ldentifying Cross-origin Resource Status
Using Application Cache

2015 Network and Distributed System Security Symposium

Sangho Lee, Hyungsub Kim, and Jong Kim
POSTECH, Korea

February 9, 2015

POSTERPLCH

Web, HTMLS5, and Threats

e Web and HTML5

* The most popular distributed application platform
* Rich functionality introduced by HTML5

* Security and privacy threats
* Popularity attracts a lot of adversaries.
* Rich functionality opens security and privacy holes.

* Discovering unrevealed threats of the Web and
HTMLS is important.

POSTERPLCH

HTMLS Application Cache (AppCache)

* Enabling technology to offline web application
* Specify resources to be cached in a web browser
 Allow fast and offline access to the cached resources

* Potential threat of AppCache
* Arbitrary cross-origin resources are cacheable.
* Neither server- nor client-side control
* Error handing can breach user privacy.
* Recognize whether a user can cache specific resources

POSTERPLCH

Motivation and Goal

* Motivation

* In-depth security analysis of new web functionalities is
necessary.

* Security analysis of AppCache is insufficient despite its
wide deployment.

* Research goal

* Analyze and solve security problems of AppCache
* Discover security problems of AppCache

» Suggest an effective countermeasure against the security
problems

POSTERPLCH

Contents

e AppCache Details
* Declaration
* Procedure and Failure
* Non-cacheable URLs

POSTERPLCH

AppCache Declaration

<html
manifest="example.appcache”>

</html>

HTML document declaring AppCache

POSTREPCH NDSS 2015

CACHE MANIFEST

CACHE:

/logo.png
https://example.cdn.com/
external.jpg

NETWORK:

*

FALLBACK:

[[offline.html

AppCache manifest

AppCache Procedure

web browser sitel.com site2.com

- Visit a web page declaring AppCache

Fetch and decode the manifest

Download the resources listed in the manjfest

~ Re-fetch the manifest to check changes

POSTREPCH NDSS 2015 7

When Does AppCache Fail?

web browser

~

sitel.com

site2.com

content consistency.

\ Any failure rolls back AppCache to maintain

¥ Fetch and decode the manifest

<

invalid or erroneous manifest

N

¥ Down

load the resources listed in the man

ifest

Non-cacheable resources

x Re-fetch the manifest to check changes

\l/:

Changed manifest

POSTELCH

NDSS 2015

Non-cacheable URLs

 Invalid URL
* No content to be cached

* Dynamic URL

* Caching dynamic content is less meaningful.
e Cache-Control: no-store or no Content-Length

e URL with redirections

* Final URL can be dynamically changed.

* Violation of the same-origin policy is possible.
» Refer a cached resource with the URL specified in a manifest

POSTERPLCH

Contents

e URL Status Identification
 Basics and Advantages
* Attack Procedure
* Concurrent Attack
 Application: Determining Login Status

POSTERPLCH

URL Status Identification

* Basics
 Specify a target URL in an AppCache manifest
* Check whether AppCache succeeds or fails

* Advantages
* Deterministic identification: Don’t measure timing
* [dentification of URL redirections
* Scriptless attack

POSTERPLCH

Attack Procedure: Cacheable URL

web browser attack.com target.com

~ Visit a web page declaring AppCache

» Record brqwser

Fetch and decode the manifest info.
Download the target resource
Succeed |« q
Re-fetch the manifest to check changes Identify
____________________________________ success _|_ _ ___
Refresh | Re-fetch the manifest to check changes
(optional) |]

v | Page refreshing lets AppCache check the|. v
manifest’s changes.

POSTREPCH NDSS 2015 12

Attack Procedure: Non-cacheable URL

web browser attack.com target.com

~
Lande
g
g) 2L Lt

Record brgwser

A browser don’t re-fetch the manifest when the [info.
target URL is non-cacheable.
Fail — ¢ g
Re-fetch the manifest to check changes |dentify
” failure

Refresh |Visit a web page declaring AppCache
(optiond™—

Page refreshing initiates an AppCache procedure \’
from the beginning.

POSTREPCH NDSS 2015 13

Concurrent Attack

Concurrently inspecting multiple target URLs with
multiple iframe tags, web pages, & manifests

<html> <html CACHE MANIFEST

<iframe manifest="manifest.php? CACHE:

src="attack_each.php? 7,target=http://target1.com">-———>httP1//tar96t1-C0m

target=http://targeti.com”/ | </html> NETWORK:

</iframe> *

<iframe <html CACHE MANIFEST

src="attack_each.php? manifest="manifest.php? CACHE:

target=http://target2.com”<>target=http://target2.com”>_ http://target2.com

</iframe> </html> NETWORK:

. *

</html> :
attach_all.php attach_each.php manifest.php

POSTERPLCH

Application: Determining Login Status

Determine login status by inspecting URLs with
conditional redirections or errors

' amazon.com/gp/yourstore/home -> amazon.com/ap/signin?...
tumblr.com/dashboard - tumblr.com/login?redirect_to=/dashboard
. youtube.com/feed/subscriptions > accounts.google.com/ServicelLogin?...

bitbucket.org/account/user/<user-id>
' github.com/<user-id>/<repository-name>/settings
. <blog-id>.wordpress.com/wp-admin

Private URLs returning errors to unauthorized browsers

POSTERPLCH

Contents

e Discussion

* Problematic Countermeasures
» Countermeasure: Cache-Origin
* Service Worker

e Conclusion

POSTERPLCH

Problematic Countermeasures

* Ask user permission for AppCache
* Vulnerable to careless users

* Always/never check changes in manifests
* Vulnerable to page refreshing attacks
* Content inconsistency problem

* Eliminate web pages having conditional behaviors

* Detection and modification of all vulnerable web pages
are challenging.

POSTERPLCH

Countermeasure: Cache-Origin

* Attach a Cache-Origin header when requesting
resources during AppCache
* Contain the manifest’s origin

* Notify a web application of who initiate an AppCache
procedure

* Resemble the Origin header of CORS

* Abort suspicious AppCache procedures by returning
no-store or error code
* Cache sensitive resources
* Be initiated by doubtful servers

POSTERPLCH

Service Worker

* Provide scriptable caches as an alternative to
AppCache

* Intercept and respond to network requests from certain
web pages

* Have the same policy to handle URL redirections
and errors with AppCache
* Also vulnerable to our attacks

POSTERPLCH

Conclusion

* We introduced a new web privacy attack using
HTMLS5 AppCache.
* |[dentify the status of cross-origin resources
* Do not rely on client-side scripts
e Can attack major web browsers

* We suggested a Cache-Origin request-header field
to mitigate our attacks.

* Minor variation of the Origin header
* Easy deployment

POSTERPLCH

POSTERPLCH

Backup Slides

NDSS 2015

21

Script-based Identification

var appCache = window.applicationCache;

I

2

3 function handleError (e) {

4 // fail to download a given URL
var img = new Image();

6 img.src = "/results.png?failure";

}

N

[o'e)

9 function handleCached(e) {
10 // succeed to download a given URL
11 var img = new Image();

12 img.src = "/results.png?success";

13 }

14

15 appCache.addEventListener ("error’, handleError
, false);

l6 appCache.addEventListener (' cached’,
handleCached, false);

17 appCache.addEventListener ("updateready’,
handleCached, false);

POSTREPCH NDSS 2015

Execution Time of Concurrent Attack

250 -
— --e--Firefox
%200 1 = IE + 0.95s
£ 150 - ——Chrome } """"""""
p —<Opera T
=100 - A
O 7 0.27 s
% 50 - _ =
I e o —x 0.11 s for
0 - o | | __each URL
0 50 100 150 200

of target URLs

POSTREPCH NDSS 2015 23

Scriptless URL Timing

web browser attack.com target.com

e :,
ol - S
el W2 y

Visit a web page declaring AppCache

« * Record brgwser
Fetch and decode the manifest info.

»
»|

<

Download the target resource

o

Re-fetch the manifest to check changes | bieasure ¢lapsed
time

POSTREPCH NDSS 2015 24

