Stealing Webpages Rendered on Your Browser by Exploiting GPU Vulnerabilities

Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim
Department of Computer Science and Engineering
POSTECH, Korea
{sangho2, elixir, jangwoo, jkim}@postech.ac.kr

Abstract—Graphics processing units (GPUs) are important
components of modern computing devices for not only graphics
rendering, but also efficient parallel computations. However,
their security problems are ignored despite their importance
and popularity. In this paper, we first perform an in-depth
security analysis on GPUs to detect security vulnerabilities. We
observe that contemporary, widely-used GPUs, both NVIDIA’s
and AMD’s, do not initialize newly allocated GPU memory
pages which may contain sensitive user data. By exploiting
such vulnerabilities, we propose attack methods for revealing
a victim program’s data kept in GPU memory both during its
execution and right after its termination. We further show the
high applicability of the proposed attacks by applying them to
the Chromium and Firefox web browsers which use GPUs for
accelerating webpage rendering. We detect that both browsers
leave rendered webpage textures in GPU memory, so that we
can infer which webpages a victim user has visited by analyzing
the remaining textures. The accuracy of our advanced inference
attack that uses both pixel sequence matching and RGB
histogram matching is up to 95.4%.

I. INTRODUCTION

This work considers how attackers can disclose sensi-
tive data kept in graphics processing unit (GPU) memory.
We aim to obtain rendered webpage textures to uncover
webpages a victim user has visited. We successfully reveal
such data from modern GPUs (e.g., NVIDIA and AMD
GPUs) when we enable GPU-accelerated webpage rendering
of recent web browsers (e.g., Chromium and Firefox). For
example, Figure 1 shows the Google logo image of http://
google.com and a partial dump of rendered webpage textures
extracted from an NVIDIA GPU used by the Chromium
web browser. Although the GPU has rearranged the textures
according to its undocumented hardware characteristics, we
can infer that the dump originates from the webpage because
their color patterns are similar. Especially, our combined
matching attack can successfully infer up to 95.4% of ran-
domly visited 100 front pages of Alexa Top 1000 websites
when a victim uses the Chromium web browser with an
NVIDIA GPU (details are in Section V.)

GPUs are important and powerful components of con-
temporary computing devices. Personal computing devices,
including desktops, laptops, and smartphones, use GPUs
for supporting various graphics applications, e.g., graph-
ical user interface (GUI), multimedia players, and video
games. Large-scale computing devices, including worksta-
tions, servers, and clusters, also use GPUs for energy-

Google

(a) Google logo image.

=t .. __-._""""'. -f-—.--—=-
s == m— m— — oy —
T e e — = ; i
— T o ol —rrrr i

(b) Partial dump of Google webpage textures.

Figure 1. Google logo and partial dump of Google webpage textures
extracted from the Chromium web browser with an NVIDIA GPU.

efficient, massive parallel computations. GPUs utilize a large
number of processing cores and a large amount of indepen-
dent memory for efficiently processing graphics operations
and computational workloads. For example, an NVIDIA
Kepler GPU can have up to 2880 cores and 6 GB of memory,
and its floating-point operation performance is nine times
better than that of the recent CPUs [1], [2].

Programmers can use two types of application program-
ming interfaces (APIs) to access GPUs: graphics APIs
(e.g., DirectX [3] and OpenGL [4]) and computing APIs
(e.g., CUDA [2] and OpenCL [5]). First, the graphics APIs
provide functions for graphics operations, such as projection,
shading, and texture mapping. Second, the computing APIs
provide functions for non-graphics applications, such as
financial, medical, or weather data analyses [6], database
query optimizations [7], [8], packet routing [9], intrusion de-
tection systems [10], [11], and cryptographic engines [12]—
[17].

The most significant differences between the graphics
APIs and the computing APIs are sharing and memory man-
ageability. First, the computing APIs allow different users
to share the same GPU, whereas the graphics APIs only
support a single user. A number of users can share the same
GPU using the computing APIs in a time-sharing fashion,
as (1) the computing APIs demand no dedicated screens
and (2) current GPUs only support sequential execution of

different GPU processes [18]. Although some techniques
(e.g., VirtualGL [19]) allow remote users to share the same
GPU when using the graphics APIs, they warn users of
potential security problems (e.g., logging keystrokes and
reading back images through an X server).

Second, while GPU drivers manage GPU memory with
the graphics APIs, programmers can manually manage GPU
memory with the computing APIs, including allocations,
CPU-GPU data transfers, and deallocations. GPUs have
several types of memory (e.g., global, local, and private
memories), and programmers can control them using the
computing APIs except some graphics-related memories
(e.g., framebuffer and z-buffer). In contrast, the graphics
APIs provide no functions to manage such memories while
providing a set of optimized functions to perform memory-
efficient graphics operations.

Unfortunately, the sharing and high memory manageabil-
ity of the computing APIs may incur critical security threats
because GPUs do not initialize newly-allocated memory
buffers [20]. Although numerous studies consider such an
uninitialized memory problem in operating systems [21]-
[24], no study deals with the uninitialized GPU memory
problem’. If similar security threats exist with the computing
APIs, the threats have much larger impact as multiple users
share the same GPU.

In this paper, we first perform an in-depth security analysis
on GPUs regarding their architectures and computing APIs
to reveal any potential security threats. We identify that
the computing APIs have a serious uninitialized memory
problem because they (1) do not clear newly allocated
memory pages, (2) have memory types that programmers
cannot delete, and (3) have in-core memory without security
mechanisms.

Second, we develop effective security attacks on GPUs
applicable to the most widely used GPUs, NVIDIA and
AMD GPUs, by exploiting the revealed security threats. Our
attacks can disclose sensitive data kept in GPU memory of
a victim program both during its execution and right after
its termination.

Third, we demonstrate the high applicability of our attacks
by inferring browsing history of the two most widely used
web browsers, the Chromium and Firefox web browsers.
Both browsers support GPU-accelerated webpage render-
ing acceleration, which uploads webpage textures to GPU
memory to increase rendering speed. Our attacks can extract
rearranged webpage textures of both browsers from NVIDIA
and AMD GPUgs.

Lastly, we propose advanced inference attacks which can
correctly infer the original webpage of rearranged webpage
textures with up to 95.4% accuracy. The proposed inference
attacks compare the textures with either known textures or

I'We found unpublished [25] and concurrent [26] studies dealing with
similar problems during the camera-ready period.

known webpage snapshots to identify the original webpage
using three matching methods: (1) pixel sequence matching,
(2) RGB histogram matching, and (3) combined matching.

To the best of our knowledge, our work is the first security
analysis and attacks targeting GPUs. In summary, our work
makes the following contributions:

« Novel and crucial attack target. Our work expands
the scope of security research to a novel attack target,
GPUs. Despite their popularity and importance, there is
no in-depth and comprehensive study of their security
problems before this work.

« Complete in-depth study. We present a complete in-
depth security analysis on GPUs regarding not only
their architectures, but also their computing APIs. We
identify that all kinds of GPU memories accessible by
the computing APIs has security problems.

o Strong and widely-applicable attacks. We demon-
strate our attacks using the most widely-used GPUs
and GPU-assisted applications: NVIDIA and AMD
GPUs, and the Chromium and Firefox web browsers.
Especially, our attacks accurately infer browsing history
by up to 95.4%.

The remainder of this paper is organized as follows. In
Section II we give an in-depth security analysis on GPUs
and motivate our work. In Section III we explain the threat
model. In Section IV we explain our attacks to disclose
sensitive data remaining in GPU memory. In Section V we
propose our inference attacks that identify browsing history
of web browsers using GPUs. In Section VI we discuss
possible countermeasures against the proposed attacks. In
Section VII we summarize related work of this paper. Lastly,
we conclude the paper in Section VIIIL.

II. BACKGROUND AND SECURITY CONCERNS

In this section, we first give a brief overview on GPUs in
terms of their architectures and programming models. Then,
we motivate our work by presenting inevitable security
concerns rising from the nature of GPUs. We use the
OpenCL terminology [5] throughout the paper.

A. GPU Architecture

A GPU consists of (1) a compute device for executing in-
structions and (2) a compute device memory for storing data
used by the compute device. Figure 2 shows the high-level
diagram of a typical OpenCL-capable GPU architecture. The
compute device consists of several compute units (CUs) and
a global/constant memory data cache shared by all CUs.
Each CU consists of processing elements (PEs), also known
as GPU cores, and per-CU local memory shared by the PEs.
Each PE also has per-PE private memory.

The compute device memory consists of two memory
types: global memory and constant memory. The read-write
global memory is for storing GPU computation results. The

Compute Device

Compute Unit Compute Unit Compute Unit
Private | | Private Private | | Private Private | | Private
Memon Memon Memo Memo . Memon Memon

[PE][PE] [CPE 1--[PE_] [PE][PE_]

Local
Memor

I Global/Constant Memory Data Cache

Compute Device Memory \

| Global Memory |

g
3 o
3 B
g
3 o
o 8

I Constant Memory I

Figure 2. High-level architecture of an OpenCL-capable GPU.

read-only constant memory is for storing codes executed by
the compute device and read-only data.

B. GPU Computing Model

In a typical GPU computing model, GPUs run the
programmer-defined GPU contexts, similar to CPUs. Pro-
grammers construct a GPU context by writing kernels, mem-
ory management, and command queues using the computing
APIs. Kernels are the functions written to run on GPUs.
Memory management includes GPU memory allocations,
data transfers between CPU and GPU memories, and GPU
memory deallocations. Command queues hold the com-
mands to be executed on GPUs. Both kernels and memory
management are the commands. A typical execution of a
GPU context is as follows: programmers queue (1) GPU
memory allocation commands, (2) CPU to GPU data transfer
commands, (3) kernel execution commands, (4) GPU to
CPU data transfer commands, and (5) GPU memory deallo-
cation commands in a command queue. When programmers
queue a kernel execution command to the command queue,
a GPU driver passes the pointers of allocated GPU memory
accessible by the kernel to the GPUs through the kernel
arguments. The GPUs execute all commands in a command
queue in the first-in, first-out (FIFO) manner.

C. OpenGL and Textures

We briefly explain OpenGL, a popular graphics APIs
widely supported by various operating systems, such as
Windows, Linux, Android, and iOS. Among its several
functions, we focus on texture functions as textures are
sensitive image data of victims.

Texture mapping is a technique to make objects look
realistic by mapping images or colors to 2D/3D objects.
OpenGL provides a set of functions for texture mapping,
such as glGenTextures () for generating a texture ob-
ject, glBindTexture () for loading the texture object,
and glTexImage2D () for specifying an image array of
the texture object. Programmers either load an image file
or generate some image data for glTexImage2D (). Once
the texture object is uploaded to GPU memory, programmers

can invoke g1 TexCoord () to coordinate the texture object
while drawing objects.

Textures reside in the global memory, and program-
mers can delete textures no longer used by calling
glDeleteTextures () to increase available global
memory size. This function, however, does not initialize the
corresponding memory blocks. Accordingly, an attacker can
read the uninitialized textures which remain in the global
memory after glDeleteTextures ().

D. Security Concerns

We now present three major security concerns of GPUs
based on our analysis on GPU architectures and APIs. We
take advantage of the major security concerns to perform
our attacks presented in Section IV.

1) Lack of Memory Page Initialization Upon New Al-
location: 'We identify a crucial security problem of GPU
memory—GPUs do not initialize the contents of newly
allocated memory pages that possibly contain sensitive data.
The new owner can access the sensitive data remaining in
the memory pages if the previous owner does not clear
it. Modern operating systems have suffered from similar
problems, but they solve the problems by filling new mem-
ory pages with zeros before delivering them to user space
processes [27]. However, we detect that GPUs do not provide
such a countermeasure. Therefore, we define the lack of
memory page initialization upon new allocation as the first
major security concern of GPUs.

2) Unerasable Memory: We identify that a portion of
GPU memory is neither erasable by users nor automatically
erased by GPUs. As explained in Section II-A, GPUs
have several types of memory. While programmers can
delete the contents of most types of memory, GPUs prevent
programmers from erasing the contents of a few types of
memory containing sensitive data (e.g., constant data, kernel
codes, and call-by-value arguments). Moreover, we detect
that GPUs do not automatically delete such contents even
when they are no longer necessary. Thus, protecting sensitive
data kept in the unerasable memory becomes the second
major security concern of GPUs.

3) Programmer-managed Memory: We identify that
threads originating from a kernel running on a CU can
access the contents of other kernels, stored in the local
and private memories of the CU. GPU computing models
allow programmers to manually manage the local and private
memories to optimize performance [2], [S]. For security,
GPUs should disallow threads of a kernel to access the
contents stored in the local and private memories, written by
threads of other kernels. But we detect that current GPUs
provide no isolation mechanism for the local and private
memories. Regarding that GPU-accelerated applications use
the local and private memories for storing sensitive data
(e.g., secret keys with 1ibgpucrypto [12]), lack of such

a prevention becomes the third major security concern of
GPUs.

III. SYSTEM AND ATTACK MODELS

We assume a system that equips a GPU for graphics
operations and computations. The system is a multi-user
system so that a number of users can share the equipped
GPU. A victim is a normal user of the system who often
executes programs using the GPU, such as 3D rendering
software, web browsers, and financial data analysis tools.
The victim occupies screens to locally use the graphics
APIs. An attacker is another normal user of the system
(a local attacker) who cannot attack the victim at the
operating system level due to insufficient privilege as many
attacks dealing with multi-user systems assume [28], [29].
The attacker, however, can freely access the GPU via the
computing APIs, as any user of the system can use the APIs.
Consequently, the attacker attempts to exploit the GPU to
disclose the victim’s sensitive data possibly remaining in
GPU memory.

In addition, we consider a remote GPU system using
VirtualGL [19], which is basically the same as the preceding
system. Here, a victim has a right to use VirtualGL [19] to
remotely use the graphics APIs, whereas an attacker has no
right to use VirtualGL. Therefore, the attacker also need to
exploit the GPU to attack the victim’s data kept in GPU
memory. As the attack methods for both systems are the
same, we do not distinguish them in this work.

IV. DISCLOSING GPU MEMORY

In this section, we explain our attacks to disclose sensitive
data in GPU memory exploiting the uninitialized memory
problem. We propose two attacks to steal sensitive data
of a victim program both at the right after its termination
and during its execution. We further discuss real attacks on
security-sensitive GPU programs in the later section.

A. Basic Attack

We identify that current GPUs have uninitialized memory
problems by performing a basic attack that attempts to
read the entire global memory after a victim GPU context
terminates. First, we execute a simple victim program that
writes 1 GB of 0x11111111 on the 3 GB of global
memory of an NVIDIA GeForce GTX 780 GPU. Right after
the victim program terminates, we execute a simple attack
program that reads the entire global memory. When no active
GPU program exists, the memory dump read by the attack
program contains not the victim’s data but dummy data. We
expect that a GPU driver turns GPUs to a sleep mode for
saving power, so that the data written in the global memory
disappear. In contrast, when at least one active GPU program
(e.g., a Gnome desktop) exists, the memory dump contains
not only the 1 GB data written by the victim program,
but also other important data, such as a kernel code. We

CO—@D—HDO—CEO—H—CFID—O)

time
(a) Normal GPU execution flow.
Attacker creates his context before the victim's DC.
N
Attacker [55 cc I—o%
Victim (CO—CAMD~(HD —CEKO—DHO—FMD—(DO e
(b) End-of-Context (EoC) attack.
Attacker creates his context before the victim's kernel terminates.
L /
Attacker [55 cc —
victim - (CO-AM—CHD—CEK) OH=FMD~DO) e

(c) End-of-Kernel (EoK) attack.

Figure 3. Overview of proposed attacks.

expect that uncleared data remain in GPU memory, as the
GPU driver does not automatically delete them to avoid
possible performance degradation [20]. We perform a similar
attack on the local and private memories, and detect that
GPUs also do not automatically clear them. Accordingly, we
conclude that current GPUs ignore the uninitialized memory
problems.

B. Overview of Advanced Attacks

We introduce attacks to acquire data stored in the global,
local, and private memories of GPUs. We consider two
attack points: the end of the GPU context and the end
of the GPU kernel. Figure 3 provides an overview of the
proposed attacks. Normal GPU execution flow creates a
GPU context (CC), allocates GPU memory (AM), copies
data from CPU to GPU (HD), executes a kernel (EK), copies
back data from GPU to CPU (DH), frees GPU memory
(FM), and destroys context (DC) (Figure 3a). In the case
of graphics applications, copying results to video frame
buffer replaces DH. When the victim follows the same
execution flow, the End-of-Context (EoC) attack and the
End-of-Kernel (EoK) attack steal data at different moments.
The EoC attack dumps all GPU memory after the victim
frees its memory (Figure 3b). The EoK attack steals the local
and private memories of the victim’s kernel right after the
victim’s kernel terminates (Figure 3c). We mainly explain
the proposed attacks using NVIDIA GPUs, and discuss
differences between NVIDIA and AMD GPUs in terms of
performing the proposed attacks.

C. End-of-Context (EoC) Attack

1) Attack Description: The EoC attack aims to obtain
data released after the destruction of a victim program’s
GPU context. A GPU program can either explicitly de-
stroy its GPU context by calling API functions (e.g.,
clReleaseContext () and cudaDeviceReset ()) or
implicitly destroy its GPU context by its termination. The

Algorithm 1 End-of-Context Attack

Algorithm 2 End-of-Context Attack on Multiple Victims

Input: own < the size of memory occupied by attacker
1: context <+ createGPUContext()

2: total < getTotalMemoryInfo()

3: available + get Available M emorylInfo()

4: while available + own = total do // no victim exists
5: sleep()

6: available < get AvailableM emoryInfo()

7: end while

8

: available + get Available M emoryInfo()
9: while available + own # total do
10: sleep()

11: available + get Available M emorylInfo()
12: end while

13: alloc + allocate Memory(total — own)
14: memoryCopyDeviceToH ost(alloc)

// victim works

// victim exits

100)
= attacker’s memory - .
2 95 victim exns::r—
g victim comes .
g 90 victim deallocates
] memory
E 85 o
% victim allocates
© 80 memory (512 MB)
< CFOOUNDTTFOONDTOOND— MWONOD
NT OO~ MOUOMNMNONTOOVDOMWUONOD «—
T T AN ANNNOOOO®M S
T

Figure 4. Changes of the available global memory size according to a
victim program’s activities. The total size of global memory is 2687 MB
(NVIDIA Tesla C2050 GPU).

main target of this attack is the results of kernel computa-
tions, such as decrypted plaintext and rendered images. If
a victim program does not clear its global memory before
releasing its GPU context, an attacker can easily obtain
the computation results using this attack. Furthermore, we
observe that the GPU context destruction also releases other
important data, such as kernel code, constant data, and call-
by-value arguments of kernels. Current GPUs provide no
methods to delete such data.

2) Attack Procedure: Algorithm 1 shows the EoC at-
tack. NVIDIA GPUs provide functions to examine the
available and total GPU memory size of the GPUs, such
as cudaMemGetInfo (). By continuously examining the
changes in the available memory size using such func-
tions, an attacker can discern whether a victim program
destroyed its GPU context. Figure 4 shows the changes in
available memory size according to the victim’s activities.
The attacker can learn when the victim starts to use GPUs,
allocates and deallocates global memory, and exits from the
GPUs by leveraging the memory usage history. If the victim
no longer uses GPUs, the attacker tries to dump the entire
global memory of the GPUs.

3) Reducing Analysis Space: We suggest a technique
to reduce the analysis space in memory dumps because
(1) usual victim programs only use a small portion of the
global memory and (2) investigating several gigabytes of the

Input: own < the size of memory occupied by attacker

1: context < createGPUContext()
: total « getTotal MemoryInfo()
: available < getAvailableM emoryInfo()
: while available + own = total do // no victim exists
sleep()
available < getAvailableMemoryInfo()
: end while
. available + get AvailableM emoryInfo()

9: while available + own # total do // victims work
10: sleep()
11: avail_new < getAvailable MemoryInfo()
12: if avail_new > available then // victims deallocate

memory
13: alloc < allocate M emory(avail_new)
14: if kernel DetectInstruction(alloc) = true then
15: memoryCopyDeviceToHost(alloc) // only
copy memory with code

16: end if
17: fillMemory(alloc)
18: deallocate M emory(alloc)
19: end if
20: available < getAvailableM emoryInfo()
21: end while
22: alloc + allocate M emory(total — own)
23: memoryCopyDeviceToHost(alloc)

0N YA W

// victims exit

global memory requires unnecessary efforts. Our technique
is to fill the global memory with sufficiently long binary
sequences before a victim comes and ignore the sequences
when analyzing dumps of the global memory. We modify
the attack program to fill the global memory of a GPU
with a predefined 1024-bit integer before a victim program
arrives. When analyzing memory dump files, we ignore the
1024-bit integer in the files. The probability that a victim
program has the predefined 1024-bit integer in its memory
is negligible. We test this technique with simple victim
programs allocating 64, 128, 256, 512, and 1024 MB of
global memory, respectively. On average, the size of analysis
space is only 1.3 MB larger than the allocated memory for
storing kernel codes and constant data.

4) Multiple Victims: The EoC attack in Algorithm 1 does
not work when multiple victims are consecutively using the
GPUs. To solve the problem, we modify the attack to deal
with multiple victims (Algorithm 2). Whenever the size of
available GPU memory increases, this algorithm attempts to
allocate all the available memory to obtain the recently deal-
located memory. However, dumping all the available mem-
ory whenever deallocations occur requires much storage and
transmission overhead. The algorithm avoids the overhead
by launching a kernel to verify whether the recent memory
deallocation is due to the destruction of a GPU context.
It is possible by checking whether the deallocated memory
includes instructions (e.g., 0x85800000001c3c02 which
is the NOP instruction of NVIDIA Kepler GPUs). Lastly, the
algorithm copies memory containing instructions to the host

Algorithm 3 End-of-Kernel Attack

Input: own < the size of memory occupied by attacker
1: context <+ createGPUContext()

2: total < getTotalMemoryInfo()

3: available + get Available M emorylInfo()

4: while available + own = total do // no victim exists
5: sleep()

6: available < get AvailableM emoryInfo()

7: end while

8

: available + get Available M emoryInfo()

9: while available + own # total do // victim works
10: local_priv < kernel ReadLocal PrivMem()
11: memoryCopyDeviceT oHost(local_priv)

12: avail_new < getAvailable MemoryInfo()

13: if avail_new > awvailable and avail_new+own # total
then // victim releases some global memory

14: alloc < allocate M emory(avail_new)

15: memoryCopyDeviceT oHost(alloc)

16: deallocate M emory(alloc)

17: end if

18: available < avail_new

19: end while

and fills the memory with a dummy value before releasing
it, to avoid redundant detections of the same instructions.

D. End-of-Kernel (EoK) Attack

1) Attack Description: The EoK attack aims to obtain
intermediate data generated when GPU kernels of a victim
program are executing. GPU computing models discourage
long-running GPU kernels because current GPUs do not
support preemptive scheduling. Long-running GPU pro-
grams thereby use either several kernels or the same kernel
repeatedly and process the intermediate results. The main
targets of this attack are frequently accessed data stored in
the per-CU local memory and the per-PE private memory.
For example, 1ibgpucrypto, a cryptography library of
SSLShader [12], loads secret keys, AES S-box, and the p
and ¢ values of RSA into the local and private memories
in order to increase performance. If a victim program does
not clear the local and private memories at the end of each
kernel execution, an attacker can easily read the data.

2) Attack Procedure: Algorithm 3 shows the EoK attack.
In this algorithm, we execute kernels that attempt to read
the local and private memories of a GPU, and copy the
results to CPU memory. We also check the differences
in available memory size to determine whether a victim
program dynamically releases some of its global memory.
When we detect such memory release, we also attempt to
dump it. The loop for reading the local and private memories
terminates when the victim program exits from the GPU, and
we lastly perform the EoC attack.

3) LI Data Cache of NVIDIA GPUs: The EoK attack
can also acquire sensitive data kept in the L1 data cache
of NVIDIA GPUs. NVIDIA GPUs utilize a portion of their
per-CU local memory as an L1 data cache of the global

Lower 0

Local
Memory
16384 | T Local
Memory
Overlapped
L1 Cache
40152 F T T
OR L1 Cache
Higher 65536

Figure 5. Memory layouts of configurable local memory and L1 data
cache (NVIDIA GPUs).

// prepare global memory filled with zeros
int *zero_mem;
cudaMalloc((void**)&zero_mem, 49152);
cudaMemset(zero_mem, 0, 49152);

__device__ void flushL1(int *zero_mem) {
for (int i=0; i < 49152/sizeof(int); ++i) {
zero_mem[i] = zero_mem[49152/sizeof(int)-(i+1)];
}
¥

Figure 6. A sample kernel to flush L1 data cache.

memory. Programmers can flexibly configure the size of
the local memory and the L1 data cache: 16 KB for the
local memory and 48 KB for the L1 data cache or vice
versa. However, this configuration allows attackers to read
the 32 KB overlapped region used by the L1 data cache of
a victim program.

Figure 5 shows the layouts of the local memory and
the L1 data cache, verified by conducting the following
experiment. We first execute a victim program that writes
zeros into its 16 KB of local memory and reads 512 MB of
global memory filled with 0x11111111. We then execute
an attack program that reads and dumps its 48 KB of
local memory. We detect that the lower 16 KB of the local
memory is filled with zeros and the upper 32 KB of the local
memory is filled with 0x11111111. Therefore, attackers
can obtain the lower 2/3 of the L1 data cache from a victim
GPU program if the victim uses a 48 KB L1 data cache.

A GPU program can clear cached data by reading the
contiguous 48 KB global memory block filled with a dummy
value because the L1 data cache of NVIDIA GPUs is a set-
associative, write-evict cache [2], [30]. Figure 6 shows an
example of a CUDA code that flushes the L1 data cache.
It prepares a 48 KB array filled with zeros in the global
memory in advance and reads zeros from the array to clear
the L1 data cache.

4) Multiple Victims: The limitation of the EoK attack is
that it can only read the local and private memories of a
victim kernel which uses the GPU just before an attack
kernel. This implies that when multiple victim programs
compete to use a GPU, the attack kernel can only see one

Table T
PLATFORMS WE TEST THE PROPOSED ATTACKS.

GPU (Generation) GPU Mem. Driver 0S Kernel CPU CPU Mem.
NVIDIA

GeForce 210 (GT200) 0.5 GB 319.37 Ubuntu 12.04 3.5.0 Intel Pentium Dual-Core E6300 4 GB
Tesla C2050 (Fermi) 2.6 GB 304.108 CentOS 6.3 2.6.32 Intel Xeon X5650%2 24 GB
GeForce GTX 780 (Kepler) 3.0 GB 325.15 Ubuntu 12.04 3.5.0 Intel Core 17-2600 8 GB
AMD

Radeon HD 7850 (Pitcairn) 1.8 GB 13.1 CentOS 6.4 2.6.32 Intel Xeon E5430%2 8 GB
FirePro W9000 (Tahiti) 6.0 GB 12.104.2 CentOS 6.4 2.6.32 Intel Xeon E5430%2 8 GB

of their data kept in local and private memories.

E. Attacks on AMD GPU

1) Differences and Increased Vulnerability: The attacks
on AMD GPUs slightly differ from the attacks on NVIDIA
GPUs due to dynamic memory management of AMD GPUs
and OpenCLz. Unlike NVIDIA GPUs, AMD GPUs and
OpenCL provide no APIs to check available memory size as
they dynamically manage the global memory. When a new
GPU program requests large memory blocks exceeding the
available global memory size, while an old GPU program
occupying a portion of global memory is inactive, AMD
GPUs automatically move the old GPU program’s data back
to CPU memory to fulfill the new program’s requirements.
NVIDIA GPUs do not provide this functionality, although
they support OpenCL.

However, we detect that the AMD GPU driver does not
nullify GPU memory for the new program. An attacker can
read the global memory of a victim program when he or
she requests memory before the victim program deletes and
deallocates its GPU memory.

Instead of checking the available GPU memory sizes, we
use the changes in kernel execution timing for determining
whether a victim program uses GPUs. GPU kernels of
different programs share a GPU in a time-sharing fashion,
so that the execution time of a GPU kernel varies according
to other kernels using the GPU.

2) Attack Procedure: Algorithm 4 shows the EoK attack
on AMD GPUs. We execute a dummy kernel and measure
its execution time to know whether a victim program uses
the GPU. If a victim program exists, the execution time of
the dummy kernel certainly increases because current GPUs
cannot concurrently execute different GPU programs [18].
When an attacker detects a victim, the attacker executes
kernels for reading the local and private memories. Fur-
thermore, the attacker can also acquire the entire global
memory because of the dynamic memory management of
AMD GPUs. Consequently, the EoC attack is unnecessary
when attacking AMD GPUs.

Zhttp://devgurus.amd.com/message/1296453

Algorithm 4 End-of-Kernel Attack on AMD GPUs

Input: own < the size of memory occupied by attacker
1: context < createGPUContext()

: time < kernel Dummy()

: while t¢éme < threshold do

sleep()

time < kernel Dummy()

: end while

: while time > threshold do // victim works

local_priv « kernel ReadLocal PrivMem()

9: memoryCopyDeviceT oHost(local_priv)

// no victim exists

XA

10: alloc < allocate M emory(total — own)
11: memoryCopyDeviceT oH ost(alloc)
12: sleep()

13: time < kernelReadData()
14: end while

F. Test Platforms

We test five different platforms to check the coverage of
the proposed attacks (Table I). The test platforms include
NVIDIA GeForce 210, NVIDIA Tesla C2050, NVIDIA
GeForce GTX 780, AMD Radeon HD 7850, and AMD
FirePro W9000 GPUs on Linux operating systems with
various driver versions. We verify that our attacks succeed
in the test platforms without errors.

G. Attacks on “Real” Programs

So far, we explain our attacks to disclose GPU memory
used by an experimental GPU program we made that only
handles meaningless data. To show that our attacks are not
only highly applicable, but also crucial threats to both GPUs
and their users, we have to attack a real program that (1) uses
GPU APIs, (2) deals with sensitive data, and (3) is popular.
Recent web browsers, such as Chromium and Firefox, fulfill
all the requirements: (1) they use graphics APIs for efficient
webpage rendering, (2) they handle a user’s private data
such as browsing history, and (3) they are extremely popular.
Therefore, we choose them as our attack targets and discuss
the results in the next section.

V. INFERRING WEB BROWSING HISTORY FROM GPUSs

In this section, we explain our attacks on web browsers
to infer web browsing history of a victim user using data
extracted from GPUs by leveraging the attacks explained in
Section IV. Recent web browsers, such as Chromium and

Firefox, support GPU-accelerated webpage rendering so we
expect that rendered webpage textures may remain in GPU
memory. Our inference attacks match the GPU memory
dump with either known webpage dumps or known webpage
snapshots to infer which webpages a victim user has visited.

We identify that webpage textures remain not in the
local and private memories, but in the global memory. The
content of the local and private memories does not change
according to which webpages a victim has visited, but
changes according to which web browsers a victim uses.
Hence, we focus on attacking the global memory to infer
web browsing history.

A. Web Browsers and Configurations

We use the Chromium web browser version 30 and
Firefox web browser version 25 in this case study. For
the Chromium web browser, we enable the “GPU com-
positing of all page” option to use GPU-accelerated
webpage composition. For the Firefox web browser,
we enable the layers.offmainthreadcomposition.enabled and
layers.acceleration.force-enabled options, and disable the
layers.use-deprecated-textures option. We execute the web
browsers on three Linux systems with NVIDIA GeForce
210, NVIDA GeForce GTX 780, and AMD FirePro W9000
GPUs (Table I). The Linux systems with the NVIDIA GPUs
use Xfce 4.8, and another Linux system with the AMD GPU
uses Gnome 2.28.2.

B. GPU Memory Dump and Texture Rearrangement

When we examine a GPU memory dump of
google.com extracted from the Chromium web browser
with an NVIDIA GeForce GTX 780 GPU obtained by
performing the EoC attack, we find a number of 32-bit
values that seem to represent colors, such as 0x00ffffff,
0x00404040,0x00e85947, and 0x00da3d29. Starting
from the most significant bit, we treat each two bytes as
blank, red, green, and blue color values, respectively. We
construct Figure 1b by judging each value with the rule
while ignoring black (zeros).

As Figure 1 shows, GPUs store textures on GPU memory
in a rearranged form so that we need solutions to recognize
them. However, recovering the original textures from the
rearranged textures is difficult because (1) GPU vendors
document nothing about the hardware-level texture man-
agement, (2) GPUs have virtualized and paged memory,
and (3) GPU memory dumps also contain other non-color
data. Therefore, instead of trying to recover the original
textures, we strive to design methods for inferring the visited
webpages from the rearranged textures.

C. Overview of Attack Scenarios

We consider three attack scenarios to know how attackers
can infer browsing history of victims by leveraging GPUs in
various situations. First, we assume an attacker who prepares

GPU memory dumps of known webpages extracted from the
same GPU a victim uses and tries to compare them with a
GPU memory dump of an unknown webpage. We confirm
that this attack can correctly infer up to 95.4% of randomly
selected 100 front pages of Alexa Top 1000 websites.

Second, we assume an attacker who prepares image
snapshots of known webpages and tries to compare them
with a GPU memory dump of an unknown webpage. Unlike
the first attack, this attack does not require that the attacker
and victims use the same GPU. This attack correctly infers
~50% of the randomly selected 100 front pages.

Third, we assume an attacker trying to attack a victim
who simultaneously opens multiple webpages using either
multiple tabs or windows. We observe that the attacker can
accurately infer the webpages of the front tab or the lastly
rendered window.

D. Attack using Known GPU Memory Dump

In this attack, an attacker prepares GPU memory dumps
of famous webpages to compare them with a new GPU
memory dump of a victim web browser. We choose front
pages of Alexa Top 1000 websites as our dataset. We visit
each of them using the Chromium and Firefox web browsers
with NVIDIA and AMD GPUs, respectively, and close the
browsers 60 second later while recording GPU memory
dumps using the EoC attack. We repeat these procedures
10 times to average out the results.

We use three matching methods for comparing GPU
memory dumps: pixel sequence matching, RGB histogram
matching, and a combination of them.

1) Pixel Sequence Matching: The pixel sequence match-
ing compares non-black and non-white contiguous pixel
sequence sets extracted from two GPU memory dumps using
Jaccard Index (JI). We ignore (1) black pixels because we
cannot distinguish them with zero in memory and (2) white
pixels because most webpages have a large number of white
pixels.

For example, if a GPU memory dump contains the fol-
lowing pixels

C1,C2, Cp, C3, Ch, C4, Cyy, Cuy, C5, C, Cp,

where each ¢; is a tuple of red, blue, and green color values
(0-255), ¢y is black (0,0,0), and c¢,, is white (255,255,255),
the pixel sequence set is

P ={(c1,¢c2), (e3), (ca), (c5,) }-
Moreover, the JI of the following two pixel sequence sets

Pr ={(c1,¢2), (c3), (ca), (c5,c6) }

Py ={(c1,¢2,¢3), (ca), (c5,¢6)},

are
‘P10P2| _ |(C4),(C5,Cﬁ)| :2
‘PIUP2| ‘(61702)7(03)7(04)a(c5706)7(01702763)‘ 5

.

0.8 *

0.6

0.4

0.2 I
¥

0.0

Pixel sequence similiarity

i
Same webpage Different webpage

(a) Chromium with GTX 780.

=
)

0.2 3 !

Pixel sequence similiarity

Same webpage Different webpage

(b) Firefox with GTX 780.

4

0.2 3

Pixel sequence similiarity

Same V\}ebpage Different webpage

(¢) Chromium with W9000.

1.0 =

0.8

0.6

FETT—

0.4 |

0.2 i

Pixel sequence similiarity

0.0

Same Webpage Different. vvebpage

(d) Firefox with W9000.

Figure 7. Pixel sequence similarity between webpage dumps extracted
from NVIDIA and AMD GPUs.

Figure 7 shows boxplots of pixel sequence similarity
of the same and different webpages with NVIDIA and
AMD GPUs. We observe that the pixel sequence similar-
ity between the same webpage is fairly higher than that
of different webpages in all cases. The median similarity
between the same webpage is 0.865 whereas that of the
different webpage is 0.014 in the Chromium browser with
the NVIDIA GPU, those of the Firefox browser with the
NVIDIA GPU are 0.478 and 0.029, those of the Chromium
browser with the AMD GPU are 0.671 and 0.007, and
those of the Firefox browser with the AMD GPU are 0.888

30000 -

25000 -
o
<
220000 -
o
IS
£
5 15000 +
o
O
el
I 10000 + -@-google.ca
35 —A—google.co.jp
5000 -m-google.ae
-©-google.fr
0 T T T T T]
0 1000 2000 3000 4000 5000 6000

Elapsed time (ms)

Figure 8. The amount of GPU memory the Chromium web browser utilizes
for rendering four different Google webpages with an NVIDIA GTX 780
GPU.

and 0.060. When computing the cross similarity between
different webpages, we use the centroid pixel sequence set
of each webpage, whose average similarity between pixel
sequence sets of the same webpage is the largest.

We further inspect (1) the same webpages having low
pixel sequence similarity and (2) different webpages having
high pixel sequence similarity. First, most of the same
webpages with the low similarity are dynamic webpages
showing different images at each visit, such as apple.com
and tumblr.com. If attackers prepare a number of GPU
memory dumps corresponding to the dynamic contents, they
may overcome this limitation.

Second, most of the different webpages with high similar-
ity are either similar or the same webpages having different
domain names, such as (google.com, google.co.uk)
and (facebook.com, fbcdn.net). We are certain that
distinguishing them is less meaningful because attackers
can infer a victim’s preferences using one of the similar
webpages. Furthermore, we can distinguish them if we
monitor changes in GPU memory utilization by the browsers
as Memento [28] does. Figure 8 shows that the Chromium
web browser has different GPU memory usage patterns
when rendering four different Google webpages. Such a
monitoring, however, only works with NVIDIA GPUs be-
cause AMD GPUs provide no APIs to check the available
global memory size.

The limitation of the pixel sequence matching is that pixel
sequences heavily depend on which GPU and web browser
a victim uses (Figure 9). For this reason, attackers should
prepare the web browser and the GPU that are equivalent to
those of a victim to perform this attack.

2) RGB Histogram Matching: The RGB histogram
matching compares non-black and non-white RGB his-
tograms derived from two GPU memory dumps using Eu-
clidean distance. An RGB histogram is a tuple of 256 values

2008
8 0.07

€ 0.06 -

(2] I

2 001 :

Q0.

S 0.03 . E

§ 0.02 :

o 0.01 e !

X .00L—=—= == -

o Browser Generation Vendor

Figure 9. Pixel sequence similarity between the same webpage dumps
extracted from different browsers (on an NVIDIA GeForce GTX 780),
different generation of GPUs (NVIDIA GeForce 210 vs. GTX 780 with
Chromium), and different vendors (NVIDIA GTX 780 vs. AMD W9000)
with Chromium.

for red, blue, and green channels as follow:

H = (ro,r1,...,7255,90, 91 - - - s 9255, b0, b1, . . ., bass).

For example, a pixel (128,64,32) contributes one to the 128-
th, the 320-th, and the 544-th values of a tuple, respectively.
We check dissimilarity of RGB histogram tuples by divid-
ing them with the sum of all 768 values (normalization)
and computing Euclidean distance, while using a random
projection method for dimensionality reduction [31].

Figure 10 shows boxplots of RGB histogram distance of
the same and different webpages with NVIDIA and AMD
GPUs. We identify that histogram distance between the same
webpage is shorter than that of the different webpages in
all cases. The median distance between the same webpage
is 0.004 whereas that of the different webpage is 0.210 in
the Chromium browser with the NVIDIA GPU, those of the
Firefox browser with the NVIDIA GPU are 0.011 and 0.093,
those of the Chromium browser with the AMD GPU are
0.003 and 0.196, and those of the Firefox browser with the
AMD GPU are 0.004 and 0.150. Again, dynamic webpages
and similar or the same webpages with different domain
names dominate errors, like the pixel sequence matching.

Since the RGB histogram has weaker correlation with
GPUs than the pixel sequences has, preparing the same GPU
that a victim uses is optional for performing this attack.
Figure 11 shows that the RGB histogram distance between
the same webpage dumps extracted from different GPUs
is shorter than those of the different webpages when we
use the same web browser. In contrast, dumps came from
the different browsers quite differ, so that attackers should
prepare different dump sets for different browsers.

3) Inference Accuracy and Combined Matching: We
evaluate the inference accuracy of the proposed matching
methods. We randomly choose 100 front pages from the
Alexa Top 1000 websites and visit them while recording
GPU memory dumps. We then compare each of the new
dumps with the known dumps to infer the corresponding
webpages. When we detect a known dump having either
the largest similarity or shortest distance with a new dump
(a nearest neighbor), we treat both correspond to the same

0.8
0.7
0.6

[0]

o

c

]

kY]

T 0.5 !

€ 04 T !

5 |

1 B —

o :

il |
' Same webpage Different webpage

(a) Chromium with GTX 780.

0.9

@ 0.8 1

g 07

® 0.6

T 0.5 '

€ 04 v |

© i

5 0.3 f |

% 0.2

R

Same webpage Different webpage

(b) Firefox with GTX 780.

0.6 ;
8 0.5 |
S 1
® 0.4 !
3 ‘
% 0.3
5 0.2 : —
o) !
3 0.1 ‘
T 00 — ?
' Same webpage Different webpage
(c) Chromium with W9000.
0.6 .
[0]
§ 0.5
® 0.4 i
g 0.3 —
& 0.1
T i :
0.0

V—‘—\ L
Same webpage Different webpage

(d) Firefox with W9000.

Figure 10. RGB histogram distance between webpage dumps extracted
from NVIDIA and AMD GPUs.

webpage. In addition, if the proposed matching methods
decide the same or similar webpages having different do-
main names are the same, we treat the methods are correct
because visiting whether google.com or google. fr in-
curs negligible difference in inferring a victim’s preferences.
We perform this procedure 10 times and finally compute
their average.

Figure 12 shows the evaluated inference accuracy of the
proposed methods. On average, the pixel sequence matching
can infer 69.4% of the randomly selected 100 webpages and
the RGB histogram matching can infer 60.9% of them. We
identify that the Chromium web browser with the NVIDIA

0.7
0.6

0.4 ¥
0.3 [|
0.2 :

0.1 ! Q

0.0 -
Browser Generation

Histogram distance

Vendor

(a) Same webpage.

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Vendor

Histogram distance

Browser

P _
Generation

(b) Different webpage.

Figure 11. RGB histogram distance between dumps extracted from
different browsers (on an NVIDIA GeForce GTX 780), different generation
GPUs (NVIDIA GeForce 210 vs. GTX 780 with Chromium), and different
vendors (NVIDIA GTX 780 vs. AMD W9000) with Chromium.

GPU and the Firefox web browser with the AMD GPU are
more vulnerable.

Lastly, we simultaneously apply the pixel sequence match-
ing and the RGB histogram matching when comparing
dumps to further increase the inference accuracy. The pro-
cedure is as follows. First, we use the pixel sequence
matching for detecting the top-k known dumps similar to
a new dump (k-nearest neighbors). Next, we use the RGB
histogram matching for selecting one of the top-k known
dumps having the smallest distance with a new dump. We
treat the selected known dump as the corresponding webpage
of the new dump. As shown in Figure 12, the combined
matching achieves the highest accuracy: it correctly infers
84.6% of the randomly selected 100 webpages on average.
Particularly, victims who use the Chromium web browser
with the NVIDIA GPU are in danger because the combined
matching attack can infer the webpages they have visited
within 95.4% accuracy.

4) Efficiency: We lastly check the efficiency of our
matching methods. For the measurements, we use the test
platform that has Intel Core 17-2600 CPU and 8 GB of main
memory. On average, it takes ~0.451 s and ~0.002 s to
perform the pixel sequence matching and the RGB histogram
matching between two GPU memory dumps, respectively.
The average execution time of the combined matching is
the sum of the two average values. Since we can conduct
each comparison between two GPU memory dumps in
parallel, we can further accelerate the performance of the
matching methods using data parallel systems (e.g., multi-
core processors or GPUs’ computing APIs). We omit details

g R

g 80 -

§ 60 -

s 40 -

EX 20 4

g

c 0

>) kel 0] el 0] el 0] gl

5 s & £|2 2 €|z & £|2 ¢ ¢

(&) o} 2 o o} 2 o o} 2 o o} 2 o
o T O|lw T O|lw T O|lwn I O
Chromium Firefox Chromium Firefox

GTX 780 W9000
Figure 12. Portion of correctly inferred webpages according to GPUs,

browsers, and matching methods.

of such accelerations in this work, because reducing attack
costs is not our primary goal.

E. Attack using Webpage Snapshot

The attack using known GPU memory dumps demand
attackers to prepare a number of GPU memory dumps to
perform the attack. Although the RGB history matching does
not need the same GPU a victim uses, still, preparing dumps
is significant overhead.

We introduce another method for further reducing attack
overhead: using known webpage snapshots instead of known
GPU memory dumps. First, we use PhantomJS [32] for load-
ing the front pages of Alexa Top 1000 websites while taking
their image snapshots. Next, we compare the snapshots with
GPU memory dumps using the RGB histogram matching.
Note that we cannot perform the pixel sequence matching
using snapshots because of texture rearrangement.

When taking webpage image snapshots, we set
page.clipRect of Phantom]S to fit to our screen
size to create screen-size snapshots. This is because
GPU memory dumps only contain a portion of webpages
displayed on a screen, whereas webpage screenshots
of PhantomJS by default also contain a portion of the
webpages not displayed on the screen (full webpage
screenshots).

Figure 13 shows boxplots of RGB histogram distance
between webpage image snapshots and dumps. We identify
that the RGB histogram matching between the webpage
snapshots and the dumps extracted from the Chromium
browsers with both GPUs work well: the median distance
between the same webpage is 0.064 whereas that of the
different webpage is 0.214 in the NVIDIA GPU, and the me-
dian distance between the same webpage is 0.009 whereas
that of the different webpage is 0.225 in the AMD GPU. In
contrast, the RGB histogram matching does not work well
when we test the Firefox browsers with GPUs: their distance
is long even when we compare the same webpages. This is
because the dumps extracted from the Firefox web browsers
also contain non-texture data, resulting in low inference
accuracy.

0.9

) 0:8

g 07 I

% 0.6 ; ‘

B 05 H !

€ 0.4 § |

©

50 —

2 0.2 |

(2]

i —— :
' Same webpage Different webpage

(a) Chromium with GTX 780.

0.7

8 0.6 ! !

Cc 1

< 0.5 N !

(2] I

S 0.4 — !

§os !

T —

2 0.1 T

T ;
0.0

Same webpage Different webpage

(b) Chromium with W9000.

0.7
0.6
0.5 .
0.4
0.3
0.2
0.1
0.0

Same Webpage

Histogram distance

Different Webpage

(c) Firefox with GTX 780.

0.7 ‘ —

0.6

0.4
0.3
0.2

0.1
0.0

Histogram distance

Same Webpage

Different Webpage

(d) Firefox with W9000.

Figure 13.
and dumps.

RGB histogram distance between webpage image snapshots

We further check inference accuracy as explained in
Section V-D. We correctly infer ~50% and ~22% of the
randomly selected 100 front pages using the Chromium web
browser with NVIDIA and AMD GPUs, respectively, which
is worse than that of the attack using known GPU memory
dumps, but the results of NVIDIA GPUs are still meaningful.

FE. Attack on Victims Browsing Multiple Webpages

Lastly, we identify whether we can attack a victim who si-
multaneously visits multiple webpages using tabs or separate
windows. Using multiple tabs or windows of web browsers
is common in a desktop environment so that considering

%‘ 0.8
807
E 06 i
(%]
9 0.5 ;
Q 04 :
803
— 0.1 +
> |
X 0.0 —— C—
o Foreground Background
(a) Pixel sequence.

0.6
805 '
3
» 04 .
©
% 0.3
> 02 . ‘
o)
- 0.0 —

' Foreground Background

(b) RGB histogram.
Figure 14. Comparisons between combined dumps and dumps of fore-

ground and background webpages in two tabs (Chromium and GTX 780).

such scenarios is meaningful.

First, we visit each front page of Alexa Top 100 websites
along with a randomly selected front page among them
using two tabs while recording GPU memory dumps (10
times). Next, we check the pixel sequence similarity and the
RGB histogram distance between the recorded dumps and
known dumps of the foreground and background webpages,
respectively. For simplicity, we only use the Chromium web
browser and an NVIDIA GTX 780 GPU when performing
this attack.

We observe that the recorded memory dumps with two
tabs mostly contain the pixel sequences and the RGB
histograms of the foreground webpages (Figure 14). We
conclude that the Chromium web browser does not use
GPUs for rendering background webpages as foreground
webpages cloak them.

Second, we visit each front page of Alexa Top 100
websites right after visiting a randomly selected front page
among them using two separate windows while recording
GPU memory dumps (10 times). We adjust the size and
position of two windows to avoid overlap between them.
We then check the pixel sequence similarity and the RGB
histogram distance between the recorded dumps and known
dumps of the firstly and secondly rendered webpages, re-
spectively.

We detect that the recorded memory dumps mostly con-
tain the pixel sequences and RGB histograms of the secondly
rendered webpages (Figure 15). We presume that GPUs
write the textures of the secondly rendered webpages to the
same buffer of the firstly rendered webpages so that the
earlier textures are overwritten.

2 1.0 o —

3

E

(%]

o 0.6 .

8 +

o 04

=]

3 i

802 t

© .

= 0.0 —_— ——

o First Second

(a) Pixel sequence.

0.30

% 0.25 — .

B 020 :

5 010 1 |

s) |

B 0.05 — E

T |
0.00 First Second

(b) RGB histogram.
Figure 15. Comparisons between combined dumps and dumps of firstly

and secondly rendered webpages in two windows (Chromium and GTX
780).

We lastly check inference accuracy: the combined match-
ing correctly infers 98.6% of webpages loaded in the fore-
ground tabs and 90.8% of webpages loaded in the secondly
rendered windows. We presume that the relatively low
accuracy of the inference on the secondly rendered windows
is due to the unoverwritten textures of the firstly rendered
windows. Consequently, when a victim visits a number of
webpages using a GPU-accelerated web browser, attackers
can accurately infer some of the webpages either loaded in
the foreground tab or rendered in the lastly opened window.

VI. DISCUSSION

A simple solution for preventing the proposed attack
is clearing newly allocated global memory pages as We-
bGL [20] does. Moreover, GPUs need to delete the per-CU
local memory and per-PE private memory at GPU context
switches.

Unfortunately, we expect that GPU vendors are unwilling
to embrace such methods because they bring performance
degradation. For example, NVIDIA targets to reduce the cost
of the GPU context switch below 25 us [33]. However, it
takes 79 us to delete the entire local and private memories
when we execute our optimized GPU memory deletion
program in an NVIDIA GeForce GTX 780 GPU, which is
approximately three times longer than the context switching
time. The GPU vendors may not accept such huge overhead
because their main concerns are performance and power
efficiency. Consequently, we demand new hardware- and
software-level solutions for efficiently clearing GPU mem-
ory, which cannot be accomplished without GPU vendors’
efforts.

While neither GPU vendors nor researchers provide such
solutions, GPU programs dealing with sensitive data should
delete global memory pages before deallocating them, and
clear the local and private memories before context switches.
The graphics APIs, however, provide no functions to clear
memory contents. Therefore, graphics programs have to use
the computing APIs for manually clearing allocated GPU
memory, though it results in performance degradation and
high programming complexity.

VII. RELATED WORK

In this section, we introduce some related studies of this
work.

A. Remote Pixel Stealing in HTMLS5

Numerous researchers [34]-[36] consider security attacks
exploiting HTML5 CSS filters that allow web developers
to apply various graphics effects on webpages using host
GPUs. By applying CSS filters to a target webpage loaded
in an iframe while measuring the completion time, the CSS
filter-based attacks can recognize a user’s login status and
steal pixels of the target webpage. However, the attacks have
restricted coverage because (1) they should deceive victims
to visit their malicious webpage and (2) many webpages
disallow web browsers to load them in an iframe to avoid
security attacks.

B. Security Attacks using GPUs

GPU-based cracking against passwords or hash values are
well-known security attacks [37]. Some academic studies
also utilize GPUs for conducting general security attacks.
Vasiliadis et al. [38] shows the possibility of malware
obfuscation using GPUs. First, they load an encrypted
malware on a host’s main memory and map its memory
address to GPU memory to enable direct access on the
memory from GPUs, also known as zero-copy memory [2].
Next, their code decrypts the malware, and the host finally
executes it. Ladakis et al. [39]’s GPU-based keylogger also
relies on memory-mapped IOs. The keylogger first uses
a rootkit for mapping the keybuffer in kernel memory to
GPU memory. The GPU part of the keylogger then records
keystrokes through the mapped keybuffer, and lastly returns
the recorded keystrokes to the host.

C. General Applications of GPUs

Several researchers conduct various studies to utilize
GPUs for solving general and computation-intensive prob-
lems. For example, researchers try to use GPUs for in-
creasing the performance of AES [13]-[15] and RSA [16],
[17] algorithms. Some researchers also implement high-
speed intrusion detection systems (IDSs) [10], [11] and
an SSL accelerator [12]. Other researchers also introduce
GPU-accelerated routers for IP network [9] and database
accelerators [7], [8].

The preceding applications, however, may suffer from
serious threats because of the security problems discussed in
this work. For example, attackers can extract secret keys and
plaintext from GPU-based cryptographic engines without a
root privilege. Furthermore, they can capture packets from
GPU-based IDSs, SSL accelerators, and routers. Conse-
quently, both GPU programmers and researchers need to
be aware of the security problems of GPUs that this work
considers.

VIII. CONCLUSION

GPUs become more powerful and general, and many ap-
plications increase their performance using them. However,
no in-depth study has considered their security problems.
In this paper, we investigated the security vulnerabilities of
GPUs, and described attacks that reveal a victim’s sensi-
tive data kept in GPUs. We further applied the proposed
attacks on popular programs using GPUs: the Chromium
and Firefox web browsers utilizing GPUs for faster webpage
rendering. We were able to successfully obtain rendered
webpage textures remaining in GPU memory and accurately
infer their original webpages. Therefore, both GPU vendors
and programmers need to know that GPU programs can be
in danger, and prepare countermeasures to cope with such
threats.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments and suggestions. This research
was supported by the MSIP, Korea, under the ITRC support
program supervised by the NIPA through CMEST (NIPA-
2013-H0301-13-3002) and NRF Grant funded by the Korean
Government (NRF-2012-Global Ph.D. Fellowship Program).

REFERENCES

[1] NVIDIA, “NVIDIA’s next generation CUDA compute archi-
tecture: Kepler GK110,” 2012.

(2]

. CUDA C programming guide version 5.5. http://docs.
nvidia.com/cuda/cuda-c-programming- guide/.

[3] Microsoft, “DirectX graphics and gaming,”
http://msdn.microsoft.com/en-us/library/windows/desktop/
ee663274(v=vs.85).aspx.

[4] D. Shreiner, G. Sellers, J. M. Kessenich, and B. M. Licea-
Kane, OpenGL Programming Guide: The Official Guide to
Leaning OpenGL. Addison Wesley, 2013.

[5] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa,
Heterogeneous Computing with OpenCL. Morgan Kauf-
mann, 2012.

[6] NVIDIA, “Tesla supercomputing HPC industrical case stud-
ies,” http://www.nvidia.com/object/tesla-case-studies.html.

[7] P. Bakkum and K. Skadron, “Accelerating SQL database
operations on a GPU with CUDA,” in Proceedings of the
3rd Workshop on General-Purpose Computation on Graphics
Processing Units (GPGPU), 2010.

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
(20]

(21]

(22]

(23]

H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili, “Kernel
weaver: Automatically fusing database primitives for effi-
cient GPU computation,” in Proceedings of the 45th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2012.

S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: a
GPU-accelerated software router,” in Proceedings of the ACM
SIGCOMM 2010 Conference, 2010.

G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “MIDeA:
A multi-parallel intrusion detection architecture,” in Pro-
ceedings of the 18th ACM Conference on Computer and
Communications Security (CCS), 2011.

M. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee,
Y. Yi, and K. Park, “Kargus: a highly-scalable software-
based intrusion detection system,” in Proceedings of the 19th
ACM Conference on Computer and Communications Security
(CCS), 2012.

K. Jang, S. Han, S. Han, S. Moon, and K. Park, “SSLShader:
Cheap SSL acceleration with commodity processors,” in
Proceedings of the 8th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2011.

D. L. Cook, J. loannidis, A. D. Keromytis, and J. Luck,
“CryptoGraphics: Secret key cryptography using graphics
cards,” in Proceedings of The Cryptographer’s Track at RSA
Conference 2005 (CT-RSA), 2005.

J. Yang and J. Goodman, “Symmetric key cryptography
on modern graphics hardware,” in Proceedings of the 13th
International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT), 2007.

O. Harrison and J. Waldron, “Practical symmetric key cryp-
tography on modern graphics hardware,” in Proceedings of
the 17th USENIX Security Symposium, 2008.

, “Efficient acceleration of asymmetric cryptography on
graphics hardware,” in Proceedings of the 2nd International
Conference on Cryptology in Africa (AFRICACRYPT), 2009.

R. Szerwinski and T. Glineysu, “Exploiting the power of
GPUs for asymmetric cryptography,” in Proceedings of the
10th Workshop on Cryptographic Hardware and Embedded
Systems (CHES), 2008.

J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte,
“The case for GPGPU spatial multitasking,” in Proceedings of
the 18th IEEE International Conference on High Performance
Computer Architecture (HPCA), 2012.

VirtualGL. The VirtualGL project. http://www.virtualgl.org.

Khronos, “WebGL security,” http://www.khronos.org/webgl/
security/.

J. Chow, B. Pfaff, T. Garfinkel, and M. Rosenblum, “Shred-
ding your garbage: Reducing data lifetime through secure
deallocation,” in Proceedings of the 14th USENIX Security
Symposium, 2005.

J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosen-
blum, “Understanding data lifetime via whole system simu-
lation,” in Proceedings of the 13th USENIX Security Sympo-
sium, 2004.

T. Garfinkel, B. Pfaff, J. Chow, and M. Rosenblum, ‘“Data
lifetime is a system problem,” in Proceedings of the 11th
ACM SIGOPS European Workshop, 2004.

[24]

[25]

[26]

(27]
(28]

(29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

[37]

(38]

(39]

A. M. Dunn, M. Z. Lee, S. Jana, S. Kim, M. Silberstein,
Y. Xu, V. Shmatikov, and E. Witchel, “Eternal sunshine
of the spotless machine: Protecting privacy with ephemeral
channels,” in Proceedings of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI),
2012.

R. Di Pietro, F. Lombardi, and A. Villani, “CUDA leaks:
Information leakage in GPU architectures,” ArXiv e-prints,
2013.

C. Maurice, C. Neumann, O. Heen, and A. Francillon, “Con-
fidentiality issues on a GPU in a virtualized environment,” in
Proceedings of the 18th International Conference on Finan-
cial Cryptography and Data Security (FC), 2014.

R. Love, Linux Kernel Development. Addison Wesley, 2010.

S. Jana and V. Shmatikov, “Memento: Learning secrets from
process footprints,” in Proceedings of the 33rd IEEE Sympo-
sium on Security and Privacy (Oakland), 2012.

K. Zhang and X. Wang, “Peeping tom in the neighborhood:
Keystroke eavesdropping on multi-user systems,” in Proceed-
ings of the 18th USENIX Security Symposium, 2009.

R. Meltzer, C. Zeng, and C. Cecka, “Micro-benchmarking the
C2070,” in GPU Technology Conference, 2013.

E. Bingham and H. Mannila, “Random projection in dimen-
sionality reduction: Applications to image and text data,”
in Proceedings of the 17th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD), 2001.

A. Hidayat. PhantomJS: Headless WebKit with JavaScript
APL. http://phantomjs.org.

NVIDIA, “NVIDIA’s next generation CUDA compute archi-
tecture: Fermi,” 20009.

R. Kotcher, Y. Pei, P. Jumde, and C. Jackson, “Cross-
origin pixel stealing: Timing attack using CSS filters,” in
Proceedings of the 20th ACM Conference on Computer and
Communications Security (CCS), 2013.

P. Stone, “Pixel perfect timing attacks with HTMLS,” in
Blackhat USA, 2013.

A. Barth, “Adam barth’s proposal,” http://www.
schemehostport.com/2011/12/timing-attack-on-css-shaders.
html.

D. Goodin, “25-GPU cluster cracks every standard Windows
password in <6 hours.”

G. Vasiliadis, M. Polychronakis, and S. loannidis, “GPU-
assisted malware,” in Proceedings of the 5th International
Conference on Malicious and Unwanted Software (Malware),
2010.

E. Ladakis, L. Koromilas, G. Vasiliadis, M. Polychronakis,
and S. Ioannidis, “You can type, but you can’t hide: A stealthy
GPU-based keylogger,” in Proceedings of the 6th European
Workshop on System Security (EuroSec), 2013.

