

Identifying Cross-origin Resource Status Using Application Cache

2015 Network and Distributed System Security Symposium

Sangho Lee, Hyungsub Kim, and Jong Kim
POSTECH, Korea

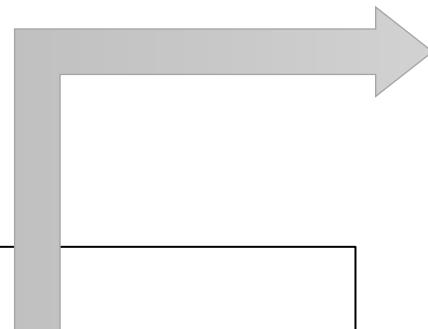
February 9, 2015

Web, HTML5, and Threats

- Web and HTML5
 - The most popular distributed application platform
 - Rich functionality introduced by HTML5
- Security and privacy threats
 - Popularity attracts a lot of adversaries.
 - Rich functionality opens security and privacy holes.
- Discovering unrevealed threats of the Web and HTML5 is important.

HTML5 Application Cache (AppCache)

- Enabling technology to offline web application
 - Specify resources to be cached in a web browser
 - Allow fast and offline access to the cached resources
- Potential threat of AppCache
 - Arbitrary cross-origin resources are cacheable.
 - Neither server- nor client-side control
 - Error handing can breach user privacy.
 - Recognize whether a user can cache specific resources


Motivation and Goal

- Motivation
 - In-depth security analysis of new web functionalities is necessary.
 - Security analysis of AppCache is insufficient despite its wide deployment.
- Research goal
 - Analyze and solve security problems of AppCache
 - Discover security problems of AppCache
 - Suggest an effective countermeasure against the security problems

Contents

- Introduction
- **AppCache Details**
 - Declaration
 - Procedure and Failure
 - Non-cacheable URLs
- URL Status Identification Attack
- Discussion
- Conclusion

AppCache Declaration


```
<html  
manifest="example.appcache">  
...  
</html>
```

HTML document declaring AppCache

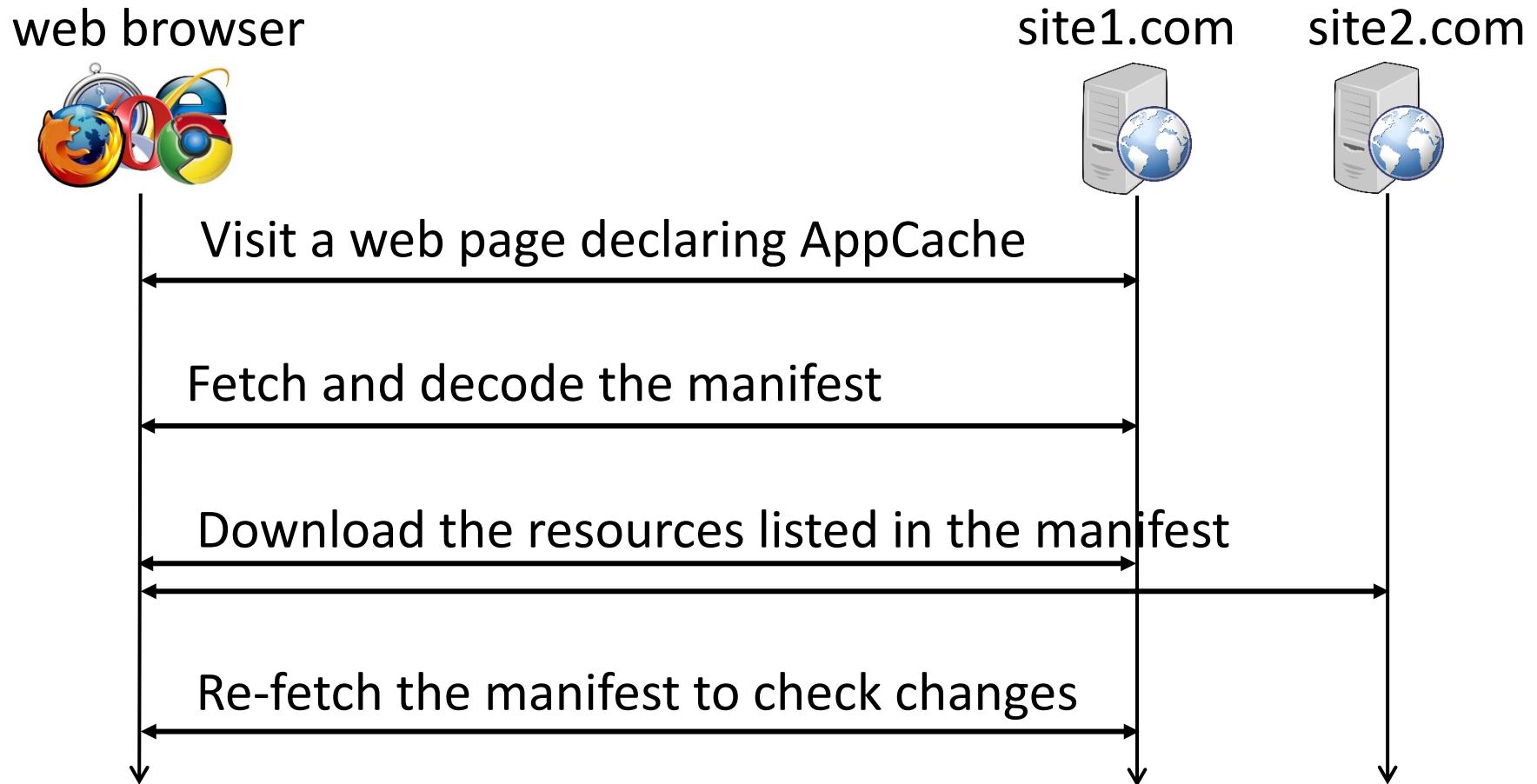
CACHE MANIFEST

CACHE:

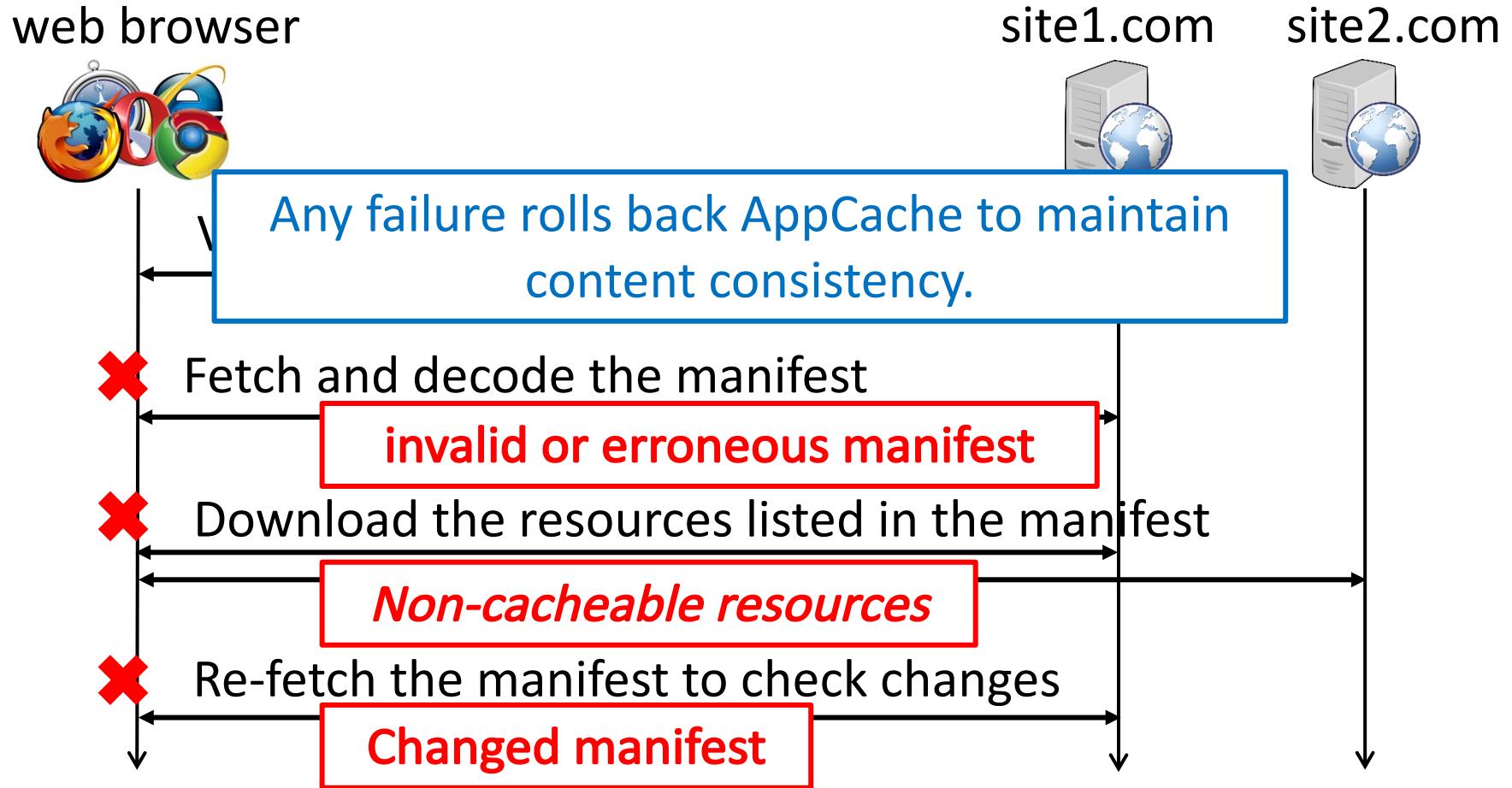
/logo.png

https://example.cdn.com/
external.jpg

NETWORK:


*

FALLBACK:


//offline.html

AppCache manifest

AppCache Procedure

When Does AppCache Fail?

Non-cacheable URLs

- Invalid URL
 - No content to be cached
- Dynamic URL
 - Caching dynamic content is less meaningful.
 - Cache-Control: no-store or no Content-Length
- URL with redirections
 - Final URL can be dynamically changed.
 - Violation of the same-origin policy is possible.
 - Refer a cached resource with the URL specified in a manifest

Contents

- Introduction
- AppCache Details
- **URL Status Identification**
 - Basics and Advantages
 - Attack Procedure
 - Concurrent Attack
 - Application: Determining Login Status
- Discussion
- Conclusion

URL Status Identification

- Basics
 - Specify a target URL in an AppCache manifest
 - Check whether AppCache succeeds or fails
- Advantages
 - Deterministic identification: Don't measure timing
 - Identification of URL redirections
 - Scriptless attack

Attack Procedure: Cacheable URL

web browser

attack.com target.com

Visit a web page declaring AppCache

Record browser info.

Fetch and decode the manifest

Download the target resource

Re-fetch the manifest to check changes

Identify success

Re-fetch the manifest to check changes

Page refreshing lets AppCache check the manifest's changes.

Succeed

Refresh
(optional)

Attack Procedure: Non-cacheable URL

web browser

attack.com target.com

Visit a web page declaring AppCache

Record browser info.

A browser don't re-fetch the manifest when the target URL is non-cacheable.

Fail

Re-fetch the manifest to check changes

Identify failure

Visit a web page declaring AppCache

Refresh
(optional)

Page refreshing initiates an AppCache procedure from the beginning.

Concurrent Attack

Concurrently inspecting multiple target URLs with multiple iframe tags, web pages, & manifests

```
<html>
<iframe
src="attack_each.php?
target=http://target1.com"
</iframe>
<iframe
src="attack_each.php?
target=http://target2.com"
</iframe>
...
</html>
```

attach_all.php

```
<html
manifest="manifest.php?
target=http://target1.com">
</html>
```

```
<html
manifest="manifest.php?
target=http://target2.com">
</html>
```

attach_each.php

CACHE MANIFEST
CACHE:
http://target1.com
NETWORK:
*

CACHE MANIFEST
CACHE:
http://target2.com
NETWORK:
*

:

manifest.php

Application: Determining Login Status

Determine login status by inspecting URLs with
conditional redirections or errors

amazon.com/gp/yourstore/home → amazon.com/ap/signin?...

tumblr.com/dashboard → tumblr.com/login?redirect_to=/dashboard

youtube.com/feed/subscriptions → accounts.google.com/ServiceLogin?...

URLs redirecting non-logged-in browsers to login pages

bitbucket.org/account/user/<user-id>

github.com/<user-id>/<repository-name>/settings

<blog-id>.wordpress.com/wp-admin

Private URLs returning errors to unauthorized browsers

Contents

- Introduction
- AppCache Details
- URL Status Identification Attack
- Discussion
 - Problematic Countermeasures
 - Countermeasure: Cache-Origin
 - Service Worker
- Conclusion

Problematic Countermeasures

- Ask user permission for AppCache
 - Vulnerable to careless users
- Always/never check changes in manifests
 - Vulnerable to page refreshing attacks
 - Content inconsistency problem
- Eliminate web pages having conditional behaviors
 - Detection and modification of all vulnerable web pages are challenging.

Countermeasure: Cache-Origin

- Attach a Cache-Origin header when requesting resources during AppCache
 - Contain the manifest's origin
 - Notify a web application of who initiate an AppCache procedure
 - Resemble the Origin header of CORS
- Abort suspicious AppCache procedures by returning no-store or error code
 - Cache sensitive resources
 - Be initiated by doubtful servers

Service Worker

- Provide scriptable caches as an alternative to AppCache
 - Intercept and respond to network requests from certain web pages
- Have the same policy to handle URL redirections and errors with AppCache
 - Also vulnerable to our attacks

Conclusion

- We introduced a new web privacy attack using HTML5 AppCache.
 - Identify the status of cross-origin resources
 - Do not rely on client-side scripts
 - Can attack major web browsers
- We suggested a Cache-Origin request-header field to mitigate our attacks.
 - Minor variation of the Origin header
 - Easy deployment

Backup Slides

Script-based Identification

```
1 var appCache = window.applicationCache;
2
3 function handleError(e) {
4     // fail to download a given URL
5     var img = new Image();
6     img.src = "/results.png?failure";
7 }
8
9 function handleCached(e) {
10    // succeed to download a given URL
11    var img = new Image();
12    img.src = "/results.png?success";
13 }
14
15 appCache.addEventListener('error', handleError
, false);
16 appCache.addEventListener('cached',
handleCached, false);
17 appCache.addEventListener('updateready',
handleCached, false);
```

Execution Time of Concurrent Attack

Scriptless URL Timing

web browser

Visit a web page declaring AppCache

Fetch and decode the manifest

Download the target resource

Re-fetch the manifest to check changes

attack.com target.com

Record browser info.

Measure elapsed time