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Abstract—Traffic shaping is a critical function for the efficient
operation of modern networks, with applications ranging from
data center networks to home routers. To correctly fulfill their
expected task, traffic shapers must keep up with increasing line
rates. While it is possible to scale traffic shapers across multiple
CPUs via hardware queues, in some cases — such as when
enforcing a global rate limit — these algorithms underperform
due to lock contentions. This is especially true within the Linux
kernel, where scheduling policies are realized as so-called queuing
disciplines (qdiscs) and enforcing a global rate limit can only be
achieved on what is effectively a single CPU core.

In this work, we design and implement a lockless synchroniza-
tion mechanism that allows qdiscs to efficiently scale rate limiting
across multiple hardware queues. To demonstrate its practicality,
we integrate this mechanism into the CAKE qdisc, enabling
multiple CAKE instances to operate under the MQ qdisc while
maintaining a global rate limit. We perform an extensive perfor-
mance evaluation and find that the implementation achieves close
to perfect scaling across cores, with an accuracy deviation with
less that 0.25% of the configured rate, while keeping latencies
low.

Index Terms—Traffic Shaping, Rate Limiting, Kernel, Qdisc

I. INTRODUCTION

Software rate limiting is a critical technique for ensuring
optimal network performance. It is widely applied in various
domains, including ISPs enforcing data plans, WAN band-
width allocation systems [1], and home routers [2].

As line rates continue to increase and surpass CPU speeds,
implementing efficient rate limiting becomes increasingly
challenging. This is particularly evident in the Linux kernel,
where access to queueing disciplines is synchronized through
the root qdisc lock, leading to potential contention issues. High
lock contention can result in up to 1 second of wait time before
a thread is able to enter the critical section, ultimately affecting
rate conformance and tail latencies [3]. This issue is apparent
in our experiments with a 25G NIC, in which CAKE [2] and
HTB [4] were only able to enforce rate limits of up to 8–
11 Gbps. The performance even decreased with an increasing
number of hardware transmission queues. While there are
workarounds for enforcing rate limits on individual traffic
classes (such as splitting an HTB tree across transmission
queues), it is currently not possible to utilize multiple hardware
queues and simultaneously enforce a global rate limit on an
interface using the kernel’s qdiscs. Further, naively running

per-queue rate limiters in parallel without proper synchroniza-
tion will result in suboptimal rate enforcements [5].

To address these challenges, prior work has focused on
overcoming lock contentions and improving the scalability of
software rate limiters [3, 6, 7]. One of the most effective solu-
tions is the EDT-BPF approach, which completely eliminates
lock contention [7]. This method leverages a BPF program
to timestamp packets with departure times before forwarding
them to the Fair Queueing (FQ) qdisc [8].

However, in order to maintain low latencies, the EDT model
relies on a backpressure mechanism to prevent excessive
packet queueing in the network stack [3, 9, 10]. While back-
pressure can be enforced on end-hosts — the primary target
of the EDT-BPF approach — it represents only a subset of
rate-limiting applications. Further, using EDT-BPF to enforce
a global rate limit on an interface imposes a strict total packet
ordering across all FQ instances, effectively eliminating any
flow queueing behavior.

We introduce a scalable rate-limiting approach for for-
warding devices by implementing a lock-free synchronization
mechanism that enables coordination across multiple qdisc
instances. We demonstrate its applicability by integrating it
into CAKE, enabling enforcement of a global rate limit
across multiple hardware queues. The proposed method scales
efficiently with increasing CPU core counts while maintaining
a deviation of less than 0.25% from the configured target rate.
Our design achieves global rate limits up to 3x higher than
single-queue CAKE and HTB, while reducing tail latencies
by 10x as compared to EDT-BPF. As a contribution to the
research community, in order to ensure reproducibility and to
facilitate followup research, we make our source code publicly
available [11].

The remainder of the paper is organized as follows: Section
II details our design of the synchronization mechanism and
describes its implementation into the CAKE qdisc. Section III
presents a comprehensive evaluation of our solution, highlight-
ing both its performance benefits and limitations. Section IV
briefly discusses the findings and elaborates on future work.

II. APPROACH AND IMPLEMENTATION

To evaluate our lockless synchronization mechanism, this
work builds on the CAKE qdisc, with a particular focus
on its bandwidth shaper. CAKE implements Active Queue



Management (AQM) and rate limiting during packet dequeue,
thus overcoming the need for a backpressure mechanism.
Through its bandwidth shaper, CAKE enforces a global rate
limit on egress network traffic, preventing excessive packet
buffering in the lower layers of the network stack. However,
CAKE suffers from the aforementioned contention of the root
qdisc lock, which prevents it from exploiting the potential of
multiple transmission queues.

A. Approach

Our approach overcomes these shortcomings by enabling
a scalable version of CAKE to run in combination with the
MQ qdisc [12]. This multi-queue version of CAKE is referred
to as mq-cake. In order to improve scalability and correctly
enforce a global rate limit, a synchronization mechanism
between mq-cake instances is needed. By synchronizing at
regular intervals, mq-cake instances estimate their local rate
limit based on their siblings’ activity. This rate estimation is
implemented so as to avoid any lock- or atomic operations,
thus optimizing scalability. The synchronization frequency
determines how fast a qdisc can react to changes in the activity
of its sibling qdiscs and comes with a trade-off between
accuracy and CPU overhead. The performance implications
of the synchronization frequency will be covered in greater
detail in section III-C.

MQ

mq-cake mq-cake mq-cake mq-cake
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Fig. 1: mq-cake architecture with four transmission queues

B. Implementation

This synchronization mechanism consists of a linked list
between all mq-cake instances installed on a network interface.
Figure 1 shows an example of the proposed architecture for
four hardware queues. This approach relies on estimating
how many instances of mq-cake are actively sending packets
— these instances are referred to as either active queues or
active qdiscs. According to this number, a mq-cake instance
determines its local rate limit by dividing the global rate limit
by the number of active mq-cake qdiscs.

local rate limit =
global rate limit

number of active qdiscs

Once the qdisc is installed, each mq-cake instance scans
the list of its siblings in regular intervals to count the number
of active qdiscs. The duration of this interval is called the
synchronization time, or synctime. The default setting for this
value is 200µs, which we found to be an appropriate value to
ensure fast convergence and low CPU overhead.

A scanning instance considers another qdisc active if it
has packets enqueued and/or has sent packets since the last

scan. The logic behind these conditions is demonstrated in the
following two scenarios: (1) If a qdisc has only large packets
enqueued while the global rate limit is low, the inter-packet
gap may be larger than the synctime. This is due to fact that
qdiscs with large packets are slower in their release time and
are buffered in the qdisc’s queue. This scenario would lead the
qdisc to falsely read the instance as inactive if it only considers
the packet sent condition, as the number of sent packets
between the two scans would not have changed. However,
any qdisc with packets enqueued is active, as it will eventually
dequeue them and use its portion of the configured rate limit.
(2) If a qdisc receives very small packets while the global
rate limit is high, the backlog of a qdisc consistently remains
empty, as packets are less likely to be buffered and thus are
immediately sent out. This scenario would also lead the qdisc
to falsely read the instance as inactive if it only considers the
has packets backlogged condition, since the packets are only
buffered for a very short interval. Thus, the scanning qdisc
needs to maintain a counter — similar to a heartbeat signal
— to determine if another qdisc has sent packets since the last
synchronization scan.

The two activity indicators are read and written non-
atomically — however, this does not present a problem, since
this approach evaluates the activity indicators in intervals
rather than in precise events. In the unlucky event that a
qdisc’s state changes at the exact moment that another qdisc
executes its scan, the change in state will be captured during
the next scan. This approach has the benefit of avoiding
contention points while still achieving accurate local rate limit
estimations. Algorithm 1 shows our proposed synchronization
algorithm.

Algorithm 1 Synchronization algorithm

1: procedure GET ACTIVE QUEUES
2: if now - last interval < SYNC INTERVAL then
3: return -1;
4: end if
5: active queues = 1;
6: for all q in qdisc list do
7: if q has packets backlogged then
8: active queues++;
9: else if q has sent packets since last interval then

10: active queues++;
11: end if
12: end for
13: last interval = now
14: return active queues;
15: end procedure

III. EVALUATION

In this section, we evaluate mq-cake and show its accuracy
in enforcing rate limits up to the network card’s capabilities
of 25 Gbps. mq-cake achieves excellent linear scaling with
an increasing number of hardware queues and overcomes the
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Fig. 2: Rate conformance and deviation for various rate limits (full MTU-sized packets) and scaling behavior (64 byte packets)

limitations of CAKE and HTB. Further, mq-cake achieves 10x
lower tail latencies as compared to the EDT-BPF approach.

This section is organized as follows: The first subsection
describes our experimental setup. Next, we evaluate mq-cake’s
rate limiting capabilities and the corresponding accuracy as
well as its scaling properties in comparison to HTB and single-
queue CAKE. The third subsection considers the dynamic
properties of mq-cake, especially its behavior when the number
of active queues and synctime change. In the fourth subsection,
we test and evaluate mq-cake and EDT-BPF under TCP traffic
and examine the corresponding latencies. The fifth subsection
discusses the limitations of the current approach, particularly
the imbalances in loads between queues. Lastly, we summarize
the evaluation results.

A. Experimental Setup

The experimental setup consists of two identical servers,
both of which are equipped with: (1) an Intel CPU (Intel(R)
Xeon(R) Gold 6209U CPU@2.10GHz) with 20 physical cores
and hyperthreading capabilities; (2) 192GB RAM; (3) two 25G
NICs (Intel XXV710 for 25GbE SFP28 (rev 02)). Both servers
run an Ubuntu 22.04.4 LTS with a 6.5.0-35-generic kernel
that contains mq-cake. These machines are connected back-
to-back, where one machine generates traffic and measures
throughput either using MoonGen [13] or Flent [14] and the
other machine — the Device under Test (DuT) — receives
the traffic, enforces a rate limit, and sends the traffic back
to the traffic generating device. The generated traffic using
MoonGen consists only of UDP flows, with a transmission
speed of 25 Gbps. For the Flent tests, 1024 TCP streams are
used to saturate the link.

The receiving interface of the DuT distributes the incoming
flows in a round-robin fashion across its receive queues. The
intel iommu [15] feature as well as NIC offloading capabili-
ties [16] are disabled on each interface on the DuT. The TIPSY
framework [17] is used to orchestrate tests. In order to enforce
a global rate limit using HTB, we install a single class at the
root-qdisc, which rate limits all network traffic. As mentioned
above, the EDT-BPF approach as presented in prior work is not
suitable to enforce a global rate limit. To enable a comparison
with mq-cake, we modify the BPF program implementation to
enforce such a global rate limit (Algorithm 2).

Algorithm 2 EDT-BPF implementation

1: procedure RATE LIMIT(skb)
2: pkt len = skb→len + compensation
3: delay ns = pkt len*NS PER SEC/global rate limit
4: next tstamp = global next tstamp
5:
6: if next tstamp ≤ now then
7: global next tstamp = now + delay ns
8: return TC ACT OK
9: end if

10:
11: if next tstamp−now ≥ DROP HORIZON then
12: return TC ACT SHOT
13: end if
14:
15: skb→tstamp = next tstamp
16: sync fetch and add(global next tstamp, delay ns)
17: end procedure

B. Accuracy and Scalability

The most pressing questions about the presented approach
are: How accurately does it enforce the configured rate limit?
And how does it scale with an increasing number of hardware
queues? In this section, we present an in-depth analysis of
mq-cake’s performance using an unresponsive UDP traffic
flood and compare it to the single-queue CAKE and HTB.
We demonstrate that mq-cake not only achieves excellent rate
conformance but also exhibits near-perfect scaling properties.

Figure 2a shows the achieved throughput for varying rate
limits, ranging from 10 Mbps to 24 Gbps. In this experiment,
the network traffic consists of 120 UDP flows containing only
full MTU-sized packets. The number of receive and transmis-
sion queues is set to 40, meaning that every available logical
CPU is assigned one receive and one transmission queue.
These settings maximize the achievable throughput and reduce
concurrent access to the same qdisc by distributing packet
handling across the per-transmission queue qdisc instances.
Figure 2b highlights the relative deviation from the configured
maximum rate limit. Taken together, Figure 2a and Figure 2b
demonstrate that mq-cake is able to shape traffic up to 24 Gbps,



(a) Rate limit 2 Gbps. (b) Rate limit 8 Gbps. (c) Rate limit 15 Gbps.

Fig. 3: Induced queue lengths and delays at varying synctimes and at a configured global rate limit of 2, 8, and 15 Gbps

with a maximum deviation of less than 0.25%. In comparison,
HTB and single-queue CAKE plateau at around 7–8 Gbps.

To show the scalability traits of mq-cake, we configure the
next experiment (Figure 2c) with a rate limit of 20 Gbps and
reduce the UDP packet sizes to 64 bytes. Further, we ensure
that the number of receive queues always matches the number
of transmission queues, preventing imbalances in the traffic
load between qdiscs. The effect of these imbalances are further
explained in section III-E.

Figure 2c reveals the throughput achieved by mq-cake, HTB,
and single-queue CAKE in relation to the number of available
hardware queues. The experiment shows that both HTB’s and
single-queue CAKE’s performance degrades as more hardware
queues become available. This is due to lock contention, which
increases as the number of receive queues grows. Under these
conditions, an increasing number of CPUs attempt to access
the qdisc, which then increases the overall wait time to acquire
the root lock. mq-cake, on the other hand, scales linearly
— the achieved throughput increases at a quicker rate up to
20 transmission queues, after which point the improvement
reduces due to the use of hyperthreading cores. This effect
is caused by resource-sharing between the two logical cores
residing in one physical core: thus, their performance is not
completely independent from one another. However, even with
hyperthreading enabled, mq-cake is still able to increase the
throughput.

C. Impact of Synctime

Up to this point, the traffic in the previous evaluations has
been held static, meaning that the number of flows, and thus
the number of active queues, did not change. With our next
experiment, we show and evaluate the impact of the synctime
on the rate limiter’s accuracy, particularly when the number of
active queues changes. To gain insights in mq-cake’s accuracy
and responsiveness, we induce a change in the number of
active queues by increasing the UDP traffic from an initial
4 flows to 40 flows.

Figure 4 shows such a switching event at around 4.94s.
During the switch, the throughput spikes due to mq-cake’s
inaccurate estimation of the number of active queues. Before
the switch, only 4 queues were active; during the switch,
the remaining 36 inactive queues are activated and then scan

Fig. 4: mq-cake’s behavior when switching from 4 to 40 flows
with a 200µs synctime

all other qdiscs to estimate their local rate limit. Since this
scanning is not necessarily executed simultaneously, the active
queue estimation per qdisc will likely be lower than 40 — not
all qdiscs will have already enqueued or transmitted a packet
at the point of scanning. Further, the 4 already-active qdiscs
will not immediately update their estimated rate upon new
flow arrivals, which can delay their local rate limit reduction.
These conditions result in the observed overshoot in Figure 4.

When evaluating accuracy, it is important to consider the
induced queue length at the next bottleneck in the packet
path, which is caused by the throughput spike, as well as
the increased latencies it produces. The width of the spike
can be controlled by manipulating the synctime. Exceeding the
global rate limit leads to buffering packets in the next device
that is in control of a bottleneck link, which ultimately leads
to increased latencies and packet drops. To gain insights into
the amount of induced latencies and to provision buffer sizes,
the next step is to examine these metrics in relation to the
synctime. Figure 3 outlines the induced queue lengths as well
as the corresponding induced queueing delays at three different
global rate limits. Synctimes beyond 100µs increase the spike’s
overshoot as well as its duration for the reasons described
above. The longer the synctime, the longer queues will send an
inordinately high number of bytes due to their inaccurate local
rate estimation. These plots show that reducing the syncime
also inhibits the spike intensity as well as the queueing delay.

However, if the synctime is too greatly reduced (i.e., less
than 50µs in the conducted experiments), the overhead of



Fig. 5: Achieved packet rate based on the available transmis-
sion queues for varying synctimes. The traffic consists of 4
flows containing only 64 byte packets. In case of a synctime
of 0us, the rate estimation is done for every packet.

the synchronization loop increases, lowering the achieved
throughput. Figure 5 shows the relation between the achieved
rate and the number of transmission queues for different
synctimes. This plot clearly shows that when the synctime
is too low, the achieved packet rate decreases due to the
synchronization overhead. A greater number of transmission
queues increases the mq-cake instances’ scanning time and
may well lead to cache misses when accessing the other
qdiscs’ activity indicators.

D. TCP and Latencies

The previous experiments are based on unresponsive UDP
traffic. To review how these approaches perform with a
packet-loss sensitive transport protocol, we inspect the rate
conformance under TCP traffic and the resulting latencies
using the network testing tool Flent [14] and the TCP Cubic
algorithm [18]. Figure 6 compares the performance of mq-cake
and EDT-BPF under a global rate limit of 20 Gbps.

mq-cake as well as EDT-BPF maintain stable rate enforce-
ment, remaining slightly below the configured limit (Fig-
ure 6a). Figure 6b shows the latencies measured during the
test execution. mq-cake achieves 0.4ms latencies at the 99th

percentile, a 10x improvement as compared to EDT-BPF.
The drop horizon of EDT-BPF directly corresponds with
the expected latencies. Even with this configuration, mq-cake
achieves 10x lower latencies as compared to EDT-BPF.

These experiments highlight mq-cake’s ability to maintain
low latencies without the need of a backpressure mechanism,
thus making it suitable not only for end hosts but also in packet
forwarding use cases.

E. Limitations

Over the course of the evaluation, we have shown that
mq-cake scales excellently with an increasing number of
hardware queues while maintaining low latencies. However,
we identified that the current approach is less accurate when
network traffic is suboptimally distributed across the mq-cake
instances. So far, our experimental setup ensures that the
qdisc layer of the Linux kernel is saturated with packets,

(a) Throughput

(b) Ping

Fig. 6: Flent tcp nup test with 1024 TCP streams, a configured
rate limit of 20 Gbps, and a 5ms drop horizon for EDT-BPF

Fig. 7: Achieved throughput in relation to the number of avail-
able hardware transmission queues with different synctimes for
flows with full MTU-sized packets, where the rate limit is set
to 20 Gbps and the number of receive queues is held at 40

which might not always be the case in real world scenarios.
In the worst case, this can lead to imbalances between the
loads of different mq-cake instances, where traffic enqueued
in one qdisc cannot saturate the estimated local rate limit while
another qdisc instance is heavily flooded with packets. These
imbalances taint the active queue estimation and lead to much
lower throughput.

Figure 7 shows such an imbalance scenario. In this experi-
ment, the number of receive queues is held at 40 as the number
of transmission queues increases. Concentrating first on a sync-
time of 200µs, this plot shows that the achieved rate worsens
when the number of transmission queues surpasses half the
number of receive queues. At this critical juncture, the traffic
is distributed in a way that leaves some transmission queues
undersaturated. For example, when there are 24 transmission
queues, 16 transmission queues receive double the amount of
packets as compared to the remaining 8 transmission queues.
The estimated rate of the 8 transmission queues is higher than
the traffic they receive, leading to unused bandwidth and a



declining throughput. However, as more transmission queues
are added, the imbalance is reduced and the per-qdisc rate limit
decreases, leading to less unused bandwidth. Such imbalances
in multi-queue networking environments are well known in
the literature [5, 19].

IV. CONCLUSION AND FUTURE WORK

In this work, we present and evaluate a scalable, lock-less
synchronization mechanism that allows for the correct enforce-
ment of a global rate limit when scaling to multiple hardware
queues. We integrate this synchronization mechanism into
the CAKE queueing discipline, thus enabling CAKE to run
in combination with the MQ qdisc. We show that mq-cake
overcomes the scaling limitations of HTB and CAKE while
achieving an accuracy deviation of less than 0.25% across a
variety of rate limits up to 25 Gbps. Further, mq-cake reduces
tail latencies up to 10x as compared to EDT-BPF.

Looking ahead, we aim to further explore solutions to
address load imbalances between mq-cake instances as well
as approaches to mitigate overshooting above the configured
rate limit during switching events. In addition, we seek to
investigate automated approaches to adjust and configure the
synctime interval. Furthermore, to deepen our understanding
of mq-cake’s applicability, we plan to evaluate its performance
with higher-speed network cards and test it under real-world
traffic conditions. There is also potential to investigate other
applications that could benefit from our proposed synchroniza-
tion mechanisms. Additionally, we plan to upstream an API
to the Linux kernel, which enables all qdiscs to share state
and lays the foundation for a general interface on inter-qdisc
synchronization.
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