
SCons

API Documentation

July 20, 2019

Contents

Contents 1

1 Package SCons 2
1.1 Modules . 2
1.2 Variables . 4

2 Module SCons.Action 5
2.1 Functions . 6
2.2 Variables . 6
2.3 Class ActionBase . 6

2.3.1 Methods . 7
2.3.2 Properties . 7

2.4 Class CommandAction . 8
2.4.1 Methods . 8
2.4.2 Properties . 9

2.5 Class CommandGeneratorAction . 9
2.5.1 Methods . 10
2.5.2 Properties . 11

2.6 Class LazyAction . 11
2.6.1 Methods . 12
2.6.2 Properties . 13

2.7 Class FunctionAction . 13
2.7.1 Methods . 13
2.7.2 Properties . 14

2.8 Class ListAction . 14
2.8.1 Methods . 15
2.8.2 Properties . 16

2.9 Class ActionCaller . 16
2.9.1 Methods . 16
2.9.2 Properties . 17

2.10 Class ActionFactory . 17
2.10.1 Methods . 17
2.10.2 Properties . 18

3 Module SCons.Builder 19
3.1 Functions . 20
3.2 Variables . 20

1

CONTENTS CONTENTS

3.3 Class DictCmdGenerator . 21
3.3.1 Methods . 21
3.3.2 Properties . 22
3.3.3 Class Variables . 22

3.4 Class CallableSelector . 22
3.4.1 Methods . 22
3.4.2 Properties . 23
3.4.3 Class Variables . 23

3.5 Class DictEmitter . 23
3.5.1 Methods . 24
3.5.2 Properties . 24
3.5.3 Class Variables . 24

3.6 Class ListEmitter . 25
3.6.1 Methods . 25
3.6.2 Properties . 26
3.6.3 Class Variables . 26

3.7 Class OverrideWarner . 26
3.7.1 Methods . 26
3.7.2 Class Variables . 26

3.8 Class EmitterProxy . 27
3.8.1 Methods . 27
3.8.2 Properties . 27

3.9 Class BuilderBase . 28
3.9.1 Methods . 28
3.9.2 Properties . 30

3.10 Class CompositeBuilder . 30
3.10.1 Methods . 31
3.10.2 Properties . 31

4 Module SCons.CacheDir 32
4.1 Functions . 32
4.2 Variables . 32
4.3 Class CacheDir . 32

4.3.1 Methods . 33
4.3.2 Properties . 34

5 Module SCons.Conftest 35
5.1 Functions . 35
5.2 Variables . 39

6 Module SCons.Debug 40
6.1 Functions . 40
6.2 Variables . 41

7 Module SCons.Defaults 42
7.1 Functions . 42
7.2 Variables . 43
7.3 Class NullCmdGenerator . 44

7.3.1 Methods . 45
7.3.2 Properties . 45

7.4 Class Variable_Method_Caller . 45
7.4.1 Methods . 45

2

CONTENTS CONTENTS

7.4.2 Properties . 46

8 Module SCons.Environment 47
8.1 Functions . 47
8.2 Variables . 48
8.3 Class MethodWrapper . 48

8.3.1 Methods . 49
8.3.2 Properties . 49

8.4 Class BuilderWrapper . 49
8.4.1 Methods . 50
8.4.2 Properties . 51

8.5 Class BuilderDict . 51
8.5.1 Methods . 51
8.5.2 Class Variables . 51

8.6 Class SubstitutionEnvironment . 52
8.6.1 Methods . 52
8.6.2 Properties . 55

8.7 Class Base . 56
8.7.1 Methods . 56
8.7.2 Properties . 64

8.8 Class OverrideEnvironment . 64
8.8.1 Methods . 65
8.8.2 Properties . 67

9 Module SCons.Errors 68
9.1 Functions . 68
9.2 Variables . 68
9.3 Class BuildError . 68

9.3.1 Methods . 69
9.3.2 Properties . 70

9.4 Class InternalError . 70
9.4.1 Methods . 70
9.4.2 Properties . 70

9.5 Class UserError . 71
9.5.1 Methods . 71
9.5.2 Properties . 71

9.6 Class StopError . 72
9.6.1 Methods . 72
9.6.2 Properties . 72

9.7 Class SConsEnvironmentError . 72
9.7.1 Methods . 73
9.7.2 Properties . 73

9.8 Class MSVCError . 73
9.8.1 Methods . 73
9.8.2 Properties . 74

9.9 Class ExplicitExit . 74
9.9.1 Methods . 74
9.9.2 Properties . 75

10 Module SCons.Executor 76
10.1 Functions . 76
10.2 Variables . 76

3

CONTENTS CONTENTS

10.3 Class Batch . 77
10.3.1 Methods . 77
10.3.2 Properties . 77

10.4 Class TSList . 78
10.4.1 Methods . 78
10.4.2 Properties . 79
10.4.3 Class Variables . 79

10.5 Class TSObject . 80
10.5.1 Methods . 80
10.5.2 Properties . 80

10.6 Class Executor . 80
10.6.1 Methods . 81
10.6.2 Properties . 84

10.7 Class NullEnvironment . 85
10.7.1 Methods . 85
10.7.2 Properties . 85

10.8 Class Null . 85
10.8.1 Methods . 86
10.8.2 Properties . 87

11 Module SCons.Job 88
11.1 Variables . 88
11.2 Class InterruptState . 88

11.2.1 Methods . 88
11.2.2 Properties . 89

11.3 Class Jobs . 89
11.3.1 Methods . 89
11.3.2 Properties . 90

11.4 Class Serial . 90
11.4.1 Methods . 90
11.4.2 Properties . 91

11.5 Class Worker . 91
11.5.1 Methods . 92
11.5.2 Properties . 93

11.6 Class ThreadPool . 93
11.6.1 Methods . 93
11.6.2 Properties . 94

11.7 Class Parallel . 94
11.7.1 Methods . 95
11.7.2 Properties . 95

12 Module SCons.Memoize 96
12.1 Functions . 97
12.2 Variables . 98
12.3 Class Counter . 98

12.3.1 Methods . 98
12.3.2 Properties . 99

12.4 Class CountValue . 99
12.4.1 Methods . 99
12.4.2 Properties . 100

12.5 Class CountDict . 100
12.5.1 Methods . 100

4

CONTENTS CONTENTS

12.5.2 Properties . 101

13 Package SCons.Node 102
13.1 Modules . 102
13.2 Functions . 102
13.3 Variables . 105
13.4 Class NodeInfoBase . 105

13.4.1 Methods . 106
13.4.2 Properties . 106
13.4.3 Class Variables . 106

13.5 Class BuildInfoBase . 107
13.5.1 Methods . 107
13.5.2 Properties . 108
13.5.3 Class Variables . 108

13.6 Class Node . 108
13.6.1 Methods . 109
13.6.2 Properties . 121

13.7 Class NodeList . 122
13.7.1 Methods . 122
13.7.2 Properties . 123
13.7.3 Class Variables . 123

13.8 Class Walker . 123
13.8.1 Methods . 124
13.8.2 Properties . 124

14 Module SCons.Node.Alias 125
14.1 Variables . 125
14.2 Class AliasNameSpace . 125

14.2.1 Methods . 125
14.2.2 Class Variables . 125

14.3 Class AliasNodeInfo . 126
14.3.1 Methods . 126
14.3.2 Properties . 126
14.3.3 Class Variables . 127

14.4 Class AliasBuildInfo . 127
14.4.1 Methods . 127
14.4.2 Properties . 127
14.4.3 Class Variables . 128

14.5 Class Alias . 128
14.5.1 Methods . 128
14.5.2 Properties . 130

15 Module SCons.Node.FS 131
15.1 Functions . 131
15.2 Variables . 133
15.3 Class FileBuildInfoFileToCsigMappingError . 134

15.3.1 Methods . 134
15.3.2 Properties . 134

15.4 Class EntryProxyAttributeError . 135
15.4.1 Methods . 135
15.4.2 Properties . 135

15.5 Class DiskChecker . 136

5

CONTENTS CONTENTS

15.5.1 Methods . 136
15.5.2 Properties . 136

15.6 Class EntryProxy . 137
15.6.1 Methods . 137
15.6.2 Properties . 138
15.6.3 Class Variables . 138

15.7 Class Base . 138
15.7.1 Methods . 138
15.7.2 Properties . 143
15.7.3 Instance Variables . 144

15.8 Class Entry . 144
15.8.1 Methods . 144
15.8.2 Properties . 147
15.8.3 Instance Variables . 147

15.9 Class LocalFS . 147
15.9.1 Methods . 148
15.9.2 Properties . 149

15.10Class FS . 149
15.10.1 Methods . 150
15.10.2 Properties . 152

15.11Class DirNodeInfo . 153
15.11.1 Methods . 153
15.11.2 Properties . 153
15.11.3 Class Variables . 153

15.12Class DirBuildInfo . 154
15.12.1 Methods . 154
15.12.2 Properties . 154
15.12.3 Class Variables . 154

15.13Class Dir . 155
15.13.1 Methods . 155
15.13.2 Properties . 163
15.13.3 Instance Variables . 164

15.14Class RootDir . 164
15.14.1 Methods . 164
15.14.2 Properties . 166
15.14.3 Instance Variables . 167

15.15Class FileNodeInfo . 167
15.15.1 Methods . 167
15.15.2 Properties . 168
15.15.3 Class Variables . 168

15.16Class FileBuildInfo . 169
15.16.1 Methods . 169
15.16.2 Properties . 170
15.16.3 Class Variables . 170

15.17Class File . 171
15.17.1 Methods . 171
15.17.2 Properties . 179
15.17.3 Class Variables . 180
15.17.4 Instance Variables . 180

15.18Class FileFinder . 180
15.18.1 Methods . 180

6

CONTENTS CONTENTS

15.18.2 Properties . 181

16 Module SCons.Node.Python 182
16.1 Variables . 182
16.2 Class ValueNodeInfo . 182

16.2.1 Methods . 182
16.2.2 Properties . 183
16.2.3 Class Variables . 183

16.3 Class ValueBuildInfo . 183
16.3.1 Methods . 184
16.3.2 Properties . 184
16.3.3 Class Variables . 184

16.4 Class Value . 184
16.4.1 Methods . 185
16.4.2 Properties . 187

17 Module SCons.PathList 188
17.1 Functions . 188
17.2 Variables . 188

18 Package SCons.Platform 189
18.1 Modules . 189
18.2 Functions . 190
18.3 Variables . 190
18.4 Class PlatformSpec . 191

18.4.1 Methods . 191
18.4.2 Properties . 191

18.5 Class TempFileMunge . 191
18.5.1 Methods . 192
18.5.2 Properties . 192

19 Module SCons.Platform.aix 193
19.1 Functions . 193
19.2 Variables . 193

20 Module SCons.Platform.cygwin 194
20.1 Functions . 194
20.2 Variables . 194

21 Module SCons.Platform.darwin 195
21.1 Functions . 195
21.2 Variables . 195

22 Module SCons.Platform.hpux 196
22.1 Functions . 196
22.2 Variables . 196

23 Module SCons.Platform.irix 197
23.1 Functions . 197
23.2 Variables . 197

24 Module SCons.Platform.mingw 198
24.1 Variables . 198

7

CONTENTS CONTENTS

25 Module SCons.Platform.os2 199
25.1 Functions . 199
25.2 Variables . 199

26 Module SCons.Platform.posix 200
26.1 Functions . 200
26.2 Variables . 200

27 Module SCons.Platform.sunos 201
27.1 Functions . 201
27.2 Variables . 201

28 Module SCons.Platform.virtualenv 202
28.1 Functions . 202
28.2 Variables . 202

29 Module SCons.Platform.win32 204
29.1 Functions . 204
29.2 Variables . 205
29.3 Class _scons_file . 205

29.3.1 Methods . 206
29.3.2 Properties . 206

29.4 Class ArchDefinition . 206
29.4.1 Methods . 207
29.4.2 Properties . 207

30 Module SCons.SConf 208
30.1 Functions . 208
30.2 Variables . 210
30.3 Class SConfWarning . 211

30.3.1 Methods . 211
30.3.2 Properties . 211

30.4 Class SConfError . 212
30.4.1 Methods . 212
30.4.2 Properties . 212

30.5 Class ConfigureDryRunError . 213
30.5.1 Methods . 213
30.5.2 Properties . 213

30.6 Class ConfigureCacheError . 214
30.6.1 Methods . 214
30.6.2 Properties . 214

30.7 Class SConfBuildInfo . 215
30.7.1 Methods . 215
30.7.2 Properties . 215
30.7.3 Class Variables . 216

30.8 Class Streamer . 216
30.8.1 Methods . 216
30.8.2 Properties . 217

30.9 Class SConfBuildTask . 217
30.9.1 Methods . 217
30.9.2 Properties . 218

30.10Class SConfBase . 219

8

CONTENTS CONTENTS

30.10.1 Methods . 219
30.10.2 Properties . 221

30.11Class CheckContext . 222
30.11.1 Methods . 222
30.11.2 Properties . 223

31 Module SCons.SConsign 224
31.1 Functions . 224
31.2 Variables . 224
31.3 Class SConsignEntry . 225

31.3.1 Methods . 225
31.3.2 Properties . 225
31.3.3 Class Variables . 225

31.4 Class Base . 226
31.4.1 Methods . 226
31.4.2 Properties . 227

31.5 Class DB . 227
31.5.1 Methods . 227
31.5.2 Properties . 227

31.6 Class Dir . 228
31.6.1 Methods . 228
31.6.2 Properties . 228

31.7 Class DirFile . 229
31.7.1 Methods . 229
31.7.2 Properties . 229

31.8 Class DB . 230
31.8.1 Methods . 230
31.8.2 Properties . 230

32 Package SCons.Scanner 231
32.1 Modules . 231
32.2 Functions . 231
32.3 Variables . 231
32.4 Class FindPathDirs . 232

32.4.1 Methods . 232
32.4.2 Properties . 232

32.5 Class Base . 233
32.5.1 Methods . 233
32.5.2 Properties . 235

32.6 Class Selector . 235
32.6.1 Methods . 238
32.6.2 Properties . 239

32.7 Class Current . 239
32.7.1 Methods . 241
32.7.2 Properties . 242

32.8 Class Classic . 242
32.8.1 Methods . 244
32.8.2 Properties . 245

32.9 Class ClassicCPP . 245
32.9.1 Methods . 246
32.9.2 Properties . 246

9

CONTENTS CONTENTS

33 Module SCons.Scanner.C 247
33.1 Functions . 247
33.2 Variables . 247
33.3 Class SConsCPPScanner . 247

33.3.1 Methods . 248
33.3.2 Properties . 248

33.4 Class SConsCPPScannerWrapper . 249
33.4.1 Methods . 249
33.4.2 Properties . 249

34 Module SCons.Scanner.D 250
34.1 Functions . 250
34.2 Variables . 250
34.3 Class D . 250

34.3.1 Methods . 252
34.3.2 Properties . 253

35 Module SCons.Scanner.Dir 254
35.1 Functions . 254
35.2 Variables . 254

36 Module SCons.Scanner.Fortran 256
36.1 Functions . 256
36.2 Variables . 256
36.3 Class F90Scanner . 256

36.3.1 Methods . 259
36.3.2 Properties . 260

37 Module SCons.Scanner.IDL 261
37.1 Functions . 261
37.2 Variables . 261

38 Module SCons.Scanner.LaTeX 262
38.1 Functions . 262
38.2 Variables . 262
38.3 Class FindENVPathDirs . 262

38.3.1 Methods . 263
38.3.2 Properties . 263

38.4 Class LaTeX . 263
38.4.1 Methods . 266
38.4.2 Properties . 267
38.4.3 Class Variables . 267

39 Module SCons.Scanner.Prog 269
39.1 Functions . 269
39.2 Variables . 269

40 Module SCons.Scanner.RC 270
40.1 Functions . 270
40.2 Variables . 270

41 Module SCons.Scanner.SWIG 271
41.1 Functions . 271

10

CONTENTS CONTENTS

41.2 Variables . 271

42 Package SCons.Script 272
42.1 Modules . 272
42.2 Functions . 272
42.3 Variables . 272
42.4 Class TargetList . 279

42.4.1 Methods . 280
42.4.2 Properties . 280
42.4.3 Class Variables . 280

43 Module SCons.Script.Interactive 281
43.1 Functions . 281
43.2 Variables . 281
43.3 Class SConsInteractiveCmd . 281

43.3.1 Methods . 282
43.3.2 Class Variables . 283

44 Module SCons.Script.Main 284
44.1 Functions . 284
44.2 Variables . 285
44.3 Class SConsPrintHelpException . 286

44.3.1 Methods . 286
44.3.2 Properties . 286

44.4 Class Progressor . 287
44.4.1 Methods . 287
44.4.2 Properties . 287
44.4.3 Class Variables . 287

44.5 Class BuildTask . 288
44.5.1 Methods . 288
44.5.2 Properties . 290
44.5.3 Class Variables . 290

44.6 Class CleanTask . 290
44.6.1 Methods . 291
44.6.2 Properties . 292

44.7 Class QuestionTask . 292
44.7.1 Methods . 293
44.7.2 Properties . 294

44.8 Class TreePrinter . 294
44.8.1 Methods . 294
44.8.2 Properties . 294

44.9 Class FakeOptionParser . 295
44.9.1 Methods . 295
44.9.2 Properties . 295
44.9.3 Class Variables . 295

44.10Class Stats . 295
44.10.1 Methods . 296
44.10.2 Properties . 296

44.11Class CountStats . 296
44.11.1 Methods . 296
44.11.2 Properties . 297

44.12Class MemStats . 297

11

CONTENTS CONTENTS

44.12.1 Methods . 297
44.12.2 Properties . 297

45 Module SCons.Script.SConscript’ 299
45.1 Functions . 299
45.2 Variables . 300
45.3 Class SConscriptReturn . 301

45.3.1 Methods . 301
45.3.2 Properties . 301

45.4 Class Frame . 301
45.4.1 Methods . 302
45.4.2 Properties . 302

45.5 Class Base . 302
45.5.1 Methods . 303
45.5.2 Properties . 314

45.6 Class DefaultEnvironmentCall . 315
45.6.1 Methods . 315
45.6.2 Properties . 315

46 Module SCons.Subst 316
46.1 Functions . 316
46.2 Variables . 317
46.3 Class Literal . 318

46.3.1 Methods . 318
46.3.2 Properties . 319

46.4 Class SpecialAttrWrapper . 319
46.4.1 Methods . 319
46.4.2 Properties . 320

46.5 Class CmdStringHolder . 320
46.5.1 Methods . 321
46.5.2 Properties . 321
46.5.3 Class Variables . 322

46.6 Class NLWrapper . 322
46.6.1 Methods . 322
46.6.2 Properties . 322

46.7 Class Targets_or_Sources . 323
46.7.1 Methods . 323
46.7.2 Properties . 324
46.7.3 Class Variables . 324

46.8 Class Target_or_Source . 325
46.8.1 Methods . 325
46.8.2 Properties . 325

46.9 Class NullNodeList . 326
46.9.1 Methods . 326
46.9.2 Properties . 326

47 Module SCons.Taskmaster 327
47.1 Functions . 327
47.2 Variables . 327
47.3 Class Stats . 328

47.3.1 Methods . 328
47.3.2 Properties . 328

12

CONTENTS CONTENTS

47.4 Class Task . 329
47.4.1 Methods . 329
47.4.2 Properties . 333

47.5 Class AlwaysTask . 333
47.5.1 Methods . 334
47.5.2 Properties . 334

47.6 Class OutOfDateTask . 334
47.6.1 Methods . 335
47.6.2 Properties . 335

47.7 Class Taskmaster . 335
47.7.1 Methods . 335
47.7.2 Properties . 337

48 Module SCons.Util 338
48.1 Functions . 338
48.2 Variables . 346
48.3 Class NodeList . 347

48.3.1 Methods . 347
48.3.2 Properties . 348
48.3.3 Class Variables . 349

48.4 Class DisplayEngine . 349
48.4.1 Methods . 349
48.4.2 Properties . 349
48.4.3 Class Variables . 349

48.5 Class Proxy . 350
48.5.1 Methods . 350
48.5.2 Properties . 351

48.6 Class Delegate . 351
48.6.1 Methods . 351
48.6.2 Properties . 352

48.7 Class _NoError . 352
48.7.1 Methods . 352
48.7.2 Properties . 352

48.8 Class PlainWindowsError . 353
48.8.1 Methods . 353
48.8.2 Properties . 353

48.9 Class PlainWindowsError . 354
48.9.1 Methods . 354
48.9.2 Properties . 354

48.10Class CLVar . 355
48.10.1 Methods . 355
48.10.2 Properties . 356
48.10.3 Class Variables . 356

48.11Class Selector . 357
48.11.1 Methods . 357
48.11.2 Properties . 357
48.11.3 Class Variables . 357

48.12Class LogicalLines . 358
48.12.1 Methods . 358
48.12.2 Properties . 358

48.13Class UniqueList . 359
48.13.1 Methods . 359

13

CONTENTS CONTENTS

48.13.2 Properties . 362
48.13.3 Class Variables . 362

48.14Class Unbuffered . 362
48.14.1 Methods . 363
48.14.2 Properties . 363

48.15Class Null . 363
48.15.1 Methods . 363
48.15.2 Properties . 364

48.16Class NullSeq . 365
48.16.1 Methods . 365
48.16.2 Properties . 365

49 Package SCons.Variables 366
49.1 Modules . 366
49.2 Variables . 366
49.3 Class Variables . 366

49.3.1 Methods . 367
49.3.2 Properties . 369
49.3.3 Class Variables . 369

50 Module SCons.Variables.BoolVariable’ 370
50.1 Functions . 370

51 Module SCons.Variables.EnumVariable’ 371
51.1 Functions . 371

52 Module SCons.Variables.ListVariable’ 372
52.1 Functions . 372

53 Module SCons.Variables.PackageVariable’ 373
53.1 Functions . 373

54 Module SCons.Variables.PathVariable’ 374
54.1 Variables . 374

55 Module SCons.Warnings 376
55.1 Functions . 376
55.2 Variables . 377
55.3 Class Warning . 377

55.3.1 Methods . 378
55.3.2 Properties . 378

55.4 Class WarningOnByDefault . 378
55.4.1 Methods . 379
55.4.2 Properties . 379

55.5 Class TargetNotBuiltWarning . 379
55.5.1 Methods . 379
55.5.2 Properties . 380

55.6 Class CacheVersionWarning . 380
55.6.1 Methods . 380
55.6.2 Properties . 381

55.7 Class CacheWriteErrorWarning . 381
55.7.1 Methods . 381
55.7.2 Properties . 382

14

CONTENTS CONTENTS

55.8 Class CorruptSConsignWarning . 382
55.8.1 Methods . 382
55.8.2 Properties . 382

55.9 Class DependencyWarning . 383
55.9.1 Methods . 383
55.9.2 Properties . 383

55.10Class DevelopmentVersionWarning . 384
55.10.1 Methods . 384
55.10.2 Properties . 384

55.11Class DuplicateEnvironmentWarning . 385
55.11.1 Methods . 385
55.11.2 Properties . 385

55.12Class FutureReservedVariableWarning . 386
55.12.1 Methods . 386
55.12.2 Properties . 386

55.13Class LinkWarning . 387
55.13.1 Methods . 387
55.13.2 Properties . 387

55.14Class MisleadingKeywordsWarning . 388
55.14.1 Methods . 388
55.14.2 Properties . 388

55.15Class MissingSConscriptWarning . 389
55.15.1 Methods . 389
55.15.2 Properties . 389

55.16Class NoObjectCountWarning . 390
55.16.1 Methods . 390
55.16.2 Properties . 390

55.17Class NoParallelSupportWarning . 391
55.17.1 Methods . 391
55.17.2 Properties . 391

55.18Class ReservedVariableWarning . 392
55.18.1 Methods . 392
55.18.2 Properties . 392

55.19Class StackSizeWarning . 393
55.19.1 Methods . 393
55.19.2 Properties . 393

55.20Class VisualCMissingWarning . 394
55.20.1 Methods . 394
55.20.2 Properties . 394

55.21Class VisualVersionMismatch . 395
55.21.1 Methods . 395
55.21.2 Properties . 395

55.22Class VisualStudioMissingWarning . 396
55.22.1 Methods . 396
55.22.2 Properties . 396

55.23Class FortranCxxMixWarning . 397
55.23.1 Methods . 397
55.23.2 Properties . 397

55.24Class FutureDeprecatedWarning . 398
55.24.1 Methods . 398
55.24.2 Properties . 398

15

CONTENTS CONTENTS

55.25Class DeprecatedWarning . 399
55.25.1 Methods . 399
55.25.2 Properties . 399

55.26Class MandatoryDeprecatedWarning . 400
55.26.1 Methods . 400
55.26.2 Properties . 400

55.27Class PythonVersionWarning . 401
55.27.1 Methods . 401
55.27.2 Properties . 401

55.28Class DeprecatedSourceCodeWarning . 402
55.28.1 Methods . 402
55.28.2 Properties . 402

55.29Class DeprecatedBuildDirWarning . 403
55.29.1 Methods . 403
55.29.2 Properties . 403

55.30Class TaskmasterNeedsExecuteWarning . 404
55.30.1 Methods . 404
55.30.2 Properties . 404

55.31Class DeprecatedCopyWarning . 405
55.31.1 Methods . 405
55.31.2 Properties . 405

55.32Class DeprecatedOptionsWarning . 406
55.32.1 Methods . 406
55.32.2 Properties . 406

55.33Class DeprecatedSourceSignaturesWarning . 407
55.33.1 Methods . 407
55.33.2 Properties . 407

55.34Class DeprecatedTargetSignaturesWarning . 408
55.34.1 Methods . 408
55.34.2 Properties . 408

55.35Class DeprecatedDebugOptionsWarning . 409
55.35.1 Methods . 409
55.35.2 Properties . 409

55.36Class DeprecatedSigModuleWarning . 410
55.36.1 Methods . 410
55.36.2 Properties . 410

55.37Class DeprecatedBuilderKeywordsWarning . 411
55.37.1 Methods . 411
55.37.2 Properties . 411

55.38Class DeprecatedMissingSConscriptWarning . 412
55.38.1 Methods . 412
55.38.2 Properties . 412

56 Module SCons.__main__ 413

57 Package SCons.compat 414
57.1 Modules . 414
57.2 Functions . 414
57.3 Variables . 415
57.4 Class SameFileError . 416

57.4.1 Methods . 416
57.4.2 Properties . 416

16

CONTENTS CONTENTS

57.5 Class NoSlotsPyPy . 416
57.5.1 Methods . 417
57.5.2 Properties . 417

58 Module SCons.compat._scons_dbm 418
58.1 Functions . 418
58.2 Variables . 418
58.3 Class error . 418

58.3.1 Methods . 418
58.3.2 Properties . 419

59 Module SCons.cpp 420
59.1 Functions . 420
59.2 Variables . 420
59.3 Class FunctionEvaluator . 421

59.3.1 Methods . 421
59.3.2 Properties . 421

59.4 Class PreProcessor . 421
59.4.1 Methods . 422
59.4.2 Properties . 426

59.5 Class DumbPreProcessor . 426
59.5.1 Methods . 426
59.5.2 Properties . 426

60 Module SCons.dblite 428
60.1 Functions . 428
60.2 Variables . 428
60.3 Class dblite . 428

60.3.1 Methods . 429
60.3.2 Properties . 429

61 Module SCons.exitfuncs 430
61.1 Functions . 430
61.2 Variables . 430

17

Package SCons

1 Package SCons

SCons

The main package for the SCons software construction utility. Version: 3.1.0

Date: 2019-07-21 02:32:15

1.1 Modules

• Action: SCons.Action
(Section 2, p. 5)

• Builder: SCons.Builder
(Section 3, p. 19)

• CacheDir: CacheDir support
(Section 4, p. 32)

• Conftest: SCons.Conftest
(Section 5, p. 35)

• Debug: SCons.Debug
(Section 6, p. 40)

• Defaults: SCons.Defaults
(Section 7, p. 42)

• Environment: SCons.Environment
(Section 8, p. 47)

• Errors: SCons.Errors
(Section 9, p. 68)

• Executor: SCons.Executor
(Section 10, p. 76)

• Job: SCons.Job
(Section 11, p. 88)

• Memoize: Memoizer
(Section 12, p. 96)

• Node: SCons.Node
(Section 13, p. 102)

– Alias: scons.Node.Alias
(Section 14, p. 125)

– FS: scons.Node.FS
(Section 15, p. 131)

– Python: scons.Node.Python
(Section 16, p. 182)

• PathList: SCons.PathList
(Section 17, p. 188)

• Platform: SCons.Platform
(Section 18, p. 189)

– aix: engine.SCons.Platform.aix
(Section 19, p. 193)

– cygwin: SCons.Platform.cygwin
(Section 20, p. 194)

– darwin: engine.SCons.Platform.darwin
(Section 21, p. 195)

– hpux: engine.SCons.Platform.hpux

18

Modules Package SCons

(Section 22, p. 196)
– irix: SCons.Platform.irix

(Section 23, p. 197)
– mingw: SCons.Platform.mingw

(Section 24, p. 198)
– os2: SCons.Platform.os2

(Section 25, p. 199)
– posix: SCons.Platform.posix

(Section 26, p. 200)
– sunos: engine.SCons.Platform.sunos

(Section 27, p. 201)
– virtualenv: SCons.Platform.virtualenv

(Section 28, p. 202)
– win32: SCons.Platform.win32

(Section 29, p. 204)
• SConf : SCons.SConf

(Section 30, p. 208)
• SConsign: SCons.SConsign

(Section 31, p. 224)
• Scanner: SCons.Scanner

(Section 32, p. 231)
– C: SCons.Scanner.C

(Section 33, p. 247)
– D: SCons.Scanner.D

(Section 34, p. 250)
– Dir (Section 35, p. 254)
– Fortran: SCons.Scanner.Fortran

(Section 36, p. 256)
– IDL: SCons.Scanner.IDL

(Section 37, p. 261)
– LaTeX: SCons.Scanner.LaTeX

(Section 38, p. 262)
– Prog (Section 39, p. 269)
– RC: SCons.Scanner.RC

(Section 40, p. 270)
– SWIG: SCons.Scanner.SWIG

(Section 41, p. 271)
• Script: SCons.Script

(Section 42, p. 272)
– Interactive: SCons interactive mode

(Section 43, p. 281)
– Main: SCons.Script

(Section 44, p. 284)
– SConscript’: SCons.Script.SConscript

(Section 45, p. 299)
• Subst: SCons.Subst

(Section 46, p. 316)
• Taskmaster: This module contains the primary interface(s) between a wrapping user interface and

the SCons build engine. There are two key classes here:
(Section 47, p. 327)

• Util: SCons.Util

19

Variables Package SCons

(Section 48, p. 338)
• Variables: engine.SCons.Variables

(Section 49, p. 366)
– BoolVariable (Section ??, p. ??)
– BoolVariable’: engine.SCons.Variables.BoolVariable

(Section 50, p. 370)
– EnumVariable (Section ??, p. ??)
– EnumVariable’: engine.SCons.Variables.EnumVariable

(Section 51, p. 371)
– ListVariable (Section ??, p. ??)
– ListVariable’: engine.SCons.Variables.ListVariable

(Section 52, p. 372)
– PackageVariable (Section ??, p. ??)
– PackageVariable’: engine.SCons.Variables.PackageVariable

(Section 53, p. 373)
– PathVariable (Section ??, p. ??)
– PathVariable’: SCons.Variables.PathVariable

(Section 54, p. 374)
• Warnings: SCons.Warnings

(Section 55, p. 376)
• __main__ (Section 56, p. 413)
• compat: SCons compatibility package for old Python versions

(Section 57, p. 414)
– _scons_dbm: dbm compatibility module for Python versions that don’t have dbm.

(Section 58, p. 418)
• cpp: SCons C Pre-Processor module

(Section 59, p. 420)
• dblite (Section 60, p. 428)
• exitfuncs: SCons.exitfuncs

(Section 61, p. 430)

1.2 Variables

Name Description
__build__ Value:

’ae4de9ab2249be220b6658a514eef8c3a57afc04’

__buildsys__ Value: ’kufra’

__developer__ Value: ’bdeegan’

__package__ Value: ’SCons’

__revision__ Value: ’src/engine/SCons/__init__.py

ae4de9ab2249be220b6658a514e...

20

Module SCons.Action

2 Module SCons.Action

SCons.Action

This encapsulates information about executing any sort of action that can build one or more target Nodes
(typically files) from one or more source Nodes (also typically files) given a specific Environment.

The base class here is ActionBase. The base class supplies just a few OO utility methods and some generic
methods for displaying information about an Action in response to the various commands that control
printing.

A second-level base class is _ActionAction. This extends ActionBase by providing the methods that can be
used to show and perform an action. True Action objects will subclass _ActionAction; Action factory class
objects will subclass ActionBase.

The heavy lifting is handled by subclasses for the different types of actions we might execute:

CommandAction CommandGeneratorAction FunctionAction ListAction

The subclasses supply the following public interface methods used by other modules:

__call__() THE public interface, "calling" an Action object executes the command or Python
function. This also takes care of printing a pre-substitution command for debugging pur-
poses.

get_contents() Fetches the "contents" of an Action for signature calculation plus the varlist.
This is what gets MD5 checksummed to decide if a target needs to be rebuilt because its
action changed.

genstring() Returns a string representation of the Action without command substitution, but
allows a CommandGeneratorAction to generate the right action based on the specified tar-
get, source and env. This is used by the Signature subsystem (through the Executor) to
obtain an (imprecise) representation of the Action operation for informative purposes.

Subclasses also supply the following methods for internal use within this module:

__str__() Returns a string approximation of the Action; no variable substitution is per-
formed.

execute() The internal method that really, truly, actually handles the execution of a command
or Python function. This is used so that the __call__() methods can take care of displaying
any pre-substitution representations, and then execute an action without worrying about
the specific Actions involved.

get_presig() Fetches the "contents" of a subclass for signature calculation. The varlist is added
to this to produce the Action’s contents. TODO(?): Change this to always return ascii/bytes
and not unicode (or py3 strings)

strfunction() Returns a substituted string representation of the Action. This is used by the
_ActionAction.show() command to display the command/function that will be executed to
generate the target(s).

There is a related independent ActionCaller class that looks like a regular Action, and which serves as a
wrapper for arbitrary functions that we want to let the user specify the arguments to now, but actually
execute later (when an out-of-date check determines that it’s needed to be executed, for example). Objects

21

Class ActionBase Module SCons.Action

of this class are returned by an ActionFactory class that provides a __call__() method as a convenient way
for wrapping up the functions.

2.1 Functions

rfile(n)

default_exitstatfunc(s)

Action(act, *args, **kw)

A factory for action objects.

get_default_ENV(env)

A fiddlin’ little function that has an ’import SCons.Environment’ which can’t be moved to
the top level without creating an import loop. Since this import creates a local variable
named ’SCons’, it blocks access to the global variable, so we move it here to prevent
complaints about local variables being used uninitialized.

2.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Action.py

e724ae812eb96f4858a132f5b8c76...

print_actions Value: 1

execute_actions Value: 1

print_actions_presub Value: 0

ACTION_SIGNATURE_PIC-
KLE_PROTOCOL

Value: 1

strip_quotes Value: re.compile(r’^[\’"](.*)[\’"]$’)

default_ENV Value: None

__package__ Value: ’SCons’

2.3 Class ActionBase

object

SCons.Action.ActionBase

Known Subclasses: SCons.Action._ActionAction, SCons.Action.CommandGeneratorAction, SCons.Action.ListAction

Base class for all types of action objects that can be held by other objects (Builders, Executors, etc.) This
provides the common methods for manipulating and combining those actions.

22

Class ActionBase Module SCons.Action

2.3.1 Methods

__eq__(self, other)

no_batch_key(self, env, target, source)

batch_key(self, env, target, source)

genstring(self, target, source, env)

get_contents(self, target, source, env)

__add__(self, other)

__radd__(self, other)

presub_lines(self, env)

get_varlist(self, target, source, env, executor=None)

get_targets(self, env, executor)

Returns the type of targets ($TARGETS, $CHANGED_TARGETS) used by this action.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(),
__new__(), __reduce__(), __reduce_ex__(), __repr__(), __setattr__(),
__sizeof__(), __str__(), __subclasshook__()

2.3.2 Properties

Name Description
Inherited from object
__class__

23

Class CommandAction Module SCons.Action

2.4 Class CommandAction

object

SCons.Action.ActionBase

SCons.Action._ActionAction

SCons.Action.CommandAction

Known Subclasses: SCons.Action.LazyAction

Class for command-execution actions.

2.4.1 Methods

__init__(self, cmd, **kw)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

process(self, target, source, env, executor=None)

strfunction(self, target, source, env, executor=None)

execute(self, target, source, env, executor=None)

Execute a command action.

This will handle lists of commands as well as individual commands, because
construction variable substitution may turn a single "command" into a list.
This means that this class can actually handle lists of commands, even though
that’s not how we use it externally.

24

Class CommandGeneratorAction Module SCons.Action

get_presig(self, target, source, env, executor=None)

Return the signature contents of this action’s command line.

This strips $(-$) and everything in between the string, since those parts don’t
affect signatures.

get_implicit_deps(self, target, source, env, executor=None)

Inherited from SCons.Action._ActionAction

__call__(), print_cmd_line()

Inherited from SCons.Action.ActionBase(Section 2.3)

__add__(), __eq__(), __radd__(), batch_key(), genstring(), get_contents(),
get_targets(), get_varlist(), no_batch_key(), presub_lines()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__subclasshook__()

2.4.2 Properties

Name Description
Inherited from object
__class__

2.5 Class CommandGeneratorAction

object

SCons.Action.ActionBase

SCons.Action.CommandGeneratorAction

Known Subclasses: SCons.Action.LazyAction

Class for command-generator actions.

25

Class CommandGeneratorAction Module SCons.Action

2.5.1 Methods

__init__(self, generator, kw)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

batch_key(self, env, target, source)

Overrides: SCons.Action.ActionBase.batch_key

genstring(self, target, source, env, executor=None)

Overrides: SCons.Action.ActionBase.genstring

__call__(self, target, source, env, exitstatfunc=<class

’SCons.Action._null’>, presub=<class ’SCons.Action._null’>,
show=<class ’SCons.Action._null’>, execute=<class

’SCons.Action._null’>, chdir=<class ’SCons.Action._null’>,
executor=None)

get_presig(self, target, source, env, executor=None)

Return the signature contents of this action’s command line.

This strips $(-$) and everything in between the string, since those parts don’t
affect signatures.

get_implicit_deps(self, target, source, env, executor=None)

get_varlist(self, target, source, env, executor=None)

Overrides: SCons.Action.ActionBase.get_varlist

get_targets(self, env, executor)

Returns the type of targets ($TARGETS, $CHANGED_TARGETS) used by
this action. Overrides: SCons.Action.ActionBase.get_targets extit(inherited
documentation)

26

Class LazyAction Module SCons.Action

Inherited from SCons.Action.ActionBase(Section 2.3)

__add__(), __eq__(), __radd__(), get_contents(), no_batch_key(), presub_lines()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__subclasshook__()

2.5.2 Properties

Name Description
Inherited from object
__class__

2.6 Class LazyAction

object

SCons.Action.ActionBase

SCons.Action.CommandGeneratorAction

object

SCons.Action.ActionBase

SCons.Action._ActionAction

SCons.Action.CommandAction

SCons.Action.LazyAction

A LazyAction is a kind of hybrid generator and command action for strings of the form
"$VAR". These strings normally expand to other strings (think "$CCCOM" to "$CC -c -o
$TARGET $SOURCE"), but we also want to be able to replace them with functions in the
construction environment. Consequently, we want lazy evaluation and creation of an Action
in the case of the function, but that’s overkill in the more normal case of expansion to other
strings.

So we do this with a subclass that’s both a generator and a command action. The overridden
methods all do a quick check of the construction variable, and if it’s a string we just call the
corresponding CommandAction method to do the heavy lifting. If not, then we call the same-

27

Class LazyAction Module SCons.Action

named CommandGeneratorAction method. The CommandGeneratorAction methods work
by using the overridden _generate() method, that is, our own way of handling "generation"
of an action based on what’s in the construction variable.

2.6.1 Methods

__init__(self, var, kw)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

get_parent_class(self, env)

__call__(self, target, source, env, *args, **kw)

Overrides: SCons.Action._ActionAction.__call__

get_presig(self, target, source, env)

Return the signature contents of this action’s command line.

This strips $(-$) and everything in between the string, since those parts don’t
affect signatures. Overrides: SCons.Action.CommandAction.get_presig
extit(inherited documentation)

get_varlist(self, target, source, env, executor=None)

Overrides: SCons.Action.ActionBase.get_varlist

Inherited from SCons.Action.CommandGeneratorAction(Section 2.5)

__str__(), batch_key(), genstring(), get_implicit_deps(), get_targets()

Inherited from SCons.Action.CommandAction(Section 2.4)

execute(), process(), strfunction()

Inherited from SCons.Action._ActionAction

print_cmd_line()

Inherited from SCons.Action.ActionBase(Section 2.3)

__add__(), __eq__(), __radd__(), get_contents(), no_batch_key(), presub_lines()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),

28

Class FunctionAction Module SCons.Action

__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__subclasshook__()

2.6.2 Properties

Name Description
Inherited from object
__class__

2.7 Class FunctionAction

object

SCons.Action.ActionBase

SCons.Action._ActionAction

SCons.Action.FunctionAction

Class for Python function actions.

2.7.1 Methods

__init__(self, execfunction, kw)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

function_name(self)

strfunction(self, target, source, env, executor=None)

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

execute(self, target, source, env, executor=None)

29

Class ListAction Module SCons.Action

get_presig(self, target, source, env)

Return the signature contents of this callable action.

get_implicit_deps(self, target, source, env)

Inherited from SCons.Action._ActionAction

__call__(), print_cmd_line()

Inherited from SCons.Action.ActionBase(Section 2.3)

__add__(), __eq__(), __radd__(), batch_key(), genstring(), get_contents(),
get_targets(), get_varlist(), no_batch_key(), presub_lines()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__subclasshook__()

2.7.2 Properties

Name Description
Inherited from object
__class__

2.8 Class ListAction

object

SCons.Action.ActionBase

SCons.Action.ListAction

Class for lists of other actions.

30

Class ListAction Module SCons.Action

2.8.1 Methods

__init__(self, actionlist)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

genstring(self, target, source, env)

Overrides: SCons.Action.ActionBase.genstring

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

presub_lines(self, env)

Overrides: SCons.Action.ActionBase.presub_lines

get_presig(self, target, source, env)

Return the signature contents of this action list.

Simple concatenation of the signatures of the elements.

__call__(self, target, source, env, exitstatfunc=<class

’SCons.Action._null’>, presub=<class ’SCons.Action._null’>,
show=<class ’SCons.Action._null’>, execute=<class

’SCons.Action._null’>, chdir=<class ’SCons.Action._null’>,
executor=None)

get_implicit_deps(self, target, source, env)

get_varlist(self, target, source, env, executor=None)

Overrides: SCons.Action.ActionBase.get_varlist

Inherited from SCons.Action.ActionBase(Section 2.3)

__add__(), __eq__(), __radd__(), batch_key(), get_contents(), get_targets(),
no_batch_key()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),

31

Class ActionCaller Module SCons.Action

__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__subclasshook__()

2.8.2 Properties

Name Description
Inherited from object
__class__

2.9 Class ActionCaller

object

SCons.Action.ActionCaller

A class for delaying calling an Action function with specific (positional and keyword) argu-
ments until the Action is actually executed.

This class looks to the rest of the world like a normal Action object, but what it’s really
doing is hanging on to the arguments until we have a target, source and env to use for the
expansion.

2.9.1 Methods

__init__(self, parent, args, kw)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

get_contents(self, target, source, env)

subst(self, s, target, source, env)

subst_args(self, target, source, env)

subst_kw(self, target, source, env)

__call__(self, target, source, env, executor=None)

strfunction(self, target, source, env)

32

Class ActionFactory Module SCons.Action

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__subclasshook__()

2.9.2 Properties

Name Description
Inherited from object
__class__

2.10 Class ActionFactory

object

SCons.Action.ActionFactory

A factory class that will wrap up an arbitrary function as an SCons-executable Action object.

The real heavy lifting here is done by the ActionCaller class. We just collect the (positional
and keyword) arguments that we’re called with and give them to the ActionCaller object we
create, so it can hang onto them until it needs them.

2.10.1 Methods

__init__(self, actfunc, strfunc, convert=<__builtin__.function

object>)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__call__(self, *args, **kw)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

33

Class ActionFactory Module SCons.Action

2.10.2 Properties

Name Description
Inherited from object
__class__

34

Module SCons.Builder

3 Module SCons.Builder

SCons.Builder

Builder object subsystem.

A Builder object is a callable that encapsulates information about how to execute actions to
create a target Node (file) from source Nodes (files), and how to create those dependencies
for tracking.

The main entry point here is the Builder() factory method. This provides a procedural
interface that creates the right underlying Builder object based on the keyword arguments
supplied and the types of the arguments.

The goal is for this external interface to be simple enough that the vast majority of users can
create new Builders as necessary to support building new types of files in their configurations,
without having to dive any deeper into this subsystem.

The base class here is BuilderBase. This is a concrete base class which does, in fact, represent
the Builder objects that we (or users) create.

There is also a proxy that looks like a Builder:

CompositeBuilder

This proxies for a Builder with an action that is actually a dictionary that
knows how to map file suffixes to a specific action. This is so that we can
invoke different actions (compilers, compile options) for different flavors
of source files.

Builders and their proxies have the following public interface methods used by other modules:

• __call__() THE public interface. Calling a Builder object (with the use
of internal helper methods) sets up the target and source dependencies,
appropriate mapping to a specific action, and the environment manipula-
tion necessary for overridden construction variable. This also takes care of
warning about possible mistakes in keyword arguments.

• add_emitter() Adds an emitter for a specific file suffix, used by some Tool
modules to specify that (for example) a yacc invocation on a .y can create
a .h and a .c file.

• add_action() Adds an action for a specific file suffix, heavily used by Tool
modules to add their specific action(s) for turning a source file into an
object file to the global static and shared object file Builders.

There are the following methods for internal use within this module:

• _execute() The internal method that handles the heavily lifting when a

35

Variables Module SCons.Builder

Builder is called. This is used so that the __call__() methods can set up
warning about possible mistakes in keyword-argument overrides, and then
execute all of the steps necessary so that the warnings only occur once.

• get_name() Returns the Builder’s name within a specific Environment, pri-
marily used to try to return helpful information in error messages.

• adjust_suffix()

• get_prefix()

• get_suffix()

• get_src_suffix()

• set_src_suffix() Miscellaneous stuff for handling the prefix and suffix ma-
nipulation we use in turning source file names into target file names.

3.1 Functions

match_splitext(path, suffixes=[])

Builder(**kw)

A factory for builder objects.

is_a_Builder(obj)

"Returns True if the specified obj is one of our Builder classes.

The test is complicated a bit by the fact that CompositeBuilder is a proxy, not
a subclass of BuilderBase.

3.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Builder.py

e724ae812eb96f4858a132f5b8c7...

misleading_keywords Value: {’sources’: ’source’, ’targets’:

’target’}

__package__ Value: ’SCons’

36

Class DictCmdGenerator Module SCons.Builder

3.3 Class DictCmdGenerator

object

dict

collections.OrderedDict

SCons.Util.Selector

SCons.Builder.DictCmdGenerator

This is a callable class that can be used as a command generator function. It holds on to
a dictionary mapping file suffixes to Actions. It uses that dictionary to return the proper
action based on the file suffix of the source file.

3.3.1 Methods

__init__(self, dict=None, source_ext_match=1)

Initialize an ordered dictionary. The signature is the same as regular
dictionaries, but keyword arguments are not recommended because their
insertion order is arbitrary. Return Value

new empty dictionary

Overrides: object.__init__ extit(inherited documentation)

src_suffixes(self)

add_action(self, suffix, action)

Add a suffix-action pair to the mapping.

__call__(self, target, source, env, for_signature)

Overrides: SCons.Util.Selector.__call__

Inherited from collections.OrderedDict

__delitem__(), __eq__(), __iter__(), __ne__(), __reduce__(), __repr__(),
__reversed__(), __setitem__(), clear(), copy(), fromkeys(), items(), iteritems(),
iterkeys(), itervalues(), keys(), pop(), popitem(), setdefault(), update(), values(),
viewitems(), viewkeys(), viewvalues()

37

Class CallableSelector Module SCons.Builder

Inherited from dict

__cmp__(), __contains__(), __ge__(), __getattribute__(), __getitem__(),
__gt__(), __le__(), __len__(), __lt__(), __new__(), __sizeof__(), get(),
has_key()

Inherited from object

__delattr__(), __format__(), __reduce_ex__(), __setattr__(), __str__(),
__subclasshook__()

3.3.2 Properties

Name Description
Inherited from object
__class__

3.3.3 Class Variables

Name Description
Inherited from dict
__hash__

3.4 Class CallableSelector

object

dict

collections.OrderedDict

SCons.Util.Selector

SCons.Builder.CallableSelector

A callable dictionary that will, in turn, call the value it finds if it can.

3.4.1 Methods

__call__(self, env, source)

Overrides: SCons.Util.Selector.__call__

38

Class DictEmitter Module SCons.Builder

Inherited from collections.OrderedDict

__delitem__(), __eq__(), __init__(), __iter__(), __ne__(), __reduce__(),
__repr__(), __reversed__(), __setitem__(), clear(), copy(), fromkeys(), items(),
iteritems(), iterkeys(), itervalues(), keys(), pop(), popitem(), setdefault(), update(),
values(), viewitems(), viewkeys(), viewvalues()

Inherited from dict

__cmp__(), __contains__(), __ge__(), __getattribute__(), __getitem__(),
__gt__(), __le__(), __len__(), __lt__(), __new__(), __sizeof__(), get(),
has_key()

Inherited from object

__delattr__(), __format__(), __reduce_ex__(), __setattr__(), __str__(),
__subclasshook__()

3.4.2 Properties

Name Description
Inherited from object
__class__

3.4.3 Class Variables

Name Description
Inherited from dict
__hash__

3.5 Class DictEmitter

object

dict

collections.OrderedDict

SCons.Util.Selector

SCons.Builder.DictEmitter

A callable dictionary that maps file suffixes to emitters. When called, it finds the right
emitter in its dictionary for the suffix of the first source file, and calls that emitter to get

39

Class DictEmitter Module SCons.Builder

the right lists of targets and sources to return. If there’s no emitter for the suffix in its
dictionary, the original target and source are returned.

3.5.1 Methods

__call__(self, target, source, env)

Overrides: SCons.Util.Selector.__call__

Inherited from collections.OrderedDict

__delitem__(), __eq__(), __init__(), __iter__(), __ne__(), __reduce__(),
__repr__(), __reversed__(), __setitem__(), clear(), copy(), fromkeys(), items(),
iteritems(), iterkeys(), itervalues(), keys(), pop(), popitem(), setdefault(), update(),
values(), viewitems(), viewkeys(), viewvalues()

Inherited from dict

__cmp__(), __contains__(), __ge__(), __getattribute__(), __getitem__(),
__gt__(), __le__(), __len__(), __lt__(), __new__(), __sizeof__(), get(),
has_key()

Inherited from object

__delattr__(), __format__(), __reduce_ex__(), __setattr__(), __str__(),
__subclasshook__()

3.5.2 Properties

Name Description
Inherited from object
__class__

3.5.3 Class Variables

Name Description
Inherited from dict
__hash__

40

Class ListEmitter Module SCons.Builder

3.6 Class ListEmitter

object

_abcoll.Sized

object

_abcoll.Iterable

object

_abcoll.Container

_abcoll.Sequence

_abcoll.MutableSequence

UserList.UserList

SCons.Builder.ListEmitter

A callable list of emitters that calls each in sequence, returning the result.

3.6.1 Methods

__call__(self, target, source, env)

Inherited from UserList.UserList

__add__(), __cmp__(), __contains__(), __delitem__(), __delslice__(),
__eq__(), __ge__(), __getitem__(), __getslice__(), __gt__(), __iadd__(),
__imul__(), __init__(), __le__(), __len__(), __lt__(), __mul__(), __ne__(),
__radd__(), __repr__(), __rmul__(), __setitem__(), __setslice__(), ap-
pend(), count(), extend(), index(), insert(), pop(), remove(), reverse(), sort()

Inherited from _abcoll.Sequence

__iter__(), __reversed__()

Inherited from _abcoll.Sized

__subclasshook__()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),

41

Class OverrideWarner Module SCons.Builder

__reduce_ex__(), __setattr__(), __sizeof__(), __str__()

3.6.2 Properties

Name Description
Inherited from object
__class__

3.6.3 Class Variables

Name Description
Inherited from UserList.UserList
__abstractmethods__, __hash__

3.7 Class OverrideWarner

UserDict.UserDict

SCons.Builder.OverrideWarner

A class for warning about keyword arguments that we use as overrides in a Builder call.

This class exists to handle the fact that a single Builder call can actually invoke multiple
builders. This class only emits the warnings once, no matter how many Builders are invoked.

3.7.1 Methods

__init__(self, dict)

Overrides: UserDict.UserDict.__init__

warn(self)

Inherited from UserDict.UserDict

__cmp__(), __contains__(), __delitem__(), __getitem__(), __len__(),
__repr__(), __setitem__(), clear(), copy(), fromkeys(), get(), has_key(), items(),
iteritems(), iterkeys(), itervalues(), keys(), pop(), popitem(), setdefault(), update(),
values()

3.7.2 Class Variables

42

Class EmitterProxy Module SCons.Builder

Name Description
Inherited from UserDict.UserDict
__hash__

3.8 Class EmitterProxy

object

SCons.Builder.EmitterProxy

This is a callable class that can act as a Builder emitter. It holds on to a string that is a key
into an Environment dictionary, and will look there at actual build time to see if it holds a
callable. If so, we will call that as the actual emitter.

3.8.1 Methods

__init__(self, var)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__call__(self, target, source, env)

__eq__(self, other)

__lt__(self, other)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

3.8.2 Properties

Name Description
Inherited from object
__class__

43

Class BuilderBase Module SCons.Builder

3.9 Class BuilderBase

object

SCons.Builder.BuilderBase

Base class for Builders, objects that create output nodes (files) from input nodes (files).

3.9.1 Methods

__init__(self, action=None, prefix=’’, suffix=’’, src_suffix=’’,
target_factory=None, source_factory=None, target_scanner=None,
source_scanner=None, emitter=None, multi=0, env=None, single_source=0,
name=None, chdir=<class ’SCons.Builder._Null’>, is_explicit=1,
src_builder=None, ensure_suffix=False, **overrides)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__nonzero__(self)

__bool__(self)

get_name(self, env)

Attempts to get the name of the Builder.

Look at the BUILDERS variable of env, expecting it to be a dictionary
containing this Builder, and return the key of the dictionary. If there’s no key,
then return a directly-configured name (if there is one) or the name of the
class (by default).

__eq__(self, other)

splitext(self, path, env=None)

__call__(self, env, target=None, source=None, chdir=<class

’SCons.Builder._Null’>, **kw)

adjust_suffix(self, suff)

44

Class BuilderBase Module SCons.Builder

get_prefix(self, env, sources=[])

set_suffix(self, suffix)

get_suffix(self, env, sources=[])

set_src_suffix(self, src_suffix)

get_src_suffix(self, env)

Get the first src_suffix in the list of src_suffixes.

add_emitter(self, suffix, emitter)

Add a suffix-emitter mapping to this Builder.

This assumes that emitter has been initialized with an appropriate dictionary
type, and will throw a TypeError if not, so the caller is responsible for knowing
that this is an appropriate method to call for the Builder in question.

add_src_builder(self, builder)

Add a new Builder to the list of src_builders.

This requires wiping out cached values so that the computed lists of source
suffixes get re-calculated.

src_builder_sources(self, env, source, overwarn={})

get_src_builders(self, env)

Returns the list of source Builders for this Builder.

This exists mainly to look up Builders referenced as strings in the ’BUILDER’
variable of the construction environment and cache the result.

45

Class CompositeBuilder Module SCons.Builder

subst_src_suffixes(self, env)

The suffix list may contain construction variable expansions, so we have to
evaluate the individual strings. To avoid doing this over and over, we memoize
the results for each construction environment.

src_suffixes(self, env)

Returns the list of source suffixes for all src_builders of this Builder.

This is essentially a recursive descent of the src_builder "tree." (This value
isn’t cached because there may be changes in a src_builder many levels deep
that we can’t see.)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

3.9.2 Properties

Name Description
Inherited from object
__class__

3.10 Class CompositeBuilder

object

SCons.Util.Proxy

SCons.Builder.CompositeBuilder

A Builder Proxy whose main purpose is to always have a DictCmdGenerator as its action,
and to provide access to the DictCmdGenerator’s add_action() method.

46

Class CompositeBuilder Module SCons.Builder

3.10.1 Methods

__init__(self, builder, cmdgen)

Wrap an object as a Proxy object Overrides: object.__init__ extit(inherited
documentation)

__call__(...)

A Python Descriptor class that delegates attribute fetches to an underlying
wrapped subject of a Proxy. Typical use:

class Foo(Proxy): __str__ = Delegate(’__str__’)

add_action(self, suffix, action)

Inherited from SCons.Util.Proxy(Section 48.5)

__eq__(), __getattr__(), get()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

3.10.2 Properties

Name Description
Inherited from object
__class__

47

Class CacheDir Module SCons.CacheDir

4 Module SCons.CacheDir

CacheDir support

4.1 Functions

CacheRetrieveFunc(target, source, env)

CacheRetrieveString(target, source, env)

CachePushFunc(target, source, env)

4.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/CacheDir.py

e724ae812eb96f4858a132f5b8c...

__doc__ Value: ...

cache_enabled Value: True

cache_debug Value: False

cache_force Value: False

cache_show Value: False

cache_readonly Value: False

CacheRetrieve Value: <SCons.Action.FunctionAction

object>

CacheRetrieveSilent Value: <SCons.Action.FunctionAction

object>

CachePush Value: <SCons.Action.FunctionAction

object>

warned Value: {}

__package__ Value: ’SCons’

4.3 Class CacheDir

object

SCons.CacheDir.CacheDir

48

Class CacheDir Module SCons.CacheDir

4.3.1 Methods

__init__(self, path)

Initialize a CacheDir object.

The cache configuration is stored in the object. It is read from the config file in
the supplied path if one exists, if not the config file is created and the default
config is written, as well as saved in the object. Overrides: object.__init__

CacheDebug(self, fmt, target, cachefile)

is_enabled(self)

is_readonly(self)

cachepath(self, node)

retrieve(self, node)

This method is called from multiple threads in a parallel build, so only do
thread safe stuff here. Do thread unsafe stuff in built().

Note that there’s a special trick here with the execute flag (one that’s not
normally done for other actions). Basically if the user requested a no_exec
(-n) build, then SCons.Action.execute_actions is set to 0 and when any action
is called, it does its showing but then just returns zero instead of actually
calling the action execution operation. The problem for caching is that if the
file does NOT exist in cache then the CacheRetrieveString won’t return
anything to show for the task, but the Action.__call__ won’t call
CacheRetrieveFunc; instead it just returns zero, which makes the code below
think that the file was successfully retrieved from the cache, therefore it
doesn’t do any subsequent building. However, the CacheRetrieveString didn’t
print anything because it didn’t actually exist in the cache, and no more build
actions will be performed, so the user just sees nothing. The fix is to tell
Action.__call__ to always execute the CacheRetrieveFunc and then have the
latter explicitly check SCons.Action.execute_actions itself.

push(self, node)

49

Class CacheDir Module SCons.CacheDir

push_if_forced(self, node)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

4.3.2 Properties

Name Description
hit_ratio
misses
Inherited from object
__class__

50

Module SCons.Conftest

5 Module SCons.Conftest

SCons.Conftest

Autoconf-like configuration support; low level implementation of tests.

5.1 Functions

CheckBuilder(context, text=None, language=None)

Configure check to see if the compiler works. Note that this uses the current
value of compiler and linker flags, make sure $CFLAGS, $CPPFLAGS and
$LIBS are set correctly. "language" should be "C" or "C++" and is used to
select the compiler. Default is "C". "text" may be used to specify the code to
be build. Returns an empty string for success, an error message for failure.

CheckCC(context)

Configure check for a working C compiler.

This checks whether the C compiler, as defined in the $CC construction
variable, can compile a C source file. It uses the current $CCCOM value too,
so that it can test against non working flags.

CheckSHCC(context)

Configure check for a working shared C compiler.

This checks whether the C compiler, as defined in the $SHCC construction
variable, can compile a C source file. It uses the current $SHCCCOM value
too, so that it can test against non working flags.

51

Functions Module SCons.Conftest

CheckCXX(context)

Configure check for a working CXX compiler.

This checks whether the CXX compiler, as defined in the $CXX construction
variable, can compile a CXX source file. It uses the current $CXXCOM value
too, so that it can test against non working flags.

CheckSHCXX(context)

Configure check for a working shared CXX compiler.

This checks whether the CXX compiler, as defined in the $SHCXX
construction variable, can compile a CXX source file. It uses the current
$SHCXXCOM value too, so that it can test against non working flags.

CheckFunc(context, function_name, header=None, language=None)

Configure check for a function "function_name". "language" should be "C" or
"C++" and is used to select the compiler. Default is "C". Optional "header"
can be defined to define a function prototype, include a header file or anything
else that comes before main(). Sets HAVE_function_name in context.havedict
according to the result. Note that this uses the current value of compiler and
linker flags, make sure $CFLAGS, $CPPFLAGS and $LIBS are set correctly.
Returns an empty string for success, an error message for failure.

CheckHeader(context, header_name, header=None, language=None,
include_quotes=None)

Configure check for a C or C++ header file "header_name". Optional "header"
can be defined to do something before including the header file (unusual,
supported for consistency). "language" should be "C" or "C++" and is used to
select the compiler. Default is "C". Sets HAVE_header_name in
context.havedict according to the result. Note that this uses the current value
of compiler and linker flags, make sure $CFLAGS and $CPPFLAGS are set
correctly. Returns an empty string for success, an error message for failure.

52

Functions Module SCons.Conftest

CheckType(context, type_name, fallback=None, header=None,
language=None)

Configure check for a C or C++ type "type_name". Optional "header" can be
defined to include a header file. "language" should be "C" or "C++" and is
used to select the compiler. Default is "C". Sets HAVE_type_name in
context.havedict according to the result. Note that this uses the current value
of compiler and linker flags, make sure $CFLAGS, $CPPFLAGS and $LIBS
are set correctly. Returns an empty string for success, an error message for
failure.

CheckTypeSize(context, type_name, header=None, language=None,
expect=None)

This check can be used to get the size of a given type, or to check whether the
type is of expected size.

Arguments:

• type (str) the type to check

• includes (sequence) list of headers to include in the test code
before testing the type

• language (str) ’C’ or ’C++’

• expect (int) if given, will test wether the type has the given number
of bytes. If not given, will automatically find the size.

Returns:

status (int) 0 if the check failed, or the found size of the type if the
check succeeded.

53

Functions Module SCons.Conftest

CheckDeclaration(context, symbol, includes=None, language=None)

Checks whether symbol is declared.

Use the same test as autoconf, that is test whether the symbol is defined as a
macro or can be used as an r-value.

Arguments:

symbol (str) the symbol to check

includes (str) Optional "header" can be defined to include a header file.

language (str) only C and C++ supported.

Returns:

status (bool) True if the check failed, False if succeeded.

CheckLib(context, libs, func_name=None, header=None, extra_libs=None,
call=None, language=None, autoadd=1, append=True)

Configure check for a C or C++ libraries "libs". Searches through the list of
libraries, until one is found where the test succeeds. Tests if "func_name" or
"call" exists in the library. Note: if it exists in another library the test succeeds
anyway! Optional "header" can be defined to include a header file. If not given
a default prototype for "func_name" is added. Optional "extra_libs" is a list
of library names to be added after "lib_name" in the build command. To be
used for libraries that "lib_name" depends on. Optional "call" replaces the call
to "func_name" in the test code. It must consist of complete C statements,
including a trailing ";". Both "func_name" and "call" arguments are optional,
and in that case, just linking against the libs is tested. "language" should be
"C" or "C++" and is used to select the compiler. Default is "C". Note that this
uses the current value of compiler and linker flags, make sure $CFLAGS,
$CPPFLAGS and $LIBS are set correctly. Returns an empty string for
success, an error message for failure.

54

Variables Module SCons.Conftest

CheckProg(context, prog_name)

Configure check for a specific program.

Check whether program prog_name exists in path. If it is found, returns the
path for it, otherwise returns None.

5.2 Variables

Name Description
LogInputFiles Value: 0

LogErrorMessages Value: 0

__package__ Value: ’SCons’

55

Module SCons.Debug

6 Module SCons.Debug

SCons.Debug

Code for debugging SCons internal things. Shouldn’t be needed by most users. Quick
shortcuts:

from SCons.Debug import caller_trace caller_trace()

6.1 Functions

logInstanceCreation(instance, name=None)

string_to_classes(s)

fetchLoggedInstances(classes=’*’)

countLoggedInstances(classes, file=<epydoc.docintrospecter._DevNull

object>)

listLoggedInstances(classes, file=<epydoc.docintrospecter._DevNull

object>)

dumpLoggedInstances(classes, file=<epydoc.docintrospecter._DevNull

object>)

memory()

caller_stack()

caller_trace(back=0)

Trace caller stack and save info into global dicts, which are printed
automatically at the end of SCons execution.

dump_caller_counts(file=<epydoc.docintrospecter._DevNull object>)

func_shorten(func_tuple)

56

Variables Module SCons.Debug

Trace(msg, file=None, mode=’w’, tstamp=None)

Write a trace message to a file. Whenever a file is specified, it becomes the
default for the next call to Trace().

6.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Debug.py

e724ae812eb96f4858a132f5b8c769...

track_instances Value: False

tracked_classes Value: {}

caller_bases Value: {}

caller_dicts Value: {}

shorten_list Value: [(’/scons/SCons/’, 1),

(’/src/engine/SCons/’, 1), (’/usr/...

TraceFP Value: {}

TraceDefault Value: ’/dev/tty’

TimeStampDefault Value: None

StartTime Value: 1563676347.54

PreviousTime Value: 1563676347.54

__package__ Value: ’SCons’

57

Module SCons.Defaults

7 Module SCons.Defaults

SCons.Defaults

Builders and other things for the local site. Here’s where we’ll duplicate the functionality of
autoconf until we move it into the installation procedure or use something like qmconf.

The code that reads the registry to find MSVC components was borrowed from distu-
tils.msvccompiler.

7.1 Functions

DefaultEnvironment(*args, **kw)

Initial public entry point for creating the default construction Environment.

After creating the environment, we overwrite our name (DefaultEnvironment)
with the _fetch_DefaultEnvironment() function, which more efficiently
returns the initialized default construction environment without checking for
its existence.

(This function still exists with its _default_check because someone else (cough
Script/__init__.py cough) may keep a reference to this function. So we can’t
use the fully functional idiom of having the name originally be a something
that only creates the construction environment and then overwrites the name.)

StaticObjectEmitter(target, source, env)

SharedObjectEmitter(target, source, env)

SharedFlagChecker(source, target, env)

get_paths_str(dest)

chmod_func(dest, mode)

chmod_strfunc(dest, mode)

58

Variables Module SCons.Defaults

copy_func(dest, src, symlinks=True)

If symlinks (is true), then a symbolic link will be shallow copied and recreated
as a symbolic link; otherwise, copying a symbolic link will be equivalent to
copying the symbolic link’s final target regardless of symbolic link depth.

delete_func(dest, must_exist=0)

delete_strfunc(dest, must_exist=0)

mkdir_func(dest)

move_func(dest, src)

touch_func(dest)

processDefines(defs)

process defines, resolving strings, lists, dictionaries, into a list of strings

7.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Defaults.py

e724ae812eb96f4858a132f5b8c...

SharedCheck Value: <SCons.Action.FunctionAction

object>

CScan Value: <SCons.Scanner.ClassicCPP object>

DScan Value: <SCons.Scanner.D.D object>

LaTeXScan Value: <SCons.Scanner.LaTeX.LaTeX

object>

ObjSourceScan Value: <SCons.Scanner.Base object>

ProgScan Value: <SCons.Scanner.Base object>

DirScanner Value: <SCons.Scanner.Base object>

DirEntryScanner Value: <SCons.Scanner.Base object>

CAction Value: <SCons.Action.LazyAction object>

ShCAction Value: <SCons.Action.LazyAction object>

CXXAction Value: <SCons.Action.LazyAction object>

ShCXXAction Value: <SCons.Action.LazyAction object>

continued on next page

59

Class NullCmdGenerator Module SCons.Defaults

Name Description
DAction Value: <SCons.Action.LazyAction object>

ShDAction Value: <SCons.Action.LazyAction object>

ASAction Value: <SCons.Action.LazyAction object>

ASPPAction Value: <SCons.Action.LazyAction object>

LinkAction Value: <SCons.Action.LazyAction object>

ShLinkAction Value: <SCons.Action.LazyAction object>

LdModuleLinkAction Value: <SCons.Action.LazyAction object>

permission_dic Value: {’g’: {’r’: 32, ’w’: 16, ’x’:

8}, ’o’: {’r’: 4, ’w’: 2, ’...

Chmod Value: <SCons.Action.ActionFactory

object>

Copy Value: <SCons.Action.ActionFactory

object>

Delete Value: <SCons.Action.ActionFactory

object>

Mkdir Value: <SCons.Action.ActionFactory

object>

Move Value: <SCons.Action.ActionFactory

object>

Touch Value: <SCons.Action.ActionFactory

object>

ConstructionEnvironment Value: {’BUILDERS’: {}, ’CONFIGUREDIR’:

’#/.sconf_temp’, ’CONFIG...

__package__ Value: ’SCons’

7.3 Class NullCmdGenerator

object

SCons.Defaults.NullCmdGenerator

This is a callable class that can be used in place of other command generators if you don’t
want them to do anything.

The __call__ method for this class simply returns the thing you instantiated it with.

Example usage: env["DO_NOTHING"] = NullCmdGenerator env["LINKCOM"] = "${DO_NOTHING(’$LINK
$SOURCES $TARGET’)}"

60

Class Variable_Method_Caller Module SCons.Defaults

7.3.1 Methods

__init__(self, cmd)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__call__(self, target, source, env, for_signature=None)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

7.3.2 Properties

Name Description
Inherited from object
__class__

7.4 Class Variable_Method_Caller

object

SCons.Defaults.Variable_Method_Caller

A class for finding a construction variable on the stack and calling one of its methods.

We use this to support "construction variables" in our string eval()s that actually stand in
for methods--specifically, use of "RDirs" in call to _concat that should actually execute the
"TARGET.RDirs" method. (We used to support this by creating a little "build dictionary"
that mapped RDirs to the method, but this got in the way of Memoizing construction
environments, because we had to create new environment objects to hold the variables.)

7.4.1 Methods

__init__(self, variable, method)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

61

Class Variable_Method_Caller Module SCons.Defaults

__call__(self, *args, **kw)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

7.4.2 Properties

Name Description
Inherited from object
__class__

62

Module SCons.Environment

8 Module SCons.Environment

SCons.Environment

Base class for construction Environments. These are the primary objects used to communi-
cate dependency and construction information to the build engine.

Keyword arguments supplied when the construction Environment is created are construction
variables used to initialize the Environment

8.1 Functions

alias_builder(env, target, source)

apply_tools(env, tools, toolpath)

copy_non_reserved_keywords(dict)

is_valid_construction_var(varstr)

Return if the specified string is a legitimate construction variable.

default_decide_source(dependency, target, prev_ni, repo_node=None)

default_decide_target(dependency, target, prev_ni, repo_node=None)

default_copy_from_cache(src, dst)

63

Class MethodWrapper Module SCons.Environment

NoSubstitutionProxy(subject)

An entry point for returning a proxy subclass instance that overrides the
subst*() methods so they don’t actually perform construction variable
substitution. This is specifically intended to be the shim layer in between
global function calls (which don’t want construction variable substitution) and
the DefaultEnvironment() (which would substitute variables if left to its own
devices).

We have to wrap this in a function that allows us to delay definition of the
class until it’s necessary, so that when it subclasses Environment it will pick
up whatever Environment subclass the wrapper interface might have assigned
to SCons.Environment.Environment.

8.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Environment.py

e724ae812eb96f4858a132f5...

CleanTargets Value: {}

CalculatorArgs Value: {}

AliasBuilder Value: <SCons.Builder.BuilderBase

object>

reserved_construction_va-
r_names

Value: [’CHANGED_SOURCES’,

’CHANGED_TARGETS’, ’SOURCE’,

’SOURCES...

future_reserved_construc-
tion_var_names

Value: []

__package__ Value: ’SCons’

8.3 Class MethodWrapper

object

SCons.Environment.MethodWrapper

Known Subclasses: SCons.Environment.BuilderWrapper

A generic Wrapper class that associates a method (which can actually be any callable) with
an object. As part of creating this MethodWrapper object an attribute with the specified
(by default, the name of the supplied method) is added to the underlying object. When

64

Class BuilderWrapper Module SCons.Environment

that new "method" is called, our __call__() method adds the object as the first argument,
simulating the Python behavior of supplying "self" on method calls.

We hang on to the name by which the method was added to the underlying base class so
that we can provide a method to "clone" ourselves onto a new underlying object being copied
(without which we wouldn’t need to save that info).

8.3.1 Methods

__init__(self, object, method, name=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__call__(self, *args, **kwargs)

clone(self, new_object)

Returns an object that re-binds the underlying "method" to the specified new
object.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

8.3.2 Properties

Name Description
Inherited from object
__class__

8.4 Class BuilderWrapper

object

SCons.Environment.MethodWrapper

SCons.Environment.BuilderWrapper

65

Class BuilderWrapper Module SCons.Environment

A MethodWrapper subclass that that associates an environment with a Builder.

This mainly exists to wrap the __call__() function so that all calls to Builders can have
their argument lists massaged in the same way (treat a lone argument as the source, treat
two arguments as target then source, make sure both target and source are lists) without
having to have cut-and-paste code to do it.

As a bit of obsessive backwards compatibility, we also intercept attempts to get or set the
"env" or "builder" attributes, which were the names we used before we put the common
functionality into the MethodWrapper base class. We’ll keep this around for a while in case
people shipped Tool modules that reached into the wrapper (like the Tool/qt.py module
does, or did). There shouldn’t be a lot attribute fetching or setting on these, so a little extra
work shouldn’t hurt.

8.4.1 Methods

__call__(self, target=None, source=<class

’SCons.Environment._Null’>, *args, **kw)

Overrides: SCons.Environment.MethodWrapper.__call__

__repr__(self)

repr(x) Overrides: object.__repr__ extit(inherited documentation)

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

__getattr__(self, name)

__setattr__(self, name, value)

x.__setattr__(’name’, value) <==> x.name = value Overrides:
object.__setattr__ extit(inherited documentation)

Inherited from SCons.Environment.MethodWrapper(Section 8.3)

__init__(), clone()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

66

Class BuilderDict Module SCons.Environment

8.4.2 Properties

Name Description
Inherited from object
__class__

8.5 Class BuilderDict

UserDict.UserDict

SCons.Environment.BuilderDict

This is a dictionary-like class used by an Environment to hold the Builders. We need to
do this because every time someone changes the Builders in the Environment’s BUILDERS
dictionary, we must update the Environment’s attributes.

8.5.1 Methods

__init__(self, dict, env)

Overrides: UserDict.UserDict.__init__

__semi_deepcopy__(self)

__setitem__(self, item, val)

Overrides: UserDict.UserDict.__setitem__

__delitem__(self, item)

Overrides: UserDict.UserDict.__delitem__

update(self, dict)

Overrides: UserDict.UserDict.update

Inherited from UserDict.UserDict

__cmp__(), __contains__(), __getitem__(), __len__(), __repr__(), clear(),
copy(), fromkeys(), get(), has_key(), items(), iteritems(), iterkeys(), itervalues(),
keys(), pop(), popitem(), setdefault(), values()

8.5.2 Class Variables

67

Class SubstitutionEnvironment Module SCons.Environment

Name Description
Inherited from UserDict.UserDict
__hash__

8.6 Class SubstitutionEnvironment

object

SCons.Environment.SubstitutionEnvironment

Known Subclasses: SCons.Environment.Base

Base class for different flavors of construction environments.

This class contains a minimal set of methods that handle construction variable expansion and
conversion of strings to Nodes, which may or may not be actually useful as a stand-alone class.
Which methods ended up in this class is pretty arbitrary right now. They’re basically the ones
which we’ve empirically determined are common to the different construction environment
subclasses, and most of the others that use or touch the underlying dictionary of construction
variables.

Eventually, this class should contain all the methods that we determine are necessary for
a "minimal" interface to the build engine. A full "native Python" SCons environment has
gotten pretty heavyweight with all of the methods and Tools and construction variables
we’ve jammed in there, so it would be nice to have a lighter weight alternative for interfaces
that don’t need all of the bells and whistles. (At some point, we’ll also probably rename this
class "Base," since that more reflects what we want this class to become, but because we’ve
released comments that tell people to subclass Environment.Base to create their own flavors
of construction environment, we’ll save that for a future refactoring when this class actually
becomes useful.)

8.6.1 Methods

__init__(self, **kw)

Initialization of an underlying SubstitutionEnvironment class. Overrides:
object.__init__

__eq__(self, other)

__delitem__(self, key)

68

Class SubstitutionEnvironment Module SCons.Environment

__getitem__(self, key)

__setitem__(self, key, value)

get(self, key, default=None)

Emulates the get() method of dictionaries.

has_key(self, key)

__contains__(self, key)

items(self)

arg2nodes(self, args, node_factory=<class ’SCons.Environment._Null’>,
lookup_list=<class ’SCons.Environment._Null’>, **kw)

gvars(self)

lvars(self)

subst(self, string, raw=0, target=None, source=None, conv=None,
executor=None)

Recursively interpolates construction variables from the Environment into the
specified string, returning the expanded result. Construction variables are
specified by a $ prefix in the string and begin with an initial underscore or
alphabetic character followed by any number of underscores or alphanumeric
characters. The construction variable names may be surrounded by curly
braces to separate the name from trailing characters.

subst_kw(self, kw, raw=0, target=None, source=None)

subst_list(self, string, raw=0, target=None, source=None, conv=None,
executor=None)

Calls through to SCons.Subst.scons_subst_list(). See the documentation for
that function.

69

Class SubstitutionEnvironment Module SCons.Environment

subst_path(self, path, target=None, source=None)

Substitute a path list, turning EntryProxies into Nodes and leaving Nodes
(and other objects) as-is.

subst_target_source(self, string, raw=0, target=None, source=None,
conv=None, executor=None)

Recursively interpolates construction variables from the Environment into the
specified string, returning the expanded result. Construction variables are
specified by a $ prefix in the string and begin with an initial underscore or
alphabetic character followed by any number of underscores or alphanumeric
characters. The construction variable names may be surrounded by curly
braces to separate the name from trailing characters.

backtick(self, command)

AddMethod(self, function, name=None)

Adds the specified function as a method of this construction environment with
the specified name. If the name is omitted, the default name is the name of
the function itself.

RemoveMethod(self, function)

Removes the specified function’s MethodWrapper from the added_methods
list, so we don’t re-bind it when making a clone.

70

Class SubstitutionEnvironment Module SCons.Environment

Override(self, overrides)

Produce a modified environment whose variables are overridden by the
overrides dictionaries. "overrides" is a dictionary that will override the
variables of this environment.

This function is much more efficient than Clone() or creating a new
Environment because it doesn’t copy the construction environment dictionary,
it just wraps the underlying construction environment, and doesn’t even create
a wrapper object if there are no overrides.

ParseFlags(self, *flags)

Parse the set of flags and return a dict with the flags placed in the appropriate
entry. The flags are treated as a typical set of command-line flags for a
GNU-like toolchain and used to populate the entries in the dict immediately
below. If one of the flag strings begins with a bang (exclamation mark), it is
assumed to be a command and the rest of the string is executed; the result of
that evaluation is then added to the dict.

MergeFlags(self, args, unique=1, dict=None)

Merge the dict in args into the construction variables of this env, or the
passed-in dict. If args is not a dict, it is converted into a dict using ParseFlags.
If unique is not set, the flags are appended rather than merged.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

8.6.2 Properties

Name Description
Inherited from object
__class__

71

Class Base Module SCons.Environment

8.7 Class Base

object

SCons.Environment.SubstitutionEnvironment

SCons.Environment.Base

Known Subclasses: SCons.Environment.OverrideEnvironment, SCons.Environment.Base

Base class for "real" construction Environments. These are the primary objects used to
communicate dependency and construction information to the build engine.

Keyword arguments supplied when the construction Environment is created are construction
variables used to initialize the Environment.

8.7.1 Methods

Action(self, *args, **kw)

AddPostAction(self, files, action)

AddPreAction(self, files, action)

Alias(self, target, source=[], action=None, **kw)

AlwaysBuild(self, *targets)

Append(self, **kw)

Append values to existing construction variables in an Environment.

72

Class Base Module SCons.Environment

AppendENVPath(self, name, newpath, envname=’ENV’, sep=’:’,
delete_existing=0)

Append path elements to the path ’name’ in the ’ENV’ dictionary for this
environment. Will only add any particular path once, and will normpath and
normcase all paths to help assure this. This can also handle the case where the
env variable is a list instead of a string.

If delete_existing is 0, a newpath which is already in the path will not be
moved to the end (it will be left where it is).

AppendUnique(self, delete_existing=0, **kw)

Append values to existing construction variables in an Environment, if they’re
not already there. If delete_existing is 1, removes existing values first, so
values move to end.

BuildDir(self, *args, **kw)

Builder(self, **kw)

CacheDir(self, path)

Clean(self, targets, files)

Clone(self, tools=[], toolpath=None, parse_flags=None, **kw)

Return a copy of a construction Environment. The copy is like a Python "deep
copy"--that is, independent copies are made recursively of each objects--except
that a reference is copied when an object is not deep-copyable (like a function).
There are no references to any mutable objects in the original Environment.

Command(self, target, source, action, **kw)

Builds the supplied target files from the supplied source files using the
supplied action. Action may be any type that the Builder constructor will
accept for an action.

73

Class Base Module SCons.Environment

Configure(self, *args, **kw)

Copy(self, *args, **kw)

Decider(self, function)

Depends(self, target, dependency)

Explicity specify that ’target’s depend on ’dependency’.

Detect(self, progs)

Return the first available program in progs.

Dictionary(self, *args)

Dir(self, name, *args, **kw)

Dump(self, key=None)

Using the standard Python pretty printer, return the contents of the scons
build environment as a string.

If the key passed in is anything other than None, then that will be used as an
index into the build environment dictionary and whatever is found there will
be fed into the pretty printer. Note that this key is case sensitive.

Entry(self, name, *args, **kw)

Environment(self, **kw)

Execute(self, action, *args, **kw)

Directly execute an action through an Environment

File(self, name, *args, **kw)

74

Class Base Module SCons.Environment

FindFile(self, file, dirs)

FindInstalledFiles(self)

returns the list of all targets of the Install and InstallAs Builder.

FindIxes(self, paths, prefix, suffix)

Search a list of paths for something that matches the prefix and suffix.

paths - the list of paths or nodes. prefix - construction variable for the prefix.
suffix - construction variable for the suffix.

FindSourceFiles(self, node=’.’)

returns a list of all source files.

Flatten(self, sequence)

GetBuildPath(self, files)

Glob(self, pattern, ondisk=True, source=False, strings=False,
exclude=None)

Ignore(self, target, dependency)

Ignore a dependency.

Literal(self, string)

Local(self, *targets)

NoCache(self, *targets)

Tags a target so that it will not be cached

75

Class Base Module SCons.Environment

NoClean(self, *targets)

Tags a target so that it will not be cleaned by -c

ParseConfig(self, command, function=None, unique=1)

Use the specified function to parse the output of the command in order to
modify the current environment. The ’command’ can be a string or a list of
strings representing a command and its arguments. ’Function’ is an optional
argument that takes the environment, the output of the command, and the
unique flag. If no function is specified, MergeFlags, which treats the output as
the result of a typical ’X-config’ command (i.e. gtk-config), will merge the
output into the appropriate variables.

ParseDepends(self, filename, must_exist=None, only_one=0)

Parse a mkdep-style file for explicit dependencies. This is completely abusable,
and should be unnecessary in the "normal" case of proper SCons configuration,
but it may help make the transition from a Make hierarchy easier for some
people to swallow. It can also be genuinely useful when using a tool that can
write a .d file, but for which writing a scanner would be too complicated.

Platform(self, platform)

Precious(self, *targets)

Prepend(self, **kw)

Prepend values to existing construction variables in an Environment.

76

Class Base Module SCons.Environment

PrependENVPath(self, name, newpath, envname=’ENV’, sep=’:’,
delete_existing=1)

Prepend path elements to the path ’name’ in the ’ENV’ dictionary for this
environment. Will only add any particular path once, and will normpath and
normcase all paths to help assure this. This can also handle the case where the
env variable is a list instead of a string.

If delete_existing is 0, a newpath which is already in the path will not be
moved to the front (it will be left where it is).

PrependUnique(self, delete_existing=0, **kw)

Prepend values to existing construction variables in an Environment, if they’re
not already there. If delete_existing is 1, removes existing values first, so
values move to front.

Pseudo(self, *targets)

PyPackageDir(self, modulename)

Replace(self, **kw)

Replace existing construction variables in an Environment with new
construction variables and/or values.

ReplaceIxes(self, path, old_prefix, old_suffix, new_prefix, new_suffix)

Replace old_prefix with new_prefix and old_suffix with new_suffix.

env - Environment used to interpolate variables. path - the path that will be
modified. old_prefix - construction variable for the old prefix. old_suffix -
construction variable for the old suffix. new_prefix - construction variable for
the new prefix. new_suffix - construction variable for the new suffix.

Repository(self, *dirs, **kw)

77

Class Base Module SCons.Environment

Requires(self, target, prerequisite)

Specify that ’prerequisite’ must be built before ’target’, (but ’target’ does not
actually depend on ’prerequisite’ and need not be rebuilt if it changes).

SConsignFile(self, name=’.sconsign’, dbm_module=None)

Scanner(self, *args, **kw)

SetDefault(self, **kw)

SideEffect(self, side_effect, target)

Tell scons that side_effects are built as side effects of building targets.

SourceCode(self, entry, builder)

Arrange for a source code builder for (part of) a tree.

SourceSignatures(self, type)

Split(self, arg)

This function converts a string or list into a list of strings or Nodes. This
makes things easier for users by allowing files to be specified as a white-space
separated list to be split.

The input rules are:

• A single string containing names separated by spaces. These will be
split apart at the spaces.

• A single Node instance

• A list containing either strings or Node instances. Any strings in the
list are not split at spaces.

In all cases, the function returns a list of Nodes and strings.

78

Class Base Module SCons.Environment

TargetSignatures(self, type)

Tool(self, tool, toolpath=None, **kw)

Value(self, value, built_value=None)

VariantDir(self, variant_dir, src_dir, duplicate=1)

WhereIs(self, prog, path=None, pathext=None, reject=[])

Find prog in the path.

__init__(self, platform=None, tools=None, toolpath=None, variables=None,
parse_flags=None, **kw)

Initialization of a basic SCons construction environment, including setting up
special construction variables like BUILDER, PLATFORM, etc., and
searching for and applying available Tools.

Note that we do not call the underlying base class (SubsitutionEnvironment)
initialization, because we need to initialize things in a very specific order that
doesn’t work with the much simpler base class initialization. Overrides:
object.__init__

get_CacheDir(self)

get_builder(self, name)

Fetch the builder with the specified name from the environment.

get_factory(self, factory, default=’File’)

Return a factory function for creating Nodes for this construction
environment.

79

Class OverrideEnvironment Module SCons.Environment

get_scanner(self, skey)

Find the appropriate scanner given a key (usually a file suffix).

get_src_sig_type(self)

get_tgt_sig_type(self)

scanner_map_delete(self, kw=None)

Delete the cached scanner map (if we need to).

Inherited from SCons.Environment.SubstitutionEnvironment(Section 8.6)

AddMethod(), MergeFlags(), Override(), ParseFlags(), RemoveMethod(), __con-
tains__(), __delitem__(), __eq__(), __getitem__(), __setitem__(), arg2nodes(),
backtick(), get(), gvars(), has_key(), items(), lvars(), subst(), subst_kw(), subst_list(),
subst_path(), subst_target_source()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

8.7.2 Properties

Name Description
Inherited from object
__class__

8.8 Class OverrideEnvironment

object

SCons.Environment.SubstitutionEnvironment

SCons.Environment.Base

SCons.Environment.OverrideEnvironment

80

Class OverrideEnvironment Module SCons.Environment

A proxy that overrides variables in a wrapped construction environment by returning values
from an overrides dictionary in preference to values from the underlying subject environment.

This is a lightweight (I hope) proxy that passes through most use of attributes to the un-
derlying Environment.Base class, but has just enough additional methods defined to act
like a real construction environment with overridden values. It can wrap either a Base con-
struction environment, or another OverrideEnvironment, which can in turn nest arbitrary
OverrideEnvironments...

Note that we do not call the underlying base class (SubsitutionEnvironment) initialization,
because we get most of those from proxying the attributes of the subject construction en-
vironment. But because we subclass SubstitutionEnvironment, this class also has inherited
arg2nodes() and subst*() methods; those methods can’t be proxied because they need this
object’s methods to fetch the values from the overrides dictionary.

8.8.1 Methods

__init__(self, subject, overrides={})

Initialization of a basic SCons construction environment, including setting up
special construction variables like BUILDER, PLATFORM, etc., and
searching for and applying available Tools.

Note that we do not call the underlying base class (SubsitutionEnvironment)
initialization, because we need to initialize things in a very specific order that
doesn’t work with the much simpler base class initialization. Overrides:
object.__init__ extit(inherited documentation)

__getattr__(self, name)

__setattr__(self, name, value)

x.__setattr__(’name’, value) <==> x.name = value Overrides:
object.__setattr__ extit(inherited documentation)

__getitem__(self, key)

Overrides: SCons.Environment.SubstitutionEnvironment.__getitem__

__setitem__(self, key, value)

Overrides: SCons.Environment.SubstitutionEnvironment.__setitem__

81

Class OverrideEnvironment Module SCons.Environment

__delitem__(self, key)

Overrides: SCons.Environment.SubstitutionEnvironment.__delitem__

get(self, key, default=None)

Emulates the get() method of dictionaries. Overrides:
SCons.Environment.SubstitutionEnvironment.get

has_key(self, key)

Overrides: SCons.Environment.SubstitutionEnvironment.has_key

__contains__(self, key)

Overrides: SCons.Environment.SubstitutionEnvironment.__contains__

Dictionary(self)

Emulates the items() method of dictionaries. Overrides:
SCons.Environment.Base.Dictionary

items(self)

Emulates the items() method of dictionaries. Overrides:
SCons.Environment.SubstitutionEnvironment.items

gvars(self)

Overrides: SCons.Environment.SubstitutionEnvironment.gvars

lvars(self)

Overrides: SCons.Environment.SubstitutionEnvironment.lvars

Replace(self, **kw)

Replace existing construction variables in an Environment with new
construction variables and/or values. Overrides:
SCons.Environment.Base.Replace extit(inherited documentation)

Inherited from SCons.Environment.Base(Section 45.5)

82

Class OverrideEnvironment Module SCons.Environment

Action(), AddPostAction(), AddPreAction(), Alias(), AlwaysBuild(), Append(),
AppendENVPath(), AppendUnique(), BuildDir(), Builder(), CacheDir(), Clean(),
Clone(), Command(), Configure(), Copy(), Decider(), Depends(), Detect(), Dir(),
Dump(), Entry(), Environment(), Execute(), File(), FindFile(), FindInstalled-
Files(), FindIxes(), FindSourceFiles(), Flatten(), GetBuildPath(), Glob(), Ignore(),
Literal(), Local(), NoCache(), NoClean(), ParseConfig(), ParseDepends(), Plat-
form(), Precious(), Prepend(), PrependENVPath(), PrependUnique(), Pseudo(),
PyPackageDir(), ReplaceIxes(), Repository(), Requires(), SConsignFile(), Scan-
ner(), SetDefault(), SideEffect(), SourceCode(), SourceSignatures(), Split(), Tar-
getSignatures(), Tool(), Value(), VariantDir(), WhereIs(), get_CacheDir(), get_builder(),
get_factory(), get_scanner(), get_src_sig_type(), get_tgt_sig_type(), scanner_map_delete()

Inherited from SCons.Environment.SubstitutionEnvironment(Section 8.6)

AddMethod(), MergeFlags(), Override(), ParseFlags(), RemoveMethod(), __eq__(),
arg2nodes(), backtick(), subst(), subst_kw(), subst_list(), subst_path(), subst_target_source()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __sizeof__(), __str__(), __sub-
classhook__()

8.8.2 Properties

Name Description
Inherited from object
__class__

83

Class BuildError Module SCons.Errors

9 Module SCons.Errors

SCons.Errors

This file contains the exception classes used to handle internal and user errors in SCons.

9.1 Functions

convert_to_BuildError(status, exc_info=None)

Convert any return code a BuildError Exception.

The buildError.status we set here will normally be used as the exit status of
the "scons" process. Parameters

status: : can either be a return code or an Exception.

9.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Errors.py

e724ae812eb96f4858a132f5b8c76...

__package__ Value: ’SCons’

9.3 Class BuildError

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.BuildError

Errors occurring while building.

BuildError have the following attributes:

Information about the cause of the build error: errstr : a description of the error message

84

Class BuildError Module SCons.Errors

status : the return code of the action that caused the build error. Must be set to a non-zero
value even if the build error is not due to an action returning a non-zero returned code.

exitstatus : SCons exit status due to this build error. Must be nonzero unless due to an
explicit Exit() call. Not always the same as status, since actions return a status code that
should be respected, but SCons typically exits with 2 irrespective of the return value of the
failed action.

filename : The name of the file or directory that caused the build error. Set to None if no
files are associated with this error. This might be different from the target being built. For
example, failure to create the directory in which the target file will appear. It can be None
if the error is not due to a particular filename.

exc_info : Info about exception that caused the build error. Set to (None, None, None) if
this build error is not due to an exception.

Information about the cause of the location of the error: node : the error occured while
building this target node(s)

executor (the executor that caused the build to fail (might) be None if the build
failures is not due to the executor failing)

action (the action that caused the build to fail (might be) None if the build failures
is not due to the an action failure)

command (the command line for the action that caused the) build to fail (might be
None if the build failures is not due to the an action failure)

9.3.1 Methods

__init__(self, node=None, errstr=’Unknown error’, status=2,
exitstatus=2, filename=None, executor=None, action=None, command=None,
exc_info=(None, None, None))

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

85

Class InternalError Module SCons.Errors

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

9.3.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

9.4 Class InternalError

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.InternalError

9.4.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

9.4.2 Properties

86

Class UserError Module SCons.Errors

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

9.5 Class UserError

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

Known Subclasses: SCons.SConf.SConfError, SCons.Warnings.Warning

9.5.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

9.5.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

87

Class SConsEnvironmentError Module SCons.Errors

9.6 Class StopError

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.StopError

9.6.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

9.6.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

9.7 Class SConsEnvironmentError

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.SConsEnvironmentError

88

Class MSVCError Module SCons.Errors

9.7.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

9.7.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

9.8 Class MSVCError

object

exceptions.BaseException

exceptions.Exception

exceptions.StandardError

exceptions.EnvironmentError

exceptions.IOError

SCons.Errors.MSVCError

9.8.1 Methods

Inherited from exceptions.IOError

89

Class ExplicitExit Module SCons.Errors

__init__(), __new__()

Inherited from exceptions.EnvironmentError

__reduce__(), __str__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __repr__(),
__setattr__(), __setstate__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

9.8.2 Properties

Name Description
Inherited from exceptions.EnvironmentError
errno, filename, strerror
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

9.9 Class ExplicitExit

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.ExplicitExit

9.9.1 Methods

__init__(self, node=None, status=None, *args)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

Inherited from exceptions.Exception

90

Class ExplicitExit Module SCons.Errors

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

9.9.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

91

Module SCons.Executor

10 Module SCons.Executor

SCons.Executor

A module for executing actions with specific lists of target and source Nodes.

10.1 Functions

rfile(node)

A function to return the results of a Node’s rfile() method, if it exists, and the
Node itself otherwise (if it’s a Value Node, e.g.).

execute_nothing(obj, target, kw)

execute_action_list(obj, target, kw)

Actually execute the action list.

execute_actions_str(obj)

execute_null_str(obj)

GetBatchExecutor(key)

AddBatchExecutor(key, executor)

get_NullEnvironment()

Use singleton pattern for Null Environments.

10.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Executor.py

e724ae812eb96f4858a132f5b8c...

continued on next page

92

Class Batch Module SCons.Executor

Name Description
nullenv Value: None

__package__ Value: ’SCons’

10.3 Class Batch

object

SCons.Executor.Batch

Remembers exact association between targets and sources of executor.

10.3.1 Methods

__init__(self, targets=[], sources=[])

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

10.3.2 Properties

Name Description
sources
targets
Inherited from object
__class__

93

Class TSList Module SCons.Executor

10.4 Class TSList

object

_abcoll.Sized

object

_abcoll.Iterable

object

_abcoll.Container

_abcoll.Sequence

_abcoll.MutableSequence

UserList.UserList

SCons.Executor.TSList

A class that implements $TARGETS or $SOURCES expansions by wrapping an executor
Method. This class is used in the Executor.lvars() to delay creation of NodeList objects until
they’re needed.

Note that we subclass collections.UserList purely so that the is_Sequence() function will
identify an object of this class as a list during variable expansion. We’re not really using any
collections.UserList methods in practice.

10.4.1 Methods

__init__(self, func)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__getattr__(self, attr)

__getitem__(self, i)

Overrides: _abcoll.Sequence.__getitem__

94

Class TSList Module SCons.Executor

__getslice__(self, i, j)

Overrides: UserList.UserList.__getslice__

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

__repr__(self)

repr(x) Overrides: object.__repr__ extit(inherited documentation)

Inherited from UserList.UserList

__add__(), __cmp__(), __contains__(), __delitem__(), __delslice__(),
__eq__(), __ge__(), __gt__(), __iadd__(), __imul__(), __le__(), __len__(),
__lt__(), __mul__(), __ne__(), __radd__(), __rmul__(), __setitem__(),
__setslice__(), append(), count(), extend(), index(), insert(), pop(), remove(),
reverse(), sort()

Inherited from _abcoll.Sequence

__iter__(), __reversed__()

Inherited from _abcoll.Sized

__subclasshook__()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __setattr__(), __sizeof__()

10.4.2 Properties

Name Description
Inherited from object
__class__

10.4.3 Class Variables

Name Description
Inherited from UserList.UserList
__abstractmethods__, __hash__

95

Class Executor Module SCons.Executor

10.5 Class TSObject

object

SCons.Executor.TSObject

A class that implements $TARGET or $SOURCE expansions by wrapping an Executor
method.

10.5.1 Methods

__init__(self, func)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__getattr__(self, attr)

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

__repr__(self)

repr(x) Overrides: object.__repr__ extit(inherited documentation)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __setattr__(), __sizeof__(), __subclasshook__()

10.5.2 Properties

Name Description
Inherited from object
__class__

10.6 Class Executor

object

SCons.Executor.Executor

96

Class Executor Module SCons.Executor

A class for controlling instances of executing an action.

This largely exists to hold a single association of an action, environment, list of environment
override dictionaries, targets and sources for later processing as needed.

10.6.1 Methods

__init__(self, action, env=None, overridelist=[{}], targets=[],
sources=[], builder_kw={})

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

get_lvars(self)

get_action_targets(self)

set_action_list(self, action)

get_action_list(self)

get_all_targets(self)

Returns all targets for all batches of this Executor.

get_all_sources(self)

Returns all sources for all batches of this Executor.

get_all_children(self)

Returns all unique children (dependencies) for all batches of this Executor.

The Taskmaster can recognize when it’s already evaluated a Node, so we don’t
have to make this list unique for its intended canonical use case, but we expect
there to be a lot of redundancy (long lists of batched .cc files #including the
same .h files over and over), so removing the duplicates once up front should
save the Taskmaster a lot of work.

97

Class Executor Module SCons.Executor

get_all_prerequisites(self)

Returns all unique (order-only) prerequisites for all batches of this Executor.

get_action_side_effects(self)

Returns all side effects for all batches of this Executor used by the underlying
Action.

get_build_env(self)

Fetch or create the appropriate build Environment for this Executor.

get_build_scanner_path(self, scanner)

Fetch the scanner path for this executor’s targets and sources.

get_kw(self, kw={})

__call__(self, target, **kw)

cleanup(self)

add_sources(self, sources)

Add source files to this Executor’s list. This is necessary for "multi" Builders
that can be called repeatedly to build up a source file list for a given target.

get_sources(self)

98

Class Executor Module SCons.Executor

add_batch(self, targets, sources)

Add pair of associated target and source to this Executor’s list. This is
necessary for "batch" Builders that can be called repeatedly to build up a list
of matching target and source files that will be used in order to update
multiple target files at once from multiple corresponding source files, for tools
like MSVC that support it.

prepare(self)

Preparatory checks for whether this Executor can go ahead and (try to) build
its targets.

add_pre_action(self, action)

add_post_action(self, action)

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

nullify(self)

get_contents(self)

Fetch the signature contents. This is the main reason this class exists, so we
can compute this once and cache it regardless of how many target or source
Nodes there are.

Returns bytes

get_timestamp(self)

Fetch a time stamp for this Executor. We don’t have one, of course (only files
do), but this is the interface used by the timestamp module.

scan_targets(self, scanner)

99

Class Executor Module SCons.Executor

scan_sources(self, scanner)

scan(self, scanner, node_list)

Scan a list of this Executor’s files (targets or sources) for implicit dependencies
and update all of the targets with them. This essentially short-circuits an
N*M scan of the sources for each individual target, which is a hell of a lot
more efficient.

get_unignored_sources(self, node, ignore=())

get_implicit_deps(self)

Return the executor’s implicit dependencies, i.e. the nodes of the commands
to be executed.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__subclasshook__()

10.6.2 Properties

Name Description
action_list
batches
builder_kw
env
lvars
overridelist
post_actions
pre_actions
Inherited from object
__class__

100

Class Null Module SCons.Executor

10.7 Class NullEnvironment

object

SCons.Util.Null

SCons.Executor.NullEnvironment

10.7.1 Methods

get_CacheDir(self)

Inherited from SCons.Util.Null(Section 48.15)

__bool__(), __call__(), __delattr__(), __getattr__(), __init__(), __new__(),
__nonzero__(), __repr__(), __setattr__()

Inherited from object

__format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__sizeof__(), __str__(), __subclasshook__()

10.7.2 Properties

Name Description
Inherited from object
__class__

10.8 Class Null

object

SCons.Executor.Null

A null Executor, with a null build Environment, that does nothing when the rest of the
methods call it.

This might be able to disappear when we refactor things to disassociate Builders from Nodes
entirely, so we’re not going to worry about unit tests for this--at least for now.

101

Class Null Module SCons.Executor

10.8.1 Methods

__init__(self, *args, **kw)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

get_build_env(self)

get_build_scanner_path(self)

cleanup(self)

prepare(self)

get_unignored_sources(self, *args, **kw)

get_action_targets(self)

get_action_list(self)

get_all_targets(self)

get_all_sources(self)

get_all_children(self)

get_all_prerequisites(self)

get_action_side_effects(self)

__call__(self, *args, **kw)

get_contents(self)

add_pre_action(self, action)

add_post_action(self, action)

102

Class Null Module SCons.Executor

set_action_list(self, action)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

10.8.2 Properties

Name Description
action_list
batches
builder_kw
env
lvars
overridelist
post_actions
pre_actions
Inherited from object
__class__

103

Class InterruptState Module SCons.Job

11 Module SCons.Job

SCons.Job

This module defines the Serial and Parallel classes that execute tasks to complete a build.
The Jobs class provides a higher level interface to start, stop, and wait on jobs.

11.1 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Job.py

e724ae812eb96f4858a132f5b8c76972...

explicit_stack_size Value: None

default_stack_size Value: 256

interrupt_msg Value: ’Build interrupted.’

__package__ Value: ’SCons’

11.2 Class InterruptState

object

SCons.Job.InterruptState

11.2.1 Methods

__init__(self)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

set(self)

__call__(self)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

104

Class Jobs Module SCons.Job

11.2.2 Properties

Name Description
Inherited from object
__class__

11.3 Class Jobs

object

SCons.Job.Jobs

An instance of this class initializes N jobs, and provides methods for starting, stopping, and
waiting on all N jobs.

11.3.1 Methods

__init__(self, num, taskmaster)

Create ’num’ jobs using the given taskmaster.

If ’num’ is 1 or less, then a serial job will be used, otherwise a parallel job with
’num’ worker threads will be used.

The ’num_jobs’ attribute will be set to the actual number of jobs allocated. If
more than one job is requested but the Parallel class can’t do it, it gets reset
to 1. Wrapping interfaces that care should check the value of ’num_jobs’ after
initialization. Overrides: object.__init__

run(self, postfunc=<__builtin__.function object>)

Run the jobs.

postfunc() will be invoked after the jobs has run. It will be invoked even if the
jobs are interrupted by a keyboard interrupt (well, in fact by a signal such as
either SIGINT, SIGTERM or SIGHUP). The execution of postfunc() is
protected against keyboard interrupts and is guaranteed to run to completion.

105

Class Serial Module SCons.Job

were_interrupted(self)

Returns whether the jobs were interrupted by a signal.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

11.3.2 Properties

Name Description
Inherited from object
__class__

11.4 Class Serial

object

SCons.Job.Serial

This class is used to execute tasks in series, and is more efficient than Parallel, but is only
appropriate for non-parallel builds. Only one instance of this class should be in existence at
a time.

This class is not thread safe.

11.4.1 Methods

__init__(self, taskmaster)

Create a new serial job given a taskmaster.

The taskmaster’s next_task() method should return the next task that needs
to be executed, or None if there are no more tasks. The taskmaster’s
executed() method will be called for each task when it is successfully executed,
or failed() will be called if it failed to execute (e.g. execute() raised an
exception). Overrides: object.__init__

106

Class Worker Module SCons.Job

start(self)

Start the job. This will begin pulling tasks from the taskmaster and executing
them, and return when there are no more tasks. If a task fails to execute (i.e.
execute() raises an exception), then the job will stop.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

11.4.2 Properties

Name Description
Inherited from object
__class__

11.5 Class Worker

object

threading._Verbose

threading.Thread

SCons.Job.Worker

A worker thread waits on a task to be posted to its request queue, dequeues the task, executes
it, and posts a tuple including the task and a boolean indicating whether the task executed
successfully.

107

Class Worker Module SCons.Job

11.5.1 Methods

__init__(self, requestQueue, resultsQueue, interrupted)

This constructor should always be called with keyword arguments. Arguments
are:

group should be None; reserved for future extension when a ThreadGroup
class is implemented.

target is the callable object to be invoked by the run() method. Defaults to
None, meaning nothing is called.

name is the thread name. By default, a unique name is constructed of the
form "Thread-N" where N is a small decimal number.

args is the argument tuple for the target invocation. Defaults to ().

kwargs is a dictionary of keyword arguments for the target invocation.
Defaults to {}.

If a subclass overrides the constructor, it must make sure to invoke the base
class constructor (Thread.__init__()) before doing anything else to the
thread. Overrides: object.__init__ extit(inherited documentation)

run(self)

Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the target
argument, if any, with sequential and keyword arguments taken from the args
and kwargs arguments, respectively. Overrides: threading.Thread.run
extit(inherited documentation)

Inherited from threading.Thread

__repr__(), getName(), isAlive(), isDaemon(), is_alive(), join(), setDaemon(),
setName(), start()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __setattr__(), __sizeof__(), __str__(),
__subclasshook__()

108

Class ThreadPool Module SCons.Job

11.5.2 Properties

Name Description
Inherited from threading.Thread
daemon, ident, name
Inherited from object
__class__

11.6 Class ThreadPool

object

SCons.Job.ThreadPool

This class is responsible for spawning and managing worker threads.

11.6.1 Methods

__init__(self, num, stack_size, interrupted)

Create the request and reply queues, and ’num’ worker threads.

One must specify the stack size of the worker threads. The stack size is
specified in kilobytes. Overrides: object.__init__

put(self, task)

Put task into request queue.

get(self)

Remove and return a result tuple from the results queue.

preparation_failed(self, task)

109

Class Parallel Module SCons.Job

cleanup(self)

Shuts down the thread pool, giving each worker thread a chance to shut down
gracefully.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

11.6.2 Properties

Name Description
Inherited from object
__class__

11.7 Class Parallel

object

SCons.Job.Parallel

This class is used to execute tasks in parallel, and is somewhat less efficient than Serial, but
is appropriate for parallel builds.

This class is thread safe.

110

Class Parallel Module SCons.Job

11.7.1 Methods

__init__(self, taskmaster, num, stack_size)

Create a new parallel job given a taskmaster.

The taskmaster’s next_task() method should return the next task that needs
to be executed, or None if there are no more tasks. The taskmaster’s
executed() method will be called for each task when it is successfully executed,
or failed() will be called if the task failed to execute (i.e. execute() raised an
exception).

Note: calls to taskmaster are serialized, but calls to execute() on distinct tasks
are not serialized, because that is the whole point of parallel jobs: they can
execute multiple tasks simultaneously. Overrides: object.__init__

start(self)

Start the job. This will begin pulling tasks from the taskmaster and executing
them, and return when there are no more tasks. If a task fails to execute (i.e.
execute() raises an exception), then the job will stop.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

11.7.2 Properties

Name Description
Inherited from object
__class__

111

Module SCons.Memoize

12 Module SCons.Memoize

Memoizer

A decorator-based implementation to count hits and misses of the computed values that
various methods cache in memory.

Use of this modules assumes that wrapped methods be coded to cache their values in a
consistent way. In particular, it requires that the class uses a dictionary named "_memo" to
store the cached values.

Here is an example of wrapping a method that returns a computed value, with no input
parameters:

@SCons.Memoize.CountMethodCall

def foo(self):

try: # Memoization

return self._memo[’foo’] # Memoization

except KeyError: # Memoization

pass # Memoization

result = self.compute_foo_value()

self._memo[’foo’] = result # Memoization

return result

Here is an example of wrapping a method that will return different values based on one or
more input arguments:

def _bar_key(self, argument): # Memoization

return argument # Memoization

@SCons.Memoize.CountDictCall(_bar_key)

def bar(self, argument):

memo_key = argument # Memoization

try: # Memoization

memo_dict = self._memo[’bar’] # Memoization

except KeyError: # Memoization

memo_dict = {} # Memoization

self._memo[’dict’] = memo_dict # Memoization

else: # Memoization

try: # Memoization

return memo_dict[memo_key] # Memoization

112

Functions Module SCons.Memoize

except KeyError: # Memoization

pass # Memoization

result = self.compute_bar_value(argument)

memo_dict[memo_key] = result # Memoization

return result

Deciding what to cache is tricky, because different configurations can have radically different
performance tradeoffs, and because the tradeoffs involved are often so non-obvious. Conse-
quently, deciding whether or not to cache a given method will likely be more of an art than a
science, but should still be based on available data from this module. Here are some VERY
GENERAL guidelines about deciding whether or not to cache return values from a method
that’s being called a lot:

-- The first question to ask is, "Can we change the calling code so this method
isn’t called so often?" Sometimes this can be done by changing the algorithm.
Sometimes the caller should be memoized, not the method you’re looking at.

—The memoized function should be timed with multiple configurations to make
sure it doesn’t inadvertently slow down some other configuration.

-- When memoizing values based on a dictionary key composed of input
arguments, you don’t need to use all of the arguments if some of them don’t
affect the return values.

12.1 Functions

Dump(title=None)

Dump the hit/miss count for all the counters collected so far.

EnableMemoization()

CountMethodCall(fn)

Decorator for counting memoizer hits/misses while retrieving a simple value in
a class method. It wraps the given method fn and uses a CountValue object to
keep track of the caching statistics. Wrapping gets enabled by calling
EnableMemoization().

113

Class Counter Module SCons.Memoize

CountDictCall(keyfunc)

Decorator for counting memoizer hits/misses while accessing dictionary values
with a key-generating function. Like CountMethodCall above, it wraps the
given method fn and uses a CountDict object to keep track of the caching
statistics. The dict-key function keyfunc has to get passed in the decorator call
and gets stored in the CountDict instance. Wrapping gets enabled by calling
EnableMemoization().

12.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Memoize.py

e724ae812eb96f4858a132f5b8c7...

__doc__ Value: """Memoi...

use_memoizer Value: None

CounterList Value: {}

__package__ Value: ’SCons’

12.3 Class Counter

object

SCons.Memoize.Counter

Known Subclasses: SCons.Memoize.CountDict, SCons.Memoize.CountValue

Base class for counting memoization hits and misses.

We expect that the initialization in a matching decorator will fill in the correct class name
and method name that represents the name of the function being counted.

12.3.1 Methods

__init__(self, cls_name, method_name)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

key(self)

114

Class CountValue Module SCons.Memoize

display(self)

__eq__(self, other)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

12.3.2 Properties

Name Description
Inherited from object
__class__

12.4 Class CountValue

object

SCons.Memoize.Counter

SCons.Memoize.CountValue

A counter class for simple, atomic memoized values.

A CountValue object should be instantiated in a decorator for each of the class’s methods
that memoizes its return value by simply storing the return value in its _memo dictionary.

12.4.1 Methods

count(self, *args, **kw)

Counts whether the memoized value has already been set (a hit) or not (a
miss).

Inherited from SCons.Memoize.Counter(Section 12.3)

__eq__(), __init__(), display(), key()

Inherited from object

115

Class CountDict Module SCons.Memoize

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

12.4.2 Properties

Name Description
Inherited from object
__class__

12.5 Class CountDict

object

SCons.Memoize.Counter

SCons.Memoize.CountDict

A counter class for memoized values stored in a dictionary, with keys based on the method’s
input arguments.

A CountDict object is instantiated in a decorator for each of the class’s methods that mem-
oizes its return value in a dictionary, indexed by some key that can be computed from one
or more of its input arguments.

12.5.1 Methods

__init__(self, cls_name, method_name, keymaker)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__

count(self, *args, **kw)

Counts whether the computed key value is already present in the memoization
dictionary (a hit) or not (a miss).

Inherited from SCons.Memoize.Counter(Section 12.3)

__eq__(), display(), key()

Inherited from object

116

Class CountDict Module SCons.Memoize

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

12.5.2 Properties

Name Description
Inherited from object
__class__

117

Package SCons.Node

13 Package SCons.Node

SCons.Node

The Node package for the SCons software construction utility.

This is, in many ways, the heart of SCons.

A Node is where we encapsulate all of the dependency information about any thing that
SCons can build, or about any thing which SCons can use to build some other thing. The
canonical "thing," of course, is a file, but a Node can also represent something remote (like
a web page) or something completely abstract (like an Alias).

Each specific type of "thing" is specifically represented by a subclass of the Node base class:
Node.FS.File for files, Node.Alias for aliases, etc. Dependency information is kept here in
the base class, and information specific to files/aliases/etc. is in the subclass. The goal, if
we’ve done this correctly, is that any type of "thing" should be able to depend on any other
type of "thing."

13.1 Modules

• Alias: scons.Node.Alias
(Section 14, p. 125)

• FS: scons.Node.FS
(Section 15, p. 131)

• Python: scons.Node.Python
(Section 16, p. 182)

13.2 Functions

classname(obj)

do_nothing_node(node)

Annotate(node)

is_derived_none(node)

is_derived_node(node)

Returns true if this node is derived (i.e. built).

118

Functions Package SCons.Node

exists_none(node)

exists_always(node)

exists_base(node)

exists_entry(node)

Return if the Entry exists. Check the file system to see what we should turn
into first. Assume a file if there’s no directory.

exists_file(node)

rexists_none(node)

rexists_node(node)

rexists_base(node)

get_contents_none(node)

get_contents_entry(node)

Fetch the contents of the entry. Returns the exact binary contents of the file.

get_contents_dir(node)

Return content signatures and names of all our children separated by
new-lines. Ensure that the nodes are sorted.

get_contents_file(node)

target_from_source_none(node, prefix, suffix, splitext)

target_from_source_base(node, prefix, suffix, splitext)

119

Functions Package SCons.Node

changed_since_last_build_node(node, target, prev_ni,
repo_node=None)

Must be overridden in a specific subclass to return True if this Node (a
dependency) has changed since the last time it was used to build the specified
target. prev_ni is this Node’s state (for example, its file timestamp, length,
maybe content signature) as of the last time the target was built.

Note that this method is called through the dependency, not the target,
because a dependency Node must be able to use its own logic to decide if it
changed. For example, File Nodes need to obey if we’re configured to use
timestamps, but Python Value Nodes never use timestamps and always use
the content. If this method were called through the target, then each Node’s
implementation of this method would have to have more complicated logic to
handle all the different Node types on which it might depend.

changed_since_last_build_alias(node, target, prev_ni, repo_node=None)

changed_since_last_build_entry(node, target, prev_ni,
repo_node=None)

changed_since_last_build_state_changed(node, target, prev_ni,
repo_node=None)

decide_source(node, target, prev_ni, repo_node=None)

decide_target(node, target, prev_ni, repo_node=None)

changed_since_last_build_python(node, target, prev_ni,
repo_node=None)

store_info_pass(node)

store_info_file(node)

get_children(node, parent)

ignore_cycle(node, stack)

do_nothing(node, parent)

120

Class NodeInfoBase Package SCons.Node

13.3 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Node/__init__.py

e724ae812eb96f4858a132...

print_duplicate Value: 0

no_state Value: 0

pending Value: 1

executing Value: 2

up_to_date Value: 3

executed Value: 4

failed Value: 5

StateString Value: {0: ’no_state’, 1: ’pending’,

2: ’executing’, 3: ’up_to_d...

implicit_cache Value: 0

implicit_deps_unchanged Value: 0

implicit_deps_changed Value: 0

interactive Value: False

do_store_info Value: True

store_info_map Value: {0: <__builtin__.function

object>, 1: <__builtin__.functi...

arg2nodes_lookups Value: [<bound method

AliasNameSpace.lookup of {}>]

__package__ Value: ’SCons.Node’

13.4 Class NodeInfoBase

object

SCons.Node.NodeInfoBase

Known Subclasses: SCons.Node.Alias.AliasNodeInfo, SCons.Node.FS.DirNodeInfo, SCons.Node.FS.FileNo
SCons.Node.Python.ValueNodeInfo

The generic base class for signature information for a Node.

Node subclasses should subclass NodeInfoBase to provide their own logic for dealing with
their own Node-specific signature information.

121

Class NodeInfoBase Package SCons.Node

13.4.1 Methods

__getstate__(self)

Return all fields that shall be pickled. Walk the slots in the class hierarchy
and add those to the state dictionary. If a ’__dict__’ slot is available, copy
all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate__(self, state)

Restore the attributes from a pickled state. The version is discarded.

convert(self, node, val)

format(self, field_list=None, names=0)

merge(self, other)

Merge the fields of another object into this object. Already existing
information is overwritten by the other instance’s data. WARNING: If a
’__dict__’ slot is added, it should be updated instead of replaced.

update(self, node)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(),
__new__(), __reduce__(), __reduce_ex__(), __repr__(), __setattr__(),
__sizeof__(), __str__(), __subclasshook__()

13.4.2 Properties

Name Description
Inherited from object
__class__

13.4.3 Class Variables

122

Class BuildInfoBase Package SCons.Node

Name Description
current_version_id Value: 2

13.5 Class BuildInfoBase

object

SCons.Node.BuildInfoBase

Known Subclasses: SCons.Node.Alias.AliasBuildInfo, SCons.Node.FS.DirBuildInfo, SCons.Node.FS.FileBuildInfo,
SCons.Node.Python.ValueBuildInfo

The generic base class for build information for a Node.

This is what gets stored in a .sconsign file for each target file. It contains a NodeInfo
instance for this node (signature information that’s specific to the type of Node) and direct
attributes for the generic build stuff we have to track: sources, explicit dependencies, implicit
dependencies, and action information.

13.5.1 Methods

__getstate__(self)

Return all fields that shall be pickled. Walk the slots in the class hierarchy
and add those to the state dictionary. If a ’__dict__’ slot is available, copy
all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__init__(self)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__setstate__(self, state)

Restore the attributes from a pickled state.

123

Class Node Package SCons.Node

merge(self, other)

Merge the fields of another object into this object. Already existing
information is overwritten by the other instance’s data. WARNING: If a
’__dict__’ slot is added, it should be updated instead of replaced.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

13.5.2 Properties

Name Description
bact
bactsig
bdepends
bdependsigs
bimplicit
bimplicitsigs
bsources
bsourcesigs
Inherited from object
__class__

13.5.3 Class Variables

Name Description
current_version_id Value: 2

13.6 Class Node

object

SCons.Node.Node

Known Subclasses: SCons.Node.Alias.Alias, SCons.Node.FS.Base, SCons.Node.Python.Value

The base Node class, for entities that we know how to build, or use to build other Nodes.

124

Class Node Package SCons.Node

13.6.1 Methods

Decider(self, function)

GetTag(self, key)

Return a user-defined tag.

Tag(self, key, value)

Add a user-defined tag.

__init__(self)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

add_dependency(self, depend)

Adds dependencies.

add_ignore(self, depend)

Adds dependencies to ignore.

add_prerequisite(self, prerequisite)

Adds prerequisites

add_source(self, source)

Adds sources.

add_to_implicit(self, deps)

125

Class Node Package SCons.Node

add_to_waiting_parents(self, node)

Returns the number of nodes added to our waiting parents list: 1 if we add a
unique waiting parent, 0 if not. (Note that the returned values are intended to
be used to increment a reference count, so don’t think you can "clean up" this
function by using True and False instead...)

add_to_waiting_s_e(self, node)

add_wkid(self, wkid)

Add a node to the list of kids waiting to be evaluated

all_children(self, scan=1)

Return a list of all the node’s direct children.

alter_targets(self)

Return a list of alternate targets for this Node.

build(self, **kw)

Actually build the node.

This is called by the Taskmaster after it’s decided that the Node is out-of-date
and must be rebuilt, and after the prepare() method has gotten everything,
uh, prepared.

This method is called from multiple threads in a parallel build, so only do
thread safe stuff here. Do thread unsafe stuff in built().

builder_set(self, builder)

126

Class Node Package SCons.Node

built(self)

Called just after this node is successfully built.

changed(self, node=None, allowcache=False)

Returns if the node is up-to-date with respect to the BuildInfo stored last time
it was built. The default behavior is to compare it against our own previously
stored BuildInfo, but the stored BuildInfo from another Node (typically one in
a Repository) can be used instead.

Note that we now always check every dependency. We used to short-circuit the
check by returning as soon as we detected any difference, but we now rely on
checking every dependency to make sure that any necessary Node information
(for example, the content signature of an #included .h file) is updated.

The allowcache option was added for supporting the early release of the
executor/builder structures, right after a File target was built. When set to
true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().

@see: FS.File.changed(), FS.File.release_target_info()

children(self, scan=1)

Return a list of the node’s direct children, minus those that are ignored by this
node.

children_are_up_to_date(self)

Alternate check for whether the Node is current: If all of our children were
up-to-date, then this Node was up-to-date, too.

The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their
current() method to this method.

127

Class Node Package SCons.Node

clear(self)

Completely clear a Node of all its cached state (so that it can be re-evaluated
by interfaces that do continuous integration builds).

clear_memoized_values(self)

del_binfo(self)

Delete the build info from this node.

disambiguate(self, must_exist=None)

env_set(self, env, safe=0)

executor_cleanup(self)

Let the executor clean up any cached information.

exists(self)

Does this node exists?

explain(self)

for_signature(self)

Return a string representation of the Node that will always be the same for
this particular Node, no matter what. This is by contrast to the __str__()
method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature
calculation for the command line used to build a target, and we use this
method instead of str() to avoid unnecessary rebuilds. This method does not
need to return something that would actually work in a command line; it can
return any kind of nonsense, so long as it does not change.

128

Class Node Package SCons.Node

get_abspath(self)

Return an absolute path to the Node. This will return simply str(Node) by
default, but for Node types that have a concept of relative path, this might
return something different.

get_binfo(self)

Fetch a node’s build information.

node - the node whose sources will be collected cache - alternate node to use
for the signature cache returns - the build signature

This no longer handles the recursive descent of the node’s children’s
signatures. We expect that they’re already built and updated by someone else,
if that’s what’s wanted.

get_build_env(self)

Fetch the appropriate Environment to build this node.

get_build_scanner_path(self, scanner)

Fetch the appropriate scanner path for this node.

get_builder(self, default_builder=None)

Return the set builder, or a specified default value

get_cachedir_csig(self)

get_contents(self)

Fetch the contents of the entry.

get_csig(self)

129

Class Node Package SCons.Node

get_env(self)

get_env_scanner(self, env, kw={})

get_executor(self, create=1)

Fetch the action executor for this node. Create one if there isn’t already one,
and requested to do so.

get_found_includes(self, env, scanner, path)

Return the scanned include lines (implicit dependencies) found in this node.

The default is no implicit dependencies. We expect this method to be
overridden by any subclass that can be scanned for implicit dependencies.

get_implicit_deps(self, env, initial_scanner, path_func, kw={})

Return a list of implicit dependencies for this node.

This method exists to handle recursive invocation of the scanner on the
implicit dependencies returned by the scanner, if the scanner’s recursive flag
says that we should.

get_ninfo(self)

get_source_scanner(self, node)

Fetch the source scanner for the specified node

NOTE: "self" is the target being built, "node" is the source file for which we
want to fetch the scanner.

Implies self.has_builder() is true; again, expect to only be called from
locations where this is already verified.

This function may be called very often; it attempts to cache the scanner found
to improve performance.

130

Class Node Package SCons.Node

get_state(self)

get_stored_implicit(self)

Fetch the stored implicit dependencies

get_stored_info(self)

get_string(self, for_signature)

This is a convenience function designed primarily to be used in command
generators (i.e., CommandGeneratorActions or Environment variables that are
callable), which are called with a for_signature argument that is nonzero if the
command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node)
when converting a Node to a string, passing in the for_signature parameter,
such that we will call Node.for_signature() or str(Node) properly, depending
on whether we are calculating a signature or actually constructing a command
line.

get_subst_proxy(self)

This method is expected to return an object that will function exactly like this
Node, except that it implements any additional special features that we would
like to be in effect for Environment variable substitution. The principle use is
that some Nodes would like to implement a __getattr__() method, but
putting that in the Node type itself has a tendency to kill performance. We
instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment
substitution.

get_suffix(self)

get_target_scanner(self)

131

Class Node Package SCons.Node

has_builder(self)

Return whether this Node has a builder or not.

In Boolean tests, this turns out to be a lot more efficient than simply
examining the builder attribute directly ("if node.builder: ..."). When the
builder attribute is examined directly, it ends up calling __getattr__ for
both the __len__ and __nonzero__ attributes on instances of our Builder
Proxy class(es), generating a bazillion extra calls and slowing things down
immensely.

has_explicit_builder(self)

Return whether this Node has an explicit builder

This allows an internal Builder created by SCons to be marked non-explicit, so
that it can be overridden by an explicit builder that the user supplies (the
canonical example being directories).

is_derived(self)

Returns true if this node is derived (i.e. built).

This should return true only for nodes whose path should be in the variant
directory when duplicate=0 and should contribute their build signatures when
they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_literal(self)

Always pass the string representation of a Node to the command interpreter
literally.

is_up_to_date(self)

Default check for whether the Node is current: unknown Node subtypes are
always out of date, so they will always get built.

132

Class Node Package SCons.Node

make_ready(self)

Get a Node ready for evaluation.

This is called before the Taskmaster decides if the Node is up-to-date or not.
Overriding this method allows for a Node subclass to be disambiguated if
necessary, or for an implicit source builder to be attached.

missing(self)

multiple_side_effect_has_builder(self)

Return whether this Node has a builder or not.

In Boolean tests, this turns out to be a lot more efficient than simply
examining the builder attribute directly ("if node.builder: ..."). When the
builder attribute is examined directly, it ends up calling __getattr__ for
both the __len__ and __nonzero__ attributes on instances of our Builder
Proxy class(es), generating a bazillion extra calls and slowing things down
immensely.

new_binfo(self)

new_ninfo(self)

postprocess(self)

Clean up anything we don’t need to hang onto after we’ve been built.

133

Class Node Package SCons.Node

prepare(self)

Prepare for this Node to be built.

This is called after the Taskmaster has decided that the Node is out-of-date
and must be rebuilt, but before actually calling the method to build the Node.

This default implementation checks that explicit or implicit dependencies
either exist or are derived, and initializes the BuildInfo structure that will hold
the information about how this node is, uh, built.

(The existence of source files is checked separately by the Executor, which
aggregates checks for all of the targets built by a specific action.)

Overriding this method allows for for a Node subclass to remove the
underlying file from the file system. Note that subclass methods should call
this base class method to get the child check and the BuildInfo structure.

push_to_cache(self)

Try to push a node into a cache

release_target_info(self)

Called just after this node has been marked up-to-date or was built completely.

This is where we try to release as many target node infos as possible for clean
builds and update runs, in order to minimize the overall memory consumption.

By purging attributes that aren’t needed any longer after a Node (=File) got
built, we don’t have to care that much how many KBytes a Node actually
requires...as long as we free the memory shortly afterwards.

@see: built() and File.release_target_info()

remove(self)

Remove this Node: no-op by default.

134

Class Node Package SCons.Node

render_include_tree(self)

Return a text representation, suitable for displaying to the user, of the include
tree for the sources of this node.

reset_executor(self)

Remove cached executor; forces recompute when needed.

retrieve_from_cache(self)

Try to retrieve the node’s content from a cache

This method is called from multiple threads in a parallel build, so only do
thread safe stuff here. Do thread unsafe stuff in built().

Returns true if the node was successfully retrieved.

rexists(self)

Does this node exist locally or in a repository?

scan(self)

Scan this node’s dependents for implicit dependencies.

scanner_key(self)

select_scanner(self, scanner)

Selects a scanner for this Node.

This is a separate method so it can be overridden by Node subclasses
(specifically, Node.FS.Dir) that must use their own Scanner and don’t select
one the Scanner.Selector that’s configured for the target.

135

Class Node Package SCons.Node

set_always_build(self, always_build=1)

Set the Node’s always_build value.

set_executor(self, executor)

Set the action executor for this node.

set_explicit(self, is_explicit)

set_nocache(self, nocache=1)

Set the Node’s nocache value.

set_noclean(self, noclean=1)

Set the Node’s noclean value.

set_precious(self, precious=1)

Set the Node’s precious value.

set_pseudo(self, pseudo=True)

Set the Node’s precious value.

set_specific_source(self, source)

set_state(self, state)

visited(self)

Called just after this node has been visited (with or without a build).

136

Class Node Package SCons.Node

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

13.6.2 Properties

Name Description
always_build
attributes
binfo
builder
cached
changed_since_last_buil-
d
depends
depends_set
env
executor
ignore
ignore_set
implicit
implicit_set
includes
is_explicit
linked
ninfo
nocache
noclean
precious
prerequisites
pseudo
ref_count
side_effect
side_effects
sources
sources_set
state
store_info
target_peers
waiting_parents
waiting_s_e
wkids

continued on next page

137

Class NodeList Package SCons.Node

Name Description
Inherited from object
__class__

13.7 Class NodeList

object

_abcoll.Sized

object

_abcoll.Iterable

object

_abcoll.Container

_abcoll.Sequence

_abcoll.MutableSequence

UserList.UserList

SCons.Node.NodeList

13.7.1 Methods

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

Inherited from UserList.UserList

__add__(), __cmp__(), __contains__(), __delitem__(), __delslice__(),
__eq__(), __ge__(), __getitem__(), __getslice__(), __gt__(), __iadd__(),
__imul__(), __init__(), __le__(), __len__(), __lt__(), __mul__(), __ne__(),
__radd__(), __repr__(), __rmul__(), __setitem__(), __setslice__(), ap-
pend(), count(), extend(), index(), insert(), pop(), remove(), reverse(), sort()

Inherited from _abcoll.Sequence

__iter__(), __reversed__()

138

Class Walker Package SCons.Node

Inherited from _abcoll.Sized

__subclasshook__()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __setattr__(), __sizeof__()

13.7.2 Properties

Name Description
Inherited from object
__class__

13.7.3 Class Variables

Name Description
Inherited from UserList.UserList
__abstractmethods__, __hash__

13.8 Class Walker

object

SCons.Node.Walker

An iterator for walking a Node tree.

This is depth-first, children are visited before the parent. The Walker object can be initialized
with any node, and returns the next node on the descent with each get_next() call. get the
children of a node instead of calling ’children’. ’cycle_func’ is an optional function that will
be called when a cycle is detected.

This class does not get caught in node cycles caused, for example, by C header file include
loops.

139

Class Walker Package SCons.Node

13.8.1 Methods

__init__(self, node, kids_func=<__builtin__.function object>,
cycle_func=<__builtin__.function object>,
eval_func=<__builtin__.function object>)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

get_next(self)

Return the next node for this walk of the tree.

This function is intentionally iterative, not recursive, to sidestep any issues of
stack size limitations.

is_done(self)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

13.8.2 Properties

Name Description
Inherited from object
__class__

140

Class AliasNameSpace Module SCons.Node.Alias

14 Module SCons.Node.Alias

scons.Node.Alias

Alias nodes.

This creates a hash of global Aliases (dummy targets).

14.1 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Node/Alias.py

e724ae812eb96f4858a132f5b...

default_ans Value: {}

__package__ Value: ’SCons.Node’

14.2 Class AliasNameSpace

UserDict.UserDict

SCons.Node.Alias.AliasNameSpace

14.2.1 Methods

Alias(self, name, **kw)

lookup(self, name, **kw)

Inherited from UserDict.UserDict

__cmp__(), __contains__(), __delitem__(), __getitem__(), __init__(),
__len__(), __repr__(), __setitem__(), clear(), copy(), fromkeys(), get(), has_key(),
items(), iteritems(), iterkeys(), itervalues(), keys(), pop(), popitem(), setdefault(),
update(), values()

14.2.2 Class Variables

Name Description
Inherited from UserDict.UserDict
__hash__

141

Class AliasNodeInfo Module SCons.Node.Alias

14.3 Class AliasNodeInfo

object

SCons.Node.NodeInfoBase

SCons.Node.Alias.AliasNodeInfo

The generic base class for signature information for a Node.

Node subclasses should subclass NodeInfoBase to provide their own logic for dealing with
their own Node-specific signature information.

14.3.1 Methods

str_to_node(self, s)

__getstate__(self)

Return all fields that shall be pickled. Walk the slots in the class hierarchy
and add those to the state dictionary. If a ’__dict__’ slot is available, copy
all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class. Overrides: SCons.Node.NodeInfoBase.__getstate__

__setstate__(self, state)

Restore the attributes from a pickled state. Overrides:
SCons.Node.NodeInfoBase.__setstate__

Inherited from SCons.Node.NodeInfoBase(Section 13.4)

convert(), format(), merge(), update()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(),
__new__(), __reduce__(), __reduce_ex__(), __repr__(), __setattr__(),
__sizeof__(), __str__(), __subclasshook__()

14.3.2 Properties

142

Class AliasBuildInfo Module SCons.Node.Alias

Name Description
csig
Inherited from object
__class__

14.3.3 Class Variables

Name Description
current_version_id Value: 2

field_list Value: [’csig’]

14.4 Class AliasBuildInfo

object

SCons.Node.BuildInfoBase

SCons.Node.Alias.AliasBuildInfo

The generic base class for build information for a Node.

This is what gets stored in a .sconsign file for each target file. It contains a NodeInfo
instance for this node (signature information that’s specific to the type of Node) and direct
attributes for the generic build stuff we have to track: sources, explicit dependencies, implicit
dependencies, and action information.

14.4.1 Methods

Inherited from SCons.Node.BuildInfoBase(Section 13.5)

__getstate__(), __init__(), __setstate__(), merge()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

14.4.2 Properties

Name Description
Inherited from SCons.Node.BuildInfoBase (Section 13.5)

continued on next page

143

Class Alias Module SCons.Node.Alias

Name Description
bact, bactsig, bdepends, bdependsigs, bimplicit, bimplicitsigs, bsources,
bsourcesigs
Inherited from object
__class__

14.4.3 Class Variables

Name Description
current_version_id Value: 2

14.5 Class Alias

object

SCons.Node.Node

SCons.Node.Alias.Alias

14.5.1 Methods

__init__(self, name)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

str_for_display(self)

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

make_ready(self)

Get a Node ready for evaluation.

This is called before the Taskmaster decides if the Node is up-to-date or not.
Overriding this method allows for a Node subclass to be disambiguated if
necessary, or for an implicit source builder to be attached. Overrides:
SCons.Node.Node.make_ready extit(inherited documentation)

144

Class Alias Module SCons.Node.Alias

really_build(self, **kw)

Actually build the node.

This is called by the Taskmaster after it’s decided that the Node is out-of-date
and must be rebuilt, and after the prepare() method has gotten everything,
uh, prepared.

This method is called from multiple threads in a parallel build, so only do
thread safe stuff here. Do thread unsafe stuff in built().

is_up_to_date(self)

Alternate check for whether the Node is current: If all of our children were
up-to-date, then this Node was up-to-date, too.

The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their
current() method to this method. Overrides:
SCons.Node.Node.is_up_to_date

is_under(self, dir)

get_contents(self)

The contents of an alias is the concatenation of the content signatures of all its
sources. Overrides: SCons.Node.Node.get_contents

sconsign(self)

An Alias is not recorded in .sconsign files

build(self)

A "builder" for aliases. Overrides: SCons.Node.Node.build

convert(self)

145

Class Alias Module SCons.Node.Alias

get_csig(self)

Generate a node’s content signature, the digested signature of its content.

node - the node cache - alternate node to use for the signature cache returns -
the content signature Overrides: SCons.Node.Node.get_csig

Inherited from SCons.Node.Node(Section 13.6)

Decider(), GetTag(), Tag(), add_dependency(), add_ignore(), add_prerequisite(),
add_source(), add_to_implicit(), add_to_waiting_parents(), add_to_waiting_s_e(),
add_wkid(), all_children(), alter_targets(), builder_set(), built(), changed(), chil-
dren(), children_are_up_to_date(), clear(), clear_memoized_values(), del_binfo(),
disambiguate(), env_set(), executor_cleanup(), exists(), explain(), for_signature(),
get_abspath(), get_binfo(), get_build_env(), get_build_scanner_path(), get_builder(),
get_cachedir_csig(), get_env(), get_env_scanner(), get_executor(), get_found_includes(),
get_implicit_deps(), get_ninfo(), get_source_scanner(), get_state(), get_stored_implicit(),
get_stored_info(), get_string(), get_subst_proxy(), get_suffix(), get_target_scanner(),
has_builder(), has_explicit_builder(), is_derived(), is_literal(), missing(), mul-
tiple_side_effect_has_builder(), new_binfo(), new_ninfo(), postprocess(), pre-
pare(), push_to_cache(), release_target_info(), remove(), render_include_tree(),
reset_executor(), retrieve_from_cache(), rexists(), scan(), scanner_key(), select_scanner(),
set_always_build(), set_executor(), set_explicit(), set_nocache(), set_noclean(),
set_precious(), set_pseudo(), set_specific_source(), set_state(), visited()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__subclasshook__()

14.5.2 Properties

Name Description
Inherited from SCons.Node.Node (Section 13.6)
always_build, attributes, binfo, builder, cached,
changed_since_last_build, depends, depends_set, env, executor, ignore,
ignore_set, implicit, implicit_set, includes, is_explicit, linked, ninfo,
nocache, noclean, precious, prerequisites, pseudo, ref_count, side_effect,
side_effects, sources, sources_set, state, store_info, target_peers,
waiting_parents, waiting_s_e, wkids
Inherited from object
__class__

146

Module SCons.Node.FS

15 Module SCons.Node.FS

scons.Node.FS

File system nodes.

These Nodes represent the canonical external objects that people think of when they think
of building software: files and directories.

This holds a "default_fs" variable that should be initialized with an FS that can be used by
scripts or modules looking for the canonical default.

15.1 Functions

sconsign_none(node)

sconsign_dir(node)

Return the .sconsign file info for this directory, creating it first if necessary.

save_strings(val)

initialize_do_splitdrive()

needs_normpath_match(...)

match(string[, pos[, endpos]]) --> match object or None. Matches zero or more
characters at the beginning of the string

set_duplicate(duplicate)

LinkFunc(target, source, env)

Relative paths cause problems with symbolic links, so we use absolute paths,
which may be a problem for people who want to move their soft-linked
src-trees around. Those people should use the ’hard-copy’ mode, softlinks
cannot be used for that; at least I have no idea how ...

147

Functions Module SCons.Node.FS

LocalString(target, source, env)

UnlinkFunc(target, source, env)

MkdirFunc(target, source, env)

get_MkdirBuilder()

do_diskcheck_match(node, predicate, errorfmt)

ignore_diskcheck_match(node, predicate, errorfmt)

set_diskcheck(list)

diskcheck_types()

has_glob_magic(s)

get_default_fs()

find_file(filename, paths, verbose=None)

Find a node corresponding to either a derived file or a file that exists already.

Only the first file found is returned, and none is returned if no file is found.

filename: A filename to find paths: A list of directory path nodes to search in.
Can be represented as a list, a tuple, or a callable that is called with no
arguments and returns the list or tuple.

returns The node created from the found file.

148

Variables Module SCons.Node.FS

invalidate_node_memos(targets)

Invalidate the memoized values of all Nodes (files or directories) that are
associated with the given entries. Has been added to clear the cache of nodes
affected by a direct execution of an action (e.g. Delete/Copy/Chmod).
Existing Node caches become inconsistent if the action is run through
Execute(). The argument targets can be a single Node object or filename, or
a sequence of Nodes/filenames.

15.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Node/FS.py

e724ae812eb96f4858a132f5b8c7...

print_duplicate Value: 0

MD5_TIMESTAMP_DE-
BUG

Value: False

default_max_drift Value: 172800

Save_Strings Value: None

do_splitdrive Value: False

needs_normpath_check Value:
re.compile(r’(?x).*//|(.*/)?\.\.(?:/|$)|\./|.*/\.(?:/|$)’)

Valid_Duplicates Value: [’hard-soft-copy’,

’soft-hard-copy’, ’hard-copy’,

’soft-c...

Link_Funcs Value: []

Link Value: <SCons.Action.FunctionAction

object>

LocalCopy Value: <SCons.Action.FunctionAction

object>

Unlink Value: <SCons.Action.FunctionAction

object>

Mkdir Value: <SCons.Action.FunctionAction

object>

MkdirBuilder Value: None

diskcheck_match Value: <SCons.Node.FS.DiskChecker

object>

diskcheckers Value: [<SCons.Node.FS.DiskChecker

object>]

node_bwcomp Value: {’abspath’: <unbound method

Base.get_abspath>, ’labspath’...

glob_magic_check Value: re.compile(r’[*\?\[]’)

continued on next page

149

Class FileBuildInfoFileToCsigMappingError Module SCons.Node.FS

Name Description
default_fs Value: None

OS_SEP Value: ’/’

UNC_PREFIX Value: ’//’

__package__ Value: ’SCons.Node’

has_unc Value: False

os_sep_is_slash Value: True

15.3 Class FileBuildInfoFileToCsigMappingError

object

exceptions.BaseException

exceptions.Exception

SCons.Node.FS.FileBuildInfoFileToCsigMappingError

15.3.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

15.3.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

150

Class EntryProxyAttributeError Module SCons.Node.FS

15.4 Class EntryProxyAttributeError

object

exceptions.BaseException

exceptions.Exception

exceptions.StandardError

exceptions.AttributeError

SCons.Node.FS.EntryProxyAttributeError

An AttributeError subclass for recording and displaying the name of the underlying Entry
involved in an AttributeError exception.

15.4.1 Methods

__init__(self, entry_proxy, attribute)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

Inherited from exceptions.AttributeError

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

15.4.2 Properties

Name Description
Inherited from exceptions.BaseException

continued on next page

151

Class DiskChecker Module SCons.Node.FS

Name Description
args, message
Inherited from object
__class__

15.5 Class DiskChecker

object

SCons.Node.FS.DiskChecker

15.5.1 Methods

__init__(self, type, do, ignore)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__call__(self, *args, **kw)

set(self, list)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

15.5.2 Properties

Name Description
Inherited from object
__class__

152

Class EntryProxy Module SCons.Node.FS

15.6 Class EntryProxy

object

SCons.Util.Proxy

SCons.Node.FS.EntryProxy

15.6.1 Methods

__str__(...)

A Python Descriptor class that delegates attribute fetches to an underlying
wrapped subject of a Proxy. Typical use:

class Foo(Proxy): __str__ = Delegate(’__str__’)

Overrides: object.__str__

__hash__(...)

A Python Descriptor class that delegates attribute fetches to an underlying
wrapped subject of a Proxy. Typical use:

class Foo(Proxy): __str__ = Delegate(’__str__’)

Overrides: object.__hash__

__getattr__(self, name)

Retrieve an attribute from the wrapped object. If the named attribute doesn’t
exist, AttributeError is raised Overrides: SCons.Util.Proxy.__getattr__
extit(inherited documentation)

Inherited from SCons.Util.Proxy(Section 48.5)

__eq__(), __init__(), get()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __subclasshook__()

153

Class Base Module SCons.Node.FS

15.6.2 Properties

Name Description
Inherited from object
__class__

15.6.3 Class Variables

Name Description
dictSpecialAttrs Value: {’abspath’:

<__builtin__.function object>, ’base’:

<__bui...

15.7 Class Base

object

SCons.Node.Node

SCons.Node.FS.Base

Known Subclasses: SCons.Node.FS.Dir, SCons.Node.FS.Entry, SCons.Node.FS.File

A generic class for file system entries. This class is for when we don’t know yet whether the
entry being looked up is a file or a directory. Instances of this class can morph into either
Dir or File objects by a later, more precise lookup.

Note: this class does not define __cmp__ and __hash__ for efficiency reasons. SCons does
a lot of comparing of Node.FS.{Base,Entry,File,Dir} objects, so those operations must be as
fast as possible, which means we want to use Python’s built-in object identity comparisons.

15.7.1 Methods

__init__(self, name, directory, fs)

Initialize a generic Node.FS.Base object.

Call the superclass initialization, take care of setting up our relative and
absolute paths, identify our parent directory, and indicate that this node
should use signatures. Overrides: object.__init__

154

Class Base Module SCons.Node.FS

str_for_display(self)

must_be_same(self, klass)

This node, which already existed, is being looked up as the specified klass.
Raise an exception if it isn’t.

get_dir(self)

get_suffix(self)

Overrides: SCons.Node.Node.get_suffix

rfile(self)

__getattr__(self, attr)

Together with the node_bwcomp dict defined below, this method provides a
simple backward compatibility layer for the Node attributes ’abspath’,
’labspath’, ’path’, ’tpath’, ’suffix’ and ’path_elements’. These Node attributes
used to be directly available in v2.3 and earlier, but have been replaced by
getter methods that initialize the single variables lazily when required, in order
to save memory. The redirection to the getters lets older Tools and SConstruct
continue to work without any additional changes, fully transparent to the user.
Note, that __getattr__ is only called as fallback when the requested
attribute can’t be found, so there should be no speed performance penalty
involved for standard builds.

__str__(self)

A Node.FS.Base object’s string representation is its path name. Overrides:
object.__str__

__lt__(self, other)

less than operator used by sorting on py3

155

Class Base Module SCons.Node.FS

rstr(self)

A Node.FS.Base object’s string representation is its path name.

stat(self)

exists(self)

Does this node exists? Overrides: SCons.Node.Node.exists extit(inherited
documentation)

rexists(self)

Does this node exist locally or in a repository? Overrides:
SCons.Node.Node.rexists extit(inherited documentation)

getmtime(self)

getsize(self)

isdir(self)

isfile(self)

islink(self)

is_under(self, dir)

set_local(self)

srcnode(self)

If this node is in a build path, return the node corresponding to its source file.
Otherwise, return ourself.

156

Class Base Module SCons.Node.FS

get_path(self, dir=None)

Return path relative to the current working directory of the Node.FS.Base
object that owns us.

set_src_builder(self, builder)

Set the source code builder for this node.

src_builder(self)

Fetch the source code builder for this node.

If there isn’t one, we cache the source code builder specified for the directory
(which in turn will cache the value from its parent directory, and so on up to
the file system root).

get_abspath(self)

Get the absolute path of the file. Overrides: SCons.Node.Node.get_abspath

get_labspath(self)

Get the absolute path of the file.

get_internal_path(self)

get_tpath(self)

get_path_elements(self)

157

Class Base Module SCons.Node.FS

for_signature(self)

Return a string representation of the Node that will always be the same for
this particular Node, no matter what. This is by contrast to the __str__()
method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature
calculation for the command line used to build a target, and we use this
method instead of str() to avoid unnecessary rebuilds. This method does not
need to return something that would actually work in a command line; it can
return any kind of nonsense, so long as it does not change. Overrides:
SCons.Node.Node.for_signature extit(inherited documentation)

get_subst_proxy(self)

This method is expected to return an object that will function exactly like this
Node, except that it implements any additional special features that we would
like to be in effect for Environment variable substitution. The principle use is
that some Nodes would like to implement a __getattr__() method, but
putting that in the Node type itself has a tendency to kill performance. We
instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment
substitution. Overrides: SCons.Node.Node.get_subst_proxy extit(inherited
documentation)

target_from_source(self, prefix, suffix, splitext=<__builtin__.function

object>)

Generates a target entry that corresponds to this entry (usually a source file)
with the specified prefix and suffix.

Note that this method can be overridden dynamically for generated files that
need different behavior. See Tool/swig.py for an example.

Rfindalldirs(self, pathlist)

Return all of the directories for a given path list, including corresponding
"backing" directories in any repositories.

The Node lookups are relative to this Node (typically a directory), so
memoizing result saves cycles from looking up the same path for each target in
a given directory.

158

Class Base Module SCons.Node.FS

RDirs(self, pathlist)

Search for a list of directories in the Repository list.

rentry(self)

Inherited from SCons.Node.Node(Section 13.6)

Decider(), GetTag(), Tag(), add_dependency(), add_ignore(), add_prerequisite(),
add_source(), add_to_implicit(), add_to_waiting_parents(), add_to_waiting_s_e(),
add_wkid(), all_children(), alter_targets(), build(), builder_set(), built(), changed(),
children(), children_are_up_to_date(), clear(), clear_memoized_values(), del_binfo(),
disambiguate(), env_set(), executor_cleanup(), explain(), get_binfo(), get_build_env(),
get_build_scanner_path(), get_builder(), get_cachedir_csig(), get_contents(),
get_csig(), get_env(), get_env_scanner(), get_executor(), get_found_includes(),
get_implicit_deps(), get_ninfo(), get_source_scanner(), get_state(), get_stored_implicit(),
get_stored_info(), get_string(), get_target_scanner(), has_builder(), has_explicit_builder(),
is_derived(), is_literal(), is_up_to_date(), make_ready(), missing(), multiple_side_effect_has_builder(),
new_binfo(), new_ninfo(), postprocess(), prepare(), push_to_cache(), release_target_info(),
remove(), render_include_tree(), reset_executor(), retrieve_from_cache(), scan(),
scanner_key(), select_scanner(), set_always_build(), set_executor(), set_explicit(),
set_nocache(), set_noclean(), set_precious(), set_pseudo(), set_specific_source(),
set_state(), visited()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__subclasshook__()

15.7.2 Properties

Name Description
cwd
dir
duplicate
name
sbuilder
Inherited from SCons.Node.Node (Section 13.6)

continued on next page

159

Class Entry Module SCons.Node.FS

Name Description
always_build, attributes, binfo, builder, cached,
changed_since_last_build, depends, depends_set, env, executor, ignore,
ignore_set, implicit, implicit_set, includes, is_explicit, linked, ninfo,
nocache, noclean, precious, prerequisites, pseudo, ref_count, side_effect,
side_effects, sources, sources_set, state, store_info, target_peers,
waiting_parents, waiting_s_e, wkids
Inherited from object
__class__

15.7.3 Instance Variables

Name Description
fs

15.8 Class Entry

object

SCons.Node.Node

SCons.Node.FS.Base

SCons.Node.FS.Entry

This is the class for generic Node.FS entries--that is, things that could be a File or a Dir,
but we’re just not sure yet. Consequently, the methods in this class really exist just to
transform their associated object into the right class when the time comes, and then call the
same-named method in the transformed class.

15.8.1 Methods

__init__(self, name, directory, fs)

Initialize a generic Node.FS.Base object.

Call the superclass initialization, take care of setting up our relative and
absolute paths, identify our parent directory, and indicate that this node
should use signatures. Overrides: object.__init__ extit(inherited
documentation)

160

Class Entry Module SCons.Node.FS

diskcheck_match(self)

disambiguate(self, must_exist=None)

Overrides: SCons.Node.Node.disambiguate

rfile(self)

We’re a generic Entry, but the caller is actually looking for a File at this point,
so morph into one. Overrides: SCons.Node.FS.Base.rfile

scanner_key(self)

Overrides: SCons.Node.Node.scanner_key

get_contents(self)

Fetch the contents of the entry. Returns the exact binary contents of the file.
Overrides: SCons.Node.Node.get_contents

get_text_contents(self)

Fetch the decoded text contents of a Unicode encoded Entry.

Since this should return the text contents from the file system, we check to see
into what sort of subclass we should morph this Entry.

must_be_same(self, klass)

Called to make sure a Node is a Dir. Since we’re an Entry, we can morph into
one. Overrides: SCons.Node.FS.Base.must_be_same

exists(self)

Does this node exists? Overrides: SCons.Node.Node.exists extit(inherited
documentation)

rel_path(self, other)

161

Class Entry Module SCons.Node.FS

new_ninfo(self)

Overrides: SCons.Node.Node.new_ninfo

get_subst_proxy(self)

This method is expected to return an object that will function exactly like this
Node, except that it implements any additional special features that we would
like to be in effect for Environment variable substitution. The principle use is
that some Nodes would like to implement a __getattr__() method, but
putting that in the Node type itself has a tendency to kill performance. We
instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment
substitution. Overrides: SCons.Node.Node.get_subst_proxy extit(inherited
documentation)

Inherited from SCons.Node.FS.Base(Section 15.7)

RDirs(), Rfindalldirs(), __getattr__(), __lt__(), __str__(), for_signature(),
get_abspath(), get_dir(), get_internal_path(), get_labspath(), get_path(), get_path_elements(),
get_suffix(), get_tpath(), getmtime(), getsize(), is_under(), isdir(), isfile(), is-
link(), rentry(), rexists(), rstr(), set_local(), set_src_builder(), src_builder(), sr-
cnode(), stat(), str_for_display(), target_from_source()

Inherited from SCons.Node.Node(Section 13.6)

Decider(), GetTag(), Tag(), add_dependency(), add_ignore(), add_prerequisite(),
add_source(), add_to_implicit(), add_to_waiting_parents(), add_to_waiting_s_e(),
add_wkid(), all_children(), alter_targets(), build(), builder_set(), built(), changed(),
children(), children_are_up_to_date(), clear(), clear_memoized_values(), del_binfo(),
env_set(), executor_cleanup(), explain(), get_binfo(), get_build_env(), get_build_scanner_path(),
get_builder(), get_cachedir_csig(), get_csig(), get_env(), get_env_scanner(),
get_executor(), get_found_includes(), get_implicit_deps(), get_ninfo(), get_source_scanner(),
get_state(), get_stored_implicit(), get_stored_info(), get_string(), get_target_scanner(),
has_builder(), has_explicit_builder(), is_derived(), is_literal(), is_up_to_date(),
make_ready(), missing(), multiple_side_effect_has_builder(), new_binfo(), post-
process(), prepare(), push_to_cache(), release_target_info(), remove(), render_include_tree(),
reset_executor(), retrieve_from_cache(), scan(), select_scanner(), set_always_build(),
set_executor(), set_explicit(), set_nocache(), set_noclean(), set_precious(), set_pseudo(),
set_specific_source(), set_state(), visited()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__subclasshook__()

162

Class LocalFS Module SCons.Node.FS

15.8.2 Properties

Name Description
cachedir_csig
cachesig
contentsig
dirname
entries
on_disk_entries
released_target_info
repositories
root
scanner_paths
searched
srcdir
variant_dirs
Inherited from SCons.Node.FS.Base (Section 15.7)
cwd, dir, duplicate, name, sbuilder
Inherited from SCons.Node.Node (Section 13.6)
always_build, attributes, binfo, builder, cached,
changed_since_last_build, depends, depends_set, env, executor, ignore,
ignore_set, implicit, implicit_set, includes, is_explicit, linked, ninfo,
nocache, noclean, precious, prerequisites, pseudo, ref_count, side_effect,
side_effects, sources, sources_set, state, store_info, target_peers,
waiting_parents, waiting_s_e, wkids
Inherited from object
__class__

15.8.3 Instance Variables

Name Description
Inherited from SCons.Node.FS.Base (Section 15.7)
fs

15.9 Class LocalFS

object

SCons.Node.FS.LocalFS

Known Subclasses: SCons.Node.FS.FS

This class implements an abstraction layer for operations involving a local file system. Es-

163

Class LocalFS Module SCons.Node.FS

sentially, this wraps any function in the os, os.path or shutil modules that we use to actually
go do anything with or to the local file system.

Note that there’s a very good chance we’ll refactor this part of the architecture in some way
as we really implement the interface(s) for remote file system Nodes. For example, the right
architecture might be to have this be a subclass instead of a base class. Nevertheless, we’re
using this as a first step in that direction.

We’re not using chdir() yet because the calling subclass method needs to use os.chdir()
directly to avoid recursion. Will we really need this one?

15.9.1 Methods

chmod(self, path, mode)

copy(self, src, dst)

copy2(self, src, dst)

exists(self, path)

getmtime(self, path)

getsize(self, path)

isdir(self, path)

isfile(self, path)

link(self, src, dst)

lstat(self, path)

listdir(self, path)

makedirs(self, path)

mkdir(self, path)

rename(self, old, new)

164

Class FS Module SCons.Node.FS

stat(self, path)

symlink(self, src, dst)

open(self, path)

unlink(self, path)

islink(self, path)

readlink(self, file)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(),
__new__(), __reduce__(), __reduce_ex__(), __repr__(), __setattr__(),
__sizeof__(), __str__(), __subclasshook__()

15.9.2 Properties

Name Description
Inherited from object
__class__

15.10 Class FS

object

SCons.Node.FS.LocalFS

SCons.Node.FS.FS

165

Class FS Module SCons.Node.FS

15.10.1 Methods

__init__(self, path=None)

Initialize the Node.FS subsystem.

The supplied path is the top of the source tree, where we expect to find the
top-level build file. If no path is supplied, the current directory is the default.

The path argument must be a valid absolute path. Overrides:
object.__init__

set_SConstruct_dir(self, dir)

get_max_drift(self)

set_max_drift(self, max_drift)

getcwd(self)

chdir(self, dir, change_os_dir=0)

Change the current working directory for lookups. If change_os_dir is true,
we will also change the "real" cwd to match.

get_root(self, drive)

Returns the root directory for the specified drive, creating it if necessary.

Entry(self, name, directory=None, create=1)

Look up or create a generic Entry node with the specified name. If the name is
a relative path (begins with ./, ../, or a file name), then it is looked up relative
to the supplied directory node, or to the top level directory of the FS (supplied
at construction time) if no directory is supplied.

166

Class FS Module SCons.Node.FS

File(self, name, directory=None, create=1)

Look up or create a File node with the specified name. If the name is a
relative path (begins with ./, ../, or a file name), then it is looked up relative
to the supplied directory node, or to the top level directory of the FS (supplied
at construction time) if no directory is supplied.

This method will raise TypeError if a directory is found at the specified path.

Dir(self, name, directory=None, create=True)

Look up or create a Dir node with the specified name. If the name is a relative
path (begins with ./, ../, or a file name), then it is looked up relative to the
supplied directory node, or to the top level directory of the FS (supplied at
construction time) if no directory is supplied.

This method will raise TypeError if a normal file is found at the specified
path.

VariantDir(self, variant_dir, src_dir, duplicate=1)

Link the supplied variant directory to the source directory for purposes of
building files.

Repository(self, *dirs)

Specify Repository directories to search.

PyPackageDir(self, modulename)

Locate the directory of a given python module name

For example scons might resolve to Windows:
C:Python27Libsite-packagesscons-2.5.1 Linux: /usr/lib/scons

This can be useful when we want to determine a toolpath based on a python
module name

167

Class FS Module SCons.Node.FS

variant_dir_target_climb(self, orig, dir, tail)

Create targets in corresponding variant directories

Climb the directory tree, and look up path names relative to any linked
variant directories we find.

Even though this loops and walks up the tree, we don’t memoize the return
value because this is really only used to process the command-line targets.

Glob(self, pathname, ondisk=True, source=True, strings=False,
exclude=None, cwd=None)

Globs

This is mainly a shim layer

Inherited from SCons.Node.FS.LocalFS(Section 15.9)

chmod(), copy(), copy2(), exists(), getmtime(), getsize(), isdir(), isfile(), islink(),
link(), listdir(), lstat(), makedirs(), mkdir(), open(), readlink(), rename(), stat(),
symlink(), unlink()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

15.10.2 Properties

Name Description
Inherited from object
__class__

168

Class DirNodeInfo Module SCons.Node.FS

15.11 Class DirNodeInfo

object

SCons.Node.NodeInfoBase

SCons.Node.FS.DirNodeInfo

The generic base class for signature information for a Node.

Node subclasses should subclass NodeInfoBase to provide their own logic for dealing with
their own Node-specific signature information.

15.11.1 Methods

str_to_node(self, s)

Inherited from SCons.Node.NodeInfoBase(Section 13.4)

__getstate__(), __setstate__(), convert(), format(), merge(), update()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(),
__new__(), __reduce__(), __reduce_ex__(), __repr__(), __setattr__(),
__sizeof__(), __str__(), __subclasshook__()

15.11.2 Properties

Name Description
Inherited from object
__class__

15.11.3 Class Variables

Name Description
current_version_id Value: 2

fs Value: None

169

Class DirBuildInfo Module SCons.Node.FS

15.12 Class DirBuildInfo

object

SCons.Node.BuildInfoBase

SCons.Node.FS.DirBuildInfo

The generic base class for build information for a Node.

This is what gets stored in a .sconsign file for each target file. It contains a NodeInfo
instance for this node (signature information that’s specific to the type of Node) and direct
attributes for the generic build stuff we have to track: sources, explicit dependencies, implicit
dependencies, and action information.

15.12.1 Methods

Inherited from SCons.Node.BuildInfoBase(Section 13.5)

__getstate__(), __init__(), __setstate__(), merge()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

15.12.2 Properties

Name Description
Inherited from SCons.Node.BuildInfoBase (Section 13.5)
bact, bactsig, bdepends, bdependsigs, bimplicit, bimplicitsigs, bsources,
bsourcesigs
Inherited from object
__class__

15.12.3 Class Variables

Name Description
current_version_id Value: 2

170

Class Dir Module SCons.Node.FS

15.13 Class Dir

object

SCons.Node.Node

SCons.Node.FS.Base

SCons.Node.FS.Dir

Known Subclasses: SCons.Node.FS.RootDir

A class for directories in a file system.

15.13.1 Methods

__init__(self, name, directory, fs)

Initialize a generic Node.FS.Base object.

Call the superclass initialization, take care of setting up our relative and
absolute paths, identify our parent directory, and indicate that this node
should use signatures. Overrides: object.__init__ extit(inherited
documentation)

diskcheck_match(self)

Entry(self, name)

Looks up or creates an entry node named ’name’ relative to this directory.

Dir(self, name, create=True)

Looks up or creates a directory node named ’name’ relative to this directory.

File(self, name)

Looks up or creates a file node named ’name’ relative to this directory.

171

Class Dir Module SCons.Node.FS

link(self, srcdir, duplicate)

Set this directory as the variant directory for the supplied source directory.

getRepositories(self)

Returns a list of repositories for this directory.

get_all_rdirs(self)

addRepository(self, dir)

up(self)

rel_path(self, other)

Return a path to "other" relative to this directory.

get_env_scanner(self, env, kw={})

Overrides: SCons.Node.Node.get_env_scanner

get_target_scanner(self)

Overrides: SCons.Node.Node.get_target_scanner

get_found_includes(self, env, scanner, path)

Return this directory’s implicit dependencies.

We don’t bother caching the results because the scan typically shouldn’t be
requested more than once (as opposed to scanning .h file contents, which can
be requested as many times as the files is #included by other files).
Overrides: SCons.Node.Node.get_found_includes

172

Class Dir Module SCons.Node.FS

prepare(self)

Prepare for this Node to be built.

This is called after the Taskmaster has decided that the Node is out-of-date
and must be rebuilt, but before actually calling the method to build the Node.

This default implementation checks that explicit or implicit dependencies
either exist or are derived, and initializes the BuildInfo structure that will hold
the information about how this node is, uh, built.

(The existence of source files is checked separately by the Executor, which
aggregates checks for all of the targets built by a specific action.)

Overriding this method allows for for a Node subclass to remove the
underlying file from the file system. Note that subclass methods should call
this base class method to get the child check and the BuildInfo structure.
Overrides: SCons.Node.Node.prepare extit(inherited documentation)

build(self, **kw)

A null "builder" for directories. Overrides: SCons.Node.Node.build

multiple_side_effect_has_builder(self)

Return whether this Node has a builder or not.

In Boolean tests, this turns out to be a lot more efficient than simply
examining the builder attribute directly ("if node.builder: ..."). When the
builder attribute is examined directly, it ends up calling __getattr__ for
both the __len__ and __nonzero__ attributes on instances of our Builder
Proxy class(es), generating a bazillion extra calls and slowing things down
immensely. Overrides: SCons.Node.Node.multiple_side_effect_has_builder
extit(inherited documentation)

alter_targets(self)

Return any corresponding targets in a variant directory. Overrides:
SCons.Node.Node.alter_targets

173

Class Dir Module SCons.Node.FS

scanner_key(self)

A directory does not get scanned. Overrides: SCons.Node.Node.scanner_key

get_text_contents(self)

We already emit things in text, so just return the binary version.

get_contents(self)

Return content signatures and names of all our children separated by
new-lines. Ensure that the nodes are sorted. Overrides:
SCons.Node.Node.get_contents

get_csig(self)

Compute the content signature for Directory nodes. In general, this is not
needed and the content signature is not stored in the DirNodeInfo. However, if
get_contents on a Dir node is called which has a child directory, the child
directory should return the hash of its contents. Overrides:
SCons.Node.Node.get_csig

do_duplicate(self, src)

is_up_to_date(self)

If any child is not up-to-date, then this directory isn’t, either. Overrides:
SCons.Node.Node.is_up_to_date

rdir(self)

sconsign(self)

Return the .sconsign file info for this directory.

174

Class Dir Module SCons.Node.FS

srcnode(self)

Dir has a special need for srcnode()...if we have a srcdir attribute set, then
that is our srcnode. Overrides: SCons.Node.FS.Base.srcnode

get_timestamp(self)

Return the latest timestamp from among our children

get_abspath(self)

Get the absolute path of the file. Overrides: SCons.Node.Node.get_abspath

get_labspath(self)

Get the absolute path of the file. Overrides:
SCons.Node.FS.Base.get_labspath

get_internal_path(self)

Overrides: SCons.Node.FS.Base.get_internal_path

get_tpath(self)

Overrides: SCons.Node.FS.Base.get_tpath

get_path_elements(self)

Overrides: SCons.Node.FS.Base.get_path_elements

entry_abspath(self, name)

entry_labspath(self, name)

entry_path(self, name)

entry_tpath(self, name)

175

Class Dir Module SCons.Node.FS

entry_exists_on_disk(self, name)

Searches through the file/dir entries of the current directory, and returns True
if a physical entry with the given name could be found.

@see rentry_exists_on_disk

rentry_exists_on_disk(self, name)

Searches through the file/dir entries of the current and all its remote
directories (repos), and returns True if a physical entry with the given name
could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.

@see entry_exists_on_disk

srcdir_list(self)

srcdir_duplicate(self, name)

srcdir_find_file(self, filename)

dir_on_disk(self, name)

file_on_disk(self, name)

176

Class Dir Module SCons.Node.FS

walk(self, func, arg)

Walk this directory tree by calling the specified function for each directory in
the tree.

This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir
objects. The function takes the same arguments as the functions passed to
os.path.walk():

func(arg, dirname, fnames)

Except that "dirname" will actually be the directory Node, not the string. The
’.’ and ’..’ entries are excluded from fnames. The fnames list may be modified
in-place to filter the subdirectories visited or otherwise impose a specific order.
The "arg" argument is always passed to func() and may be used in any way (or
ignored, passing None is common).

177

Class Dir Module SCons.Node.FS

glob(self, pathname, ondisk=True, source=False, strings=False,
exclude=None)

Returns a list of Nodes (or strings) matching a specified pathname pattern.

Pathname patterns follow UNIX shell semantics: * matches any-length strings
of any characters, ? matches any character, and [] can enclose lists or ranges of
characters. Matches do not span directory separators.

The matches take into account Repositories, returning local Nodes if a
corresponding entry exists in a Repository (either an in-memory Node or
something on disk).

By defafult, the glob() function matches entries that exist on-disk, in addition
to in-memory Nodes. Setting the "ondisk" argument to False (or some other
non-true value) causes the glob() function to only match in-memory Nodes.
The default behavior is to return both the on-disk and in-memory Nodes.

The "source" argument, when true, specifies that corresponding source Nodes
must be returned if you’re globbing in a build directory (initialized with
VariantDir()). The default behavior is to return Nodes local to the
VariantDir().

The "strings" argument, when true, returns the matches as strings, not Nodes.
The strings are path names relative to this directory.

The "exclude" argument, if not None, must be a pattern or a list of patterns
following the same UNIX shell semantics. Elements matching a least one
pattern of this list will be excluded from the result.

The underlying algorithm is adapted from the glob.glob() function in the
Python library (but heavily modified), and uses fnmatch() under the covers.

Inherited from SCons.Node.FS.Base(Section 15.7)

RDirs(), Rfindalldirs(), __getattr__(), __lt__(), __str__(), exists(), for_signature(),
get_dir(), get_path(), get_subst_proxy(), get_suffix(), getmtime(), getsize(), is_under(),
isdir(), isfile(), islink(), must_be_same(), rentry(), rexists(), rfile(), rstr(), set_local(),
set_src_builder(), src_builder(), stat(), str_for_display(), target_from_source()

Inherited from SCons.Node.Node(Section 13.6)

Decider(), GetTag(), Tag(), add_dependency(), add_ignore(), add_prerequisite(),
add_source(), add_to_implicit(), add_to_waiting_parents(), add_to_waiting_s_e(),
add_wkid(), all_children(), builder_set(), built(), changed(), children(), children_are_up_to_date(),
clear(), clear_memoized_values(), del_binfo(), disambiguate(), env_set(), execu-

178

Class Dir Module SCons.Node.FS

tor_cleanup(), explain(), get_binfo(), get_build_env(), get_build_scanner_path(),
get_builder(), get_cachedir_csig(), get_env(), get_executor(), get_implicit_deps(),
get_ninfo(), get_source_scanner(), get_state(), get_stored_implicit(), get_stored_info(),
get_string(), has_builder(), has_explicit_builder(), is_derived(), is_literal(), make_ready(),
missing(), new_binfo(), new_ninfo(), postprocess(), push_to_cache(), release_target_info(),
remove(), render_include_tree(), reset_executor(), retrieve_from_cache(), scan(),
select_scanner(), set_always_build(), set_executor(), set_explicit(), set_nocache(),
set_noclean(), set_precious(), set_pseudo(), set_specific_source(), set_state(),
visited()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__subclasshook__()

15.13.2 Properties

Name Description
cachedir_csig
cachesig
contentsig
dirname
entries
on_disk_entries
released_target_info
repositories
root
scanner_paths
searched
srcdir
variant_dirs
Inherited from SCons.Node.FS.Base (Section 15.7)
cwd, dir, duplicate, name, sbuilder
Inherited from SCons.Node.Node (Section 13.6)
always_build, attributes, binfo, builder, cached,
changed_since_last_build, depends, depends_set, env, executor, ignore,
ignore_set, implicit, implicit_set, includes, is_explicit, linked, ninfo,
nocache, noclean, precious, prerequisites, pseudo, ref_count, side_effect,
side_effects, sources, sources_set, state, store_info, target_peers,
waiting_parents, waiting_s_e, wkids
Inherited from object
__class__

179

Class RootDir Module SCons.Node.FS

15.13.3 Instance Variables

Name Description
Inherited from SCons.Node.FS.Base (Section 15.7)
fs

15.14 Class RootDir

object

SCons.Node.Node

SCons.Node.FS.Base

SCons.Node.FS.Dir

SCons.Node.FS.RootDir

A class for the root directory of a file system.

This is the same as a Dir class, except that the path separator (’/’ or ”) is actually part
of the name, so we don’t need to add a separator when creating the path names of entries
within this directory.

15.14.1 Methods

__init__(self, drive, fs)

Initialize a generic Node.FS.Base object.

Call the superclass initialization, take care of setting up our relative and
absolute paths, identify our parent directory, and indicate that this node
should use signatures. Overrides: object.__init__ extit(inherited
documentation)

must_be_same(self, klass)

This node, which already existed, is being looked up as the specified klass.
Raise an exception if it isn’t. Overrides:
SCons.Node.FS.Base.must_be_same extit(inherited documentation)

180

Class RootDir Module SCons.Node.FS

__str__(self)

A Node.FS.Base object’s string representation is its path name. Overrides:
object.__str__ extit(inherited documentation)

entry_abspath(self, name)

Overrides: SCons.Node.FS.Dir.entry_abspath

entry_labspath(self, name)

Overrides: SCons.Node.FS.Dir.entry_labspath

entry_path(self, name)

Overrides: SCons.Node.FS.Dir.entry_path

entry_tpath(self, name)

Overrides: SCons.Node.FS.Dir.entry_tpath

is_under(self, dir)

Overrides: SCons.Node.FS.Base.is_under

up(self)

Overrides: SCons.Node.FS.Dir.up

get_dir(self)

Overrides: SCons.Node.FS.Base.get_dir

src_builder(self)

Fetch the source code builder for this node.

If there isn’t one, we cache the source code builder specified for the directory
(which in turn will cache the value from its parent directory, and so on up to
the file system root). Overrides: SCons.Node.FS.Base.src_builder
extit(inherited documentation)

Inherited from SCons.Node.FS.Dir(Section 15.13)

Dir(), Entry(), File(), addRepository(), alter_targets(), build(), dir_on_disk(),
diskcheck_match(), do_duplicate(), entry_exists_on_disk(), file_on_disk(), ge-
tRepositories(), get_abspath(), get_all_rdirs(), get_contents(), get_csig(), get_env_scanner(),
get_found_includes(), get_internal_path(), get_labspath(), get_path_elements(),

181

Class RootDir Module SCons.Node.FS

get_target_scanner(), get_text_contents(), get_timestamp(), get_tpath(), glob(),
is_up_to_date(), link(), multiple_side_effect_has_builder(), prepare(), rdir(),
rel_path(), rentry_exists_on_disk(), scanner_key(), sconsign(), srcdir_duplicate(),
srcdir_find_file(), srcdir_list(), srcnode(), walk()

Inherited from SCons.Node.FS.Base(Section 15.7)

RDirs(), Rfindalldirs(), __getattr__(), __lt__(), exists(), for_signature(), get_path(),
get_subst_proxy(), get_suffix(), getmtime(), getsize(), isdir(), isfile(), islink(),
rentry(), rexists(), rfile(), rstr(), set_local(), set_src_builder(), stat(), str_for_display(),
target_from_source()

Inherited from SCons.Node.Node(Section 13.6)

Decider(), GetTag(), Tag(), add_dependency(), add_ignore(), add_prerequisite(),
add_source(), add_to_implicit(), add_to_waiting_parents(), add_to_waiting_s_e(),
add_wkid(), all_children(), builder_set(), built(), changed(), children(), children_are_up_to_date(),
clear(), clear_memoized_values(), del_binfo(), disambiguate(), env_set(), execu-
tor_cleanup(), explain(), get_binfo(), get_build_env(), get_build_scanner_path(),
get_builder(), get_cachedir_csig(), get_env(), get_executor(), get_implicit_deps(),
get_ninfo(), get_source_scanner(), get_state(), get_stored_implicit(), get_stored_info(),
get_string(), has_builder(), has_explicit_builder(), is_derived(), is_literal(), make_ready(),
missing(), new_binfo(), new_ninfo(), postprocess(), push_to_cache(), release_target_info(),
remove(), render_include_tree(), reset_executor(), retrieve_from_cache(), scan(),
select_scanner(), set_always_build(), set_executor(), set_explicit(), set_nocache(),
set_noclean(), set_precious(), set_pseudo(), set_specific_source(), set_state(),
visited()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__subclasshook__()

15.14.2 Properties

Name Description
Inherited from SCons.Node.FS.Dir (Section 15.13)
cachedir_csig, cachesig, contentsig, dirname, entries, on_disk_entries,
released_target_info, repositories, root, scanner_paths, searched, srcdir,
variant_dirs
Inherited from SCons.Node.FS.Base (Section 15.7)
cwd, dir, duplicate, name, sbuilder
Inherited from SCons.Node.Node (Section 13.6)

continued on next page

182

Class FileNodeInfo Module SCons.Node.FS

Name Description
always_build, attributes, binfo, builder, cached,
changed_since_last_build, depends, depends_set, env, executor, ignore,
ignore_set, implicit, implicit_set, includes, is_explicit, linked, ninfo,
nocache, noclean, precious, prerequisites, pseudo, ref_count, side_effect,
side_effects, sources, sources_set, state, store_info, target_peers,
waiting_parents, waiting_s_e, wkids
Inherited from object
__class__

15.14.3 Instance Variables

Name Description
fs Reference to parent Node.FS object

15.15 Class FileNodeInfo

object

SCons.Node.NodeInfoBase

SCons.Node.FS.FileNodeInfo

The generic base class for signature information for a Node.

Node subclasses should subclass NodeInfoBase to provide their own logic for dealing with
their own Node-specific signature information.

15.15.1 Methods

str_to_node(self, s)

__getstate__(self)

Return all fields that shall be pickled. Walk the slots in the class hierarchy
and add those to the state dictionary. If a ’__dict__’ slot is available, copy
all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class. Overrides: SCons.Node.NodeInfoBase.__getstate__

183

Class FileNodeInfo Module SCons.Node.FS

__setstate__(self, state)

Restore the attributes from a pickled state. Overrides:
SCons.Node.NodeInfoBase.__setstate__

__eq__(self, other)

__ne__(self, other)

Inherited from SCons.Node.NodeInfoBase(Section 13.4)

convert(), format(), merge(), update()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(),
__new__(), __reduce__(), __reduce_ex__(), __repr__(), __setattr__(),
__sizeof__(), __str__(), __subclasshook__()

15.15.2 Properties

Name Description
csig
size
timestamp
Inherited from object
__class__

15.15.3 Class Variables

Name Description
current_version_id Value: 2

field_list Value: [’csig’, ’timestamp’, ’size’]

fs Value: None

184

Class FileBuildInfo Module SCons.Node.FS

15.16 Class FileBuildInfo

object

SCons.Node.BuildInfoBase

SCons.Node.FS.FileBuildInfo

Known Subclasses: SCons.SConf.SConfBuildInfo

This is info loaded from sconsign.

Attributes unique to FileBuildInfo:

dependency_map (Caches file->csig mapping) for all dependencies. Currently
this is only used when using MD5-timestamp decider. It’s used to ensure that we
copy the correct csig from previous build to be written to .sconsign when current
build is done. Previously the matching of csig to file was strictly by order they
appeared in bdepends, bsources, or bimplicit, and so a change in order or count of
any of these could yield writing wrong csig, and then false positive rebuilds

15.16.1 Methods

__setattr__(self, key, value)

x.__setattr__(’name’, value) <==> x.name = value Overrides:
object.__setattr__ extit(inherited documentation)

convert_from_sconsign(self, dir, name)

Converts a newly-read FileBuildInfo object for in-SCons use

For normal up-to-date checking, we don’t have any conversion to perform--but
we’re leaving this method here to make that clear.

convert_to_sconsign(self)

Converts this FileBuildInfo object for writing to a .sconsign file

This replaces each Node in our various dependency lists with its usual string
representation: relative to the top-level SConstruct directory, or an absolute
path if it’s outside.

185

Class FileBuildInfo Module SCons.Node.FS

format(self, names=0)

prepare_dependencies(self)

Prepares a FileBuildInfo object for explaining what changed

The bsources, bdepends and bimplicit lists have all been stored on disk as
paths relative to the top-level SConstruct directory. Convert the strings to
actual Nodes (for use by the --debug=explain code and --implicit-cache).

Inherited from SCons.Node.BuildInfoBase(Section 13.5)

__getstate__(), __init__(), __setstate__(), merge()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __sizeof__(), __str__(), __sub-
classhook__()

15.16.2 Properties

Name Description
dependency_map
Inherited from SCons.Node.BuildInfoBase (Section 13.5)
bact, bactsig, bdepends, bdependsigs, bimplicit, bimplicitsigs, bsources,
bsourcesigs
Inherited from object
__class__

15.16.3 Class Variables

Name Description
current_version_id Value: 2

186

Class File Module SCons.Node.FS

15.17 Class File

object

SCons.Node.Node

SCons.Node.FS.Base

SCons.Node.FS.File

A class for files in a file system.

15.17.1 Methods

diskcheck_match(self)

__init__(self, name, directory, fs)

Initialize a generic Node.FS.Base object.

Call the superclass initialization, take care of setting up our relative and
absolute paths, identify our parent directory, and indicate that this node
should use signatures. Overrides: object.__init__ extit(inherited
documentation)

Entry(self, name)

Create an entry node named ’name’ relative to the directory of this file.

Dir(self, name, create=True)

Create a directory node named ’name’ relative to the directory of this file.

Dirs(self, pathlist)

Create a list of directories relative to the SConscript directory of this file.

187

Class File Module SCons.Node.FS

File(self, name)

Create a file node named ’name’ relative to the directory of this file.

scanner_key(self)

Overrides: SCons.Node.Node.scanner_key

get_contents(self)

Fetch the contents of the entry. Overrides: SCons.Node.Node.get_contents
extit(inherited documentation)

get_text_contents(self)

This attempts to figure out what the encoding of the text is based upon the
BOM bytes, and then decodes the contents so that it’s a valid python string.

get_content_hash(self)

Compute and return the MD5 hash for this file.

get_size(self)

get_timestamp(self)

convert_old_entry(self, old_entry)

get_stored_info(self)

Overrides: SCons.Node.Node.get_stored_info

get_stored_implicit(self)

Fetch the stored implicit dependencies Overrides:
SCons.Node.Node.get_stored_implicit extit(inherited documentation)

rel_path(self, other)

188

Class File Module SCons.Node.FS

get_found_includes(self, env, scanner, path)

Return the included implicit dependencies in this file. Cache results so we only
scan the file once per path regardless of how many times this information is
requested. Overrides: SCons.Node.Node.get_found_includes

push_to_cache(self)

Try to push the node into a cache Overrides:
SCons.Node.Node.push_to_cache

retrieve_from_cache(self)

Try to retrieve the node’s content from a cache

This method is called from multiple threads in a parallel build, so only do
thread safe stuff here. Do thread unsafe stuff in built().

Returns true if the node was successfully retrieved. Overrides:
SCons.Node.Node.retrieve_from_cache

visited(self)

Called just after this node has been visited (with or without a build).
Overrides: SCons.Node.Node.visited extit(inherited documentation)

189

Class File Module SCons.Node.FS

release_target_info(self)

Called just after this node has been marked up-to-date or was built completely.

This is where we try to release as many target node infos as possible for clean
builds and update runs, in order to minimize the overall memory consumption.

We’d like to remove a lot more attributes like self.sources and self.sources_set,
but they might get used in a next build step. For example, during
configuration the source files for a built E{*}.o file are used to figure out
which linker to use for the resulting Program (gcc vs. g++)! That’s why we
check for the ’keep_targetinfo’ attribute, config Nodes and the Interactive
mode just don’t allow an early release of most variables.

In the same manner, we can’t simply remove the self.attributes here. The
smart linking relies on the shared flag, and some parts of the java Tool use it
to transport information about nodes...

@see: built() and Node.release_target_info() Overrides:
SCons.Node.Node.release_target_info

find_src_builder(self)

has_src_builder(self)

Return whether this Node has a source builder or not.

If this Node doesn’t have an explicit source code builder, this is where we
figure out, on the fly, if there’s a transparent source code builder for it.

Note that if we found a source builder, we also set the self.builder attribute, so
that all of the methods that actually build this file don’t have to do anything
different.

alter_targets(self)

Return any corresponding targets in a variant directory. Overrides:
SCons.Node.Node.alter_targets

190

Class File Module SCons.Node.FS

make_ready(self)

Get a Node ready for evaluation.

This is called before the Taskmaster decides if the Node is up-to-date or not.
Overriding this method allows for a Node subclass to be disambiguated if
necessary, or for an implicit source builder to be attached. Overrides:
SCons.Node.Node.make_ready extit(inherited documentation)

prepare(self)

Prepare for this file to be created. Overrides: SCons.Node.Node.prepare

remove(self)

Remove this file. Overrides: SCons.Node.Node.remove

do_duplicate(self, src)

exists(self)

Does this node exists? Overrides: SCons.Node.Node.exists extit(inherited
documentation)

get_max_drift_csig(self)

Returns the content signature currently stored for this node if it’s been
unmodified longer than the max_drift value, or the max_drift value is 0.
Returns None otherwise.

get_csig(self)

Generate a node’s content signature, the digested signature of its content.

node - the node cache - alternate node to use for the signature cache returns -
the content signature Overrides: SCons.Node.Node.get_csig

191

Class File Module SCons.Node.FS

builder_set(self, builder)

Overrides: SCons.Node.Node.builder_set

built(self)

Called just after this File node is successfully built.

Just like for ’release_target_info’ we try to release some more target node
attributes in order to minimize the overall memory consumption.

@see: release_target_info Overrides: SCons.Node.Node.built

changed(self, node=None, allowcache=False)

Returns if the node is up-to-date with respect to the BuildInfo stored last time
it was built.

For File nodes this is basically a wrapper around Node.changed(), but we
allow the return value to get cached after the reference to the Executor got
released in release_target_info().

@see: Node.changed() Overrides: SCons.Node.Node.changed

changed_content(self, target, prev_ni, repo_node=None)

changed_state(self, target, prev_ni, repo_node=None)

192

Class File Module SCons.Node.FS

changed_timestamp_then_content(self, target, prev_ni, node=None)

Used when decider for file is Timestamp-MD5

NOTE: If the timestamp hasn’t changed this will skip md5’ing the

file and just copy the prev_ni provided. If the prev_ni

is wrong. It will propagate it.

See: https://github.com/SCons/scons/issues/2980

Args:

self - dependency

target - target

prev_ni - The NodeInfo object loaded from previous builds .sconsign

node - Node instance. Check this node for file existence/timestamp

if specified.

Returns:

Boolean - Indicates if node(File) has changed.

changed_timestamp_newer(self, target, prev_ni, repo_node=None)

changed_timestamp_match(self, target, prev_ni, repo_node=None)

Return True if the timestamps don’t match or if there is no previous
timestamp :param target: :param prev_ni: Information about the node from
the previous build :return:

is_up_to_date(self)

Check for whether the Node is current In all cases self is the target we’re
checking to see if it’s up to date Overrides: SCons.Node.Node.is_up_to_date

rfile(self)

Overrides: SCons.Node.FS.Base.rfile

193

Class File Module SCons.Node.FS

find_repo_file(self)

For this node, find if there exists a corresponding file in one or more
repositories :return: list of corresponding files in repositories

rstr(self)

A Node.FS.Base object’s string representation is its path name. Overrides:
SCons.Node.FS.Base.rstr extit(inherited documentation)

get_cachedir_csig(self)

Fetch a Node’s content signature for purposes of computing another Node’s
cachesig.

This is a wrapper around the normal get_csig() method that handles the
somewhat obscure case of using CacheDir with the -n option. Any files that
don’t exist would normally be "built" by fetching them from the cache, but the
normal get_csig() method will try to open up the local file, which doesn’t
exist because the -n option meant we didn’t actually pull the file from
cachedir. But since the file does actually exist in the cachedir, we can use its
contents for the csig. Overrides: SCons.Node.Node.get_cachedir_csig

get_contents_sig(self)

A helper method for get_cachedir_bsig.

It computes and returns the signature for this node’s contents.

get_cachedir_bsig(self)

Return the signature for a cached file, including its children.

It adds the path of the cached file to the cache signature, because multiple
targets built by the same action will all have the same build signature, and we
have to differentiate them somehow.

Signature should normally be string of hex digits.

Inherited from SCons.Node.FS.Base(Section 15.7)

194

Class File Module SCons.Node.FS

RDirs(), Rfindalldirs(), __getattr__(), __lt__(), __str__(), for_signature(),
get_abspath(), get_dir(), get_internal_path(), get_labspath(), get_path(), get_path_elements(),
get_subst_proxy(), get_suffix(), get_tpath(), getmtime(), getsize(), is_under(),
isdir(), isfile(), islink(), must_be_same(), rentry(), rexists(), set_local(), set_src_builder(),
src_builder(), srcnode(), stat(), str_for_display(), target_from_source()

Inherited from SCons.Node.Node(Section 13.6)

Decider(), GetTag(), Tag(), add_dependency(), add_ignore(), add_prerequisite(),
add_source(), add_to_implicit(), add_to_waiting_parents(), add_to_waiting_s_e(),
add_wkid(), all_children(), build(), children(), children_are_up_to_date(), clear(),
clear_memoized_values(), del_binfo(), disambiguate(), env_set(), executor_cleanup(),
explain(), get_binfo(), get_build_env(), get_build_scanner_path(), get_builder(),
get_env(), get_env_scanner(), get_executor(), get_implicit_deps(), get_ninfo(),
get_source_scanner(), get_state(), get_string(), get_target_scanner(), has_builder(),
has_explicit_builder(), is_derived(), is_literal(), missing(), multiple_side_effect_has_builder(),
new_binfo(), new_ninfo(), postprocess(), render_include_tree(), reset_executor(),
scan(), select_scanner(), set_always_build(), set_executor(), set_explicit(), set_nocache(),
set_noclean(), set_precious(), set_pseudo(), set_specific_source(), set_state()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__subclasshook__()

15.17.2 Properties

Name Description
cachedir_csig
cachesig
contentsig
dirname
entries
on_disk_entries
released_target_info
repositories
root
scanner_paths
searched
srcdir
variant_dirs
Inherited from SCons.Node.FS.Base (Section 15.7)
cwd, dir, duplicate, name, sbuilder
Inherited from SCons.Node.Node (Section 13.6)

continued on next page

195

Class FileFinder Module SCons.Node.FS

Name Description
always_build, attributes, binfo, builder, cached,
changed_since_last_build, depends, depends_set, env, executor, ignore,
ignore_set, implicit, implicit_set, includes, is_explicit, linked, ninfo,
nocache, noclean, precious, prerequisites, pseudo, ref_count, side_effect,
side_effects, sources, sources_set, state, store_info, target_peers,
waiting_parents, waiting_s_e, wkids
Inherited from object
__class__

15.17.3 Class Variables

Name Description
md5_chunksize Value: 64

convert_copy_attrs Value: [’bsources’, ’bimplicit’,

’bdepends’, ’bact’, ’bactsig’, ...

convert_sig_attrs Value: [’bsourcesigs’, ’bimplicitsigs’,

’bdependsigs’]

15.17.4 Instance Variables

Name Description
Inherited from SCons.Node.FS.Base (Section 15.7)
fs

15.18 Class FileFinder

object

SCons.Node.FS.FileFinder

15.18.1 Methods

__init__(self)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

196

Class FileFinder Module SCons.Node.FS

filedir_lookup(self, p, fd=None)

A helper method for find_file() that looks up a directory for a file we’re trying
to find. This only creates the Dir Node if it exists on-disk, since if the
directory doesn’t exist we know we won’t find any files in it... :-)

It would be more compact to just use this as a nested function with a default
keyword argument (see the commented-out version below), but that doesn’t
work unless you have nested scopes, so we define it here just so this work
under Python 1.5.2.

find_file(self, filename, paths, verbose=None)

Find a node corresponding to either a derived file or a file that exists already.

Only the first file found is returned, and none is returned if no file is found.

filename: A filename to find paths: A list of directory path nodes to search in.
Can be represented as a list, a tuple, or a callable that is called with no
arguments and returns the list or tuple.

returns The node created from the found file.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

15.18.2 Properties

Name Description
Inherited from object
__class__

197

Class ValueNodeInfo Module SCons.Node.Python

16 Module SCons.Node.Python

scons.Node.Python

Python nodes.

16.1 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Node/Python.py

e724ae812eb96f4858a132f5...

__package__ Value: ’SCons.Node’

16.2 Class ValueNodeInfo

object

SCons.Node.NodeInfoBase

SCons.Node.Python.ValueNodeInfo

The generic base class for signature information for a Node.

Node subclasses should subclass NodeInfoBase to provide their own logic for dealing with
their own Node-specific signature information.

16.2.1 Methods

str_to_node(self, s)

__getstate__(self)

Return all fields that shall be pickled. Walk the slots in the class hierarchy
and add those to the state dictionary. If a ’__dict__’ slot is available, copy
all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class. Overrides: SCons.Node.NodeInfoBase.__getstate__

198

Class ValueBuildInfo Module SCons.Node.Python

__setstate__(self, state)

Restore the attributes from a pickled state. Overrides:
SCons.Node.NodeInfoBase.__setstate__

Inherited from SCons.Node.NodeInfoBase(Section 13.4)

convert(), format(), merge(), update()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(),
__new__(), __reduce__(), __reduce_ex__(), __repr__(), __setattr__(),
__sizeof__(), __str__(), __subclasshook__()

16.2.2 Properties

Name Description
csig
Inherited from object
__class__

16.2.3 Class Variables

Name Description
current_version_id Value: 2

field_list Value: [’csig’]

16.3 Class ValueBuildInfo

object

SCons.Node.BuildInfoBase

SCons.Node.Python.ValueBuildInfo

The generic base class for build information for a Node.

This is what gets stored in a .sconsign file for each target file. It contains a NodeInfo
instance for this node (signature information that’s specific to the type of Node) and direct
attributes for the generic build stuff we have to track: sources, explicit dependencies, implicit
dependencies, and action information.

199

Class Value Module SCons.Node.Python

16.3.1 Methods

Inherited from SCons.Node.BuildInfoBase(Section 13.5)

__getstate__(), __init__(), __setstate__(), merge()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

16.3.2 Properties

Name Description
Inherited from SCons.Node.BuildInfoBase (Section 13.5)
bact, bactsig, bdepends, bdependsigs, bimplicit, bimplicitsigs, bsources,
bsourcesigs
Inherited from object
__class__

16.3.3 Class Variables

Name Description
current_version_id Value: 2

16.4 Class Value

object

SCons.Node.Node

SCons.Node.Python.Value

A class for Python variables, typically passed on the command line or generated by a script,
but not from a file or some other source.

200

Class Value Module SCons.Node.Python

16.4.1 Methods

__init__(self, value, built_value=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

str_for_display(self)

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

make_ready(self)

Get a Node ready for evaluation.

This is called before the Taskmaster decides if the Node is up-to-date or not.
Overriding this method allows for a Node subclass to be disambiguated if
necessary, or for an implicit source builder to be attached. Overrides:
SCons.Node.Node.make_ready extit(inherited documentation)

build(self, **kw)

Actually build the node.

This is called by the Taskmaster after it’s decided that the Node is out-of-date
and must be rebuilt, and after the prepare() method has gotten everything,
uh, prepared.

This method is called from multiple threads in a parallel build, so only do
thread safe stuff here. Do thread unsafe stuff in built(). Overrides:
SCons.Node.Node.build extit(inherited documentation)

is_up_to_date(self)

Alternate check for whether the Node is current: If all of our children were
up-to-date, then this Node was up-to-date, too.

The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their
current() method to this method. Overrides:
SCons.Node.Node.is_up_to_date

201

Class Value Module SCons.Node.Python

is_under(self, dir)

write(self, built_value)

Set the value of the node.

read(self)

Return the value. If necessary, the value is built.

get_text_contents(self)

By the assumption that the node.built_value is a deterministic product of the
sources, the contents of a Value are the concatenation of all the contents of its
sources. As the value need not be built when get_contents() is called, we
cannot use the actual node.built_value.

get_contents(self)

Get contents for signature calculations. :return: bytes Overrides:
SCons.Node.Node.get_contents

changed_since_last_build(self, target, prev_ni)

Overrides: SCons.Node.Node.changed_since_last_build

get_csig(self, calc=None)

Because we’re a Python value node and don’t have a real timestamp, we get to
ignore the calculator and just use the value contents.

Returns string. Ideally string of hex digits. (Not bytes) Overrides:
SCons.Node.Node.get_csig

Inherited from SCons.Node.Node(Section 13.6)

Decider(), GetTag(), Tag(), add_dependency(), add_ignore(), add_prerequisite(),
add_source(), add_to_implicit(), add_to_waiting_parents(), add_to_waiting_s_e(),

202

Class Value Module SCons.Node.Python

add_wkid(), all_children(), alter_targets(), builder_set(), built(), changed(), chil-
dren(), children_are_up_to_date(), clear(), clear_memoized_values(), del_binfo(),
disambiguate(), env_set(), executor_cleanup(), exists(), explain(), for_signature(),
get_abspath(), get_binfo(), get_build_env(), get_build_scanner_path(), get_builder(),
get_cachedir_csig(), get_env(), get_env_scanner(), get_executor(), get_found_includes(),
get_implicit_deps(), get_ninfo(), get_source_scanner(), get_state(), get_stored_implicit(),
get_stored_info(), get_string(), get_subst_proxy(), get_suffix(), get_target_scanner(),
has_builder(), has_explicit_builder(), is_derived(), is_literal(), missing(), mul-
tiple_side_effect_has_builder(), new_binfo(), new_ninfo(), postprocess(), pre-
pare(), push_to_cache(), release_target_info(), remove(), render_include_tree(),
reset_executor(), retrieve_from_cache(), rexists(), scan(), scanner_key(), select_scanner(),
set_always_build(), set_executor(), set_explicit(), set_nocache(), set_noclean(),
set_precious(), set_pseudo(), set_specific_source(), set_state(), visited()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__subclasshook__()

16.4.2 Properties

Name Description
Inherited from SCons.Node.Node (Section 13.6)
always_build, attributes, binfo, builder, cached, depends, depends_set,
env, executor, ignore, ignore_set, implicit, implicit_set, includes,
is_explicit, linked, ninfo, nocache, noclean, precious, prerequisites, pseudo,
ref_count, side_effect, side_effects, sources, sources_set, state, store_info,
target_peers, waiting_parents, waiting_s_e, wkids
Inherited from object
__class__

203

Variables Module SCons.PathList

17 Module SCons.PathList

SCons.PathList

A module for handling lists of directory paths (the sort of things that get set as CPPPATH,
LIBPATH, etc.) with as much caching of data and efficiency as we can, while still keeping
the evaluation delayed so that we Do the Right Thing (almost) regardless of how the variable
is specified.

17.1 Functions

node_conv(obj)

This is the "string conversion" routine that we have our substitutions use to
return Nodes, not strings. This relies on the fact that an EntryProxy object
has a get() method that returns the underlying Node that it wraps, which is a
bit of architectural dependence that we might need to break or modify in the
future in response to additional requirements.

PathList(pathlist)

Returns the cached _PathList object for the specified pathlist, creating and
caching a new object as necessary.

17.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/PathList.py

e724ae812eb96f4858a132f5b8c...

__doc__ Value: """SCons.PathL...

TYPE_STRING_NO_S-
UBST

Value: 0

TYPE_STRING_SUBST Value: 1

TYPE_OBJECT Value: 2

__package__ Value: ’SCons’

204

Package SCons.Platform

18 Package SCons.Platform

SCons.Platform

SCons platform selection.

This looks for modules that define a callable object that can modify a construction environ-
ment as appropriate for a given platform.

Note that we take a more simplistic view of "platform" than Python does. We’re looking for
a single string that determines a set of tool-independent variables with which to initialize
a construction environment. Consequently, we’ll examine both sys.platform and os.name
(and anything else that might come in to play) in order to return some specification which
is unique enough for our purposes.

Note that because this subsystem just selects a callable that can modify a construction envi-
ronment, it’s possible for people to define their own "platform specification" in an arbitrary
callable function. No one needs to use or tie in to this subsystem in order to roll their own
platform definition.

18.1 Modules

• aix: engine.SCons.Platform.aix
(Section 19, p. 193)

• cygwin: SCons.Platform.cygwin
(Section 20, p. 194)

• darwin: engine.SCons.Platform.darwin
(Section 21, p. 195)

• hpux: engine.SCons.Platform.hpux
(Section 22, p. 196)

• irix: SCons.Platform.irix
(Section 23, p. 197)

• mingw: SCons.Platform.mingw
(Section 24, p. 198)

• os2: SCons.Platform.os2
(Section 25, p. 199)

• posix: SCons.Platform.posix
(Section 26, p. 200)

• sunos: engine.SCons.Platform.sunos
(Section 27, p. 201)

• virtualenv: SCons.Platform.virtualenv
(Section 28, p. 202)

• win32: SCons.Platform.win32
(Section 29, p. 204)

205

Variables Package SCons.Platform

18.2 Functions

platform_default()

Return the platform string for our execution environment.

The returned value should map to one of the SCons/Platform/*.py files. Since
we’re architecture independent, though, we don’t care about the machine
architecture.

platform_module(name=’posix’)

Return the imported module for the platform.

This looks for a module name that matches the specified argument. If the
name is unspecified, we fetch the appropriate default for our execution
environment.

DefaultToolList(platform, env)

Select a default tool list for the specified platform.

Platform(name=’posix’)

Select a canned Platform specification.

18.3 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Platform/__init__.py

e724ae812eb96f4858...

__package__ Value: ’SCons.Platform’

206

Class TempFileMunge Package SCons.Platform

18.4 Class PlatformSpec

object

SCons.Platform.PlatformSpec

18.4.1 Methods

__init__(self, name, generate)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__call__(self, *args, **kw)

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__subclasshook__()

18.4.2 Properties

Name Description
Inherited from object
__class__

18.5 Class TempFileMunge

object

SCons.Platform.TempFileMunge

A callable class. You can set an Environment variable to this,

then call it with a string argument, then it will perform temporary

file substitution on it. This is used to circumvent the long command

line limitation.

207

Class TempFileMunge Package SCons.Platform

Example usage:

env["TEMPFILE"] = TempFileMunge

env["LINKCOM"] = "${TEMPFILE(’$LINK $TARGET $SOURCES’,’$LINKCOMSTR’)}"

By default, the name of the temporary file used begins with a

prefix of ’@’. This may be configured for other tool chains by

setting ’$TEMPFILEPREFIX’:

env["TEMPFILEPREFIX"] = ’-@’ # diab compiler

env["TEMPFILEPREFIX"] = ’-via’ # arm tool chain

env["TEMPFILEPREFIX"] = ’’ # (the empty string) PC Lint

You can configure the extension of the temporary file through the

TEMPFILESUFFIX variable, which defaults to ’.lnk’ (see comments

in the code below):

env["TEMPFILESUFFIX"] = ’.lnt’ # PC Lint

18.5.1 Methods

__init__(self, cmd, cmdstr=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__call__(self, target, source, env, for_signature)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

18.5.2 Properties

Name Description
Inherited from object
__class__

208

Variables Module SCons.Platform.aix

19 Module SCons.Platform.aix

engine.SCons.Platform.aix

Platform-specific initialization for IBM AIX systems.

There normally shouldn’t be any need to import this module directly. It will usually be
imported through the generic SCons.Platform.Platform() selection method.

19.1 Functions

get_xlc(env, xlc=None, packages=[])

generate(env)

19.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Platform/aix.py

e724ae812eb96f4858a132f...

__package__ Value: ’SCons.Platform’

209

Variables Module SCons.Platform.cygwin

20 Module SCons.Platform.cygwin

SCons.Platform.cygwin

Platform-specific initialization for Cygwin systems.

There normally shouldn’t be any need to import this module directly. It will usually be
imported through the generic SCons.Platform.Platform() selection method.

20.1 Functions

generate(env)

20.2 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Platform/cygwin.py

e724ae812eb96f4858a1...

CYGWIN_DEFAULT_P-
ATHS

Value: []

__package__ Value: ’SCons.Platform’

210

Variables Module SCons.Platform.darwin

21 Module SCons.Platform.darwin

engine.SCons.Platform.darwin

Platform-specific initialization for Mac OS X systems.

There normally shouldn’t be any need to import this module directly. It will usually be
imported through the generic SCons.Platform.Platform() selection method.

21.1 Functions

generate(env)

21.2 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Platform/darwin.py

e724ae812eb96f4858a1...

__package__ Value: ’SCons.Platform’

211

Variables Module SCons.Platform.hpux

22 Module SCons.Platform.hpux

engine.SCons.Platform.hpux

Platform-specific initialization for HP-UX systems.

There normally shouldn’t be any need to import this module directly. It will usually be
imported through the generic SCons.Platform.Platform() selection method.

22.1 Functions

generate(env)

22.2 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Platform/hpux.py

e724ae812eb96f4858a132...

__package__ Value: ’SCons.Platform’

212

Variables Module SCons.Platform.irix

23 Module SCons.Platform.irix

SCons.Platform.irix

Platform-specific initialization for SGI IRIX systems.

There normally shouldn’t be any need to import this module directly. It will usually be
imported through the generic SCons.Platform.Platform() selection method.

23.1 Functions

generate(env)

23.2 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Platform/irix.py

e724ae812eb96f4858a132...

__package__ Value: ’SCons.Platform’

213

Variables Module SCons.Platform.mingw

24 Module SCons.Platform.mingw

SCons.Platform.mingw

Platform-specific initialization for the MinGW system.

24.1 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Platform/mingw.py

e724ae812eb96f4858a13...

MINGW_DEFAULT_P-
ATHS

Value: []

__package__ Value: ’SCons.Platform’

214

Variables Module SCons.Platform.os2

25 Module SCons.Platform.os2

SCons.Platform.os2

Platform-specific initialization for OS/2 systems.

There normally shouldn’t be any need to import this module directly. It will usually be
imported through the generic SCons.Platform.Platform() selection method.

25.1 Functions

generate(env)

25.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Platform/os2.py

e724ae812eb96f4858a132f...

__package__ Value: ’SCons.Platform’

215

Variables Module SCons.Platform.posix

26 Module SCons.Platform.posix

SCons.Platform.posix

Platform-specific initialization for POSIX (Linux, UNIX, etc.) systems.

There normally shouldn’t be any need to import this module directly. It will usually be
imported through the generic SCons.Platform.Platform() selection method.

26.1 Functions

escape(arg)

escape shell special characters

exec_subprocess(l, env)

subprocess_spawn(sh, escape, cmd, args, env)

exec_popen3(l, env, stdout, stderr)

piped_env_spawn(sh, escape, cmd, args, env, stdout, stderr)

generate(env)

26.2 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Platform/posix.py

e724ae812eb96f4858a13...

exitvalmap Value: {2: 127, 13: 126}

__package__ Value: ’SCons.Platform’

216

Variables Module SCons.Platform.sunos

27 Module SCons.Platform.sunos

engine.SCons.Platform.sunos

Platform-specific initialization for Sun systems.

There normally shouldn’t be any need to import this module directly. It will usually be
imported through the generic SCons.Platform.Platform() selection method.

27.1 Functions

generate(env)

27.2 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Platform/sunos.py

e724ae812eb96f4858a13...

__package__ Value: ’SCons.Platform’

217

Module SCons.Platform.virtualenv

28 Module SCons.Platform.virtualenv

SCons.Platform.virtualenv

Support for virtualenv.

28.1 Functions

select_paths_in_venv(path_list)

Returns a list of paths from path_list which are under virtualenv’s home
directory.

ImportVirtualenv(env)

Copies virtualenv-related environment variables from OS environment to
env[’ENV’] and prepends virtualenv’s PATH to env[’ENV’][’PATH’].

Virtualenv()

Returns path to the virtualenv home if scons is executing within a virtualenv
or None, if not.

IsInVirtualenv(path)

Returns True, if path is under virtualenv’s home directory. If not, or if we
don’t use virtualenv, returns False.

28.2 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Platform/virtualenv.py

e724ae812eb96f48...

virtualenv_enabled_by_-
default

Value: False

continued on next page

218

Variables Module SCons.Platform.virtualenv

Name Description
enable_virtualenv Value: False

ignore_virtualenv Value: False

virtualenv_variables Value: [’VIRTUAL_ENV’, ’PIPENV_ACTIVE’]

__package__ Value: ’SCons.Platform’

219

Module SCons.Platform.win32

29 Module SCons.Platform.win32

SCons.Platform.win32

Platform-specific initialization for Win32 systems.

There normally shouldn’t be any need to import this module directly. It will usually be
imported through the generic SCons.Platform.Platform() selection method.

29.1 Functions

open(*args, **kw)

win_api_copyfile(src, dst)

spawnve(mode, file, args, env)

piped_spawn(sh, escape, cmd, args, env, stdout, stderr)

exec_spawn(l, env)

spawn(sh, escape, cmd, args, env)

escape(x)

get_system_root()

get_program_files_dir()

Get the location of the program files directory Returns -------

get_architecture(arch=None)

Returns the definition for the specified architecture string.

If no string is specified, the system default is returned (as defined by the
PROCESSOR_ARCHITEW6432 or PROCESSOR_ARCHITECTURE
environment variables).

220

Class _scons_file Module SCons.Platform.win32

generate(env)

29.2 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Platform/win32.py

e724ae812eb96f4858a13...

CHOCO_DEFAULT_PA-
TH

Value:
[’C:\\ProgramData\\chocolatey\\bin’]

CopyFile Value: windll.kernel32.CopyFileA

SetFileTime Value: windll.kernel32.SetFileTime

parallel_msg Value: ’you do not seem to have the

pywin32 extensions installed...

spawn_lock Value: <thread.lock object>

SupportedArchitectureList Value:
[<SCons.Platform.win32.ArchDefinition

object>, <SCons.Pla...

SupportedArchitectureMa-
p

Value: {’AMD64’:

<SCons.Platform.win32.ArchDefinition

object>, ’...

__package__ Value: ’SCons.Platform’

a Value:
<SCons.Platform.win32.ArchDefinition

object>

s Value: ’IA64’

29.3 Class _scons_file

object

file

SCons.Platform.win32._scons_file

221

Class ArchDefinition Module SCons.Platform.win32

29.3.1 Methods

__init__(self, *args, **kw)

x.__init__(...) initializes x; see help(type(x)) for signature Return Value
file object

Overrides: object.__init__ extit(inherited documentation)

Inherited from file

__delattr__(), __enter__(), __exit__(), __getattribute__(), __iter__(),
__new__(), __repr__(), __setattr__(), close(), fileno(), flush(), isatty(), next(),
read(), readinto(), readline(), readlines(), seek(), tell(), truncate(), write(), write-
lines(), xreadlines()

Inherited from object

__format__(), __hash__(), __reduce__(), __reduce_ex__(), __sizeof__(),
__str__(), __subclasshook__()

29.3.2 Properties

Name Description
Inherited from file
closed, encoding, errors, mode, name, newlines, softspace
Inherited from object
__class__

29.4 Class ArchDefinition

object

SCons.Platform.win32.ArchDefinition

Determine which windows CPU were running on. A class for defining architecture-specific
settings and logic.

222

Class ArchDefinition Module SCons.Platform.win32

29.4.1 Methods

__init__(self, arch, synonyms=[])

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

29.4.2 Properties

Name Description
Inherited from object
__class__

223

Module SCons.SConf

30 Module SCons.SConf

SCons.SConf

Autoconf-like configuration support.

In other words, SConf allows to run tests on the build machine to detect capabilities of
system and do some things based on result: generate config files, header files for C/C++,
update variables in environment.

Tests on the build system can detect if compiler sees header files, if libraries are installed, if
some command line options are supported etc.

30.1 Functions

SetBuildType(type)

SetCacheMode(mode)

Set the Configure cache mode. mode must be one of "auto", "force", or "cache".

SetProgressDisplay(display)

Set the progress display to use (called from SCons.Script)

NeedConfigHBuilder()

CreateConfigHBuilder(env)

Called if necessary just before the building targets phase begins.

SConf(*args, **kw)

CheckFunc(context, function_name, header=None, language=None)

CheckType(context, type_name, includes=’’, language=None)

224

Functions Module SCons.SConf

CheckTypeSize(context, type_name, includes=’’, language=None,
expect=None)

CheckDeclaration(context, declaration, includes=’’, language=None)

createIncludesFromHeaders(headers, leaveLast, include_quotes=’""’)

CheckHeader(context, header, include_quotes=’<>’, language=None)

A test for a C or C++ header file.

CheckCC(context)

CheckCXX(context)

CheckSHCC(context)

CheckSHCXX(context)

CheckCHeader(context, header, include_quotes=’""’)

A test for a C header file.

CheckCXXHeader(context, header, include_quotes=’""’)

A test for a C++ header file.

CheckLib(context, library=None, symbol=’main’, header=None,
language=None, autoadd=1)

A test for a library. See also CheckLibWithHeader. Note that library may also
be None to test whether the given symbol compiles without flags.

225

Variables Module SCons.SConf

CheckLibWithHeader(context, libs, header, language, call=None,
autoadd=1)

Another (more sophisticated) test for a library. Checks, if library and header
is available for language (may be ’C’ or ’CXX’). Call maybe be a valid
expression _with_ a trailing ’;’. As in CheckLib, we support library=None, to
test if the call compiles without extra link flags.

CheckProg(context, prog_name)

Simple check if a program exists in the path. Returns the path for the
application, or None if not found.

30.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/SConf.py

e724ae812eb96f4858a132f5b8c769...

build_type Value: None

build_types Value: [’clean’, ’help’]

dryrun Value: 0

AUTO Value: 0

FORCE Value: 1

CACHE Value: 2

cache_mode Value: 0

progress_display Value: <SCons.Util.DisplayEngine object>

SConfFS Value: None

sconf_global Value: None

__package__ Value: ’SCons’

226

Class SConfWarning Module SCons.SConf

30.3 Class SConfWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.SConf.SConfWarning

30.3.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

30.3.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

227

Class SConfError Module SCons.SConf

30.4 Class SConfError

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.SConf.SConfError

Known Subclasses: SCons.SConf.ConfigureCacheError, SCons.SConf.ConfigureDryRunError

30.4.1 Methods

__init__(self, msg)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

30.4.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

228

Class ConfigureDryRunError Module SCons.SConf

30.5 Class ConfigureDryRunError

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.SConf.SConfError

SCons.SConf.ConfigureDryRunError

Raised when a file or directory needs to be updated during a Configure process, but the user
requested a dry-run

30.5.1 Methods

__init__(self, target)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

30.5.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

229

Class ConfigureCacheError Module SCons.SConf

30.6 Class ConfigureCacheError

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.SConf.SConfError

SCons.SConf.ConfigureCacheError

Raised when a use explicitely requested the cache feature, but the test is run the first time.

30.6.1 Methods

__init__(self, target)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

Inherited from exceptions.Exception

__new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

30.6.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

230

Class SConfBuildInfo Module SCons.SConf

30.7 Class SConfBuildInfo

object

SCons.Node.BuildInfoBase

SCons.Node.FS.FileBuildInfo

SCons.SConf.SConfBuildInfo

Special build info for targets of configure tests. Additional members are result (did the
builder succeed last time?) and string, which contains messages of the original build phase.

30.7.1 Methods

__init__(self)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

set_build_result(self, result, string)

Inherited from SCons.Node.FS.FileBuildInfo(Section 15.16)

__setattr__(), convert_from_sconsign(), convert_to_sconsign(), format(), pre-
pare_dependencies()

Inherited from SCons.Node.BuildInfoBase(Section 13.5)

__getstate__(), __setstate__(), merge()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __sizeof__(), __str__(), __sub-
classhook__()

30.7.2 Properties

Name Description
result
string
Inherited from SCons.Node.FS.FileBuildInfo (Section 15.16)
dependency_map
Inherited from SCons.Node.BuildInfoBase (Section 13.5)

continued on next page

231

Class Streamer Module SCons.SConf

Name Description
bact, bactsig, bdepends, bdependsigs, bimplicit, bimplicitsigs, bsources,
bsourcesigs
Inherited from object
__class__

30.7.3 Class Variables

Name Description
Inherited from SCons.Node.FS.FileBuildInfo (Section 15.16)
current_version_id

30.8 Class Streamer

object

SCons.SConf.Streamer

’Sniffer’ for a file-like writable object. Similar to the unix tool tee.

30.8.1 Methods

__init__(self, orig)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

write(self, str)

writelines(self, lines)

getvalue(self)

Return everything written to orig since the Streamer was created.

flush(self)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),

232

Class SConfBuildTask Module SCons.SConf

__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

30.8.2 Properties

Name Description
Inherited from object
__class__

30.9 Class SConfBuildTask

object

SCons.Taskmaster.Task

SCons.Taskmaster.AlwaysTask

SCons.SConf.SConfBuildTask

This is almost the same as SCons.Script.BuildTask. Handles SConfErrors correctly and
knows about the current cache_mode.

30.9.1 Methods

display(self, message)

Hook to allow the calling interface to display a message.

This hook gets called as part of preparing a task for execution (that is, a Node
to be built). As part of figuring out what Node should be built next, the
actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete
implementation of this method to see those messages. Overrides:
SCons.Taskmaster.Task.display extit(inherited documentation)

display_cached_string(self, bi)

Logs the original builder messages, given the SConfBuildInfo instance bi.

233

Class SConfBuildTask Module SCons.SConf

failed(self)

Default action when a task fails: stop the build.

Note: Although this function is normally invoked on nodes in the executing
state, it might also be invoked on up-to-date nodes when using Configure().
Overrides: SCons.Taskmaster.Task.failed extit(inherited documentation)

collect_node_states(self)

execute(self)

Called to execute the task.

This method is called from multiple threads in a parallel build, so only do
thread safe stuff here. Do thread unsafe stuff in prepare(), executed() or
failed(). Overrides: SCons.Taskmaster.Task.execute extit(inherited
documentation)

Inherited from SCons.Taskmaster.AlwaysTask(Section 47.5)

needs_execute()

Inherited from SCons.Taskmaster.Task(Section 47.4)

__init__(), exc_clear(), exc_info(), exception_set(), executed(), executed_with_callbacks(),
executed_without_callbacks(), fail_continue(), fail_stop(), get_target(), make_ready(),
make_ready_all(), make_ready_current(), postprocess(), prepare(), trace_message()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

30.9.2 Properties

Name Description
Inherited from object
__class__

234

Class SConfBase Module SCons.SConf

30.10 Class SConfBase

object

SCons.SConf.SConfBase

This is simply a class to represent a configure context. After creating a SConf object, you
can call any tests. After finished with your tests, be sure to call the Finish() method, which
returns the modified environment. Some words about caching: In most cases, it is not
necessary to cache Test results explicitly. Instead, we use the scons dependency checking
mechanism. For example, if one wants to compile a test program (SConf.TryLink), the
compiler is only called, if the program dependencies have changed. However, if the program
could not be compiled in a former SConf run, we need to explicitly cache this error.

30.10.1 Methods

__init__(self, env, custom_tests={}, conf_dir=’$CONFIGUREDIR’,
log_file=’$CONFIGURELOG’, config_h=None, _depth=0)

Constructor. Pass additional tests in the custom_tests-dictionary, e.g.
custom_tests={’CheckPrivate’:MyPrivateTest}, where MyPrivateTest defines
a custom test. Note also the conf_dir and log_file arguments (you may want
to build tests in the VariantDir, not in the SourceDir) Overrides:
object.__init__

Finish(self)

Call this method after finished with your tests: env = sconf.Finish()

Define(self, name, value=None, comment=None)

Define a pre processor symbol name, with the optional given value in the
current config header.

If value is None (default), then #define name is written. If value is not none,
then #define name value is written.

comment is a string which will be put as a C comment in the header, to
explain the meaning of the value (appropriate C comments will be added
automatically).

235

Class SConfBase Module SCons.SConf

BuildNodes(self, nodes)

Tries to build the given nodes immediately. Returns 1 on success, 0 on error.

pspawn_wrapper(self, sh, escape, cmd, args, env)

Wrapper function for handling piped spawns.

This looks to the calling interface (in Action.py) like a "normal" spawn, but
associates the call with the PSPAWN variable from the construction
environment and with the streams to which we want the output logged. This
gets slid into the construction environment as the SPAWN variable so
Action.py doesn’t have to know or care whether it’s spawning a piped
command or not.

TryBuild(self, builder, text=None, extension=’’)

Low level TryBuild implementation. Normally you don’t need to call that -
you can use TryCompile / TryLink / TryRun instead

TryAction(self, action, text=None, extension=’’)

Tries to execute the given action with optional source file contents <text> and
optional source file extension <extension>, Returns the status (0 : failed, 1 :
ok) and the contents of the output file.

TryCompile(self, text, extension)

Compiles the program given in text to an env.Object, using extension as file
extension (e.g. ’.c’). Returns 1, if compilation was successful, 0 otherwise. The
target is saved in self.lastTarget (for further processing).

236

Class SConfBase Module SCons.SConf

TryLink(self, text, extension)

Compiles the program given in text to an executable env.Program, using
extension as file extension (e.g. ’.c’). Returns 1, if compilation was successful,
0 otherwise. The target is saved in self.lastTarget (for further processing).

TryRun(self, text, extension)

Compiles and runs the program given in text, using extension as file extension
(e.g. ’.c’). Returns (1, outputStr) on success, (0, ”) otherwise. The target (a
file containing the program’s stdout) is saved in self.lastTarget (for further
processing).

AddTest(self, test_name, test_instance)

Adds test_class to this SConf instance. It can be called with
self.test_name(...)

AddTests(self, tests)

Adds all the tests given in the tests dictionary to this SConf instance

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

30.10.2 Properties

Name Description
Inherited from object
__class__

237

Class CheckContext Module SCons.SConf

30.11 Class CheckContext

object

SCons.SConf.CheckContext

Provides a context for configure tests. Defines how a test writes to the screen and log file.

A typical test is just a callable with an instance of CheckContext as first argument:

def CheckCustom(context, ...): context.Message(’Checking my weird test ...
’) ret = myWeirdTestFunction(...) context.Result(ret)

Often, myWeirdTestFunction will be one of context.TryCompile/context.TryLink/context.TryRun.
The results of those are cached, for they are only rebuild, if the dependencies have changed.

30.11.1 Methods

__init__(self, sconf)

Constructor. Pass the corresponding SConf instance. Overrides:
object.__init__

Message(self, text)

Inform about what we are doing right now, e.g. ’Checking for SOMETHING
... ’

Result(self, res)

Inform about the result of the test. If res is not a string, displays ’yes’ or ’no’
depending on whether res is evaluated as true or false. The result is only
displayed when self.did_show_result is not set.

TryBuild(self, *args, **kw)

TryAction(self, *args, **kw)

TryCompile(self, *args, **kw)

238

Class CheckContext Module SCons.SConf

TryLink(self, *args, **kw)

TryRun(self, *args, **kw)

__getattr__(self, attr)

BuildProg(self, text, ext)

CompileProg(self, text, ext)

CompileSharedObject(self, text, ext)

RunProg(self, text, ext)

AppendLIBS(self, lib_name_list)

PrependLIBS(self, lib_name_list)

SetLIBS(self, val)

Display(self, msg)

Log(self, msg)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

30.11.2 Properties

Name Description
Inherited from object
__class__

239

Variables Module SCons.SConsign

31 Module SCons.SConsign

SCons.SConsign

Writing and reading information to the .sconsign file or files.

31.1 Functions

corrupt_dblite_warning(filename)

Get_DataBase(dir)

Reset()

Reset global state. Used by unit tests that end up using SConsign multiple
times to get a clean slate for each test.

write()

File(name, dbm_module=None)

Arrange for all signatures to be stored in a global .sconsign.db* file.

31.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/SConsign.py

e724ae812eb96f4858a132f5b8c...

sig_files Value: []

DataBase Value: {}

DB_Name Value: ’.sconsign’

DB_sync_list Value: []

__package__ Value: ’SCons’

240

Class SConsignEntry Module SCons.SConsign

31.3 Class SConsignEntry

object

SCons.SConsign.SConsignEntry

Wrapper class for the generic entry in a .sconsign file. The Node subclass populates it with
attributes as it pleases.

XXX As coded below, we do expect a ’.binfo’ attribute to be added, but we’ll probably
generalize this in the next refactorings.

31.3.1 Methods

__init__(self)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

convert_to_sconsign(self)

convert_from_sconsign(self, dir, name)

__getstate__(self)

__setstate__(self, state)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

31.3.2 Properties

Name Description
binfo
ninfo
Inherited from object
__class__

31.3.3 Class Variables

241

Class Base Module SCons.SConsign

Name Description
current_version_id Value: 2

31.4 Class Base

object

SCons.SConsign.Base

Known Subclasses: SCons.SConsign.DB, SCons.SConsign.Dir

This is the controlling class for the signatures for the collection of entries associated with a
specific directory. The actual directory association will be maintained by a subclass that is
specific to the underlying storage method. This class provides a common set of methods for
fetching and storing the individual bits of information that make up signature entry.

31.4.1 Methods

__init__(self)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

get_entry(self, filename)

Fetch the specified entry attribute.

set_entry(self, filename, obj)

Set the entry.

do_not_set_entry(self, filename, obj)

store_info(self, filename, node)

do_not_store_info(self, filename, node)

merge(self)

242

Class DB Module SCons.SConsign

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

31.4.2 Properties

Name Description
Inherited from object
__class__

31.5 Class DB

object

SCons.SConsign.Base

SCons.SConsign.DB

A Base subclass that reads and writes signature information from a global .sconsign.db*
file--the actual file suffix is determined by the database module.

31.5.1 Methods

__init__(self, dir)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

write(self, sync=1)

Inherited from SCons.SConsign.Base(Section 31.4)

do_not_set_entry(), do_not_store_info(), get_entry(), merge(), set_entry(), store_info()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

31.5.2 Properties

243

Class Dir Module SCons.SConsign

Name Description
Inherited from object
__class__

31.6 Class Dir

object

SCons.SConsign.Base

SCons.SConsign.Dir

Known Subclasses: SCons.SConsign.DirFile

31.6.1 Methods

__init__(self, fp=None, dir=None)

fp - file pointer to read entries from Overrides: object.__init__

Inherited from SCons.SConsign.Base(Section 31.4)

do_not_set_entry(), do_not_store_info(), get_entry(), merge(), set_entry(), store_info()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

31.6.2 Properties

Name Description
Inherited from object
__class__

244

Class DirFile Module SCons.SConsign

31.7 Class DirFile

object

SCons.SConsign.Base

SCons.SConsign.Dir

SCons.SConsign.DirFile

Encapsulates reading and writing a per-directory .sconsign file.

31.7.1 Methods

__init__(self, dir)

dir - the directory for the file Overrides: object.__init__

write(self, sync=1)

Write the .sconsign file to disk.

Try to write to a temporary file first, and rename it if we succeed. If we can’t
write to the temporary file, it’s probably because the directory isn’t writable
(and if so, how did we build anything in this directory, anyway?), so try to
write directly to the .sconsign file as a backup. If we can’t rename, try to copy
the temporary contents back to the .sconsign file. Either way, always try to
remove the temporary file at the end.

Inherited from SCons.SConsign.Base(Section 31.4)

do_not_set_entry(), do_not_store_info(), get_entry(), merge(), set_entry(), store_info()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

31.7.2 Properties

245

Class DB Module SCons.SConsign

Name Description
Inherited from object
__class__

31.8 Class DB

object

SCons.SConsign.Base

SCons.SConsign.DB

A Base subclass that reads and writes signature information from a global .sconsign.db*
file--the actual file suffix is determined by the database module.

31.8.1 Methods

__init__(self, dir)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

write(self, sync=1)

Inherited from SCons.SConsign.Base(Section 31.4)

do_not_set_entry(), do_not_store_info(), get_entry(), merge(), set_entry(), store_info()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

31.8.2 Properties

Name Description
Inherited from object
__class__

246

Package SCons.Scanner

32 Package SCons.Scanner

SCons.Scanner

The Scanner package for the SCons software construction utility.

32.1 Modules

• C: SCons.Scanner.C
(Section 33, p. 247)

• D: SCons.Scanner.D
(Section 34, p. 250)

• Dir (Section 35, p. 254)
• Fortran: SCons.Scanner.Fortran

(Section 36, p. 256)
• IDL: SCons.Scanner.IDL

(Section 37, p. 261)
• LaTeX: SCons.Scanner.LaTeX

(Section 38, p. 262)
• Prog (Section 39, p. 269)
• RC: SCons.Scanner.RC

(Section 40, p. 270)
• SWIG: SCons.Scanner.SWIG

(Section 41, p. 271)

32.2 Functions

Scanner(function, *args, **kw)

Public interface factory function for creating different types of Scanners based
on the different types of "functions" that may be supplied.

TODO: Deprecate this some day. We’ve moved the functionality inside the
Base class and really don’t need this factory function any more. It was,
however, used by some of our Tool modules, so the call probably ended up in
various people’s custom modules patterned on SCons code.

32.3 Variables

247

Class FindPathDirs Package SCons.Scanner

Name Description
__revision__ Value:

’src/engine/SCons/Scanner/__init__.py

e724ae812eb96f4858a...

__package__ Value: ’SCons.Scanner’

32.4 Class FindPathDirs

object

SCons.Scanner.FindPathDirs

A class to bind a specific E{*}PATH variable name to a function that will return all of the
E{*}path directories.

32.4.1 Methods

__init__(self, variable)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__call__(self, env, dir=None, target=None, source=None, argument=None)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

32.4.2 Properties

Name Description
Inherited from object
__class__

248

Class Base Package SCons.Scanner

32.5 Class Base

object

SCons.Scanner.Base

Known Subclasses: SCons.Scanner.Current, SCons.Scanner.Selector, SCons.Scanner.LaTeX.LaTeX

The base class for dependency scanners. This implements straightforward, single-pass scan-
ning of a single file.

32.5.1 Methods

__call__(self, node, env, path=())

This method scans a single object. ’node’ is the node that will be passed to
the scanner function, and ’env’ is the environment that will be passed to the
scanner function. A list of direct dependency nodes for the specified node will
be returned.

__eq__(self, other)

__hash__(self)

hash(x) Overrides: object.__hash__ extit(inherited documentation)

249

Class Base Package SCons.Scanner

__init__(self, function, name=’NONE’, argument=<class

’SCons.Scanner._Null’>, skeys=<class ’SCons.Scanner._Null’>,
path_function=None, node_class=<class ’SCons.Node.FS.Base’>,
node_factory=None, scan_check=None, recursive=None)

Construct a new scanner object given a scanner function.

’function’ - a scanner function taking two or three arguments and returning a
list of strings.

’name’ - a name for identifying this scanner object.

’argument’ - an optional argument that, if specified, will be passed to both the
scanner function and the path_function.

’skeys’ - an optional list argument that can be used to determine which
scanner should be used for a given Node. In the case of File nodes, for
example, the ’skeys’ would be file suffixes.

’path_function’ - a function that takes four or five arguments (a construction
environment, Node for the directory containing the SConscript file that
defined the primary target, list of target nodes, list of source nodes, and
optional argument for this instance) and returns a tuple of the directories that
can be searched for implicit dependency files. May also return a callable()
which is called with no args and returns the tuple (supporting Bindable class).

’node_class’ - the class of Nodes which this scan will return. If node_class is
None, then this scanner will not enforce any Node conversion and will return
the raw results from the underlying scanner function.

’node_factory’ - the factory function to be called to translate the raw results
returned by the scanner function into the expected node_class objects.

’scan_check’ - a function to be called to first check whether this node really
needs to be scanned.

’recursive’ - specifies that this scanner should be invoked recursively on all of
the implicit dependencies it returns (the canonical example being #include
lines in C source files). May be a callable, which will be called to filter the list
of nodes found to select a subset for recursive scanning (the canonical example
being only recursively scanning subdirectories within a directory).

The scanner function’s first argument will be a Node that should be scanned
for dependencies, the second argument will be an Environment object, the
third argument will be the tuple of paths returned by the path_function, and
the fourth argument will be the value passed into ’argument’, and the returned
list should contain the Nodes for all the direct dependencies of the file.

Examples:

s = Scanner(my_scanner_function)

s = Scanner(function = my_scanner_function)

250

Class Selector Package SCons.Scanner

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

add_scanner(self, skey, scanner)

add_skey(self, skey)

Add a skey to the list of skeys

get_skeys(self, env=None)

path(self, env, dir=None, target=None, source=None)

select(self, node)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __subclasshook__()

32.5.2 Properties

Name Description
Inherited from object
__class__

32.6 Class Selector

object

SCons.Scanner.Base

SCons.Scanner.Selector

A class for selecting a more specific scanner based on the scanner_key() (suffix) for a specific
Node.

TODO: This functionality has been moved into the inner workings of the Base class, and this
class will be deprecated at some point. (It was never exposed directly as part of the public
interface, although it is used by the Scanner() factory function that was used by various Tool

251

Class Selector Package SCons.Scanner

modules and therefore was likely a template for custom modules that may be out there.)

252

Class Selector Package SCons.Scanner

253

Class Selector Package SCons.Scanner

32.6.1 Methods

__init__(self, dict, *args, **kw)

Construct a new scanner object given a scanner function.

’function’ - a scanner function taking two or three arguments and returning a
list of strings.

’name’ - a name for identifying this scanner object.

’argument’ - an optional argument that, if specified, will be passed to both the
scanner function and the path_function.

’skeys’ - an optional list argument that can be used to determine which
scanner should be used for a given Node. In the case of File nodes, for
example, the ’skeys’ would be file suffixes.

’path_function’ - a function that takes four or five arguments (a construction
environment, Node for the directory containing the SConscript file that
defined the primary target, list of target nodes, list of source nodes, and
optional argument for this instance) and returns a tuple of the directories that
can be searched for implicit dependency files. May also return a callable()
which is called with no args and returns the tuple (supporting Bindable class).

’node_class’ - the class of Nodes which this scan will return. If node_class is
None, then this scanner will not enforce any Node conversion and will return
the raw results from the underlying scanner function.

’node_factory’ - the factory function to be called to translate the raw results
returned by the scanner function into the expected node_class objects.

’scan_check’ - a function to be called to first check whether this node really
needs to be scanned.

’recursive’ - specifies that this scanner should be invoked recursively on all of
the implicit dependencies it returns (the canonical example being #include
lines in C source files). May be a callable, which will be called to filter the list
of nodes found to select a subset for recursive scanning (the canonical example
being only recursively scanning subdirectories within a directory).

The scanner function’s first argument will be a Node that should be scanned
for dependencies, the second argument will be an Environment object, the
third argument will be the tuple of paths returned by the path_function, and
the fourth argument will be the value passed into ’argument’, and the returned
list should contain the Nodes for all the direct dependencies of the file.

Examples:

s = Scanner(my_scanner_function)

s = Scanner(function = my_scanner_function)

s = Scanner(function = my_scanner_function, argument = ’foo’) Overrides:
object.__init__ extit(inherited documentation)

254

Class Current Package SCons.Scanner

__call__(self, node, env, path=())

This method scans a single object. ’node’ is the node that will be passed to
the scanner function, and ’env’ is the environment that will be passed to the
scanner function. A list of direct dependency nodes for the specified node will
be returned. Overrides: SCons.Scanner.Base.__call__ extit(inherited
documentation)

select(self, node)

Overrides: SCons.Scanner.Base.select

add_scanner(self, skey, scanner)

Overrides: SCons.Scanner.Base.add_scanner

Inherited from SCons.Scanner.Base(Section 32.5)

__eq__(), __hash__(), __str__(), add_skey(), get_skeys(), path()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __subclasshook__()

32.6.2 Properties

Name Description
Inherited from object
__class__

32.7 Class Current

object

SCons.Scanner.Base

SCons.Scanner.Current

Known Subclasses: SCons.Scanner.Classic

A class for scanning files that are source files (have no builder) or are derived files and are
current (which implies that they exist, either locally or in a repository).

255

Class Current Package SCons.Scanner

256

Class Current Package SCons.Scanner

32.7.1 Methods

__init__(self, *args, **kw)

Construct a new scanner object given a scanner function.

’function’ - a scanner function taking two or three arguments and returning a
list of strings.

’name’ - a name for identifying this scanner object.

’argument’ - an optional argument that, if specified, will be passed to both the
scanner function and the path_function.

’skeys’ - an optional list argument that can be used to determine which
scanner should be used for a given Node. In the case of File nodes, for
example, the ’skeys’ would be file suffixes.

’path_function’ - a function that takes four or five arguments (a construction
environment, Node for the directory containing the SConscript file that
defined the primary target, list of target nodes, list of source nodes, and
optional argument for this instance) and returns a tuple of the directories that
can be searched for implicit dependency files. May also return a callable()
which is called with no args and returns the tuple (supporting Bindable class).

’node_class’ - the class of Nodes which this scan will return. If node_class is
None, then this scanner will not enforce any Node conversion and will return
the raw results from the underlying scanner function.

’node_factory’ - the factory function to be called to translate the raw results
returned by the scanner function into the expected node_class objects.

’scan_check’ - a function to be called to first check whether this node really
needs to be scanned.

’recursive’ - specifies that this scanner should be invoked recursively on all of
the implicit dependencies it returns (the canonical example being #include
lines in C source files). May be a callable, which will be called to filter the list
of nodes found to select a subset for recursive scanning (the canonical example
being only recursively scanning subdirectories within a directory).

The scanner function’s first argument will be a Node that should be scanned
for dependencies, the second argument will be an Environment object, the
third argument will be the tuple of paths returned by the path_function, and
the fourth argument will be the value passed into ’argument’, and the returned
list should contain the Nodes for all the direct dependencies of the file.

Examples:

s = Scanner(my_scanner_function)

s = Scanner(function = my_scanner_function)

s = Scanner(function = my_scanner_function, argument = ’foo’) Overrides:
object.__init__ extit(inherited documentation)

257

Class Classic Package SCons.Scanner

Inherited from SCons.Scanner.Base(Section 32.5)

__call__(), __eq__(), __hash__(), __str__(), add_scanner(), add_skey(),
get_skeys(), path(), select()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __subclasshook__()

32.7.2 Properties

Name Description
Inherited from object
__class__

32.8 Class Classic

object

SCons.Scanner.Base

SCons.Scanner.Current

SCons.Scanner.Classic

Known Subclasses: SCons.Scanner.ClassicCPP, SCons.Scanner.D.D, SCons.Scanner.Fortran.F90Scanner

A Scanner subclass to contain the common logic for classic CPP-style include scanning, but
which can be customized to use different regular expressions to find the includes.

Note that in order for this to work "out of the box" (without overriding the find_include()
and sort_key() methods), the regular expression passed to the constructor must return the
name of the include file in group 0.

258

Class Classic Package SCons.Scanner

259

Class Classic Package SCons.Scanner

32.8.1 Methods

__init__(self, name, suffixes, path_variable, regex, *args, **kw)

Construct a new scanner object given a scanner function.

’function’ - a scanner function taking two or three arguments and returning a
list of strings.

’name’ - a name for identifying this scanner object.

’argument’ - an optional argument that, if specified, will be passed to both the
scanner function and the path_function.

’skeys’ - an optional list argument that can be used to determine which
scanner should be used for a given Node. In the case of File nodes, for
example, the ’skeys’ would be file suffixes.

’path_function’ - a function that takes four or five arguments (a construction
environment, Node for the directory containing the SConscript file that
defined the primary target, list of target nodes, list of source nodes, and
optional argument for this instance) and returns a tuple of the directories that
can be searched for implicit dependency files. May also return a callable()
which is called with no args and returns the tuple (supporting Bindable class).

’node_class’ - the class of Nodes which this scan will return. If node_class is
None, then this scanner will not enforce any Node conversion and will return
the raw results from the underlying scanner function.

’node_factory’ - the factory function to be called to translate the raw results
returned by the scanner function into the expected node_class objects.

’scan_check’ - a function to be called to first check whether this node really
needs to be scanned.

’recursive’ - specifies that this scanner should be invoked recursively on all of
the implicit dependencies it returns (the canonical example being #include
lines in C source files). May be a callable, which will be called to filter the list
of nodes found to select a subset for recursive scanning (the canonical example
being only recursively scanning subdirectories within a directory).

The scanner function’s first argument will be a Node that should be scanned
for dependencies, the second argument will be an Environment object, the
third argument will be the tuple of paths returned by the path_function, and
the fourth argument will be the value passed into ’argument’, and the returned
list should contain the Nodes for all the direct dependencies of the file.

Examples:

s = Scanner(my_scanner_function)

s = Scanner(function = my_scanner_function)

s = Scanner(function = my_scanner_function, argument = ’foo’) Overrides:
object.__init__ extit(inherited documentation)

260

Class ClassicCPP Package SCons.Scanner

find_include(self, include, source_dir, path)

find_include_names(self, node)

scan(self, node, path=())

sort_key(self, include)

Inherited from SCons.Scanner.Base(Section 32.5)

__call__(), __eq__(), __hash__(), __str__(), add_scanner(), add_skey(),
get_skeys(), path(), select()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __subclasshook__()

32.8.2 Properties

Name Description
Inherited from object
__class__

32.9 Class ClassicCPP

object

SCons.Scanner.Base

SCons.Scanner.Current

SCons.Scanner.Classic

SCons.Scanner.ClassicCPP

A Classic Scanner subclass which takes into account the type of bracketing used to include
the file, and uses classic CPP rules for searching for the files based on the bracketing.

Note that in order for this to work, the regular expression passed to the constructor must
return the leading bracket in group 0, and the contained filename in group 1.

261

Class ClassicCPP Package SCons.Scanner

32.9.1 Methods

find_include(self, include, source_dir, path)

Overrides: SCons.Scanner.Classic.find_include

sort_key(self, include)

Overrides: SCons.Scanner.Classic.sort_key

Inherited from SCons.Scanner.Classic(Section 32.8)

__init__(), find_include_names(), scan()

Inherited from SCons.Scanner.Base(Section 32.5)

__call__(), __eq__(), __hash__(), __str__(), add_scanner(), add_skey(),
get_skeys(), path(), select()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __subclasshook__()

32.9.2 Properties

Name Description
Inherited from object
__class__

262

Class SConsCPPScanner Module SCons.Scanner.C

33 Module SCons.Scanner.C

SCons.Scanner.C

This module implements the dependency scanner for C/C++ code.

33.1 Functions

dictify_CPPDEFINES(env)

CScanner()

Return a prototype Scanner instance for scanning source files that use the C
pre-processor

33.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Scanner/C.py

e724ae812eb96f4858a132f5b8...

__package__ Value: ’SCons.Scanner’

33.3 Class SConsCPPScanner

object

SCons.cpp.PreProcessor

SCons.Scanner.C.SConsCPPScanner

SCons-specific subclass of the cpp.py module’s processing.

We subclass this so that: 1) we can deal with files represented by Nodes, not strings; 2) we
can keep track of the files that are missing.

263

Class SConsCPPScanner Module SCons.Scanner.C

33.3.1 Methods

__init__(self, *args, **kw)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

initialize_result(self, fname)

Overrides: SCons.cpp.PreProcessor.initialize_result

finalize_result(self, fname)

Overrides: SCons.cpp.PreProcessor.finalize_result

find_include_file(self, t)

Finds the #include file for a given preprocessor tuple. Overrides:
SCons.cpp.PreProcessor.find_include_file extit(inherited documentation)

read_file(self, file)

Overrides: SCons.cpp.PreProcessor.read_file

Inherited from SCons.cpp.PreProcessor(Section 59.4)

__call__(), all_include(), do_define(), do_elif(), do_else(), do_endif(), do_if(),
do_ifdef(), do_ifndef(), do_import(), do_include(), do_include_next(), do_nothing(),
do_undef(), eval_expression(), process_contents(), resolve_include(), restore(),
save(), scons_current_file(), start_handling_includes(), stop_handling_includes(),
tupleize()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

33.3.2 Properties

Name Description
Inherited from object
__class__

264

Class SConsCPPScannerWrapper Module SCons.Scanner.C

33.4 Class SConsCPPScannerWrapper

object

SCons.Scanner.C.SConsCPPScannerWrapper

The SCons wrapper around a cpp.py scanner.

This is the actual glue between the calling conventions of generic SCons scanners, and the
(subclass of) cpp.py class that knows how to look for #include lines with reasonably real
C-preprocessor-like evaluation of #if/#ifdef/#else/#elif lines.

33.4.1 Methods

__init__(self, name, variable)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__call__(self, node, env, path=())

recurse_nodes(self, nodes)

select(self, node)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

33.4.2 Properties

Name Description
Inherited from object
__class__

265

Class D Module SCons.Scanner.D

34 Module SCons.Scanner.D

SCons.Scanner.D

Scanner for the Digital Mars "D" programming language.

Coded by Andy Friesen 17 Nov 2003

34.1 Functions

DScanner()

Return a prototype Scanner instance for scanning D source files

34.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Scanner/D.py

e724ae812eb96f4858a132f5b8...

__package__ Value: ’SCons.Scanner’

34.3 Class D

object

SCons.Scanner.Base

SCons.Scanner.Current

SCons.Scanner.Classic

SCons.Scanner.D.D

266

Class D Module SCons.Scanner.D

267

Class D Module SCons.Scanner.D

34.3.1 Methods

__init__(self)

Construct a new scanner object given a scanner function.

’function’ - a scanner function taking two or three arguments and returning a
list of strings.

’name’ - a name for identifying this scanner object.

’argument’ - an optional argument that, if specified, will be passed to both the
scanner function and the path_function.

’skeys’ - an optional list argument that can be used to determine which
scanner should be used for a given Node. In the case of File nodes, for
example, the ’skeys’ would be file suffixes.

’path_function’ - a function that takes four or five arguments (a construction
environment, Node for the directory containing the SConscript file that
defined the primary target, list of target nodes, list of source nodes, and
optional argument for this instance) and returns a tuple of the directories that
can be searched for implicit dependency files. May also return a callable()
which is called with no args and returns the tuple (supporting Bindable class).

’node_class’ - the class of Nodes which this scan will return. If node_class is
None, then this scanner will not enforce any Node conversion and will return
the raw results from the underlying scanner function.

’node_factory’ - the factory function to be called to translate the raw results
returned by the scanner function into the expected node_class objects.

’scan_check’ - a function to be called to first check whether this node really
needs to be scanned.

’recursive’ - specifies that this scanner should be invoked recursively on all of
the implicit dependencies it returns (the canonical example being #include
lines in C source files). May be a callable, which will be called to filter the list
of nodes found to select a subset for recursive scanning (the canonical example
being only recursively scanning subdirectories within a directory).

The scanner function’s first argument will be a Node that should be scanned
for dependencies, the second argument will be an Environment object, the
third argument will be the tuple of paths returned by the path_function, and
the fourth argument will be the value passed into ’argument’, and the returned
list should contain the Nodes for all the direct dependencies of the file.

Examples:

s = Scanner(my_scanner_function)

s = Scanner(function = my_scanner_function)

s = Scanner(function = my_scanner_function, argument = ’foo’) Overrides:
object.__init__ extit(inherited documentation)

268

Class D Module SCons.Scanner.D

find_include(self, include, source_dir, path)

Overrides: SCons.Scanner.Classic.find_include

find_include_names(self, node)

Overrides: SCons.Scanner.Classic.find_include_names

Inherited from SCons.Scanner.Classic(Section 32.8)

scan(), sort_key()

Inherited from SCons.Scanner.Base(Section 32.5)

__call__(), __eq__(), __hash__(), __str__(), add_scanner(), add_skey(),
get_skeys(), path(), select()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __subclasshook__()

34.3.2 Properties

Name Description
Inherited from object
__class__

269

Module SCons.Scanner.Dir

35 Module SCons.Scanner.Dir

35.1 Functions

only_dirs(nodes)

DirScanner(**kw)

Return a prototype Scanner instance for scanning directories for on-disk files

DirEntryScanner(**kw)

Return a prototype Scanner instance for "scanning" directory Nodes for their
in-memory entries

do_not_scan(k)

scan_on_disk(node, env, path=())

Scans a directory for on-disk files and directories therein.

Looking up the entries will add these to the in-memory Node tree
representation of the file system, so all we have to do is just that and then call
the in-memory scanning function.

scan_in_memory(node, env, path=())

"Scans" a Node.FS.Dir for its in-memory entries.

35.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Scanner/Dir.py

e724ae812eb96f4858a132f5...

skip_entry Value: {’.’: 1, ’..’: 1, ’.sconsign’:

1, ’.sconsign.bak’: 1, ’.s...

continued on next page

270

Variables Module SCons.Scanner.Dir

Name Description
skip_entry_list Value: [’.’, ’..’, ’.sconsign’,

’.sconsign.dblite’, ’.sconsign.d...

__package__ Value: ’SCons.Scanner’

skip Value: ’.sconsign.db’

271

Class F90Scanner Module SCons.Scanner.Fortran

36 Module SCons.Scanner.Fortran

SCons.Scanner.Fortran

This module implements the dependency scanner for Fortran code.

36.1 Functions

FortranScan(path_variable=’FORTRANPATH’)

Return a prototype Scanner instance for scanning source files for Fortran USE
& INCLUDE statements

36.2 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Scanner/Fortran.py

e724ae812eb96f4858a1...

__package__ Value: ’SCons.Scanner’

36.3 Class F90Scanner

object

SCons.Scanner.Base

SCons.Scanner.Current

SCons.Scanner.Classic

SCons.Scanner.Fortran.F90Scanner

A Classic Scanner subclass for Fortran source files which takes into account both USE and
INCLUDE statements. This scanner will work for both F77 and F90 (and beyond) compilers.

Currently, this scanner assumes that the include files do not contain USE statements. To
enable the ability to deal with USE statements in include files, add logic right after the
module names are found to loop over each include file, search for and locate each USE
statement, and append each module name to the list of dependencies. Caching the search

272

Class F90Scanner Module SCons.Scanner.Fortran

results in a common dictionary somewhere so that the same include file is not searched
multiple times would be a smart thing to do.

273

Class F90Scanner Module SCons.Scanner.Fortran

274

Class F90Scanner Module SCons.Scanner.Fortran

36.3.1 Methods

__init__(self, name, suffixes, path_variable, use_regex, incl_regex,
def_regex, *args, **kw)

Construct a new scanner object given a scanner function.

’function’ - a scanner function taking two or three arguments and returning a
list of strings.

’name’ - a name for identifying this scanner object.

’argument’ - an optional argument that, if specified, will be passed to both the
scanner function and the path_function.

’skeys’ - an optional list argument that can be used to determine which
scanner should be used for a given Node. In the case of File nodes, for
example, the ’skeys’ would be file suffixes.

’path_function’ - a function that takes four or five arguments (a construction
environment, Node for the directory containing the SConscript file that
defined the primary target, list of target nodes, list of source nodes, and
optional argument for this instance) and returns a tuple of the directories that
can be searched for implicit dependency files. May also return a callable()
which is called with no args and returns the tuple (supporting Bindable class).

’node_class’ - the class of Nodes which this scan will return. If node_class is
None, then this scanner will not enforce any Node conversion and will return
the raw results from the underlying scanner function.

’node_factory’ - the factory function to be called to translate the raw results
returned by the scanner function into the expected node_class objects.

’scan_check’ - a function to be called to first check whether this node really
needs to be scanned.

’recursive’ - specifies that this scanner should be invoked recursively on all of
the implicit dependencies it returns (the canonical example being #include
lines in C source files). May be a callable, which will be called to filter the list
of nodes found to select a subset for recursive scanning (the canonical example
being only recursively scanning subdirectories within a directory).

The scanner function’s first argument will be a Node that should be scanned
for dependencies, the second argument will be an Environment object, the
third argument will be the tuple of paths returned by the path_function, and
the fourth argument will be the value passed into ’argument’, and the returned
list should contain the Nodes for all the direct dependencies of the file.

Examples:

s = Scanner(my_scanner_function)

s = Scanner(function = my_scanner_function)

s = Scanner(function = my_scanner_function, argument = ’foo’) Overrides:

275

Class F90Scanner Module SCons.Scanner.Fortran

scan(self, node, env, path=())

Overrides: SCons.Scanner.Classic.scan

Inherited from SCons.Scanner.Classic(Section 32.8)

find_include(), find_include_names(), sort_key()

Inherited from SCons.Scanner.Base(Section 32.5)

__call__(), __eq__(), __hash__(), __str__(), add_scanner(), add_skey(),
get_skeys(), path(), select()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __subclasshook__()

36.3.2 Properties

Name Description
Inherited from object
__class__

276

Variables Module SCons.Scanner.IDL

37 Module SCons.Scanner.IDL

SCons.Scanner.IDL

This module implements the dependency scanner for IDL (Interface Definition Language)
files.

37.1 Functions

IDLScan()

Return a prototype Scanner instance for scanning IDL source files

37.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Scanner/IDL.py

e724ae812eb96f4858a132f5...

__package__ Value: ’SCons.Scanner’

277

Class FindENVPathDirs Module SCons.Scanner.LaTeX

38 Module SCons.Scanner.LaTeX

SCons.Scanner.LaTeX

This module implements the dependency scanner for LaTeX code.

38.1 Functions

modify_env_var(env, var, abspath)

LaTeXScanner()

Return a prototype Scanner instance for scanning LaTeX source files when
built with latex.

PDFLaTeXScanner()

Return a prototype Scanner instance for scanning LaTeX source files when
built with pdflatex.

38.2 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Scanner/LaTeX.py

e724ae812eb96f4858a132...

TexGraphics Value: [’.eps’, ’.ps’]

LatexGraphics Value: [’.png’, ’.jpg’, ’.gif’, ’.tif’]

__package__ Value: ’SCons.Scanner’

38.3 Class FindENVPathDirs

object

SCons.Scanner.LaTeX.FindENVPathDirs

A class to bind a specific E{*}PATH variable name to a function that will return all of the
E{*}path directories.

278

Class LaTeX Module SCons.Scanner.LaTeX

38.3.1 Methods

__init__(self, variable)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__call__(self, env, dir=None, target=None, source=None, argument=None)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

38.3.2 Properties

Name Description
Inherited from object
__class__

38.4 Class LaTeX

object

SCons.Scanner.Base

SCons.Scanner.LaTeX.LaTeX

Class for scanning LaTeX files for included files.

Unlike most scanners, which use regular expressions that just return the included file name,
this returns a tuple consisting of the keyword for the inclusion ("include", "includegraphics",
"input", or "bibliography"), and then the file name itself. Based on a quick look at LaTeX
documentation, it seems that we should append .tex suffix for the "include" keywords, ap-
pend .tex if there is no extension for the "input" keyword, and need to add .bib for the
"bibliography" keyword that does not accept extensions by itself.

Finally, if there is no extension for an "includegraphics" keyword latex will append .ps or
.eps to find the file, while pdftex may use .pdf, .jpg, .tif, .mps, or .png.

The actual subset and search order may be altered by DeclareGraphicsExtensions command.
This complication is ignored. The default order corresponds to experimentation with teTeX:

279

Class LaTeX Module SCons.Scanner.LaTeX

$ latex --version

pdfeTeX 3.141592-1.21a-2.2 (Web2C 7.5.4)

kpathsea version 3.5.4

The order is: [’.eps’, ’.ps’] for latex [’.png’, ’.pdf’, ’.jpg’, ’.tif’].

Another difference is that the search path is determined by the type of the file being searched:
env[’TEXINPUTS’] for "input" and "include" keywords env[’TEXINPUTS’] for "include-
graphics" keyword env[’TEXINPUTS’] for "lstinputlisting" keyword env[’BIBINPUTS’] for
"bibliography" keyword env[’BSTINPUTS’] for "bibliographystyle" keyword env[’INDEXSTYLE’]
for "makeindex" keyword, no scanning support needed just allows user to set it if needed.

FIXME: also look for the class or style in document[class|style]{} FIXME: also look for the
argument of bibliographystyle{}

280

Class LaTeX Module SCons.Scanner.LaTeX

281

Class LaTeX Module SCons.Scanner.LaTeX

38.4.1 Methods

__init__(self, name, suffixes, graphics_extensions, *args, **kw)

Construct a new scanner object given a scanner function.

’function’ - a scanner function taking two or three arguments and returning a
list of strings.

’name’ - a name for identifying this scanner object.

’argument’ - an optional argument that, if specified, will be passed to both the
scanner function and the path_function.

’skeys’ - an optional list argument that can be used to determine which
scanner should be used for a given Node. In the case of File nodes, for
example, the ’skeys’ would be file suffixes.

’path_function’ - a function that takes four or five arguments (a construction
environment, Node for the directory containing the SConscript file that
defined the primary target, list of target nodes, list of source nodes, and
optional argument for this instance) and returns a tuple of the directories that
can be searched for implicit dependency files. May also return a callable()
which is called with no args and returns the tuple (supporting Bindable class).

’node_class’ - the class of Nodes which this scan will return. If node_class is
None, then this scanner will not enforce any Node conversion and will return
the raw results from the underlying scanner function.

’node_factory’ - the factory function to be called to translate the raw results
returned by the scanner function into the expected node_class objects.

’scan_check’ - a function to be called to first check whether this node really
needs to be scanned.

’recursive’ - specifies that this scanner should be invoked recursively on all of
the implicit dependencies it returns (the canonical example being #include
lines in C source files). May be a callable, which will be called to filter the list
of nodes found to select a subset for recursive scanning (the canonical example
being only recursively scanning subdirectories within a directory).

The scanner function’s first argument will be a Node that should be scanned
for dependencies, the second argument will be an Environment object, the
third argument will be the tuple of paths returned by the path_function, and
the fourth argument will be the value passed into ’argument’, and the returned
list should contain the Nodes for all the direct dependencies of the file.

Examples:

s = Scanner(my_scanner_function)

s = Scanner(function = my_scanner_function)

s = Scanner(function = my_scanner_function, argument = ’foo’) Overrides:
object.__init__ extit(inherited documentation)

282

Class LaTeX Module SCons.Scanner.LaTeX

sort_key(self, include)

find_include(self, include, source_dir, path)

canonical_text(self, text)

Standardize an input TeX-file contents.

Currently:

• removes comments, unwrapping comment-wrapped lines.

scan(self, node, subdir=’.’)

scan_recurse(self, node, path=())

do a recursive scan of the top level target file This lets us search for included
files based on the directory of the main file just as latex does

Inherited from SCons.Scanner.Base(Section 32.5)

__call__(), __eq__(), __hash__(), __str__(), add_scanner(), add_skey(),
get_skeys(), path(), select()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __subclasshook__()

38.4.2 Properties

Name Description
Inherited from object
__class__

38.4.3 Class Variables

Name Description
keyword_paths Value: {’addbibresource’: ’BIBINPUTS’,

’addglobalbib’: ’BIBINPUT...

continued on next page

283

Class LaTeX Module SCons.Scanner.LaTeX

Name Description
env_variables Value: [’INDEXSTYLE’, ’BIBINPUTS’,

’TEXINPUTS’, ’BSTINPUTS’]

two_arg_commands Value: [’import’, ’subimport’,

’includefrom’, ’subincludefrom’, ...

284

Variables Module SCons.Scanner.Prog

39 Module SCons.Scanner.Prog

39.1 Functions

ProgramScanner(**kw)

Return a prototype Scanner instance for scanning executable files for static-lib
dependencies

scan(node, env, libpath=())

This scanner scans program files for static-library dependencies. It will search
the LIBPATH environment variable for libraries specified in the LIBS variable,
returning any files it finds as dependencies.

39.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Scanner/Prog.py

e724ae812eb96f4858a132f...

print_find_libs Value: None

__package__ Value: ’SCons.Scanner’

285

Variables Module SCons.Scanner.RC

40 Module SCons.Scanner.RC

SCons.Scanner.RC

This module implements the dependency scanner for RC (Interface Definition Language)
files.

40.1 Functions

no_tlb(nodes)

Filter out .tlb files as they are binary and shouldn’t be scanned

RCScan()

Return a prototype Scanner instance for scanning RC source files

40.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Scanner/RC.py

e724ae812eb96f4858a132f5b...

__package__ Value: ’SCons.Scanner’

286

Variables Module SCons.Scanner.SWIG

41 Module SCons.Scanner.SWIG

SCons.Scanner.SWIG

This module implements the dependency scanner for SWIG code.

41.1 Functions

SWIGScanner()

41.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Scanner/SWIG.py

e724ae812eb96f4858a132f...

SWIGSuffixes Value: [’.i’]

__package__ Value: ’SCons.Scanner’

287

Package SCons.Script

42 Package SCons.Script

SCons.Script

This file implements the main() function used by the scons script.

Architecturally, this is the scons script, and will likely only be called from the external
"scons" wrapper. Consequently, anything here should not be, or be considered, part of the
build engine. If it’s something that we expect other software to want to use, it should go in
some other module. If it’s specific to the "scons" script invocation, it goes here.

42.1 Modules

• Interactive: SCons interactive mode
(Section 43, p. 281)

• Main: SCons.Script
(Section 44, p. 284)

• SConscript’: SCons.Script.SConscript
(Section 45, p. 299)

42.2 Functions

HelpFunction(text, append=False)

set_missing_sconscript_error(flag=1)

Set behavior on missing file in SConscript() call. Returns previous value

Variables(files=[], args={})

42.3 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Script/__init__.py

e724ae812eb96f4858a1...

start_time Value: 1563676347.54

call_stack Value: []

continued on next page

288

Variables Package SCons.Script

Name Description
PathVariable Value:

<SCons.Variables.PathVariable._PathVariableClass

object>

Chmod Value: <SCons.Action.ActionFactory

object>

Copy Value: <SCons.Action.ActionFactory

object>

Delete Value: <SCons.Action.ActionFactory

object>

Mkdir Value: <SCons.Action.ActionFactory

object>

Move Value: <SCons.Action.ActionFactory

object>

Touch Value: <SCons.Action.ActionFactory

object>

CScanner Value: <SCons.Scanner.ClassicCPP object>

DScanner Value: <SCons.Scanner.D.D object>

DirScanner Value: <SCons.Scanner.Base object>

ProgramScanner Value: <SCons.Scanner.Base object>

SourceFileScanner Value: <SCons.Scanner.Base object>

CScan Value: <SCons.Scanner.ClassicCPP object>

ARGUMENTS Value: {}

ARGLIST Value: []

BUILD_TARGETS Value: []

COMMAND_LINE_TA-
RGETS

Value: []

DEFAULT_TARGETS Value: []

help_text Value: None

sconscript_reading Value: 0

GlobalDefaultEnvironmen-
tFunctions

Value: [’Default’,

’EnsurePythonVersion’,

’EnsureSConsVersion’, ...

GlobalDefaultBuilders Value: [’CFile’, ’CXXFile’, ’DVI’,

’Jar’, ’Java’, ’JavaH’, ’Libr...

SConscript Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Command Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

AddPostAction Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

continued on next page

289

Variables Package SCons.Script

Name Description
AddPreAction Value:

<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Alias Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

AlwaysBuild Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

BuildDir Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

CFile Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

CXXFile Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

CacheDir Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Clean Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

DVI Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Decider Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Default Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Depends Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Dir Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

EnsurePythonVersion Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

continued on next page

290

Variables Package SCons.Script

Name Description
EnsureSConsVersion Value:

<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Entry Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Execute Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Exit Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Export Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

File Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

FindFile Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

FindInstalledFiles Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

FindSourceFiles Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Flatten Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

GetBuildPath Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

GetLaunchDir Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Glob Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Help Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

continued on next page

291

Variables Package SCons.Script

Name Description
Ignore Value:

<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Import Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Install Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

InstallAs Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

InstallVersionedLib Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Jar Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Java Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

JavaH Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Library Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Literal Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

LoadableModule Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Local Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

M4 Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

MSVSProject Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

continued on next page

292

Variables Package SCons.Script

Name Description
NoCache Value:

<SCons.Script.SConscript.DefaultEnvironmentCall

object>

NoClean Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Object Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

PCH Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

PDF Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Package Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

ParseDepends Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

PostScript Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Precious Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Program Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

PyPackageDir Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

RES Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

RMIC Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Repository Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

continued on next page

293

Variables Package SCons.Script

Name Description
Requires Value:

<SCons.Script.SConscript.DefaultEnvironmentCall

object>

SConscriptChdir Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

SConsignFile Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

SharedLibrary Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

SharedObject Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

SideEffect Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

SourceCode Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

SourceSignatures Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Split Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

StaticLibrary Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

StaticObject Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Substfile Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Tag Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Tar Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

continued on next page

294

Class TargetList Package SCons.Script

Name Description
TargetSignatures Value:

<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Textfile Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

TypeLibrary Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Value Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

VariantDir Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

Zip Value:
<SCons.Script.SConscript.DefaultEnvironmentCall

object>

__package__ Value: ’SCons.Script’

42.4 Class TargetList

object

_abcoll.Sized

object

_abcoll.Iterable

object

_abcoll.Container

_abcoll.Sequence

_abcoll.MutableSequence

UserList.UserList

SCons.Script.TargetList

295

Class TargetList Package SCons.Script

42.4.1 Methods

Inherited from UserList.UserList

__add__(), __cmp__(), __contains__(), __delitem__(), __delslice__(),
__eq__(), __ge__(), __getitem__(), __getslice__(), __gt__(), __iadd__(),
__imul__(), __init__(), __le__(), __len__(), __lt__(), __mul__(), __ne__(),
__radd__(), __repr__(), __rmul__(), __setitem__(), __setslice__(), ap-
pend(), count(), extend(), index(), insert(), pop(), remove(), reverse(), sort()

Inherited from _abcoll.Sequence

__iter__(), __reversed__()

Inherited from _abcoll.Sized

__subclasshook__()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __setattr__(), __sizeof__(), __str__()

42.4.2 Properties

Name Description
Inherited from object
__class__

42.4.3 Class Variables

Name Description
Inherited from UserList.UserList
__abstractmethods__, __hash__

296

Class SConsInteractiveCmd Module SCons.Script.Interactive

43 Module SCons.Script.Interactive

SCons interactive mode

43.1 Functions

interact(fs, parser, options, targets, target_top)

43.2 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Script/Interactive.py

e724ae812eb96f485...

__doc__ Value: ...

__package__ Value: ’SCons.Script’

43.3 Class SConsInteractiveCmd

cmd.Cmd

SCons.Script.Interactive.SConsInteractiveCmd

build [TARGETS] Build the specified TARGETS and their dependencies. ’b’ is a synonym.
clean [TARGETS] Clean (remove) the specified TARGETS and their dependencies. ’c’ is a
synonym. exit Exit SCons interactive mode. help [COMMAND] Prints help for the specified
COMMAND. ’h’ and ’?’ are synonyms. shell [COMMANDLINE] Execute COMMANDLINE
in a subshell. ’sh’ and ’!’ are synonyms. version Prints SCons version information.

297

Class SConsInteractiveCmd Module SCons.Script.Interactive

43.3.1 Methods

__init__(self, **kw)

Instantiate a line-oriented interpreter framework.

The optional argument ’completekey’ is the readline name of a completion key;
it defaults to the Tab key. If completekey is not None and the readline module
is available, command completion is done automatically. The optional
arguments stdin and stdout specify alternate input and output file objects; if
not specified, sys.stdin and sys.stdout are used. Overrides:
cmd.Cmd.__init__ extit(inherited documentation)

default(self, argv)

Called on an input line when the command prefix is not recognized.

If this method is not overridden, it prints an error message and returns.
Overrides: cmd.Cmd.default extit(inherited documentation)

onecmd(self, line)

Interpret the argument as though it had been typed in response to the prompt.

This may be overridden, but should not normally need to be; see the precmd()
and postcmd() methods for useful execution hooks. The return value is a flag
indicating whether interpretation of commands by the interpreter should stop.
Overrides: cmd.Cmd.onecmd extit(inherited documentation)

do_build(self, argv)

build [TARGETS] Build the specified TARGETS and their dependencies. ’b’
is a synonym.

do_clean(self, argv)

clean [TARGETS] Clean (remove) the specified TARGETS and their
dependencies. ’c’ is a synonym.

do_EOF(self, argv)

298

Class SConsInteractiveCmd Module SCons.Script.Interactive

do_exit(self, argv)

exit Exit SCons interactive mode.

do_help(self, argv)

help [COMMAND] Prints help for the specified COMMAND. ’h’ and ’?’ are
synonyms. Overrides: cmd.Cmd.do_help

do_shell(self, argv)

shell [COMMANDLINE] Execute COMMANDLINE in a subshell. ’sh’ and ’!’
are synonyms.

do_version(self, argv)

version Prints SCons version information.

Inherited from cmd.Cmd

cmdloop(), columnize(), complete(), complete_help(), completedefault(), complete-
names(), emptyline(), get_names(), parseline(), postcmd(), postloop(), precmd(),
preloop(), print_topics()

43.3.2 Class Variables

Name Description
synonyms Value: {’b’: ’build’, ’c’: ’clean’,

’h’: ’help’, ’scons’: ’build...

Inherited from cmd.Cmd
doc_header, doc_leader, identchars, intro, lastcmd, misc_header, nohelp,
prompt, ruler, undoc_header, use_rawinput

299

Module SCons.Script.Main

44 Module SCons.Script.Main

SCons.Script

This file implements the main() function used by the scons script.

Architecturally, this is the scons script, and will likely only be called from the external
"scons" wrapper. Consequently, anything here should not be, or be considered, part of the
build engine. If it’s something that we expect other software to want to use, it should go in
some other module. If it’s specific to the "scons" script invocation, it goes here.

44.1 Functions

fetch_win32_parallel_msg()

revert_io()

Progress(*args, **kw)

GetBuildFailures()

python_version_string()

python_version_unsupported(version=sys.version_info(major=2,

minor=7, micro=15, releaselevel...)

python_version_deprecated(version=sys.version_info(major=2,

minor=7, micro=15, releaselevel...)

AddOption(*args, **kw)

GetOption(name)

SetOption(name, value)

PrintHelp(file=None)

300

Variables Module SCons.Script.Main

find_deepest_user_frame(tb)

Find the deepest stack frame that is not part of SCons.

Input is a "pre-processed" stack trace in the form returned by
traceback.extract_tb() or traceback.extract_stack()

test_load_all_site_scons_dirs(d)

version_string(label, module)

path_string(label, module)

main()

44.2 Variables

Name Description
unsupported_python_ver-
sion

Value: (2, 6, 0)

deprecated_python_versi-
on

Value: (2, 7, 0)

__revision__ Value: ’src/engine/SCons/Script/Main.py

e724ae812eb96f4858a132f5...

first_command_start Value: None

last_command_end Value: None

print_objects Value: 0

print_memoizer Value: 0

print_stacktrace Value: 0

print_time Value: 0

sconscript_time Value: 0

cumulative_command_ti-
me

Value: 0

exit_status Value: 0

this_build_status Value: 0

num_jobs Value: None

delayed_warnings Value: []

display Value: <SCons.Util.DisplayEngine object>

progress_display Value: <SCons.Util.DisplayEngine object>

ProgressObject Value: Null(0x7F3F21684E50)

continued on next page

301

Class SConsPrintHelpException Module SCons.Script.Main

Name Description
OptionsParser Value:

<SCons.Script.SConsOptions.SConsOptionParser

object>

count_stats Value: <SCons.Script.Main.CountStats

object>

memory_stats Value: <SCons.Script.Main.MemStats

object>

__package__ Value: ’SCons.Script’

44.3 Class SConsPrintHelpException

object

exceptions.BaseException

exceptions.Exception

SCons.Script.Main.SConsPrintHelpException

44.3.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

44.3.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

302

Class Progressor Module SCons.Script.Main

44.4 Class Progressor

object

SCons.Script.Main.Progressor

44.4.1 Methods

__init__(self, obj, interval=1, file=None, overwrite=False)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

write(self, s)

erase_previous(self)

spinner(self, node)

string(self, node)

replace_string(self, node)

__call__(self, node)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

44.4.2 Properties

Name Description
Inherited from object
__class__

44.4.3 Class Variables

Name Description
prev Value: ’’

continued on next page

303

Class BuildTask Module SCons.Script.Main

Name Description
count Value: 0

target_string Value: ’$TARGET’

44.5 Class BuildTask

object

SCons.Taskmaster.Task

SCons.Taskmaster.OutOfDateTask

SCons.Script.Main.BuildTask

An SCons build task.

44.5.1 Methods

display(self, message)

Hook to allow the calling interface to display a message.

This hook gets called as part of preparing a task for execution (that is, a Node
to be built). As part of figuring out what Node should be built next, the
actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete
implementation of this method to see those messages. Overrides:
SCons.Taskmaster.Task.display extit(inherited documentation)

prepare(self)

Called just before the task is executed.

This is mainly intended to give the target Nodes a chance to unlink underlying
files and make all necessary directories before the Action is actually called to
build the targets. Overrides: SCons.Taskmaster.Task.prepare extit(inherited
documentation)

needs_execute(self)

Returns True (indicating this Task should be executed) if this Task’s target
state indicates it needs executing, which has already been determined by an
earlier up-to-date check. Overrides: SCons.Taskmaster.Task.needs_execute

304

Class BuildTask Module SCons.Script.Main

execute(self)

Called to execute the task.

This method is called from multiple threads in a parallel build, so only do
thread safe stuff here. Do thread unsafe stuff in prepare(), executed() or
failed(). Overrides: SCons.Taskmaster.Task.execute extit(inherited
documentation)

do_failed(self, status=2)

executed(self)

Called when the task has been successfully executed and the Taskmaster
instance wants to call the Node’s callback methods.

This may have been a do-nothing operation (to preserve build order), so we
must check the node’s state before deciding whether it was "built", in which
case we call the appropriate Node method. In any event, we always call
"visited()", which will handle any post-visit actions that must take place
regardless of whether or not the target was an actual built target or a source
Node. Overrides: SCons.Taskmaster.Task.executed extit(inherited
documentation)

failed(self)

Default action when a task fails: stop the build.

Note: Although this function is normally invoked on nodes in the executing
state, it might also be invoked on up-to-date nodes when using Configure().
Overrides: SCons.Taskmaster.Task.failed extit(inherited documentation)

postprocess(self)

Post-processes a task after it’s been executed.

This examines all the targets just built (or not, we don’t care if the build was
successful, or even if there was no build because everything was up-to-date) to
see if they have any waiting parent Nodes, or Nodes waiting on a common side
effect, that can be put back on the candidates list. Overrides:
SCons.Taskmaster.Task.postprocess extit(inherited documentation)

305

Class CleanTask Module SCons.Script.Main

make_ready(self)

Make a task ready for execution Overrides:
SCons.Taskmaster.Task.make_ready

Inherited from SCons.Taskmaster.Task(Section 47.4)

__init__(), exc_clear(), exc_info(), exception_set(), executed_with_callbacks(),
executed_without_callbacks(), fail_continue(), fail_stop(), get_target(), make_ready_all(),
make_ready_current(), trace_message()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

44.5.2 Properties

Name Description
Inherited from object
__class__

44.5.3 Class Variables

Name Description
progress Value: Null(0x7F3F21684E50)

44.6 Class CleanTask

object

SCons.Taskmaster.Task

SCons.Taskmaster.AlwaysTask

SCons.Script.Main.CleanTask

An SCons clean task.

306

Class CleanTask Module SCons.Script.Main

44.6.1 Methods

fs_delete(self, path, pathstr, remove=True)

show(self)

remove(self)

Called to execute the task.

This method is called from multiple threads in a parallel build, so only do
thread safe stuff here. Do thread unsafe stuff in prepare(), executed() or
failed().

execute(self)

Called to execute the task.

This method is called from multiple threads in a parallel build, so only do
thread safe stuff here. Do thread unsafe stuff in prepare(), executed() or
failed(). Overrides: SCons.Taskmaster.Task.execute extit(inherited
documentation)

executed(self)

Called when the task has been successfully executed and the Taskmaster
instance doesn’t want to call the Node’s callback methods. Overrides:
SCons.Taskmaster.Task.executed

make_ready(self)

Marks all targets in a task ready for execution.

This is used when the interface needs every target Node to be visited--the
canonical example being the "scons -c" option. Overrides:
SCons.Taskmaster.Task.make_ready

307

Class QuestionTask Module SCons.Script.Main

prepare(self)

Called just before the task is executed.

This is mainly intended to give the target Nodes a chance to unlink underlying
files and make all necessary directories before the Action is actually called to
build the targets. Overrides: SCons.Taskmaster.Task.prepare extit(inherited
documentation)

Inherited from SCons.Taskmaster.AlwaysTask(Section 47.5)

needs_execute()

Inherited from SCons.Taskmaster.Task(Section 47.4)

__init__(), display(), exc_clear(), exc_info(), exception_set(), executed_with_callbacks(),
executed_without_callbacks(), fail_continue(), fail_stop(), failed(), get_target(),
make_ready_all(), make_ready_current(), postprocess(), trace_message()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

44.6.2 Properties

Name Description
Inherited from object
__class__

44.7 Class QuestionTask

object

SCons.Taskmaster.Task

SCons.Taskmaster.AlwaysTask

SCons.Script.Main.QuestionTask

An SCons task for the -q (question) option.

308

Class QuestionTask Module SCons.Script.Main

44.7.1 Methods

prepare(self)

Called just before the task is executed.

This is mainly intended to give the target Nodes a chance to unlink underlying
files and make all necessary directories before the Action is actually called to
build the targets. Overrides: SCons.Taskmaster.Task.prepare extit(inherited
documentation)

execute(self)

Called to execute the task.

This method is called from multiple threads in a parallel build, so only do
thread safe stuff here. Do thread unsafe stuff in prepare(), executed() or
failed(). Overrides: SCons.Taskmaster.Task.execute extit(inherited
documentation)

executed(self)

Called when the task has been successfully executed and the Taskmaster
instance wants to call the Node’s callback methods.

This may have been a do-nothing operation (to preserve build order), so we
must check the node’s state before deciding whether it was "built", in which
case we call the appropriate Node method. In any event, we always call
"visited()", which will handle any post-visit actions that must take place
regardless of whether or not the target was an actual built target or a source
Node. Overrides: SCons.Taskmaster.Task.executed extit(inherited
documentation)

Inherited from SCons.Taskmaster.AlwaysTask(Section 47.5)

needs_execute()

Inherited from SCons.Taskmaster.Task(Section 47.4)

__init__(), display(), exc_clear(), exc_info(), exception_set(), executed_with_callbacks(),
executed_without_callbacks(), fail_continue(), fail_stop(), failed(), get_target(),
make_ready(), make_ready_all(), make_ready_current(), postprocess(), trace_message()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),

309

Class TreePrinter Module SCons.Script.Main

__str__(), __subclasshook__()

44.7.2 Properties

Name Description
Inherited from object
__class__

44.8 Class TreePrinter

object

SCons.Script.Main.TreePrinter

44.8.1 Methods

__init__(self, derived=False, prune=False, status=False)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

get_all_children(self, node)

get_derived_children(self, node)

display(self, t)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

44.8.2 Properties

Name Description
Inherited from object
__class__

310

Class Stats Module SCons.Script.Main

44.9 Class FakeOptionParser

object

SCons.Script.Main.FakeOptionParser

A do-nothing option parser, used for the initial OptionsParser variable.

During normal SCons operation, the OptionsParser is created right away by the main() func-
tion. Certain tests scripts however, can introspect on different Tool modules, the initializa-
tion of which can try to add a new, local option to an otherwise uninitialized OptionsParser
object. This allows that introspection to happen without blowing up.

44.9.1 Methods

add_local_option(self, *args, **kw)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(),
__new__(), __reduce__(), __reduce_ex__(), __repr__(), __setattr__(),
__sizeof__(), __str__(), __subclasshook__()

44.9.2 Properties

Name Description
Inherited from object
__class__

44.9.3 Class Variables

Name Description
values Value:

<SCons.Script.Main.FakeOptionValues

object>

44.10 Class Stats

object

SCons.Script.Main.Stats

311

Class CountStats Module SCons.Script.Main

Known Subclasses: SCons.Script.Main.CountStats, SCons.Script.Main.MemStats

44.10.1 Methods

__init__(self)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

enable(self, outfp)

do_nothing(self, *args, **kw)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

44.10.2 Properties

Name Description
Inherited from object
__class__

44.11 Class CountStats

object

SCons.Script.Main.Stats

SCons.Script.Main.CountStats

44.11.1 Methods

do_append(self, label)

do_print(self)

Inherited from SCons.Script.Main.Stats(Section 44.10)

312

Class MemStats Module SCons.Script.Main

__init__(), do_nothing(), enable()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

44.11.2 Properties

Name Description
Inherited from object
__class__

44.12 Class MemStats

object

SCons.Script.Main.Stats

SCons.Script.Main.MemStats

44.12.1 Methods

do_append(self, label)

do_print(self)

Inherited from SCons.Script.Main.Stats(Section 44.10)

__init__(), do_nothing(), enable()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

44.12.2 Properties

Name Description
Inherited from object

continued on next page

313

Class MemStats Module SCons.Script.Main

Name Description
__class__

314

Module SCons.Script.SConscript’

45 Module SCons.Script.SConscript’

SCons.Script.SConscript

This module defines the Python API provided to SConscript and SConstruct files.

45.1 Functions

get_calling_namespaces()

Return the locals and globals for the function that called into this module in
the current call stack.

compute_exports(exports)

Compute a dictionary of exports given one of the parameters to the Export()
function or the exports argument to SConscript().

Return(*vars, **kw)

handle_missing_SConscript(f, must_exist=None)

Take appropriate action on missing file in SConscript() call.

Print a warning or raise an exception on missing file. On first warning, print a
deprecation message.

Args: f (str): path of missing configuration file must_exist (bool): raise
exception if file does not exist

Raises:

UserError if ’must_exist’ is True or if global
SCons.Script._no_missing_sconscript is True.

315

Variables Module SCons.Script.SConscript’

SConscript_exception(file=<epydoc.docintrospecter._DevNull

object>)

Print an exception stack trace just for the SConscript file(s). This will show
users who have Python errors where the problem is, without cluttering the
output with all of the internal calls leading up to where we exec the
SConscript.

annotate(node)

Annotate a node with the stack frame describing the SConscript file and line
number that created it.

Configure(*args, **kw)

get_DefaultEnvironmentProxy()

BuildDefaultGlobals()

Create a dictionary containing all the default globals for SConstruct and
SConscript files.

45.2 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Script/SConscript.py

e724ae812eb96f4858...

launch_dir Value:
’/home/bdeegan/devel/scons/git/as_scons’

GlobalDict Value: None

global_exports Value: {}

sconscript_chdir Value: 1

call_stack Value: []

stack_bottom Value: ’% Stack boTTom %’

__package__ Value: ’SCons.Script’

316

Class Frame Module SCons.Script.SConscript’

45.3 Class SConscriptReturn

object

exceptions.BaseException

exceptions.Exception

SCons.Script.SConscript’.SConscriptReturn

45.3.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

45.3.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

45.4 Class Frame

object

SCons.Script.SConscript’.Frame

A frame on the SConstruct/SConscript call stack

317

Class Base Module SCons.Script.SConscript’

45.4.1 Methods

__init__(self, fs, exports, sconscript)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

45.4.2 Properties

Name Description
Inherited from object
__class__

45.5 Class Base

object

SCons.Environment.SubstitutionEnvironment

SCons.Environment.Base

SCons.Environment.Base

An Environment subclass that contains all of the methods that are particular to the wrapper
SCons interface and which aren’t (or shouldn’t be) part of the build engine itself.

Note that not all of the methods of this class have corresponding global functions, there are
some private methods.

318

Class Base Module SCons.Script.SConscript’

45.5.1 Methods

__init__(self, platform=None, tools=None, toolpath=None, variables=None,
parse_flags=None, **kw)

Initialization of a basic SCons construction environment, including setting up
special construction variables like BUILDER, PLATFORM, etc., and
searching for and applying available Tools.

Note that we do not call the underlying base class (SubsitutionEnvironment)
initialization, because we need to initialize things in a very specific order that
doesn’t work with the much simpler base class initialization. Overrides:
object.__init__

get_builder(self, name)

Fetch the builder with the specified name from the environment. Overrides:
SCons.Environment.Base.get_builder

get_CacheDir(self)

Overrides: SCons.Environment.Base.get_CacheDir

get_factory(self, factory, default=’File’)

Return a factory function for creating Nodes for this construction
environment. Overrides: SCons.Environment.Base.get_factory

get_scanner(self, skey)

Find the appropriate scanner given a key (usually a file suffix). Overrides:
SCons.Environment.Base.get_scanner

scanner_map_delete(self, kw=None)

Delete the cached scanner map (if we need to). Overrides:
SCons.Environment.Base.scanner_map_delete

319

Class Base Module SCons.Script.SConscript’

get_src_sig_type(self)

Overrides: SCons.Environment.Base.get_src_sig_type

get_tgt_sig_type(self)

Overrides: SCons.Environment.Base.get_tgt_sig_type

Append(self, **kw)

Append values to existing construction variables in an Environment.
Overrides: SCons.Environment.Base.Append

AppendENVPath(self, name, newpath, envname=’ENV’, sep=os.pathsep,
delete_existing=0)

Append path elements to the path ’name’ in the ’ENV’ dictionary for this
environment. Will only add any particular path once, and will normpath and
normcase all paths to help assure this. This can also handle the case where the
env variable is a list instead of a string.

If delete_existing is 0, a newpath which is already in the path will not be
moved to the end (it will be left where it is). Overrides:
SCons.Environment.Base.AppendENVPath

AppendUnique(self, delete_existing=0, **kw)

Append values to existing construction variables in an Environment, if they’re
not already there. If delete_existing is 1, removes existing values first, so
values move to end. Overrides: SCons.Environment.Base.AppendUnique

Clone(self, tools=[], toolpath=None, parse_flags=None, **kw)

Return a copy of a construction Environment. The copy is like a Python "deep
copy"--that is, independent copies are made recursively of each objects--except
that a reference is copied when an object is not deep-copyable (like a
function). There are no references to any mutable objects in the original
Environment. Overrides: SCons.Environment.Base.Clone

320

Class Base Module SCons.Script.SConscript’

Copy(self, *args, **kw)

Overrides: SCons.Environment.Base.Copy

Decider(self, function)

Overrides: SCons.Environment.Base.Decider

Detect(self, progs)

Return the first available program in progs. Overrides:
SCons.Environment.Base.Detect

Dictionary(self, *args)

Overrides: SCons.Environment.Base.Dictionary

Dump(self, key=None)

Using the standard Python pretty printer, return the contents of the scons
build environment as a string.

If the key passed in is anything other than None, then that will be used as an
index into the build environment dictionary and whatever is found there will
be fed into the pretty printer. Note that this key is case sensitive. Overrides:
SCons.Environment.Base.Dump

FindIxes(self, paths, prefix, suffix)

Search a list of paths for something that matches the prefix and suffix.

paths - the list of paths or nodes. prefix - construction variable for the prefix.
suffix - construction variable for the suffix. Overrides:
SCons.Environment.Base.FindIxes

321

Class Base Module SCons.Script.SConscript’

ParseConfig(self, command, function=None, unique=1)

Use the specified function to parse the output of the command in order to
modify the current environment. The ’command’ can be a string or a list of
strings representing a command and its arguments. ’Function’ is an optional
argument that takes the environment, the output of the command, and the
unique flag. If no function is specified, MergeFlags, which treats the output as
the result of a typical ’X-config’ command (i.e. gtk-config), will merge the
output into the appropriate variables. Overrides:
SCons.Environment.Base.ParseConfig

ParseDepends(self, filename, must_exist=None, only_one=0)

Parse a mkdep-style file for explicit dependencies. This is completely abusable,
and should be unnecessary in the "normal" case of proper SCons configuration,
but it may help make the transition from a Make hierarchy easier for some
people to swallow. It can also be genuinely useful when using a tool that can
write a .d file, but for which writing a scanner would be too complicated.
Overrides: SCons.Environment.Base.ParseDepends

Platform(self, platform)

Overrides: SCons.Environment.Base.Platform

Prepend(self, **kw)

Prepend values to existing construction variables in an Environment.
Overrides: SCons.Environment.Base.Prepend

322

Class Base Module SCons.Script.SConscript’

PrependENVPath(self, name, newpath, envname=’ENV’, sep=os.pathsep,
delete_existing=1)

Prepend path elements to the path ’name’ in the ’ENV’ dictionary for this
environment. Will only add any particular path once, and will normpath and
normcase all paths to help assure this. This can also handle the case where the
env variable is a list instead of a string.

If delete_existing is 0, a newpath which is already in the path will not be
moved to the front (it will be left where it is). Overrides:
SCons.Environment.Base.PrependENVPath

PrependUnique(self, delete_existing=0, **kw)

Prepend values to existing construction variables in an Environment, if they’re
not already there. If delete_existing is 1, removes existing values first, so
values move to front. Overrides: SCons.Environment.Base.PrependUnique

Replace(self, **kw)

Replace existing construction variables in an Environment with new
construction variables and/or values. Overrides:
SCons.Environment.Base.Replace

ReplaceIxes(self, path, old_prefix, old_suffix, new_prefix, new_suffix)

Replace old_prefix with new_prefix and old_suffix with new_suffix.

env - Environment used to interpolate variables. path - the path that will be
modified. old_prefix - construction variable for the old prefix. old_suffix -
construction variable for the old suffix. new_prefix - construction variable for
the new prefix. new_suffix - construction variable for the new suffix.
Overrides: SCons.Environment.Base.ReplaceIxes

SetDefault(self, **kw)

Overrides: SCons.Environment.Base.SetDefault

323

Class Base Module SCons.Script.SConscript’

Tool(self, tool, toolpath=None, **kw)

Overrides: SCons.Environment.Base.Tool

WhereIs(self, prog, path=None, pathext=None, reject=[])

Find prog in the path. Overrides: SCons.Environment.Base.WhereIs

Action(self, *args, **kw)

Overrides: SCons.Environment.Base.Action

AddPreAction(self, files, action)

Overrides: SCons.Environment.Base.AddPreAction

AddPostAction(self, files, action)

Overrides: SCons.Environment.Base.AddPostAction

Alias(self, target, source=[], action=None, **kw)

Overrides: SCons.Environment.Base.Alias

AlwaysBuild(self, *targets)

Overrides: SCons.Environment.Base.AlwaysBuild

BuildDir(self, *args, **kw)

Overrides: SCons.Environment.Base.BuildDir

Builder(self, **kw)

Overrides: SCons.Environment.Base.Builder

CacheDir(self, path)

Overrides: SCons.Environment.Base.CacheDir

Clean(self, targets, files)

Overrides: SCons.Environment.Base.Clean

Configure(self, *args, **kw)

Overrides: SCons.Environment.Base.Configure

324

Class Base Module SCons.Script.SConscript’

Command(self, target, source, action, **kw)

Builds the supplied target files from the supplied source files using the
supplied action. Action may be any type that the Builder constructor will
accept for an action. Overrides: SCons.Environment.Base.Command

Depends(self, target, dependency)

Explicity specify that ’target’s depend on ’dependency’. Overrides:
SCons.Environment.Base.Depends

Dir(self, name, *args, **kw)

Overrides: SCons.Environment.Base.Dir

PyPackageDir(self, modulename)

Overrides: SCons.Environment.Base.PyPackageDir

NoClean(self, *targets)

Tags a target so that it will not be cleaned by -c Overrides:
SCons.Environment.Base.NoClean

NoCache(self, *targets)

Tags a target so that it will not be cached Overrides:
SCons.Environment.Base.NoCache

Entry(self, name, *args, **kw)

Overrides: SCons.Environment.Base.Entry

Environment(self, **kw)

Overrides: SCons.Environment.Base.Environment

325

Class Base Module SCons.Script.SConscript’

Execute(self, action, *args, **kw)

Directly execute an action through an Environment Overrides:
SCons.Environment.Base.Execute

File(self, name, *args, **kw)

Overrides: SCons.Environment.Base.File

FindFile(self, file, dirs)

Overrides: SCons.Environment.Base.FindFile

Flatten(self, sequence)

Overrides: SCons.Environment.Base.Flatten

GetBuildPath(self, files)

Overrides: SCons.Environment.Base.GetBuildPath

Glob(self, pattern, ondisk=True, source=False, strings=False,
exclude=None)

Overrides: SCons.Environment.Base.Glob

Ignore(self, target, dependency)

Ignore a dependency. Overrides: SCons.Environment.Base.Ignore

Literal(self, string)

Overrides: SCons.Environment.Base.Literal

Local(self, *targets)

Overrides: SCons.Environment.Base.Local

Precious(self, *targets)

Overrides: SCons.Environment.Base.Precious

Pseudo(self, *targets)

Overrides: SCons.Environment.Base.Pseudo

326

Class Base Module SCons.Script.SConscript’

Repository(self, *dirs, **kw)

Overrides: SCons.Environment.Base.Repository

Requires(self, target, prerequisite)

Specify that ’prerequisite’ must be built before ’target’, (but ’target’ does not
actually depend on ’prerequisite’ and need not be rebuilt if it changes).
Overrides: SCons.Environment.Base.Requires

Scanner(self, *args, **kw)

Overrides: SCons.Environment.Base.Scanner

SConsignFile(self, name=".sconsign", dbm_module=None)

Overrides: SCons.Environment.Base.SConsignFile

SideEffect(self, side_effect, target)

Tell scons that side_effects are built as side effects of building targets.
Overrides: SCons.Environment.Base.SideEffect

SourceCode(self, entry, builder)

Arrange for a source code builder for (part of) a tree. Overrides:
SCons.Environment.Base.SourceCode

SourceSignatures(self, type)

Overrides: SCons.Environment.Base.SourceSignatures

327

Class Base Module SCons.Script.SConscript’

Split(self, arg)

This function converts a string or list into a list of strings or Nodes. This
makes things easier for users by allowing files to be specified as a white-space
separated list to be split.

The input rules are:

• A single string containing names separated by spaces. These will be
split apart at the spaces.

• A single Node instance

• A list containing either strings or Node instances. Any strings in the
list are not split at spaces.

In all cases, the function returns a list of Nodes and strings. Overrides:
SCons.Environment.Base.Split

TargetSignatures(self, type)

Overrides: SCons.Environment.Base.TargetSignatures

Value(self, value, built_value=None)

Overrides: SCons.Environment.Base.Value

VariantDir(self, variant_dir, src_dir, duplicate=1)

Overrides: SCons.Environment.Base.VariantDir

FindSourceFiles(self, node=’.’)

returns a list of all source files. Overrides:
SCons.Environment.Base.FindSourceFiles

FindInstalledFiles(self)

returns the list of all targets of the Install and InstallAs Builder. Overrides:
SCons.Environment.Base.FindInstalledFiles

Default(self, *targets)

328

Class Base Module SCons.Script.SConscript’

EnsurePythonVersion(self, major, minor)

Exit abnormally if the Python version is not late enough.

EnsureSConsVersion(self, major, minor, revision=0)

Exit abnormally if the SCons version is not late enough.

Exit(self, value=0)

Export(self, *vars, **kw)

GetLaunchDir(self)

GetOption(self, name)

Help(self, text, append=False)

Import(self, *vars)

329

Class Base Module SCons.Script.SConscript’

SConscript(self, *ls, **kw)

Execute SCons configuration files.

Parameters:

*ls (str or list): configuration file(s) to execute.

Keyword arguments:

dirs (list): execute SConscript in each listed directory.

name (str): execute script ’name’ (used only with ’dirs’).

exports (list or dict): locally export variables the

called script(s) can import.

variant_dir (str): mirror sources needed for the build in

a variant directory to allow building in it.

duplicate (bool): physically duplicate sources instead of just

adjusting paths of derived files (used only with ’variant_dir’)

(default is True).

must_exist (bool): fail if a requested script is missing

(default is False, default is deprecated).

Returns:

list of variables returned by the called script

Raises:

UserError: a script is not found and such exceptions are enabled.

SConscriptChdir(self, flag)

SetOption(self, name, value)

Inherited from SCons.Environment.SubstitutionEnvironment(Section 8.6)

AddMethod(), MergeFlags(), Override(), ParseFlags(), RemoveMethod(), __con-
tains__(), __delitem__(), __eq__(), __getitem__(), __setitem__(), arg2nodes(),
backtick(), get(), gvars(), has_key(), items(), lvars(), subst(), subst_kw(), subst_list(),
subst_path(), subst_target_source()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

45.5.2 Properties

330

Class DefaultEnvironmentCall Module SCons.Script.SConscript’

Name Description
Inherited from object
__class__

45.6 Class DefaultEnvironmentCall

object

SCons.Script.SConscript’.DefaultEnvironmentCall

A class that implements "global function" calls of Environment methods by fetching the
specified method from the DefaultEnvironment’s class. Note that this uses an intermediate
proxy class instead of calling the DefaultEnvironment method directly so that the proxy
can override the subst() method and thereby prevent expansion of construction variables
(since from the user’s point of view this was called as a global function, with no associated
construction environment).

45.6.1 Methods

__init__(self, method_name, subst=0)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__call__(self, *args, **kw)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

45.6.2 Properties

Name Description
Inherited from object
__class__

331

Module SCons.Subst

46 Module SCons.Subst

SCons.Subst

SCons string substitution.

46.1 Functions

SetAllowableExceptions(*excepts)

raise_exception(exception, target, s)

quote_spaces(arg)

Generic function for putting double quotes around any string that has white
space in it.

escape_list(mylist, escape_func)

Escape a list of arguments by running the specified escape_func on every
object in the list that has an escape() method.

subst_dict(target, source)

Create a dictionary for substitution of special construction variables.

This translates the following special arguments:

target - the target (object or array of objects), used to generate the
TARGET and TARGETS construction variables

source - the source (object or array of objects), used to generate the
SOURCES and SOURCE construction variables

332

Variables Module SCons.Subst

scons_subst(strSubst, env, mode=1, target=None, source=None, gvars={},
lvars={}, conv=None)

Expand a string or list containing construction variable substitutions.

This is the work-horse function for substitutions in file names and the like.
The companion scons_subst_list() function (below) handles separating
command lines into lists of arguments, so see that function if that’s what
you’re looking for.

scons_subst_list(strSubst, env, mode=1, target=None, source=None,
gvars={}, lvars={}, conv=None)

Substitute construction variables in a string (or list or other object) and
separate the arguments into a command list.

The companion scons_subst() function (above) handles basic substitutions
within strings, so see that function instead if that’s what you’re looking for.

scons_subst_once(strSubst, env, key)

Perform single (non-recursive) substitution of a single construction variable
keyword.

This is used when setting a variable when copying or overriding values in an
Environment. We want to capture (expand) the old value before we override
it, so people can do things like:

env2 = env.Clone(CCFLAGS = ’$CCFLAGS -g’)

We do this with some straightforward, brute-force code here...

46.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Subst.py

e724ae812eb96f4858a132f5b8c769...

AllowableExceptions Value: (<type ’exceptions.IndexError’>,

<type ’exceptions.NameEr...

NullNodesList Value: Null(0x7F3F22182990)

continued on next page

333

Class Literal Module SCons.Subst

Name Description
SUBST_CMD Value: 0

SUBST_RAW Value: 1

SUBST_SIG Value: 2

__package__ Value: ’SCons’

46.3 Class Literal

object

SCons.Subst.Literal

A wrapper for a string. If you use this object wrapped around a string, then it will be
interpreted as literal. When passed to the command interpreter, all special characters will
be escaped.

46.3.1 Methods

__init__(self, lstr)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

escape(self, escape_func)

for_signature(self)

is_literal(self)

__eq__(self, other)

__neq__(self, other)

__hash__(self)

hash(x) Overrides: object.__hash__ extit(inherited documentation)

334

Class SpecialAttrWrapper Module SCons.Subst

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __repr__(), __setattr__(), __sizeof__(), __subclasshook__()

46.3.2 Properties

Name Description
Inherited from object
__class__

46.4 Class SpecialAttrWrapper

object

SCons.Subst.SpecialAttrWrapper

This is a wrapper for what we call a ’Node special attribute.’ This is any of the attributes
of a Node that we can reference from Environment variable substitution, such as $TAR-
GET.abspath or $SOURCES[1].filebase. We implement the same methods as Literal so we
can handle special characters, plus a for_signature method, such that we can return some
canonical string during signature calculation to avoid unnecessary rebuilds.

46.4.1 Methods

__init__(self, lstr, for_signature=None)

The for_signature parameter, if supplied, will be the canonical string we
return from for_signature(). Else we will simply return lstr. Overrides:
object.__init__

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

escape(self, escape_func)

for_signature(self)

335

Class CmdStringHolder Module SCons.Subst

is_literal(self)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__subclasshook__()

46.4.2 Properties

Name Description
Inherited from object
__class__

46.5 Class CmdStringHolder

object

_abcoll.Sized

object

_abcoll.Iterable

object

_abcoll.Container

_abcoll.Sequence

UserString.UserString

SCons.Subst.CmdStringHolder

This is a special class used to hold strings generated by scons_subst() and scons_subst_list().
It defines a special method escape(). When passed a function with an escape algorithm for
a particular platform, it will return the contained string with the proper escape sequences
inserted.

336

Class CmdStringHolder Module SCons.Subst

46.5.1 Methods

__init__(self, cmd, literal=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

is_literal(self)

escape(self, escape_func, quote_func=<__builtin__.function object>)

Escape the string with the supplied function. The function is expected to take
an arbitrary string, then return it with all special characters escaped and
ready for passing to the command interpreter.

After calling this function, the next call to str() will return the escaped string.

Inherited from UserString.UserString

__add__(), __cmp__(), __complex__(), __contains__(), __float__(), __getitem__(),
__getslice__(), __hash__(), __int__(), __len__(), __long__(), __mod__(),
__mul__(), __radd__(), __repr__(), __rmul__(), __str__(), capitalize(),
center(), count(), decode(), encode(), endswith(), expandtabs(), find(), index(),
isalnum(), isalpha(), isdecimal(), isdigit(), islower(), isnumeric(), isspace(), is-
title(), isupper(), join(), ljust(), lower(), lstrip(), partition(), replace(), rfind(),
rindex(), rjust(), rpartition(), rsplit(), rstrip(), split(), splitlines(), startswith(),
strip(), swapcase(), title(), translate(), upper(), zfill()

Inherited from _abcoll.Sequence

__iter__(), __reversed__()

Inherited from _abcoll.Sized

__subclasshook__()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __setattr__(), __sizeof__()

46.5.2 Properties

Name Description
Inherited from object

continued on next page

337

Class NLWrapper Module SCons.Subst

Name Description
__class__

46.5.3 Class Variables

Name Description
Inherited from UserString.UserString
__abstractmethods__

46.6 Class NLWrapper

object

SCons.Subst.NLWrapper

A wrapper class that delays turning a list of sources or targets into a NodeList until it’s
needed. The specified function supplied when the object is initialized is responsible for turn-
ing raw nodes into proxies that implement the special attributes like .abspath, .source, etc.
This way, we avoid creating those proxies just "in case" someone is going to use $TARGET
or the like, and only go through the trouble if we really have to.

In practice, this might be a wash performance-wise, but it’s a little cleaner conceptually...

46.6.1 Methods

__init__(self, list, func)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

46.6.2 Properties

Name Description
Inherited from object
__class__

338

Class Targets_or_Sources Module SCons.Subst

46.7 Class Targets_or_Sources

object

_abcoll.Sized

object

_abcoll.Iterable

object

_abcoll.Container

_abcoll.Sequence

_abcoll.MutableSequence

UserList.UserList

SCons.Subst.Targets_or_Sources

A class that implements $TARGETS or $SOURCES expansions by in turn wrapping a
NLWrapper. This class handles the different methods used to access the list, calling the
NLWrapper to create proxies on demand.

Note that we subclass collections.UserList purely so that the is_Sequence() function will
identify an object of this class as a list during variable expansion. We’re not really using any
collections.UserList methods in practice.

46.7.1 Methods

__init__(self, nl)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__getattr__(self, attr)

__getitem__(self, i)

Overrides: _abcoll.Sequence.__getitem__

339

Class Targets_or_Sources Module SCons.Subst

__getslice__(self, i, j)

Overrides: UserList.UserList.__getslice__

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

__repr__(self)

repr(x) Overrides: object.__repr__ extit(inherited documentation)

Inherited from UserList.UserList

__add__(), __cmp__(), __contains__(), __delitem__(), __delslice__(),
__eq__(), __ge__(), __gt__(), __iadd__(), __imul__(), __le__(), __len__(),
__lt__(), __mul__(), __ne__(), __radd__(), __rmul__(), __setitem__(),
__setslice__(), append(), count(), extend(), index(), insert(), pop(), remove(),
reverse(), sort()

Inherited from _abcoll.Sequence

__iter__(), __reversed__()

Inherited from _abcoll.Sized

__subclasshook__()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __setattr__(), __sizeof__()

46.7.2 Properties

Name Description
Inherited from object
__class__

46.7.3 Class Variables

Name Description
Inherited from UserList.UserList
__abstractmethods__, __hash__

340

Class Target_or_Source Module SCons.Subst

46.8 Class Target_or_Source

object

SCons.Subst.Target_or_Source

A class that implements $TARGET or $SOURCE expansions by in turn wrapping a NL-
Wrapper. This class handles the different methods used to access an individual proxy Node,
calling the NLWrapper to create a proxy on demand.

46.8.1 Methods

__init__(self, nl)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__getattr__(self, attr)

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

__repr__(self)

repr(x) Overrides: object.__repr__ extit(inherited documentation)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __setattr__(), __sizeof__(), __subclasshook__()

46.8.2 Properties

Name Description
Inherited from object
__class__

341

Class NullNodeList Module SCons.Subst

46.9 Class NullNodeList

object

SCons.Util.Null

SCons.Util.NullSeq

SCons.Subst.NullNodeList

46.9.1 Methods

__call__(self, *args, **kwargs)

Overrides: SCons.Util.Null.__call__

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

Inherited from SCons.Util.NullSeq(Section 48.16)

__delitem__(), __getitem__(), __iter__(), __len__(), __setitem__()

Inherited from SCons.Util.Null(Section 48.15)

__bool__(), __delattr__(), __getattr__(), __init__(), __new__(), __nonzero__(),
__repr__(), __setattr__()

Inherited from object

__format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__sizeof__(), __subclasshook__()

46.9.2 Properties

Name Description
Inherited from object
__class__

342

Module SCons.Taskmaster

47 Module SCons.Taskmaster

This module contains the primary interface(s) between a wrapping user interface and the
SCons build engine. There are two key classes here:

Taskmaster

This is the main engine for walking the dependency graph and calling things to
decide what does or doesn’t need to be built.

Task

This is the base class for allowing a wrapping interface to decide what does or
doesn’t actually need to be done. The intention is for a wrapping interface to
subclass this as appropriate for different types of behavior it may need.

The canonical example is the SCons native Python interface, which has Task sub-
classes that handle its specific behavior, like printing "’foo’ is up to date" when a
top-level target doesn’t need to be built, and handling the -c option by removing
targets as its "build" action. There is also a separate subclass for suppressing this
output when the -q option is used.

The Taskmaster instantiates a Task object for each (set of) target(s) that it decides
need to be evaluated and/or built.

47.1 Functions

dump_stats()

find_cycle(stack, visited)

47.2 Variables

Name Description
__doc__ Value: ...

__revision__ Value: ’src/engine/SCons/Taskmaster.py

e724ae812eb96f4858a132f5b...

StateString Value: {0: ’no_state’, 1: ’pending’,

2: ’executing’, 3: ’up_to_d...

NODE_NO_STATE Value: 0

NODE_PENDING Value: 1

continued on next page

343

Class Stats Module SCons.Taskmaster

Name Description
NODE_EXECUTING Value: 2

NODE_UP_TO_DATE Value: 3

NODE_EXECUTED Value: 4

NODE_FAILED Value: 5

print_prepare Value: 0

CollectStats Value: None

StatsNodes Value: []

fmt Value: ’%(considered)3d

%(already_handled)3d %(problem)3d

%(chil...

__package__ Value: ’SCons’

47.3 Class Stats

object

SCons.Taskmaster.Stats

A simple class for holding statistics about the disposition of a Node by the Taskmaster. If
we’re collecting statistics, each Node processed by the Taskmaster gets one of these attached,
in which case the Taskmaster records its decision each time it processes the Node. (Ideally,
that’s just once per Node.)

47.3.1 Methods

__init__(self)

Instantiates a Taskmaster.Stats object, initializing all appropriate counters to
zero. Overrides: object.__init__

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

47.3.2 Properties

Name Description
Inherited from object

continued on next page

344

Class Task Module SCons.Taskmaster

Name Description
__class__

47.4 Class Task

object

SCons.Taskmaster.Task

Known Subclasses: SCons.Taskmaster.AlwaysTask, SCons.Taskmaster.OutOfDateTask

Default SCons build engine task.

This controls the interaction of the actual building of node and the rest of the engine.

This is expected to handle all of the normally-customizable aspects of controlling a build,
so any given application should be able to do what it wants by sub-classing this class and
overriding methods as appropriate. If an application needs to customize something by sub-
classing Taskmaster (or some other build engine class), we should first try to migrate that
functionality into this class.

Note that it’s generally a good idea for sub-classes to call these methods explicitly to update
state, etc., rather than roll their own interaction with Taskmaster from scratch.

47.4.1 Methods

__init__(self, tm, targets, top, node)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

trace_message(self, method, node, description=’node’)

display(self, message)

Hook to allow the calling interface to display a message.

This hook gets called as part of preparing a task for execution (that is, a Node
to be built). As part of figuring out what Node should be built next, the
actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete
implementation of this method to see those messages.

345

Class Task Module SCons.Taskmaster

prepare(self)

Called just before the task is executed.

This is mainly intended to give the target Nodes a chance to unlink underlying
files and make all necessary directories before the Action is actually called to
build the targets.

get_target(self)

Fetch the target being built or updated by this task.

needs_execute(self)

execute(self)

Called to execute the task.

This method is called from multiple threads in a parallel build, so only do
thread safe stuff here. Do thread unsafe stuff in prepare(), executed() or
failed().

executed_without_callbacks(self)

Called when the task has been successfully executed and the Taskmaster
instance doesn’t want to call the Node’s callback methods.

executed_with_callbacks(self)

Called when the task has been successfully executed and the Taskmaster
instance wants to call the Node’s callback methods.

This may have been a do-nothing operation (to preserve build order), so we
must check the node’s state before deciding whether it was "built", in which
case we call the appropriate Node method. In any event, we always call
"visited()", which will handle any post-visit actions that must take place
regardless of whether or not the target was an actual built target or a source
Node.

346

Class Task Module SCons.Taskmaster

executed(self)

Called when the task has been successfully executed and the Taskmaster
instance wants to call the Node’s callback methods.

This may have been a do-nothing operation (to preserve build order), so we
must check the node’s state before deciding whether it was "built", in which
case we call the appropriate Node method. In any event, we always call
"visited()", which will handle any post-visit actions that must take place
regardless of whether or not the target was an actual built target or a source
Node.

failed(self)

Default action when a task fails: stop the build.

Note: Although this function is normally invoked on nodes in the executing
state, it might also be invoked on up-to-date nodes when using Configure().

fail_stop(self)

Explicit stop-the-build failure.

This sets failure status on the target nodes and all of their dependent parent
nodes.

Note: Although this function is normally invoked on nodes in the executing
state, it might also be invoked on up-to-date nodes when using Configure().

fail_continue(self)

Explicit continue-the-build failure.

This sets failure status on the target nodes and all of their dependent parent
nodes.

Note: Although this function is normally invoked on nodes in the executing
state, it might also be invoked on up-to-date nodes when using Configure().

347

Class Task Module SCons.Taskmaster

make_ready_all(self)

Marks all targets in a task ready for execution.

This is used when the interface needs every target Node to be visited--the
canonical example being the "scons -c" option.

make_ready_current(self)

Marks all targets in a task ready for execution if any target is not current.

This is the default behavior for building only what’s necessary.

make_ready(self)

Marks all targets in a task ready for execution if any target is not current.

This is the default behavior for building only what’s necessary.

postprocess(self)

Post-processes a task after it’s been executed.

This examines all the targets just built (or not, we don’t care if the build was
successful, or even if there was no build because everything was up-to-date) to
see if they have any waiting parent Nodes, or Nodes waiting on a common side
effect, that can be put back on the candidates list.

exc_info(self)

Returns info about a recorded exception.

348

Class AlwaysTask Module SCons.Taskmaster

exc_clear(self)

Clears any recorded exception.

This also changes the "exception_raise" attribute to point to the appropriate
do-nothing method.

exception_set(self, exception=None)

Records an exception to be raised at the appropriate time.

This also changes the "exception_raise" attribute to point to the method that
will, in fact

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

47.4.2 Properties

Name Description
Inherited from object
__class__

47.5 Class AlwaysTask

object

SCons.Taskmaster.Task

SCons.Taskmaster.AlwaysTask

Known Subclasses: SCons.SConf.SConfBuildTask, SCons.Script.Main.CleanTask, SCons.Script.Main.QuestionT

349

Class OutOfDateTask Module SCons.Taskmaster

47.5.1 Methods

needs_execute(self)

Always returns True (indicating this Task should always be executed).

Subclasses that need this behavior (as opposed to the default of only executing
Nodes that are out of date w.r.t. their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):
needs_execute = SCons.Taskmaster.Task.execute_always

Overrides: SCons.Taskmaster.Task.needs_execute

Inherited from SCons.Taskmaster.Task(Section 47.4)

__init__(), display(), exc_clear(), exc_info(), exception_set(), execute(), exe-
cuted(), executed_with_callbacks(), executed_without_callbacks(), fail_continue(),
fail_stop(), failed(), get_target(), make_ready(), make_ready_all(), make_ready_current(),
postprocess(), prepare(), trace_message()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

47.5.2 Properties

Name Description
Inherited from object
__class__

47.6 Class OutOfDateTask

object

SCons.Taskmaster.Task

SCons.Taskmaster.OutOfDateTask

Known Subclasses: SCons.Script.Main.BuildTask

350

Class Taskmaster Module SCons.Taskmaster

47.6.1 Methods

needs_execute(self)

Returns True (indicating this Task should be executed) if this Task’s target
state indicates it needs executing, which has already been determined by an
earlier up-to-date check. Overrides: SCons.Taskmaster.Task.needs_execute

Inherited from SCons.Taskmaster.Task(Section 47.4)

__init__(), display(), exc_clear(), exc_info(), exception_set(), execute(), exe-
cuted(), executed_with_callbacks(), executed_without_callbacks(), fail_continue(),
fail_stop(), failed(), get_target(), make_ready(), make_ready_all(), make_ready_current(),
postprocess(), prepare(), trace_message()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

47.6.2 Properties

Name Description
Inherited from object
__class__

47.7 Class Taskmaster

object

SCons.Taskmaster.Taskmaster

The Taskmaster for walking the dependency DAG.

47.7.1 Methods

__init__(self, targets=[], tasker=None, order=None, trace=None)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

351

Class Taskmaster Module SCons.Taskmaster

find_next_candidate(self)

Returns the next candidate Node for (potential) evaluation.

The candidate list (really a stack) initially consists of all of the top-level
(command line) targets provided when the Taskmaster was initialized. While
we walk the DAG, visiting Nodes, all the children that haven’t finished
processing get pushed on to the candidate list. Each child can then be popped
and examined in turn for whether their children are all up-to-date, in which
case a Task will be created for their actual evaluation and potential building.

Here is where we also allow candidate Nodes to alter the list of Nodes that
should be examined. This is used, for example, when invoking SCons in a
source directory. A source directory Node can return its corresponding build
directory Node, essentially saying, "Hey, you really need to build this thing
over here instead."

no_next_candidate(self)

Stops Taskmaster processing by not returning a next candidate.

Note that we have to clean-up the Taskmaster candidate list because the cycle
detection depends on the fact all nodes have been processed somehow.

trace_message(self, message)

trace_node(self, node)

next_task(self)

Returns the next task to be executed.

This simply asks for the next Node to be evaluated, and then wraps it in the
specific Task subclass with which we were initialized.

will_not_build(self, nodes, node_func=<__builtin__.function object>)

Perform clean-up about nodes that will never be built. Invokes a user defined
function on all of these nodes (including all of their parents).

352

Class Taskmaster Module SCons.Taskmaster

stop(self)

Stops the current build completely.

cleanup(self)

Check for dependency cycles.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

47.7.2 Properties

Name Description
Inherited from object
__class__

353

Module SCons.Util

48 Module SCons.Util

SCons.Util

Various utility functions go here.

48.1 Functions

dictify(keys, values, result={})

rightmost_separator(path, sep)

containsAny(str, set)

Check whether sequence str contains ANY of the items in set.

containsAll(str, set)

Check whether sequence str contains ALL of the items in set.

containsOnly(str, set)

Check whether sequence str contains ONLY items in set.

splitext(path)

Same as os.path.splitext() but faster.

updrive(path)

Make the drive letter (if any) upper case. This is useful because Windows is
inconsistent on the case of the drive letter, which can cause inconsistencies
when calculating command signatures.

354

Functions Module SCons.Util

get_environment_var(varstr)

Given a string, first determine if it looks like a reference to a single
environment variable, like "$FOO" or "${FOO}". If so, return that variable
with no decorations ("FOO"). If not, return None.

render_tree(root, child_func, prune=0, margin=[0], visited=None)

Render a tree of nodes into an ASCII tree view. Parameters
root: : the root node of the tree

child_func: : the function called to get the children of a node

prune: : don’t visit the same node twice

margin: : the format of the left margin to use for children of
root. 1 results in a pipe, and 0 results in no pipe.

visited: : a dictionary of visited nodes in the current branch if
not prune, or in the whole tree if prune.

IDX(N)

print_tree(root, child_func, prune=0, showtags=0, margin=[0],
visited=None)

Print a tree of nodes. This is like render_tree, except it prints lines directly
instead of creating a string representation in memory, so that huge trees can
be printed. Parameters

root: - the root node of the tree

child_func: - the function called to get the children of a node

prune: - don’t visit the same node twice

showtags: - print status information to the left of each node line

margin: - the format of the left margin to use for children of
root. 1 results in a pipe, and 0 results in no pipe.

visited: - a dictionary of visited nodes in the current branch if
not prune, or in the whole tree if prune.

is_Dict(obj, isinstance=<built-in function isinstance>,
DictTypes=dict, UserDict)

355

Functions Module SCons.Util

is_List(obj, isinstance=<built-in function isinstance>,
ListTypes=(<type ’list’>, <class ’UserList.UserList’>))

is_Sequence(obj, isinstance=<built-in function isinstance>,
SequenceTypes=(<type ’list’>, <type ’tuple’>, <class

’UserList.UserList’>))

is_Tuple(obj, isinstance=<built-in function isinstance>, tuple=<type

’tuple’>)

is_String(obj, isinstance=<built-in function isinstance>,
StringTypes=(<type ’str’>, <type ’unicode’>, <class

’UserString.UserS...)

is_Scalar(obj, isinstance=<built-in function isinstance>,
StringTypes=(<type ’str’>, <type ’unicode’>, <class

’UserString.UserS..., SequenceTypes=(<type ’list’>, <type

’tuple’>, <class ’UserList.UserList’>))

do_flatten(sequence, result, isinstance=<built-in function isinstance>,
StringTypes=(<type ’str’>, <type ’unicode’>, <class

’UserString.UserS..., SequenceTypes=(<type ’list’>, <type

’tuple’>, <class ’UserList.UserList’>))

flatten(obj, isinstance=<built-in function isinstance>,
StringTypes=(<type ’str’>, <type ’unicode’>, <class

’UserString.UserS..., SequenceTypes=(<type ’list’>, <type

’tuple’>, <class ’UserList.UserList’>),
do_flatten=<__builtin__.function object>)

Flatten a sequence to a non-nested list.

Flatten() converts either a single scalar or a nested sequence to a non-nested
list. Note that flatten() considers strings to be scalars instead of sequences like
Python would.

356

Functions Module SCons.Util

flatten_sequence(sequence, isinstance=<built-in function isinstance>,
StringTypes=(<type ’str’>, <type ’unicode’>, <class

’UserString.UserS..., SequenceTypes=(<type ’list’>, <type

’tuple’>, <class ’UserList.UserList’>),
do_flatten=<__builtin__.function object>)

Flatten a sequence to a non-nested list.

Same as flatten(), but it does not handle the single scalar case. This is slightly
more efficient when one knows that the sequence to flatten can not be a scalar.

to_String(s, isinstance=<built-in function isinstance>, str=<type

’str’>, UserString=<class ’UserString.UserString’>,
BaseStringTypes=(<type ’str’>, <type ’unicode’>))

to_String_for_subst(s, isinstance=<built-in function isinstance>,
str=<type ’str’>, to_String=<__builtin__.function object>,
BaseStringTypes=(<type ’str’>, <type ’unicode’>),
SequenceTypes=(<type ’list’>, <type ’tuple’>, <class

’UserList.UserList’>), UserString=<class ’UserString.UserString’>)

to_String_for_signature(obj,
to_String_for_subst=<__builtin__.function object>,
AttributeError=<type ’exceptions.AttributeError’>)

semi_deepcopy_dict(x, exclude=[])

semi_deepcopy(x)

RegGetValue(root, key)

RegOpenKeyEx(root, key)

WhereIs(file, path=None, pathext=None, reject=[])

357

Functions Module SCons.Util

PrependPath(oldpath, newpath, sep=’:’, delete_existing=1,
canonicalize=None)

This prepends newpath elements to the given oldpath. Will only add any
particular path once (leaving the first one it encounters and ignoring the rest,
to preserve path order), and will os.path.normpath and os.path.normcase all
paths to help assure this. This can also handle the case where the given old
path variable is a list instead of a string, in which case a list will be returned
instead of a string.

Example: Old Path: "/foo/bar:/foo" New Path: "/biz/boom:/foo" Result:
"/biz/boom:/foo:/foo/bar"

If delete_existing is 0, then adding a path that exists will not move it to the
beginning; it will stay where it is in the list.

If canonicalize is not None, it is applied to each element of newpath before use.

AppendPath(oldpath, newpath, sep=’:’, delete_existing=1,
canonicalize=None)

This appends new path elements to the given old path. Will only add any
particular path once (leaving the last one it encounters and ignoring the rest,
to preserve path order), and will os.path.normpath and os.path.normcase all
paths to help assure this. This can also handle the case where the given old
path variable is a list instead of a string, in which case a list will be returned
instead of a string.

Example: Old Path: "/foo/bar:/foo" New Path: "/biz/boom:/foo" Result:
"/foo/bar:/biz/boom:/foo"

If delete_existing is 0, then adding a path that exists will not move it to the
end; it will stay where it is in the list.

If canonicalize is not None, it is applied to each element of newpath before use.

358

Functions Module SCons.Util

AddPathIfNotExists(env_dict, key, path, sep=’:’)

This function will take ’key’ out of the dictionary ’env_dict’, then add the
path ’path’ to that key if it is not already there. This treats the value of
env_dict[key] as if it has a similar format to the PATH variable...a list of
paths separated by tokens. The ’path’ will get added to the list if it is not
already there.

get_native_path(path)

Transforms an absolute path into a native path for the system. Non-Cygwin
version, just leave the path alone.

Split(arg)

case_sensitive_suffixes(s1, s2)

adjustixes(fname, pre, suf, ensure_suffix=False)

unique(s)

Return a list of the elements in s, but without duplicates.

For example, unique([1,2,3,1,2,3]) is some permutation of [1,2,3],
unique("abcabc") some permutation of ["a", "b", "c"], and unique(([1, 2], [2, 3],
[1, 2])) some permutation of [[2, 3], [1, 2]].

For best speed, all sequence elements should be hashable. Then unique() will
usually work in linear time.

If not possible, the sequence elements should enjoy a total ordering, and if
list(s).sort() doesn’t raise TypeError it’s assumed that they do enjoy a total
ordering. Then unique() will usually work in O(N*log2(N)) time.

If that’s not possible either, the sequence elements must support
equality-testing. Then unique() will usually work in quadratic time.

uniquer(seq, idfun=None)

359

Functions Module SCons.Util

uniquer_hashables(seq)

logical_lines(physical_lines, joiner=<built-in method join of str

object at 0x7f3f23e95508>)

make_path_relative(path)

makes an absolute path name to a relative pathname.

AddMethod(obj, function, name=None)

Adds either a bound method to an instance or the function itself (or an
unbound method in Python 2) to a class. If name is ommited the name of the
specified function is used by default.

Example:

a = A()

def f(self, x, y):

self.z = x + y

AddMethod(f, A, "add")

a.add(2, 4)

print(a.z)

AddMethod(lambda self, i: self.l[i], a, "listIndex")

print(a.listIndex(5))

RenameFunction(function, name)

Returns a function identical to the specified function, but with the specified
name.

MD5signature(s)

Generate md5 signature of a string Parameters
s: either string or bytes. Normally should be bytes

Return Value
String of hex digits representing the signature

360

Functions Module SCons.Util

MD5filesignature(fname, chunksize=65536)

Generate the md5 signature of a file Parameters
fname: file to hash

chunksize: chunk size to read

Return Value
String of Hex digits representing the signature

MD5collect(signatures)

Collects a list of signatures into an aggregate signature.

signatures - a list of signatures returns - the aggregate signature

silent_intern(x)

Perform sys.intern() on the passed argument and return the result. If the
input is ineligible (e.g. a unicode string) the original argument is returned and
no exception is thrown.

to_bytes(s)

to_str(s)

cmp(a, b)

Define cmp because it’s no longer available in python3 Works under python 2
as well

361

Variables Module SCons.Util

get_env_bool(env, name, default=False)

Get a value of env[name] converted to boolean. The value of env[name] is
interpreted as follows: ’true’, ’yes’, ’y’, ’on’ (case insensitive) and anything
convertible to int that yields non-zero integer are True values; ’0’, ’false’, ’no’,
’n’ and ’off’ (case insensitive) are False values. For all other cases, default
value is returned. Parameters

env: - dict or dict-like object, a convainer with variables

name: - name of the variable in env to be returned

default: - returned when env[name] does not exist or can’t be
converted to bool

get_os_env_bool(name, default=False)

Same as get_env_bool(os.environ, name, default).

48.2 Variables

Name Description
PY3 Value: False

DictTypes Value: dict, UserDict

ListTypes Value: (<type ’list’>, <class

’UserList.UserList’>)

SequenceTypes Value: (<type ’list’>, <type ’tuple’>,

<class ’UserList.UserList’>)

StringTypes Value: (<type ’str’>, <type ’unicode’>,

<class ’UserString.UserS...

BaseStringTypes Value: (<type ’str’>, <type ’unicode’>)

d Value: {<type ’tuple’>:

<__builtin__.function object>, <type

’di...

can_read_reg Value: 0

hkey_mod Value: win32con

RegEnumKey Value: win32api.RegEnumKey

RegEnumValue Value: win32api.RegEnumValue

RegQueryValueEx Value: win32api.RegQueryValueEx

HKEY_CLASSES_ROO-
T

Value: None

HKEY_LOCAL_MACHI-
NE

Value: None

continued on next page

362

Class NodeList Module SCons.Util

Name Description
HKEY_CURRENT_USE-
R

Value: None

HKEY_USERS Value: None

display Value: <SCons.Util.DisplayEngine object>

md5 Value: True

__package__ Value: ’SCons’

48.3 Class NodeList

object

_abcoll.Sized

object

_abcoll.Iterable

object

_abcoll.Container

_abcoll.Sequence

_abcoll.MutableSequence

UserList.UserList

SCons.Util.NodeList

This class is almost exactly like a regular list of Nodes (actually it can hold any object),
with one important difference. If you try to get an attribute from this list, it will return that
attribute from every item in the list. For example:

>>> someList = NodeList([’ foo ’, ’ bar ’])

>>> someList.strip()

[’foo’, ’bar’]

48.3.1 Methods

__nonzero__(self)

363

Class NodeList Module SCons.Util

__bool__(self)

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

__iter__(self)

Overrides: _abcoll.Iterable.__iter__

__call__(self, *args, **kwargs)

__getattr__(self, name)

__getitem__(self, index)

This comes for free on py2, but py3 slices of NodeList are returning a list
breaking slicing nodelist and refering to properties and methods on contained
object Overrides: _abcoll.Sequence.__getitem__

Inherited from UserList.UserList

__add__(), __cmp__(), __contains__(), __delitem__(), __delslice__(),
__eq__(), __ge__(), __getslice__(), __gt__(), __iadd__(), __imul__(),
__init__(), __le__(), __len__(), __lt__(), __mul__(), __ne__(), __radd__(),
__repr__(), __rmul__(), __setitem__(), __setslice__(), append(), count(),
extend(), index(), insert(), pop(), remove(), reverse(), sort()

Inherited from _abcoll.Sequence

__reversed__()

Inherited from _abcoll.Sized

__subclasshook__()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __setattr__(), __sizeof__()

48.3.2 Properties

Name Description
Inherited from object

continued on next page

364

Class DisplayEngine Module SCons.Util

Name Description
__class__

48.3.3 Class Variables

Name Description
Inherited from UserList.UserList
__abstractmethods__, __hash__

48.4 Class DisplayEngine

object

SCons.Util.DisplayEngine

48.4.1 Methods

__call__(self, text, append_newline=1)

set_mode(self, mode)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __init__(),
__new__(), __reduce__(), __reduce_ex__(), __repr__(), __setattr__(),
__sizeof__(), __str__(), __subclasshook__()

48.4.2 Properties

Name Description
Inherited from object
__class__

48.4.3 Class Variables

Name Description
print_it Value: True

365

Class Proxy Module SCons.Util

48.5 Class Proxy

object

SCons.Util.Proxy

Known Subclasses: SCons.Builder.CompositeBuilder, SCons.Node.FS.EntryProxy

A simple generic Proxy class, forwarding all calls to subject. So, for the benefit of the python
newbie, what does this really mean? Well, it means that you can take an object, let’s call it
’objA’, and wrap it in this Proxy class, with a statement like this

proxyObj = Proxy(objA),

Then, if in the future, you do something like this

x = proxyObj.var1,

since Proxy does not have a ’var1’ attribute (but presumably objA does), the request actually
is equivalent to saying

x = objA.var1

Inherit from this class to create a Proxy.

Note that, with new-style classes, this does not work transparently for Proxy subclasses that
use special .__*__() method names, because those names are now bound to the class, not
the individual instances. You now need to know in advance which .__*__() method names
you want to pass on to the underlying Proxy object, and specifically delegate their calls like
this:

class Foo(Proxy): __str__ = Delegate(’__str__’)

48.5.1 Methods

__init__(self, subject)

Wrap an object as a Proxy object Overrides: object.__init__

__getattr__(self, name)

Retrieve an attribute from the wrapped object. If the named attribute doesn’t
exist, AttributeError is raised

366

Class Delegate Module SCons.Util

get(self)

Retrieve the entire wrapped object

__eq__(self, other)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

48.5.2 Properties

Name Description
Inherited from object
__class__

48.6 Class Delegate

object

SCons.Util.Delegate

A Python Descriptor class that delegates attribute fetches to an underlying wrapped subject
of a Proxy. Typical use:

class Foo(Proxy): __str__ = Delegate(’__str__’)

48.6.1 Methods

__init__(self, attribute)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__get__(self, obj, cls)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),

367

Class _NoError Module SCons.Util

__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

48.6.2 Properties

Name Description
Inherited from object
__class__

48.7 Class _NoError

object

exceptions.BaseException

exceptions.Exception

SCons.Util._NoError

48.7.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

48.7.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

368

Class PlainWindowsError Module SCons.Util

48.8 Class PlainWindowsError

object

exceptions.BaseException

exceptions.Exception

exceptions.StandardError

exceptions.EnvironmentError

exceptions.OSError

SCons.Util.PlainWindowsError

48.8.1 Methods

Inherited from exceptions.OSError

__init__(), __new__()

Inherited from exceptions.EnvironmentError

__reduce__(), __str__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __repr__(),
__setattr__(), __setstate__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

48.8.2 Properties

Name Description
Inherited from exceptions.EnvironmentError
errno, filename, strerror
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

369

Class PlainWindowsError Module SCons.Util

48.9 Class PlainWindowsError

object

exceptions.BaseException

exceptions.Exception

exceptions.StandardError

exceptions.EnvironmentError

exceptions.OSError

SCons.Util.PlainWindowsError

48.9.1 Methods

Inherited from exceptions.OSError

__init__(), __new__()

Inherited from exceptions.EnvironmentError

__reduce__(), __str__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __repr__(),
__setattr__(), __setstate__(), __unicode__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

48.9.2 Properties

Name Description
Inherited from exceptions.EnvironmentError
errno, filename, strerror
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

370

Class CLVar Module SCons.Util

48.10 Class CLVar

object

_abcoll.Sized

object

_abcoll.Iterable

object

_abcoll.Container

_abcoll.Sequence

_abcoll.MutableSequence

UserList.UserList

SCons.Util.CLVar

A class for command-line construction variables.

This is a list that uses Split() to split an initial string along white-space arguments, and
similarly to split any strings that get added. This allows us to Do the Right Thing with Ap-
pend() and Prepend() (as well as straight Python foo = env[’VAR’] + ’arg1 arg2’) regardless
of whether a user adds a list or a string to a command-line construction variable.

48.10.1 Methods

__init__(self, seq=[])

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__add__(self, other)

Overrides: UserList.UserList.__add__

__radd__(self, other)

Overrides: UserList.UserList.__radd__

371

Class CLVar Module SCons.Util

__str__(self)

str(x) Overrides: object.__str__ extit(inherited documentation)

Inherited from UserList.UserList

__cmp__(), __contains__(), __delitem__(), __delslice__(), __eq__(), __ge__(),
__getitem__(), __getslice__(), __gt__(), __iadd__(), __imul__(), __le__(),
__len__(), __lt__(), __mul__(), __ne__(), __repr__(), __rmul__(), __setitem__(),
__setslice__(), append(), count(), extend(), index(), insert(), pop(), remove(),
reverse(), sort()

Inherited from _abcoll.Sequence

__iter__(), __reversed__()

Inherited from _abcoll.Sized

__subclasshook__()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __setattr__(), __sizeof__()

48.10.2 Properties

Name Description
Inherited from object
__class__

48.10.3 Class Variables

Name Description
Inherited from UserList.UserList
__abstractmethods__, __hash__

372

Class Selector Module SCons.Util

48.11 Class Selector

object

dict

collections.OrderedDict

SCons.Util.Selector

Known Subclasses: SCons.Builder.CallableSelector, SCons.Builder.DictCmdGenerator,
SCons.Builder.DictEmitter

A callable ordered dictionary that maps file suffixes to dictionary values. We preserve the
order in which items are added so that get_suffix() calls always return the first suffix added.

48.11.1 Methods

__call__(self, env, source, ext=None)

Inherited from collections.OrderedDict

__delitem__(), __eq__(), __init__(), __iter__(), __ne__(), __reduce__(),
__repr__(), __reversed__(), __setitem__(), clear(), copy(), fromkeys(), items(),
iteritems(), iterkeys(), itervalues(), keys(), pop(), popitem(), setdefault(), update(),
values(), viewitems(), viewkeys(), viewvalues()

Inherited from dict

__cmp__(), __contains__(), __ge__(), __getattribute__(), __getitem__(),
__gt__(), __le__(), __len__(), __lt__(), __new__(), __sizeof__(), get(),
has_key()

Inherited from object

__delattr__(), __format__(), __reduce_ex__(), __setattr__(), __str__(),
__subclasshook__()

48.11.2 Properties

Name Description
Inherited from object
__class__

48.11.3 Class Variables

373

Class LogicalLines Module SCons.Util

Name Description
Inherited from dict
__hash__

48.12 Class LogicalLines

object

SCons.Util.LogicalLines

Wrapper class for the logical_lines method.

Allows us to read all "logical" lines at once from a given file object.

48.12.1 Methods

__init__(self, fileobj)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

readlines(self)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

48.12.2 Properties

Name Description
Inherited from object
__class__

374

Class UniqueList Module SCons.Util

48.13 Class UniqueList

object

_abcoll.Sized

object

_abcoll.Iterable

object

_abcoll.Container

_abcoll.Sequence

_abcoll.MutableSequence

UserList.UserList

SCons.Util.UniqueList

48.13.1 Methods

__init__(self, seq=[])

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__lt__(self, other)

Overrides: UserList.UserList.__lt__

__le__(self, other)

Overrides: UserList.UserList.__le__

__eq__(self, other)

Overrides: UserList.UserList.__eq__

__ne__(self, other)

Overrides: UserList.UserList.__ne__

375

Class UniqueList Module SCons.Util

__gt__(self, other)

Overrides: UserList.UserList.__gt__

__ge__(self, other)

Overrides: UserList.UserList.__ge__

__cmp__(self, other)

Overrides: UserList.UserList.__cmp__

__len__(self)

Overrides: _abcoll.Sized.__len__

__getitem__(self, i)

Overrides: _abcoll.Sequence.__getitem__

__setitem__(self, i, item)

Overrides: _abcoll.MutableSequence.__setitem__

__getslice__(self, i, j)

Overrides: UserList.UserList.__getslice__

__setslice__(self, i, j, other)

Overrides: UserList.UserList.__setslice__

__add__(self, other)

Overrides: UserList.UserList.__add__

__radd__(self, other)

Overrides: UserList.UserList.__radd__

__iadd__(self, other)

Overrides: _abcoll.MutableSequence.__iadd__

__mul__(self, other)

Overrides: UserList.UserList.__mul__

376

Class UniqueList Module SCons.Util

__rmul__(self, other)

Overrides: UserList.UserList.__rmul__

__imul__(self, other)

Overrides: UserList.UserList.__imul__

append(self, item)

append object to the end of the sequence Overrides:
_abcoll.MutableSequence.append extit(inherited documentation)

insert(self, i)

insert object before index Overrides: _abcoll.MutableSequence.insert
extit(inherited documentation)

count(self, item)

return number of occurrences of value Return Value
integer

Overrides: _abcoll.Sequence.count extit(inherited documentation)

index(self, item)

return first index of value. Raises ValueError if the value is not present.
Return Value

integer

Overrides: _abcoll.Sequence.index extit(inherited documentation)

reverse(self)

reverse IN PLACE Overrides: _abcoll.MutableSequence.reverse
extit(inherited documentation)

sort(self, *args, **kwds)

Overrides: UserList.UserList.sort

extend(self, other)

extend sequence by appending elements from the iterable Overrides:
_abcoll.MutableSequence.extend extit(inherited documentation)

377

Class Unbuffered Module SCons.Util

Inherited from UserList.UserList

__contains__(), __delitem__(), __delslice__(), __repr__(), pop(), remove()

Inherited from _abcoll.Sequence

__iter__(), __reversed__()

Inherited from _abcoll.Sized

__subclasshook__()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __new__(), __reduce__(),
__reduce_ex__(), __setattr__(), __sizeof__(), __str__()

48.13.2 Properties

Name Description
Inherited from object
__class__

48.13.3 Class Variables

Name Description
Inherited from UserList.UserList
__abstractmethods__, __hash__

48.14 Class Unbuffered

object

SCons.Util.Unbuffered

A proxy class that wraps a file object, flushing after every write, and delegating everything
else to the wrapped object.

378

Class Null Module SCons.Util

48.14.1 Methods

__init__(self, file)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

write(self, arg)

__getattr__(self, attr)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

48.14.2 Properties

Name Description
Inherited from object
__class__

48.15 Class Null

object

SCons.Util.Null

Known Subclasses: SCons.Executor.NullEnvironment, SCons.Util.NullSeq

Null objects always and reliably "do nothing."

48.15.1 Methods

__new__(cls, *args, **kwargs)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__ extit(inherited documentation)

379

Class Null Module SCons.Util

__init__(self, *args, **kwargs)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

__call__(self, *args, **kwargs)

__repr__(self)

repr(x) Overrides: object.__repr__ extit(inherited documentation)

__nonzero__(self)

__bool__(self)

__getattr__(self, name)

__setattr__(self, name, value)

x.__setattr__(’name’, value) <==> x.name = value Overrides:
object.__setattr__ extit(inherited documentation)

__delattr__(self, name)

x.__delattr__(’name’) <==> del x.name Overrides: object.__delattr__
extit(inherited documentation)

Inherited from object

__format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__sizeof__(), __str__(), __subclasshook__()

48.15.2 Properties

Name Description
Inherited from object
__class__

380

Class NullSeq Module SCons.Util

48.16 Class NullSeq

object

SCons.Util.Null

SCons.Util.NullSeq

Known Subclasses: SCons.Subst.NullNodeList

48.16.1 Methods

__len__(self)

__iter__(self)

__getitem__(self, i)

__delitem__(self, i)

__setitem__(self, i, v)

Inherited from SCons.Util.Null(Section 48.15)

__bool__(), __call__(), __delattr__(), __getattr__(), __init__(), __new__(),
__nonzero__(), __repr__(), __setattr__()

Inherited from object

__format__(), __getattribute__(), __hash__(), __reduce__(), __reduce_ex__(),
__sizeof__(), __str__(), __subclasshook__()

48.16.2 Properties

Name Description
Inherited from object
__class__

381

Class Variables Package SCons.Variables

49 Package SCons.Variables

engine.SCons.Variables

This file defines the Variables class that is used to add user-friendly customizable variables
to an SCons build.

49.1 Modules

• BoolVariable (Section ??, p. ??)
• BoolVariable’: engine.SCons.Variables.BoolVariable

(Section 50, p. 370)
• EnumVariable (Section ??, p. ??)
• EnumVariable’: engine.SCons.Variables.EnumVariable

(Section 51, p. 371)
• ListVariable (Section ??, p. ??)
• ListVariable’: engine.SCons.Variables.ListVariable

(Section 52, p. 372)
• PackageVariable (Section ??, p. ??)
• PackageVariable’: engine.SCons.Variables.PackageVariable

(Section 53, p. 373)
• PathVariable (Section ??, p. ??)
• PathVariable’: SCons.Variables.PathVariable

(Section 54, p. 374)

49.2 Variables

Name Description
__revision__ Value:

’src/engine/SCons/Variables/__init__.py

e724ae812eb96f485...

__package__ Value: ’SCons.Variables’

49.3 Class Variables

object

SCons.Variables.Variables

382

Class Variables Package SCons.Variables

49.3.1 Methods

__init__(self, files=None, args=None, is_global=1)

files - [optional] List of option configuration files to load

(backward compatibility) If a single string is passed it is
automatically placed in a file list

Overrides: object.__init__

keys(self)

Returns the keywords for the options

Add(self, key, help=’’, default=None, validator=None, converter=None,
**kw)

Add an option.

@param key: the name of the variable, or a list or tuple of arguments @param
help: optional help text for the options @param default: optional default value
@param validator: optional function that is called to validate the option’s
value @type validator: Called with (key, value, environment) @param
converter: optional function that is called to convert the option’s value before
putting it in the environment.

383

Class Variables Package SCons.Variables

AddVariables(self, *optlist)

Add a list of options.

Each list element is a tuple/list of arguments to be passed on to the
underlying method for adding options.

Example:

opt.AddVariables(

(’debug’, ’’, 0),

(’CC’, ’The C compiler’),

(’VALIDATE’, ’An option for testing validation’, ’notset’,

validator, None),

)

Update(self, env, args=None)

Update an environment with the option variables.

env - the environment to update.

UnknownVariables(self)

Returns any options in the specified arguments lists that were not known,
declared options in this object.

Save(self, filename, env)

Saves all the options in the given file. This file can then be used to load the
options next run. This can be used to create an option cache file.

filename - Name of the file to save into env - the environment get the option
values from

384

Class Variables Package SCons.Variables

GenerateHelpText(self, env, sort=None)

Generate the help text for the options.

env - an environment that is used to get the current values of the
options.

cmp - Either a function as follows: The specific sort function should take two arguments
or a boolean to indicate if it should be sorted.

FormatVariableHelpText(self, env, key, help, default, actual, aliases=[])

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

49.3.2 Properties

Name Description
Inherited from object
__class__

49.3.3 Class Variables

Name Description
instance Holds all the options, updates the environment

with the variables, and renders the help text.
Value: None

format Value: ’\n%s: %s\n default: %s\n

actual: %s\n’

format_ Value: ’\n%s: %s\n default: %s\n

actual: %s\n aliases: ...

385

Module SCons.Variables.BoolVariable’

50 Module SCons.Variables.BoolVariable’

engine.SCons.Variables.BoolVariable

This file defines the option type for SCons implementing true/false values.

Usage example:

opts = Variables()

opts.Add(BoolVariable(’embedded’, ’build for an embedded system’, 0))

...

if env[’embedded’] == 1:

...

50.1 Functions

BoolVariable(key, help, default)

The input parameters describe a boolean option, thus they are returned with
the correct converter and validator appended. The ’help’ text will by
appended by ’(yes|no) to show the valid valued. The result is usable for input
to opts.Add().

386

Module SCons.Variables.EnumVariable’

51 Module SCons.Variables.EnumVariable’

engine.SCons.Variables.EnumVariable

This file defines the option type for SCons allowing only specified input-values.

Usage example:

opts = Variables()

opts.Add(EnumVariable(’debug’, ’debug output and symbols’, ’no’,

allowed_values=(’yes’, ’no’, ’full’),

map={}, ignorecase=2))

...

if env[’debug’] == ’full’:

...

51.1 Functions

EnumVariable(key, help, default, allowed_values, map={}, ignorecase=0)

The input parameters describe an option with only certain values allowed.
They are returned with an appropriate converter and validator appended. The
result is usable for input to Variables.Add().

’key’ and ’default’ are the values to be passed on to Variables.Add().

’help’ will be appended by the allowed values automatically

’allowed_values’ is a list of strings, which are allowed as values for this option.

The ’map’-dictionary may be used for converting the input value into
canonical values (e.g. for aliases).

’ignorecase’ defines the behaviour of the validator:

If ignorecase == 0, the validator/converter are case-sensitive. If
ignorecase == 1, the validator/converter are case-insensitive. If
ignorecase == 2, the validator/converter is case-insensitive and the
converted value will always be lower-case.

The ’validator’ tests whether the value is in the list of allowed values. The
’converter’ converts input values according to the given ’map’-dictionary
(unmapped input values are returned unchanged).

387

Module SCons.Variables.ListVariable’

52 Module SCons.Variables.ListVariable’

engine.SCons.Variables.ListVariable

This file defines the option type for SCons implementing ’lists’.

A ’list’ option may either be ’all’, ’none’ or a list of names separated by comma. After the
option has been processed, the option value holds either the named list elements, all list
elements or no list elements at all.

Usage example:

list_of_libs = Split(’x11 gl qt ical’)

opts = Variables()

opts.Add(ListVariable(’shared’,

’libraries to build as shared libraries’,

’all’,

elems = list_of_libs))

...

for lib in list_of_libs:

if lib in env[’shared’]:

env.SharedObject(...)

else:

env.Object(...)

52.1 Functions

ListVariable(key, help, default, names, map={})

The input parameters describe a ’package list’ option, thus they are returned
with the correct converter and validator appended. The result is usable for
input to opts.Add() .

A ’package list’ option may either be ’all’, ’none’ or a list of package names
(separated by space).

388

Module SCons.Variables.PackageVariable’

53 Module SCons.Variables.PackageVariable’

engine.SCons.Variables.PackageVariable

This file defines the option type for SCons implementing ’package activation’.

To be used whenever a ’package’ may be enabled/disabled and the package path may be
specified.

Usage example:

Examples: x11=no (disables X11 support) x11=yes (will search for the package
installation dir) x11=/usr/local/X11 (will check this path for existence)

To replace autoconf’s --with-xxx=yyy

opts = Variables()

opts.Add(PackageVariable(’x11’,

’use X11 installed here (yes = search some places’,

’yes’))

...

if env[’x11’] == True:

dir = ... search X11 in some standard places ...

env[’x11’] = dir

if env[’x11’]:

... build with x11 ...

53.1 Functions

PackageVariable(key, help, default, searchfunc=None)

The input parameters describe a ’package list’ option, thus they are returned
with the correct converter and validator appended. The result is usable for
input to opts.Add() .

A ’package list’ option may either be ’all’, ’none’ or a list of package names
(separated by space).

389

Module SCons.Variables.PathVariable’

54 Module SCons.Variables.PathVariable’

SCons.Variables.PathVariable

This file defines an option type for SCons implementing path settings.

To be used whenever a user-specified path override should be allowed.

Arguments to PathVariable are: option-name = name of this option on the command
line (e.g. "prefix") option-help = help string for option option-dflt = default value for
this option validator = [optional] validator for option value. Predefined validators are:

PathAccept -- accepts any path setting; no validation PathIsDir -- path
must be an existing directory PathIsDirCreate -- path must be a dir;
will create PathIsFile -- path must be a file PathExists -- path must
exist (any type) [default]

The validator is a function that is called and which should return True or False
to indicate if the path is valid. The arguments to the validator function are:
(key, val, env). The key is the name of the option, the val is the path specified
for the option, and the env is the env to which the Options have been added.

Usage example:

Examples:

prefix=/usr/local

opts = Variables()

opts = Variables()

opts.Add(PathVariable(’qtdir’,

’where the root of Qt is installed’,

qtdir, PathIsDir))

opts.Add(PathVariable(’qt_includes’,

’where the Qt includes are installed’,

’$qtdir/includes’, PathIsDirCreate))

opts.Add(PathVariable(’qt_libraries’,

’where the Qt library is installed’,

’$qtdir/lib’))

54.1 Variables

Name Description
PathVariable Value:

<SCons.Variables.PathVariable._PathVariableClass

object>

continued on next page

390

Variables Module SCons.Variables.PathVariable’

Name Description

391

Module SCons.Warnings

55 Module SCons.Warnings

SCons.Warnings

This file implements the warnings framework for SCons.

55.1 Functions

suppressWarningClass(clazz)

Suppresses all warnings that are of type clazz or derived from clazz.

enableWarningClass(clazz)

Enables all warnings that are of type clazz or derived from clazz.

warningAsException(flag=1)

Turn warnings into exceptions. Returns the old value of the flag.

warn(clazz, *args)

392

Class Warning Module SCons.Warnings

process_warn_strings(arguments)

Process requests to enable/disable warnings.

The requests are strings passed to the --warn option or the SetOption(’warn’)
function.

An argument to this option should be of the form <warning-class> or
no-<warning-class>. The warning class is munged in order to get an actual
class name from the classes above, which we need to pass to the
{enable,disable}WarningClass() functions. The supplied <warning-class> is
split on hyphens, each element is capitalized, then smushed back together.
Then the string "Warning" is appended to get the class name.

For example, ’deprecated’ will enable the DeprecatedWarning class.
’no-dependency’ will disable the DependencyWarning class.

As a special case, --warn=all and --warn=no-all will enable or disable
(respectively) the base Warning class of all warnings.

55.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/Warnings.py

e724ae812eb96f4858a132f5b8c...

__package__ Value: ’SCons’

55.3 Class Warning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

Known Subclasses: SCons.SConf.SConfWarning, SCons.Warnings.WarningOnByDefault,
SCons.Warnings.CacheWriteErrorWarning, SCons.Warnings.DependencyWarning, SCons.Warnings.DeprecatedW
SCons.Warnings.FutureDeprecatedWarning, SCons.Warnings.TargetNotBuiltWarning, SCons.Warnings.VisualStudioMissingW

393

Class WarningOnByDefault Module SCons.Warnings

55.3.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.3.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

55.4 Class WarningOnByDefault

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.WarningOnByDefault

Known Subclasses: SCons.Warnings.CacheVersionWarning, SCons.Warnings.CorruptSConsignWarning,
SCons.Warnings.DevelopmentVersionWarning, SCons.Warnings.DuplicateEnvironmentWarning,
SCons.Warnings.LinkWarning, SCons.Warnings.FutureReservedVariableWarning, SCons.Warnings.MisleadingKeyw
SCons.Warnings.MissingSConscriptWarning, SCons.Warnings.NoObjectCountWarning, SCons.Warnings.NoP
SCons.Warnings.ReservedVariableWarning, SCons.Warnings.StackSizeWarning, SCons.Warnings.VisualCMissingW
SCons.Warnings.VisualVersionMismatch

394

Class TargetNotBuiltWarning Module SCons.Warnings

55.4.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.4.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

55.5 Class TargetNotBuiltWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.TargetNotBuiltWarning

55.5.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

395

Class CacheVersionWarning Module SCons.Warnings

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.5.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

55.6 Class CacheVersionWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.WarningOnByDefault

SCons.Warnings.CacheVersionWarning

55.6.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-

396

Class CacheWriteErrorWarning Module SCons.Warnings

duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.6.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

55.7 Class CacheWriteErrorWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.CacheWriteErrorWarning

55.7.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

397

Class CorruptSConsignWarning Module SCons.Warnings

55.7.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

55.8 Class CorruptSConsignWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.WarningOnByDefault

SCons.Warnings.CorruptSConsignWarning

55.8.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.8.2 Properties

398

Class DependencyWarning Module SCons.Warnings

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

55.9 Class DependencyWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.DependencyWarning

55.9.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.9.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

399

Class DevelopmentVersionWarning Module SCons.Warnings

55.10 Class DevelopmentVersionWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.WarningOnByDefault

SCons.Warnings.DevelopmentVersionWarning

55.10.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.10.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

400

Class DuplicateEnvironmentWarning Module SCons.Warnings

55.11 Class DuplicateEnvironmentWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.WarningOnByDefault

SCons.Warnings.DuplicateEnvironmentWarning

55.11.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.11.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

401

Class FutureReservedVariableWarning Module SCons.Warnings

55.12 Class FutureReservedVariableWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.WarningOnByDefault

SCons.Warnings.FutureReservedVariableWarning

55.12.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.12.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

402

Class LinkWarning Module SCons.Warnings

55.13 Class LinkWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.WarningOnByDefault

SCons.Warnings.LinkWarning

Known Subclasses: SCons.Warnings.FortranCxxMixWarning

55.13.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.13.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

403

Class MisleadingKeywordsWarning Module SCons.Warnings

55.14 Class MisleadingKeywordsWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.WarningOnByDefault

SCons.Warnings.MisleadingKeywordsWarning

55.14.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.14.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

404

Class MissingSConscriptWarning Module SCons.Warnings

55.15 Class MissingSConscriptWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.WarningOnByDefault

SCons.Warnings.MissingSConscriptWarning

55.15.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.15.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

405

Class NoObjectCountWarning Module SCons.Warnings

55.16 Class NoObjectCountWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.WarningOnByDefault

SCons.Warnings.NoObjectCountWarning

55.16.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.16.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

406

Class NoParallelSupportWarning Module SCons.Warnings

55.17 Class NoParallelSupportWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.WarningOnByDefault

SCons.Warnings.NoParallelSupportWarning

55.17.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.17.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

407

Class ReservedVariableWarning Module SCons.Warnings

55.18 Class ReservedVariableWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.WarningOnByDefault

SCons.Warnings.ReservedVariableWarning

55.18.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.18.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

408

Class StackSizeWarning Module SCons.Warnings

55.19 Class StackSizeWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.WarningOnByDefault

SCons.Warnings.StackSizeWarning

55.19.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.19.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

409

Class VisualCMissingWarning Module SCons.Warnings

55.20 Class VisualCMissingWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.WarningOnByDefault

SCons.Warnings.VisualCMissingWarning

55.20.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.20.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

410

Class VisualVersionMismatch Module SCons.Warnings

55.21 Class VisualVersionMismatch

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.WarningOnByDefault

SCons.Warnings.VisualVersionMismatch

55.21.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.21.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

411

Class VisualStudioMissingWarning Module SCons.Warnings

55.22 Class VisualStudioMissingWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.VisualStudioMissingWarning

55.22.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.22.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

412

Class FortranCxxMixWarning Module SCons.Warnings

55.23 Class FortranCxxMixWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.WarningOnByDefault

SCons.Warnings.LinkWarning

SCons.Warnings.FortranCxxMixWarning

55.23.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.23.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

413

Class FutureDeprecatedWarning Module SCons.Warnings

55.24 Class FutureDeprecatedWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.FutureDeprecatedWarning

Known Subclasses: SCons.Warnings.DeprecatedSourceCodeWarning

55.24.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.24.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

414

Class DeprecatedWarning Module SCons.Warnings

55.25 Class DeprecatedWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.DeprecatedWarning

Known Subclasses: SCons.Warnings.DeprecatedBuildDirWarning, SCons.Warnings.MandatoryDeprecatedW
SCons.Warnings.DeprecatedMissingSConscriptWarning, SCons.Warnings.PythonVersionWarning,
SCons.Warnings.TaskmasterNeedsExecuteWarning

55.25.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.25.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

415

Class MandatoryDeprecatedWarning Module SCons.Warnings

55.26 Class MandatoryDeprecatedWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.DeprecatedWarning

SCons.Warnings.MandatoryDeprecatedWarning

Known Subclasses: SCons.Warnings.DeprecatedBuilderKeywordsWarning, SCons.Warnings.DeprecatedCop
SCons.Warnings.DeprecatedDebugOptionsWarning, SCons.Warnings.DeprecatedOptionsWarning,
SCons.Warnings.DeprecatedSigModuleWarning, SCons.Warnings.DeprecatedSourceSignaturesWarning,
SCons.Warnings.DeprecatedTargetSignaturesWarning

55.26.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.26.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

416

Class PythonVersionWarning Module SCons.Warnings

55.27 Class PythonVersionWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.DeprecatedWarning

SCons.Warnings.PythonVersionWarning

55.27.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.27.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

417

Class DeprecatedSourceCodeWarning Module SCons.Warnings

55.28 Class DeprecatedSourceCodeWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.FutureDeprecatedWarning

SCons.Warnings.DeprecatedSourceCodeWarning

55.28.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.28.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

418

Class DeprecatedBuildDirWarning Module SCons.Warnings

55.29 Class DeprecatedBuildDirWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.DeprecatedWarning

SCons.Warnings.DeprecatedBuildDirWarning

55.29.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.29.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

419

Class TaskmasterNeedsExecuteWarning Module SCons.Warnings

55.30 Class TaskmasterNeedsExecuteWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.DeprecatedWarning

SCons.Warnings.TaskmasterNeedsExecuteWarning

55.30.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.30.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

420

Class DeprecatedCopyWarning Module SCons.Warnings

55.31 Class DeprecatedCopyWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.DeprecatedWarning

SCons.Warnings.MandatoryDeprecatedWarning

SCons.Warnings.DeprecatedCopyWarning

55.31.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.31.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

421

Class DeprecatedOptionsWarning Module SCons.Warnings

55.32 Class DeprecatedOptionsWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.DeprecatedWarning

SCons.Warnings.MandatoryDeprecatedWarning

SCons.Warnings.DeprecatedOptionsWarning

55.32.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.32.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

422

Class DeprecatedSourceSignaturesWarning Module SCons.Warnings

55.33 Class DeprecatedSourceSignaturesWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.DeprecatedWarning

SCons.Warnings.MandatoryDeprecatedWarning

SCons.Warnings.DeprecatedSourceSignaturesW

55.33.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.33.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

423

Class DeprecatedTargetSignaturesWarning Module SCons.Warnings

55.34 Class DeprecatedTargetSignaturesWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.DeprecatedWarning

SCons.Warnings.MandatoryDeprecatedWarning

SCons.Warnings.DeprecatedTargetSignaturesW

55.34.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.34.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

424

Class DeprecatedDebugOptionsWarning Module SCons.Warnings

55.35 Class DeprecatedDebugOptionsWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.DeprecatedWarning

SCons.Warnings.MandatoryDeprecatedWarning

SCons.Warnings.DeprecatedDebugOptionsWarning

55.35.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.35.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

425

Class DeprecatedSigModuleWarning Module SCons.Warnings

55.36 Class DeprecatedSigModuleWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.DeprecatedWarning

SCons.Warnings.MandatoryDeprecatedWarning

SCons.Warnings.DeprecatedSigModuleWarning

55.36.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.36.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

426

Class DeprecatedBuilderKeywordsWarning Module SCons.Warnings

55.37 Class DeprecatedBuilderKeywordsWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.DeprecatedWarning

SCons.Warnings.MandatoryDeprecatedWarning

SCons.Warnings.DeprecatedBuilderKeywordsW

55.37.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.37.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

427

Class DeprecatedMissingSConscriptWarning Module SCons.Warnings

55.38 Class DeprecatedMissingSConscriptWarning

object

exceptions.BaseException

exceptions.Exception

SCons.Errors.UserError

SCons.Warnings.Warning

SCons.Warnings.DeprecatedWarning

SCons.Warnings.DeprecatedMissingSConscriptWarning

55.38.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

55.38.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

428

Module SCons.__main__

56 Module SCons.__main__

429

Package SCons.compat

57 Package SCons.compat

SCons compatibility package for old Python versions

This subpackage holds modules that provide backwards-compatible implementations of vari-
ous things that we’d like to use in SCons but which only show up in later versions of Python
than the early, old version(s) we still support.

Other code will not generally reference things in this package through the SCons.compat
namespace. The modules included here add things to the builtins namespace or the global
module list so that the rest of our code can use the objects and names imported here
regardless of Python version.

The rest of the things here will be in individual compatibility modules that are either:
1) suitably modified copies of the future modules that we want to use; or 2) backwards
compatible re-implementations of the specific portions of a future module’s API that we
want to use.

GENERAL WARNINGS: Implementations of functions in the SCons.compat modules are
NOT guaranteed to be fully compliant with these functions in later versions of Python. We
are only concerned with adding functionality that we actually use in SCons, so be wary if
you lift this code for other uses. (That said, making these more nearly the same as later,
official versions is still a desirable goal, we just don’t need to be obsessive about it.)

We name the compatibility modules with an initial ’_scons_’ (for example, _scons_subprocess.py
is our compatibility module for subprocess) so that we can still try to import the real module
name and fall back to our compatibility module if we get an ImportError. The import_as()
function defined below loads the module as the "real" name (without the ’_scons’), after
which all of the "import {module}" statements in the rest of our code will find our pre-
loaded compatibility module.

57.1 Modules

• _scons_dbm: dbm compatibility module for Python versions that don’t have dbm.
(Section 58, p. 418)

57.2 Functions

rename_module(new, old)

Attempt to import the old module and load it under the new name. Used for
purely cosmetic name changes in Python 3.x.

430

Variables Package SCons.compat

with_metaclass(meta, *bases)

Function from jinja2/_compat.py. License: BSD.

Use it like this:

class BaseForm(object):

pass

class FormType(type):

pass

class Form(with_metaclass(FormType, BaseForm)):

pass

This requires a bit of explanation: the basic idea is to make a dummy
metaclass for one level of class instantiation that replaces itself with the actual
metaclass. Because of internal type checks we also need to make sure that we
downgrade the custom metaclass for one level to something closer to type
(that’s why __call__ and __init__ comes back from type etc.).

This has the advantage over six.with_metaclass of not introducing dummy
classes into the final MRO.

57.3 Variables

Name Description
__doc__ Value: ...

__revision__ Value:
’src/engine/SCons/compat/__init__.py

e724ae812eb96f4858a1...

PYPY Value: False

PICKLE_PROTOCOL Value: 2

__package__ Value: ’SCons.compat’

431

Class NoSlotsPyPy Package SCons.compat

57.4 Class SameFileError

object

exceptions.BaseException

exceptions.Exception

SCons.compat.SameFileError

57.4.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

57.4.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

57.5 Class NoSlotsPyPy

object

type

SCons.compat.NoSlotsPyPy

Workaround for PyPy not working well with __slots__ and __class__ assignment.

432

Class NoSlotsPyPy Package SCons.compat

57.5.1 Methods

__new__(meta, name, bases, dct)

Return Value
a new object with type S, a subtype of T

Overrides: object.__new__ extit(inherited documentation)

Inherited from type

__call__(), __delattr__(), __eq__(), __ge__(), __getattribute__(), __gt__(),
__hash__(), __init__(), __instancecheck__(), __le__(), __lt__(), __ne__(),
__repr__(), __setattr__(), __subclasscheck__(), __subclasses__(), mro()

Inherited from object

__format__(), __reduce__(), __reduce_ex__(), __sizeof__(), __str__(),
__subclasshook__()

57.5.2 Properties

Name Description
Inherited from type
__abstractmethods__, __base__, __bases__, __basicsize__,
__dictoffset__, __flags__, __itemsize__, __mro__, __name__,
__weakrefoffset__
Inherited from object
__class__

433

Class error Module SCons.compat._scons_dbm

58 Module SCons.compat._scons_dbm

dbm compatibility module for Python versions that don’t have dbm.

This does not not NOT (repeat, NOT) provide complete dbm functionality. It’s just a
stub on which to hang just enough pieces of dbm functionality that the whichdb.whichdb()
implementstation in the various 2.X versions of Python won’t blow up even if dbm wasn’t
compiled in.

58.1 Functions

open(*args, **kw)

58.2 Variables

Name Description
__doc__ Value: ...

__revision__ Value:
’src/engine/SCons/compat/_scons_dbm.py

e724ae812eb96f4858...

__package__ Value: None

58.3 Class error

object

exceptions.BaseException

exceptions.Exception

SCons.compat._scons_dbm.error

58.3.1 Methods

Inherited from exceptions.Exception

__init__(), __new__()

Inherited from exceptions.BaseException

434

Class error Module SCons.compat._scons_dbm

__delattr__(), __getattribute__(), __getitem__(), __getslice__(), __re-
duce__(), __repr__(), __setattr__(), __setstate__(), __str__(), __uni-
code__()

Inherited from object

__format__(), __hash__(), __reduce_ex__(), __sizeof__(), __subclasshook__()

58.3.2 Properties

Name Description
Inherited from exceptions.BaseException
args, message
Inherited from object
__class__

435

Variables Module SCons.cpp

59 Module SCons.cpp

SCons C Pre-Processor module

59.1 Functions

CPP_to_Python_Ops_Sub(m)

CPP_to_Python(s)

Converts a C pre-processor expression into an equivalent Python expression
that can be evaluated.

59.2 Variables

Name Description
__doc__ Value: ...

cpp_lines_dict Value: {(’define’):

’\\s+([_A-Za-z][_A-Za-z0-9_]*)(\\([^)]*\\))?...

Table Value: {’define’:

re.compile(r’\s+([_A-Za-z][_A-Za-z0-9_]*)(\([^...

e Value:
’^\\s*#\\s*(elif|undef|ifdef|else|ifndef|if(?!n?def)|endi...

CPP_Expression Value:
re.compile(r’(?m)^\s*#\s*(elif|undef|ifdef|else|ifndef|if...

CPP_to_Python_Ops_-
Dict

Value: {’\r’: ’’, ’!’: ’ not ’, ’!=’:

’ != ’, ’&&’: ’ and ’, ’:’...

CPP_to_Python_Ops_E-
xpression

Value:
re.compile(r’\|\||&&|!=|!|\r|:|\?’)

CPP_to_Python_Eval_-
List

Value: [[re.compile(r’defined\s+(\w+)’),

’"\\1" in __dict__’], [...

line_continuations Value: re.compile(r’\\\r?\n’)

function_name Value: re.compile(r’(\S+)\(([^\)]*)\)’)

function_arg_separator Value: re.compile(r’,\s*’)

__package__ Value: ’SCons’

x Value: ’define’

436

Class PreProcessor Module SCons.cpp

59.3 Class FunctionEvaluator

object

SCons.cpp.FunctionEvaluator

Handles delayed evaluation of a #define function call.

59.3.1 Methods

__init__(self, name, args, expansion)

Squirrels away the arguments and expansion value of a #define macro function
for later evaluation when we must actually expand a value that uses it.
Overrides: object.__init__

__call__(self, *values)

Evaluates the expansion of a #define macro function called with the specified
values.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

59.3.2 Properties

Name Description
Inherited from object
__class__

59.4 Class PreProcessor

object

SCons.cpp.PreProcessor

Known Subclasses: SCons.cpp.DumbPreProcessor, SCons.Scanner.C.SConsCPPScanner

437

Class PreProcessor Module SCons.cpp

The main workhorse class for handling C pre-processing.

59.4.1 Methods

__call__(self, file)

Pre-processes a file.

This is the main public entry point.

__init__(self, current=’.’, cpppath=(), dict={}, all=0)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

all_include(self, t)

do_define(self, t)

Default handling of a #define line.

do_elif(self, t)

Default handling of a #elif line.

do_else(self, t)

Default handling of a #else line.

do_endif(self, t)

Default handling of a #endif line.

438

Class PreProcessor Module SCons.cpp

do_if(self, t)

Default handling of a #if line.

do_ifdef(self, t)

Default handling of a #ifdef line.

do_ifndef(self, t)

Default handling of a #ifndef line.

do_import(self, t)

Default handling of a #import line.

do_include(self, t)

Default handling of a #include line.

do_include_next(self, t)

Default handling of a #include line.

do_nothing(self, t)

Null method for when we explicitly want the action for a specific preprocessor
directive to do nothing.

do_undef(self, t)

Default handling of a #undef line.

439

Class PreProcessor Module SCons.cpp

eval_expression(self, t)

Evaluates a C preprocessor expression.

This is done by converting it to a Python equivalent and eval()ing it in the C
preprocessor namespace we use to track #define values.

finalize_result(self, fname)

find_include_file(self, t)

Finds the #include file for a given preprocessor tuple.

initialize_result(self, fname)

process_contents(self, contents, fname=None)

Pre-processes a file contents.

This is the main internal entry point.

read_file(self, file)

resolve_include(self, t)

Resolve a tuple-ized #include line.

This handles recursive expansion of values without "" or <> surrounding the
name until an initial " or < is found, to handle

#include FILE

where FILE is a #define somewhere else.

restore(self)

Pops the previous dispatch table off the stack and makes it the current one.

440

Class PreProcessor Module SCons.cpp

save(self)

Pushes the current dispatch table on the stack and re-initializes the current
dispatch table to the default.

scons_current_file(self, t)

start_handling_includes(self, t=None)

Causes the PreProcessor object to start processing #import, #include and
#include_next lines.

This method will be called when a #if, #ifdef, #ifndef or #elif evaluates
True, or when we reach the #else in a #if, #ifdef, #ifndef or #elif block
where a condition already evaluated False.

stop_handling_includes(self, t=None)

Causes the PreProcessor object to stop processing #import, #include and
#include_next lines.

This method will be called when a #if, #ifdef, #ifndef or #elif evaluates
False, or when we reach the #else in a #if, #ifdef, #ifndef or #elif block
where a condition already evaluated True.

tupleize(self, contents)

Turns the contents of a file into a list of easily-processed tuples describing the
CPP lines in the file.

The first element of each tuple is the line’s preprocessor directive (#if,
#include, #define, etc., minus the initial ’#’). The remaining elements are
specific to the type of directive, as pulled apart by the regular expression.

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

441

Class DumbPreProcessor Module SCons.cpp

59.4.2 Properties

Name Description
Inherited from object
__class__

59.5 Class DumbPreProcessor

object

SCons.cpp.PreProcessor

SCons.cpp.DumbPreProcessor

A preprocessor that ignores all #if/#elif/#else/#endif directives and just reports back all
of the #include files (like the classic SCons scanner did).

This is functionally equivalent to using a regular expression to find all of the #include lines,
only slower. It exists mainly as an example of how the main PreProcessor class can be
sub-classed to tailor its behavior.

59.5.1 Methods

__init__(self, *args, **kw)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

Inherited from SCons.cpp.PreProcessor(Section 59.4)

__call__(), all_include(), do_define(), do_elif(), do_else(), do_endif(), do_if(),
do_ifdef(), do_ifndef(), do_import(), do_include(), do_include_next(), do_nothing(),
do_undef(), eval_expression(), finalize_result(), find_include_file(), initialize_result(),
process_contents(), read_file(), resolve_include(), restore(), save(), scons_current_file(),
start_handling_includes(), stop_handling_includes(), tupleize()

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

59.5.2 Properties

442

Class DumbPreProcessor Module SCons.cpp

Name Description
Inherited from object
__class__

443

Class dblite Module SCons.dblite

60 Module SCons.dblite

60.1 Functions

is_string(s)

is_bytes(s)

unicode(s)

open(file, flag=None, mode=438)

60.2 Variables

Name Description
keep_all_files Value: 0

ignore_corrupt_dbfiles Value: 1

dblite_suffix Value: ’.dblite’

tmp_suffix Value: ’.tmp’

__package__ Value: ’SCons’

60.3 Class dblite

object

SCons.dblite.dblite

Squirrel away references to the functions in various modules that we’ll use when our __del__()
method calls our sync() method during shutdown. We might get destroyed when Python
is in the midst of tearing down the different modules we import in an essentially arbitrary
order, and some of the various modules’s global attributes may already be wiped out from
under us.

See the discussion at: http://mail.python.org/pipermail/python-bugs-list/2003-March/016877.ht

444

http://mail.python.org/pipermail/python-bugs-list/2003-March/016877.html

Class dblite Module SCons.dblite

60.3.1 Methods

__init__(self, file_base_name, flag, mode)

x.__init__(...) initializes x; see help(type(x)) for signature Overrides:
object.__init__ extit(inherited documentation)

close(self)

__del__(self)

sync(self)

__getitem__(self, key)

__setitem__(self, key, value)

keys(self)

has_key(self, key)

__contains__(self, key)

iterkeys(self)

__iter__(self)

__len__(self)

Inherited from object

__delattr__(), __format__(), __getattribute__(), __hash__(), __new__(),
__reduce__(), __reduce_ex__(), __repr__(), __setattr__(), __sizeof__(),
__str__(), __subclasshook__()

60.3.2 Properties

Name Description
Inherited from object
__class__

445

Variables Module SCons.exitfuncs

61 Module SCons.exitfuncs

SCons.exitfuncs

Register functions which are executed when SCons exits for any reason.

61.1 Functions

register(func, *targs, **kargs)

register a function to be executed upon normal program termination

func - function to be called at exit targs - optional arguments to pass to func
kargs - optional keyword arguments to pass to func

61.2 Variables

Name Description
__revision__ Value: ’src/engine/SCons/exitfuncs.py

e724ae812eb96f4858a132f5b8...

__package__ Value: ’SCons’

446

Index

SCons (package), 2–4
SCons.__main__ (module), 413
SCons.Action (module), 5–18
SCons.Builder (module), 19–31

SCons.Builder.Builder (function), 20
SCons.Builder.BuilderBase (class), 27–

30
SCons.Builder.CallableSelector (class),

22–23
SCons.Builder.CompositeBuilder (class),

30–31
SCons.Builder.DictCmdGenerator (class),

20–22
SCons.Builder.DictEmitter (class), 23–

24
SCons.Builder.EmitterProxy (class), 27
SCons.Builder.is_a_Builder (function),

20
SCons.Builder.ListEmitter (class), 24–

26
SCons.Builder.match_splitext (function),

20
SCons.Builder.OverrideWarner (class),

26–27
SCons.CacheDir (module), 32–34
SCons.compat (package), 414–417

SCons.compat._scons_dbm (module), 418–
419

SCons.compat.NoSlotsPyPy (class), 416–
417

SCons.compat.rename_module (function),
414

SCons.compat.SameFileError (class), 415–
416

SCons.compat.with_metaclass (function),
414

SCons.Conftest (module), 35–39
SCons.cpp (module), 420–427
SCons.dblite (module), 428–429

SCons.dblite.dblite (class), 428–429
SCons.dblite.is_bytes (function), 428
SCons.dblite.is_string (function), 428

SCons.dblite.open (function), 428
SCons.dblite.unicode (function), 428

SCons.Debug (module), 40–41
SCons.Debug.caller_stack (function), 40
SCons.Debug.caller_trace (function), 40
SCons.Debug.countLoggedInstances (func-

tion), 40
SCons.Debug.dump_caller_counts (func-

tion), 40
SCons.Debug.dumpLoggedInstances (func-

tion), 40
SCons.Debug.fetchLoggedInstances (func-

tion), 40
SCons.Debug.func_shorten (function),

40
SCons.Debug.listLoggedInstances (func-

tion), 40
SCons.Debug.logInstanceCreation (func-

tion), 40
SCons.Debug.memory (function), 40
SCons.Debug.string_to_classes (func-

tion), 40
SCons.Debug.Trace (function), 40

SCons.Defaults (module), 42–46
SCons.Environment (module), 47–67

SCons.Environment.alias_builder (func-
tion), 47

SCons.Environment.apply_tools (func-
tion), 47

SCons.Environment.Base (class), 55–64,
302–315

SCons.Environment.BuilderDict (class),
51–52

SCons.Environment.BuilderWrapper (class),
49–51

SCons.Environment.copy_non_reserved_keywords
(function), 47

SCons.Environment.default_copy_from_cache
(function), 47

SCons.Environment.default_decide_source
(function), 47

SCons.Environment.default_decide_target

447

INDEX INDEX

(function), 47
SCons.Environment.is_valid_construction_var

(function), 47
SCons.Environment.MethodWrapper (class),

48–49
SCons.Environment.NoSubstitutionProxy

(function), 47
SCons.Environment.OverrideEnvironment

(class), 64–67
SCons.Environment.SubstitutionEnvironment

(class), 52–55
SCons.Errors (module), 68–75
SCons.Executor (module), 76–87

SCons.Executor.AddBatchExecutor (func-
tion), 76

SCons.Executor.Batch (class), 77
SCons.Executor.execute_action_list (func-

tion), 76
SCons.Executor.execute_actions_str (func-

tion), 76
SCons.Executor.execute_nothing (func-

tion), 76
SCons.Executor.execute_null_str (func-

tion), 76
SCons.Executor.Executor (class), 80–84
SCons.Executor.get_NullEnvironment (func-

tion), 76
SCons.Executor.GetBatchExecutor (func-

tion), 76
SCons.Executor.Null (class), 85–87
SCons.Executor.NullEnvironment (class),

84–85
SCons.Executor.rfile (function), 76
SCons.Executor.TSList (class), 77–79
SCons.Executor.TSObject (class), 79–

80
SCons.exitfuncs (module), 430

SCons.exitfuncs.register (function), 430
SCons.Job (module), 88–95

SCons.Job.InterruptState (class), 88–89
SCons.Job.Jobs (class), 89–90
SCons.Job.Parallel (class), 94–95
SCons.Job.Serial (class), 90–91
SCons.Job.ThreadPool (class), 93–94

SCons.Job.Worker (class), 91–93
SCons.Memoize (module), 96–101

SCons.Memoize.CountDict (class), 100–
101

SCons.Memoize.CountDictCall (function),
97

SCons.Memoize.Counter (class), 98–99
SCons.Memoize.CountMethodCall (func-

tion), 97
SCons.Memoize.CountValue (class), 99–

100
SCons.Memoize.Dump (function), 97
SCons.Memoize.EnableMemoization (func-

tion), 97
SCons.Node (package), 102–124

SCons.Node.Alias (module), 125–130
SCons.Node.FS (module), 131–181
SCons.Node.Python (module), 182–187

SCons.PathList (module), 188
SCons.PathList.node_conv (function),

188
SCons.PathList.PathList (function), 188

SCons.Platform (package), 189–192
SCons.Platform.aix (module), 193
SCons.Platform.cygwin (module), 194
SCons.Platform.darwin (module), 195
SCons.Platform.DefaultToolList (func-

tion), 190
SCons.Platform.hpux (module), 196
SCons.Platform.irix (module), 197
SCons.Platform.mingw (module), 198
SCons.Platform.os2 (module), 199
SCons.Platform.Platform (function), 190
SCons.Platform.platform_default (func-

tion), 190
SCons.Platform.platform_module (func-

tion), 190
SCons.Platform.PlatformSpec (class), 190–

191
SCons.Platform.posix (module), 200
SCons.Platform.sunos (module), 201
SCons.Platform.TempFileMunge (class),

191–192
SCons.Platform.virtualenv (module), 202–

448

INDEX INDEX

203
SCons.Platform.win32 (module), 204–207

SCons.Scanner (module)
SCons.Scanner.Base (class), 232–235
SCons.Scanner.Classic (class), 242–245
SCons.Scanner.ClassicCPP (class), 245–

246
SCons.Scanner.Current (class), 239–242
SCons.Scanner.FindPathDirs (class), 232
SCons.Scanner.Scanner (function), 231
SCons.Scanner.Selector (class), 235–239

SCons.Scanner (package), 231–246
SCons.Scanner.C (module), 247–249
SCons.Scanner.D (module), 250–253
SCons.Scanner.Dir (module), 254–255
SCons.Scanner.Fortran (module), 256–

260
SCons.Scanner.IDL (module), 261
SCons.Scanner.LaTeX (module), 262–268
SCons.Scanner.Prog (module), 269
SCons.Scanner.RC (module), 270
SCons.Scanner.SWIG (module), 271

SCons.SConf (module), 208–223
SCons.SConf.CheckCC (function), 209
SCons.SConf.CheckCHeader (function),

209
SCons.SConf.CheckContext (class), 221–

223
SCons.SConf.CheckCXX (function), 209
SCons.SConf.CheckCXXHeader (func-

tion), 209
SCons.SConf.CheckDeclaration (function),

209
SCons.SConf.CheckFunc (function), 208
SCons.SConf.CheckHeader (function), 209
SCons.SConf.CheckLib (function), 209
SCons.SConf.CheckLibWithHeader (func-

tion), 209
SCons.SConf.CheckProg (function), 210
SCons.SConf.CheckSHCC (function), 209
SCons.SConf.CheckSHCXX (function),

209
SCons.SConf.CheckType (function), 208
SCons.SConf.CheckTypeSize (function),

208
SCons.SConf.ConfigureCacheError (class),

213–214
SCons.SConf.ConfigureDryRunError (class),

212–213
SCons.SConf.CreateConfigHBuilder (func-

tion), 208
SCons.SConf.createIncludesFromHeaders

(function), 209
SCons.SConf.NeedConfigHBuilder (func-

tion), 208
SCons.SConf.SConf (function), 208
SCons.SConf.SConfBase (class), 218–221
SCons.SConf.SConfBuildInfo (class), 214–

216
SCons.SConf.SConfBuildTask (class), 217–

218
SCons.SConf.SConfError (class), 211–

212
SCons.SConf.SConfWarning (class), 210–

211
SCons.SConf.SetBuildType (function),

208
SCons.SConf.SetCacheMode (function),

208
SCons.SConf.SetProgressDisplay (func-

tion), 208
SCons.SConf.Streamer (class), 216–217

SCons.SConsign (module), 224–230
SCons.SConsign.Base (class), 226–227
SCons.SConsign.corrupt_dblite_warning

(function), 224
SCons.SConsign.DB (class), 227–228, 230
SCons.SConsign.Dir (class), 228
SCons.SConsign.DirFile (class), 228–230
SCons.SConsign.File (function), 224
SCons.SConsign.Get_DataBase (func-

tion), 224
SCons.SConsign.Reset (function), 224
SCons.SConsign.SConsignEntry (class),

224–226
SCons.SConsign.write (function), 224

SCons.Script (module)
SCons.Script.HelpFunction (function), 272

449

INDEX INDEX

SCons.Script.set_missing_sconscript_error
(function), 272

SCons.Script.TargetList (class), 279–280
SCons.Script.Variables (function), 272

SCons.Script (package), 272–280
SCons.Script.Interactive (module), 281–

283
SCons.Script.Main (module), 284–298
SCons.Script.SConscript’ (module), 299–

315
SCons.Subst (module), 316–326
SCons.Taskmaster (module), 327–337

SCons.Taskmaster.AlwaysTask (class),
333–334

SCons.Taskmaster.dump_stats (function),
327

SCons.Taskmaster.find_cycle (function),
327

SCons.Taskmaster.OutOfDateTask (class),
334–335

SCons.Taskmaster.Stats (class), 328–329
SCons.Taskmaster.Task (class), 329–333
SCons.Taskmaster.Taskmaster (class), 335–

337
SCons.Util (module), 338–365
SCons.Variables (package), 366–369

SCons.Variables.BoolVariable’ (module),
370

SCons.Variables.EnumVariable’ (module),
371

SCons.Variables.ListVariable’ (module),
372

SCons.Variables.PackageVariable’ (mod-
ule), 373

SCons.Variables.PathVariable’ (module),
374–375

SCons.Variables.Variables (class), 366–
369

SCons.Warnings (module), 376–412
SCons.Action.Action (function), 6
SCons.Action.ActionBase (class), 6–7

SCons.Action.ActionBase.__add__ (method),
7

SCons.Action.ActionBase.__eq__ (method),

7
SCons.Action.ActionBase.__radd__ (method),

7
SCons.Action.ActionBase.genstring (method),

7
SCons.Action.ActionBase.get_contents (method),

7
SCons.Action.ActionBase.get_targets (method),

7
SCons.Action.ActionBase.get_varlist (method),

7
SCons.Action.ActionBase.no_batch_key (method),

7
SCons.Action.ActionBase.presub_lines (method),

7
SCons.Action.ActionCaller (class), 16–17

SCons.Action.ActionCaller.__call__ (method),
16

SCons.Action.ActionCaller.get_contents (method),
16

SCons.Action.ActionCaller.strfunction (method),
16

SCons.Action.ActionCaller.subst (method),
16

SCons.Action.ActionCaller.subst_args (method),
16

SCons.Action.ActionCaller.subst_kw (method),
16

SCons.Action.ActionFactory (class), 17–18
SCons.Action.ActionFactory.__call__ (method),

17
SCons.Action.CommandAction (class), 7–9

SCons.Action.CommandAction.execute (method),
8

SCons.Action.CommandAction.get_implicit_deps
(method), 9

SCons.Action.CommandAction.get_presig
(method), 8

SCons.Action.CommandAction.process (method),
8

SCons.Action.CommandAction.strfunction
(method), 8

SCons.Action.CommandGeneratorAction (class),
9–11

450

INDEX INDEX

SCons.Action.CommandGeneratorAction.__call__
(method), 10

SCons.Action.CommandGeneratorAction.get_implicit_deps
(method), 10

SCons.Action.CommandGeneratorAction.get_presig
(method), 10

SCons.Action.default_exitstatfunc (function),
6

SCons.Action.FunctionAction (class), 13–14
SCons.Action.FunctionAction.execute (method),

13
SCons.Action.FunctionAction.function_name

(method), 13
SCons.Action.FunctionAction.get_implicit_deps

(method), 14
SCons.Action.FunctionAction.get_presig (method),

13
SCons.Action.FunctionAction.strfunction

(method), 13
SCons.Action.get_default_ENV (function), 6
SCons.Action.LazyAction (class), 11–13

SCons.Action.LazyAction.get_parent_class
(method), 12

SCons.Action.ListAction (class), 14–16
SCons.Action.ListAction.__call__ (method),

15
SCons.Action.ListAction.get_implicit_deps

(method), 15
SCons.Action.ListAction.get_presig (method),

15
SCons.Action.rfile (function), 6
SCons.CacheDir.CacheDir (class), 32–34

SCons.CacheDir.CacheDir.CacheDebug (method),
33

SCons.CacheDir.CacheDir.cachepath (method),
33

SCons.CacheDir.CacheDir.is_enabled (method),
33

SCons.CacheDir.CacheDir.is_readonly (method),
33

SCons.CacheDir.CacheDir.push (method),
33

SCons.CacheDir.CacheDir.push_if_forced
(method), 33

SCons.CacheDir.CacheDir.retrieve (method),
33

SCons.CacheDir.CachePushFunc (function), 32
SCons.CacheDir.CacheRetrieveFunc (function),

32
SCons.CacheDir.CacheRetrieveString (function),

32
SCons.Conftest.CheckBuilder (function), 35
SCons.Conftest.CheckCC (function), 35
SCons.Conftest.CheckCXX (function), 35
SCons.Conftest.CheckDeclaration (function),

37
SCons.Conftest.CheckFunc (function), 36
SCons.Conftest.CheckHeader (function), 36
SCons.Conftest.CheckLib (function), 38
SCons.Conftest.CheckProg (function), 38
SCons.Conftest.CheckSHCC (function), 35
SCons.Conftest.CheckSHCXX (function), 36
SCons.Conftest.CheckType (function), 36
SCons.Conftest.CheckTypeSize (function), 37
SCons.cpp.CPP_to_Python (function), 420
SCons.cpp.CPP_to_Python_Ops_Sub (func-

tion), 420
SCons.cpp.DumbPreProcessor (class), 426–427
SCons.cpp.FunctionEvaluator (class), 420–421

SCons.cpp.FunctionEvaluator.__call__ (method),
421

SCons.cpp.PreProcessor (class), 421–426
SCons.cpp.PreProcessor.__call__ (method),

422
SCons.cpp.PreProcessor.all_include (method),

422
SCons.cpp.PreProcessor.do_define (method),

422
SCons.cpp.PreProcessor.do_elif (method),

422
SCons.cpp.PreProcessor.do_else (method),

422
SCons.cpp.PreProcessor.do_endif (method),

422
SCons.cpp.PreProcessor.do_if (method),

422
SCons.cpp.PreProcessor.do_ifdef (method),

423

451

INDEX INDEX

SCons.cpp.PreProcessor.do_ifndef (method),
423

SCons.cpp.PreProcessor.do_import (method),
423

SCons.cpp.PreProcessor.do_include (method),
423

SCons.cpp.PreProcessor.do_nothing (method),
423

SCons.cpp.PreProcessor.do_undef (method),
423

SCons.cpp.PreProcessor.eval_expression (method),
423

SCons.cpp.PreProcessor.finalize_result (method),
424

SCons.cpp.PreProcessor.find_include_file
(method), 424

SCons.cpp.PreProcessor.initialize_result (method),
424

SCons.cpp.PreProcessor.process_contents
(method), 424

SCons.cpp.PreProcessor.read_file (method),
424

SCons.cpp.PreProcessor.resolve_include (method),
424

SCons.cpp.PreProcessor.restore (method),
424

SCons.cpp.PreProcessor.save (method), 424
SCons.cpp.PreProcessor.scons_current_file

(method), 425
SCons.cpp.PreProcessor.start_handling_includes

(method), 425
SCons.cpp.PreProcessor.stop_handling_includes

(method), 425
SCons.cpp.PreProcessor.tupleize (method),

425
SCons.Defaults.chmod_func (function), 42
SCons.Defaults.chmod_strfunc (function), 42
SCons.Defaults.copy_func (function), 42
SCons.Defaults.DefaultEnvironment (function),

42
SCons.Defaults.delete_func (function), 43
SCons.Defaults.delete_strfunc (function), 43
SCons.Defaults.get_paths_str (function), 42
SCons.Defaults.mkdir_func (function), 43

SCons.Defaults.move_func (function), 43
SCons.Defaults.NullCmdGenerator (class), 44–

45
SCons.Defaults.NullCmdGenerator.__call__

(method), 45
SCons.Defaults.processDefines (function), 43
SCons.Defaults.SharedFlagChecker (function),

42
SCons.Defaults.SharedObjectEmitter (function),

42
SCons.Defaults.StaticObjectEmitter (function),

42
SCons.Defaults.touch_func (function), 43
SCons.Defaults.Variable_Method_Caller (class),

45–46
SCons.Defaults.Variable_Method_Caller.__call__

(method), 45
SCons.Errors.BuildError (class), 68–70
SCons.Errors.convert_to_BuildError (function),

68
SCons.Errors.ExplicitExit (class), 74–75
SCons.Errors.InternalError (class), 70–71
SCons.Errors.MSVCError (class), 73–74
SCons.Errors.SConsEnvironmentError (class),

72–73
SCons.Errors.StopError (class), 71–72
SCons.Errors.UserError (class), 71
SCons.Node.BuildInfoBase (class), 107–108

SCons.Node.BuildInfoBase.__getstate__
(method), 107

SCons.Node.BuildInfoBase.__setstate__
(method), 107

SCons.Node.BuildInfoBase.merge (method),
107

SCons.Node.changed_since_last_build_alias
(function), 104

SCons.Node.changed_since_last_build_entry
(function), 104

SCons.Node.changed_since_last_build_node
(function), 103

SCons.Node.changed_since_last_build_python
(function), 104

SCons.Node.changed_since_last_build_state_changed
(function), 104

452

INDEX INDEX

SCons.Node.classname (function), 102
SCons.Node.decide_source (function), 104
SCons.Node.decide_target (function), 104
SCons.Node.do_nothing (function), 104
SCons.Node.do_nothing_node (function), 102
SCons.Node.exists_always (function), 103
SCons.Node.exists_base (function), 103
SCons.Node.exists_entry (function), 103
SCons.Node.exists_file (function), 103
SCons.Node.exists_none (function), 102
SCons.Node.get_children (function), 104
SCons.Node.get_contents_dir (function), 103
SCons.Node.get_contents_entry (function), 103
SCons.Node.get_contents_file (function), 103
SCons.Node.get_contents_none (function), 103
SCons.Node.ignore_cycle (function), 104
SCons.Node.is_derived_node (function), 102
SCons.Node.is_derived_none (function), 102
SCons.Node.Node (class), 108–122

SCons.Node.Node.add_dependency (method),
109

SCons.Node.Node.add_ignore (method),
109

SCons.Node.Node.add_prerequisite (method),
109

SCons.Node.Node.add_source (method),
109

SCons.Node.Node.add_to_implicit (method),
109

SCons.Node.Node.add_to_waiting_parents
(method), 109

SCons.Node.Node.add_to_waiting_s_e (method),
110

SCons.Node.Node.add_wkid (method), 110
SCons.Node.Node.all_children (method),

110
SCons.Node.Node.alter_targets (method),

110
SCons.Node.Node.build (method), 110
SCons.Node.Node.builder_set (method),

110
SCons.Node.Node.built (method), 110
SCons.Node.Node.changed (method), 111
SCons.Node.Node.children (method), 111

SCons.Node.Node.children_are_up_to_date
(method), 111

SCons.Node.Node.clear (method), 111
SCons.Node.Node.clear_memoized_values

(method), 112
SCons.Node.Node.Decider (method), 109
SCons.Node.Node.del_binfo (method), 112
SCons.Node.Node.disambiguate (method),

112
SCons.Node.Node.env_set (method), 112
SCons.Node.Node.executor_cleanup (method),

112
SCons.Node.Node.exists (method), 112
SCons.Node.Node.explain (method), 112
SCons.Node.Node.for_signature (method),

112
SCons.Node.Node.get_abspath (method),

112
SCons.Node.Node.get_binfo (method), 113
SCons.Node.Node.get_build_env (method),

113
SCons.Node.Node.get_build_scanner_path

(method), 113
SCons.Node.Node.get_builder (method),

113
SCons.Node.Node.get_cachedir_csig (method),

113
SCons.Node.Node.get_contents (method),

113
SCons.Node.Node.get_csig (method), 113
SCons.Node.Node.get_env (method), 113
SCons.Node.Node.get_env_scanner (method),

114
SCons.Node.Node.get_executor (method),

114
SCons.Node.Node.get_found_includes (method),

114
SCons.Node.Node.get_implicit_deps (method),

114
SCons.Node.Node.get_ninfo (method), 114
SCons.Node.Node.get_source_scanner (method),

114
SCons.Node.Node.get_state (method), 114
SCons.Node.Node.get_stored_implicit (method),

453

INDEX INDEX

115
SCons.Node.Node.get_stored_info (method),

115
SCons.Node.Node.get_string (method), 115
SCons.Node.Node.get_subst_proxy (method),

115
SCons.Node.Node.get_suffix (method), 115
SCons.Node.Node.get_target_scanner (method),

115
SCons.Node.Node.GetTag (method), 109
SCons.Node.Node.has_builder (method),

115, 117
SCons.Node.Node.has_explicit_builder (method),

116
SCons.Node.Node.is_derived (method), 116
SCons.Node.Node.is_literal (method), 116
SCons.Node.Node.is_up_to_date (method),

116
SCons.Node.Node.make_ready (method),

116
SCons.Node.Node.missing (method), 117
SCons.Node.Node.new_binfo (method), 117
SCons.Node.Node.new_ninfo (method), 117
SCons.Node.Node.postprocess (method), 117
SCons.Node.Node.prepare (method), 117
SCons.Node.Node.push_to_cache (method),

118
SCons.Node.Node.release_target_info (method),

118
SCons.Node.Node.remove (method), 118
SCons.Node.Node.render_include_tree (method),

118
SCons.Node.Node.reset_executor (method),

119
SCons.Node.Node.retrieve_from_cache (method),

119
SCons.Node.Node.rexists (method), 119
SCons.Node.Node.scan (method), 119
SCons.Node.Node.scanner_key (method),

119
SCons.Node.Node.select_scanner (method),

119
SCons.Node.Node.set_always_build (method),

119

SCons.Node.Node.set_executor (method),
120

SCons.Node.Node.set_explicit (method),
120

SCons.Node.Node.set_nocache (method),
120

SCons.Node.Node.set_noclean (method),
120

SCons.Node.Node.set_precious (method),
120

SCons.Node.Node.set_pseudo (method), 120
SCons.Node.Node.set_specific_source (method),

120
SCons.Node.Node.set_state (method), 120
SCons.Node.Node.Tag (method), 109
SCons.Node.Node.visited (method), 120

SCons.Node.NodeInfoBase (class), 105–107
SCons.Node.NodeInfoBase.__getstate__

(method), 106
SCons.Node.NodeInfoBase.__setstate__

(method), 106
SCons.Node.NodeInfoBase.convert (method),

106
SCons.Node.NodeInfoBase.format (method),

106
SCons.Node.NodeInfoBase.merge (method),

106
SCons.Node.NodeInfoBase.update (method),

106
SCons.Node.NodeList (class), 122–123
SCons.Node.rexists_base (function), 103
SCons.Node.rexists_node (function), 103
SCons.Node.rexists_none (function), 103
SCons.Node.store_info_file (function), 104
SCons.Node.store_info_pass (function), 104
SCons.Node.target_from_source_base (func-

tion), 103
SCons.Node.target_from_source_none (func-

tion), 103
SCons.Node.Walker (class), 123–124

SCons.Node.Walker.get_next (method), 124
SCons.Node.Walker.is_done (method), 124

SCons.Scanner.Dir.DirEntryScanner (function),
254

454

INDEX INDEX

SCons.Scanner.Dir.DirScanner (function), 254
SCons.Scanner.Dir.do_not_scan (function), 254
SCons.Scanner.Dir.only_dirs (function), 254
SCons.Scanner.Dir.scan_in_memory (function),

254
SCons.Scanner.Dir.scan_on_disk (function),

254
SCons.Script.Interactive.interact (function), 281
SCons.Script.Interactive.SConsInteractiveCmd

(class), 281–283
SCons.Script.Interactive.SConsInteractiveCmd.do_build

(method), 282
SCons.Script.Interactive.SConsInteractiveCmd.do_clean

(method), 282
SCons.Script.Interactive.SConsInteractiveCmd.do_EOF

(method), 282
SCons.Script.Interactive.SConsInteractiveCmd.do_exit

(method), 282
SCons.Script.Interactive.SConsInteractiveCmd.do_shell

(method), 283
SCons.Script.Interactive.SConsInteractiveCmd.do_version

(method), 283
SCons.Subst.CmdStringHolder (class), 320–

322
SCons.Subst.CmdStringHolder.escape (method),

321
SCons.Subst.CmdStringHolder.is_literal (method),

321
SCons.Subst.escape_list (function), 316
SCons.Subst.Literal (class), 318–319

SCons.Subst.Literal.__eq__ (method), 318
SCons.Subst.Literal.__neq__ (method),

318
SCons.Subst.Literal.escape (method), 318
SCons.Subst.Literal.for_signature (method),

318
SCons.Subst.Literal.is_literal (method), 318

SCons.Subst.NLWrapper (class), 322
SCons.Subst.NullNodeList (class), 325–326
SCons.Subst.quote_spaces (function), 316
SCons.Subst.raise_exception (function), 316
SCons.Subst.scons_subst (function), 316
SCons.Subst.scons_subst_list (function), 317
SCons.Subst.scons_subst_once (function), 317

SCons.Subst.SetAllowableExceptions (function),
316

SCons.Subst.SpecialAttrWrapper (class), 319–
320

SCons.Subst.SpecialAttrWrapper.escape (method),
319

SCons.Subst.SpecialAttrWrapper.for_signature
(method), 319

SCons.Subst.SpecialAttrWrapper.is_literal
(method), 319

SCons.Subst.subst_dict (function), 316
SCons.Subst.Target_or_Source (class), 324–

325
SCons.Subst.Target_or_Source.__getattr__

(method), 325
SCons.Subst.Targets_or_Sources (class), 322–

324
SCons.Subst.Targets_or_Sources.__getattr__

(method), 323
SCons.Util._NoError (class), 352
SCons.Util.AddMethod (function), 344
SCons.Util.AddPathIfNotExists (function), 342
SCons.Util.adjustixes (function), 343
SCons.Util.AppendPath (function), 342
SCons.Util.case_sensitive_suffixes (function),

343
SCons.Util.CLVar (class), 354–356
SCons.Util.cmp (function), 345
SCons.Util.containsAll (function), 338
SCons.Util.containsAny (function), 338
SCons.Util.containsOnly (function), 338
SCons.Util.Delegate (class), 351–352

SCons.Util.Delegate.__get__ (method),
351

SCons.Util.dictify (function), 338
SCons.Util.DisplayEngine (class), 349

SCons.Util.DisplayEngine.__call__ (method),
349

SCons.Util.DisplayEngine.set_mode (method),
349

SCons.Util.do_flatten (function), 340
SCons.Util.flatten (function), 340
SCons.Util.flatten_sequence (function), 340
SCons.Util.get_env_bool (function), 345

455

INDEX INDEX

SCons.Util.get_environment_var (function),
338

SCons.Util.get_native_path (function), 343
SCons.Util.get_os_env_bool (function), 346
SCons.Util.IDX (function), 339
SCons.Util.is_Dict (function), 339
SCons.Util.is_List (function), 339
SCons.Util.is_Scalar (function), 340
SCons.Util.is_Sequence (function), 340
SCons.Util.is_String (function), 340
SCons.Util.is_Tuple (function), 340
SCons.Util.logical_lines (function), 344
SCons.Util.LogicalLines (class), 358

SCons.Util.LogicalLines.readlines (method),
358

SCons.Util.make_path_relative (function), 344
SCons.Util.MD5collect (function), 345
SCons.Util.MD5filesignature (function), 344
SCons.Util.MD5signature (function), 344
SCons.Util.NodeList (class), 347–349

SCons.Util.NodeList.__bool__ (method),
347

SCons.Util.NodeList.__call__ (method),
348

SCons.Util.NodeList.__getattr__ (method),
348

SCons.Util.NodeList.__nonzero__ (method),
347

SCons.Util.Null (class), 363–364
SCons.Util.Null.__bool__ (method), 364
SCons.Util.Null.__call__ (method), 364
SCons.Util.Null.__getattr__ (method), 364
SCons.Util.Null.__nonzero__ (method),

364
SCons.Util.NullSeq (class), 364–365

SCons.Util.NullSeq.__delitem__ (method),
365

SCons.Util.NullSeq.__getitem__ (method),
365

SCons.Util.NullSeq.__iter__ (method),
365

SCons.Util.NullSeq.__len__ (method), 365
SCons.Util.NullSeq.__setitem__ (method),

365

SCons.Util.PlainWindowsError (class), 352–
354

SCons.Util.PrependPath (function), 341
SCons.Util.print_tree (function), 339
SCons.Util.Proxy (class), 349–351

SCons.Util.Proxy.__eq__ (method), 351
SCons.Util.Proxy.__getattr__ (method),

350
SCons.Util.Proxy.get (method), 350

SCons.Util.RegGetValue (function), 341
SCons.Util.RegOpenKeyEx (function), 341
SCons.Util.RenameFunction (function), 344
SCons.Util.render_tree (function), 339
SCons.Util.rightmost_separator (function), 338
SCons.Util.Selector (class), 356–358

SCons.Util.Selector.__call__ (method),
357

SCons.Util.semi_deepcopy (function), 341
SCons.Util.semi_deepcopy_dict (function), 341
SCons.Util.silent_intern (function), 345
SCons.Util.Split (function), 343
SCons.Util.splitext (function), 338
SCons.Util.to_bytes (function), 345
SCons.Util.to_str (function), 345
SCons.Util.to_String (function), 341
SCons.Util.to_String_for_signature (function),

341
SCons.Util.to_String_for_subst (function), 341
SCons.Util.Unbuffered (class), 362–363

SCons.Util.Unbuffered.__getattr__ (method),
363

SCons.Util.Unbuffered.write (method), 363
SCons.Util.unique (function), 343
SCons.Util.UniqueList (class), 358–362
SCons.Util.uniquer (function), 343
SCons.Util.uniquer_hashables (function), 343
SCons.Util.updrive (function), 338
SCons.Util.WhereIs (function), 341
SCons.Warnings.CacheVersionWarning (class),

380–381
SCons.Warnings.CacheWriteErrorWarning (class),

381–382
SCons.Warnings.CorruptSConsignWarning (class),

382–383

456

INDEX INDEX

SCons.Warnings.DependencyWarning (class),
383–384

SCons.Warnings.DeprecatedBuildDirWarning
(class), 402–403

SCons.Warnings.DeprecatedBuilderKeywordsWarning
(class), 410–411

SCons.Warnings.DeprecatedCopyWarning (class),
404–405

SCons.Warnings.DeprecatedDebugOptionsWarning
(class), 408–409

SCons.Warnings.DeprecatedMissingSConscriptWarning
(class), 411–412

SCons.Warnings.DeprecatedOptionsWarning (class),
405–406

SCons.Warnings.DeprecatedSigModuleWarning
(class), 409–410

SCons.Warnings.DeprecatedSourceCodeWarning
(class), 401–402

SCons.Warnings.DeprecatedSourceSignaturesWarning
(class), 406–407

SCons.Warnings.DeprecatedTargetSignaturesWarning
(class), 407–408

SCons.Warnings.DeprecatedWarning (class),
398–399

SCons.Warnings.DevelopmentVersionWarning
(class), 384

SCons.Warnings.DuplicateEnvironmentWarning
(class), 384–385

SCons.Warnings.enableWarningClass (function),
376

SCons.Warnings.FortranCxxMixWarning (class),
396–397

SCons.Warnings.FutureDeprecatedWarning (class),
397–398

SCons.Warnings.FutureReservedVariableWarning
(class), 385–386

SCons.Warnings.LinkWarning (class), 386–387
SCons.Warnings.MandatoryDeprecatedWarning

(class), 399–400
SCons.Warnings.MisleadingKeywordsWarning

(class), 387–388
SCons.Warnings.MissingSConscriptWarning (class),

388–389
SCons.Warnings.NoObjectCountWarning (class),

389–390
SCons.Warnings.NoParallelSupportWarning (class),

390–391
SCons.Warnings.process_warn_strings (func-

tion), 376
SCons.Warnings.PythonVersionWarning (class),

400–401
SCons.Warnings.ReservedVariableWarning (class),

391–392
SCons.Warnings.StackSizeWarning (class), 392–

393
SCons.Warnings.suppressWarningClass (func-

tion), 376
SCons.Warnings.TargetNotBuiltWarning (class),

379–380
SCons.Warnings.TaskmasterNeedsExecuteWarning

(class), 403–404
SCons.Warnings.VisualCMissingWarning (class),

393–394
SCons.Warnings.VisualStudioMissingWarning

(class), 395–396
SCons.Warnings.VisualVersionMismatch (class),

394–395
SCons.Warnings.warn (function), 376
SCons.Warnings.Warning (class), 377–378
SCons.Warnings.warningAsException (func-

tion), 376
SCons.Warnings.WarningOnByDefault (class),

378–379

457

	Contents
	Package SCons
	Modules
	Variables

	Module SCons.Action
	Functions
	Variables
	Class ActionBase
	Methods
	Properties

	Class CommandAction
	Methods
	Properties

	Class CommandGeneratorAction
	Methods
	Properties

	Class LazyAction
	Methods
	Properties

	Class FunctionAction
	Methods
	Properties

	Class ListAction
	Methods
	Properties

	Class ActionCaller
	Methods
	Properties

	Class ActionFactory
	Methods
	Properties

	Module SCons.Builder
	Functions
	Variables
	Class DictCmdGenerator
	Methods
	Properties
	Class Variables

	Class CallableSelector
	Methods
	Properties
	Class Variables

	Class DictEmitter
	Methods
	Properties
	Class Variables

	Class ListEmitter
	Methods
	Properties
	Class Variables

	Class OverrideWarner
	Methods
	Class Variables

	Class EmitterProxy
	Methods
	Properties

	Class BuilderBase
	Methods
	Properties

	Class CompositeBuilder
	Methods
	Properties

	Module SCons.CacheDir
	Functions
	Variables
	Class CacheDir
	Methods
	Properties

	Module SCons.Conftest
	Functions
	Variables

	Module SCons.Debug
	Functions
	Variables

	Module SCons.Defaults
	Functions
	Variables
	Class NullCmdGenerator
	Methods
	Properties

	Class Variable_Method_Caller
	Methods
	Properties

	Module SCons.Environment
	Functions
	Variables
	Class MethodWrapper
	Methods
	Properties

	Class BuilderWrapper
	Methods
	Properties

	Class BuilderDict
	Methods
	Class Variables

	Class SubstitutionEnvironment
	Methods
	Properties

	Class Base
	Methods
	Properties

	Class OverrideEnvironment
	Methods
	Properties

	Module SCons.Errors
	Functions
	Variables
	Class BuildError
	Methods
	Properties

	Class InternalError
	Methods
	Properties

	Class UserError
	Methods
	Properties

	Class StopError
	Methods
	Properties

	Class SConsEnvironmentError
	Methods
	Properties

	Class MSVCError
	Methods
	Properties

	Class ExplicitExit
	Methods
	Properties

	Module SCons.Executor
	Functions
	Variables
	Class Batch
	Methods
	Properties

	Class TSList
	Methods
	Properties
	Class Variables

	Class TSObject
	Methods
	Properties

	Class Executor
	Methods
	Properties

	Class NullEnvironment
	Methods
	Properties

	Class Null
	Methods
	Properties

	Module SCons.Job
	Variables
	Class InterruptState
	Methods
	Properties

	Class Jobs
	Methods
	Properties

	Class Serial
	Methods
	Properties

	Class Worker
	Methods
	Properties

	Class ThreadPool
	Methods
	Properties

	Class Parallel
	Methods
	Properties

	Module SCons.Memoize
	Functions
	Variables
	Class Counter
	Methods
	Properties

	Class CountValue
	Methods
	Properties

	Class CountDict
	Methods
	Properties

	Package SCons.Node
	Modules
	Functions
	Variables
	Class NodeInfoBase
	Methods
	Properties
	Class Variables

	Class BuildInfoBase
	Methods
	Properties
	Class Variables

	Class Node
	Methods
	Properties

	Class NodeList
	Methods
	Properties
	Class Variables

	Class Walker
	Methods
	Properties

	Module SCons.Node.Alias
	Variables
	Class AliasNameSpace
	Methods
	Class Variables

	Class AliasNodeInfo
	Methods
	Properties
	Class Variables

	Class AliasBuildInfo
	Methods
	Properties
	Class Variables

	Class Alias
	Methods
	Properties

	Module SCons.Node.FS
	Functions
	Variables
	Class FileBuildInfoFileToCsigMappingError
	Methods
	Properties

	Class EntryProxyAttributeError
	Methods
	Properties

	Class DiskChecker
	Methods
	Properties

	Class EntryProxy
	Methods
	Properties
	Class Variables

	Class Base
	Methods
	Properties
	Instance Variables

	Class Entry
	Methods
	Properties
	Instance Variables

	Class LocalFS
	Methods
	Properties

	Class FS
	Methods
	Properties

	Class DirNodeInfo
	Methods
	Properties
	Class Variables

	Class DirBuildInfo
	Methods
	Properties
	Class Variables

	Class Dir
	Methods
	Properties
	Instance Variables

	Class RootDir
	Methods
	Properties
	Instance Variables

	Class FileNodeInfo
	Methods
	Properties
	Class Variables

	Class FileBuildInfo
	Methods
	Properties
	Class Variables

	Class File
	Methods
	Properties
	Class Variables
	Instance Variables

	Class FileFinder
	Methods
	Properties

	Module SCons.Node.Python
	Variables
	Class ValueNodeInfo
	Methods
	Properties
	Class Variables

	Class ValueBuildInfo
	Methods
	Properties
	Class Variables

	Class Value
	Methods
	Properties

	Module SCons.PathList
	Functions
	Variables

	Package SCons.Platform
	Modules
	Functions
	Variables
	Class PlatformSpec
	Methods
	Properties

	Class TempFileMunge
	Methods
	Properties

	Module SCons.Platform.aix
	Functions
	Variables

	Module SCons.Platform.cygwin
	Functions
	Variables

	Module SCons.Platform.darwin
	Functions
	Variables

	Module SCons.Platform.hpux
	Functions
	Variables

	Module SCons.Platform.irix
	Functions
	Variables

	Module SCons.Platform.mingw
	Variables

	Module SCons.Platform.os2
	Functions
	Variables

	Module SCons.Platform.posix
	Functions
	Variables

	Module SCons.Platform.sunos
	Functions
	Variables

	Module SCons.Platform.virtualenv
	Functions
	Variables

	Module SCons.Platform.win32
	Functions
	Variables
	Class _scons_file
	Methods
	Properties

	Class ArchDefinition
	Methods
	Properties

	Module SCons.SConf
	Functions
	Variables
	Class SConfWarning
	Methods
	Properties

	Class SConfError
	Methods
	Properties

	Class ConfigureDryRunError
	Methods
	Properties

	Class ConfigureCacheError
	Methods
	Properties

	Class SConfBuildInfo
	Methods
	Properties
	Class Variables

	Class Streamer
	Methods
	Properties

	Class SConfBuildTask
	Methods
	Properties

	Class SConfBase
	Methods
	Properties

	Class CheckContext
	Methods
	Properties

	Module SCons.SConsign
	Functions
	Variables
	Class SConsignEntry
	Methods
	Properties
	Class Variables

	Class Base
	Methods
	Properties

	Class DB
	Methods
	Properties

	Class Dir
	Methods
	Properties

	Class DirFile
	Methods
	Properties

	Class DB
	Methods
	Properties

	Package SCons.Scanner
	Modules
	Functions
	Variables
	Class FindPathDirs
	Methods
	Properties

	Class Base
	Methods
	Properties

	Class Selector
	Methods
	Properties

	Class Current
	Methods
	Properties

	Class Classic
	Methods
	Properties

	Class ClassicCPP
	Methods
	Properties

	Module SCons.Scanner.C
	Functions
	Variables
	Class SConsCPPScanner
	Methods
	Properties

	Class SConsCPPScannerWrapper
	Methods
	Properties

	Module SCons.Scanner.D
	Functions
	Variables
	Class D
	Methods
	Properties

	Module SCons.Scanner.Dir
	Functions
	Variables

	Module SCons.Scanner.Fortran
	Functions
	Variables
	Class F90Scanner
	Methods
	Properties

	Module SCons.Scanner.IDL
	Functions
	Variables

	Module SCons.Scanner.LaTeX
	Functions
	Variables
	Class FindENVPathDirs
	Methods
	Properties

	Class LaTeX
	Methods
	Properties
	Class Variables

	Module SCons.Scanner.Prog
	Functions
	Variables

	Module SCons.Scanner.RC
	Functions
	Variables

	Module SCons.Scanner.SWIG
	Functions
	Variables

	Package SCons.Script
	Modules
	Functions
	Variables
	Class TargetList
	Methods
	Properties
	Class Variables

	Module SCons.Script.Interactive
	Functions
	Variables
	Class SConsInteractiveCmd
	Methods
	Class Variables

	Module SCons.Script.Main
	Functions
	Variables
	Class SConsPrintHelpException
	Methods
	Properties

	Class Progressor
	Methods
	Properties
	Class Variables

	Class BuildTask
	Methods
	Properties
	Class Variables

	Class CleanTask
	Methods
	Properties

	Class QuestionTask
	Methods
	Properties

	Class TreePrinter
	Methods
	Properties

	Class FakeOptionParser
	Methods
	Properties
	Class Variables

	Class Stats
	Methods
	Properties

	Class CountStats
	Methods
	Properties

	Class MemStats
	Methods
	Properties

	Module SCons.Script.SConscript'
	Functions
	Variables
	Class SConscriptReturn
	Methods
	Properties

	Class Frame
	Methods
	Properties

	Class Base
	Methods
	Properties

	Class DefaultEnvironmentCall
	Methods
	Properties

	Module SCons.Subst
	Functions
	Variables
	Class Literal
	Methods
	Properties

	Class SpecialAttrWrapper
	Methods
	Properties

	Class CmdStringHolder
	Methods
	Properties
	Class Variables

	Class NLWrapper
	Methods
	Properties

	Class Targets_or_Sources
	Methods
	Properties
	Class Variables

	Class Target_or_Source
	Methods
	Properties

	Class NullNodeList
	Methods
	Properties

	Module SCons.Taskmaster
	Functions
	Variables
	Class Stats
	Methods
	Properties

	Class Task
	Methods
	Properties

	Class AlwaysTask
	Methods
	Properties

	Class OutOfDateTask
	Methods
	Properties

	Class Taskmaster
	Methods
	Properties

	Module SCons.Util
	Functions
	Variables
	Class NodeList
	Methods
	Properties
	Class Variables

	Class DisplayEngine
	Methods
	Properties
	Class Variables

	Class Proxy
	Methods
	Properties

	Class Delegate
	Methods
	Properties

	Class _NoError
	Methods
	Properties

	Class PlainWindowsError
	Methods
	Properties

	Class PlainWindowsError
	Methods
	Properties

	Class CLVar
	Methods
	Properties
	Class Variables

	Class Selector
	Methods
	Properties
	Class Variables

	Class LogicalLines
	Methods
	Properties

	Class UniqueList
	Methods
	Properties
	Class Variables

	Class Unbuffered
	Methods
	Properties

	Class Null
	Methods
	Properties

	Class NullSeq
	Methods
	Properties

	Package SCons.Variables
	Modules
	Variables
	Class Variables
	Methods
	Properties
	Class Variables

	Module SCons.Variables.BoolVariable'
	Functions

	Module SCons.Variables.EnumVariable'
	Functions

	Module SCons.Variables.ListVariable'
	Functions

	Module SCons.Variables.PackageVariable'
	Functions

	Module SCons.Variables.PathVariable'
	Variables

	Module SCons.Warnings
	Functions
	Variables
	Class Warning
	Methods
	Properties

	Class WarningOnByDefault
	Methods
	Properties

	Class TargetNotBuiltWarning
	Methods
	Properties

	Class CacheVersionWarning
	Methods
	Properties

	Class CacheWriteErrorWarning
	Methods
	Properties

	Class CorruptSConsignWarning
	Methods
	Properties

	Class DependencyWarning
	Methods
	Properties

	Class DevelopmentVersionWarning
	Methods
	Properties

	Class DuplicateEnvironmentWarning
	Methods
	Properties

	Class FutureReservedVariableWarning
	Methods
	Properties

	Class LinkWarning
	Methods
	Properties

	Class MisleadingKeywordsWarning
	Methods
	Properties

	Class MissingSConscriptWarning
	Methods
	Properties

	Class NoObjectCountWarning
	Methods
	Properties

	Class NoParallelSupportWarning
	Methods
	Properties

	Class ReservedVariableWarning
	Methods
	Properties

	Class StackSizeWarning
	Methods
	Properties

	Class VisualCMissingWarning
	Methods
	Properties

	Class VisualVersionMismatch
	Methods
	Properties

	Class VisualStudioMissingWarning
	Methods
	Properties

	Class FortranCxxMixWarning
	Methods
	Properties

	Class FutureDeprecatedWarning
	Methods
	Properties

	Class DeprecatedWarning
	Methods
	Properties

	Class MandatoryDeprecatedWarning
	Methods
	Properties

	Class PythonVersionWarning
	Methods
	Properties

	Class DeprecatedSourceCodeWarning
	Methods
	Properties

	Class DeprecatedBuildDirWarning
	Methods
	Properties

	Class TaskmasterNeedsExecuteWarning
	Methods
	Properties

	Class DeprecatedCopyWarning
	Methods
	Properties

	Class DeprecatedOptionsWarning
	Methods
	Properties

	Class DeprecatedSourceSignaturesWarning
	Methods
	Properties

	Class DeprecatedTargetSignaturesWarning
	Methods
	Properties

	Class DeprecatedDebugOptionsWarning
	Methods
	Properties

	Class DeprecatedSigModuleWarning
	Methods
	Properties

	Class DeprecatedBuilderKeywordsWarning
	Methods
	Properties

	Class DeprecatedMissingSConscriptWarning
	Methods
	Properties

	Module SCons.__main__
	Package SCons.compat
	Modules
	Functions
	Variables
	Class SameFileError
	Methods
	Properties

	Class NoSlotsPyPy
	Methods
	Properties

	Module SCons.compat._scons_dbm
	Functions
	Variables
	Class error
	Methods
	Properties

	Module SCons.cpp
	Functions
	Variables
	Class FunctionEvaluator
	Methods
	Properties

	Class PreProcessor
	Methods
	Properties

	Class DumbPreProcessor
	Methods
	Properties

	Module SCons.dblite
	Functions
	Variables
	Class dblite
	Methods
	Properties

	Module SCons.exitfuncs
	Functions
	Variables

