DOMAIN-DRIV

IN PHP

Carlos Buenosvinos
Christian Sorone llas
Keyvan Akbary

=

—N D

-SIGN

Domain-Driven Design in PHP

Discover DDD, Architectural Styles, Tactical Design
Implementations, and Bounded Context Integration with
PHP 7.4 examples

Carlos Buenosvinos, Christian Soronellas and Keyvan Akbary
This book is for sale at http://leanpub.com/ddd-in-php

This version was published on 2022-05-23

ISBN 978-0-9946084-1-3

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once

you do.

© 2014 - 2022 Carlos Buenosvinos, Christian Soronellas and Keyvan Akbary

http://leanpub.com/ddd-in-php
https://leanpub.com/
https://leanpub.com/manifesto

Tweet This Book!

Please help Carlos Buenosvinos, Christian Soronellas and Keyvan Akbary by spreading the word
about this book on Twitter!

The suggested tweet for this book is:

I just bought “Domain-Driven Design in #PHP” by @buenosvinos, @theUniC and
@keyvanakbary https://leanpub.com/ddd-in-
php?utm_source=social&utm_medium=twitter&utm_campaign=book_buy @dddbook
#DDDesign

The suggested hashtag for this book is #DDDinPHP.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#DDDinPHP

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20%E2%80%9CDomain-Driven%20Design%20in%20%23PHP%E2%80%9D%20by%20@buenosvinos,%20@theUniC%20and%20@keyvanakbary%20https://leanpub.com/ddd-in-php?utm_source=social&utm_medium=twitter&utm_campaign=book_buy%20@dddbook%20%23DDDesign
https://twitter.com/intent/tweet?text=I%20just%20bought%20%E2%80%9CDomain-Driven%20Design%20in%20%23PHP%E2%80%9D%20by%20@buenosvinos,%20@theUniC%20and%20@keyvanakbary%20https://leanpub.com/ddd-in-php?utm_source=social&utm_medium=twitter&utm_campaign=book_buy%20@dddbook%20%23DDDesign
https://twitter.com/intent/tweet?text=I%20just%20bought%20%E2%80%9CDomain-Driven%20Design%20in%20%23PHP%E2%80%9D%20by%20@buenosvinos,%20@theUniC%20and%20@keyvanakbary%20https://leanpub.com/ddd-in-php?utm_source=social&utm_medium=twitter&utm_campaign=book_buy%20@dddbook%20%23DDDesign
https://twitter.com/intent/tweet?text=I%20just%20bought%20%E2%80%9CDomain-Driven%20Design%20in%20%23PHP%E2%80%9D%20by%20@buenosvinos,%20@theUniC%20and%20@keyvanakbary%20https://leanpub.com/ddd-in-php?utm_source=social&utm_medium=twitter&utm_campaign=book_buy%20@dddbook%20%23DDDesign
https://twitter.com/search?q=%23DDDinPHP
https://twitter.com/search?q=%23DDDinPHP

Contents

Foreword by Matthias Noback ii
Preface iv
Who Should Read ThisBook '
DDD and PHP Communityo v
Summary of Chapters vi
Code and Examples viii
Acknowledgements viii
About the Authors X
Carlos Buenosvinos X
Christian Soronellas e X
Keyvan Akbary X
Getting Started with Domain-Driven Design 1
Why Domain-Driven Design Matters 1
The Three Pillars of Domain-Driven Design 1
Considering Domain-Driven Design o ... 3
The Tricky Parts 3
Strategical Overview e 4
Related Movements: Microservices and Self-Contained Systems 5
Wrap-Up . . . 6
Value Objects 8
Definition e 8
Value Object vs. Entity 9
Currency and Money Example. 9
Characteristics 11
Basic Types o o 20
Testing Value Objects 20
Persisting Value Objects e 22
Security 47
Wrap-Up . . . 48

Appendix: Hexagonal Architecture with PHP 49

CONTENTS

Introduction 49
First Approach 49
Repositories and the Persistence Edge 51
Decoupling Business and Persistence 54
Migrating our PersistencetoRedis 55
Decouple Business and Web Framework 57
Rating anideausingthe AP 60
Console app rating 61
Testing Rating anIdea UseCase 63
Testing Infrastructure 67
Arggg, So Many Dependencies! 68
Domain Services and Notification Hexagon Edge 70
Let’'sRecap o o oo 71
Hexagonal Architecture 72
Key Points 72
What’s Next? 72

Bibliography 73

CONTENTS i

This book is dedicated to my dearest Vanessa, and to Valentina and Gabriela. Thanks for your love,
your support, and your patience. — Carlos

To my dear Elena. Without your encouragement, your love, and your patience, this book would not
have been possible. — Christian

To my parents, John and Mercedes, who raised me free of constraints. This will be the first book of
many. To my love, Clara, for your unconditional support and infinite patience. — Keyvan

Foreword by Matthias Noback

I must admit that when I first heard of the Domain-Driven Design in PHP initiative, | was a bit
worried. The danger was twofold: first of all, when glancing over the table of contents, the subject
matter looked like it was a rehash of content that was already available in several other Domain-
Driven Design books. Second, writing a book on Domain-Driven Design targeted specifically toward
the PHP community seemed needlessly narrowing, particularly as Domain-Driven Design itself is
not language specific. As such, this might inhibit PHP developers from looking past the boundaries
of their own community, especially when considering that there’s a lot going on beyond the scope
of PHP. In fact, even Domain-Driven Design is one of those things, as it didn’t originate in the PHP
community.

After reading the book, I'm happy to inform you that my worries have been invalidated!

With regard to my first concern: of course there is some overlap with previously published Domain-
Driven Design books. Yet the authors have restrained themselves. The theoretical parts are exactly
what you need to be able to understand what’s going on in the code samples. Besides, if you never
read another Domain-Driven Design book, this one gives you what you need to start applying some
Domain-Driven Design principles and patterns in your code, as it’s practical by nature.

My second concern — about the PHP aspect of this book — has been addressed very well. It turns out
there are a lot of things to say about Domain-Driven Design in a PHP world. This book is specifically
targeted at an audience consisting of PHP developers. The code samples resemble real-world PHP
projects, and the authors use a programming style we know from projects using Symfony or Silex.
For persisting Domain objects, Doctrine ORM — which is the de facto standard data mapper for PHP
— is used.

This book also fulfills a need I've often seen in the PHP community: the need for concrete examples.
It’s not always easy for authors to come up with proper illustrations of how to apply certain ideas
that have a low risk of being misinterpreted or abused in real-world projects. And in Domain-Driven
Design, which is philosophical by nature, this is even more challenging.

In the case of this book, the authors haven’t been afraid to show many useful examples, along
with some interesting alternative solutions. They aren’t just handwaving at solutions either; they
take the time to provide detailed explanations — such as when they talk about saving snapshots
for Aggregates with a large number of Domain Events, or when they discuss integrating Bounded
Contexts using RabbitMQ. I can’t recall having previously seen an implementation of these things
in a book or article on Domain-Driven Design.

For me personally, Domain-Driven Design is one the most interesting subjects in software develop-
ment today. There is so much to discover, and there are many subjects related to it: Agile software
development, TDD', and BDD? but also living documentation, visualization, and knowledge

'http://martinfowler.com/bliki/ TestDrivenDevelopment.html
*https://dannorth.net/introducing-bdd/

http://martinfowler.com/bliki/TestDrivenDevelopment.html
https://dannorth.net/introducing-bdd/
http://martinfowler.com/bliki/TestDrivenDevelopment.html
https://dannorth.net/introducing-bdd/

Foreword by Matthias Noback iii

crunching techniques. Once you start looking into all of this, you’ll realize that Domain-Driven
Design is an area of expertise worth investigating, as it enables you to add much more to your own
worth as a software developer.

So, I guess what I want to say is this: dive into this book, learn from it, and then pick up another
book (see the list of references at the end of this book for suggestions of future reading). Continuous
learning is a fundamental part of keeping up to date in the software industry, so don’t stop here.

Oh, and by the way: if you get a chance to go to Barcelona, make sure you take part in one of the
many PHP or Symfony events. The community is big, friendly, and full of interesting ideas. You'll
find the authors of this book there too. They are all invested in the local PHP community and are
happy to share their insights and experiences with you!

Matthias Noback
Author of A Year with Symfony®

*https://leanpub.com/a-year-with-symfony

https://leanpub.com/a-year-with-symfony
https://leanpub.com/a-year-with-symfony

Preface

In 2014, after two years of reading about and working with Domain-Driven Design, Carlos and
Christian, friends and workmates, traveled to Berlin to participate in Vaughn Vernon’s Implementing
Domain-Driven Design Workshop. The training was fantastic, and all the concepts that were
swirling around in their minds prior to the trip suddenly became very real. However, they were
the only two PHP developers in a room full of Java and .NET developers.

Around the same time, php[tek], an annual PHP conference, opened its call for papers, and Carlos
sent one about Hexagonal Architecture. His talk was rejected, but Eli White — of musketeers.me
and php[architect] fame — got in touch with him a month later wondering if he was interested in
writing an article about Hexagonal Architecture for the magazine php[architect]. So in June 2014,
Hexagonal Architecture with PHP was published. That article, which you’ll find in the appendix,
was the origin of this book.

In late 2014, Carlos and Christian talked about extending the article and sharing all their knowledge
of and experience in applying Domain-Driven Design in production. They were very excited about
the idea behind the book: helping the PHP community delve into Domain-Driven Design from a
practical approach. At that time, concepts such as Rich Domain Models and framework-agnostic
applications weren’t so common in the PHP community. So in December 2014, the first commit to
the GitHub book repository was pushed.

Around the same time, in a parallel universe, Keyvan co-founded Funddy, a crowdfunding platform
for the masses built on top of the concepts and building blocks of Domain-Driven Design. Domain-
Driven Design proved itself effective in the exploratory process and modeling of building an early-
stage startup like Funddy. It also helped handle the complexity of the company, with its constantly
changing environment and requirements. And after connecting with Carlos and Christian and
discussing the book, Keyvan proudly signed on as the third writer.

Together, we’'ve written the book we wanted to have when we started with Domain-Driven Design.
It’s full of examples, production-ready code, shortcuts, and our recommendations based on our
experiences of what worked and what didn’t for our respective teams. We arrived at Domain-Driven
Design via its building blocks — Tactical Patterns — which is why this book is mainly about them.
Reading it will help you learn them, write them, and implement them. You’ll also discover how
to integrate Bounded Contexts using synchronous and asynchronous approaches, which will open
your world to strategic design — though the latter is a road you’ll have to discover on your own.

This book is heavily inspired by Implementing Domain-Driven Design by Vaughn Vernon (aka the
Red Book), and Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans

(aka the Blue Book). You should buy both books. You should read them carefully. You should love
them.

https://idddworkshop.com/
https://idddworkshop.com/
https://tek.phparch.com/
http://musketeers.me/
https://www.phparch.com/
http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon/dp/0321834577
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215

Preface \%

Who Should Read This Book

If you’re a PHP Developer, Architect, or Tech Lead, we highly recommend this book. It will help you
become a better professional. It will give you a new overview of and approach to the applications
you’re developing. If you're a Junior profile, getting into Value Objects, Entities, Repositories, and
Domain Events is important in order to model any Domain you’ll face in the future. For an average
profile, understanding the benefits of Hexagonal Architecture and the boundaries between your
framework and your Application is key for writing code that’s easier to maintain in the real world
(framework migrations, testing, etc.). More advanced readers will have fun both exploring how to
use Domain Events in order to integrate Applications and delving deeper into Aggregate design.

Although Domain-Driven Design is not about technology, you still need it to make HTTP requests
to access your Domain. Throughout the book, we recommend using specific PHP frameworks and
libraries, such as Symfony, Silex, and Doctrine. For some examples, we also use specific technologies,
such as MySQL, RabbitMQ, Redis, and Elasticsearch. However, most important are the behind-the-
scenes concepts — concepts that are applicable regardless of the technology used to implement them.

Additionally, the book is loaded with tons of details and examples, such as how to properly design
and implement all the building blocks of Domain-Driven Design — including Value Objects, Entities,
Services, Domain Events, Aggregates, Factories, Repositories, and Application Services — with PHP.
It explains what the role of the main PHP libraries and frameworks used in Domain-Driven Design
are. The book also teaches how to apply Hexagonal Architecture within your application, regardless
of whether you use an open source framework or your own one. Finally, it shows how to integrate
Bounded Contexts using REST frameworks and messaging mechanisms. If you’re interested in any
of these subjects, this book is for you.

DDD and PHP Community

In 2016, Carlos and Christian went to the first official Domain-Driven Design conference, DDD
Europe. They were really happy to see some PHP open source leaders, such as Marco Pivetta
(Doctrine) and Sebastian Bergmann (PHPUnit), attending the conference.

Domain-Driven Design arrived in the PHP community two years prior to that conference. However,
there’s still a lack of documentation and real code examples. Why? We think not many people
have worked with this kind of approach in production yet — even people in other more established
communities such as Java. Maybe this is because their project complexity is low, or maybe it’s
because they don’t know how to do it. Whatever the reason, this book is written for the community.
One of our goals is to teach you how you can write an application that solves your Domain issues
without being coupled to specific frameworks or technologies.

http://dddeurope.com/
http://dddeurope.com/

Preface vi

Summary of Chapters

The book is arranged with each chapter exploring a separate tactical building block of Domain-
Driven Design. It also includes an introduction to Domain-Driven Design, information on how to
integrate different Bounded Contexts or applications, and an appendix.

Chapter 1: Getting Started with Domain-Driven Design

What is Domain-Driven Design about? What role does it play in complex systems? Is it worth
learning about and exploring? What are the main concepts a developer needs to know when jumping
into it?

Chapter 2: Architectural Styles

Bounded Contexts can be implemented in different ways and using different approaches. However,
two styles are getting more popular, and they are Hexagonal Architecture and CQRS + ES. In this
chapter, we’ll see these two main Architectural Styles, understand what their main strengths are,
and discover when to use them.

Chapter 3: Value Objects

Value Objects are the basic pieces for rich modeling. We’ll learn what their properties are and what
makes them so important. We'll figure out how to persist them using Doctrine and custom ORMs.
We’ll show how to properly validate and unit test them. And finally, we’ll see what a test case of
testing immutability looks like.

Chapter 4: Entities

Entities are Domain-Driven Design building blocks that are uniquely identified and mutable. We’ll
see how to create and validate them and how to properly map them using a custom ORM and
Doctrine. We'll also assess whether or not annotations are the best mapping approach for Entities
and look at the different strategies for generating an Identity.

Chapter 5: Domain Services

In this chapter, you’ll learn about what a Domain Service is and when to use it. We’'ll review what
Anemic Domain Models and Rich Domain Models are. Lastly, we’ll deal with Infrastructure issues
when writing Domain Services.

Preface vii

Chapter 6: Domain Events

Domain Events are a great Inversion of Control (IoC) mechanism. In Domain-Driven Design,
they’re important for communicating different Bounded Contexts asynchronously, improving your
Application performance using eventual consistency, and decoupling your Application from its
Infrastructure.

Chapter 7: Modules

With so many tactical building blocks, it’s a bit difficult to know where to place them in code,
especially if you’re dealing with a framework like Symfony. We’ll review how PHP namespaces can
be used for implementing Modules. We’ll also discover different hierarchies of folders for organizing
Domain Model code, Application Code, and Infrastructure Code.

Chapter 8: Aggregates

Aggregates are probably the most difficult part of tactical Domain-Driven Design. We’ll look at the
key concepts when dealing with them and discover how to design them. We’ll also propose a practical
scenario where two Aggregates become one when adding a business rule, and we’ll demonstrate how
the rest of the objects must be refactored.

Chapter 9: Factories

Factory Methods and objects help us keep business invariants, which is why they’re so important in
Domain-Driven Design. Here, we’ll also explore the relationship between Factories and Aggregates.

Chapter 10: Repositories

Repositories are key for retrieving and adding Entities and Aggregates to collections. We’ll review
the different types of Repositories and learn how to implement them using Doctrine, custom ORMs,
and Redis.

Chapter 11: Application

An Application is the thin layer that connects outside clients to your Domain. In this chapter, we’ll
show you how to write your Application Services so that they’re easy to test and keep thin. We’ll
also review how to prepare request objects, define dependencies, and return results.

Chapter 12: Integrating Bounded Contexts

We’ll explore the different tactical approaches to communicate Bounded Contexts and see real
implementations. REST is our suggestion for synchronous communication, and messaging with
RabbitMQ is our suggestion for asynchronous communication.

Preface viii

Appendix: Hexagonal Architecture with PHP

Here is where you’ll find the original article written by Carlos and published by php[architect] in
June 2014.

Code and Examples

The authors have created an organization at GitHub called Domain-Driven Design in PHP, which
is where all the code examples from this book, additional snippets, and some complete sample
projects are available. For example, you can find Last Wishes, a simple Domain-Driven Design-style
application showing different examples explained in this book. Additionally, you'll find our CQORS
Blog, along with Gamify, a Bounded Context that adds gamification capabilities to Last Wishes.

Finally, if you find any issue or fix or have a suggestion or comment while reading this book, you
can create an issue in the DDD in PHP Book Issues repository. We fix them as they come in. If you're
interested, we also urge you to watch our projects and provide feedback.

Acknowledgements

First of all, we would like to thank all our friends and family. Without their support, writing this
book would have been an even more difficult task. Thanks for accommodating our schedules and
taking care of our children in order to free up time for us to focus on writing. You’re wonderful, and
part of this book is also yours.

We are three Spaniards who wrote a book in English, so if you’d guess our English is far from
perfect, you’d be correct. Luckily for us, Edd Mann has supported us with the language since the
beginning. He’s not just a great collaborator but also a great friend, and we owe him a huge thanks.
The final review was done by the professional copy editor Natalye Childress. She has done a great
work rewriting our words to make them understandable. Thank you so much. Our book is easier
and more enjoyable to read.

A group of PHP developers in Barcelona defends what we call el camino del rigor, or the path of rigor.
It existed before the craftsmanship movement, and it means to struggle with everything stacked
against us in order to build exceptional things in an exceptional way. Two particular developers and
friends from that group are Albert Casademont and Ricard Clau, both of whom are extraordinary
people committed to the community. Thank you so much for helping with the revision process. Your
contributions have been incredibly valuable.

We would like to thank every developer who has worked with us in the companies where we’ve
applied Domain-Driven Design. We know you’ve been struggling when learning and applying these
concepts. Some of you weren’t so open-minded at the beginning, but after using the basic building
blocks for a while, you became evangelists. Thanks for your faith.

https://github.com/dddinphp
https://github.com/dddinphp/last-wishes
https://github.com/dddinphp/blog-cqrs
https://github.com/dddinphp/blog-cqrs
https://github.com/dddinphp/last-wishes-gamify
https://github.com/dddinphp/book-issues
https://twitter.com/edd_mann
http://www.natalye.com/
https://twitter.com/acasademont
https://twitter.com/ricardclau

Preface ix

Our book was for sale from the moment we put the first chapters on Leanpub. Early adopters who
bought the book in its beginning stages gave us the much needed love and support to get this done.
Thanks for the motivation to keep going.

Thanks also to Matthias Noback for his foreword and feedback on the book. The end result is better
because of his contributions.

A special mention to Vaughn Vernon — not just because his work was an incredible source of
information and inspiration for us, but also because he helped us find a good publisher, gave us
valuable advice, and shared ideas with us. Thanks so much for your help.

Last but not least, we’'d like to express our gratitude to all the people who have reported issues,
made suggestions, and otherwise contributed to our GitHub repository. To all of you, thank you.
You’ve helped us make this book better. More importantly, you’ve helped the community grow and
helped other developers be better developers. As Robert C. Martin wrote in his book, Clean Code: A
Handbook of Agile Software Craftsmanship, “You are reading this book for two reasons. First, you are
a programmer. Second, you want to be a better programmer. Good. We need better programmers.”
So thanks to Jordi Abad, Jonathan Wondrusch, César Rodriguez, Yannick Voyer, Victor Guardiola,
Oriol Gonzalez, Henry Snoek, Tom Jowitt, Sascha Schimke, Sven Herrmann, Daniel Abad, Luis
Rovirosa, Luis Cordova, Rail Ramos, Juan Maturana, Nil Portugués, Nikolai Zujev, Fernando Pradas,
Raul Araya, Neal Brooks, Hubert Béague, Aleksander Reks¢, Sebastian Machuca, Nicolas Oelgart,
Sebastiaan Stok, Vladimir Hraban, Vladas Dirzys, Max Gulturyan, Ivan Purdevac, Marc Verney,
Matthias Gutjahr, Dennis Konig, Jordi Puig, David Fernandez, Vladimir Shadyan and Marc Aube.

https://leanpub.com/ddd-in-php
https://twitter.com/matthiasnoback
https://vaughnvernon.co/
https://github.com/dddinphp/ddd-in-php-book-issues
https://twitter.com/unclebobmartin
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882

About the Authors

Carlos Buenosvinos

Carlos is an Extreme Programmer (XP) and DevOps with more than 20 years of experience in
developing Web and Mobile Applications. For the last ten years, he has played various leading
roles such as Tech Lead, VP of Engineering, and CTO. He has mentored engineering and product
teams of up to 150 members in multiple different markets such as E-commerce, E-Learning, Payment
Processing, Classifieds, and Recruiting Market.

As an employee and consultant, he has contributed to the success of start-ups and well-established
brands. Some examples are SEAT, NewWork/XING, AtrXXpalo, GMV, PCComponentes, Cash
Converters, Emagister, 020, Opositatest, Techpump, Packlink, eBay, Lowpost, Vendo, Riplife, and
many more.

He is the happy creator of Ansistrano, the most starred Ansible Galaxy role. He is also the author
of the book Domain-Driven Design in PHP. He is also a conference speaker and organizer of the
DevOps Barcelona Conference and the PHP Barcelona Conference.

His main areas of expertise are Agile Team Management (Scrum and Kanban), Best Development
Practices (Extreme Programming, Domain-Driven Design, and Microservice Architectures), and
Digital Transformation (Agile, XP, and DevOps).

You can follow him at Twitter, at his blog or at GitHub.

Christian Soronellas

Christian is an Extreme Programmer and has over 15 years of experience helping tech companies
succeed from a broad variety of roles, from Software Engineer to CTO. He has helped companies
such as Privalia, Emagister, AtrfXXpalo, Enalquiler, PlanetaHuerto, PcComponentes or Opositatest.
He is the author of the book Domain-Driven Design in PHP as well as a conference co-organizer of
DevOps Barcelona Conference and PHP Barcelona Conference

You can follow him at Twitter or at GitHub.

Keyvan Akbary

Keyvan is an Engineering Leader and programmer with more than 15 years of experience crafting
products customers love and helping teams succeed. He understands technology as a medium for

https://ansistrano.com/
https://leanpub.com/ddd-in-php
https://devops.barcelona/
https://php.barcelona/
https://twitter.com/buenosvinos
https://carlosbuenosvinos.com/
https://github.com/carlosbuenosvinos/
https://leanpub.com/ddd-in-php
https://devops.barcelona/
https://php.barcelona/
https://twitter.com/theUniC
https://github.com/theUniC/

About the Authors Xi

providing value, not the end itself. He has a passion for Distributed Systems, Software fundamentals,
SOLID principles, Clean Code, Design Patterns, Domain-Driven Design and, Testing; as well as
being a sporadic Functional Programmer. For the last 7 years he has also focused on growing teams
in high scaleup product companies, advocating for customer-centric product development, Extreme
Programming, DevOps, Lean, and Kanban.

He has worked on countless projects as a freelancer, on video streaming at Youzee, tradesman
marketplace at MyBuilder, in addition to founding his own crowdfunding startup Funddy, and
leading FinTech teams at Wise. Currently, he is leading engineering in the ride-hailing space as
Head of Engineering at Cabify.

He is also the author of “Domain-Driven Design in PHP” and “The Manager’s Manual”.

You can follow him at Twitter, at LinkedIn, at his blog or at GitHub.

https://leanpub.com/ddd-in-php
https://leanpub.com/the-managers-manual/
https://twitter.com/keyvanakbary
https://www.linkedin.com/in/keyvanakbary/
https://keyvanakbary.com/
https://github.com/keyvanakbary/

Getting Started with Domain-Driven
Design

So what is all the fuss about? If you've already read books on this topic by Vaughn Vernon and
Eric Evans, you’re probably familiar with what we’re about to say, as we borrow heavily from their
definitions and explanations. Domain-Driven Design, or DDD, is an approach that helps us succeed
in understanding and building software model designs. It provides us with strategic and tactical
modeling tools to aid designing high-quality software that meets our business goals.

The main goal of this book is to show you PHP code examples of the Domain-Driven Design
tactical patterns. If you want to learn more about the strategic patterns and the main Domain-
Driven Design, you should read Domain-Driven Design Distilled* by Vaughn Vernon or
Domain-Driven Design Reference: Definitions and Pattern Summaries® by Eric Evans.

More importantly, Domain-Driven Design is not about technology. Instead, it’s about developing
knowledge around business and using technology to provide value. Only once you’re capable of
understanding the business your company works within will you be able to participate in the
software model discovery process to produce a Ubiquitous Language.

Why Domain-Driven Design Matters

Software is not just about code. If you think about it, code is rarely the end goal of our profession.
Code is just the medium to solve business problems. So why does it have to talk a different language?
Domain-Driven Design emphasizes making sure businesses and software speak the same language.
Once broken the barrier, there is no need for translations or tedious syncing, information doesn’t
get lost. Everyone contributes to discovering the Business Domain, not just coders. The resulting
software is the only truth for the common language.

Domain-Driven Design also provides a framework for strategic and tactical design — strategic to
pinpoint the most important areas to develop based on business value, and tactical to build a working
Domain Model of battle-tested building blocks and patterns.

The Three Pillars of Domain-Driven Design

Domain-Driven Design is an approach for delivering software, and it’s focused on three pillars:

“http://www.amazon.com/Domain-Driven-Design-Distilled- Vaughn-Vernon/dp/0134434420
*http://www.amazon.com/Domain-Driven-Design-Reference-Definitions- Summaries/dp/ 1457501198

http://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420
http://www.amazon.com/Domain-Driven-Design-Reference-Definitions-Summaries/dp/1457501198
http://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420
http://www.amazon.com/Domain-Driven-Design-Reference-Definitions-Summaries/dp/1457501198

Getting Started with Domain-Driven Design 2

1. Ubiquitous Language: Domain Experts and software developers work together to build a
common language for the business areas being developed. There’s no us versus them; it’s always
us. Developing software is a business investment and not just a cost. The effort involved in
building the Ubiquitous Language helps spread deep Domain insight among all team members.

2. Strategic Design: Domain-Driven Design addresses the strategy behind the direction of the
business and not just the technical aspects. It helps define the internal relationships and early
warning feedback systems. On the technical side, strategic design protects each business service
by providing the motivation for how service-oriented architecture should be achieved.

3. Tactical Design: Domain-Driven Design provides the tools and the building blocks for iterative
software deliverables. Tactical design tools produce software that is not only correct, but that
is also testable and less error prone.

Ubiquitous Language

Along with Bounded Contexts, Ubiquitous Language is one of the main strengths of Domain-Driven
Design.

o In Terms of Context
For now, consider that a Bounded Context is a conceptual boundary around a system. The
Ubiquitous Language inside a boundary has a specific contextual meaning. Concepts outside
of this context can have different meanings.

So, how to find, explore and capture this very special language?

Identify key business processes, their inputs, and their outputs.

« Create a glossary of terms and definitions.

Capture important software concepts with some kind of documentation.

« Share and expand upon the collected knowledge with the rest of the team (Developers and
Domain Experts).

Since Domain-Driven Design was born, new techniques for improving the process of building the
Ubiquitous Language have emerged. The most important one, which is used regularly now, is Event
Storming.

Event Storming

Alberto Brandolini explains Event Storming and its advantages in a blog post®, and he does it far
more succinctly than we could:

“http://ziobrando.blogspot.com.es/2013/11/introducing-event-storming.html

http://ziobrando.blogspot.com.es/2013/11/introducing-event-storming.html
http://ziobrando.blogspot.com.es/2013/11/introducing-event-storming.html

Getting Started with Domain-Driven Design 3

Event Storming is a workshop format for quickly exploring complex business domains. - It
is powerful: it has allowed me and many practitioners to come up with a comprehensive
model of a complete business flow in hours instead of weeks. - It is engaging: the whole
idea is to bring people with the questions and people who know the answer in the same
room and to build a model together. - It is efficient: the resulting model is perfectly
aligned with a Domain-Driven Design implementation style (particularly fitting an Event
Sourcing approach), and allows for a quick determination of Context and Aggregate
boundaries. - It is easy: the notation is ultra-simple. No complex UML that might cut
off participants from the heart of the discussion. - It is fun: I always had a great time
leading the workshops, people are energised and deliver more than they expected. The
right questions arise, and the atmosphere is the right one.

If you want to know more about Event Storming, check out Brandolini’s book, Introducing
EventStorming’.

Considering Domain-Driven Design

Domain-Driven Design is not a silver bullet; as with everything in software, it depends on the
context. As a rule of thumb, use it to simplify your Domain, but never to add more complexity.

If your application is data-centric and your use cases mainly manipulate rows in a database and
perform CRUD operations — that is, Create, Read, Update, and Delete — you don’t need Domain-
Driven Design. Instead, the only thing your company needs is a fancy face in front of your database.

If your application has less than 30 use cases, it might be simpler to use a framework like Symfony
or Laravel to handle your business logic.

However, if your application has more than 30 use cases, your system may be moving toward the
dreaded “Big Ball of Mud®” If you know for sure your system will grow in complexity, you should
consider using Domain-Driven Design to fight that complexity.

If you know your application is going to grow and is likely to change often, Domain-Driven Design
will definitely help in managing the complexity and refactoring your model over time.

If you don’t understand the Domain you’re working on because it’s new and nobody has invested
in a solution before, this might mean it’s complex enough for you to start applying Domain-Driven
Design. In this case, you’ll need to work closely with Domain Experts to get the models right.

The Tricky Parts

Applying Domain-Driven Design is not easy. It requires time and effort to get around the Business
Domain, terminology, research, and collaboration with Domain Experts rather than coding jargon.

"https://leanpub.com/introducing_eventstorming
*https://en.wikipedia.org/wiki/Big_ball_of mud

https://leanpub.com/introducing_eventstorming
https://leanpub.com/introducing_eventstorming
https://en.wikipedia.org/wiki/Big_ball_of_mud
https://leanpub.com/introducing_eventstorming
https://en.wikipedia.org/wiki/Big_ball_of_mud

Getting Started with Domain-Driven Design 4

You’'ll need to have the commitment of Domain Experts for getting involved in the process too.
This will require an open and healthy continuous conversation to model their spoken language into
software. On top of that, we’ll have to make an effort to avoid thinking technically, to think seriously
about the behaviour of objects and the Ubiquitous Language first.

Strategical Overview

In order to provide a general overview of the strategical side of Domain-Driven Design, we’ll use
an approach from Jimmy Nilsson’s book, Applying Domain-Driven Design and Patterns’. Consider
two different spaces: the problem space and the solution space.

In the problem space, Domain-Driven Design uses Domains and Subdomains to group and organize
what companies want to solve. In the case of an online travel agency (OTA), the problem is about
dealing with things like flight tickets and booking hotels. Such a Domain can be organized into
different Subdomains such as Pricing, Inventory, User Management, etc.

In the solution space, Domain-Driven Design provides two patterns: Bounded Contexts and Context
Maps. The goal is to define how to provide an implementation to all the identified Subdomains by
defining their interactions and the details of those interactions. Continuing with the OTA example,
each of the Subdomains will be solved with a Bounded Context implementation — for example,
consider a custom Web Application developed by a team for the Pricing Management Subdomain,
and an off-the-shelf solution for the User Management Subdomain. The Context Map will show
how each Bounded Context is related to the rest. Inside the Context Map, we can see what type
of relation two Bounded Contexts have (e.g. customer-supplier, partners). The ideal approach is to
have each Subdomain implemented by one Bounded Context, but that’s not always possible.

In terms of implementation, when following Domain-Driven Design, you’ll end up with distributed
architectures. As you may already know, distributed architectures are more complex than monolithic
ones, so why is this approach interesting, especially for big and complex companies? Is it really worth
it? Well, it is. Distributed architectures are proven to increase overall company productivity because
they define boundaries for your product that can be developed by focused teams. If your Domain
— the problem you need to solve — is not complex, applying the strategical part of Domain-Driven
Design can add unnecessary overhead and slow down your development speed.

If you want to know more about the strategical part of Domain-Driven Design, you should take a
look at the first three chapters of Vaughn Vernon’s book, Implementing Domain-Driven Design'’,
or the book Domain-Driven Design: Tackling Complexity in the Heart of Software'! by Eric Evans,
both of which specifically focus on this aspect.

*http://www.amazon.com/Applying-Domain-Driven-Design- Patterns-Examples/dp/0321268202
*%http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon-ebook/dp/B00BCLEBNS
"http://www.amazon.com/Domain-Driven-Design- Tackling- Complexity-Software/dp/0321125215

http://www.amazon.com/Applying-Domain-Driven-Design-Patterns-Examples/dp/0321268202
http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon-ebook/dp/B00BCLEBN8
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://www.amazon.com/Applying-Domain-Driven-Design-Patterns-Examples/dp/0321268202
http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon-ebook/dp/B00BCLEBN8
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215

Getting Started with Domain-Driven Design 5

Related Movements: Microservices and Self-Contained
Systems

There are other movements promoting architectures that follow the same principles Domain-Driven
Design is promoting. Microservices and Self-Contained Systems are good examples of this. James
Lewis and Martin Fowler define Microservices in the Microservices Resource Guide'*:

The microservice architectural style is an approach to developing a single application
as a suite of small services, each running in its own process and communicating
with lightweight mechanisms, often an HTTP resource API. These services are built
around business capabilities and are also independently deployable using fully automated
machinery. There is a bare minimum of centralized management of these services, which
may be written in different programming languages and also use different data storage
technologies.

If you want to know more about Microservices, their guide is a good place to start.

How is this related to Domain-Driven Design? As explained in Sam Newman’s book, Building
Microservices*, Microservices are implementations of Domain-Driven Design Bounded Contexts.

In addition to Microservices, another related movement is Self-Contained Systems. According to the
Self-Contained Systems website'*:

The Self-contained System (SCS) approach is an architecture that focuses on a separation
of the functionality into many independent systems, making the complete logical system
a collaboration of many smaller software systems. This avoids the problem of large
monoliths that grow constantly and eventually become unmaintainable. Over the past
few years, we have seen its benefits in many mid-sized and large-scale projects.

The idea is to break a large system apart into several smaller self-contained system, or
SCSs, that follow certain rules.

The website also spells out seven characteristics of SCS:

Each SCS is an autonomous web application. For the SCS’s domain all data, the logic to
process that data and all code to render the web interface is contained within the SCS. An
SCS can fulfill its primary use cases on its own, without having to rely on other systems
being available.

*http://martinfowler.com/microservices/
Phttp://www.amazon.com/Building- Microservices-Sam-Newman/dp/1491950358
*http://scs-architecture.org

http://martinfowler.com/microservices/
http://www.amazon.com/Building-Microservices-Sam-Newman/dp/1491950358
http://www.amazon.com/Building-Microservices-Sam-Newman/dp/1491950358
http://scs-architecture.org/
http://martinfowler.com/microservices/
http://www.amazon.com/Building-Microservices-Sam-Newman/dp/1491950358
http://scs-architecture.org/

Getting Started with Domain-Driven Design 6

Each SCS is owned by one team. This does not necessarily mean that only one team might
change the code, but the owning team has the final say on what goes into the code base,
for example by merging pull-requests.

Communication with other SCSs or 3rd party systems is asynchronous wherever possible.
Specifically, other SCSs or external systems should not be accessed synchronously within
the SCS’s own request/response cycle. This decouples the systems, reduces the effects of
failure, and thus supports autonomy. The goal is decoupling concerning time: An SCS
should work even if other SCSs are temporarily offline. This can be achieved even if the
communication on the technical level is synchronous, e.g. by replicating data or buffering
requests.

An SCS can have an optional service API. Because the SCS has its own web UI it can
interact with the user — without going through a Ul service. However, an API for mobile
clients or for other SCSs might still be useful.

Each SCS must include data and logic. To really implement any meaningful features both
are needed. An SCS should implement features by itself and must therefore include both.

An SCS should make its features usable to end-users by its own Ul Therefore the SCS
should have no shared UI with other SCSs. SCSs might still have links to each other.
However, asynchronous integration means that the SCS should still work even if the Ul
of another SCS is not available.

To avoid tight coupling an SCS should share no business code with other SCSs. It might
be fine to create a pull-request for an SCS or use common libraries, e.g. database drivers
or oAuth clients.

f’ Exercise

Discuss the pros and cons of such distributed architectures with your workmates. Think
about using different languages, deployment processes, infrastructure responsibilities, etc.

Wrap-Up
During this chapter you’ve learned:

« Domain-Driven Design is not about technology; it’s actually about providing value in the field
you’re working in by focusing on the model. Everyone takes part in the process of discovering
the Domain, and developers and Domain Experts team up to build the knowledge base by
sharing the same language, the Ubiquitous Language.

Getting Started with Domain-Driven Design 7

« Domain-Driven Design provides tactical and strategic modeling tools to design high-quality
software. Strategic design targets the business direction, helps in defining the internal relation-
ships, and technically protects each business service by defining strong boundaries. Tactical
design provides useful building blocks for iterative design.

« Domain-Driven Design only makes sense in certain contexts. It’s not a silver bullet for every
problem in software, so whether or not you use it highly depends on the amount of complexity
you're dealing with.

« Domain-Driven Design is a long-term investment; it requires active effort. Domain Experts
will be required to collaborate closely with developers, and developers will have to think in
terms of the business. In the end, the business customer is the one who has to be pleased.

Implementing Domain-Driven Design requires effort. If it were easy, everybody would be writing
high-quality code. Get ready, because you’ll soon learn how to write code that, when read, will
perfectly describe the business your company operates on. Enjoy this journey!

Value Objects

Value Objects are a fundamental building block of Domain-Driven Design, and they’re used to model
concepts of your Ubiquitous Language in code. A Value Object is not just a thing in your Domain —
it measures, quantifies, or describes something. Value Objects can be seen as small, simple objects —
such as money or a date range — whose equality is not based on identity, but instead on the content

held.

For example, a product price could be modeled using a Value Object. In this case, it’s not representing
a thing, but rather a value that allows us to measure how much money a product is worth. The
memory footprint for these objects is trivial to determine (calculated by their constituent parts) and
there’s very little overhead. As a result, new instance creation is favored over reference reuse, even
when being used to represent the same value. Equality is then checked based on the comparability
of the fields of both instances.

Definition
Ward Cunningham defines'® a Value Object as:

a measure or description of something. Examples of value objects are things like numbers,
dates, monies and strings. Usually, they are small objects which are used quite widely.
Their identity is based on their state rather than on their object identity. This way, you
can have multiple copies of the same conceptual value object. Every $5 note has its own
identity (thanks to its serial number), but the cash economy relies on every $5 note having
the same value as every other $5 note.

Martin Fowler defines'® a Value Object as:

a small object such as a Money or date range object. Their key property is that they follow
value semantics rather than reference semantics. You can usually tell them because their
notion of equality isn’t based on identity, instead two value objects are equal if all their
fields are equal. Although all fields are equal, you don’t need to compare all fields if a
subset is unique - for example currency codes for currency objects are enough to test
equality. A general heuristic is that value objects should be entirely immutable. If you
want to change a value object you should replace the object with a new one and not be
allowed to update the values of the value object itself - updatable value objects lead to
aliasing problems.

Phttp://c2.com/cgi/wiki?ValueObject
*“http://martinfowler.com/bliki/ValueObject.html

http://c2.com/cgi/wiki?ValueObject
http://martinfowler.com/bliki/ValueObject.html
http://c2.com/cgi/wiki?ValueObject
http://martinfowler.com/bliki/ValueObject.html

Value Objects 9

Examples of Value Objects are numbers, text strings, dates, times, a person’s full name (composed
of first name, middle name, last name, and title), currencies, colors, phone numbers, and postal
addresses.

?9 Exercise

Try to locate more examples of potential Value Objects in your current Domain.

Value Object vs. Entity

Consider the following examples from Wikipedia', in order to better understand the difference
between Value Objects and Entities.

Value Object:

When people exchange dollar bills, they generally do not distinguish between each unique
bill; they only are concerned about the face value of the dollar bill. In this context, dollar
bills are value objects. However, the Federal Reserve may be concerned about each unique
bill; in this context each bill would be an entity.

Entity:

Most airlines distinguish each seat uniquely on every flight. Each seat is an entity in this
context. However, Southwest Airlines, EasyJet and Ryanair do not distinguish between
every seat; all seats are the same. In this context, a seat is actually a value object.

?9 Exercise

Think about the concept of an address (street, number, zip code, etc.). What is a possible
context where an address could be modeled as an Entity and not as a Value Object? Discuss
your findings with a peer.

Currency and Money Example

Currency and Money Value Objects are probably the most used examples for explaining Value Objects,
thanks to the Money pattern®. This design pattern provides a solution for modeling a problem that
avoids a floating-point rounding issue, which in turn allows for deterministic calculations to be
performed.

In the real world, a currency describes monetary units in the same way that meters and yards
describe distance units. Each currency is represented with a three-letter uppercase ISO code:

"http://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
*http://martinfowler.com/eaaCatalog/money.html

http://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
http://martinfowler.com/eaaCatalog/money.html
http://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD
http://martinfowler.com/eaaCatalog/money.html

Value Objects 10

class Currency

{
private string $isoCode;
public function __construct(string $anIsoCode)
{
$this->setIsoCode($anlsoCode);
}
private function setIsoCode(string $anIsoCode): void
{
if (!preg_match('/*"[A-Z]{3}$/', $anlsoCode)) {
throw new \InvalidArgumentException(
sprintf('"%s" is not a valid ISO code', $anIsoCode)
);
}
$this->isoCode = $anlsoCode;
}
public function isoCode(): string
{
return $this->isoCode;
}
}

One of the main goals of Value Objects is also the holy grail of Object-Oriented design: encapsulation.
By following this pattern, you’ll end up with a dedicated location to put all the validation,
comparison logic, and behavior for a given concept.

?Q Extra Validations for Currency

In the previous code example, we can build a Currency with an AAA currency ISO code.
That isn’t valid at all. Write a more specific rule that will check if the ISO Code is valid. A
full list of valid currency ISO codes can be found here®. If you need help, take a look at the
Money?° packagist library.

Money is used to measure a specific amount of currency. It’s modeled using an amount and aCurrency.
Amount, in the case of the Money pattern, is implemented using an integer representation of the
currency’s least-valuable fraction — e.g. in the case of USD or EUR, cents.

As a bonus, you might also notice that we’re using self encapsulation® to set the ISO code, which

http://www.xe.com/is04217.php
*°https://github.com/moneyphp/money
*'http://martinfowler.com/bliki/SelfEncapsulation.html

http://www.xe.com/iso4217.php
https://github.com/moneyphp/money
http://martinfowler.com/bliki/SelfEncapsulation.html
http://www.xe.com/iso4217.php
https://github.com/moneyphp/money
http://martinfowler.com/bliki/SelfEncapsulation.html

© 00 N O O b W N =

W oW N N NDNDDNDIDNIDNDDNDDNDDND A B Rl ol ol
= O © 0 N0 U s N A~ O © 0 N0 O d WwN -~ o

Value Objects 11

centralizes changes in the Value Object itself:

class Money

{
private int $amount;
private Currency $currency;
public function __construct(int $anAmount, Currency $aCurrency)
{
$this->setAmount($anAmount);
$this->setCurrency($aCurrency);
}
private function setAmount($anAmount): void
{
$this->amount = (int) $anAmount;
}
private function setCurrency(Currency $aCurrency): void
{
$this->currency = $aCurrency;
}
public function amount(): int
{
return $this->amount;
}
public function currency(): Currency
{
return $this->currency;
}
}

Now that you know the formal definition of Value Objects, let’s dive deeper into some of the
powerful features they offer.

Characteristics

While modeling an Ubiquitous Language concept in code, you should always favor Value Objects
over Entities. Value Objects are easier to create, test, use, and maintain.

Value Objects 12

Keeping this in mind, you can determine whether the concept in question can be modeled as a Value
Object if:

« It measures, quantifies, or describes a thing in the Domain.

« It can be kept immutable.

« It models a conceptual whole by composing related attributes as an integral unit.
« It can be compared with others through value equality.

« It is completely replaceable when the measurement or description changes.

« It supplies its collaborators with side-effect-free behavior.

Measures, Quantifies, or Describes

As discussed before, a Value Object should not be considered just a thing in your Domain. As a
value, it measures, quantifies, or describes a concept in the Domain.

In our example, the Currency object describes what type of money it is. The Money object measures
or quantifies units of a given Currency.

Immutability

This is one of the most important aspects to grasp. Object values shouldn’t be able to be altered over
their lifetime. Because of this immutability, Value Objects are easy to reason and test and are free
of undesired/unexpected side effects.

As such, Value Objects should be created through their constructors. In order to build one, you
usually pass the required primitive types or other Value Objects through this constructor. Value
Objects are always in a valid state; that’s why we create them in a single atomic step. Empty
constructors with multiple setters and getters move the creation responsibility to the client, resulting
in the Anemic Domain Model*’, which is considered an anti-pattern.

It’s also good to point out that it’s not recommended to hold references to Entities in your Value
Objects. Entities are mutable, and holding references to them could lead to undesirable side effects
occurring in the Value Object.

In languages with method overloading?’, such as Java, you can create multiple constructors with the
same name. Each of these constructors are provided with different options to build the same type
of resulting object. In PHP, we’re able to provide a similar capability by way of factory methods*.
These specific factory methods are also known as semantic constructors. The main goal of fromMoney
is to provide more contextual meaning than the plain constructor. More radical approaches propose
to make the _construct method private and build every instance using a semantic constructor.

In our Money and Currency objects, we could add some useful factory methods like the following:

**http://www.martinfowler.com/bliki/AnemicDomainModel.html
“http://en.wikipedia.org/wiki/Function_overloading
**http://en.wikipedia.org/wiki/Factory_method_pattern

http://www.martinfowler.com/bliki/AnemicDomainModel.html
http://en.wikipedia.org/wiki/Function_overloading
http://en.wikipedia.org/wiki/Factory_method_pattern
http://www.martinfowler.com/bliki/AnemicDomainModel.html
http://en.wikipedia.org/wiki/Function_overloading
http://en.wikipedia.org/wiki/Factory_method_pattern

Value Objects

class Currency

{
private string $isoCode;
public static function fromValue(string $anlIsoCode): self
{
return new self($anIsoCode);
}
private function __construct(string $anIsoCode)
{
$this->setIsoCode($anlsoCode);
}
V2
}

class Money

{
/e

public static function fromMoney(self $aMoney): self
{
return new self(
$aMoney - >amount(),
$aMoney->currency()

);

public static function fromCurrency(Currency $aCurrency):

{

return new self(@, $aCurrency);

public static function fromAmountAndCurrency(
int $anAmount,
Currency $aCurrency
): self {
return new self(
$anAmount,
$aCurrency

);

self

13

26
27

© 00 N O O B W N =

s R
N =~ O

Value Objects 14

By using the self keyword, we don’t couple the code with the class name. As such, a change to
the class name or namespace won’t affect these factory methods. Be also aware of making the
constructor private so using your factory methods is the only way to instantiate new objects. These
small implementation details helps when refactoring the code at a later date.

static vs. self

Using static over self can result in undesirable issues when a Value Object inherits from
another Value Object.

Due to this immutability, we must consider how to handle mutable actions that are commonplace
in a stateful context. If we require a state change, we now have to return a brand new Value Object
representation with this change.

If we want to increase the amount of, for example, a Money Value Object, we're required to instead
return a new Money instance with the desired modifications. Fortunately, it’s relativity simple to
abide by this rule, as shown in the example below:

class Money

{
V2
public function increaseAmountBy(int $anAmount): self
{
return new self(
$this->amount() + $anAmount,
$this->currency()
)i
}
}

The Money object returned by increaseAmountBy is different from the Money client object that received
the method call. This can be observed in the example comparability checks below:

O© 00 I O O b W N =

© 0O N O O & W N =

N
[N

Value Objects 15

$aMoney = Money: : fromAmountAndCurrency (100, Currency::fromValue('USD'));
$otherMoney = $aMoney->increaseAmountBy(100);

var_dump($aMoney === $otherMoney);
// bool(false)

$aMoney = $aMoney->increaseAmountBy(100);

var_dump($aMoney === $otherMoney);
// bool(false)

Conceptual Whole

So why not just implement something similar to the following example, avoiding the need for a new
Value Object class altogether?

class Product

{
private string $id;
private string $name;
private int $amount;
private string $currency;
/S

}

This approach has some noticeable flaws, if say, for example, you want to validate the ISO. It
doesn’t really make sense for the Product to be responsible for the currency’s ISO validation (thus
violating the Single Responsibility Principle). This is highlighted even more so if you want to reuse
the accompanying logic in other parts of your Domain (to abide by the DRY principle).

With these factors in mind, this use case is a perfect candidate for being abstracted out into a Value
Object. Using this abstraction not only gives you the opportunity to group related properties together,
but it also allows you to create higher-order concepts and a more concrete Ubiquitous Language.

.‘ Exercise

Discuss with a peer whether or not an email could be considered a Value Object. Does the
context it’s used in matter?

© 00 1 O O b W N =

N
)

Value Objects 16

Value Equality

As discussed at the beginning of the chapter, two Value Objects are equal if the content they measure,
quantify, or describe is the same.

For example, imagine two Money objects representing 1 USD. Can we consider them equal? In the
“real world,” are two bills of 1 USD valued the same? Of course they are. Directing our attention
back to the code, the Value Objects in question refer to separate instances of Money. However, they
both represent the same value, which makes them equal.

In regards to PHP, it’s commonplace to compare two Value Objects using the == operator. Examining
the PHP Documentation® definition of the operator highlights an interesting behavior:

When using the comparison operator (==), object variables are compared in a simple
manner, namely: Two object instances are equal if they have the same attributes and
values, and are instances of the same class.

This behavior works in agreement with our formal definition of a Value Object. However, as an
exact class match predicate is present, you should be wary when handling subtyped Value Objects.
Keeping this in mind, the even stricter === operator doesn’t help us, unfortunately:

When using the identity operator (===), object variables are identical if and only if they
refer to the same instance of the same class.

The following example should help confirm these subtle differences:

$a = Currency::fromValue('USD");
$b = Currency::fromValue('USD');

var_dump($a == $b); // bool(true)
var_dump($a === $b); // bool(false)

$c = Currency::fromValue('EUR'");

var_dump($a == $c); // bool(rfalse)
var_dump($a === $c); // bool(false)

A solution is to implement a conventional equals method in each Value Object. This method is tasked
with checking the type and equality of its composite attributes. Abstract data type comparability is
easy to implement using PHP’s built-in type hinting. You can also use the get_class() function
to aid in the comparability check if necessary. The language, however, is unable to decipher what
equality truly means in your Domain concept, meaning it’s your responsibility to provide the answer.

In order to compare Currency objects, we just need to confirm that both their associated ISO codes
are the same. The === operator does the job pretty well in this case:

*http://php.net/manual/en/language.oop5.object-comparison.php

http://php.net/manual/en/language.oop5.object-comparison.php
http://php.net/manual/en/language.oop5.object-comparison.php

© 00 N O O b W N =

RN
= O

Value Objects 17

class Currency

{
/)
public function equals(self $currency): bool
{
return $currency->isoCode() === $this->isoCode();
// You could also access directly
// the $isoCode field if necessary
// return $currency->isoCode === $this->isoCode;
}
}

Because Money objects use Currency objects, the equals method needs to perform this comparability
check, along with comparing the amounts:

class Money

{
VA
public function equals(self $aMoney): bool
{
return
$aMoney->currency()->equals($this->currency()) &&
$aMoney->amount() === $this->amount();
}
}
Replaceability

Consider a Product Entity that contains a Money Value Object used to quantify its price. Additionally,
consider two Product Entities with an identical price — for example 100 USD. This scenario could
be modeled using two individual Money objects or two references pointing to a single Value Object.

Sharing the same Value Object can be risky; if one is altered, both will reflect the change. This
behavior can be considered an unexpected side effect. For example, if Carlos was hired on February
20, and we know that Christian was also hired on the same day, we may set Christian’s hire date to
be the same instance as Carlos’s. If Carlos then changes the month of his hire date to May, Christian’s
hire date changes too. Whether it’s correct or not, it’s not what people expect.

Due to the problems highlighted in this example, when holding a reference to a Value Object, it’s
recommended to replace the object as a whole rather than modifying its value:

© 00 N O O b W N =

[S U
O b W N =~ O

Value Objects 18

$this->price = Money: : fromAmountAndCurrency (100, Currency::fromValue('USD'));
/)
$this->price = $this->price->increaseAmountBy(200);

This kind of behavior is similar to how basic types such as strings work in PHP. Consider the function
strtolower. It returns a new string rather than modifying the original one. No reference is used;
instead, a new value is returned.

Side-Effect-Free Behavior

If we want to include some additional behavior — like an add method — in our Money class, it feels
natural to check that the input fits any preconditions and maintains any invariance. In our case, we
only wish to add monies with the same currency:

class Money

{
/2
public function add(self $aMoney): self
{
if (!$aMoney->currency()->equals($this->currency())) {
throw new \InvalidArgumentException(
'Currencies do not match'
);
}
$this->amount += $aMoney->amount();
}
}

If the two currencies don’t match, an exception is raised. Otherwise, the amounts are added.
However, this code has some undesirable pitfalls. Now imagine we have a mysterious method call
to otherMethod in our code:

© 00 N O O & W N =

[T S T S O S S N N = =
O © 0 N O O & W N =~ o

Value Objects 19

class Banking

{
public function doSomething(): void
{
$aMoney = Money: : fromAmountAndCurrency (100, Currency::fromValue('USD'));
$this->otherMethod($aMoney); //mysterious call
/S
}
}

Everything is fine until, for some reason, we start seeing unexpected results when we’re returning or
finished with otherMethod. Suddenly, $aMoney no longer contains 100 USD. What happened? And
what happens if otherMethod internally uses our previously defined add method? Maybe you’re
unaware that add mutates the state of the Money instance. This is what we call a side effect. You
must avoid generating side effects. You must not mutate your arguments. If you do, the developer
using your objects may experience strange behaviors. They’ll complain, and they’ll be correct.

So how can we fix this? Simple — by making sure that the Value Object remains immutable, we
avoid this kind of unexpected problem. An easy solution could be returning a new instance for
every potentially mutable operation, which the add method does:

class Money

{
/e

public function add(self $aMoney): self

{
$this->guardSameCurrencies($aMoney);
return new self(
$aMoney->amount() + $this->amount(),
$this->currency()
);
}

private function guardSameCurrencies(self $aMoney): void
{
if (!$aMoney->currency()->equals($this->currency())) {
throw new \InvalidArgumentException(
'Currencies do not match'

);

22
23

© 00 N O O & W N =

s R
N O

Value Objects 20

With this simple change, immutability is guaranteed. Each time two instances of Money are added
together, a new resulting instance is returned. Other classes can perform any number of changes
without affecting the original copy. Code free of side effects is easy to understand, easy to test, and
less error prone.

Basic Types

Consider the following code snippet:

$a = 10;

$b = 10;
var_dump($a == $b);
// bool(true)

var_dump($a === $b);
// bool(true)

$a = 20;
var_dump($a);

// int(20)

$a = $a + 30;
var_dump($a);

// int(50)

Although $a and $b are different variables stored in different memory locations, when compared,
they’re the same. They hold the same value, so we consider them equal. You can change the value
of $a from 10 to 20 at any time that you want, making the new value 20 and eliminating the 10. You
can replace integer values as much as you want without consideration of the previous value because
you’re not modifying it; you’re just replacing it. If you apply any operation — such as addition (i.e.
$a + $b) — to these variables, you get another new value that can be assigned to another variable or
a previously defined one. When you pass $a to another function, except when explicitly passed by
reference, you're passing a value. It doesn’t matter if $a gets modified within that function, because
in your current code, you’ll still have the original copy. Value Objects behave as basic types.

Testing Value Objects

Value Objects are tested in the same way normal objects are. However, the immutability and side-
effect-free behavior must be tested too. A solution is to create a copy of the Value Object you're
testing before performing any modifications. Assert both are equal using the implemented equality

O© 00 N O U b W N =~

W oW oW oW W W WWNNNNDNNNNDNDN RS B R S Nl
T30 O B @O N A~ O O MO 90 O & N R 0 © m 3 0 0 & N~ O

Value Objects 21

check. Perform the actions you want to test and assert the results. Finally, assert that the original
object and copy are still equal.

Let’s put this into practice and test the side-effect-free implementation of our add method in the
Money class:

class MoneyTest extends TestCase

{
JHk
* @test
*/
public function copiedMoneyShouldRepresentSameValue()
{
$aMoney = Money: : fromAmountAndCurrency (100, Currency::fromValue('USD'));
$copiedMoney = Money: : fromMoney($aMoney);
$this->assertTrue($aMoney->equals($copiedMoney));
}
Ak
* @test
*/
public function originalMoneyShouldNotBeModifiedOnAddition()
{
$aMoney = Money: : fromAmountAndCurrency (100, Currency::fromValue('USD'));
$otherMoney = Money: : fromAmountAndCurrency (20, Currency::fromValue('USD"));
$aMoney - >add($otherMoney) ;
$this->assertbEquals(100, $aMoney->amount());
}
/**
* @test
*/
public function moniesShouldBeAdded()
{

$aMoney = Money: : fromAmountAndCurrency (100, Currency::fromValue('USD'));
$otherMoney = Money: : fromAmountAndCurrency (20, Currency::fromValue('USD"));

$newMoney = $aMoney->add($otherMoney);

38
39
40
41
42

© 00 N O O b W N =

[T N T N T o N - S S G O
N »~ © © 00 1 O O b W N =~ O

Value Objects 22

$this->assertbquals(120, $newMoney->amount());

Y/

Persisting Value Objects

Value Objects are not persisted on their own; they’re typically persisted within an Aggregate. Value
Objects shouldn’t be persisted as complete records, though that’s an option in some cases. Instead,
it’s best to use Embedded Value or Serialize LOB patterns. Both patterns can be used when persisting
your objects with an open source ORM such as Doctrine, or with a bespoke ORM. As Value Objects
are small, Embedded Value is usually the best choice because it provides an easy way to query
Entities by any of the attributes the Value Object has. However, if querying by those fields isn’t
important to you, serialize strategies can be very easy to implement.

Consider the following Product Entity with string id, name, and price (Money Value Object)
attributes. We’ve intentionally decided to simplify this example, with the id being a string and not
a Value Object:

class Product

{
private string $productld;
private string $name;

private Money $price;

public static function create(
string $aProductld,
string $aName,

Money $aPrice

): self {
return new self(
$aProductId,
$aName,
$aPrice
),
}

protected function __construct(
string $aProductld,
string $aName,
Money $aPrice

23
24
25
26
27
28
29
30

N O O b W N =~

Value Objects 23

) |
$this->setProductId($aProductId);
$this->setName($aName);
$this->setPrice($aPrice);

}

/S

Assuming you have a Repository for persisting Product Entities, an implementation to create and
persist a new Product could look like this:

$product = Product: :create(
$productRepository->nextIdentity(),
'Domain-Driven Design in PHP',

Money : : fromAmountAndCurrency (999, Currency: :fromValue('USD'))
);

$productRepository->add($product);

Now let’s look at both the ad hoc ORM and the Doctrine implementations that could be used to
persist a Product Entity containing Value Objects. We’'ll highlight the application of the Embedded
Value and Serialized LOB patterns, along with the differences between persisting a single Value
Object and a collection of them.

o Why Doctrine?

Doctrine?® is a great ORM. It solves 80 percent of the requirements a PHP application faces. It
has a great community. With a correctly tuned setup, it can perform the same or even better
than a bespoke ORM (without losing maintainability). We recommend using Doctrine in
most cases when dealing with Entities and business logic. It will save you a lot of time and
headaches.

Persisting Single Value Objects

Many different options are available for persisting a single Value Object. These range from using
Serialize LOB or Embedded Value as mapping strategies, to using an ad hoc ORM or an open source
alternative, such as Doctrine. We consider an ad hoc ORM to be a custom-built ORM that your
company may have developed in order to persist Entities in a database. In our scenario, the ad
hoc ORM code is going to be implemented using the DBAL*” library. According to the official

*http://www.doctrine-project.org/projects/orm.html
*"http://docs.doctrine- project.org/projects/doctrine- dbal/en/latest/

http://www.doctrine-project.org/projects/orm.html
http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/
http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/introduction.html
http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/introduction.html
http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/

O O B W N~

O© 00 1 O O b W N =

O = = =
0 N O O b W N -~ O

Value Objects 24

documentation®®, “The Doctrine database abstraction & access layer (DBAL) offers a lightweight and
thin runtime layer around a PDO-like API and a lot of additional, horizontal features like database
schema introspection and manipulation through an OO API”

Embedded Value with an Ad Hoc ORM

If we’re dealing with an ad hoc ORM using the Embedded Value pattern, we need to create a field
in the Entity table for each attribute in the Value Object. In this case, two extra columns are needed

when persisting a Product Entity — one for the amount of the Value Object, and one for its currency
ISO code:

CREATE TABLE products (
id INTEGER NOT NULL,
name VARCHAR(255) NOT NULL,
price_amount INT NOT NULL,
price_currency VARCHAR(3) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;

For persisting the Entity in the database, our Repository has to map each of the fields of the Entity
and the ones from the Money Value Object. If you're using an ad hoc ORM Repository based on
DBAL - let’s call it DbalProductRepository — you must take care of creating the INSERT statement,
binding the parameters, and executing the statement:

class DbalProductRepository
extends DbalRepository
implements ProductRepository

public function add(Product $aProduct): void
{
$sgl = '"INSERT INTO products VALUES (?, ?, ?, ?)';
$stmt = $this->connection()->prepare($sql);
$stmt->bindValue(1, $aProduct->id());
$stmt->bindValue(2, $aProduct->name());
$stmt->bindvValue(3,
$aProduct->price()->amount()
);
$stmt->bindvValue(4,
$aProduct->price()->currency()->isoCode()

);

$stmt->execute();

**http://docs.doctrine- project.org/projects/doctrine- dbal/en/latest/reference/introduction.html

http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/introduction.html

19
20
21

=~ O O s W N

© 00 N O O b W N =

[T N T N T S N T = Y= G G N ¥
N »~ © © 00 1 O O b W N =~ O

Value Objects 25

/7

After executing this snippet of code to create a Product Entity and persist it into the database, each
column is filled with the desired information:

mysql> select * from products \G
ok ok sk sk ok ROk sk sk ok Rk ok sk kR ok skokokokokk] oW Rkskskskokskskskskokoksksk sk ok ok sk sk sk sk ok sk sk sk ok
id: 1
name: Domain-Driven Design in PHP
price_amount: 999
price_currency: USD
1 row in set (.00 sec)

As you can see, you can map your Value Objects and query parameters in an ad hoc manner in order
to persist your Value Objects. However, everything is not as easy as it seems. Let’s try to fetch the
persisted Product with its associated Money Value Object. A common approach would be to execute
a SELECT statement and return a new Entity:

class DbalProductRepository
extends DbalRepository
implements ProductRepository

public function productOfId(string $anlId): Product
{
$sql = 'SELECT * FROM products WHERE id = ?';
$stmt = $this->connection()->prepare($sql);
$stmt->bindValue(1, $anld);
$res = $stmt->execute();

/S

return Product: :create(
$row['id'],
$row['name'],
Money : : fromAmountAndCurrency(
$row['price_amount'],
Currency: : fromValue(

$row['price_currency']

23
24

Value Objects 26

There are some benefits to this approach. First, you can easily read, step by step, how the persistence
and subsequent creations occur. Second, you can perform queries based on any of the attributes of
the Value Object. Finally, the space required to persist the Entity is just what is required — no more
and no less.

However, using the ad hoc ORM approach has its drawbacks. As explained in the Domain Events
chapter, Entities (in Aggregate form) should fire an Event in the constructor if your Domain is
interested in the Aggregate’s creation. If you use the new operator, you’ll be firing the Event as many
times as the Aggregate is fetched from the database.

This is one of the reasons why Doctrine uses internal proxies and serialize and unserialize
methods to reconstitute an object with its attributes in a specific state without using its constructor.
An Entity should only be created with the new operator once in its lifetime:

Constructors

Constructors don’t need to include a parameter for each attribute in the object. Think about
a blog post. A constructor may need an id and a title; however, internally it can also be
setting its status attribute to draft. When publishing the post, a publish method should be
called in order to alter its status accordingly and set a published date.

If your intention is still to roll out your own ORM, be ready to solve some fundamental problems such
as Events, different constructors, Value Objects, lazy load relations, etc. That’s why we recommend
giving Doctrine a try for Domain-Driven Design applications.

Besides, in this instance, you need to create a DbalProduct Entity that extends from the Product
Entity and is able to reconstitute the Entity from the database without using the new operator, instead
using a static factory method.

Embedded Value (Embeddables) with Doctrine >= 2.5.*

The latest stable Doctrine release is currently version 2.5 and it comes with support for mapping
Value Objects, thereby removing the need to do this yourself as in Doctrine 2.4. Since December
2015, Doctrine also has support for nested embeddables. The support is not 100 percent, but it’s high
enough to give it a try. In case it doesn’t work for your scenario, take a look at the next section. For
official documentation, check the Doctrine Embeddables reference®. This option, if implemented
correctly, is definitely the one we recommend most. It would be the simplest, most elegant solution,
that also provides search support in your DQL queries.

Because Product, Money, and Currency classes have already been shown, the only thing remaining
is to show the Doctrine mapping files:

*http://doctrine-orm.readthedocs.org/en/latest/tutorials/embeddables.html

http://doctrine-orm.readthedocs.org/en/latest/tutorials/embeddables.html
http://doctrine-orm.readthedocs.org/en/latest/tutorials/embeddables.html

© 00 =N O O & W N =~

W W W N NN DN DN DNDDNDDNDDNDDN-A A~ A~ 2 2 s
N A~ © O 00 N O O & W N~ OO0 O© 0 1 O O k& Ww N~ 0o

Value Objects 27

<?xml version="1.0" encoding="utf-8"7>

<doctrine-mapping
xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://doctrine-project.org/schemas/orm/doctrine-mapping
https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

<entity
name="Product"
table="product">
<id
name="id"
column="1id"
type="string"
length="255">
<generator
strategy="NONE">
</generator>
</id>

<field
name="name"
type="string"
length="255"

/>

<embedded
name="price"
class="Ddd\Domain\Model \Money"
/>
</entity>
</doctrine-mapping>

In the product mapping, we’re defining price as an instance variable that will hold a Money instance.
At the same time, Money is designed with an amount and a Currency instance:

© 00 =N O O & W N =~

T N S N S o S = S N N S
0 O 00 N O O b W N =~ O

O 00 N O O & W N =

N = ==
N O O b W N =~ O

Value Objects 28

<?xml version="1.0" encoding="utf-8"7>

<doctrine-mapping
xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://doctrine-project.org/schemas/orm/doctrine-mapping
https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

<embeddable
name="Ddd\Domain\Model \Money" >

<field
name="amount"
type="integer"
/>

<embedded
name="currency"
class="Ddd\Domain\Model \Currency"
/>
</embeddable>
</doctrine-mapping>

Finally, it’s time to show the Doctrine mapping for our Currency Value Object:

<?xml version="1.0" encoding="utf-8"?>

<doctrine-mapping
xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://doctrine-project.org/schemas/orm/doctrine-mapping

https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

<embeddable
name="Ddd\Domain\Model\Currency">

<field
name="iso"
type="string"
length="3"
/>
</embeddable>
</doctrine-mapping>

As you can see, the above code has a standard embeddable definition with just one string field

© 00 N O O & W N =

NN N NN NN NN RS R R R s
© 00 9 O O & WO N~ OO © W 1 O U b W N ~» &

Value Objects 29

that holds the ISO code. This approach is the easiest way to use embeddables and is much more
effective. By default, Doctrine names your columns by prefixing them using the Value Object name.
You can change this behavior to meet your needs by changing the column-prefix attribute in the
XML notation.

Embedded Value with Doctrine <= 2.4.*

If you’re still stuck in Doctrine 2.4 probably it’s time to consider an upgrade since this version of
Doctrine is currently too old (6 years old as of day of writing). Anyway you may wonder what an
acceptable solution for using Embedded Values with Doctrine < 2.5 is. We need to now surrogate
all the Value Object attributes in the Product Entity, which means creating new artificial attributes
that will hold the information of the Value Object. With this in place, we can map all those new
attributes using Doctrine. Let’s see what impact this has on the Product Entity:

class Product

{
private string $productld;
private string $name;

private Money $price;

private string $surrogateCurrencylsoCode;
private int $surrogateAmount;

public function __construct(string $aProductld, string $aName, Money $aPrice)
{

$this->setProductId($aProductld);

$this->setName($aName);

$this->setPrice($aPrice);

}

private function setPrice(Money $aMoney): void

{
$this->price = $aMoney;
$this->surrogateAmount = $aMoney->amount();
$this->surrogateCurrencyIsoCode =

$aMoney->currency()->isoCode();
}

private function price(): Money

{
if (null === $this->price) {
$this->price = Money: : fromAmountAndCurrency(

30
31
32
33
34
35
36
37
38
39

O© 00 N O O & W N =~

NN NN N NN R R R Sl s
= 0 O B WD S O O 0 NO0 0 WwN S

Value Objects 30

$this->surrogateAmount,
Currency: : fromValue($this->surrogateCurrency)
);
}
return $this->price;
}
/S
}

As you can see, there are two new attributes: one for the amount, and another for the ISO code of
the currency. We've also updated the setPrice method in order to keep attribute consistency when
setting it. On top of this, we updated the price getter in order to return the Money Value Object built
from the new fields. Let’s see how the corresponding XML Doctrine mapping should be changed:

<?xml version="1.0" encoding="utf-8"7?>

<doctrine-mapping
xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://doctrine-project.org/schemas/orm/doctrine-mapping
https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

<entity
name="Product"

table="product">

<id
name="id"
column="1id"
type="string"
length="255">
<generator

strategy="NONE">

</generator>

</id>

<field
name="name"
type="string"
length="255"
/>

28
29
30
31
32
33
34
35
36
37
38
39

Value Objects 31

<field
name="surrogateAmount"
type="integer"

column="price_amount"

/>
<field
name="surrogateCurrencyIsoCode"
type="string"
column="price_currency"
/>
</entity>

</doctrine-mapping>

o Surrogate Attributes

These two new fields don’t strictly belong to the Domain, as they don’t refer to Infrastructure
details. Rather, they’re a necessity due to the lack of embeddable support in Doctrine. There
are alternatives that can push these two attributes outside the pure Domain; however, this
approach is simpler, easier, and, as a tradeoff, acceptable. There’s another use of surrogate
attributes in this book; you can find it when surrogating Entity identities.

If we wanted to push these two attributes outside of the Domain, this could be achieved through
the use of an Abstract Factory®. First, we need to create a new Entity, DoctrineProduct, in our
Infrastructure folder. This Entity will extend from Product Entity. All surrogate fields will be placed
in the new class, and methods such as price or setPrice should be reimplemented. We’ll map
Doctrine to use the new DoctrineProduct as opposed to the Product Entity.

Now we're able to fetch Entities from the database, but what about creating a new Product? At
some point, we're required to call new Product, but because we need to deal with DoctrineProduct
and we don’t want our Application Services to know about Infrastructure details, we’ll need to use
Factories to create Product Entities. So, in every instance where Entity creation occurs with new,
you'll instead call createProduct on ProductFactory.

There could be many additional classes required to avoid placing the surrogate attributes in the
original Entity. As such, it’s our recommendation to surrogate all the Value Objects to the same
Entity, though this admittedly leads to a less pure solution.

Serialized LOB and Ad Hoc ORM

If the addition of searching capabilities to the Value Objects attributes is not important, there’s
another pattern that can be considered: the Serialized LOB. This pattern works by serializing the
whole Value Object into a string format that can easily be persisted and fetched. The most significant

*http://en.wikipedia.org/wiki/Abstract_factory_pattern

http://en.wikipedia.org/wiki/Abstract_factory_pattern
http://en.wikipedia.org/wiki/Abstract_factory_pattern

a o w N

O© 00 I O O b W N =

ST N R S N S o S = S = S
, O O 00 N O O b W N =~ 0o

Value Objects 32

difference between this solution and the embedded alternative is that in the latter option, the
persistence footprint requirements are reduced to a single column:

CREATE TABLE products (
id INTEGER NOT NULL,
name VARCHAR(255) NOT NULL,
price TEXT NOT NULL

)

In order to persist Product Entities using this approach, a change in the DbalProductRepository is
required. The Money Value Object must be serialized into a string before persisting the final Entity:

class DbalProductRepository
extends DbalRepository
implements ProductRepository

public function add(Product $aProduct): void

{
$sgl = '"INSERT INTO products VALUES (?, ?, ?)';
$stmt = $this->connection()->prepare($sql);
$stmt->bindValue(1, $aProduct->id());
$stmt->bindValue(2, $aProduct->name());

$stmt->bindValue(
3

serialize(

!

$aProduct->price()

s

Let’s see how our Product is now represented in the database. The table column price is a TEXT type
column that contains a serialization of a Money object representing 9.99 USD:

o N O O b W N =

o I O O b W N =

Value Objects 33

mysql> select * from products \G

HA KKK koK ok ok oK KKK KKKk kKRR ok] | oW KKKk ok ok ok okok ok ok ok ok ok ok ok ok koK

id: 1

name: Domain-Driven Design in PHP

price: 0:22:"Ddd\Domain\Model\Money":2:{s:30:" Ddd\Domain\Model\Money amount";i:999;\
s:32:" Ddd\Domain\Model\Money currency";0:25:"Ddd\Domain\Model\Currency":1:{s:34:" D\
dd\Domain\Model \Currency isoCode";s:3:"USD";}}
1 row in set (0.00 sec)

This approach does the job. However, it’s not recommended due to problems occurring when
refactoring classes in your code. Could you imagine the problems if we decided to rename our Money
class? Could you imagine the changes that would be required in our database representation when
moving the Money class from one namespace to another? Another tradeoff, as explained before, is the
lack of querying capabilities. It doesn’t matter whether you use Doctrine or not; writing a query to
get the products cheaper than, say, 200 USD is almost impossible while using a serialization strategy.

The querying issue can only be solved by using Embedded Values. However, the serialization
refactoring problems can be fixed using a specialized library for handling serialization processes.

Improved Serialization with JMS Serializer

serialize/unserialize native PHP strategies have a problem when dealing with class and names-
pace refactoring. One alternative is to use your own serialization mechanism — for example,
concatenating the amount, a one character separator such as “|, and the currency ISO code.
However, there’s another favored approach: using an open source serializer library such as Zumba

JsonSerializer®'. Let’s see an example of applying it when serializing a Money object:

$myMoney = Money: : fromAmountAndCurrency(
999
Currency: : fromValue('USD")

)
$serializer = new \Zumba\JsonSerializer\JsonSerializer();

$json = $serializer->serialize($myMoney);

In order to unserialize the object, the process is straightforward:

*https://github.com/zumba/json-serializer

https://github.com/zumba/json-serializer
https://github.com/zumba/json-serializer
https://github.com/zumba/json-serializer

Value Objects 34

$serializer = new \Zumba\JsonSerializer\JsonSerializer();

V7

$myMoney = $serializer->unserialize($json);

With this example, you can refactor your Money class without having to update your database. JMS
Serializer can be used in many different scenarios — for example, when working with REST APIs.
An important feature is the ability to specify which attributes of an object should be omitted in the
serialization process — for example, a password.

Check out the Mapping Reference®* and the Cookbook®® for more information. JMS Serializer is a
must in any Domain-Driven Design project.

Serialized LOB with Doctrine

In Doctrine, there are different ways of serializing objects in order to eventually persist them.

Doctrine Object Mapping Type

Doctrine has support for the Serialize LOB pattern. There are plenty of predefined mapping types
you can use in order to match Entity attributes with database columns or even tables. One of those
mappings is the object type, which maps an SQL CLOB to a PHP object using serialize() and

unserialize().

According to the Doctrine DBAL 2 Documentation®, object type:

maps and converts object data based on PHP serialization. If you need to store an
exact representation of your object data, you should consider using this type as it
uses serialization to represent an exact copy of your object as string in the database.
Values retrieved from the database are always converted to PHP’s object type using
unserialization or null if no data is present.

This type will always be mapped to the database vendor’s text type internally as there is
no way of storing a PHP object representation natively in the database. Furthermore this
type requires a SQL column comment hint so that it can be reverse engineered from the
database. Doctrine cannot correctly map back this type correctly using vendors that do
not support column comments, and will instead fall back to the text type instead.

Because the built-in text type of PostgreSQL does not support NULL bytes, the object
type will result in unserialization errors. A workaround to this problem is to serial-
ize()/unserialize() and base64_encode()/base64_decode() PHP objects and store them into
a text field manually.

Let’s look at a possible XML mapping for the Product Entity by using the ob ject type:

*?http://jmsyst.com/libs/serializer/master/reference/xml_reference
**http://jmsyst.com/libs/serializer/master/cookbook
**http://doctrine-orm.readthedocs.io/projects/doctrine- dbal/en/latest/reference/types.html#object

http://jmsyst.com/libs/serializer/master/reference/xml_reference
http://jmsyst.com/libs/serializer/master/cookbook
http://doctrine-orm.readthedocs.io/projects/doctrine-dbal/en/latest/reference/types.html#object
http://jmsyst.com/libs/serializer/master/reference/xml_reference
http://jmsyst.com/libs/serializer/master/cookbook
http://doctrine-orm.readthedocs.io/projects/doctrine-dbal/en/latest/reference/types.html#object

Value Objects 35

<?xml version="1.0" encoding="utf-8"7>

<doctrine-mapping
xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://doctrine-project.org/schemas/orm/doctrine-mapping
https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

<entity
name="Product"
table="products">

<id
name="id"
column="1id"
type="string"
length="255">
<generator

strategy="NONE">

</generator>

</id>

<field
name="name"
type="string"
length="255"

/>

<field
name="price"
type="object"
/>
</entity>
</doctrine-mapping>

The key addition is type="object", which tells Doctrine that we’re going to be using an object
mapping. Let’s see how we could create and persist a Product Entity using Doctrine:

V2
$em->persist($product);
$em->flush($product);

Let’s check that if we now fetch our Product Entity from the database, it’s returned in an expected
state:

O© 00 I O O b W N =

NN N N S R R N N by s s
W N PO O 0O N0 O kW N

Value Objects 36

V/ame

$repository = $em->getRepository(Product: :class);
$item = $repository->find(1);

var_dump($item);

J*
class Ddd\Domain\Model \Product#177 (3) {
private $productld =>
int(1)
private $name =>
string(41) "Domain-Driven Design in PHP"
private $money =>
class Ddd\Domain\Model \Money#174 (2) {
private $amount =>
string(3) "100"
private $currency =>
class Ddd\Domain\Model \Currency#175 (1) {
private $isoCode =>
string(3) "USD"

}
*/

Last but not least, the Doctrine DBAL 2 Documentation®® states that:

Object types are compared by reference, not by value. Doctrine updates this value if the
reference changes and therefore behaves as if these objects are immutable value objects.

This approach suffers from the same refactoring issues as the ad hoc ORM did. The ob ject mapping
type is internally using serialize/unserialize. What about instead using our own serialization?

Doctrine Custom Types

Another option is to handle the Value Object persistence using a Doctrine Custom Type. A Custom
Type adds a new mapping type to Doctrine — one that describes a custom transformation between
an Entity field and the database representation, in order to persist the former.

As the Doctrine DBAL 2 Documentation®® explains:

Just redefining how database types are mapped to all the existing Doctrine types is
not at all that useful. You can define your own Doctrine Mapping Types by extending

**http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic- mapping.html#doctrine- mapping- types
*http://doctrine-orm.readthedocs.io/projects/doctrine- dbal/en/latest/reference/types.html#custom-mapping-types

http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#doctrine-mapping-types
http://doctrine-orm.readthedocs.io/projects/doctrine-dbal/en/latest/reference/types.html#custom-mapping-types
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#doctrine-mapping-types
http://doctrine-orm.readthedocs.io/projects/doctrine-dbal/en/latest/reference/types.html#custom-mapping-types

© 00 N O O & W N =

W W W W W W N N NDNDDNDNDNDNDDNDNDDNDR-LS A 2~ 2 2 2 B B B
a & W0 N =~ 0 O 0 N 0O O b N~ OO O 0 N O U b Ww N~ 0o

Value Objects 37

Doctrine\DBAL\Types\Type. You are required to implement 4 different methods to get
this working.

With the object type, the serialization step includes information, such as the class, that makes it
quite difficult to safely refactor our code. Let’s try to improve on this solution. Think about a custom
serialization process that could solve the problem. One such way could be to persist the Money Value
Object as a string in the database encoded in amount | isoCode format:

use Ddd\Domain\Model\Currency;

use Ddd\Domain\Model\Money;

use Doctrine\DBAL\Types\TextType;

use Doctrine\DBAL\Platforms\AbstractPlatform;

class MoneyType extends TextType

{
const MONEY = 'money';

public function convertToPHPValue(
$value,
AbstractPlatform $platform

)
{
$value = parent::convertToPHPValue($value, $platform);
$value = explode('|', $value);
return Money: : fromAmountAndCurrency(
$value[0],
Currency: : fromValue($value[1])
),
}

public function convertToDatabaseValue(
$value,
AbstractPlatform $platform

return implode(
e
[
$value->amount(),

$value->currency()->isoCode()

36
37
38
39
40
41
42

© 00 N O O b W N =

NN NN N NN P R 1 sy s
O U bk WwN O O 0N 0w N,

Value Objects 38

}
public function getName()
{
return self: :MONEY;
}
}

Using Doctrine, you're required to register all Custom Types. It’s common to use anEntityManagerFactory
that centralizes thisEntityManager creation. Alternatively, you could perform this step by bootstrap-
ping your application:

use Doctrine\DBAL\Types\Type;
use Doctrine\ORM\EntityManager;
use Doctrine\ORM\Tools\Setup;

use Ddd\Infrastructure\Persistence\Doctrine\Type\MoneyType;

class EntityManagerFactory

{
public function build(): EntityManager
{
Type: :addType('money', MoneyType::class);
return EntityManager: :create(
[
'driver’ => 'pdo_mysql"',
'user' => 'root',
'password' => '',
"dbname" => 'ddd’',
1,
Setup: :createXMLMetadataConfiguration(
[_DIR__.'/config'],
true
)
),
}
}

Now we need to specify in the mapping that we want to use our Custom Type:

O© 00 I O O b W N =

N S
a b W N =~ O

O O b W N -~

Value Objects 39

<?xml version="1.0" encoding="utf-8"7>

<doctrine-mapping>

<entity
name="Product"

table="product">

<l-- ... =-=>
<field
name="price"
type="money"
/>
</entity>

</doctrine-mapping>

P Why Use XML Mapping?

Thanks to the XSD schema validation in the headers of the XML mapping file, most
integrated development environments (IDEs) provide auto-complete functionality for all
the elements and attributes present in the mapping definition. And the other widely used
mapping format, the YAML mapping format, has been deprecated in the 2.7 version.

Let’s check the database to see how the price was persisted using this approach:

mysql> select * from products \G

stk okokokokskskskskskskskskokkokkokkkokokok 4 oW kekskskskskskskskskokokokokkokk sk sk sk sk sk sk sk sk sk ok
id: 1

name: Domain-Driven Design in PHP

price: 999|USD

1 row in set (0.00 sec)

This approach is an improvement on the one before in terms of future refactoring. However,
searching capabilities remain limited due to the format of the column. With the Doctrine Custom
types, you can improve the situation a little, but it’s still not the best option for building your DQL
queries. See Doctrine Custom Mapping Types*” for more information.

" Time to Discuss

Think about and discuss with a peer how would you create a Doctrine Custom Type using
JMS to serialize and unserialize a Value Object.

*"http://doctrine-orm.readthedocs.org/en/latest/cookbook/custom-mapping-types.html

http://doctrine-orm.readthedocs.org/en/latest/cookbook/custom-mapping-types.html
http://doctrine-orm.readthedocs.org/en/latest/cookbook/custom-mapping-types.html

© 00 N O O b W N =

W oW oW oW oW oW eWweWNNNNDNDNNNDNDN RS B R R Nl
[0 O N A S O M0N0 0B ®N RO © 00 0NN,

Value Objects 40

Persisting a Collection of Value Objects

Imagine that we’d now like to add a collection of prices to be persisted to our Product Entity.
These prices could represent the different prices the product has borne throughout its lifetime or
the product price in different currencies. This could be named HistoricalPrice, as shown below:

class HistoricalProduct extends Product
{
/**
* @var Money|[]
*/

protected array $prices;

public static function create(
string $aProductld,
string $aName,
Money $aPrice,
array $somePrices

): self {
return new self(
$aProductId,
$aName,
$aPrice,
$somePrices
);
}

private function __construct(
string $aProductld,
string $aName,
Money $aPrice,

array $somePrices

)

{
parent::__construct($aProductlid, $aName, $aPrice);
$this->setPrices($somePrices);

}

private function setPrices(array $somePrices): void

{
$this->prices = $somePrices;

}

38
39
40
41
42

Value Objects 41

public function prices(): array

{

return $this->prices;

HistoricalProduct extends from Product, so it inherits the same behavior, plus the price collection
functionality.

As in the previous sections, serialization is a plausible approach if you don’t care about querying
capabilities. However, Embedded Values are a possibility if we know exactly how many prices we
want to persist. But what happens if we want to persist an undetermined collection of historical
prices?

Collection Serialized into a Single Column

Serializing a collection of Value Objects into a single column is most likely the easiest solution.
Everything that was previously explained in the section about persisting a single Value Object applies
in this situation. With Doctrine, you can use an Object or Custom Type — with some additional
considerations to bear in mind: Value Objects should be small in size, but if you wish to persist a
large collection, be sure to consider the maximum column length and the maximum row width that
your database engine can handle.

?9 Exercise

Come up with both Doctrine Object Type and Doctrine Custom Type implementation
strategies for persisting a Product with different prices.

Collection Backed by a Join Table

In case you want to persist and query an Entity by its related Value Objects, you have the choice
to persist the Value Objects as Entities. In terms of the Domain, those objects would still be Value
Objects, but we’ll need to give them an id and set them up with a one-to-many/one-to-one relation
with the owner, a real Entity. To summarize, your ORM handles the collection of Value Objects as
Entities, but in your Domain, they’re still treated as Value Objects.

The main idea behind the Join Table strategy is to create a table that connects the owner Entity and
its Value Objects. Let’s see a database representation:

=~ O O b W N =

O O B W N

© 00 N O O & W N =

.
(N

Value Objects 42

CREATE TABLE historical_products (
id CHAR(36) NOT NULL,
name VARCHAR(255) NOT NULL,
price_amount INT(11) NOT NULL,
price_currency CHAR(3) NOT NULL,
PRIMARY KEY (id)

)

The historical_products table will look the same as products. Remember that HistoricalProduct
extends Product Entity in order to easily show how to deal with persisting a collection. A new
prices table is now required in order to persist all the different Money Value Objects that a Product
Entity can handle:

CREATE TABLE prices (
id INT(41) NOT NULL AUTO_INCREMENT,
amount INT(11) NOT NULL,
currency CHAR(3) COLLATE NOT NULL,
PRIMARY KEY (id)

);
Finally, a table that relates products and prices is needed:

CREATE TABLE products_prices (
product_id CHAR(36) NOT NULL,
price_id INT(41) NOT NULL,
PRIMARY KEY (product_id, price_id),
UNIQUE KEY uniq_price_id (price_id),
KEY idx_product_id (product_id),
CONSTRAINT fk_product_id FOREIGN KEY (product_id) REFERENCES historical_products\
(id),
CONSTRAINT fk_price_id FOREIGN KEY (price_id) REFERENCES prices (id)
),

Collection Backed by a Join Table with Doctrine

Doctrine requires that all database Entities have a unique identity. Because we want to persist Money
Value Objects, we need to then add an artificial identity so Doctrine can handle its persistence.
There are two options: including the surrogate identity in the Money Value Object, or placing it in an
extended class.

The issue with the first option is that the new identity is only required due to the Database persistence
layer. This identity is not part of the Domain.

© 00 N O O b W N =

W oW W oW W NN NDNDNDNDNDDNDNDN S B S s s s s
A O N P O O W0 O W N A O W 3 0 O h w4~

Value Objects 43

An issue with the second option is the amount of alterations required in order to avoid this so-called
boundary leak. With a class extension, creating new instances of the Money Value Object class from
any Domain Object isn’t recommended, as it would break the Inversion Principle. The solution is to
again create a Money Factory that would need to be passed into Application Services and any other
Domain Objects.

In this scenario, we recommend using the first option. Let’s review the changes required to
implement it in the Money Value Object:

class Money
{
private int $amount;

private Currency $currency;

private string $surrogateld;
private string $surrogateCurrencylIsoCode;

public static function fromAmountAndCurrency(
int $anAmount,
Currency $aCurrency

): self {
return new self($anAmount, $aCurrency);

}
private function __construct(int $amount, Currency $currency)
{
$this->setAmount($amount);
$this->setCurrency($currency);
}
private function setAmount(int $amount): void
{
$this->amount = $amount;
}
private function setCurrency(Currency $currency): void
{
$this->currency = $currency;
$this->surrogateCurrencylsoCode =
$currency->isoCode();
}

public function currency(): Currency

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

O© 00 9 O O & W N =~

[= TN
W N SO

Value Objects 44

{
if (null === $this->currency) ({
$this->currency = Currency:: fromValue(
$this->surrogateCurrencylIsoCode
);
}
return $this->currency;
}
public function amount(): int
{
return $this->amount;
}
public function equals(self $aMoney): bool
{
return
$this->amount() === $aMoney->amount() &&
$this->currency()->equals($aMoney->currency());
}
}

As seen above, two new attributes have been added. The first one, surrogateld, is not used by our
Domain, but it’s required for the persistence Infrastructure to persist this Value Object as an Entity
in our Database. The second one, surrogateCurrencyIsoCode, holds the ISO code for the currency.
Using these new attributes, it’s really easy to map our Value Object with Doctrine.

The Money mapping is quite straightforward:

<?xml version="1.0" encoding="utf-8"7?>

<doctrine-mapping
xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://doctrine-project.org/schemas/orm/doctrine-mapping
https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

<entity
name="Ddd\Domain\Model \Money"
table="prices">

<id

name="surrogateId"

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

© 00 =N O O & W N =

N N B X R N N b Ly s
, O © 00 N O O b W N =~ O

Value Objects
type="integer"
column="id">
<generator
strategy="AUTO">
</generator>
</id>
<field
name="amount"
type="integer"
column="amount"
/>
<field
name="surrogateCurrencyIsoCode"
type="string"
column="currency"
/>
</entity>

</doctrine-mapping>

Using Doctrine, the HistoricalProduct Entity would have following mapping:

<?xml version="1.0" encoding="utf-8"7>
<doctrine-mapping

xmlns="http://doctrine-project.org/schemas/orm/doctrine-mapping"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://doctrine-project.org/schemas/orm/doctrine-mapping
https://raw.github.com/doctrine/doctrine2/master/doctrine-mapping.xsd">

<entity

name="Ddd\Domain\Model \HistoricalProduct"

table="historical_products"

45

repository-class="Ddd\Infrastructure\Domain\Model\DoctrineHistoricalProductR\

epository">

<many-to-many
field="prices"

target-entity="Ddd\Domain\Model \Money">

<cascade>
<cascade-all/>
</cascade>

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Value Objects 46

<join-table

name="products_prices">

<join-columns>
<join-column
name="product_id"
referenced-column-name="id"
/>

</join-columns>

<inverse- join-columns>
<join-column
name="price_id"
referenced-column-name="1id"
unique="true"
/>
</inverse- join-columns>
</join-table>
</many-to-many>
</entity>
</doctrine-mapping>

Collection Backed by a Join Table with an Ad Hoc ORM

It’s possible to do the same with an ad hoc ORM, where Cascade INSERTS and JOIN queries are
required. It’s important to be careful about how the removal of Value Objects is handled, in order
to not leave orphan Money Value Objects.

f’ Exercise

Think up a solution for DbalHistoricalRepository that would handle the persist method.

Collection Backed by a Database Entity

Database Entity is the same solution as Join Table, with the addition of the Value Object that’s only
managed by the owner Entity. In the current scenario, consider that the Money Value Object is only
used by the HistoricalProduct Entity; a Join Table would be overly complex. So the same result
could be achieved using a one-to-many database relation.

?9 Exercise

Think of the mapping required between HistoricalProduct and Money if a Database Entity
approach is used.

Value Objects 47

NoSQL

What about NoSQL mechanisms such as Redis, MongoDB, or CouchDB? Unfortunately, you can’t
escape these problems. In order to persist an Aggregate using Redis, you need to serialize it into
a string before setting the value. If you use PHP serialize/unserialize methods, you’ll face
namespace or class name refactoring issues again. If you choose to serialize in a custom way (JSON,
custom string, etc.), you’ll be required to again rebuild the Value Object during Redis retrieval.

PostgreSQL JSONB and MySQL JSON Type

If our database engine would allow us to not only use the Serialized LOB strategy but also search
based on its value, we would have the best of both approaches. Well, good news: now you can do this.
As of PostgreSQL version 9.4, support for JSONB?® has been added. Value Objects can be persisted
as JSON serializations and subsequently queried within this JSON serialization.

MySQL has done the same. As of MySQL 5.7.8, MySQL supports a native JSON data type that enables
efficient access to data in JSON (JavaScript Object Notation) documents. According to the MySQL
5.7 Reference Manual®, the JSON data type provides these advantages over storing JSON-format
strings in a string column:

« Automatic validation of JSON documents stored in JSON columns. Invalid documents produce
an error.

« Optimized storage format. JSON documents stored in JSON columns are converted to an
internal format that permits quick read access to document elements. When the server later
must read a JSON value stored in this binary format, the value need not be parsed from a text
representation. The binary format is structured to enable the server to look up subobjects or
nested values directly by key or array index without reading all values before or after them
in the document.

If Relational Databases add support for document and nested document searches with high
performance and with all the benefits of an ACID (Atomicity, Consistency, Isolation, Durability)
philosophy, it could save a lot of complexity in many projects.

Security

Another interesting detail of modeling your Domain concepts using Value Objects is regarding its
security benefits. Consider an application within the context of selling flight tickets. If you deal
with International Air Transport Association airport codes, also known as IATA codes*’, you can
decide to use a string or model the concept using a Value Object. If you choose to go with the string,

*8http://www.postgresql.org/docs/9.4/static/functions-json.html
**https://dev.mysql.com/doc/refman/5.7/en/json.html
“*https://en.wikipedia.org/wiki/International_Air_Transport_Association_airport_code

http://www.postgresql.org/docs/9.4/static/functions-json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://en.wikipedia.org/wiki/International_Air_Transport_Association_airport_code
http://www.postgresql.org/docs/9.4/static/functions-json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://en.wikipedia.org/wiki/International_Air_Transport_Association_airport_code

Value Objects 48

think about all the places where you’ll be checking that the string is a valid IATA code. What’s the
chance you forget somewhere important? On the other hand, think about trying to instantiate new
IATA("BCN'; DROP TABLE users;--").If you centralize the guards*' in the constructor and then pass
an [ATA Value Object into your model, avoiding SQL Injections or similar attacks gets easier.

If you want to know more about the security side of Domain-Driven Design, you can follow Dan
Bergh Johnsson*” or read his blog*.

Wrap-Up

Using Value Objects for modeling concepts in your Domain that measure, quantify, or describe is
highly recommended. As shown, Value Objects are easy to create, maintain, and test. In order to
handle persistence within a Domain-Driven Design application, using an ORM is a must. However,
in order to persist Value Objects using Doctrine, the preferred way is using embeddables. In case
you're stuck in version 2.4, there are two options: adding the Value Object fields directly into your
Entity and mapping them (less elegant, but easier), or extending your Entities (far more elegant, but
more complex).

“‘https://en.wikipedia.org/wiki/Guard_(computer_science)
“’https://twitter.com/danbjson
“3http://dearjunior.blogspot.com.es/search/label/domain%20driven%20security

https://en.wikipedia.org/wiki/Guard_(computer_science)
https://twitter.com/danbjson
https://twitter.com/danbjson
http://dearjunior.blogspot.com.es/search/label/domain%20driven%20security
https://en.wikipedia.org/wiki/Guard_(computer_science)
https://twitter.com/danbjson
http://dearjunior.blogspot.com.es/search/label/domain%20driven%20security

Appendix: Hexagonal Architecture
with PHP

The following article was posted in phplarchitect magazine in June 2014 by Carlos Buenosvinos.

Introduction

With the rise of Domain-Driven Design (DDD), architectures promoting domain centric designs
are becoming more popular. This is the case with Hexagonal Architecture, also known as Ports
and Adapters, that seems to have being rediscovered just now by PHP developers. Invented in
2005 by Alistair Cockburn, one of the Agile Manifesto authors, the Hexagonal Architecture allows
an application to be equally driven by users, programs, automated tests or batch scripts, and to be
developed and tested in isolation from its eventual run-time devices and databases. This results into
agnostic infrastructure web applications that are easier to test, write and maintain. Let’s see how to
apply it using real PHP examples.

Your company is building a brainstorming system called Idy. Users add and rate ideas so the most
interesting ones can be implemented in a company. It is Monday morning, another sprint is starting
and you are reviewing some user stories with your team and your Product Owner. “As a not logged
in user, I want to rate an idea and the author should be notified by email”, that’s a really
important one, isn’t it?

First Approach

As a good developer, you decide to divide and conquer the user story, so you’ll start with the first
part, “I want to rate an idea”. After that, you will face “the author should be notified by email”. That
sounds like a plan.

In terms of business rules, rating an idea is as easy as finding the idea by its identifier in the ideas
repository, where all the ideas live, add the rating, recalculate the average and save the idea back.
If the idea does not exist or the repository is not available we should throw an exception so we can
show an error message, redirect the user or do whatever the business asks us for.

In order to execute this UseCase, we just need the idea identifier and the rating from the user. Two
integers that would come from the user request.

Your company web application is dealing with a Zend Framework 1 legacy application. As most of
companies, probably some parts of your app may be newer, more SOLID, and others may just be a

O 00 =N O O & W N =~

W W W W W W W N N NDNDDNDNDNDNDDNDDNDDND-S - 2~ 2 2 2 2 B
O O WO N P, OO O 0 N O G hx WOUNA OO0 © O N O O »x wN =~ 0o

Appendix: Hexagonal Architecture with PHP

big ball of mud. However, you know that it does not matter at all which framework you are using,
it is all about writing clean code that makes maintenance a low cost task for your company.

You’re trying to apply some Agile principles you remember from your last conference, how it was,
yeah, I remember “make it work, make it right, make it fast”. After some time working you get

something like Listing 1.

class IdeaController extends Zend_Controller_Action

{

public function rateAction()

{

// Getting parameters from the request
$ideald
$rating = $this->request->getParam('rating');

$this->request->getParam('id');

// Building database connection

$db = new Zend_Db_Adapter_Pdo_Mysql([
"host' => 'localhost',
'username' => 'idy',
"password' => '',
"dbname’ => 'idy'

1);

// Finding the idea in the database

$sql = 'SELECT * FROM ideas WHERE idea_id = ?';
$row = $db->fetchRow($sql, $ideald);

if (!$row) {

throw new Exception('Idea does not exist');

// Building the idea from the database
$idea = new Idea();
$idea->setId($row['id']);
$idea->setTitle($row['title']);
$idea->setDescription($row['description']);
$idea->setRating($row['rating']);
$idea->setVotes($row['votes']);
$idea->setAuthor($row['email']);

// Add user rating
$idea->addRating($rating);

// Update the idea and save it to the database

37
38
39
40
41
42
43
44
45
46
47

Appendix: Hexagonal Architecture with PHP 51

$data = |
'votes' => $idea->getVotes(),
'rating' => $idea->getRating()
1;
$where['idea_id = ?'] = $ideald;
$db->update('ideas', $data, $where);

// Redirect to view idea page
$this->redirect('/idea/"'.$ideald);

I know what readers are thinking: “Who is going to access data directly from the controller? This is
a 90’s example!”, ok, ok, you're right. If you are already using a framework, it is likely that you are
also using an ORM. Maybe done by yourself or any of the existing ones such as Doctrine, Eloquent,
ZendDB, etc. If this is the case, you are one step further from those who have some Database
connection object but don’t count your chickens before they’re hatched.

For newbies, Listing 1 code just works. However, if you take a closer look at the Controller, you’ll
see more than business rules, you’ll also see how your web framework routes a request into your
business rules, references to the database or how to connect to it. So close, you see references to your
infrastructure.

Infrastructure is the detail that makes your business rules work. Obviously, we need some way
to get to them (API, web, console apps, etc.) and effectively we need some physical place to store
our ideas (memory, database, NoSQL, etc.). However, we should be able to exchange any of these
pieces with another that behaves in the same way but with different implementations. What about
starting with the Database access?

All those Zend_DB_Adapter connections (or straight MySQL commands if that’s your case) are asking
to be promoted to some sort of object that encapsulates fetching and persisting Idea objects. They
are begging for being a Repository.

Repositories and the Persistence Edge

Whether there is a change in the business rules or in the infrastructure, we must edit the same
piece of code. Believe me, in CS, you don’t want many people touching the same piece of code for
different reasons. Try to make your functions do one and just one thing so it is less probable having
people messing around with the same piece of code. You can learn more about this by having a
look at the Single Responsibility Principle (SRP). For more information about this principle: http:
//www.objectmentor.com/resources/articles/srp.pdf

Listing 1 is clearly this case. If we want to move to Redis or add the author notification feature, you’ll
have to update the rateAction method. Chances to affect aspects of the rateAction not related with

http://www.objectmentor.com/resources/articles/srp.pdf
http://www.objectmentor.com/resources/articles/srp.pdf

O 00 =N O O & W N =~

W W W W W W W N N NDNDDNDNDNDNDDNDDNDDND-S - 2~ 2 2 2 2 B
O O WO N P, OO O 0 N O G hx WOUNA OO0 © O N O O »x wN =~ 0o

Appendix: Hexagonal Architecture with PHP 52

the one updating are high. Listing 1 code is fragile. If it is common in your team to hear “If it works,
don’t touch it”, SRP is missing.

So, we must decouple our code and encapsulate the responsibility for dealing with fetching and
persisting ideas into another object. The best way, as explained before, is using a Repository.
Challenged accepted! Let’s see the results in Listing 2.

class IdeaController extends Zend_Controller_Action

{
public function rateAction()
{
$ideald = $this->request->getParam('id');
$rating = $this->request->getParam('rating');
$ideaRepository = new IdeaRepository();
$idea = $ideaRepository->find($ideald);
if (!$idea) {
throw new Exception('Idea does not exist');
}
$idea->addRating($rating);
$ideaRepository->update($idea);
$this->redirect('/idea/'.$ideald);
}
}

class IdeaRepository

{

private $client;

public function __construct()

{
$this->client = new Zend_Db_Adapter_Pdo_Mysqgl([
"host' => 'localhost',
'username' => 'idy',
"password’ => '',
"dbname’ => 'idy'
1)
}

public function find($id)
{

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67

Appendix: Hexagonal Architecture with PHP 53

$sgl = 'SELECT * FROM ideas WHERE idea_id = ?';
$row = $this->client->fetchRow($sql, $id);
if (!$row) {

return null;

$idea = new Idea();
$idea->setId($row['id']);
$idea->setTitle($row['title']);
$idea->setDescription($row['description']);
$idea->setRating($row['rating']);
$idea->setVotes($row['votes']);
$idea->setAuthor ($row['email']);

return $idea;

public function update(Idea $idea)
{
$data = [
'title' => $idea->getTitle(),
"description' => $idea->getDescription(),
'rating' => $idea->getRating(),
'votes' => $idea->getVotes(),
'email' => $idea->getAuthor(),
1;

$where = ['idea_id = ?' => $idea->getld()];
$this->client->update('ideas', $data, $where);

The result is nicer. The rateAction of the IdeaController is more understandable. When read, it
talks about business rules. IdeaRepository is a business concept. When talking with business guys,
they understand what an IdeaRepository is: A place where I put Ideas and get them.

A Repository “mediates between the domain and data mapping layers using a collection-like
interface for accessing domain objects.” as found in Martin Fowler’s pattern catalog.

If you are already using an ORM such as Doctrine, your current repositories extend from an
EntityRepository. If you need to get one of those repositories, you ask Doctrine EntityManager to
do the job. The resulting code would be almost the same, with an extra access to the EntityManager
in the controller action to get the IdeaRepository.

At this point, we can see in the landscape one of the edges of our hexagon, the persistence

© 00 N O O b W N =

NN N . R R N L Ly
N »~ © © 00 1 O O b W N =~ O

Appendix: Hexagonal Architecture with PHP 54

edge. However, this side is not well drawn, there is still some relationship between what an
IdeaRepository is and how it is implemented.

In order to make an effective separation between our application boundary and the infrastructure
boundary we need an additional step. We need to explicitly decouple behavior from implementation
using some sort of interface.

Decoupling Business and Persistence

Have you ever experienced the situation when you start talking to your Product Owner, Business
Analyst or Project Manager about your issues with the Database? Can you remember their faces
when explaining how to persist and fetch an object? They had no idea what you were talking about.

The truth is that they don’t care, but that’s ok. If you decide to store the ideas in a MySQL
server, Redis or SQLite it is your problem, not theirs. Remember, from a business standpoint, your

infrastructure is a detail. Business rules are not going to change whether you use Symfony or Zend
Framework, MySQL or PostgreSQL, REST or SOAP, etc.

That’s why it is important to decouple our IdeaRepository from its implementation. The easiest way
is to use a proper interface. How can we achieve that? Let’s take a look at Listing 3.

class IdeaController extends Zend_Controller_Action

{
public function rateAction()
{
$ideald = $this->request->getParam('id');
$rating = $this->request->getParam('rating');
$ideaRepository = new MySQLIdeaRepository();
$idea = $ideaRepository->find($ideald);
if (!$idea) {
throw new Exception('Idea does not exist');
}
$idea->addRating($rating);
$ideaRepository->update($idea);
$this->redirect('/idea/'.$ideald);
}
}

interface IdeaRepository

{

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

© 00 N O O & W N =

SN
N =~ O

Appendix: Hexagonal Architecture with PHP 55

Rk
* @param int $id
* @return null[Idea
*/

public function find($id);

/**
* @param Idea $idea
*/
public function update(Idea $idea);

class MySQLIdeaRepository implements IdeaRepository

{
e

Easy, isn’t it? We have extracted the IdeaRepository behavior into an interface, renamed the
IdeaRepository into MySQLIdeaRepository and updated the rateAction to use our MySQL IdeaRepository.
But what’s the benefit?

We can now exchange the repository used in the controller with any implementing the same
interface. So, let’s try a different implementation.

Migrating our Persistence to Redis

During the sprint and after talking to some mates, you realize that using a NoSQL strategy could
improve the performance of your feature. Redis is one of your best friends. Go for it and show me
your Listing 4.

class IdeaController extends Zend_Controller_Action

{
public function rateAction()
{
$ideald = $this->request->getParam('id");
$rating = $this->request->getParam('rating');

$ideaRepository = new RedislIdeaRepository();
$idea = $ideaRepository->find($ideald);
if (!$idea) {

throw new Exception('Idea does not exist');

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Appendix: Hexagonal Architecture with PHP

$idea->addRating($rating);
$ideaRepository->update($idea);

$this->redirect('/idea/"'.$ideald);

interface IdeaRepository

VA

class RedisIdeaRepository implements IdeaRepository

private $client;

public function __construct()

{
$this->client = new \Predis\Client();
}
public function find($id)
{
$idea = $this->client->get($this->getKey($id));
if (!$idea) {
return null;
}
return unserialize($idea);
}
public function update(Idea $idea)
{
$this->client->set(
$this->getKey($idea->getld()),
serialize($idea)
),
}

private function getKey($id)
{

return 'idea:' . $id;

56

56
57

© 00 N O O b W N =

N N B X R N N b Ly s
, O © 00 N O O b W N =~ 0o

Appendix: Hexagonal Architecture with PHP 57

Easy again. You've created a RedisIdeaRepository that implements IdeaRepository interface and
we have decided to use Predis as a connection manager. Code looks smaller, easier and faster. But
what about the controller? It remains the same, we have just changed which repository to use, but
it was just one line of code.

As an exercise for the reader, try to create the IdeaRepository for SQLite, a file or an in-memory
implementation using arrays. Extra points if you think about how ORM Repositories fit with Domain
Repositories and how ORM @annotations aftect this architecture.

Decouple Business and Web Framework

We have already seen how easy it can be to changing from one persistence strategy to another.
However, the persistence is not the only edge from our Hexagon. What about how the user interacts
with the application?

Your CTO has set up in the roadmap that your team is moving to Symfony2, so when developing
new features in you current ZF1 application, we would like to make the incoming migration easier.
That’s tricky, show me your Listing 5.

class IdeaController extends Zend_Controller_Action

{
public function rateAction()
{
$ideald = $this->request->getParam('id"');
$rating = $this->request->getParam('rating');
$ideaRepository = new RedisIdeaRepository();
$useCase = new RateldeaUseCase($ideaRepository);
$response = $useCase->execute($ideald, $rating);
$this->redirect('/idea/"'.$ideald);
}
}
interface IdeaRepository
{
Y/
}

class RateldealUseCase

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Appendix: Hexagonal Architecture with PHP 58

{
private $ideaRepository;
public function __construct(IdeaRepository $ideaRepository)
{
$this->ideaRepository = $ideaRepository;
}
public function execute($ideald, $rating)
{
try {
$idea = $this->ideaRepository->find($ideald);
} catch(Exception $e) {
throw new RepositoryNotAvailableException();
}
if (!$idea) {
throw new IdeaDoesNotExistException();
}
try {
$idea->addRating($rating);
$this->ideaRepository->update($idea);
} catch(Exception $e) {
throw new RepositoryNotAvailableException();
}
return $idea;
}
}

Let’s review the changes. Our controller is not having any business rules at all. We have pushed all
the logic inside a new object called RateIdeaUseCase that encapsulates it. This object is also known
as Controller, Interactor or Application Service.

The magic is done by the execute method. All the dependencies such as the RedisIdeaRepository
are passed as an argument to the constructor. All the references to an IdeaRepository inside our
UseCase are pointing to the interface instead of any concrete implementation.

That’s really cool. If you take a look inside RateIdeaUseCase, there is nothing talking about
MySQL or Zend Framework. No references, no instances, no annotations, nothing. It is like your
infrastructure does not mind. It just talks about business logic.

Additionally, we have also tuned the Exceptions we throw. Business processes also have exceptions.
NotAvailableRepository and IdeaDoesNotExist are two of them. Based on the one being thrown we

O© 00 N O U b W N =~

W oW oW oW W W WWNNNNDNNNNDNDN RS B R S Nl
T30 O B @O N A~ O O MO 90 O & N R 0 © m 3 0 0 & N~ O

Appendix: Hexagonal Architecture with PHP 59

can react in different ways in the framework boundary.

Sometimes, the number of parameters that a UseCase receives can be too many. In order to organize
them, it is quite common to build a UseCase request using a Data Transfer Object (DTO) to pass
them together. Let’s see how you could solve this in Listing 6.

class IdeaController extends Zend_Controller_Action

public function rateAction()

$ideald
$rating = $this->request->getParam('rating');

$this->request->getParam('id');

$ideaRepository = new RedislIdeaRepository();
$useCase = new RateldeaUseCase($ideaRepository);
$response = $useCase->execute(

new RateldeaRequest($ideald, $rating)

);

$this->redirect('/idea/"' .$response->idea->getlid());

class RateldeaRequest

public $ideald;
public $rating;

public function __construct($ideald, $rating)

{
{
}
}
{
{
}
}

$this->ideald = $ideald;
$this->rating = $rating;

class RateldeaResponse

{

public $idea;

public function __construct(Idea $idea)

{

$this->idea = $idea;

38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53

Appendix: Hexagonal Architecture with PHP 60

}
class RateldeaUseCase
{
VA
public function execute($request)
{
$ideald = $request->ideald;
$rating = $request->rating;
Y/
return new RateldeaResponse($idea);
}
}

The main changes here are introducing two new objects, a Request and a Response. They are not
mandatory, maybe a UseCase has no request or response. Another important detail is how you build
this request. In this case, we are building it getting the parameters from ZF request object.

Ok, but wait, what’s the real benefit? it is easier to change from one framework to other, or execute
our UseCase from another delivery mechanism. Let’s see this point.

Rating an idea using the API

During the day, your Product Owner comes to you and says: “by the way, a user should be able to
rate an idea using our mobile app. I think we will need to update the API, could you do it for this
sprint?”. Here’s the PO again. “No problem!”. Business is impressed with your commitment.

As Robert C. Martin says: “The Web is a delivery mechanism [...] Your system architecture should
be as ignorant as possible about how it is to be delivered. You should be able to deliver it as a
console app, a web app, or even a web service app, without undue complication or any change to
the fundamental architecture”.

Your current API is built using Silex, the PHP micro-framework based on the Symfony2 Components.
Let’s go for it in Listing 7.

O© 00 I O O b W N =

[S S S N = e Y
© © 0O N O O & W N =~ O

g b W N -

Appendix: Hexagonal Architecture with PHP 61

require_once __DIR__.'/../vendor/autoload.php';
$app = new \Silex\Application();
// ... more routes

$app->get(
'/api/rate/idea/{ideald}/rating/{rating}"',
function ($ideald, $rating) use ($app) {
$ideaRepository = new RedislIdeaRepository();
$useCase = new RateldeaUseCase($ideaRepository);
$response = $useCase->execute(

new RateldeaRequest($ideald, $rating)
);

return $app-> json($response->idea);
);
$app->run();

Is there anything familiar to you? Can you identify some code that you have seen before? I'll give
you a clue.

$ideaRepository = new RedisIdeaRepository();
$useCase = new RateldeaUseCase($ideaRepository);
$response = $useCase->execute(

new RateldeaRequest($ideald, $rating)

)

“Man! I remember those 3 lines of code. They look exactly the same as the web application”. That’s
right, because the UseCase encapsulates the business rules you need to prepare the request, get the
response and act accordingly.

We are providing our users with another way for rating an idea; another delivery mechanism.

The main difference is where we created the RateIdeaRequest from. In the first example, it was from
a ZF request and now it is from a Silex request using the parameters matched in the route.

Console app rating

Sometimes, a UseCase is going to be executed from a Cron job or the command line. As examples,
batch processing or some testing command lines to accelerate the development.

O© 00 1 O O b W N =

W W W W W W N DN N DD DN DN DNDNDNDND - 2, s
O b W N » © © 00 1 O O b W N » © © 00 N O U b W N~ O

Appendix: Hexagonal Architecture with PHP 62

While testing this feature using the web or the API, you realize that it would be nice to have a
command line to do it, so you don’t have to go through the browser.

If you are using shell scripts files, I suggest you to check the Symfony Console component. What
would the code look like?

namespace Idy\Console\Command;

use Symfony\Component\Console\Command\Command;

use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;

class VoteldeaCommand extends Command

{

protected function configure()
{
$this
->setName('idea:rate')
->setDescription('Rate an idea')
->addArgument('id', InputArgument::REQUIRED)
->addArgument('rating', InputArgument::REQUIRED)

protected function execute(
InputInterface $input,
OutputInterface $output
) |
$ideald = $input->getArgument('id');
$rating = $input->getArgument('rating');

$ideaRepository = new RedisIdeaRepository();
$useCase = new RateldeaUseCase($ideaRepository);
$response = $useCase->execute(

new RateldeaRequest($ideald, $rating)
);

$output->writeln('Done!");

Again those 3 lines of code. As before, the UseCase and its business logic remain untouched, we are

© 00 N O O b W N =

I S =
O O b W N,

17
18
19
20
21
22
23
24
25
26
27
28

Appendix: Hexagonal Architecture with PHP 63

just providing a new delivery mechanism. Congratulations, you've discovered the user side hexagon

edge.

There is still a lot to do. As you may have heard, a real craftsman does TDD. We have already started
our story so we must be ok with just testing after.

Testing Rating an Idea UseCase

Michael Feathers introduced a definition of legacy code as code without tests. You don’t want your
code to be legacy just born, do you?

In order to unit test this UseCase object, you decide to start with the easiest part, what happens if
the repository is not available? How can we generate such behavior? Do we stop our Redis server
while running the unit tests? No. We need to have an object that has such behavior. Let’s use a mock
object in Listing 9.

class RateldeaUseCaseTest extends \PHPUnit_Framework_TestCase
{
V2t
* @test
*/
public function whenRepositoryNotAvailableAnExceptionShouldBeThrown()
{
$this->setExpectedException('NotAvailableRepositoryException');
$ideaRepository = new NotAvailableRepository();
$useCase = new RateldeaUseCase($ideaRepository);
$useCase->execute(

new RateldeaRequest(1, 5)
)i

class NotAvailableRepository implements IdeaRepository

{
public function find($id)

{

throw new NotAvailableException();

public function update(Idea $idea)
{

throw new NotAvailableException();

© 00 N O O & W N =

W DN DN N DN DN DN DN DNDNDDND -~ s, s, s, s, s, s, s,
© © 00 N O O & W N~ O O 0 N O O bk W N -~ O

Appendix: Hexagonal Architecture with PHP 64

Nice. NotAvailableRepository has the behavior that we need and we can use it with RateIdeaUseCase
because it implements IdeaRepository interface.

Next case to test is what happens if the idea is not in the repository. Listing 10 shows the code.

class RateldeaUseCaseTest extends \PHPUnit_Framework_TestCase

{
/e

V21
* @test
*/
public function whenIdeaDoesNotExistAnExceptionShouldBeThrown()
{
$this->setExpectedException(' IdeaDoesNotExistException');
$ideaRepository = new EmptyldeaRepository();
$useCase = new RateldeaUseCase($ideaRepository);
$useCase->execute(

new RateldeaRequest(1, 5)
)i

class EmptyldeaRepository implements IdeaRepository

{
public function find($id)

{

return null;

public function update(Idea $idea)
{

Here, we use the same strategy but with an EmptyIdeaRepository. It also implements the same
interface but the implementation always returns null regardless which identifier the find method
receives.

Why are we testing these cases?, remember Kent Beck’s words: “Test everything that could possibly
break”.

Let’s carry on with the rest of the feature. We need to check a special case that is related with having
a read available repository where we cannot write to. Solution can be found in Listing 11.

Appendix: Hexagonal Architecture with PHP 65

class RateldeaUseCaseTest extends \PHPUnit_Framework_TestCase

{
Ve
Ak
* @test
*/
public function whenUpdatingInReadOnlyAnIdeaAnExceptionShouldBeThrown()
{
$this->setExpectedException('NotAvailableRepositoryException');
$ideaRepository = new WriteNotAvailableRepository();
$useCase = new RateldeaUseCase($ideaRepository);
$response = $useCase->execute(
new RateldeaRequest(1, 5)
)i
}
}
class WriteNotAvailableRepository implements IdeaRepository
{
public function find($id)
{
$idea = new Idea();
$idea->setld(1);
$idea->setTitle('Subscribe to php[architect]');
$idea->setDescription('Just buy it!");
$idea->setRating(5);
$idea->setVotes(10);
$idea->setAuthor('hi@carlos.io');
return $idea;
}
public function update(Idea $idea)
{
throw new NotAvailableException();
}
}

Ok, now the key part of the feature is still remaining. We have different ways of testing this, we can
write our own mock or use a mocking framework such as Mockery or Prophecy. Let’s choose the
first one. Another interesting exercise would be to write this example and the previous ones using
one of these frameworks.

Appendix: Hexagonal Architecture with PHP 66

class RateldeaUseCaseTest extends \PHPUnit_Framework_TestCase

{

/)

Ak
* @test
*/
public function whenRatingAnIdeaNewRatingShouldBeAddedAndIdeaUpdated()
{
$ideaRepository = new OneldeaRepository();
$useCase = new RateldeaUseCase($ideaRepository);
$response = $useCase->execute(

new RateldeaRequest(1, 5)
)i

$this->assertSame(5, $response->idea->getRating());
$this->assertTrue($ideaRepository->updateCalled);

class OneldeaRepository implements IdeaRepository

{

public $updateCalled = false;

public function find($id)

{
$idea = new Idea();
$idea->setld(1);
$idea->setTitle('Subscribe to phpl[architect]');
$idea->setDescription('Just buy it!');
$idea->setRating(5);
$idea->setVotes(10);
$idea->setAuthor('hi@carlos.io');
return $idea;

}

public function update(Idea $idea)

{
$this->updateCalled = true;

}

© 00 N O O b W N =

O = = =S
W N O O b W N =~ O

Appendix: Hexagonal Architecture with PHP 67

Bam! 100% Coverage for the UseCase. Maybe, next time we can do it using TDD so the test will
come first. However, testing this feature was really easy because of the way decoupling is promoted
in this architecture.

Maybe you are wondering about this:
$this->updateCalled = true;

We need a way to guarantee that the update method has been called during the UseCase execution.
This does the trick. This test double object is called a spy, mocks cousin.

When to use mocks? As a general rule, use mocks when crossing boundaries. In this case, we need
mocks because we are crossing from the domain to the persistence boundary.

What about testing the infrastructure?

Testing Infrastructure

If you want to achieve 100% coverage for your whole application you will also have to test your
infrastructure. Before doing that, you need to know that those unit tests will be more coupled to
your implementation than the business ones. That means that the probability to be broken with
implementation details changes is higher. So it is a trade-off you will have to consider.

So, if you want to continue, we need to do some modifications. We need to decouple even more.
Let’s see the code in Listing 13.

class IdeaController extends Zend_Controller_Action

{

public function rateAction()

{
$ideald
$rating = $this->request->getParam('rating');

$this->request->getParam('id');

$useCase = new RateldeaUseCase(
new RedisIdeaRepository(
new \Predis\Client()

);

$response = $useCase->execute(
new RateldeaRequest($ideald, $rating)

);

$this->redirect('/idea/"'.$response->idea->getld());

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Appendix: Hexagonal Architecture with PHP 68

}
}
class RedisIdeaRepository implements IdeaRepository
{
private $client;
public function __construct($client)
{
$this->client = $client;
}
V/amm
public function find($id)
{
$idea = $this->client->get($this->getKey($id));
if (!$idea) {
return null;
}
return $idea;
}
}

If we want to 100% unit test RedisIdeaRepository we need to be able to pass the Predis\Client as
a parameter to the repository without specifying TypeHinting so we can pass a mock to force the
code flow necessary to cover all the cases.

This forces us to update the Controller to build the Redis connection, pass it to the repository and
pass the result to the UseCase.

Now;, it is all about creating mocks, test cases and having fun doing asserts.

Arggg, So Many Dependencies!

Is it normal that I have to create so many dependencies by hand? No. It is common to use a
Dependency Injection component or a Service Container with such capabilities. Again, Symfony
comes to the rescue, however, you can also check PHP-DI 4 http://php-di.org/.

Let’s see the resulting code in Listing 14 after applying Symfony Service Container component to
our application.

http://php-di.org/

O© 00 I O O b W N =

N S
g b 0w N =~

© 00 N O O b W N =

[T S T S S S S S = N S U
, O © 00 N O O b W N =~ O

Appendix: Hexagonal Architecture with PHP 69

class IdeaController extends ContainerAwareController

{

public function rateAction()

{
$ideald = $this->request->getParam('id');
$rating = $this->request->getParam('rating');

$useCase = $this->get('rate_idea_use_case');
$response = $useCase->execute(
new RateldeaRequest($ideald, $rating)

);

$this->redirect('/idea/'.$response->idea->getld());

The controller has been modified to have access to the container, that’s why it is inheriting from
a new base controller ContainerAwareController that has a get method to retrieve each of the
services contained.

<?xml version="1.0" 7>
<container xmlns="http://symfony.com/schema/dic/services"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://symfony.com/schema/dic/services
http://symfony.com/schema/dic/services/services-1.0.xsd">
<{services>
<service
id="rate_idea_use_case"
class="RateldealUseCase">
<argument type="service" id="idea_repository" />
</service>

<{service
id="idea_repository"
class="RedisIdeaRepository">
<argument type="service">

<service class="Predis\Client" />

</argument>

</service>

<{/services>

</container>

In Listing 15, you can also find the XML file used to configure the Service Container. It is really

© 00 N O O b W N =

W oW W oW W NN NDNDNDNDNDNNDN S R R Ly s
B O N PH O O W0 O W N A O W 3 0 0 h Wk~

Appendix: Hexagonal Architecture with PHP

easy to understand but if you need more information, take a look to the Symfony Service Container
Component site in http://symfony.com/doc/current/book/service_container.html

Domain Services and Notification Hexagon Edge

Are we forgetting something? “the author should be notified by email”, yeah! That’s true. Let’s see

in Listing 16 how we have updated the UseCase for doing the job.

class RateldeaUseCase

{

private $ideaRepository;

private $authorNotifier;

public function __construct(

IdeaRepository $ideaRepository,
AuthorNotifier $authorNotifier

$this->ideaRepository = $ideaRepository;
$this->authorNotifier = $authorNotifier;

public function execute(RateldeaRequest $request)

{

$ideald = $request->ideald;
$rating = $request->rating;

try {

$idea = $this->ideaRepository->find($ideald);
} catch(Exception $e) {

throw new RepositoryNotAvailableException();

if (!$idea) {
throw new IdeaDoesNotExistException();

try {
$idea->addRating($rating);
$this->ideaRepository->update($idea);

} catch(Exception $e) {
throw new RepositoryNotAvailableException();

http://symfony.com/doc/current/book/service_container.html

35
36
37
38
39
40
41
42
43
44
45
46
47

Appendix: Hexagonal Architecture with PHP 71

try {
$this->authorNotifier->notify(

$idea->getAuthor()
),
} catch(Exception $e) {
throw new NotificationNotSentException();

return $idea;

As you realize, we have added a new parameter for passing AuthorNotifier Service that will send
the email to the author. This is the port in the “Ports and Adapters” naming. We have also updated
the business rules in the execute method.

Repositories are not the only objects that may access your infrastructure and should be decoupled
using interfaces or abstract classes. Domain Services can too. When there is a behavior not clearly
owned by just one Entity in your domain, you should create a Domain Service. A typical pattern is
to write an abstract Domain Service that has some concrete implementation and some other abstract
methods that the adapter will implement.

As an exercise, define the implementation details for the AuthorNotifier abstract service. Options
are SwiftMailer or just plain mail calls. It is up to you.

Let's Recap

In order to have a clean architecture that helps you create easy to write and test applications, we
can use Hexagonal Architecture. To achieve that, we encapsulate user story business rules inside a
UseCase or Interactor object. We build the UseCase request from our framework request, instantiate
the UseCase and all its dependencies and then execute it. We get the response and act accordingly
based on it. If our framework has a Dependency Injection component you can use it to simplify the
code.

The same UseCase objects can be used from different delivery mechanisms in order to allow users
access the features from different clients (web, API, console, etc.)

For testing, play with mocks that behave like all the interfaces defined so special cases or error flows
can also be covered. Enjoy the good job done.

Appendix: Hexagonal Architecture with PHP 72

Hexagonal Architecture

In almost all the blogs and books you will find drawings about concentric circles representing
different areas of software. As Robert C. Martin explains in his “Clean Architecture” post, the outer
circle is where your infrastructure resides. The inner circle is where your Entities live. The overriding
rule that makes this architecture work is The Dependency Rule. This rule says that source code
dependencies can only point inwards. Nothing in an inner circle can know anything at all about
something in an outer circle.

Key Points

Use this approach if 100% unit test code coverage is important to your application. Also, if you
want to be able to switch your storage strategy, web framework or any other type of third-party
code. The architecture is especially useful for long-lasting applications that need to keep up with
changing requirements.

What's Next?

If you are interested in learning more about Hexagonal Architecture and other near concepts you
should review the related URLs provided at the beginning of the article, take a look at CQRS and
Event Sourcing. Also, don’t forget to subscribe to google groups and RSS about DDD such as http:
//dddinphp.org and follow on Twitter people like @VaughnVernon, and @ericevans0.

http://dddinphp.org
http://dddinphp.org

Bibliography

Beck, Kent. Test-Driven Development: By Example. Addison-Wesley Professional, 2002.
Brandolini, Alberto. Introducing EventStorming. Leanpub, 2016.

Evans, Eric. Domain-Driven Design Reference: Definitions and Pattern Summaries. Dog Ear Publish-
ing, 2014.

Evans, Eric. Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-Wesley
Professional, 2003.

Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-Wesley Professional, 2002.

Hohpe, Gregor, and Bobby Woolf. Enterprise Integration Patterns: Designing, Building, and Deploy-
ing Messaging Solutions. Addison-Wesley Professional, 2012.

Martin, Robert C. Agile Software Development, Principles, Patterns, and Practices. Pearson, 2002.
Martin, Robert C. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall, 2008.
Meszaros, Gerard. xUnit Test Patterns: Refactoring Test Code. Addison-Wesley Professional, 2007.
Newman, Sam. Building Microservices. O’Reilly Media, 2015.

Nilsson, Jimmy. Applying Domain-Driven Design and Patterns: With Examples in C# and .NET.
Addison-Wesley Professional, 2006.

Sadalage, Pramod]., and Martin Fowler. NoSQL Distilled: A Brief Guide to the Emerging World of
Polyglot Persistence. Addison-Wesley Professional, 2012.

Vernon, Vaughn. Domain-Driven Design Distilled. Addison-Wesley Professional, 2016.

Vernon, Vaughn. Implementing Domain-Driven Design. Addison-Wesley Professional, 2013.

http://www.amazon.com/Test-Driven-Development-Kent-Beck/dp/0321146530
https://leanpub.com/introducing_eventstorming
http://www.amazon.com/Domain-Driven-Design-Reference-Definitions-Summaries/dp/1457501198
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin-ebook/dp/B000OZ0NAI
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Addison-Wesley-ebook/dp/B007MQLL4E
http://www.amazon.com/Enterprise-Integration-Patterns-Designing-Addison-Wesley-ebook/dp/B007MQLL4E
http://www.amazon.com/Software-Development-Principles-Patterns-Practices/dp/0135974445
http://www.amazon.com/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882
https://www.amazon.com/xUnit-Test-Patterns-Refactoring-Code/dp/0131495054
http://www.amazon.com/Building-Microservices-Sam-Newman/dp/1491950358
http://www.amazon.com/Applying-Domain-Driven-Design-Patterns-Examples/dp/0321268202
http://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620
http://www.amazon.com/NoSQL-Distilled-Emerging-Polyglot-Persistence/dp/0321826620
http://www.amazon.com/Domain-Driven-Design-Distilled-Vaughn-Vernon/dp/0134434420
http://www.amazon.com/Implementing-Domain-Driven-Design-Vaughn-Vernon-ebook/dp/B00BCLEBN8

	Table of Contents
	Foreword by Matthias Noback
	Preface
	Who Should Read This Book
	DDD and PHP Community
	Summary of Chapters
	Code and Examples
	Acknowledgements

	About the Authors
	Carlos Buenosvinos
	Christian Soronellas
	Keyvan Akbary

	Getting Started with Domain-Driven Design
	Why Domain-Driven Design Matters
	The Three Pillars of Domain-Driven Design
	Considering Domain-Driven Design
	The Tricky Parts
	Strategical Overview
	Related Movements: Microservices and Self-Contained Systems
	Wrap-Up

	Value Objects
	Definition
	Value Object vs. Entity
	Currency and Money Example
	Characteristics
	Basic Types
	Testing Value Objects
	Persisting Value Objects
	Security
	Wrap-Up

	Appendix: Hexagonal Architecture with PHP
	Introduction
	First Approach
	Repositories and the Persistence Edge
	Decoupling Business and Persistence
	Migrating our Persistence to Redis
	Decouple Business and Web Framework
	Rating an idea using the API
	Console app rating
	Testing Rating an Idea UseCase
	Testing Infrastructure
	Arggg, So Many Dependencies!
	Domain Services and Notification Hexagon Edge
	Let's Recap
	Hexagonal Architecture
	Key Points
	What's Next?

	Bibliography

