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Web,	HTML5,	and	Threats

•Web	and	HTML5
• The	most	popular	distributed	application	platform
• Rich	functionality	introduced	by	HTML5

•Security	and	privacy	threats
• Popularity	attracts	a	lot	of	adversaries.
• Rich	functionality	opens	security	and	privacy	holes.

•Discovering	unrevealed	threats	of	the	Web	and	
HTML5	is	important.
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HTML5	Application	Cache	(AppCache)

•Enabling	technology	to	offline	web	application
• Specify	resources	to	be	cached	in	a	web	browser
• Allow	fast	and	offline	access	to	the	cached	resources

•Potential	threat	of	AppCache
• Arbitrary	cross-origin	resources	are	cacheable.
• Neither	server- nor	client-side	control

• Error	handing	can	breach	user	privacy.
• Recognize	whether	a	user	can	cache	specific	resources
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Motivation	and	Goal

•Motivation
• In-depth	security	analysis	of	new	web	functionalities	is	
necessary.
• Security	analysis	of	AppCache is	insufficient	despite	its	
wide	deployment.

•Research	goal
• Analyze	and	solve	security	problems	of	AppCache
• Discover	security	problems	of	AppCache
• Suggest	an	effective	countermeasure	against	the	security	
problems
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Contents

• Introduction
•AppCache Details
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AppCache Declaration
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<html 
manifest=“example.appcache”>
…
</html>

CACHE MANIFEST

CACHE:
/logo.png
https://example.cdn.com/
external.jpg
NETWORK:
*
FALLBACK:
/ /offline.html

HTML	document	declaring	AppCache

AppCache manifest



AppCache Procedure
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Visit	a	web	page	declaring	AppCache

Fetch	and	decode	the	manifest

Re-fetch	the	manifest	to	check	changes

Download	the	resources	listed	in	the	manifest

site1.com site2.comweb	browser



When	Does	AppCache Fail?
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Visit	a	web	page	declaring	AppCache

Fetch	and	decode	the	manifest

Re-fetch	the	manifest	to	check	changes

Download	the	resources	listed	in	the	manifest

site1.com site2.com

invalid	or	erroneous	manifest

Non-cacheable	resources

Changed	manifest

Any	failure	rolls	back	AppCache to	maintain	
content	consistency.

web	browser



Non-cacheable	URLs

• Invalid	URL
• No	content	to	be	cached

•Dynamic	URL
• Caching	dynamic	content	is	less	meaningful.
• Cache-Control:	no-store	or	no	Content-Length

•URL	with	redirections
• Final	URL	can	be	dynamically	changed.
• Violation	of	the	same-origin	policy	is	possible.
• Refer	a	cached	resource	with	the	URL	specified	in	a	manifest
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URL	Status	Identification

•Basics
• Specify	a	target	URL	in	an	AppCache manifest
• Check	whether	AppCache succeeds	or	fails

•Advantages
• Deterministic	identification:	Don’t	measure	timing
• Identification	of	URL	redirections
• Scriptless attack
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Attack	Procedure:	Cacheable	URL
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Visit	a	web	page	declaring	AppCache

Fetch	and	decode	the	manifest

Re-fetch	the	manifest	to	check	changes

Download	the	target	resource

attack.com target.comweb	browser

Record	browser	
info.

Identify	
success

Succeed

Refresh
(optional)

Re-fetch	the	manifest	to	check	changes

Page	refreshing	lets	AppCache check	the	
manifest’s	changes.



Attack	Procedure:	Non-cacheable	URL
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Visit	a	web	page	declaring	AppCache

Fetch	and	decode	the	manifest

Re-fetch	the	manifest	to	check	changes

Download	the	target	resource

Record	browser	
info.

Identify	
failure

Fail

Refresh	
(optional)

Visit	a	web	page	declaring	AppCache

…
A	browser	don’t	re-fetch	the	manifest	when	the	

target	URL	is	non-cacheable.

Page	refreshing	initiates	an	AppCache procedure	
from	the	beginning.

attack.com target.comweb	browser



Concurrent	Attack
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Concurrently	inspecting	multiple	target	URLs	with	
multiple	iframe	tags,	web	pages,	&	manifests

<html 
manifest=“manifest.php?
target=http://target1.com”>
</html>

<html>
<iframe 
src=“attack_each.php?
target=http://target1.com”
</iframe>
<iframe 
src=“attack_each.php?
target=http://target2.com”
</iframe>
…
</html>

CACHE MANIFEST
CACHE:
http://target1.com
NETWORK:
*

CACHE MANIFEST
CACHE:
http://target2.com
NETWORK:
*

<html 
manifest=“manifest.php?
target=http://target2.com”>
</html>

attach_all.php attach_each.php manifest.php

…

…



Application:	Determining	Login	Status
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amazon.com/gp/yourstore/home	→	amazon.com/ap/signin?...
tumblr.com/dashboard	→	tumblr.com/login?redirect_to=/dashboard
youtube.com/feed/subscriptions	→	accounts.google.com/ServiceLogin?...	

URLs	redirecting	non-logged-in	browsers	to	login	pages

bitbucket.org/account/user/<user-id>
github.com/<user-id>/<repository-name>/settings
<blog-id>.wordpress.com/wp-admin

Private	URLs	returning	errors	to	unauthorized	browsers

Determine	login	status	by	inspecting	URLs	with	
conditional	redirections	or	errors
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Problematic	Countermeasures

•Ask	user	permission	for	AppCache
• Vulnerable	to	careless	users

•Always/never	check	changes	in	manifests
• Vulnerable	to	page	refreshing	attacks
• Content	inconsistency	problem

•Eliminate	web	pages	having	conditional	behaviors
• Detection	and	modification	of	all	vulnerable	web	pages	
are	challenging.
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Countermeasure:	Cache-Origin

•Attach	a	Cache-Origin	header	when	requesting	
resources	during	AppCache
• Contain	the	manifest’s	origin
• Notify	a	web	application	of	who	initiate	an	AppCache
procedure
• Resemble	the	Origin	header	of	CORS

•Abort	suspicious	AppCache procedures	by	returning	
no-store	or	error	code
• Cache	sensitive	resources	
• Be	initiated	by	doubtful	servers
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Service	Worker

•Provide	scriptable	caches	as	an	alternative	to	
AppCache
• Intercept	and	respond	to	network	requests	from	certain	
web	pages

•Have	the	same	policy	to	handle	URL	redirections	
and	errors	with	AppCache
• Also	vulnerable	to	our	attacks
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Conclusion

•We	introduced	a	new	web	privacy	attack	using	
HTML5	AppCache.
• Identify	the	status	of	cross-origin	resources
• Do	not	rely	on	client-side	scripts
• Can	attack	major	web	browsers

•We	suggested	a	Cache-Origin	request-header	field	
to	mitigate	our	attacks.
•Minor	variation	of	the	Origin	header
• Easy	deployment
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Backup	Slides
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Script-based	Identification
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Execution	Time	of	Concurrent	Attack
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0.11	s	for	
each	URL

0.27	s

0.95	s



Scriptless URL	Timing
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Visit	a	web	page	declaring	AppCache

Fetch	and	decode	the	manifest

Re-fetch	the	manifest	to	check	changes

Download	the	target	resource

attack.com target.comweb	browser

Record	browser	
info.

Measure	elapsed	
time


