
Identifying	Cross-origin	Resource	Status	
Using	Application	Cache

2015	Network	and	Distributed	System	Security	Symposium

Sangho	Lee,	Hyungsub Kim,	and	Jong	Kim
POSTECH,	Korea

February	9,	2015



Web,	HTML5,	and	Threats

•Web	and	HTML5
• The	most	popular	distributed	application	platform
• Rich	functionality	introduced	by	HTML5

•Security	and	privacy	threats
• Popularity	attracts	a	lot	of	adversaries.
• Rich	functionality	opens	security	and	privacy	holes.

•Discovering	unrevealed	threats	of	the	Web	and	
HTML5	is	important.

NDSS	2015 2



HTML5	Application	Cache	(AppCache)

•Enabling	technology	to	offline	web	application
• Specify	resources	to	be	cached	in	a	web	browser
• Allow	fast	and	offline	access	to	the	cached	resources

•Potential	threat	of	AppCache
• Arbitrary	cross-origin	resources	are	cacheable.
• Neither	server- nor	client-side	control

• Error	handing	can	breach	user	privacy.
• Recognize	whether	a	user	can	cache	specific	resources

NDSS	2015 3



Motivation	and	Goal

•Motivation
• In-depth	security	analysis	of	new	web	functionalities	is	
necessary.
• Security	analysis	of	AppCache is	insufficient	despite	its	
wide	deployment.

•Research	goal
• Analyze	and	solve	security	problems	of	AppCache
• Discover	security	problems	of	AppCache
• Suggest	an	effective	countermeasure	against	the	security	
problems

NDSS	2015 4



Contents

• Introduction
•AppCache Details
• Declaration
• Procedure	and	Failure
• Non-cacheable	URLs

•URL	Status	Identification	Attack
•Discussion
•Conclusion

NDSS	2015 5



AppCache Declaration

NDSS	2015 6

<html 
manifest=“example.appcache”>
…
</html>

CACHE MANIFEST

CACHE:
/logo.png
https://example.cdn.com/
external.jpg
NETWORK:
*
FALLBACK:
/ /offline.html

HTML	document	declaring	AppCache

AppCache manifest



AppCache Procedure

NDSS	2015 7

Visit	a	web	page	declaring	AppCache

Fetch	and	decode	the	manifest

Re-fetch	the	manifest	to	check	changes

Download	the	resources	listed	in	the	manifest

site1.com site2.comweb	browser



When	Does	AppCache Fail?

NDSS	2015 8

Visit	a	web	page	declaring	AppCache

Fetch	and	decode	the	manifest

Re-fetch	the	manifest	to	check	changes

Download	the	resources	listed	in	the	manifest

site1.com site2.com

invalid	or	erroneous	manifest

Non-cacheable	resources

Changed	manifest

Any	failure	rolls	back	AppCache to	maintain	
content	consistency.

web	browser



Non-cacheable	URLs

• Invalid	URL
• No	content	to	be	cached

•Dynamic	URL
• Caching	dynamic	content	is	less	meaningful.
• Cache-Control:	no-store	or	no	Content-Length

•URL	with	redirections
• Final	URL	can	be	dynamically	changed.
• Violation	of	the	same-origin	policy	is	possible.
• Refer	a	cached	resource	with	the	URL	specified	in	a	manifest

NDSS	2015 9



Contents

• Introduction
•AppCache Details
•URL	Status	Identification
• Basics	and	Advantages
• Attack	Procedure
• Concurrent	Attack
• Application:	Determining	Login	Status

•Discussion
•Conclusion

NDSS	2015 10



URL	Status	Identification

•Basics
• Specify	a	target	URL	in	an	AppCache manifest
• Check	whether	AppCache succeeds	or	fails

•Advantages
• Deterministic	identification:	Don’t	measure	timing
• Identification	of	URL	redirections
• Scriptless attack

NDSS	2015 11



Attack	Procedure:	Cacheable	URL

NDSS	2015 12

Visit	a	web	page	declaring	AppCache

Fetch	and	decode	the	manifest

Re-fetch	the	manifest	to	check	changes

Download	the	target	resource

attack.com target.comweb	browser

Record	browser	
info.

Identify	
success

Succeed

Refresh
(optional)

Re-fetch	the	manifest	to	check	changes

Page	refreshing	lets	AppCache check	the	
manifest’s	changes.



Attack	Procedure:	Non-cacheable	URL

NDSS	2015 13

Visit	a	web	page	declaring	AppCache

Fetch	and	decode	the	manifest

Re-fetch	the	manifest	to	check	changes

Download	the	target	resource

Record	browser	
info.

Identify	
failure

Fail

Refresh	
(optional)

Visit	a	web	page	declaring	AppCache

…
A	browser	don’t	re-fetch	the	manifest	when	the	

target	URL	is	non-cacheable.

Page	refreshing	initiates	an	AppCache procedure	
from	the	beginning.

attack.com target.comweb	browser



Concurrent	Attack

NDSS	2015 14

Concurrently	inspecting	multiple	target	URLs	with	
multiple	iframe	tags,	web	pages,	&	manifests

<html 
manifest=“manifest.php?
target=http://target1.com”>
</html>

<html>
<iframe 
src=“attack_each.php?
target=http://target1.com”
</iframe>
<iframe 
src=“attack_each.php?
target=http://target2.com”
</iframe>
…
</html>

CACHE MANIFEST
CACHE:
http://target1.com
NETWORK:
*

CACHE MANIFEST
CACHE:
http://target2.com
NETWORK:
*

<html 
manifest=“manifest.php?
target=http://target2.com”>
</html>

attach_all.php attach_each.php manifest.php

…

…



Application:	Determining	Login	Status

NDSS	2015 15

amazon.com/gp/yourstore/home	→	amazon.com/ap/signin?...
tumblr.com/dashboard	→	tumblr.com/login?redirect_to=/dashboard
youtube.com/feed/subscriptions	→	accounts.google.com/ServiceLogin?...	

URLs	redirecting	non-logged-in	browsers	to	login	pages

bitbucket.org/account/user/<user-id>
github.com/<user-id>/<repository-name>/settings
<blog-id>.wordpress.com/wp-admin

Private	URLs	returning	errors	to	unauthorized	browsers

Determine	login	status	by	inspecting	URLs	with	
conditional	redirections	or	errors



Contents

• Introduction
•AppCache Details
•URL	Status	Identification	Attack
•Discussion
• Problematic	Countermeasures
• Countermeasure:	Cache-Origin
• Service	Worker

•Conclusion

NDSS	2015 16



Problematic	Countermeasures

•Ask	user	permission	for	AppCache
• Vulnerable	to	careless	users

•Always/never	check	changes	in	manifests
• Vulnerable	to	page	refreshing	attacks
• Content	inconsistency	problem

•Eliminate	web	pages	having	conditional	behaviors
• Detection	and	modification	of	all	vulnerable	web	pages	
are	challenging.

NDSS	2015 17



Countermeasure:	Cache-Origin

•Attach	a	Cache-Origin	header	when	requesting	
resources	during	AppCache
• Contain	the	manifest’s	origin
• Notify	a	web	application	of	who	initiate	an	AppCache
procedure
• Resemble	the	Origin	header	of	CORS

•Abort	suspicious	AppCache procedures	by	returning	
no-store	or	error	code
• Cache	sensitive	resources	
• Be	initiated	by	doubtful	servers

NDSS	2015 18



Service	Worker

•Provide	scriptable	caches	as	an	alternative	to	
AppCache
• Intercept	and	respond	to	network	requests	from	certain	
web	pages

•Have	the	same	policy	to	handle	URL	redirections	
and	errors	with	AppCache
• Also	vulnerable	to	our	attacks

NDSS	2015 19



Conclusion

•We	introduced	a	new	web	privacy	attack	using	
HTML5	AppCache.
• Identify	the	status	of	cross-origin	resources
• Do	not	rely	on	client-side	scripts
• Can	attack	major	web	browsers

•We	suggested	a	Cache-Origin	request-header	field	
to	mitigate	our	attacks.
•Minor	variation	of	the	Origin	header
• Easy	deployment

NDSS	2015 20



Backup	Slides

NDSS	2015 21



Script-based	Identification

NDSS	2015 22



Execution	Time	of	Concurrent	Attack

NDSS	2015 23

0.11	s	for	
each	URL

0.27	s

0.95	s



Scriptless URL	Timing

NDSS	2015 24

Visit	a	web	page	declaring	AppCache

Fetch	and	decode	the	manifest

Re-fetch	the	manifest	to	check	changes

Download	the	target	resource

attack.com target.comweb	browser

Record	browser	
info.

Measure	elapsed	
time


