 oShellLink.Hotkey = "Ctrl+Alt+e"
 oShellLink.IconLocation = "notepad.exe, 0"
 oShellLink.Description = "Shortcut Script"
 oShellLink.WorkingDirectory = strDesktop
 oShellLink.Save
 set oUrlLink = WshShell.CreateShortcut(strDesktop & "\Microsoft Web Site.url")
 oUrlLink.TargetPath = "http://www.microsoft.com"
 oUrlLink.Save
 </script>

Windows Script Host

Page 184 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 </job>

 <job id="js">
 <script language="JScript">
 var WshShell = WScript.CreateObject("WScript.Shell");
 strDesktop = WshShell.SpecialFolders("Desktop");
 var oShellLink = WshShell.CreateShortcut(strDesktop + "\\Shortcut Script.lnk");
 oShellLink.TargetPath = WScript.ScriptFullName;
 oShellLink.WindowStyle = 1;
 oShellLink.Hotkey = "Ctrl+Alt+e";
 oShellLink.IconLocation = "notepad.exe, 0";
 oShellLink.Description = "Shortcut Script";
 oShellLink.WorkingDirectory = strDesktop;
 oShellLink.Save();
 var oUrlLink = WshShell.CreateShortcut(strDesktop + "\\Microsoft Web Site.url");
 oUrlLink.TargetPath = "http://www.microsoft.com";
 oUrlLink.Save();
 </script>
 </job>
</package>

See Also

Running Your Scripts | ScriptName Property | WScript Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

ScriptName Property
Returns the file name of the currently running script.

object.ScriptName

Windows Script Host

Page 185 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Arguments

object
WScript object.

Remarks

The ScriptName property is a read-only string.

Example

The following VBScript code echoes the name of the script being run.

WScript.Echo WScript.ScriptName

See Also

ScriptFullName Property | WScript Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Source Property
Identifies the COM object responsible for causing the script error.

Object.Source

Arguments

Windows Script Host

Page 186 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Object
WshRemoteError object.

Remarks

The Source property returns a string.

Example

The following JScript code demonstrates how the WshRemoteError object exposes the COM object responsible for causing the script error.

[VBScript]

Dim Controller, RemoteScript
Set Controller = WScript.CreateObject("WSHController")
Set RemoteScript = Controller.CreateScript("test.js", "remoteserver")
WScript.ConnectObject RemoteScript, "remote_"
RemoteScript.Execute

Do While RemoteScript.Status <> 2
 WScript.Sleep 100
Loop

Sub remote_Error
 Dim theError
 Set theError = RemoteScript.Error
 WScript.Echo "Error - Line: " & theError.Line & ", Char: " & theError.Character & vbCrLf & "Description: " & theError.Description & vbCrLf & "Source: " & theError.
 WScript.Quit -1
End Sub

[JScript]

var Controller = WScript.CreateObject("WSHController");
var RemoteScript = Controller.CreateScript("test.js", "remoteserver");
WScript.ConnectObject(RemoteScript, "remote_");
RemoteScript.Execute();

while (RemoteScript.Status != 2) {
 WScript.Sleep(100);
}

Page 187 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

function remote_Error()
{
 var theError = RemoteScript.Error;
 WScript.Echo("Error - Line: " + theError.Line + ", Char: " + theError.Character + "\nDescription: " + theError.Description + "\nSource: " + theError.
 WScript.Quit(-1);
}

See Also

WshRemote Object | WshRemoteError Object | Description Property | Line Property | Character Property| SourceText Property | Number
Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

SourceText Property
Contains the line of source code that caused an error.

Object.SourceText

Arguments

Object
WshRemoteError object.

Remarks

The SourceText property returns a string.

Windows Script Host

Page 188 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

It is not always possible to obtain the source text. If that is the case, the SourceText property returns an empty string.

Example

The following JScript code demonstrates how the WshRemoteError object exposes the line of source code that caused an error.

[VBScript]

Dim Controller, RemoteScript
Set Controller = WScript.CreateObject("WSHController")
Set RemoteScript = Controller.CreateScript("test.js", "remoteserver")
WScript.ConnectObject RemoteScript, "remote_"
RemoteScript.Execute

Do While RemoteScript.Status <> 2
 WScript.Sleep 100
Loop

Sub remote_Error
 Dim theError
 Set theError = RemoteScript.Error
 WScript.Echo "Error - Line: " & theError.Line & ", Char: " & theError.Character & vbCrLf & "Description: " & theError.Description & vbCrLf & "Source Text: " & theError.
 WScript.Quit -1
End Sub

[JScript]

var Controller = WScript.CreateObject("WSHController");
var RemoteScript = Controller.CreateScript("test.js", "remoteserver");
WScript.ConnectObject(RemoteScript, "remote_");
RemoteScript.Execute();

while (RemoteScript.Status != 2) {
 WScript.Sleep(100);
}

function remote_Error()
{
 var theError = RemoteScript.Error;
 WScript.Echo("Error - Line: " + theError.Line + ", Char: " + theError.Character + "\nDescription: " + theError.Description + "\nSource Text: "_+ theError.
 WScript.Quit(-1);
}

Page 189 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

See Also

WshRemote Object | WshRemoteError Object | Description Property | Line Property | Character Property| Number Property | Source Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

SpecialFolders Property
Returns a SpecialFolders object (a collection of special folders).

object.SpecialFolders(objWshSpecialFolders)

Arguments

object
WshShell object.

objWshSpecialFolders
The name of the special folder.

Remarks

The WshSpecialFolders object is a collection. It contains the entire set of Windows special folders, such as the Desktop folder, the Start
Menu folder, and the Personal Documents folder. The special folder name is used to index into the collection to retrieve the special folder you
want. The SpecialFolders property returns an empty string if the requested folder (strFolderName) is not available. For example, Windows
95 does not have an AllUsersDesktop folder and returns an empty string if strFolderNameis AllUsersDesktop.

The following special folders are available:

l AllUsersDesktop

Windows Script Host

Page 190 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

l AllUsersStartMenu
l AllUsersPrograms
l AllUsersStartup
l Desktop
l Favorites
l Fonts
l MyDocuments
l NetHood
l PrintHood
l Programs
l Recent
l SendTo
l StartMenu
l Startup
l Templates

Example

The following example demonstrates the use of the SpecialFolders property:

<package>
 <job id="vbs">
 <script language="VBScript">
 set WshShell = WScript.CreateObject("WScript.Shell")
 strDesktop = WshShell.SpecialFolders("Desktop")
 set oShellLink = WshShell.CreateShortcut(strDesktop & "\Shortcut Script.lnk")
 oShellLink.TargetPath = WScript.ScriptFullName
 oShellLink.WindowStyle = 1
 oShellLink.Hotkey = "Ctrl+Alt+e"
 oShellLink.IconLocation = "notepad.exe, 0"
 oShellLink.Description = "Shortcut Script"
 oShellLink.WorkingDirectory = strDesktop
 oShellLink.Save
 set oUrlLink = WshShell.CreateShortcut(strDesktop & "\Microsoft Web Site.url")
 oUrlLink.TargetPath = "http://www.microsoft.com"
 oUrlLink.Save
 </script>
 </job>

 <job id="js">

Page 191 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 <script language="JScript">
 var WshShell = WScript.CreateObject("WScript.Shell");
 strDesktop = WshShell.SpecialFolders("Desktop");
 var oShellLink = WshShell.CreateShortcut(strDesktop + "\\Shortcut Script.lnk");
 oShellLink.TargetPath = WScript.ScriptFullName;
 oShellLink.WindowStyle = 1;
 oShellLink.Hotkey = "Ctrl+Alt+e";
 oShellLink.IconLocation = "notepad.exe, 0";
 oShellLink.Description = "Shortcut Script";
 oShellLink.WorkingDirectory = strDesktop;
 oShellLink.Save();
 var oUrlLink = WshShell.CreateShortcut(strDesktop + "\\Microsoft Web Site.url");
 oUrlLink.TargetPath = "http://www.microsoft.com";
 oUrlLink.Save();
 </script>
 </job>
</package>

See Also

Running Your Scripts | WshSpecialFolders Object | WshShell Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Status Property (WshRemote)
Reports the current status of the remote script.

Object.Status

Arguments

Windows Script Host

Page 192 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Object
WshRemote object.

Remarks

The Status property returns a read-only enumerated data type.

Values

The Status property returns one of three possible values.

Example

The following JScript code demonstrates how to use the Status property in a test block that checks to see if a remote script terminated
normally.

[VBScript]

Dim Controller, RemoteScript
Set Controller = WScript.CreateObject("WSHController")
Set RemoteScript = Controller.CreateScript("test.js", "remoteserver")
RemoteScript.Execute

Do While RemoteScript.Status <> 2
 WScript.Sleep 100
Loop

[JScript]

var Controller = WScript.CreateObject("WSHController");
var RemoteScript = Controller.CreateScript("test.js", "remoteserver");
RemoteScript.Execute();

Return Value Numeric value Description
NoTask 0 The remote script object has been created but has not yet executed.
Running 1 The remote script object is currently running.
Finished 2 The remote script object has finished running.

Page 193 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

while (RemoteScript.Status != 2) {
 WScript.Sleep(100);
}

See Also

WshController Object | WshRemote Object | Error Property | Execute Method | Terminate Method | Start Event | End Event | Error Event

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Status Property (WshScriptExec)
Provides status information about a script run with the Exec() method.

Object.Status

Arguments

Object
WshScriptExec object.

Remarks

The Status property is used when a program is run asynchronously.

Return Values

The Status property returns a value from an enumerated type.

Windows Script Host

Page 194 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WshRunning (= 0)
The job is still running.

WshFinished (= 1)
The job has completed.

Example

The following code runs calc.exe and echoes the final status to the screen.

[VBScript]

Dim WshShell, oExec
Set WshShell = CreateObject("WScript.Shell")

Set oExec = WshShell.Exec("calc")

Do While oExec.Status = 0
 WScript.Sleep 100
Loop

WScript.Echo oExec.Status

[JScript]

var WshShell = new ActiveXObject("WScript.Shell");
var oExec = WshShell.Exec("calc");

while (oExec.Status == 0)
{
 WScript.Sleep(100);
}

WScript.Echo(oExec.Status);

See Also

Exec Method | WshScriptExec Object

Page 195 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

StdErr Property (WScript)
Exposes the write-only error output stream for the current script.

object.StdErr

Arguments

object
WScript object.

Remarks

The StdErr property returns an object representing the standard error stream. The StdIn, StdOut, and StdErr streams can be accessed while
using CScript.exe only. Attempting to access these streams while using WScript.exe produces an error.

See Also

Error Messages | WScript Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Windows Script Host

Page 196 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

StdErr Property (WshScriptExec)
Provides access to the stderr output stream of the Exec object.

Object.StdErr

Arguments

Object
WshScriptExec object.

Remarks

Use the StdErr property to retrieve data sent to the stderr stream from a process started with Exec.

Example

The following code demonstrates the StdErr object by attempting to execute a non-existent command and displaying the results.

[VBScript]

Dim WshShell, oExec
Set WshShell = CreateObject("WScript.Shell")
Set oExec = WshShell.Exec("%comspec% /c dire")

Function ReadAllFromAny(oExec)

 If Not oExec.StdOut.AtEndOfStream Then
 ReadAllFromAny = oExec.StdOut.ReadAll
 Exit Function
 End If

 If Not oExec.StdErr.AtEndOfStream Then
 ReadAllFromAny = "STDERR: " + oExec.StdErr.ReadAll
 Exit Function
 End If

 ReadAllFromAny = -1
End Function

Page 197 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Dim allInput, tryCount

allInput = ""
tryCount = 0

Do While True

 Dim input
 input = ReadAllFromAny(oExec)

 If -1 = input Then
 If tryCount > 10 And oExec.Status = 1 Then
 Exit Do
 End If
 tryCount = tryCount + 1
 WScript.Sleep 100
 Else
 allInput = allInput & input
 tryCount = 0
 End If
Loop

WScript.Echo allInput

[JScript]

var WshShell = new ActiveXObject("WScript.Shell");
var oExec = WshShell.Exec("%comspec% /c dire");

function ReadAllFromAny(oExec)
{
 if (!oExec.StdOut.AtEndOfStream)
 return oExec.StdOut.ReadAll();

 if (!oExec.StdErr.AtEndOfStream)
 return "STDERR: " + oExec.StdErr.ReadAll();

 return -1;
}

var allInput = "";
var tryCount = 0;

Page 198 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

while (true)
{
 var input = ReadAllFromAny(oExec);
 if (-1 == input)
 {
 if (tryCount++ > 10 && oExec.Status == 1)
 break;
 WScript.Sleep(100);
 }
 else
 {
 allInput += input;
 tryCount = 0;
 }
}

WScript.Echo(allInput);

See Also

WshScriptExec Object | StdIn Property | StdOut Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

StdIn Property (WScript)
Exposes the read-only input stream for the current script.

object.StdIn

Windows Script Host

Page 199 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Arguments

object
WScript object.

Remarks

The StdIn property returns an object representing the standard input stream. The StdIn, StdOut, and StdErr streams can be accessed while
using CScript.exe only. Attempting to access these streams while using WScript.exe produces an error.

See Also

Error Messages | WScript Object | Read Method | ReadAll Method | ReadLine Method | Skip Method | SkipLine Method | AtEndOfLine
Property | Close Method | Column Property | Line Property (WScript)

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

StdIn Property (WshScriptExec)
Exposes the stdin input stream of the Exec object.

Object.StdIn

Arguments

Object
WshScriptExec object.

Windows Script Host

Page 200 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Remarks

Use the StdIn property to pass data to a process started using Exec.

Example

The following code starts a batch file and waits for the user input prompt. After entering the needed data through the StdIn stream, the batch
file will be able to complete.

[VBScript]

Dim WshShell, oExec, input
Set WshShell = CreateObject("WScript.Shell")
Set oExec = WshShell.Exec("test.bat")
input = ""

Do While True

 If Not oExec.StdOut.AtEndOfStream Then
 input = input & oExec.StdOut.Read(1)
 If InStr(input, "Press any key") <> 0 Then Exit Do
 End If
 WScript.Sleep 100
Loop

oExec.StdIn.Write VbCrLf

Do While oExec.Status <> 1
 WScript.Sleep 100
Loop

[JScript]

var WshShell = new ActiveXObject("WScript.Shell");
var oExec = WshShell.Exec("test.bat");
var input = "";

while (true)
{
 if (!oExec.StdOut.AtEndOfStream)
 {

Page 201 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 input += oExec.StdOut.Read(1);
 if (input.indexOf("Press any key") != -1)
 break;
 }
 WScript.Sleep(100);
}

oExec.StdIn.Write("\n");

while (oExec.Status != 1)
 WScript.Sleep(100);

See Also

WshScriptExec Object | StdIn Property | StdErr Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

StdOut Property (WScript)
Exposes the write-only output stream for the current script.

object.StdOut

Arguments

object
WScript object.

Remarks

Windows Script Host

Page 202 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

The StdOut property returns an object representing the standard output stream. The StdIn, StdOut, and StdErr streams can be accessed
while using CScript.exe only. Attempting to access these streams while using WScript.exe produces an error.

See Also

Error Messages | WScript Object | Write Method | WriteBlankLines Method | WriteLine Method | Close Method | Column Property | Line
Property (WScript)

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

StdOut Property (WshScriptExec)
Exposes the write-only stdout output stream of the Exec object.

Object.StdOut

Arguments

Object
WshScriptExec object.

Remarks

The StdOut property contains a read-only copy of any information the script may have sent to the standard output.

Example

The following code starts a batch file and waits for the user input prompt. After entering the needed data through the StdIn stream, the batch

Windows Script Host

Page 203 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

file will be able to complete.

[VBScript]

Dim WshShell, oExec, input
Set WshShell = CreateObject("WScript.Shell")
Set oExec = WshShell.Exec("test.bat")
input = ""

Do While True

 If Not oExec.StdOut.AtEndOfStream Then
 input = input & oExec.StdOut.Read(1)
 If InStr(input, "Press any key") <> 0 Then Exit Do
 End If
 WScript.Sleep 100
Loop

oExec.StdIn.Write VbCrLf

Do While oExec.Status <> 1
 WScript.Sleep 100
Loop

[JScript]

var WshShell = new ActiveXObject("WScript.Shell");
var oExec = WshShell.Exec("test.bat");
var input = "";

while (true)
{
 if (!oExec.StdOut.AtEndOfStream)
 {
 input += oExec.StdOut.Read(1);
 if (input.indexOf("Press any key") != -1)
 break;
 }
 WScript.Sleep(100);
}

oExec.StdIn.Write("\n");

Page 204 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

while (oExec.Status != 1)
 WScript.Sleep(100);

See Also

WshScriptExec Object | StdIn Property | StdErr Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

TargetPath Property
The path to the shortcut's executable.

object.TargetPath

Arguments

object
WshShortcut or WshUrlShortcut object.

Remarks

String.

This property is for the shortcut's target path only. Any arguments to the shortcut must be placed in the Argument's property.

Example

Windows Script Host

Page 205 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

The following example demonstrates the use of the TargetPath property:

<package>
 <job id="vbs">
 <script language="VBScript">
 set WshShell = WScript.CreateObject("WScript.Shell")
 strDesktop = WshShell.SpecialFolders("Desktop")
 set oShellLink = WshShell.CreateShortcut(strDesktop & "\Shortcut Script.lnk")
 oShellLink.TargetPath = WScript.ScriptFullName
 oShellLink.WindowStyle = 1
 oShellLink.Hotkey = "Ctrl+Alt+e"
 oShellLink.IconLocation = "notepad.exe, 0"
 oShellLink.Description = "Shortcut Script"
 oShellLink.WorkingDirectory = strDesktop
 oShellLink.Save
 set oUrlLink = WshShell.CreateShortcut(strDesktop & "\Microsoft Web Site.url")
 oUrlLink.TargetPath = "http://www.microsoft.com"
 oUrlLink.Save
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshShell = WScript.CreateObject("WScript.Shell");
 strDesktop = WshShell.SpecialFolders("Desktop");
 var oShellLink = WshShell.CreateShortcut(strDesktop + "\\Shortcut Script.lnk");
 oShellLink.TargetPath = WScript.ScriptFullName;
 oShellLink.WindowStyle = 1;
 oShellLink.Hotkey = "Ctrl+Alt+e";
 oShellLink.IconLocation = "notepad.exe, 0";
 oShellLink.Description = "Shortcut Script";
 oShellLink.WorkingDirectory = strDesktop;
 oShellLink.Save();
 var oUrlLink = WshShell.CreateShortcut(strDesktop + "\\Microsoft Web Site.url");
 oUrlLink.TargetPath = "http://www.microsoft.com";
 oUrlLink.Save();
 </script>
 </job>
</package>

See Also

Running Your Scripts | WshShortcut Object | WshUrlShortcut Object

Page 206 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Unnamed Property
Returns the WshUnnamed object (a collection of unnamed arguments).

Object.Unnamed

Parameters

Object
WshArguments object.

Remarks

The Unnamed property returns the WshUnnamed collection, the collection of unnamed arguments. The arguments are presented in the order
that they were entered on the command line. The first unnamed argument at index 0.

Example

The following code displays the number of named and unnamed command-line arguments.

<package>
<job id="JS">
<script language="JScript">

var argsNamed = WScript.Arguments.Named;
var argsUnnamed = WScript.Arguments.Unnamed;

WScript.Echo("There are " + argsNamed.length + " named arguments.");

Windows Script Host

Page 207 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WScript.Echo("There are " + argsUnnamed.length + " unnamed arguments.");

</script>
</job>

<job id="VBS">
<script language="VBScript">

Dim argsNamed, argsUnnamed
Set argsNamed = WScript.Arguments.Named
Set argsUnnamed = WScript.Arguments.Unnamed

WScript.Echo "There are " & argsNamed.Count & " named arguments."
WScript.Echo "There are " & argsUnnamed.Count & " unnamed arguments."

</script>
</job>
</package>

See Also

WshArguments Object | WshUnnamed Object | Named Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

UserDomain Property
Returns a user's domain name.

object.UserDomain

Windows Script Host

Page 208 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Arguments

object
WshNetwork object.

Remarks

String.

The UserDomain property does not work on Windows98 and Windows ME unless the USERDOMAIN environment variable is set. The
variable is not set by default.

Example

The following example demonstrates the use of the UserDomain property:

<package>
 <job id="vbs">
 <script language="VBScript">
 Set WshNetwork = WScript.CreateObject("WScript.Network")
 WScript.Echo "Domain = " & WshNetwork.UserDomain
 WScript.Echo "Computer Name = " & WshNetwork.ComputerName
 WScript.Echo "User Name = " & WshNetwork.UserName
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshNetwork = WScript.CreateObject("WScript.Network");
 WScript.Echo("Domain = " + WshNetwork.UserDomain);
 WScript.Echo("Computer Name = " + WshNetwork.ComputerName);
 WScript.Echo("User Name = " + WshNetwork.UserName);
 }
 </script>
 </job>
</package>

See Also

Running Your Scripts | WshNetwork Object

Page 209 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

UserName Property
Returns the name of a user.

object.UserName

Arguments

object
WshNetwork object.

Remarks

String.

If you are using this property in a login script, see Creating an Automated Login Script.

Example

The following example demonstrates the use of the UserName property:

<package>
 <job id="vbs">
 <script language="VBScript">
 Set WshNetwork = WScript.CreateObject("WScript.Network")
 WScript.Echo "Domain = " & WshNetwork.UserDomain
 WScript.Echo "Computer Name = " & WshNetwork.ComputerName
 WScript.Echo "User Name = " & WshNetwork.UserName

Windows Script Host

Page 210 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshNetwork = WScript.CreateObject("WScript.Network");
 WScript.Echo("Domain = " + WshNetwork.UserDomain);
 WScript.Echo("Computer Name = " + WshNetwork.ComputerName);
 WScript.Echo("User Name = " + WshNetwork.UserName);
 }
 </script>
 </job>
</package>

See Also

Running Your Scripts | WshNetwork Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Version Property
Returns the version of Windows Script Host.

object.Version

Arguments

object
WScript object.

Windows Script Host

Page 211 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Remarks

String.

Example

The following VBScript code echoes the current version of Windows Script Host.

WScript.Echo WScript.Version

See Also

WScript Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WindowStyle Property
Assigns a window style to a shortcut, or identifies the type of window style used by a shortcut.

object.WindowStyle = intWindowStyle

Arguments

object
WshShortcut object.

intWindowStyle
Sets the window style for the program being run.

Windows Script Host

Page 212 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Remarks

The WindowStyle property returns an integer.

The following table lists the available settings for intWindowStyle.

Example

The following example demonstrates the use of the WindowStyle property:

<package>
 <job id="vbs">
 <script language="VBScript">
 set WshShell = WScript.CreateObject("WScript.Shell")
 strDesktop = WshShell.SpecialFolders("Desktop")
 set oShellLink = WshShell.CreateShortcut(strDesktop & "\Shortcut Script.lnk")
 oShellLink.TargetPath = WScript.ScriptFullName
 oShellLink.WindowStyle = 1
 oShellLink.Hotkey = "Ctrl+Alt+e"
 oShellLink.IconLocation = "notepad.exe, 0"
 oShellLink.Description = "Shortcut Script"
 oShellLink.WorkingDirectory = strDesktop
 oShellLink.Save
 set oUrlLink = WshShell.CreateShortcut(strDesktop & "\Microsoft Web Site.url")
 oUrlLink.TargetPath = "http://www.microsoft.com"
 oUrlLink.Save
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshShell = WScript.CreateObject("WScript.Shell");
 strDesktop = WshShell.SpecialFolders("Desktop");
 var oShellLink = WshShell.CreateShortcut(strDesktop + "\\Shortcut Script.lnk");

intWindowStyle Description
1 Activates and displays a window. If the window is minimized or maximized, the system restores it to

its original size and position.
3 Activates the window and displays it as a maximized window.
7 Minimizes the window and activates the next top-level window.

Page 213 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 oShellLink.TargetPath = WScript.ScriptFullName;
 oShellLink.WindowStyle = 1;
 oShellLink.Hotkey = "Ctrl+Alt+e";
 oShellLink.IconLocation = "notepad.exe, 0";
 oShellLink.Description = "Shortcut Script";
 oShellLink.WorkingDirectory = strDesktop;
 oShellLink.Save();
 var oUrlLink = WshShell.CreateShortcut(strDesktop + "\\Microsoft Web Site.url");
 oUrlLink.TargetPath = "http://www.microsoft.com";
 oUrlLink.Save();
 </script>
 </job>
</package>

See Also

Running Your Scripts | WshShortcut Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WorkingDirectory Property
Assign a working directory to a shortcut, or identifies the working directory used by a shortcut.

object.WorkingDirectory = strWorkingDirectory

Arguments

object
WshShortcut object.

strWorkingDirectory

Windows Script Host

Page 214 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

String. Directory in which the shortcut starts.

Remarks

String.

Example

The following example demonstrates the use of the WorkingDirectory property:

<package>
 <job id="vbs">
 <script language="VBScript">
 set WshShell = WScript.CreateObject("WScript.Shell")
 strDesktop = WshShell.SpecialFolders("Desktop")
 set oShellLink = WshShell.CreateShortcut(strDesktop & "\Shortcut Script.lnk")
 oShellLink.TargetPath = WScript.ScriptFullName
 oShellLink.WindowStyle = 1
 oShellLink.Hotkey = "Ctrl+Alt+e"
 oShellLink.IconLocation = "notepad.exe, 0"
 oShellLink.Description = "Shortcut Script"
 oShellLink.WorkingDirectory = strDesktop
 oShellLink.Save
 set oUrlLink = WshShell.CreateShortcut(strDesktop & "\Microsoft Web Site.url")
 oUrlLink.TargetPath = "http://www.microsoft.com"
 oUrlLink.Save
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshShell = WScript.CreateObject("WScript.Shell");
 strDesktop = WshShell.SpecialFolders("Desktop");
 var oShellLink = WshShell.CreateShortcut(strDesktop + "\\Shortcut Script.lnk");
 oShellLink.TargetPath = WScript.ScriptFullName;
 oShellLink.WindowStyle = 1;
 oShellLink.Hotkey = "Ctrl+Alt+e";
 oShellLink.IconLocation = "notepad.exe, 0";
 oShellLink.Description = "Shortcut Script";
 oShellLink.WorkingDirectory = strDesktop;
 oShellLink.Save();
 var oUrlLink = WshShell.CreateShortcut(strDesktop + "\\Microsoft Web Site.url");

Page 215 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 oUrlLink.TargetPath = "http://www.microsoft.com";
 oUrlLink.Save();
 </script>
 </job>
</package>

See Also

Running Your Scripts

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Methods
In this Section

AddPrinterConnection Method
Adds a DOS-style printer connection to your computer.

AddWindowsPrinterConnection Method
Adds a Windows-style printer connection to your computer.

AppActivate Method
Activates an application window.

Close Method
Closes an open stream.

ConnectObject Method
Connects an object's event sources to functions with a given prefix.

Count Method
Returns the number of switches in the WshNamed or WshUnnamed objects.

CreateObject Method

Windows Script Host

Page 216 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Creates an object specified by the strProgID parameter.
CreateScript Method

Creates a WshRemote object (an object that represents an instance of a script running in a remote process).
CreateShortcut Method

Creates an object reference to a shortcut or URLshortcut.
DisconnectObject Method

Disconnects a previously connected object from Windows Script Host.
Echo Method

Sends output to a dialog box or the console.
EnumNetworkDrives Method

Returns the current network drive mappings.
EnumPrinterConnections Method

Returns the current network printer mappings.
Exec Method

Runs an application in a child command-shell, providing access to the stdin/stdout/stderr channels, and the sharing of environment
variables.

Execute Method
Starts execution of a remote script object.

Exists Method
Indicates whether a specific key value exists in the WshNamed object.

ExpandEnvironmentStrings Method
Expands the requested environment variable from the running process and returns the result string.

GetObject Method
Retrieves an Automation object from a file or an object specified by the strProgID parameter.

getResource Method
Returns the value of a resource defined with the resource element.

LogEvent Method
Logs an event in the Windows NT event log or WSH.log file.

MapNetworkDrive Method
Maps the share point specified by strRemoteName to the local resource name strLocalName.

Popup Method
Displays a pop-up message box window that contains the message contained in strText.

Quit Method
Quits execution with a specified error code.

Read Method
Reads a specified number of characters from an input stream and returns the resulting string.

ReadAll Method

Page 217 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Reads an entire input stream and returns the resulting string.
ReadLine Method

Reads an entire line (up to, but not including, the newline character) from an input stream and returns the resulting string.
RegDelete Method

Deletes from the registry the key or value named by strName.
RegRead Method

Returns the registry key or value named by strName.
RegWrite Method

Sets the registry key or value named by strName.
Remove Method

Deletes the environment variable specified by strName.
RemoveNetworkDrive Method

Removes the current resource connection denoted by strName.
RemovePrinterConnection Method

Removes the current resource connection denoted by strName.
Run Method

Creates a new process that executes strCommand.
Save Method

Saves a shortcut to the specified location.
SendKeys Method

Sends one or more keystrokes to the active window (as if typed on the keyboard).
SetDefaultPrinter Method

Sets the default printer to the remote printer specified.
ShowUsage Method

Displays information about how a script should be used.
Skip Method

Skips a specified number of characters when reading an input stream.
SkipLine Method

Skips the next line when reading an input stream.
Sleep Method

Places the script process into an inactive state for the number of milliseconds specified and then continues execution.
Terminate Method (WshScriptExec)

Instructs the script engine to end the process started by the Exec method.
Write Method

Writes a specified string to an output stream.
WriteBlankLines Method

Writes a specified number of newline characters to an output stream.

Page 218 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WriteLine Method
Writes a specified string and newline character to an output stream.

Related Sections

WSH Language
List of elements that make up WSH Reference.

WSH Basics
Learn the basics of WSH.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

AddPrinterConnection Method
Adds a remote MS-DOS-based printer connection to your computer system.

object.AddPrinterConnection(strLocalName, strRemoteName[,bUpdateProfile][,strUser][,strPassword])

Arguments

object
WshNetwork object.

strLocalName
Sting value indicating the local name to assign to the connected printer.

strRemoteName
Sting value indicating the name of the remote printer.

bUpdateProfile
Optional. Boolean value indicating whether the printer mapping is stored in the current user's profile. If bUpdateProfile is supplied and
is true, the mapping is stored in the user profile. The default value is false.

Windows Script Host

Page 219 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

strUser
Optional. String value indicating the user name. If you are mapping a remote printer using the profile of someone other than current
user, you can specify strUser and strPassword.

strPassword
Optional. String value indicating the user password. If you are mapping a remote printer using the profile of someone other than current
user, you can specify strUser and strPassword.

Remarks

The AddPrinterConnection method adds a network printer to an MS-DOS printer port, such as LPT1. You cannot use this method to add a
remote Windows-based printer connection. To add a remote Windows-based printer connection, use the AddWindowsPrinterConnection
method.

Example

The following code uses the AddPrinterConnection method to connect a network printer to LPT1.

[VBScript]

Set WshNetwork = WScript.CreateObject("WScript.Network")
WshNetwork.AddPrinterConnection "LPT1", "\\Server\Print1"

[JScript]

var WshNetwork = WScript.CreateObject("WScript.Network");
WshNetwork.AddPrinterConnection ("LPT1", "\\\\Server\\Print1");

See Also

WshNetwork Object | AddWindowsPrinterConnection Method | EnumPrinterConnections Method | RemovePrinterConnection Method |
SetDefaultPrinter Method

© 2001 Microsoft Corporation. All rights reserved.

Page 220 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Build: Topic Version 5.6.9309.1546

AddWindowsPrinterConnection Method
Adds a Windows-based printer connection to your computer system.

Windows NT/2000:
object.AddWindowsPrinterConnection(
 strPrinterPath
)

Windows 9x/Me:
object.AddWindowsPrinterConnection(
 strPrinterPath,
 strDriverName[,strPort]
)

Arguments

object
WshNetwork object.

strPrinterPath
String value indicating the path to the printer connection.

strDriverName
String value indicating the name of the driver (ignored if used on Windows NT/Windows 2000).

strPort
Optional. String value specifying a printer port for the printer connection (ignored on Windows NT/Windows 2000).

Remarks

Using this method is similar to using the Printer option on Control Panel to add a printer connection. Unlike the AddPrinterConnection
method, this method allows you to create a printer connection without directing it to a specific port, such as LPT1. If the connection fails, an
error is thrown. In Windows 9x/Me, the printer driver must already be installed on the machine for the AddWindowsPrinterConnection
method to work. If the driver is not installed, Windows returns an error message.

Windows Script Host

Page 221 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Example 1

The following code uses the AddWindowsPrinterConnection method to connect a network printer to a Windows NT/2000 computer
system.

[VBScript]

Set WshNetwork = WScript.CreateObject("WScript.Network")
PrinterPath = "\\printserv\DefaultPrinter"
WshNetwork.AddWindowsPrinterConnection PrinterPath

[JScript]

var WshNetwork = WScript.CreateObject("WScript.Network");
var PrinterPath = "\\\\printserv\\DefaultPrinter";
WshNetwork.AddWindowsPrinterConnection(PrinterPath);

Example 2

The following code uses the AddWindowsPrinterConnection method to connect a network printer to a Windows 9x/Me computer system.

[VBScript]

Set WshNetwork = WScript.CreateObject("WScript.Network")
PrinterPath = "\\printserv\DefaultPrinter"
PrinterDriver = "Lexmark Optra S 1650"
WshNetwork.AddWindowsPrinterConnection PrinterPath, PrinterDriver

[JScript]

var WshNetwork = WScript.CreateObject("WScript.Network");
var PrinterPath = "\\\\printserv\\DefaultPrinter";
var PrinterDriver = "Lexmark Optra S 1650";
WshNetwork.AddWindowsPrinterConnection(PrinterPath, PrinterDriver);

See Also

WshNetwork Object | AddPrinterConnection Method | EnumPrinterConnections Method | RemovePrinterConnection Method |
SetDefaultPrinter Method

Page 222 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

AppActivate Method
Activates an application window.

object.AppActivate title

Arguments

object
WshShell object.

title
Specifies which application to activate. This can be a string containing the title of the application (as it appears in the title bar) or the
application's Process ID.

Remarks

The AppActivate method returns a Boolean value that identifies whether the procedure call is successful. This method changes the focus to
the named application or window, but it does not affect whether it is maximized or minimized. Focus moves from the activated application
window when the user takes action to change the focus (or closes the window).

In determining which application to activate, the specified title is compared to the title string of each running application. If no exact match
exists, any application whose title string begins with title is activated. If an application still cannot be found, any application whose title string
ends with title is activated. If more than one instance of the application named by title exists, one instance is arbitrarily activated.

Example

The following example demonstrates the use of a single .wsf file for two jobs in different script languages (VBScript and JScript). The

Windows Script Host

Page 223 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

functionality of both jobs is the same — each runs the Windows calculator and sends it keystrokes to execute a simple calculation.

The following example starts the Windows calculator and uses AppActivate to ensure that the calculator is at the top.

<package>
 <job id="vbs">
 <script language="VBScript">
 set WshShell = WScript.CreateObject("WScript.Shell")
 WshShell.Run "calc"
 WScript.Sleep 100
 WshShell.AppActivate "Calculator"
 WScript.Sleep 100
 WshShell.SendKeys "1{+}"
 WScript.Sleep 500
 WshShell.SendKeys "2"
 WScript.Sleep 500
 WshShell.SendKeys "~"
 WScript.Sleep 500
 WshShell.SendKeys "*3"
 WScript.Sleep 500
 WshShell.SendKeys "~"
 WScript.Sleep 2500
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshShell = WScript.CreateObject("WScript.Shell");
 WshShell.Run("calc");
 WScript.Sleep(100);
 WshShell.AppActivate("Calculator");
 WScript.Sleep(100);
 WshShell.SendKeys("1{+}");
 WScript.Sleep(500);
 WshShell.SendKeys("2");
 WScript.Sleep(500);
 WshShell.SendKeys("~");
 WScript.Sleep(500);
 WshShell.SendKeys("*3");
 WScript.Sleep(500);
 WshShell.SendKeys("~");
 WScript.Sleep(2500);
 </script>

Page 224 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 </job>
</package>

See Also

Running Your Scripts | WshShell Object | SendKeys Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Close Method
Closes a text stream.

object.Close

Arguments

object
StdIn, StdOut, or StdErr text stream objects.

Remarks

The StdIn, StdOut, and StdErr properties and methods work when running the script with the CScript.exe host executable file only. An
error is returned when run with WScript.exe. It is not necessary to close standard streams; they close automatically when the process ends. If
you close a standard stream, be aware that any other pointers to that standard stream become invalid. This method is provided for
compatibility with the TextStream object.

See Also

Windows Script Host

Page 225 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

StdErr Property | StdIn Property | StdOut Property | Error Messages

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

ConnectObject Method
Connects the object's event sources to functions with a given prefix.

object.ConnectObject(strObject, strPrefix)

Arguments

object
WScript object.

strObject
Required. String value indicating the name of the object you want to connect.

strPrefix
Required. String value indicating the function prefix.

Remarks

Connected objects are useful when you want to sync an object's events. The ConnectObject method connects the object's outgoing interface
to the script file after creating the object. Event functions are a combination of this prefix and the event name.

Example

The following example demonstrates using the ConnectObject method to connect to the WshRemote object's Error event.

[VBScript]

Windows Script Host

Page 226 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Dim Controller, RemoteScript
Set Controller = WScript.CreateObject("WSHController")
Set RemoteScript = Controller.CreateScript("test.js", "remoteserver")
WScript.ConnectObject RemoteScript, "remote_"
RemoteScript.Execute

Do While RemoteScript.Status <> 2
 WScript.Sleep 100
Loop

Sub remote_Error
 Dim theError
 Set theError = RemoteScript.Error
 WScript.Echo "Error " & theError.Number & " - Line: " & theError.Line & ", Char: " & theError.Character & vbCrLf & "Description: " & theError.Description
 WScript.Quit -1
End Sub

[JScript]

var Controller = WScript.CreateObject("WSHController");
var RemoteScript = Controller.CreateScript("test.js", "remoteserver");
WScript.ConnectObject(RemoteScript, "remote_");
RemoteScript.Execute();

while (RemoteScript.Status != 2) {
 WScript.Sleep(100);
}

function remote_Error()
{
 var theError = RemoteScript.Error;
 WScript.Echo("Error " + theError.Number + " - Line: " + theError.Line + ", Char: " + theError.Character + "\nDescription: " + theError.Description);
 WScript.Quit(-1);
}

See Also

WScript Object | DisconnectObject Method | CreateObject Method | GetObject Method

Page 227 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Count Method
Returns the number of switches in the WshNamed or WshUnnamed objects.

object.Count

Arguments

object
Arguments object.

Remarks

The Count method returns an integer value. The Count method is primarily intended for VBScript users. JScript users should generally use
the length property instead.

Example (WshNamed)

The following example demonstrates the Count method using the WshNamed object. Begin by typing the following text at the Command
Prompt.

myScript.vbs /c:"WSH is a wonderful thing" /s:"scripts are wonderful"

Next, add the following VBScript code.

For i = 0 to WScript.Arguments.Count-1
 WScript.Echo WScript.Arguments.Named(i)
next i

Following is the result.

Windows Script Host

Page 228 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WSH is a wonderful thing
scripts are wonderful

Example (WshUnnamed)

The following example demonstrates the Count method using the WshUnnamed object. Begin by typing the following text at the command
line.

myscript.vbs "WSH is a wonderful thing" "scripts are wonderful"

Next, add the following VBScript code.

For i = 0 to WScript.Arguments.Count-1
 WScript.Echo WScript.Arguments.Unnamed(i)
next i

Following is the result.

WSH is a wonderful thing
scripts are wonderful

See Also

Arguments Property | WshNamed Object | WshUnnamed Object | Item Property | Exists Method | Length Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

CreateObject Method

Windows Script Host

Page 229 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Creates a COM object.

object.CreateObject(strProgID[,strPrefix])

Arguments

object
WScript object.

strProgID
String value indicating the programmatic identifier (ProgID) of the object you want to create.

strPrefix
Optional. String value indicating the function prefix.

Remarks

Objects created with the CreateObject method using the strPrefix argument are connected objects. These are useful when you want to sync
an object's events. The object's outgoing interface is connected to the script file after the object is created. Event functions are a combination
of this prefix and the event name. If you create an object and do not supply the strPrefix argument, you can still sync events on the object by
using the ConnectObject method. When the object fires an event, WSH calls a subroutine with strPrefix attached to the beginning of the
event name. For example, if strPrefix is MYOBJ and the object fires an event named OnBegin, Windows Script Host calls the
MYOBJ_OnBegin subroutine located in the script. The CreateObject method returns a pointer to the object's IDispatch interface.

Example

The following VBScript code uses the CreateObject method to create a WshNetwork object:

Set WshNetwork = WScript.CreateObject("WScript.Network")

See Also

WScript Object | GetObject Method | ConnectObject Method | DisconnectObject Method

© 2001 Microsoft Corporation. All rights reserved.

Page 230 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Build: Topic Version 5.6.9309.1546

CreateScript Method
Creates a WshRemote object.

object.CreateScript(CommandLine,[MachineName])

Parameters

object
WshController Object.

Commandline
Required. String value indicating the script's path and switches as they would be typed at the command prompt. The path to the script
should appear as seen from the controller computer system rather than the computer system on which you want to run the script.

MachineName
Optional. String value indicating the name of the remote computer system (the computer on which you want to run the remote script). It
is specified in the Uniform Naming Convention (UNC).

Remarks

The CreateScript method returns a handle to an instance of a WshRemote object. The path part of the script name does not need to be local
— it can refer to a script on a network share. This makes it possible to sit at one computer system, retrieve a script from another computer
system, and run it on a third computer system. If a machine name is not provided, the remote script object runs on the controller computer
system (this is the default). If a machine name is provided, the remote script object runs on the named computer system. The CreateScript
method establishes a connection with the remote computer system and sets it up to run the script, but the script does not actually start until
you call the Execute method of the WshRemote object.

Example

The following example demonstrates how the CreateScript method of the WshController object is used to create a WshRemote object (an
instance of a remote script).

[VBScript]

Windows Script Host

Page 231 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Dim Controller, RemoteScript
Set Controller = WScript.CreateObject("WSHController")
Set RemoteScript = Controller.CreateScript("test.js", "remoteserver")
WScript.ConnectObject RemoteScript, "remote_"
RemoteScript.Execute

Do While RemoteScript.Status <> 2
 WScript.Sleep 100
Loop

WScript.DisconnectObject RemoteScript

Sub remote_Error
 Dim theError
 Set theError = RemoteScript.Error
 WScript.Echo "Error " & theError.Number & " - Line: " & theError.Line & ", Char: " & theError.Character & vbCrLf & "Description: " & theError.Description
 WScript.Quit -1
End Sub

[JScript]

var Controller = WScript.CreateObject("WSHController");
var RemoteScript = Controller.CreateScript("test.js", "remoteserver");
WScript.ConnectObject(RemoteScript, "remote_");
RemoteScript.Execute();

while (RemoteScript.Status != 2) {
 WScript.Sleep(100);
}

WScript.DisconnectObject(RemoteScript);

function remote_Error()
{
 var theError = RemoteScript.Error;
 WScript.Echo("Error " + theError.Number + " - Line: " + theError.Line + ", Char: " + theError.Character + "\nDescription: " + theError.Description);
 WScript.Quit(-1);
}

See Also

CreateObject Method | CreateScript Method | WshRemote Object | Execute Method

Page 232 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

CreateShortcut Method
Creates a new shortcut, or opens an existing shortcut.

object.CreateShortcut(strPathname)

Arguments

object
WshShell object.

strPathname
String value indicating the pathname of the shortcut to create.

Remarks

The CreateShortcut method returns either a WshShortcut object or a WshURLShortcut object. Simply calling the CreateShortcut method
does not result in the creation of a shortcut. The shortcut object and changes you may have made to it are stored in memory until you save it
to disk with the Save method. To create a shortcut, you must:

1. Create an instance of a WshShortcut object.
2. Initialize its properties.
3. Save it to disk with the Save method.

Note A common problem is putting arguments in the TargetPath property of the shortcut object, which doesn't work. All
arguments to the shortcut must be put in the Arguments property.

Example

Windows Script Host

Page 233 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

The following example creates a WshShell object and uses the CreateShortcut method to create two shortcuts.

<package>
 <job id="vbs">
 <script language="VBScript">
 set WshShell = WScript.CreateObject("WScript.Shell")
 strDesktop = WshShell.SpecialFolders("Desktop")
 set oShellLink = WshShell.CreateShortcut(strDesktop & "\Shortcut Script.lnk")
 oShellLink.TargetPath = WScript.ScriptFullName
 oShellLink.WindowStyle = 1
 oShellLink.Hotkey = "CTRL+SHIFT+F"
 oShellLink.IconLocation = "notepad.exe, 0"
 oShellLink.Description = "Shortcut Script"
 oShellLink.WorkingDirectory = strDesktop
 oShellLink.Save
 set oUrlLink = WshShell.CreateShortcut(strDesktop & "\Microsoft Web Site.url")
 oUrlLink.TargetPath = "http://www.microsoft.com"
 oUrlLink.Save
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshShell = WScript.CreateObject("WScript.Shell");
 strDesktop = WshShell.SpecialFolders("Desktop");
 var oShellLink = WshShell.CreateShortcut(strDesktop + "\\Shortcut Script.lnk");
 oShellLink.TargetPath = WScript.ScriptFullName;
 oShellLink.WindowStyle = 1;
 oShellLink.Hotkey = "CTRL+SHIFT+F";
 oShellLink.IconLocation = "notepad.exe, 0";
 oShellLink.Description = "Shortcut Script";
 oShellLink.WorkingDirectory = strDesktop;
 oShellLink.Save();
 var oUrlLink = WshShell.CreateShortcut(strDesktop + "\\Microsoft Web Site.url");
 oUrlLink.TargetPath = "http://www.microsoft.com";
 oUrlLink.Save();
 </script>
 </job>
</package>

See Also

Running Your Scripts | WshShortcut Object | WshUrlShortcut Object | WshShell Object

Page 234 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

DisconnectObject Method
Disconnects a connected object's event sources.

object.DisconnectObject(obj)

Arguments

object
WScript object.

obj
String value indicating the name of the object to disconnect.

Remarks

Once an object has been "disconnected," WSH will not respond to its events. The object is still capable of firing events, though. Note that the
DisconnectObject method does nothing if the specified object is not already connected.

Example

The following example demonstrates using the DisconnectObject method to disconnect to the WshRemote object's Error event after a remote
script has completed.

[VBScript]

Dim Controller, RemoteScript
Set Controller = WScript.CreateObject("WSHController")

Windows Script Host

Page 235 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Set RemoteScript = Controller.CreateScript("test.js", "remoteserver")
WScript.ConnectObject RemoteScript, "remote_"
RemoteScript.Execute

Do While RemoteScript.Status <> 2
 WScript.Sleep 100
Loop

WScript.DisconnectObject RemoteScript

Sub remote_Error
 Dim theError
 Set theError = RemoteScript.Error
 WScript.Echo "Error " & theError.Number & " - Line: " & theError.Line & ", Char: " & theError.Character & vbCrLf & "Description: " & theError.Description
 WScript.Quit -1
End Sub

[JScript]

var Controller = WScript.CreateObject("WSHController");
var RemoteScript = Controller.CreateScript("test.js", "remoteserver");
WScript.ConnectObject(RemoteScript, "remote_");
RemoteScript.Execute();

while (RemoteScript.Status != 2) {
 WScript.Sleep(100);
}

WScript.DisconnectObject(RemoteScript)

function remote_Error()
{
 var theError = RemoteScript.Error;
 WScript.Echo("Error " + theError.Number + " - Line: " + theError.Line + ", Char: " + theError.Character + "\nDescription: " + theError.Description);
 WScript.Quit(-1);
}

See Also

WScript Object | ConnectObject Method | CreateObject Method | GetObject Method

Page 236 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Echo Method
Outputs text to either a message box or the command console window.

object.Echo [Arg1] [,Arg2] [,Arg3] ...

Arguments

object
WScript object.

Arg1, Arg2, Arg3 ...
Optional. String value indicating the list of items to be displayed.

Remarks

The Echo method behaves differently depending on which WSH engine you are using.

Each displayed item is separated with a space character. When using CScript.exe, each item is displayed with a newline character. If no items
are provided as arguments to the Echo method, a blank line is output.

Example

The following example uses the Echo Method to display the domain name, computer name, and user name for the current machine, and to

Windows Script Host

WSH engine Text Output
Wscript.exe graphical message box
Cscript.exe command console window

Page 237 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

display network mapping information for the drives and printers.

<package>
 <job id="vbs">
 <script language="VBScript">
 Set WshNetwork = WScript.CreateObject("WScript.Network")
 Set oDrives = WshNetwork.EnumNetworkDrives
 Set oPrinters = WshNetwork.EnumPrinterConnections
 WScript.Echo "Domain = " & WshNetwork.UserDomain
 WScript.Echo "Computer Name = " & WshNetwork.ComputerName
 WScript.Echo "User Name = " & WshNetwork.UserName
 WScript.Echo
 WScript.Echo "Network drive mappings:"
 For i = 0 to oDrives.Count - 1 Step 2
 WScript.Echo "Drive " & oDrives.Item(i) & " = " & oDrives.Item(i+1)
 Next
 WScript.Echo
 WScript.Echo "Network printer mappings:"
 For i = 0 to oPrinters.Count - 1 Step 2
 WScript.Echo "Port " & oPrinters.Item(i) & " = " & oPrinters.Item(i+1)
 Next
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshNetwork = WScript.CreateObject("WScript.Network");
 var oDrives = WshNetwork.EnumNetworkDrives();
 var oPrinters = WshNetwork.EnumPrinterConnections();
 WScript.Echo("Domain = " + WshNetwork.UserDomain);
 WScript.Echo("Computer Name = " + WshNetwork.ComputerName);
 WScript.Echo("User Name = " + WshNetwork.UserName);
 WScript.Echo();
 WScript.Echo("Network drive mappings:");
 for(i=0; i<oDrives.Count(); i+=2){
 WScript.Echo("Drive " + oDrives.Item(i) + " = " + oDrives.Item(i+1));
 }
 WScript.Echo();
 WScript.Echo("Network printer mappings:");
 for(i=0; i<oPrinters.Count(); i+=2){
 WScript.Echo("Port " + oPrinters.Item(i) + " = " + oPrinters.Item(i+1));
 }
 </script>
 </job>

Page 238 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

</package>

See Also

Running Your Scripts | WScript Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

EnumNetworkDrives Method
Returns the current network drive mapping information.

objDrives = object.EnumNetworkDrives

Arguments

object
WshNetwork object.

objDrives
Variable that holds the network drive mapping information.

Remarks

The EnumNetworkDrives method returns a collection. This collection is an array that associates pairs of items — network drive local names
and their associated UNC names. Even-numbered items in the collection represent local names of logical drives. Odd-numbered items
represent the associated UNC share names. The first item in the collection is at index zero (0).

Example

Windows Script Host

Page 239 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

The following example uses EnumNetworkDrives to generate a list of the networked drives and displays the mapping information.

<package>
 <job id="vbs">
 <script language="VBScript">
 Set WshNetwork = WScript.CreateObject("WScript.Network")
 Set oDrives = WshNetwork.EnumNetworkDrives
 Set oPrinters = WshNetwork.EnumPrinterConnections
 WScript.Echo "Network drive mappings:"
 For i = 0 to oDrives.Count - 1 Step 2
 WScript.Echo "Drive " & oDrives.Item(i) & " = " & oDrives.Item(i+1)
 Next
 WScript.Echo
 WScript.Echo "Network printer mappings:"
 For i = 0 to oPrinters.Count - 1 Step 2
 WScript.Echo "Port " & oPrinters.Item(i) & " = " & oPrinters.Item(i+1)
 Next
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshNetwork = WScript.CreateObject("WScript.Network");
 var oDrives = WshNetwork.EnumNetworkDrives();
 var oPrinters = WshNetwork.EnumPrinterConnections();
 WScript.Echo("Network drive mappings:");
 for(i = 0; i < oDrives.length; i += 2) {
 WScript.Echo("Drive " + oDrives.Item(i) + " = " + oDrives.Item(i + 1));
 }
 WScript.Echo();
 WScript.Echo("Network printer mappings:");
 for(i = 0; i < oPrinters.length; i += 2) {
 WScript.Echo("Port " + oPrinters.Item(i) + " = " + oPrinters.Item(i + 1));
 }
 </script>
 </job>
</package>

See Also

Running Your Scripts | WshNetwork Object | MapNetworkDrive Method | RemoveNetworkDrive Method

Page 240 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

EnumPrinterConnections Method
Returns the current network printer mapping information.

objPrinters = object.EnumPrinterConnections

Arguments

object
WshNetwork object.

objPrinters
Variable that holds the network printer mapping information.

Remarks

The EnumPrinterConnections method returns a collection. This collection is an array that associates pairs of items — network printer local
names and their associated UNC names. Even-numbered items in the collection represent printer ports. Odd-numbered items represent the
networked printer UNC names. The first item in the collection is at index zero (0).

Example

The following example uses the EnumPrinterConnections method to generate a list of networked printers and displays this mapping
information.

<package>
 <job id="vbs">
 <script language="VBScript">

Windows Script Host

Page 241 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 Set WshNetwork = WScript.CreateObject("WScript.Network")
 Set oDrives = WshNetwork.EnumNetworkDrives
 Set oPrinters = WshNetwork.EnumPrinterConnections
 WScript.Echo "Network drive mappings:"
 For i = 0 to oDrives.Count - 1 Step 2
 WScript.Echo "Drive " & oDrives.Item(i) & " = " & oDrives.Item(i+1)
 Next
 WScript.Echo
 WScript.Echo "Network printer mappings:"
 For i = 0 to oPrinters.Count - 1 Step 2
 WScript.Echo "Port " & oPrinters.Item(i) & " = " & oPrinters.Item(i+1)
 Next
 </script>
</job>

 <job id="js">
 <script language="JScript">
 var WshNetwork = WScript.CreateObject("WScript.Network");
 var oDrives = WshNetwork.EnumNetworkDrives();
 var oPrinters = WshNetwork.EnumPrinterConnections();
 WScript.Echo("Network drive mappings:");
 for(i = 0; i < oDrives.length; i += 2) {
 WScript.Echo("Drive " + oDrives.Item(i) + " = " + oDrives.Item(i + 1));
 }
 WScript.Echo();
 WScript.Echo("Network printer mappings:");
 for(i = 0; i < oPrinters.length; i += 2) {
 WScript.Echo("Port " + oPrinters.Item(i) + " = " + oPrinters.Item(i + 1));
 }
 </script>
 </job>
</package>

See Also

Running Your Scripts | WshNetwork Object | AddPrinterConnection Method | AddWindowsPrinterConnection Method |
RemovePrinterConnection Method | SetDefaultPrinter Method

© 2001 Microsoft Corporation. All rights reserved.

Page 242 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Build: Topic Version 5.6.9309.1546

Exec Method
Runs an application in a child command-shell, providing access to the StdIn/StdOut/StdErr streams.

object.Exec(strCommand)

Arguments

object
WshShell object.

strCommand
String value indicating the command line used to run the script. The command line should appear exactly as it would if you typed it at
the command prompt.

Remarks

The Exec method returns a WshScriptExec object, which provides status and error information about a script run with Exec along with
access to the StdIn, StdOut, and StdErr channels. The Exec method allows the execution of command line applications only. The Exec
method cannot be used to run remote scripts. Do not confuse the Exec method with the Execute method (of the WshRemote object).

Example

The following example demonstrates the basics of the Exec method.

[VBScript]

Dim WshShell, oExec
Set WshShell = CreateObject("WScript.Shell")

Set oExec = WshShell.Exec("calc")

Do While oExec.Status = 0
 WScript.Sleep 100

Windows Script Host

Page 243 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Loop

WScript.Echo oExec.Status

[JScript]

var WshShell = new ActiveXObject("WScript.Shell");
var oExec = WshShell.Exec("calc");

while (oExec.Status == 0)
{
 WScript.Sleep(100);
}

WScript.Echo(oExec.Status);

See Also

WshScriptExec Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Execute Method
Starts execution of a remote script object.

object.Execute

Parameters

Windows Script Host

Page 244 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

object
WshRemote Object

Remarks

The Start event of the WshRemote object is fired when the script starts executing. Do not confuse the Execute method with the Exec
method (of the WScript object).

Example

The following example demonstrates how the Execute method is used to create a WshRemote object (start an instance of a remote script).

[VBScript]

Dim Controller, RemoteScript
Set Controller = WScript.CreateObject("WSHController")
Set RemoteScript = Controller.CreateScript("remote1.js")
RemoteScript.Execute

Do While RemoteScript.Status <> 2
 WScript.Sleep 100
Loop

[JScript]

var Controller = WScript.CreateObject("WSHController");
var RemoteScript = Controller.CreateScript("remote1.js");
RemoteScript.Execute();

while (RemoteScript.Status != 2) {
 WScript.Sleep(100);
}

See Also

WshController Object | WshRemote Object | Status Property | Error Property | Terminate Method | Start Event | End Event

Page 245 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Exists Method
Indicates whether a specific key value exists in the WshNamed object.

object.Exists(key)

Parameters

object
WshNamed object.

Key
String value indicating an argument of the WshNamed object.

Remarks

The Exists method returns a Boolean value. It returns true if the requested argument was specified on the command line (otherwise, it returns
false).

Example

Consider the following information typed at the command line.

myScript.vbs /c:"WSH is a wonderful thing"

You could use these two lines of JScript code to find out whether the following command line switches were used to start the script.

WScript.Echo(WScript.Arguments.Named.Exists("C"));
WScript.Echo(WScript.Arguments.Named.Exists("D"));

See Also

Windows Script Host

Page 246 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Arguments Property | WshNamed Object | WshUnnamed Object | Count Method | Item Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

ExpandEnvironmentStrings Method
Returns an environment variable's expanded value.

object.ExpandEnvironmentStrings(strString)

Arguments

object
WshShell object.

strString
String value indicating the name of the environment variable you want to expand.

Remarks

The ExpandEnvironmentStrings method expands environment variables defined in the PROCESS environment space only. Environment
variable names, which must be enclosed between "%" characters, are not case-sensitive.

Example

The following code expands the Windows Directory environment variable and displays it:

[VBScript]

set WshShell = WScript.CreateObject("WScript.Shell")

Windows Script Host

Page 247 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WScript.Echo "WinDir is " & WshShell.ExpandEnvironmentStrings("%WinDir%")

[JScript]

var WshShell = WScript.CreateObject("WScript.Shell");
WScript.Echo("WinDir is " + WshShell.ExpandEnvironmentStrings("%WinDir%"));

See Also

WshShell Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

GetObject Method
Retrieves an existing object with the specified ProgID, or creates a new one from a file.

object.GetObject(strPathname [,strProgID], [strPrefix])

Arguments

object
WScript object.

strPathname
The fully qualified path name of the file that contains the object persisted to disk.

strProgID
Optional. The object's program identifier (ProgID).

strPrefix
Optional. Used when you want to sync the object's events. If you supply the strPrefix argument, WSH connects the object's outgoing

Windows Script Host

Page 248 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

interface to the script file after creating the object.

Remarks

Use the GetObject method when an instance of the object exists in memory, or when you want to create the object from a file. If no current
instance exists and you do not want the object created from a file, use the CreateObject method. The GetObject method can be used with all
COM classes, independent of the language used to create the object. If you supply the strPrefix argument, WSH connects the object's
outgoing interface to the script file after creating the object. When the object fires an event, WSH calls a subroutine with strPrefix attached to
the beginning of the event name. For example, if strPrefix is MYOBJ_ and the object fires an event named OnBegin, WSH calls the
MYOBJ_OnBegin subroutine located in the script.

If an object is registered as a single-instance object, only one instance of the object is created (regardless of how many times GetObject is
executed). The GetObject method always returns the same instance when called with the zero-length string syntax (""), and it causes an error
if you do not supply the path parameter. You cannot use the GetObject method to obtain a reference to a Microsoft Visual Basic class created
with Visual Basic 4.0 or earlier.

Example

The following VBScript code starts the application associated with the specified file (strPathname):

Dim MyObject As Object
Set MyObject = GetObject("C:\CAD\SCHEMA.CAD")
MyApp = MyObject.Application

Some applications allow you to activate part of a file. To do this, add an exclamation mark (!) to the end of the file name, and follow it with a
string that identifies the part of the file you want to activate. For example, in a drawing application, a drawing stored in a file might have
multiple layers. The following code activates a layer within a drawing file called SCHEMA.CAD:

Set LayerObject = GetObject("C:\CAD\SCHEMA.CAD!Layer3")

If you do not specify the object's class (strProgID), COM determines the application to start from the file name. Some files can support more
than one class of object. For example, a drawing might support three different types of objects: an application object, a drawing object, and a
toolbar object. All may be part of the same file.

In the following VBScript code, the drawing application FIGMENT starts and opens the object DRAWING from within the file SAMPLE.DRW.

Dim MyObject As Object

Page 249 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Set MyObject = GetObject("C:\DRAWINGS\SAMPLE.DRW", "FIGMENT.DRAWING")

See Also

WScript Object | CreateObject Method | DisconnectObject Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

getResource Method
Returns the value of a resource defined with the <resource> element.

getResource(resourceID)

Arguments

resourceID
A string that uniquely identifies the resource information contained within a set of resource tags in a *.WSF script file.

Remarks

The getResource method returns a string. Use the <resource> element to isolate strings or numbers that are within the .wsf file and that you
want to reference. This feature makes it easy to maintain a set of strings that are localized into several languages. A WSH script file (*.wsf)
can contain several different pieces of resource information — each one with a unique resource identifier.

Example

The following WSH script defines a resource called errNonNumeric. The value of errNonNumeric is displayed if the parameter upperBound
is not a number.

Windows Script Host

Page 250 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

<package>
<job id="JS">
<resource id="errNonNumeric">Error: A non-numeric value was entered where a number was expected.</resource>
<script language="JScript">

function getRandomNumber(upperBound)
{
 var realUpperBound = parseInt(upperBound);
 if (!isNaN(realUpperBound))
 return (realUpperBound * Math.random) + 1
 else
 {
 WScript.Echo(getResource("errNonNumeric"));
 WScript.Quit(-1);
 }
}

NewValue = getRandomNumber("Bad Value");

</script>
</job>

<job id="VBS">
<resource id="errNonNumeric">Error: A non-numeric value was entered where a number was expected.</resource>
<script language="VBScript">

Function getRandomNumber(upperBound)
 If IsNumeric(upperBound) Then
 getRandomNumber = CInt(upperBound * Rnd + 1)
 Else
 WScript.Echo getResource("errNonNumeric")
 WScript.Quit -1
 End If
End Function

NewValue = getRandomNumber("Bad Value")

</script>
</job>
</package>

See Also

Page 251 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

<resource> Element

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

LogEvent Method
Adds an event entry to a log file.

object.LogEvent(intType, strMessage [,strTarget])

Arguments

object
WshShell object.

intType
Integer value representing the event type.

strMessage
String value containing the log entry text.

strTarget
Optional. String value indicating the name of the computer system where the event log is stored (the default is the local computer
system). Applies to Windows NT/2000 only.

Remarks

The LogEvent method returns a Boolean value (true if the event is logged successfully, otherwise false). In Windows NT/2000, events are
logged in the Windows NT Event Log. In Windows 9x/Me, events are logged in WSH.log (located in the Windows directory). There are six
event types.

Windows Script Host

Type Value

Page 252 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Example

The following code logs SUCCESS or ERROR depending on the outcome of the function runLoginScript().

[VBScript]

Set WshShell = WScript.CreateObject("WScript.Shell")
rc = runLoginScript() 'Returns true if logon succeeds.

if rc then
 WshShell.LogEvent 0, "Logon Script Completed Successfully"
else
 WshShell.LogEvent 1, "Logon Script failed"
end if

[JScript]

var WshShell = WScript.CreateObject("WScript.Shell");
var rc = runLoginScript();

if (rc)
 WshShell.LogEvent(0, "Logon Script Completed Successfully");
else
 WshShell.LogEvent(1, "Logon Script failed");

See Also

WshShell Object

0 SUCCESS
1 ERROR
2 WARNING
4 INFORMATION
8 AUDIT_SUCCESS
16 AUDIT_FAILURE

Page 253 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

MapNetworkDrive Method
Adds a shared network drive to your computer system.

object.MapNetworkDrive(strLocalName, strRemoteName, [bUpdateProfile], [strUser], [strPassword])

Arguments

object
WshNetwork object.

strLocalName
String value indicating the name by which the mapped drive will be known locally.

strRemoteName
String value indicating the share's UNC name (\\xxx\yyy).

bUpdateProfile
Optional. Boolean value indicating whether the mapping information is stored in the current user's profile. If bUpdateProfile is supplied
and has a value of true, the mapping is stored in the user profile (the default is false).

strUser
Optional. String value indicating the user name. You must supply this argument if you are mapping a network drive using the
credentials of someone other than the current user.

strPassword
Optional. String value indicating the user password. You must supply this argument if you are mapping a network drive using the
credentials of someone other than the current user.

Remarks

An attempt to map a non-shared network drive results in an error.

Example

Windows Script Host

Page 254 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

The following code maps the logical drive "E" to a network share with the UNC name "\\Server\Public."

[VBScript]

Dim WshNetwork
Set WshNetwork = WScript.CreateObject("WScript.Network")
WshNetwork.MapNetworkDrive "E:", "\\Server\Public"

[JScript]

var WshNetwork = WScript.CreateObject("WScript.Network");
WshNetwork.MapNetworkDrive ("E:", "\\\\Server\\Public");

See Also

WshNetwork Object | EnumNetworkDrives Method | RemoveNetworkDrive Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Popup Method
Displays text in a pop-up message box.

intButton = object.Popup(strText,[nSecondsToWait],[strTitle],[nType])

Arguments

object
WshShell object.

Windows Script Host

Page 255 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

strText
String value containing the text you want to appear in the pop-up message box.

nSecondsToWait
Optional. Numeric value indicating the maximum length of time (in seconds) you want the pop-up message box displayed.

strTitle
Optional. String value containing the text you want to appear as the title of the pop-up message box.

nType
Optional. Numeric value indicating the type of buttons and icons you want in the pop-up message box. These determine how the
message box is used.

IntButton
Integer value indicating the number of the button the user clicked to dismiss the message box. This is the value returned by the Popup
method.

Remarks

The Popup method displays a message box regardless of which host executable file is running (WScript.exe or CScript.exe). If
nSecondsToWaitis equals zero (the default), the pop-up message box remains visible until closed by the user. If nSecondsToWaitis is greater
than zero, the pop-up message box closes after nSecondsToWait seconds. If you do not supply the argument strTitle, the title of the pop-up
message box defaults to "Windows Script Host." The meaning of nType is the same as in the Microsoft Win32® application programming
interface MessageBox function. The following tables show the values and their meanings. You can combine values in these tables.

Note To display text properly in RTL languages such as Hebrew or Arabic, add hex &h00100000 (decimal 1048576) to the
nType parameter.

Button Types

Icon Types

Value Description
0 Show OK button.
1 Show OK and Cancel buttons.
2 Show Abort, Retry, and Ignore buttons.
3 Show Yes, No, and Cancel buttons.
4 Show Yes and No buttons.
5 Show Retry and Cancel buttons.

Page 256 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

The previous two tables do not cover all values for nType. For a complete list, see the Microsoft Win32 documentation.

The return value intButton denotes the number of the button that the user clicked. If the user does not click a button before nSecondsToWait
seconds, intButton is set to -1.

Example

The following code generates a simple pop-up window.

[VBScript]

Dim WshShell, BtnCode
Set WshShell = WScript.CreateObject("WScript.Shell")

BtnCode = WshShell.Popup("Do you feel alright?", 7, "Answer This Question:", 4 + 32)

Select Case BtnCode
 case 6 WScript.Echo "Glad to hear you feel alright."
 case 7 WScript.Echo "Hope you're feeling better soon."
 case -1 WScript.Echo "Is there anybody out there?"
End Select

Value Description
16 Show "Stop Mark" icon.
32 Show "Question Mark" icon.
48 Show "Exclamation Mark" icon.
64 Show "Information Mark" icon.

Value Description
1 OK button
2 Cancel button
3 Abort button
4 Retry button
5 Ignore button
6 Yes button
7 No button

Page 257 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

[JScript]

var WshShell = WScript.CreateObject("WScript.Shell");
var BtnCode = WshShell.Popup("Do you feel alright?", 7, "Answer This Question:", 4 + 32);
switch(BtnCode) {
 case 6:
 WScript.Echo("Glad to hear you feel alright.");
 break;
 case 7:
 WScript.Echo("Hope you're feeling better soon.");
 break;
 case -1:
 WScript.Echo("Is there anybody out there?");
 break;
}

See Also

WshShell Object | Echo Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Quit Method
Forces script execution to stop at any time.

object.Quit([intErrorCode])

Arguments

object

Windows Script Host

Page 258 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WScript object.
intErrorCode

Optional. Integer value returned as the process's exit code. If you do not include the intErrorCode parameter, no value is returned.

Remarks

The Quit method can return an optional error code. If the Quit method is the final instruction in your script (and you have no need to return a
non-zero value), you can leave it out, and your script will end normally.

Example

The following JScript code snippet quits execution and returns an error code of 1:

WScript.Quit (1);

// This line of code is never executed.
var i = 0;

See Also

WScript Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Read Method
Returns a specified number of characters from an input stream.

object.Read(characters)

Windows Script Host

Page 259 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Arguments

object
StdIn text stream object.

characters
Integer value indicating the number of characters you want to read.

Remarks

The Read method returns a string. The StdIn, StdOut, and StdErr properties and methods work when running the script with the
CScript.exe host executable file only. An error is returned when run with WScript.exe. Reading begins at the current position pointer location
and moves forward one character at a time.

The Read method does not return until the enter key is pressed. Only the number of characters requested will be returned. Any additional
characters will be returned on subsequent calls to the Read, ReadLine, or ReadAll methods.

Example

The following code uses the Read method to get a character from the keyboard and display it on the console.

[VBScript]

Dim Input
Input = ""

Do While Not WScript.StdIn.AtEndOfLine
 Input = Input & WScript.StdIn.Read(1)
Loop
WScript.Echo Input

[JScript]

var input = "";
while (!WScript.StdIn.AtEndOfLine)
{
 input += WScript.StdIn.Read(1);
}
WScript.Echo(input);

Page 260 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

See Also

StdIn Property (WScript)

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

ReadAll Method
Returns all characters from an input stream.

object.ReadAll

Arguments

object
StdIn text stream object.

Remarks

The ReadAll method returns a string. The StdIn, StdOut, and StdErr properties and methods work when running the script with the
CScript.exe host executable file only. An error is returned when run with WScript.exe.

Example

The following code demonstrates the use of ReadAll.

[VBScript]

Dim Input

Windows Script Host

Page 261 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Input = ""

Do While Not WScript.StdIn.AtEndOfStream
 Input = Input & WScript.StdIn.ReadAll
Loop
WScript.Echo Input

[JScript]

var input = "";
while (!WScript.StdIn.AtEndOfStream)
{
 input += WScript.StdIn.ReadAll();
}
WScript.Echo(input);

See Also

StdIn Property | FileSystemObject Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

ReadLine Method
Returns an entire line from an input stream.

object.ReadLine

Arguments

Windows Script Host

Page 262 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

object
StdIn text stream object.

Remarks

The ReadLine method returns a string. The StdIn, StdOut, and StdErr properties and methods work when running the script with the
CScript.exe host executable file only. An error is returned when run with WScript.exe. A line is a sequence of characters that ends with a
newline character.

Note Although this method extracts the newline character, it does not add it to the string.

Example

The following code demonstrates the use of the ReadLine method.

[VBScript]

Dim StdIn, StdOut
Set StdIn = WScript.StdIn
Set StdOut = WScript.StdOut

Do While Not StdIn.AtEndOfStream
 str = StdIn.ReadLine
 StdOut.WriteLine "Line " & (StdIn.Line - 1) & ": " & str
Loop

[JScript]

var stdin = WScript.StdIn;
var stdout = WScript.StdOut;

while (!stdin.AtEndOfStream)
{
 var str = stdin.ReadLine();
 stdout.WriteLine("Line " + (stdin.Line - 1) + ": " + str);
}

See Also

Page 263 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

StdIn Property | FileSystemObject Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

RegDelete Method
Deletes a key or one of its values from the registry.

object.RegDelete(strName)

Arguments

object
WshShell object.

strName
String value indicating the name of the registry key or key value you want to delete.

Remarks

Specify a key-name by ending strName with a final backslash; leave it off to specify a value-name. Fully qualified key-names and value-
names are prefixed with a root key. You may use abbreviated versions of root key names with the RegDelete method. The five possible root
keys you can use are listed in the following table.

Windows Script Host

Root key Name Abbreviation
HKEY_CURRENT_USER HKCU
HKEY_LOCAL_MACHINE HKLM
HKEY_CLASSES_ROOT HKCR
HKEY_USERS HKEY_USERS

Page 264 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Example

The following code creates a key and two values, reads them, and deletes them.

[VBScript]

Dim WshShell, bKey
Set WshShell = WScript.CreateObject("WScript.Shell")

WshShell.RegWrite "HKCU\Software\ACME\FortuneTeller\", 1, "REG_BINARY"
WshShell.RegWrite "HKCU\Software\ACME\FortuneTeller\MindReader", "Goocher!", "REG_SZ"

bKey = WshShell.RegRead("HKCU\Software\ACME\FortuneTeller\")
WScript.Echo WshShell.RegRead("HKCU\Software\ACME\FortuneTeller\MindReader")

WshShell.RegDelete "HKCU\Software\ACME\FortuneTeller\MindReader"
WshShell.RegDelete "HKCU\Software\ACME\FortuneTeller\"
WshShell.RegDelete "HKCU\Software\ACME\"

[JScript]

var WshShell = WScript.CreateObject("WScript.Shell");

WshShell.RegWrite ("HKCU\\Software\\ACME\\FortuneTeller\\", 1, "REG_BINARY");
WshShell.RegWrite ("HKCU\\Software\\ACME\\FortuneTeller\\MindReader", "Goocher!", "REG_SZ");

var bKey = WshShell.RegRead ("HKCU\\Software\\ACME\\FortuneTeller\\");
WScript.Echo (WshShell.RegRead ("HKCU\\Software\\ACME\\FortuneTeller\\MindReader"));

WshShell.RegDelete ("HKCU\\Software\\ACME\\FortuneTeller\\MindReader");
WshShell.RegDelete ("HKCU\\Software\\ACME\\FortuneTeller\\");
WshShell.RegDelete ("HKCU\\Software\\ACME\\");

See Also

WshShell Object | RegRead Method | RegWrite Method

HKEY_CURRENT_CONFIG HKEY_CURRENT_CONFIG

Page 265 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

RegRead Method
Returns the value of a key or value-name from the registry.

object.RegRead(strName)

Arguments

object
WshShell object.

strName
String value indicating the key or value-name whose value you want.

Remarks

The RegRead method returns values of the following five types.

You can specify a key-name by ending strName with a final backslash. Do not include a final backslash to specify a value-name. A value
entry has three parts: its name, its data type, and its value. When you specify a key-name (as opposed to a value-name), RegRead returns the

Windows Script Host

Type Description In the Form of
REG_SZ A string A string
REG_DWORD A number An integer
REG_BINARY A binary value A VBArray of integers
REG_EXPAND_SZ An expandable string

(e.g., "%windir%\\calc.exe")
A string

REG_MULTI_SZ An array of strings A VBArray of strings

Page 266 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

default value. To read a key's default value, specify the name of the key itself. Fully qualified key-names and value-names begin with a root
key. You may use abbreviated versions of root key names with the RegRead method. The five possible root keys are listed in the following
table.

Example

The following code creates a key and two values, reads them, and deletes them.

[VBScript]

Dim WshShell, bKey
Set WshShell = WScript.CreateObject("WScript.Shell")

WshShell.RegWrite "HKCU\Software\ACME\FortuneTeller\", 1, "REG_BINARY"
WshShell.RegWrite "HKCU\Software\ACME\FortuneTeller\MindReader", "Goocher!", "REG_SZ"

bKey = WshShell.RegRead("HKCU\Software\ACME\FortuneTeller\")
WScript.Echo WshShell.RegRead("HKCU\Software\ACME\FortuneTeller\MindReader")

WshShell.RegDelete "HKCU\Software\ACME\FortuneTeller\MindReader"
WshShell.RegDelete "HKCU\Software\ACME\FortuneTeller\"
WshShell.RegDelete "HKCU\Software\ACME\"

[JScript]

var WshShell = WScript.CreateObject ("WScript.Shell");

WshShell.RegWrite ("HKCU\\Software\\ACME\\FortuneTeller\\", 1, "REG_BINARY");
WshShell.RegWrite ("HKCU\\Software\\ACME\\FortuneTeller\\MindReader", "Goocher!", "REG_SZ");

var bKey = WshShell.RegRead ("HKCU\\Software\\ACME\\FortuneTeller\\");
WScript.Echo (WshShell.RegRead ("HKCU\\Software\\ACME\\FortuneTeller\\MindReader"));

Root key Name Abbreviation
HKEY_CURRENT_USER HKCU
HKEY_LOCAL_MACHINE HKLM
HKEY_CLASSES_ROOT HKCR
HKEY_USERS HKEY_USERS
HKEY_CURRENT_CONFIG HKEY_CURRENT_CONFIG

Page 267 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WshShell.RegDelete ("HKCU\\Software\\ACME\\FortuneTeller\\MindReader");
WshShell.RegDelete ("HKCU\\Software\\ACME\\FortuneTeller\\");
WshShell.RegDelete ("HKCU\\Software\\ACME\\");

See Also

WshShell Object | RegDelete Method | RegWrite Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

RegWrite Method
Creates a new key, adds another value-name to an existing key (and assigns it a value), or changes the value of an existing value-name.

object.RegWrite(strName, anyValue [,strType])

Arguments

object
WshShell object.

strName
String value indicating the key-name, value-name, or value you want to create, add, or change.

anyValue
The name of the new key you want to create, the name of the value you want to add to an existing key, or the new value you want to
assign to an existing value-name.

strType
Optional. String value indicating the value's data type.

Windows Script Host

Page 268 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Remarks

Specify a key-name by ending strName with a final backslash. Do not include a final backslash to specify a value name. The RegWrite
method automatically converts the parameter anyValue to either a string or an integer. The value of strType determines its data type (either a
string or an integer). The options for strType are listed in the following table.

Note The REG_MULTI_SZ type is not supported for the RegWrite method.

Tip RegWrite will write at most one DWORD to a REG_BINARY value. Larger values are not supported with this method.

Fully qualified key-names and value-names are prefixed with a root key. You may use abbreviated versions of root key names with the
RegWrite method. The five root keys are listed in the following table.

The four possible data types you can specify with strType are listed in the following table.

Converted to strType
String REG_SZ
String REG_EXPAND_SZ
Integer REG_DWORD
Integer REG_BINARY

Root key Name Abbreviation
HKEY_CURRENT_USER HKCU
HKEY_LOCAL_MACHINE HKLM
HKEY_CLASSES_ROOT HKCR
HKEY_USERS HKEY_USERS
HKEY_CURRENT_CONFIG HKEY_CURRENT_CONFIG

Type Description In the Form of
REG_SZ A string A string
REG_DWORD A number An integer
REG_BINARY A binary value An integer
REG_EXPAND_SZ An expandable string

(e.g., "%windir%\\calc.exe")
A string

Page 269 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Example

The following code creates a key and two values, reads them, and deletes them.

[VBScript]

Dim WshShell, bKey
Set WshShell = WScript.CreateObject("WScript.Shell")

WshShell.RegWrite "HKCU\Software\ACME\FortuneTeller\", 1, "REG_BINARY"
WshShell.RegWrite "HKCU\Software\ACME\FortuneTeller\MindReader", "Goocher!", "REG_SZ"

bKey = WshShell.RegRead("HKCU\Software\ACME\FortuneTeller\")
WScript.Echo WshShell.RegRead("HKCU\Software\ACME\FortuneTeller\MindReader")

WshShell.RegDelete "HKCU\Software\ACME\FortuneTeller\MindReader"
WshShell.RegDelete "HKCU\Software\ACME\FortuneTeller\"
WshShell.RegDelete "HKCU\Software\ACME\"

[JScript]

var WshShell = WScript.CreateObject("WScript.Shell");

WshShell.RegWrite ("HKCU\\Software\\ACME\\FortuneTeller\\", 1, "REG_BINARY");
WshShell.RegWrite ("HKCU\\Software\\ACME\\FortuneTeller\\MindReader", "Goocher!", "REG_SZ");

var bKey = WshShell.RegRead ("HKCU\\Software\\ACME\\FortuneTeller\\");
WScript.Echo (WshShell.RegRead ("HKCU\\Software\\ACME\\FortuneTeller\\MindReader"));

WshShell.RegDelete ("HKCU\\Software\\ACME\\FortuneTeller\\MindReader");
WshShell.RegDelete ("HKCU\\Software\\ACME\\FortuneTeller\\");
WshShell.RegDelete ("HKCU\\Software\\ACME\\");

See Also

WshShell Object | RegDelete Method | RegRead Method

Page 270 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Remove Method
Removes an existing environment variable.

object.Remove(strName)

Arguments

object
WshEnvironment object.

strName
String value indicating the name of the environment variable you want to remove.

Remarks

The Remove method removes environment variables from the following types of environments: PROCESS, USER, SYSTEM, and
VOLATILE. Environment variables removed with the Remove method are not removed permanently; they are only removed for the current
session.

Example

The following code removes the Process environment variable TestVar.

[VBScript]

Dim WshShell, WshEnv
Set WshShell = WScript.CreateObject("WScript.Shell")
Set WshEnv = WshShell.Environment("PROCESS")
WshEnv("TestVar") = "Windows Script Host"
WScript.Echo WshShell.ExpandEnvironmentStrings("The value of the test variable is: '%TestVar%'")

Windows Script Host

Page 271 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WshEnv.Remove "TestVar"
WScript.Echo WshShell.ExpandEnvironmentStrings("The value of the test variable is: '%TestVar%'")

[JScript]

var WshShell = WScript.CreateObject("WScript.Shell");
var WshEnv = WshShell.Environment("PROCESS");
WshEnv("TestVar") = "Windows Script Host";
WScript.Echo(WshShell.ExpandEnvironmentStrings("The value of the test variable is: '%TestVar%'"));
WshEnv.Remove("TestVar");
WScript.Echo(WshShell.ExpandEnvironmentStrings("The value of the test variable is: '%TestVar%'"));

See Also

WshEnvironment Object | Environment Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

RemoveNetworkDrive Method
Removes a shared network drive from your computer system.

object.RemoveNetworkDrive(strName, [bForce], [bUpdateProfile])

Arguments

object
WshNetwork object.

strName
String value indicating the name of the mapped drive you want to remove. The strName parameter can be either a local name or a

Windows Script Host

Page 272 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

remote name depending on how the drive is mapped.
bForce

Optional. Boolean value indicating whether to force the removal of the mapped drive. If bForce is supplied and its value is true, this
method removes the connections whether the resource is used or not.

bUpdateProfile
Optional. String value indicating whether to remove the mapping from the user's profile. If bUpdateProfile is supplied and its value is
true, this mapping is removed from the user profile. bUpdateProfile is false by default.

Remarks

If the drive has a mapping between a local name (drive letter) and a remote name (UNC name), then strName must be set to the local name. If
the network path does not have a local name (drive letter) mapping, then strName must be set to the remote name.

Example

The following code removes the logical drive "E."

[VBScript]

Dim WshNetwork
Set WshNetwork = WScript.CreateObject("WScript.Network")
WshNetwork.RemoveNetworkDrive "E:"

[JScript]

var WshNetwork = WScript.CreateObject("WScript.Network");
WshNetwork.RemoveNetworkDrive ("E:");

See Also

WshNetwork Object | EnumNetworkDrives Method | MapNetworkDrive Method

© 2001 Microsoft Corporation. All rights reserved.

Page 273 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Build: Topic Version 5.6.9309.1546

RemovePrinterConnection Method
Removes a shared network printer connection from your computer system.

object.RemovePrinterConnection(strName, [bForce], [bUpdateProfile])

Arguments

object
WshNetwork object.

strName
String value indicating the name that identifies the printer. It can be a UNC name (in the form \\xxx\yyy) or a local name (such as
LPT1).

bForce
Optional. Boolean value indicating whether to force the removal of the mapped printer. If set to true (the default is false), the printer
connection is removed whether or not a user is connected.

bUpdateProfile
Optional. Boolean value. If set to true (the default is false), the change is saved in the user's profile.

Remarks

The RemovePrinterConnection method removes both Windows and MS-DOS based printer connections. If the printer was connected using
the method AddPrinterConnection, strName must be the printer's local name. If the printer was connected using the
AddWindowsPrinterConnection method or was added manually (using the Add Printer wizard), then strName must be the printer's UNC
name.

Example

The following code disconnects a network printer.

[VBScript]

Windows Script Host

Page 274 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Set WshNetwork = WScript.CreateObject("WScript.Network")
PrinterPath = "\\printserv\DefaultPrinter"
WshNetwork.RemovePrinterConnection PrinterPath, true, true

[JScript]

var WshNetwork = WScript.CreateObject("WScript.Network");
var PrinterPath = "\\\\PRN-CORP1\\B41-4523-A";
WshNetwork.RemovePrinterConnection(PrinterPath, true, true);

See Also

WshNetwork Object | AddPrinterConnection Method | AddWindowsPrinterConnection Method | EnumPrinterConnections Method |
SetDefaultPrinter Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Run Method
Runs a program in a new process.

object.Run(strCommand, [intWindowStyle], [bWaitOnReturn])

Arguments

object
WshShell object.

strCommand
String value indicating the command line you want to run. You must include any parameters you want to pass to the executable file.

Windows Script Host

Page 275 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

intWindowStyle
Optional. Integer value indicating the appearance of the program's window. Note that not all programs make use of this information.

bWaitOnReturn
Optional. Boolean value indicating whether the script should wait for the program to finish executing before continuing to the next
statement in your script. If set to true, script execution halts until the program finishes, and Run returns any error code returned by the
program. If set to false (the default), the Run method returns immediately after starting the program, automatically returning 0 (not to
be interpreted as an error code).

Remarks

The Run method returns an integer. The Run method starts a program running in a new Windows process. You can have your script wait for
the program to finish execution before continuing. This allows you to run scripts and programs synchronously. Environment variables within
the argument strCommand are automatically expanded. If a file type has been properly registered to a particular program, calling run on a file
of that type executes the program. For example, if Word is installed on your computer system, calling Run on a *.doc file starts Word and
loads the document. The following table lists the available settings for intWindowStyle.

Example 1

The following VBScript code opens a copy of the currently running script with Notepad.

intWindowStyle Description
0 Hides the window and activates another window.
1 Activates and displays a window. If the window is minimized or maximized, the system restores it to its

original size and position. An application should specify this flag when displaying the window for the first
time.

2 Activates the window and displays it as a minimized window.
3 Activates the window and displays it as a maximized window.
4 Displays a window in its most recent size and position. The active window remains active.
5 Activates the window and displays it in its current size and position.
6 Minimizes the specified window and activates the next top-level window in the Z order.
7 Displays the window as a minimized window. The active window remains active.
8 Displays the window in its current state. The active window remains active.
9 Activates and displays the window. If the window is minimized or maximized, the system restores it to its

original size and position. An application should specify this flag when restoring a minimized window.
10 Sets the show-state based on the state of the program that started the application.

Page 276 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Set WshShell = WScript.CreateObject("WScript.Shell")
WshShell.Run "%windir%\notepad " & WScript.ScriptFullName

The following VBScript code does the same thing, except it specifies the window type, waits for Notepad to be shut down by the user, and
saves the error code returned from Notepad when it is shut down.

Set WshShell = WScript.CreateObject("WScript.Shell")
Return = WshShell.Run("notepad " & WScript.ScriptFullName, 1, true)

Example 2

The following VBScript code opens a command window, changes to the path to C:\ , and executes the DIR command.

Dim oShell
Set oShell = WScript.CreateObject ("WSCript.shell")
oShell.run "cmd /K CD C:\ & Dir"
Set oShell = Nothing

See Also

WshShell Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Save Method
Saves a shortcut object to disk.

object.Save

Windows Script Host

Page 277 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Arguments

object
WshShortcut or WshUrlShortcut object.

Remarks

After using the CreateShortcut method to create a shortcut object and set the shortcut object's properties, the Save method must be used to
save the shortcut object to disk. The Save method uses the information in the shortcut object's FullName property to determine where to save
the shortcut object on a disk. You can only create shortcuts to system objects. This includes files, directories, and drives (but does not include
printer links or scheduled tasks).

Example

The following example demonstrates the use of a single .wsf file for two jobs in different script languages (VBScript and JScript). Each job
creates a shortcut to the script being run and a URLshortcut to www.microsoft.com.

<package>
 <job id="vbs">
 <script language="VBScript">
 set WshShell = WScript.CreateObject("WScript.Shell")
 strDesktop = WshShell.SpecialFolders("Desktop")
 set oShellLink = WshShell.CreateShortcut(strDesktop & "\Shortcut Script.lnk")
 oShellLink.TargetPath = WScript.ScriptFullName
 oShellLink.WindowStyle = 1
 oShellLink.Hotkey = "CTRL+SHIFT+F"
 oShellLink.IconLocation = "notepad.exe, 0"
 oShellLink.Description = "Shortcut Script"
 oShellLink.WorkingDirectory = strDesktop
 oShellLink.Save
 set oUrlLink = WshShell.CreateShortcut(strDesktop & "\Microsoft Web Site.url")
 oUrlLink.TargetPath = "http://www.microsoft.com"
 oUrlLink.Save
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshShell = WScript.CreateObject("WScript.Shell");
 strDesktop = WshShell.SpecialFolders("Desktop");
 var oShellLink = WshShell.CreateShortcut(strDesktop + "\\Shortcut Script.lnk");

Page 278 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 oShellLink.TargetPath = WScript.ScriptFullName;
 oShellLink.WindowStyle = 1;
 oShellLink.Hotkey = "CTRL+SHIFT+F";
 oShellLink.IconLocation = "notepad.exe, 0";
 oShellLink.Description = "Shortcut Script";
 oShellLink.WorkingDirectory = strDesktop;
 oShellLink.Save();
 var oUrlLink = WshShell.CreateShortcut(strDesktop + "\\Microsoft Web Site.url");
 oUrlLink.TargetPath = "http://www.microsoft.com";
 oUrlLink.Save();
 </script>
 </job>
</package>

See Also

Running Your Scripts | WshShortcut Object | WshUrlShortcut Object | FullName Property | TargetPath Property | WindowStyle Property |
Hotkey Property | IconLocation Property | Description Property | WorkingDirectory Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

SendKeys Method
Sends one or more keystrokes to the active window (as if typed on the keyboard).

object.SendKeys(string)

Arguments

object
WshShell object.

Windows Script Host

Page 279 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

string
String value indicating the keystroke(s) you want to send.

Remarks

Use the SendKeys method to send keystrokes to applications that have no automation interface. Most keyboard characters are represented by
a single keystroke. Some keyboard characters are made up of combinations of keystrokes (CTRL+SHIFT+HOME, for example). To send a
single keyboard character, send the character itself as the string argument. For example, to send the letter x, send the string argument "x".

Note To send a space, send the string " ".

You can use SendKeys to send more than one keystroke at a time. To do this, create a compound string argument that represents a sequence
of keystrokes by appending each keystroke in the sequence to the one before it. For example, to send the keystrokes a, b, and c, you would
send the string argument "abc". The SendKeys method uses some characters as modifiers of characters (instead of using their face-values).
This set of special characters consists of parentheses, brackets, braces, and the:

l plus sign "+",
l caret "^",
l percent sign "%",
l and tilde "~"

Send these characters by enclosing them within braces "{}". For example, to send the plus sign, send the string argument "{+}". Brackets "[]"
have no special meaning when used with SendKeys, but you must enclose them within braces to accommodate applications that do give them
a special meaning (for dynamic data exchange (DDE) for example).

l To send bracket characters, send the string argument "{[}" for the left bracket and "{]}" for the right one.
l To send brace characters, send the string argument "{{}" for the left brace and "{}}" for the right one.

Some keystrokes do not generate characters (such as ENTER and TAB). Some keystrokes represent actions (such as BACKSPACE and
BREAK). To send these kinds of keystrokes, send the arguments shown in the following table:

Key Argument
BACKSPACE {BACKSPACE}, {BS}, or {BKSP}
BREAK {BREAK}
CAPS LOCK {CAPSLOCK}
DEL or DELETE {DELETE} or {DEL}

Page 280 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

To send keyboard characters that are comprised of a regular keystroke in combination with a SHIFT, CTRL, or ALT, create a compound

DOWN ARROW {DOWN}
END {END}
ENTER {ENTER} or ~
ESC {ESC}
HELP {HELP}
HOME {HOME}
INS or INSERT {INSERT} or {INS}
LEFT ARROW {LEFT}
NUM LOCK {NUMLOCK}
PAGE DOWN {PGDN}
PAGE UP {PGUP}
PRINT SCREEN {PRTSC}
RIGHT ARROW {RIGHT}
SCROLL LOCK {SCROLLLOCK}
TAB {TAB}
UP ARROW {UP}
F1 {F1}
F2 {F2}
F3 {F3}
F4 {F4}
F5 {F5}
F6 {F6}
F7 {F7}
F8 {F8}
F9 {F9}
F10 {F10}
F11 {F11}
F12 {F12}
F13 {F13}
F14 {F14}
F15 {F15}
F16 {F16}

Page 281 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

string argument that represents the keystroke combination. You do this by preceding the regular keystroke with one or more of the following
special characters:

Note When used this way, these special characters are not enclosed within a set of braces.

To specify that a combination of SHIFT, CTRL, and ALT should be held down while several other keys are pressed, create a compound
string argument with the modified keystrokes enclosed in parentheses. For example, to send the keystroke combination that specifies that the
SHIFT key is held down while:

l e and c are pressed, send the string argument "+(ec)".
l e is pressed, followed by a lone c (with no SHIFT), send the string argument "+ec".

You can use the SendKeys method to send a pattern of keystrokes that consists of a single keystroke pressed several times in a row. To do
this, create a compound string argument that specifies the keystroke you want to repeat, followed by the number of times you want it
repeated. You do this using a compound string argument of the form {keystroke number}. For example, to send the letter "x" ten times, you
would send the string argument "{x 10}". Be sure to include a space between keystroke and number.

Note The only keystroke pattern you can send is the kind that is comprised of a single keystroke pressed several times. For
example, you can send "x" ten times, but you cannot do the same for "Ctrl+x".

Note You cannot send the PRINT SCREEN key {PRTSC} to an application.

Example

The following example demonstrates the use of a single .wsf file for two jobs in different script languages (VBScript and JScript). Each job
runs the Windows calculator and sends it keystrokes to execute a simple calculation.

<package>
 <job id="vbs">
 <script language="VBScript">
 set WshShell = WScript.CreateObject("WScript.Shell")
 WshShell.Run "calc"

Key Special Character
SHIFT +
CTRL ^
ALT %

Page 282 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 WScript.Sleep 100
 WshShell.AppActivate "Calculator"
 WScript.Sleep 100
 WshShell.SendKeys "1{+}"
 WScript.Sleep 500
 WshShell.SendKeys "2"
 WScript.Sleep 500
 WshShell.SendKeys "~"
 WScript.Sleep 500
 WshShell.SendKeys "*3"
 WScript.Sleep 500
 WshShell.SendKeys "~"
 WScript.Sleep 2500
 </script>
 </job>

 <job id="js">
 <script language="JScript">
 var WshShell = WScript.CreateObject("WScript.Shell");
 WshShell.Run("calc");
 WScript.Sleep(100);
 WshShell.AppActivate("Calculator");
 WScript.Sleep(100);
 WshShell.SendKeys ("1{+}");
 WScript.Sleep(500);
 WshShell.SendKeys("2");
 WScript.Sleep(500);
 WshShell.SendKeys("~");
 WScript.Sleep(500);
 WshShell.SendKeys("*3");
 WScript.Sleep(500);
 WshShell.SendKeys("~");
 WScript.Sleep(2500);
 </script>
 </job>
</package>

See Also

WshShell Object | Run Method

Page 283 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

SetDefaultPrinter Method
Assigns a remote printer the role Default Printer.

object.SetDefaultPrinter(strPrinterName)

Arguments

object
WshNetwork object.

strPrinterName
String value indicating the remote printer's UNC name.

Remarks

The SetDefaultPrinter method fails when using a DOS-based printer connection. You cannot use the SetDefaultPrinter method to
determine the name of the current default printer.

Example

The following code uses the AddWindowsPrinterConnection method to connect a network printer and set it as the default printer.

[VBScript]

Set WshNetwork = WScript.CreateObject("WScript.Network")
PrinterPath = "\\research\library1"
WshNetwork.AddWindowsPrinterConnection PrinterPath
WshNetwork.SetDefaultPrinter PrinterPath

[JScript]

Windows Script Host

Page 284 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

var WshNetwork = WScript.CreateObject("WScript.Network");
var PrinterPath = "\\\\research\\library1";
WshNetwork.AddWindowsPrinterConnection(PrinterPath);
WshNetwork.SetDefaultPrinter(PrinterPath);

See Also

WshNetwork Object | AddPrinterConnection Method | AddWindowsPrinterConnection Method | EnumPrinterConnections Method |
RemovePrinterConnection Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

ShowUsage Method
Makes a script self-documenting by displaying information about how it should be used.

object.ShowUsage

Parameters

object
WScript Object.

Remarks

When you run the ShowUsage method, a help screen (referred to as the usage) appears and displays details about the script's command line
options. This information comes from the runtime section of the *.WSF file. Everything written between the <runtime> and </runtime> tags
is pieced together to produce what is called a "usage statement." The usage statement tells the user how to use the script.

Windows Script Host

Page 285 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Note The usage can also be displayed using the /? switch.

Example

The following example demonstrates how to set up usage information in a *.WSF script file.

<job>
 <runtime>
 <description>This script reboots a server</description>
 <named
 name = "Server"
 helpstring = "Server to run the script on"
 type = "string"
 required = "true"
 />
 <example>Example: reboot.wsf /server:scripting</example>
 </runtime>
<script language="VBScript">

If WScript.Arguments.Count <> 1 Then
 WScript.Arguments.ShowUsage
 WScript.Quit
End If

</script>
</job>

The JScript code for the equivalent script block would be:

if (WScript.Arguments.length != 1)
{
 WScript.Arguments.ShowUsage();
 WScript.Quit();
}

Calling the ShowUsage method from this script results in the following output:

This script reboots a server
Usage: reboot.wsf /server:value

Options:

Page 286 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

server : Server to run the script onExample:
reboot.wsf /server:scripting

See Also

WScript Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Sign Method
Signs a script stored in a string.

Object.Sign (FileExtension, Text, Certificate, Store)

Arguments

object
Scripting.Signer

FileExtension
A string designating the script extension type (.vbs, .js, or .wsf). This provides a mechanism by which the operating system can
determine the type of script file being verified.

Text
A string containing the script to be signed.

Certificate
A string designating the author's certificate name.

Store
Optional. A string designating the name of the certificate store. Typically certificates that contain private keys — i.e., certificates you

Windows Script Host

Page 287 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

can use for code signing — are in a certificate store called "my". The default value is "my".

Remarks

The Sign method is used to digitally sign a script stored in a string. In order to create a digital signature, the caller must have a valid
certificate.

Example

Dim Signer, UnsignedText, SignedText
Set Signer = CreateObject("Scripting.Signer")
UnsignedText = _
 "Dim X " & vbCrLf & _
 "X = 123" & vbCrLf & _
 "WScript.Echo X" & vbCrLf
SignedText = Signer.Sign(".VBS", UnsignedText, "Your Certificate Name Here")

See Also

Scripting.Signer Object | SignFile Method | Verify Method | VerifyFileMethod | Signing a Script

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

SignFile Method
Signs a script using a digital signature.

Object.SignFile (FileName, Certificate, Store)

Arguments

Windows Script Host

Page 288 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

object
Scripting.Signer

FileName
A string containing the name of the script file.

Certificate
A string designating the author's certificate name.

Store
An optional string designating the name of the certificate store. Typically certificates that contain private keys — i.e., certificates you
can use for code signing — are in a certificate store called "my". The default value is "my".

Remarks

In order to sign a digital signature, the author must have a valid certificate.

Example

The following example demonstrates not only signature checking but also the command-line argument.

<job>
<runtime>
<named name="file" helpstring="the file to sign" required="true" type="string"/>
<named name="cert" helpstring="the name of the signing certificate" required="true" type="string"/>
<named name="store" helpstring="the name of the certificate store" required="false" type="string"/>
</runtime>
<script language="vbscript">
Dim Signer, File, Cert, Store
If Not (WScript.Arguments.Named.Exists("cert") And WScript.Arguments.Named.Exists("file")) Then
 WScript.Arguments.ShowUsage
 WScript.Quit
End If
Set Signer = CreateObject("Scripting.Signer")
File = WScript.Arguments.Named("file")
Cert = WScript.Arguments.Named("cert")
If WScript.Arguments.Named.Exists("store") Then
 Store = WScript.Arguments.Named("store")
Else
 Store = "my"
End If
Signer.SignFile File, Cert, Store
</script>

Page 289 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

</job>

See Also

Scripting.Signer Object | Sign Method | Verify Method | VerifyFile Method | Signing a Script

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Skip Method
Skips a specified number of characters when reading from an input text stream.

object.Skip(characters)

Arguments

object
StdIn text stream object.

characters
Integer value indicating the number of characters you want to skip.

Remarks

The StdIn, StdOut, and StdErr properties and methods work when running the script with the CScript.exe host executable file only. An
"Invalid Handle" error is returned when run with WScript.exe. The position pointer moves forward by the number of characters (bytes)
specified in the argument characters. You cannot use the Skip method to skip backwards through a file (negative character values are not
supported). The Skip method is limited to the open for reading mode only (you cannot skip a specified number of characters when writing to
an output stream).

Windows Script Host

Page 290 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Example

The following code uses the Skip method to jump over the first character in a text stream, read a line from the keyboard, and write it to the
StdOut text stream.

[VBScript]

WScript.StdIn.Skip 1
Input = WScript.StdIn.ReadLine
WScript.StdOut.Write Input

[JScript]

WScript.StdIn.Skip(1);
Input = WScript.StdIn.ReadLine();
WScript.StdOut.Write(Input);

See Also

StdIn Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

SkipLine Method
Skips the next line when reading from an input text stream.

object.SkipLine

Windows Script Host

Page 291 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Arguments

object
StdIn text stream object.

Remarks

A line is a sequence of characters that ends with a newline character. The StdIn, StdOut, and StdErr properties and methods work when
running the script with the CScript.exe host executable file only. An "Invalid Handle" error is returned when run with WScript.exe. The
position pointer moves forward to the point just past the next newline character. You cannot use the SkipLine method to skip backwards
through a file. The SkipLine method is limited to the open for reading mode only (you cannot skip lines when writing to an output stream).

Example

The following code demonstrates the SkipLine method.

[VBScript]

Dim StdIn, StdOut, Str1, Str2

Set StdIn = WScript.StdIn
Set StdOut = WScript.StdOut

Str1 = ""
Str2 = ""

For i = 0 to 4
 StdIn.SkipLine
Next

i = 0
Do While Not StdIn.AtEndOfStream
 If i >= 2 Then
 StdOut.WriteLine Str1
 End If
 i = i + 1
 Str1 = Str2
 Str2 = StdIn.ReadLine
Loop

Page 292 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

[JScript]

var stdin = WScript.StdIn;
var stdout = WScript.StdOut;
var str1, str2 = "";
var i;
for (i = 0; i < 5; i++)
 stdin.SkipLine();
i = 0;
while (!stdin.AtEndOfStream)
{
 if (i++ >= 2)
 {
 stdout.WriteLine(str1);
 }
 str1 = str2;
 str2 = stdin.ReadLine();
}

See Also

StdIn Property

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Sleep Method
Suspends script execution for a specified length of time, then continues execution.

object.Sleep(intTime)

Windows Script Host

Page 293 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Arguments

object
WScript object.

intTime
Integer value indicating the interval (in milliseconds) you want the script process to be inactive.

Remarks

The thread running the script is suspended, releasing its CPU utilization. Execution resumes as soon as the interval expires. Using the Sleep
method can be useful when you are running asynchronous operations, multiple processes, or if your script includes code triggered by an
event. To be triggered by an event, a script must be continually active (a script that has finished executing will certainly not detect an event).
Events handled by the script will still be executed during a sleep.

Note Passing the Sleep method a 0 or –1 does not cause the script to suspend indefinitely.

Example

The following example demonstrates the use of a single .wsf file for two jobs in different script languages (VBScript and JScript). The
functionality of both jobs is the same — each runs the Windows calculator and sends it keystrokes to execute a simple calculation.

<package>
 <job id="vbs">
 <script language="VBScript">
 set WshShell = WScript.CreateObject("WScript.Shell")
 WshShell.Run "calc"
 WScript.Sleep 100
 WshShell.AppActivate "Calculator"
 WScript.Sleep 100
 WshShell.SendKeys "1{+}"
 WScript.Sleep 500
 WshShell.SendKeys "2"
 WScript.Sleep 500
 WshShell.SendKeys "~"
 WScript.Sleep 500
 WshShell.SendKeys "*3"
 WScript.Sleep 500
 WshShell.SendKeys "~"
 WScript.Sleep 2500
 </script>

Page 294 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 </job>

 <job id="js">
 <script language="JScript">
 var WshShell = WScript.CreateObject("WScript.Shell");
 WshShell.Run("calc");
 WScript.Sleep(100);
 WshShell.AppActivate("Calculator");
 WScript.Sleep(100);
 WshShell.SendKeys("1{+}");
 WScript.Sleep(500);
 WshShell.SendKeys("2");
 WScript.Sleep(500);
 WshShell.SendKeys("~");
 WScript.Sleep(500);
 WshShell.SendKeys("*3");
 WScript.Sleep(500);
 WshShell.SendKeys("~");
 WScript.Sleep(2500);
 </script>
 </job>
</package>

See Also

Running Your Scripts | WScript Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Terminate Method (WshScriptExec)
Instructs the script engine to end the process started by the Exec method.

Windows Script Host

Page 295 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

object.Terminate

Arguments

object
WshScriptExec object.

Remarks

The Terminate method does not return a value. Use the Terminate method only as a last resort since some applications do not clean up
properly. As a general rule, let the process run its course and end on its own. The Terminate method attempts to end a process using the
WM_CLOSE message. If that does not work, it kills the process immediately without going through the normal shutdown procedure.

Example

The following JScript example demonstrates how to use the Terminate method to stop a running script.

var aScript = WScript.Exec("%comspec% /c myScript.js");
aScript.Terminate();

See Also

WshScriptExec Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Verify Method
Verifies a digital signature retrieved as a string.

Windows Script Host

Page 296 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

object.Verify (FileExtension, Text, ShowUI)

Arguments

object
Scripting.Signer

FileExtension
A string designating the script extension type (.vbs, .js, or .wsf). This provides a mechanism by which the operating system can
determine the type of script file being verified.

Text
The text to verify.

ShowUI
A Boolean value. If the ShowUI argument is false, then the Scripting.Signer object determines whether a trusted source provided the
signature without prompting the user. If it is true then the Scripting.Signer object may create dialog boxes to prompt the user if there is
not sufficient information to determine trust.

Note On some operating systems, the operating system also creates a dialog box if the flag is on, the file is trusted, and
you have not already checked the "Always trust …" option.

Remarks

The Verify method is used to verify a digital signed script stored in a string.

Example

In this example the Verify method determines whether the script in the UnsignedText variable is trusted. (In this example there is no digital
signature, so the Scripting.Signer object asks the user whether to extend trust.)

Dim Signer, UnsignedText, Trusted
Set Signer = CreateObject("Scripting.Signer")
UnsignedText = _
 "Dim X " & vbCrLf & _
 "X = 123" & vbCrLf & _
 "WScript.Echo X" & vbCrLf
Trusted = Signer.Verify(".VBS", UnsignedText, True)

See Also

Page 297 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Scripting.Signer Object | VerifyFile Method | Sign Method | SignFile Method | Verifying a Script

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

VerifyFile Method
Verifies the digital signature encapsulated in a script.

Object.VerifyFile (FileName, ShowUI)

Arguments

object
Scripting.Signer

FileName
A string containing the name of the script file.

ShowUI
A Boolean value. If the ShowUI argument is false, then the Scripting.Signer object determines whether a trusted source provided the
signature without prompting the user. If it is true then the Scripting.Signer object may create dialog boxes to prompt the user if there is
not sufficient information to determine trust.

Note On some operating systems, the operating system also creates a dialog box if the flag is on, the file is trusted, and
you have not already checked the "Always trust …" option.

Example

The following example demonstrates signature checking using the command-line argument processing features.

<job>

Windows Script Host

Page 298 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

<runtime>
<named name="file" helpstring="the file to sign" required="true" type="string"/>
<named name="UI" helpstring="produce user interface for untrusted scripts" required="false"/>
</runtime>
<script language="vbscript">
Dim Signer, File, UI, OK
If Not WScript.Arguments.Named.Exists("file") Then
 WScript.Arguments.ShowUsage
 WScript.Quit
End If
Set Signer = CreateObject("Scripting.Signer")
File = WScript.Arguments.Named("file")
UI = WScript.Arguments.Named.Exists("ui")
OK = Signer.VerifyFile(File, UI)
If OK Then
 WScript.Echo File & " is trusted."
Else
 WScript.Echo File & " is NOT trusted."
End If
</script>
</job>

See Also

Scripting.Signer Object | Verify Method | Sign Method | SignFile Method | Verifying a Script

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Write Method
Sends a string to an output stream.

Windows Script Host

Page 299 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

object.Write(strText)

Arguments

object
StdOut or StdErr text stream objects.

strText
String value indicating the text you want to write to the stream.

Remarks

The StdIn, StdOut, and StdErr properties and methods work when running the script with the CScript.exe host executable file only. An
"Invalid Handle" error is returned when run with WScript.exe. The position pointer moves to the point just beyond the last character in
strText.

Example

The following code demonstrates the use of the Write method.

[VBScript]

Dim strInput
strInput = WScript.StdIn.ReadAll
WScript.StdOut.Write strInput

[JScript]

var strInput = WScript.StdIn.ReadAll();
WScript.StdOut.Write(strInput);

See Also

StdErr Property | StdOut Property

Page 300 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WriteBlankLines Method
Sends a specified number of blank lines (newline characters) to an output stream.

object.WriteBlankLines(intLines)

Arguments

object
StdOut or StdErr text stream objects.

intLines
Integer value indicating the number of blank lines you want to write to the stream.

Remarks

Calling the WriteLine method without supplying the strText argument is equivalent to calling WriteBlankLines(1). The StdIn, StdOut, and
StdErr properties and methods work when running the script with the CScript.exe host executable file only. An "Invalid Handle" error is
returned when run with WScript.exe.

Example

The following code demonstrates the WriteBlankLines method.

[VBScript]

Dim StdIn, StdOut
Set StdIn = WScript.StdIn
Set StdOut = WScript.StdOut

Do While Not StdIn.AtEndOfStream

Windows Script Host

Page 301 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 str = StdIn.ReadLine
 StdOut.Write "Line " & (StdIn.Line - 1) & ": " & str
 StdOut.WriteBlankLines 1
Loop

[JScript]

var stdin = WScript.StdIn;
var stdout = WScript.StdOut;

while (!stdin.AtEndOfStream)
{
 var str = stdin.ReadLine();
 stdout.Write("Line " + (stdin.Line - 1) + ": " + str);
 stdout.WriteBlankLines(1);
}

See Also

StdErr Property | StdOut Property | WriteLine Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

WriteLine Method
Sends a string with a newline character to an output stream.

object.WriteLine([strText])

Arguments

Windows Script Host

Page 302 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

object
StdOut or StdErr text stream objects.

strText
Optional. String value indicating the text you want to write to the stream. If omitted, a newline character is written to the output stream.

Remarks

The WriteLine method always appends a newline character to the string. Calling the WriteLine method without supplying the argument
strText is equivalent to calling WriteBlankLines(1). The StdIn, StdOut, and StdErr properties and methods work when running the script
with the CScript.exe host executable file only. An "Invalid Handle" error is returned when run with WScript.exe. A line is a sequence of
characters that ends with a newline character.

Example

The following code demonstrates the WriteLine method.

[VBScript]

Dim StdIn, StdOut
Set StdIn = WScript.StdIn
Set StdOut = WScript.StdOut

Do While Not StdIn.AtEndOfStream
 str = StdIn.ReadLine
 StdOut.WriteLine "Line " & (StdIn.Line - 1) & ": " & str
Loop

[JScript]

var stdin = WScript.StdIn;
var stdout = WScript.StdOut;

while (!stdin.AtEndOfStream)
{
 var str = stdin.ReadLine();
 stdout.WriteLine("Line " + (stdin.Line - 1) + ": " + str);
}

See Also

Page 303 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

StdErr Property | StdOut Property | WriteBlankLines Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Events
In this Section

End Event
Signals the script engine to end execution of a remote script object.

Error Event
Signals the script engine to end execution of a remote script object when the remote script terminates prematurely due to an error.

Start Event
Signals the script engine to begin execution of a remote script object.

Related Sections

WSH Language
List of elements that make up WSH Reference.

WSH Basics
Learn the basics of WSH.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Page 304 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

End Event
Event that is fired when the remote script completes.

Object_end

Parameters

object
WshRemote object.

Remarks

The End event is fired when the remote script object has finished executing. This can be when the remote script object has terminated
normally, timed out, or terminated due to an error.

Example

var WshController = new ActiveXObject("WSHController");
var RemoteProc = WshController.CreateScript("foo.wsf", "remotemachine");
WScript.ConnectObject(RemoteProc, "RemoteProc_");
var Done = false;
RemoteProc.Execute();
while (!Done)
 WScript.Sleep(100);

function RemoteProc_End()
{
 WScript.Echo("The process has ended");
 Done = true;
}

function RemoteProc_Error()
{
 WScript.Echo("An error has occurred: " + RemoteProc.Error.Description);
 Done = true;
}

Windows Script Host

Page 305 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

function RemoteProc_Start()
{
 WScript.Echo("The process has started");
}

See Also

WshController Object | WshRemote Object | Status Property | Error Property | Execute Method | Terminate Method | Start Event | Error Event

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Error Event
Event that is fired when an error occurs in the remote script.

Object_Error

Parameters

object
WshRemote object.

Remarks

The remote script object fires the Error event when the remote script terminates prematurely. The Error property contains the
WshRemoteError object (which holds information about the error that caused the remote script to terminate prematurely).

Example

Windows Script Host

Page 306 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

var WshController = new ActiveXObject("WSHController");
var RemoteProc = WshController.CreateScript("foo.wsf", "remotemachine");
WScript.ConnectObject(RemoteProc, "RemoteProc_");
var Done = false;
RemoteProc.Execute();
while (!Done)
 WScript.Sleep(100);

function RemoteProc_End()
{
 WScript.Echo("The process has ended");
 Done = true;
}

function RemoteProc_Error()
{
 WScript.Echo("An error has occurred: " + RemoteProc.Error.Description);
 Done = true;
}

function RemoteProc_Start()
{
 WScript.Echo("The process has started");
}

See Also

WshController Object | WshRemote Object | WshRemoteError Object | Status Property | Error Property | Execute Method | Terminate Method
| Start Event | End Event

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Page 307 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Start Event
Event that is fired when the remote script begins executing.

Object_Start

Parameters

object
WshRemote object.

Remarks

The Start event is fired when the Execute method is called.

Example

var WshController = new ActiveXObject("WSHController");
var RemoteProc = WshController.CreateScript("foo.wsf", "remotemachine");
WScript.ConnectObject(RemoteProc, "RemoteProc_");
var Done = false;
RemoteProc.Execute();
while (!Done)
 WScript.Sleep(100);

function RemoteProc_End()
{
 WScript.Echo("The process has ended");
 Done = true;
}

function RemoteProc_Error()
{
 WScript.Echo("An error has occurred: " + RemoteProc.Error.Description);
 Done = true;
}

function RemoteProc_Start()
{

Page 308 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

 WScript.Echo("The process has started");
}

See Also

WshController Object | WshRemote Object | Status Property | Error Property | Execute Method | Terminate Method | End Event | Error Event

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Error Messages
In this Section

Here is a list of the errors messages you may encounter when running scripts in the Windows Script Host 5.6 environment.

//E option requires name of script engine.

//H option requires host name.

//T option requires timeout value.

A duplicate name for a named or unnamed element was encountered.

An attempt at saving your settings via the //S option failed.

Can't change default script host <host name>.

Can't find script engine <engine name> for script.

Windows Script Host

Page 309 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Can't find script file <script file name>.

Can't read script from stdin.

Can't save settings.

Command line option mismatch.

Could not connect object <object name>.

Could not locate automation class name <automation class name>.

Execution of the Windows Script Host failed.

Host name for //H option must be "cscript" or "wscript".

Initialization of the Windows Script Host failed.

Invalid attempt to call Exec without a command.

Invalid pathname.

Invalid root in registry key <name> for reading.

Invalid syntax in URL<name>.

Invalid timeout value for //T option.

Loading script <script name> failed.

Loading your settings failed.

Missing job name.

Protocol handler for <name> not found.

Page 310 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Remote script object can only be executed once.

Script execution time was exceeded on script <script name>. <script name> execution was terminated.

Script setting file <settings filename>is invalid.

The shortcut pathname must end with .lnk or .url.

There is no file extension in <file name>.

There is no printer called <name>.

There is no script engine for file extension <file extension>.

There is no script file specified.

Unable to execute - arguments list too long.

Unable to open registry key <name> for reading.

Unable to remove environment variable <name>.

Unable to remove registry key <name>.

Unable to save shortcut <name>.

Unable to set shortcut target to <name>.

Unable to write to wsh.log. Please check with your administrator.

Unable to wait for process.

Unable to execute remote script.

Unable to find job <job identifier>.

Page 311 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Unicode is not supported on this platform.

Unknown option <option designation> specified.

Windows Script Host access is disabled on this machine. Contact your administrator for details.

Related Sections

WSH Reference
List of elements that make up WSH Reference.

WSH Basics
Learn the basics of WSH.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

//H option requires host name.
You failed to specify the default host name.

To correct this error

l Specify the default host name when using the //H option.

See Also

Host name for //H option must be "cscript" or "wscript".

Windows Script Host

Page 312 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

//T option requires timeout value.
You failed to input a timeout value for the //T option.

To correct this error

l Input a timeout value using the //T option.

See Also

Invalid timeout value for //T option | Script execution time was exceeded on script <script name>. <script name> execution was terminated.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

A duplicate name for a named or unnamed element was
encountered.
You are attempting to name a <named> or <unnamed> element with a name that is already in use by another <named> or <unnamed>

Windows Script Host

Windows Script Host

Page 313 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

element. The "name" attribute of the <named> and <unnamed> elements must be unique throughout the <job>.

To correct this error

l Choose a different name for the <named> or <unnamed> element.

See Also

WshArguments Object | WshNamed Object | WshUnnamed Object | <named> Element

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

An attempt at saving your settings via the //S option failed.
Again this is usually a systems permissions issue.

To correct this error

l Consult your Administrator about potential network or security problems.

See Also

Can't change default script host <host name> | Setting Script Properties

© 2001 Microsoft Corporation. All rights reserved.

Windows Script Host

Page 314 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Build: Topic Version 5.6.9309.1546

Unable to execute - arguments list too long.
This error generally occurs when using the drag and drop feature of Windows Script Host. This happens when too many files are dropped on
a Windows Script File.

To correct this error

l Shorten the argument list by dragging and dropping fewer items.

Note The maximum command-line length that your system allows determines the number of files you can drag onto a script.

See Also

l Drag and Drop Support | Command line option mismatch

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Unable to write to wsh.log. Please check with your administrator.
On Windows 95/98 and Windows Millennium Editions, you are calling the method LogEvent(), but it fails because the wsh.log file is locked.

To correct this error

Windows Script Host

Windows Script Host

Page 315 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

l Unlock the wsh.log file if you the proper permissions or consult your system administrator.

See Also

LogEvent Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Can't change default script host <host name>.
This is usually a systems permission issue and the likely cause is that the system registry has been locked by an Administrator.

To correct this error

l Consult your Administrator about potential network or security problems.

See Also

An attempt at saving your settings via the //s option failed

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Windows Script Host

Page 316 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Can't find script engine <engine name> for script.
Usually, this means that the script engine is not installed.

To correct this error

l Consult your Administrator about potential network or security problems.
l Make sure that the particular script engine is installed or that you are specifying the correct script engine.
l Check your spelling.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Can't find script file <script file name>.
You have given an incorrect path or the script file is not there.

To correct this error

l Check the path given and correct it.
l Make sure that the file is actually there

See Also

Invalid pathname.

Windows Script Host

Page 317 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Can't read script from stdin.
This is often a permissions issue.

To correct this error

l Consult your Administrator about potentially serious network or security problems.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Can't save settings.
Unable to save the control file (*.wsh) for this script.

To correct this error

l Verify that you are not trying to save over a read-only file, a file that is open in another application, or a file locked by an administrator.
l Consult your Administrator about potential network or security problems.

See Also

Windows Script Host

Windows Script Host

Page 318 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Setting Script Properties

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Command line option mismatch.
Often this means you have specified conflicting arguments. For example, //B - batch mode is inconsistent with //I - interactive mode.

To correct this error

l Check your arguments for conflicts.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Could not connect object <object name>.
It is likely that you are trying to sync events to an object or are sourcing events to an object that cannot accept those object events.

For example, IE can't be connected to events once it is created. You have to connect any object events to IE at the time it is created as the
object as a part of the creation process.

Windows Script Host

Windows Script Host

Page 319 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

To correct this error

l Create the object and connect its object events to it during the creation process.

See Also

<object> Element | WScript Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Could not locate automation class name <automation class name>.
Either you were unsuccessful in creating an automation class or the automation class was not properly installed.

To correct this error

l Make sure the automation class that you created is installed.
l Consult your Administrator about potential network or security problems.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Windows Script Host

Page 320 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

//E option requires name of script engine.
You have not designated the script engine using the //E option.

To correct this error

l Be sure to designate the script engine when using the //E option.

See Also

There is no script engine for file extension <file extension>.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Unable to remove environment variable <name>.
You are calling the method Environment.Remove() on an unrecognized environment variable.

This error generally occurs when using the Remove method. If the environment variable does not exist or is misspelled, the system is not able
to remove it.

To correct this error

l Check the names of the current environment variables and make sure they exist and are spelled correctly.

See Also

Windows Script Host

Page 321 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Remove Method | WshEnvironment Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Execution of the Windows Script Host failed.
Usually, this is a systems permissions issue.

To correct this error

l Consult your Administrator about potentially serious network or security problems.

See Also

Loading script <script name> failed

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Host name for //H option must be "cscript" or "wscript".

Windows Script Host

Windows Script Host

Page 322 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

You specified something other than "cscript" or "wscript" as your host name when you used the //H option.

To correct this error

l Specify either "cscript" or "wscript" as the host name when using the //H option.

See Also

H option requires host name.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Initialization of the Windows Script Host failed.
Windows Script Host failed to initialize.

To correct this error

l Consult your Administrator about potentially serious network or security problems.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Windows Script Host

Page 323 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Invalid attempt to call Exec without a command.
You called the WshShell.Exec() method but did not supply a command to execute.

To correct this error

l strCommand is a required argument. It is a string that represents the command line used to run the script.

See Also

Exec Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Invalid pathname.
You have given an incorrect path.

To correct this error

l Check the path given and correct it.

See Also

Can't find script file <script file name>.

Windows Script Host

Page 324 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

The shortcut pathname must end with .lnk or .url
When you named your shortcut, either you did not give it a file extension or you gave it an extension other than *.lnk, nor *.url.

When using the CreateShortcut method, the file extension is incorrect or missing.

To correct this error

l Check that the file extension for the shortcut ends with .lnk for a Windows shortcut or with .url for an Internet shortcut.

See Also

WshShortcut Object | WshUrlShortcut Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Invalid timeout value for //T option.
The timeout value that you entered using the //T option is invalid. You must designate a non-negative integer for //T option.

Windows Script Host

Windows Script Host

Page 325 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

To correct this error

l Input an appropriate timeout value using the //T option. Specify a non-negative integer for //T.

See Also

//T option requires timeout value | Script execution time was exceeded on script <script name>. <script name> execution was terminated.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Loading script <script name> failed.
Usually, this is a systems permissions issue and you have been denied read access to the file in question.

To correct this error

l Consult your Administrator about potentially serious network or security problems.

See Also

Loading your settings failed

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Page 326 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Loading your settings failed.
Usually, this is a systems permissions issue.

To correct this error

l Consult your Administrator about potentially serious network or security problems.

See Also

Loading script <script name> failed

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Missing job name.
You have failed to specify the job name.

To correct this error

l Specify the job name.

See Also

Unable to find job <job identifier>

Windows Script Host

Windows Script Host

Page 327 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

There is no printer called <name>.
The SetDefaultPrinter method accepts only the names of currently installed printers. This error generally occurs if you specify the printer
port instead of the name of the printer, or if you use the name of a printer that is not currently installed.

To correct this error

l Check the names of the currently installed printers and make sure the specified printer is installed.
l Check the spelling of the printer path for typing errors.
l Make sure the networked printer is online.

See Also

SetDefaultPrinter Method | EnumPrinterConnections Method | AddWindowsPrinterConnection Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Protocol handler for <name> not found.

Windows Script Host

Windows Script Host

Page 328 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

This error generally occurs when the protocol handler for the URL shortcut target is misspelled. The two most common protocol handlers are
HTTP and FTP.

To correct this error

l Check the spelling of the protocol handler.

See Also

WshUrlShortcut Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Invalid root in registry key <name> for reading.
You are calling the methods RegRead() or RegWrite() on an unrecognized root registry key.

This error generally occurs when using the RegRead or RegWrite methods with an invalid registry key.

To correct this error

l Check the Windows registry and make sure the registry key exists and is spelled correctly.

See Also

RegRead Method | RegWrite Method | RegDelete Method

Windows Script Host

Page 329 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Unable to open registry key <name> for reading.
You are calling the method RegRead() on an unrecognized registry key.

This error generally occurs when using the RegRead method with an invalid registry key.

To correct this error

l Check the Windows registry and make sure the registry key exists and is spelled correctly.

See Also

RegRead Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Unable to remove registry key <name>.
You are calling the method RegDelete() on an unrecognized registry key.

Windows Script Host

Windows Script Host

Page 330 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

This error generally occurs when using the RegDelete method on an invalid registry key.

To correct this error

l Check the Windows registry and make sure the registry key exists and is spelled correctly.

See Also

RegDelete Method | RegRead Method | RegWrite Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Remote script object can only be executed once.
You are attempting to rerun a remote script object.

To correct this error

l Create another remote script object and run it instead.

See Also

WshRemote Object

© 2001 Microsoft Corporation. All rights reserved.

Windows Script Host

Page 331 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Build: Topic Version 5.6.9309.1546

Script execution time was exceeded on script <script name>.
<script name> execution was terminated.
The script in question could not be executed within the user-defined execution time (//T).

To correct this error

l Troubleshoot your script to determine why it is not executing within the time parameter (//T) that you set. Redesign your script so that
it executes faster and/or change the time parameter (//T).

See Also

T option requires timeout value | Invalid timeout value for T option

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Script setting file <settings filename>is invalid.
You used an invalid script setting file.

To correct this error

Windows Script Host

Windows Script Host

Page 332 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

l Recreate your script setting file or consult your systems administrator.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Invalid syntax in URL<name>.
This error generally occurs when the text that makes up the URL target contains incorrect syntax.

To correct this error

l Check the spelling of the URL target for typing errors.

See Also

WshUrlShortcut Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Unable to save shortcut <name>.

Windows Script Host

Windows Script Host

Page 333 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

This error generally occurs when the name of the shortcut already exists or is a read-only file.

To correct this error

l Change the read-only attribute to read/write.
l Rename your shortcut to something unique.
l Change the name of the existing shortcut.

See Also

WshShortcut Object | WshUrlShortcut Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Unable to set shortcut target to <name>.
This error generally occurs when the protocol handler for the URL shortcut target is invalid or improperly registered. The two most common
protocol handlers are HTTP and FTP.

To correct this error

l Use a valid protocol handler.
l Check the spelling of the protocol handler being used.
l Contact your system administrator to make sure the protocol handler is properly installed.
l Consult your Administrator about potential network or security problems.

See Also

Windows Script Host

Page 334 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

WshUrlShortcut Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

There is no file extension in <file name>.
In order to determine what script engine is apt, the program usually needs the appropriate file extension.

To correct this error

l Be sure include a correct file extension that is appropriate to the scripting language you wish to use, along with the file name.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

There is no script engine for file extension <file extension>.
This file extension is not mapped to a script engine.

To correct this error

Windows Script Host

Windows Script Host

Page 335 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

l Check your file extension and also the spelling of your scripting language designation.
l Use //E to designate a script engine.

See Also

E option requires name of script engine.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

There is no script file specified.
You have failed to specify a script file.

To correct this error

l Specify the appropriate script file.

See Also

Unknown option <option designation> specified

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Page 336 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Unable to execute remote script.
The script failed to initialize.

To correct this error

l Consult your Administrator about potential network or security problems.

See Also

WshRemote Object

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Unable to find job <job identifier>.
You made a reference to an unrecognized job ID in your Windows Script file (*.wsf file).

To correct this error

l Check the spelling of the job ID for typing errors.

See Also

Using Windows Script Files | <job> Element

Windows Script Host

Windows Script Host

Page 337 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Unable to wait for process.
This error generally occurs when the script is hung up waiting for a process that does not return a value, for example, waiting for the result
from running a shortcut link.

To correct this error

l Execute the program directly instead of using a shortcut.
l Check the shortcut link to be sure it is still current.

See Also

Run Method

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Unicode is not supported on this platform.

Windows Script Host

Windows Script Host

Page 338 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

The WIN 95/98 and Windows Millennium Edition platforms do not support the use of Unicode.

To correct this error

l Don't attempt to use Unicode on WIN95/98 or Windows Millennium Edition platforms.

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Unknown option <option designation> specified.
You have specified an option that is invalid for Windows script host.

To correct this error

l Use the Windows script host option appropriate to the script language you are using or specify another supported script language.
l Also check your spelling.

See Also

There is no script file specified

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Page 339 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

Windows Script Host access is disabled on this machine. Contact
your administrator for details.
Usually, this is a systems permissions issue.

To correct this error

l Consult your Administrator about potential network or security problems.

See Also

Execution of the Windows Script Host failed

© 2001 Microsoft Corporation. All rights reserved.

Build: Topic Version 5.6.9309.1546

Windows Script Host

Page 340 of 340Windows Script Host

9/3/2003file://C:\Documents%20and%20Settings\latham\Local%20Settings\Temp\~hh9AC5.htm

