SCons API Docs

version 4.10.1

SCons Project

November 16, 2025

Contents

SCons API Documentation

SCons package
Module contents
Submodules
SCons.Action module
SCons.Builder module
SCons.CacheDir module
SCons.Conftest module
SCons.Debug module
SCons.Defaults module
SCons.Environment module
SCons.Errors module
SCons.Executor module
SCons.Memoize module
SCons.PathList module
SCons.SConf module
SCons.SConsign module
SCons.Subst module
SCons.Warnings module
SCons.cpp module
SCons.dblite module

SCons.exitfuncs module

SConsDoc documentation module

SCons Documentation
Processing module

SConsExamples documentation
module

SCons Example Generator
SCons.compat package
Module contents
SCons.Node package
Module contents
Submodules
SCons.Node.Alias module
SCons.Node.FS module
SCons.Node.Python module
SCons.Platform package
Module contents
Submodules
SCons.Platform.aix module
SCons.Platform.cygwin module

SCons.Platform.darwin module

[I T T

13
14
17
18
20
36
37
40
42
42
48
49
53
56
59
62
62
62

66

66
68
68
69
69
77
77
83
128
134
134
135
135
136
136

SCons.Platform.hpux module
SCons.Platform.irix module
SCons.Platform.mingw module
SCons.Platform.os2 module
SCons.Platform.posix module

SCons.Platform.sunos module

SCons.Platform.virtualenv module

SCons.Platform.win32 module
SCons.Scanner package

Module contents

Submodules

SCons.Scanner.C module

SCons.Scanner.D module

SCons.Scanner.Dir module

SCons.Scanner.Fortran module

SCons.Scanner.IDL module

SCons.Scanner.Java module

SCons.Scanner.LaTeX module

SCons.Scanner.Prog module

SCons.Scanner.RC module

SCons.Scanner.SWIG module
SCons.Script package

Module contents

Submodules

SCons.Script.Interactive module

SCons.Script.Main module

SCons.Script.SConsOptions module

SCons.Script.SConscript module
SCons.Taskmaster package
Module contents
Submodules
SCons.Taskmaster.Job module
SCons.Tool package
Module contents
SCons.Util package
Module contents
Submodules
SCons.Util.envs module
SCons.Util.filelock module
SCons.Util.hashes module
SCons.Util.sctypes module
SCons.Util.stats module

SCons.Variables package

136
136
136
136
136
137
137
137
138
138
141
141
144
145
145
146
146
146
148
148
148
148
148
149
149
151
157
163
171
171
178
178
182
182
184
184
191
191
193
194
195
197
198

Module contents 198

Submodules 201
SCons.Variables.BoolVariable 201
module
SCons.Variables.EnumVariable 201
module
SCons.Variables.ListVariable 202
module
SCons.Variables.PackageVariable 204
module
SCons.Variables.PathVariable 205
module
Indices and Tables 206
Index 207

Python Module Index 269

SCons API Documentation

SCons APl Documentation

Attention!

This is the internal API Documentation for SCons. It is generated automatically from code docstrings using the
Sphinx documentation generator, and covers much more than the Public API. If you were looking for the Public
API - the interfaces that have long-term consistency guarantees, which you can reliably use when writing a build
system for a project - see the SCons Reference Manual. Note that what is Public API and what is not is often not
clearly delineated in these API Docs.

The target audience is developers contributing to SCons itself, and those writing external Tools, Builders, and
other related functionality for their project, who may need to reach beyond the Public API to accomplish their
tasks. Reaching into internals is fine, but comes with the usual risks of “things here could change, it's up to you
to keep your code working”.

Any missing/incomplete information is due to shortcomings in the docstrings in the code. Without being flippant,
filling in all the docstrings has not always been a priority across the two-plus decades SCons has been in
existence. Contributions improving the docstring front are welcome. It is often useful when making some larger
change to fill in docstrings and suitable type annotations in the code being modified, “leaving the world a better
place”, as it were.

Note that the Sphinx configuration is limited, still a work in progress. SCons classes which inherit from Python
standard library classes (e.g. UserLi st, UserDi ct, UserString), may be allowed to show inherited
mmembers; the Python standard library occasionally has little to no helpful docstring information. Inherited
interfaces from outside SCons code can be identified by the lack of a [sour ce] button to the right of the
method signature. Such classes should be evaluated case-by-case and possibly switched to not show inherited
members, depending on which way seems to provide the more useful result.

SCons package
Modul e contents
Submodules

SCons.Action module
SCons Actions.

Information about executing any sort of action that can build one or more target Nodes (typically files) from one or more
source Nodes (also typically files) given a specific Environment.

The base class here is ActionBase. The base class supplies just a few utility methods and some generic methods for
displaying information about an Action in response to the various commands that control printing.

A second-level base class is _ActionAction. This extends ActionBase by providing the methods that can be used to
show and perform an action. True Action objects will subclass _ActionAction; Action factory class objects will subclass
ActionBase.

The heavy lifting is handled by subclasses for the different types of actions we might execute:
CommandAction CommandGeneratorAction FunctionAction ListAction

The subclasses supply the following public interface methods used by other modules:

call(

https://www.sphinx-doc.org
https://scons.org/doc/production/HTML/scons-man.html

SCons API Documentation

THE public interface, “calling” an Action object executes the command or Python function. This also takes care
of printing a pre-substitution command for debugging purposes.

get_contents()

Fetches the “contents” of an Action for signature calculation plus the varlist. This is what gets checksummed to
decide if a target needs to be rebuilt because its action changed.

genstring()

Returns a string representation of the Action without command substitution, but allows a
CommandGeneratorAction to generate the right action based on the specified target, source and env. This is
used by the Signature subsystem (through the Executor) to obtain an (imprecise) representation of the Action
operation for informative purposes.

Subclasses also supply the following methods for internal use within this module:

str()
Returns a string approximation of the Action; no variable substitution is performed.
execute()

The internal method that really, truly, actually handles the execution of a command or Python function. This is
used so thatthe _ call__ () methods can take care of displaying any pre-substitution representations, and then
execute an action without worrying about the specific Actions involved.

get_presig()
Fetches the “contents” of a subclass for signature calculation. The varlist is added to this to produce the
Action’s contents. TODO(?): Change this to always return bytes and not str?

strfunction()

Returns a substituted string representation of the Action. This is used by the _ActionAction.show() command
to display the command/function that will be executed to generate the target(s).

There is a related independent ActionCaller class that looks like a regular Action, and which serves as a wrapper for
arbitrary functions that we want to let the user specify the arguments to now, but actually execute later (when an
out-of-date check determines that it's needed to be executed, for example). Objects of this class are returned by an
ActionFactory class that provides a __call__ () method as a convenient way for wrapping up the functions.
SCons.Action.Action (act , *ar gs, ** kw)

A factory for action objects.
cl ass SCons.Action.ActionBase

Bases: ABC

Base class for all types of action objects that can be held by other objects (Builders, Executors, etc.) This provides

the common methods for manipulating and combining those actions.

_abc_impl = <_abc._abc_data object>

batch_key (env, t ar get , sour ce)

genstring (t ar get , sour ce, env, execut or: Executor | None = None) - str

get_contents (t ar get , sour ce, env)

abst ract met hod get_implicit_deps (t ar get , sour ce, env, execut or: Executor | None = None)

abstract met hod get_presig (t ar get, sour ce, env, execut or: Executor | None = None)

get_targets (env, execut or: Executor | None)

Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.

get_varlist (t ar get, sour ce, env, executor: Executor | None = None)

no_batch_key (env, t ar get , sour ce)

presub_lines (env)
cl ass SCons.Action.ActionCaller (par ent , ar gs, kw)

Bases: object

A class for delaying calling an Action function with specific (positional and keyword) arguments until the Action is

actually executed.

This class looks to the rest of the world like a normal Action object, but what it's really doing is hanging on to the

arguments until we have a target, source and env to use for the expansion.

get_contents (t ar get , sour ce, env)

SCons API Documentation

strfunction (t ar get , sour ce, env)
subst (s, t ar get , sour ce, env)
subst_args (t ar get , sour ce, env)
subst_kw (t ar get , sour ce, env)
cl ass SCons.Action.ActionFactory (act f unc, strfunc, convert =<functi on Acti onFactory. <l anrbda>>)
Bases: object
A factory class that will wrap up an arbitrary function as an SCons-executable Action object.
The real heavy lifting here is done by the ActionCaller class. We just collect the (positional and keyword) arguments
that we're called with and give them to the ActionCaller object we create, so it can hang onto them until it needs
them.
cl ass SCons.Action.CommandAction (cnd, * * kw)
Bases: _ActionAction
Class for command-execution actions.
_abc_impl = <_abc._abc_data object>
_get_implicit_deps_heavyweight (t ar get , sour ce, env, execut or: Executor | None,icd_int)
Heavyweight dependency scanning involves scanning more than just the first entry in an action string. The exact
behavior depends on the value of icd_int. Only files are taken as implicit dependencies; directories are ignored.
If icd_int is an integer value, it specifies the number of entries to scan for implicit dependencies. Action strings are
also scanned after a &&. So for example, if icd_int=2 and the action string is “cd <some_dir> && $PYTHON
$SCRIPT_PATH <another_path>", the implicit dependencies would be the path to the python binary and the path
to the script.
If icd_int is None, all entries are scanned for implicit dependencies.
_get_implicit_deps_lightweight (t ar get , sour ce, env, execut or: Executor | None)
Lightweight dependency scanning involves only scanning the first entry in an action string, even if it contains &&.
batch_key (env, t ar get , sour ce)
execute (t ar get , sour ce, env, executor: Executor | None = None)
Execute a command action.
This will handle lists of commands as well as individual commands, because construction variable substitution may
turn a single “command” into a list. This means that this class can actually handle lists of commands, even though
that's not how we use it externally.
genstring (t ar get , sour ce, env, execut or: Executor | None = None) - str
get_contents (t ar get, sour ce, env)
get_implicit_deps (t ar get , sour ce, env, execut or: Executor | None = None)
Return the implicit dependencies of this action’s command line.
get_presig (t ar get , sour ce, env, execut or: Executor | None = None)
Return the signature contents of this action’s command line.
This strips $(-$) and everything in between the string, since those parts don't affect signatures.
get_targets (env, execut or: Executor | None)
Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.
get_varlist (t ar get , sour ce, env, execut or: Executor | None = None)
no_batch_key (env, t ar get , sour ce)
presub_lines (env)
print_cmd_line (s, t ar get, sour ce, env) - None
In python 3, and in some of our tests, sys.stdout is a String io object, and it takes unicode strings only This code
assumes s is a regular string.
process (t ar get , sour ce, env, execut or: Executor | None = None,overrides: dict | None =
None) - tuple][list, bool, bool]
strfunction (t ar get , sour ce, env, execut or: Executor | None = None,overrides: dict | None =
None) - str
cl ass SCons.Action.CommandGeneratorAction (gener at or , kw)
Bases: ActionBase
Class for command-generator actions.
_abc_impl = <_abc._abc_data object>
_Qgenerate (t ar get , sour ce, env, f or _si gnat ur e, executor: Executor | None = None)
batch_key (env, t ar get , sour ce)
genstring (t ar get , sour ce, env, execut or: Executor | None = None) - str

SCons API Documentation

get_contents (t ar get , sour ce, env)

get_implicit_deps (t ar get , sour ce, env, execut or: Executor | None = None)

get_presig (t ar get , sour ce, env, executor: Executor | None = None)

Return the signature contents of this action’s command line.

This strips $(-$) and everything in between the string, since those parts don't affect signatures.
get_targets (env, execut or: Executor | None)

Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.

get_varlist (t ar get , sour ce, env, execut or: Executor | None = None)

no_batch_key (env, t ar get , sour ce)

presub_lines (env)

cl ass SCons.Action.FunctionAction (execf unct i on, kw)

Bases: _ActionAction

Class for Python function actions.

_abc_impl = <_abc._abc_data object>

batch_key (env, t ar get , sour ce)

execute (t ar get , sour ce, env, executor: Executor | None = None)

function_name ()

genstring (t ar get , sour ce, env, execut or: Executor | None = None) - str

get_contents (t ar get, sour ce, env)

get_implicit_deps (t ar get , sour ce, env, execut or: Executor | None = None)

get_presig (t ar get , sour ce, env, executor: Executor | None = None)

Return the signature contents of this callable action.

get_targets (env, execut or: Executor | None)

Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.

get_varlist (t ar get , sour ce, env, execut or: Executor | None = None)

no_batch_key (env, t ar get , sour ce)

presub_lines (env)

print_cmd_line (s, t ar get , sour ce, env) - None
In python 3, and in some of our tests, sys.stdout is a String io object, and it takes unicode strings only This code
assumes s is a regular string.

strfunction (t ar get , sour ce, env, execut or: Executor | None = None)

cl ass SCons.Action.LazyAction (var , kw)

Bases: CommandGeneratorAction, CommandAction

A LazyAction is a kind of hybrid generator and command action for strings of the form “$VAR”. These strings normally

expand to other strings (think “$CCCOM” to “$CC -c -0 $TARGET $SOURCE”), but we also want to be able to

replace them with functions in the construction environment. Consequently, we want lazy evaluation and creation of
an Action in the case of the function, but that’s overkill in the more normal case of expansion to other strings.

So we do this with a subclass that’s both a generator and a command action. The overridden methods all do a quick

check of the construction variable, and if it's a string we just call the corresponding CommandAction method to do the

heavy lifting. If not, then we call the same-named CommandGeneratorAction method. The

CommandGeneratorAction methods work by using the overridden _generate() method, that is, our own way of

handling “generation” of an action based on what'’s in the construction variable.

_abc_impl = <_abc._abc_data object>

_Qgenerate (t ar get , source, env, f or _si gnat ur e, executor: Executor | None = None)

_generate_cache (env)

_get_implicit_deps_heavyweight (t ar get , sour ce, env, execut or: Executor | None,icd_int)
Heavyweight dependency scanning involves scanning more than just the first entry in an action string. The exact
behavior depends on the value of icd_int. Only files are taken as implicit dependencies; directories are ignored.

If icd_int is an integer value, it specifies the number of entries to scan for implicit dependencies. Action strings are
also scanned after a &&. So for example, if icd_int=2 and the action string is “cd <some_dir> && $PYTHON
$SCRIPT_PATH <another_path>", the implicit dependencies would be the path to the python binary and the path
to the script.

If icd_int is None, all entries are scanned for implicit dependencies.

_get_implicit_deps_lightweight (t ar get , sour ce, env, execut or: Executor | None)

Lightweight dependency scanning involves only scanning the first entry in an action string, even if it contains &&.
batch_key (env, t ar get , sour ce)

SCons API Documentation

execute (t ar get , sour ce, env, executor: Executor | None = None)
Execute a command action.
This will handle lists of commands as well as individual commands, because construction variable substitution may
turn a single “command” into a list. This means that this class can actually handle lists of commands, even though
that's not how we use it externally.
genstring (t ar get , sour ce, env, execut or: Executor | None = None) - str
get_contents (t ar get , sour ce, env)
get_implicit_deps (t ar get , sour ce, env, execut or: Executor | None = None)
Return the implicit dependencies of this action’s command line.
get_parent_class (env)
get_presig (t ar get , sour ce, env, execut or: Executor | None = None)
Return the signature contents of this action’s command line.
This strips $(-$) and everything in between the string, since those parts don't affect signatures.
get_targets (env, execut or: Executor | None)
Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.
get_varlist (t ar get, sour ce, env, execut or: Executor | None = None)
no_batch_key (env, t ar get , sour ce)
presub_lines (env)
print_cmd_line (s, t ar get, sour ce, env) - None
In python 3, and in some of our tests, sys.stdout is a String io object, and it takes unicode strings only This code
assumes s is a regular string.
process (t ar get , sour ce, env, execut or: Executor | None = None,overrides: dict | None =
None) - tuple][list, bool, bool]
strfunction (t ar get , sour ce, env, execut or: Executor | None = None,overrides: dict | None =
None) - str
cl ass SCons.Action.ListAction (acti onl i st)
Bases: ActionBase
Class for lists of other actions.
_abc_impl = <_abc._abc_data object>
batch_key (env, t ar get , sour ce)
genstring (t ar get , sour ce, env, execut or: Executor | None = None) - str
get_contents (t ar get, sour ce, env)
get_implicit_deps (t ar get , sour ce, env, execut or: Executor | None = None)
get_presig (t ar get , sour ce, env, executor: Executor | None = None)
Return the signature contents of this action list.
Simple concatenation of the signatures of the elements.
get_targets (env, execut or: Executor | None)
Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.
get_varlist (t ar get , sour ce, env, execut or: Executor | None = None)
no_batch_key (env, t ar get , sour ce)
presub_lines (env)
cl ass SCons.Action._ActionAction (cndst r =<cl ass ' SCons. Action. _nul|l'>,strfuncti on=<cl ass
' SCons. Action. _null'> varlist=(), presub=<class ' SCons. Acti on. _null"' >, chdi r =None,
exi t st at f unc=None, bat ch_key=None, targets: str = '$TARCETS , **kw)
Bases: ActionBase
Base class for actions that create output objects.
_abc_impl = <_abc._abc_data object>
batch_key (env, t ar get , sour ce)
genstring (t ar get , sour ce, env, execut or: Executor | None = None) - str
get_contents (t ar get, sour ce, env)
get_implicit_deps (t ar get , sour ce, env, execut or: Executor | None = None)
get_presig (t ar get , sour ce, env, execut or: Executor | None = None)
get_targets (env, execut or: Executor | None)
Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.
get_varlist (t ar get , sour ce, env, execut or: Executor | None = None)
no_batch_key (env, t ar get , sour ce)

SCons API Documentation

presub_lines (env)
print_cmd_line (s, t ar get, sour ce, env) — None
In python 3, and in some of our tests, sys.stdout is a String io object, and it takes unicode strings only This code
assumes s is a regular string.
SCons.Action._actionAppend (act 1, act 2)
Joins two actions together.
Mainly, it handles ListActions by concatenating into a single ListAction.
SCons.Action._callable_contents (obj) — bytearray
Return the signature contents of a callable Python object.
SCons.Action._code_contents (code, docst ri ng=None) - bytearray
Return the signature contents of a code object.
By providing direct access to the code object of the function, Python makes this extremely easy. Hooray!
Unfortunately, older versions of Python include line number indications in the compiled byte code. Boo! So we
remove the line number byte codes to prevent recompilations from moving a Python function.

See:

« https://docs.python.org/3/library/inspect.html

~« http://python-reference.readthedocs.io/en/latest/docs/code/index.html
For info on what each co_ variable provides

The signature is as follows (should be byte/chars): co_argcount, len(co_varnames), len(co_cellvars),
len(co_freevars), (comma separated signature for each object in co_consts), (comma separated signature for each
object in co_names), (The bytecode with line number bytecodes removed from co_code)
co_argcount - Returns the number of positional arguments (including arguments with default values). co_varnames -
Returns a tuple containing the names of the local variables (starting with the argument names). co_cellvars - Returns
a tuple containing the names of local variables that are referenced by nested functions. co_freevars - Returns a tuple
containing the names of free variables. (?) co_consts - Returns a tuple containing the literals used by the bytecode.
co_names - Returns a tuple containing the names used by the bytecode. co_code - Returns a string representing the
sequence of bytecode instructions.

SCons.Action._do_create_action (act , kw)
The internal implementation for the Action factory method.
This handles the fact that passing lists to Action() itself has different semantics than passing lists as elements of lists.
The former will create a ListAction, the latter will create a CommandAction by converting the inner list elements to
strings.

SCons.Action._do_create_keywords (ar gs, kw)
This converts any arguments after the action argument into their equivalent keywords and adds them to the kw
argument.

SCons.Action._do_create_list_action (act , kw) — ListAction
A factory for list actions.
Convert the input list act into Actions and then wrap them in a ListAction. If act has only a single member, return that
member, not a ListAction. This is intended to allow a contained list to specify a command action without being
processed into a list action.

SCons.Action._function_contents (f unc) — bytearray
Return the signature contents of a function.
The signature is as follows (should be byte/chars): < _code_contents (see above) from func.__code__ > ,(comma
separated _object_contents for function argument defaults) ,(comma separated _object_contents for any closure
contents)

See also: https://docs.python.org/3/reference/datamodel.html

e func.__code__ - The code object representing the compiled function body.

« func.__defaults__ - A tuple containing default argument values for those arguments that have defaults, or
None if no arguments have a default value

» func.__closure__ - None or a tuple of cells that contain bindings for the function’s free variables.
cl ass SCons.Action._null

Bases: object

https://docs.python.org/3/library/inspect.html
http://python-reference.readthedocs.io/en/latest/docs/code/index.html
https://docs.python.org/3/reference/datamodel.html

SCons API Documentation

SCons.Action._object_contents (obj) - bytearray

Return the signature contents of any Python object.

We have to handle the case where object contains a code object since it can be pickled directly.
SCons.Action._object_instance_content (obj)

Returns consistant content for a action class or an instance thereof

Parameters:]) . .
 obj Should be either and action class or an instance thereof

Returns: bytearray or bytes representing the obj suitable for generating a signature from.

SCons.Action._resolve_shell_env (env, t ar get , sour ce)
Returns a resolved execution environment.
First get the execution environment. Then if SHELL_ENV_GENERATORS is set and is iterable, call each function to
allow it to alter the created execution environment, passing each the returned execution environment from the
previous call.
Added in version 4.4.

SCons.Action._string_from_cmd_list (cnd_1 i st)
Takes a list of command line arguments and returns a pretty representation for printing.

SCons.Action._subproc (scons_env, cd, er r or ='ignore’, * * kw)
Wrapper for subprocess.Popen which pulls from construction env.
Use for calls to subprocess which need to interpolate values from an SCons construction environment into the
environment passed to subprocess. Adds an an error-handling argument. Adds ability to specify std{in,out,err} with
“devnull’” tag.
Deprecated since version 4.6.

SCons.Action.default_exitstatfunc (s)

SCons.Action.get_default ENV (env)
Returns an execution environment.
If there is one in env, just use it, else return the Default Environment, insantiated if necessary.
A fiddlin’ little function that has an i nport SCons. Envi r onnent which cannot be moved to the top level without
creating an import loop. Since this import creates a local variable named SCons, it blocks access to the global
variable, so we move it here to prevent complaints about local variables being used uninitialized.

SCons.Action.rfile (n)

SCons.Action.scons_subproc_run (scons_env, *ar gs, **kwar gs) - CompletedProcess
Run an external command using an SCons execution environment.
SCons normally runs external build commands using subprocess, but does not harvest any output from such
commands. This function is a thin wrapper around subprocess.run() allowing running a command in an SCons
context (i.e. uses an “execution environment” rather than the user’s existing environment), and provides the ability to
return any output in a subprocess.CompletedProcess instance (this must be selected by setting st dout and/or
st derr to Pl PE, or setting capt ur e_out put =Tr ue - see Keyword Arguments). Typical use case is to run a tool's
“version” option to find out the installed version.
If supplied, the env keyword argument provides an execution environment to process into appropriate form before it
is supplied to subprocess; if omitted, scons_env is used to derive a suitable default. The other keyword arguments
are passed through, except that the SCons legacy er r or keyword is remapped to the subprocess check keyword; if
both are omitted check=Fal se will be passed. The caller is responsible for setting up the desired arguments for
subprocess.run().
This function retains the legacy behavior of returning something vaguely usable even in the face of complete failure,
unless check=Tr ue (in which case an error is allowed to be raised): it synthesizes a CompletedProcess instance in
this case.
A subset of interesting keyword arguments follows; see the Python documentation of subprocess for the complete
list.

SCons API Documentation

Keyword
Arguments: stdout — (and stderr, stdin) if set to subprocess.PIPE. send input to or collect output from

the relevant stream in the subprocess; the default None does no redirection (i.e. output or
errors may go to the console or log file, but is not captured); if set to
subprocess.DEVNULL they are explicitly thrown away. capt ur e_out put =True is a
synonym for setting both st dout and st der r to PIPE.

e text — open stdin, stdout, stderr in text mode. Default is binary mode.
uni versal _new i nes is a synonym.

« encoding — specifies an encoding. Changes to text mode.
« errors — specified error handling. Changes to text mode.

e input — a byte sequence to be passed to stdin, unless text mode is enabled, in which
case it must be a string.

 shell —if true, the command is executed through the shell.

« check — if true and the subprocess exits with a non-zero exit code, raise a
subprocess.CalledProcessError exception. Otherwise (the default) in case of an OSError,
report the exit code in the CompletedProcess instance.

Added in version 4.6.

SCons.Builder module
SCons.Builder
Builder object subsystem.

A Builder object is a callable that encapsulates information about how to execute actions to create a target Node (file)
from source Nodes (files), and how to create those dependencies for tracking.

The main entry point here is the Builder() factory method. This provides a procedural interface that creates the right
underlying Builder object based on the keyword arguments supplied and the types of the arguments.

The goal is for this external interface to be simple enough that the vast majority of users can create new Builders as
necessary to support building new types of files in their configurations, without having to dive any deeper into this
subsystem.

The base class here is BuilderBase. This is a concrete base class which does, in fact, represent the Builder objects that
we (or users) create.

There is also a proxy that looks like a Builder:
CompositeBuilder

This proxies for a Builder with an action that is actually a dictionary that knows how to map file suffixes to a
specific action. This is so that we can invoke different actions (compilers, compile options) for different flavors
of source files.

Builders and their proxies have the following public interface methods used by other modules:

e cal_(

THE public interface. Calling a Builder object (with the use of internal helper methods) sets up the target
and source dependencies, appropriate mapping to a specific action, and the environment manipulation
necessary for overridden construction variable. This also takes care of warning about possible mistakes
in keyword arguments.

e add_emitter()

Adds an emitter for a specific file suffix, used by some Tool modules to specify that (for example) a yacc
invocation on a .y can create a .h and a .c file.

« add_action()

SCons API Documentation

Adds an action for a specific file suffix, heavily used by Tool modules to add their specific action(s) for
turning a source file into an object file to the global static and shared object file Builders.

There are the following methods for internal use within this module:

_execute()

The internal method that handles the heavily lifting when a Builder is called. This is used so that the
__call__() methods can set up warning about possible mistakes in keyword-argument overrides, and
then execute all of the steps necessary so that the warnings only occur once.

get_name()

Returns the Builder's name within a specific Environment, primarily used to try to return helpful
information in error messages.

adjust_suffix()

get_prefix()
e get_suffix()

get_src_suffix()
* set_src_suffix()

Miscellaneous stuff for handling the prefix and suffix manipulation we use in turning source file names

~into target file names.
SCons.Builder.Builder (* * kw)

A factory for builder objects.
cl ass SCons.Builder.BuilderBase (act i on=None, prefix: str = "'' ,suffix: str ="', src_suffix: str
= '',target _factory=None, source_factory=None,target_scanner =None, sour ce_scanner =None,
em tter=None,nulti: bool = Fal se,env=None, singl e_source: bool = Fal se, nane=None,
chdir=<class 'SCons.Builder. Null'>is explicit: bool = True,src_buil der=None,
ensure_suffix: bool = Fal se,**overri des)
Bases: object
Base class for Builders, objects that create output nodes (files) from input nodes (files).
_adjustixes (fi | es, pre, suf,ensure_suffix: bool = False)
_create_nodes (env, t ar get =None, sour ce=None)
Create and return lists of target and source nodes.
_execute (env, t ar get, sour ce, over war n={}, execut or _kw={})
_get_sdict (env)
Returns a dictionary mapping all of the source suffixes of all src_builders of this Builder to the underlying Builder
that should be called first.
This dictionary is used for each target specified, so we save a lot of extra computation by memoizing it for each
construction environment.
Note that this is re-computed each time, not cached, because there might be changes to one of our source
Builders (or one of their source Builders, and so on, and so on...) that we can’t “see.”
The underlying methods we call cache their computed values, though, so we hope repeatedly aggregating them
into a dictionary like this won’t be too big a hit. We may need to look for a better way to do this if performance data
show this has turned into a significant bottleneck.
_get_src_builders_key (env)
_subst_src_suffixes_key (env)
add_emitter (suf fi x,em tter) - None
Add a suffix-emitter mapping to this Builder.
This assumes that emitter has been initialized with an appropriate dictionary type, and will throw a TypeError if not,
so the caller is responsible for knowing that this is an appropriate method to call for the Builder in question.
add_src_builder (bui | der) —» None
Add a new Builder to the list of src_builders.
This requires wiping out cached values so that the computed lists of source suffixes get re-calculated.
adjust_suffix (suf f)
get_name (env)

SCons API Documentation

Attempts to get the name of the Builder.
Look at the BUILDERS variable of env, expecting it to be a dictionary containing this Builder, and return the key of
the dictionary. If there’s no key, then return a directly-configured name (if there is one) or the name of the class (by
default).
get_prefix (env, sour ces=[])
get_src_builders (env)
Returns the list of source Builders for this Builder.
This exists mainly to look up Builders referenced as strings in the ‘BUILDER’ variable of the construction
environment and cache the result.
get_src_suffix (env)
Get the first src_suffix in the list of src_suffixes.
get_suffix (env, sour ces=[])
set_src_suffix (src_suf fi x) - None
set_suffix (suf fi x) - None
splitext (pat h, env=None)
src_builder_sources (env, sour ce, over war n={})
src_suffixes (env)
Returns the list of source suffixes for all src_builders of this Builder.
This is essentially a recursive descent of the src_builder “tree.” (This value isn’'t cached because there may be
changes in a src_builder many levels deep that we can't see.)
subst_src_suffixes (env)
The suffix list may contain construction variable expansions, so we have to evaluate the individual strings. To avoid
doing this over and over, we memoize the results for each construction environment.
cl ass SCons.Builder.CallableSelector
Bases: Selector
A callable dictionary that will, in turn, call the value it finds if it can.
clear () - None. Remove all items from D.
copy () - a shallow copy of D
cl assnet hod fromkeys (i t er abl e, val ue=None, /)
Create a new dictionary with keys from iterable and values set to value.
get (key, def aul t =None, /)
Return the value for key if key is in the dictionary, else default.
items () —» a set-like object providing a view on D's items
keys () — a set-like object providing a view on D's keys
pop (k[, d]) - v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem ()
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.
setdefault (key, def aul t =None, /)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
update ([, E], **F) - None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[K] If E is present and lacks a .keys()
method, then does: for k, v in E: D[K] = v In either case, this is followed by: for k in F: D[K] = F[K]
values () - an object providing a view on D's values
cl ass SCons.Builder.CompositeBuilder (bui | der, cndgen)
Bases: Proxy
A Builder Proxy whose main purpose is to always have a DictCmdGenerator as its action, and to provide access to
the DictCmdGenerator’s add_action() method.
__Qgetattr__ (nane)
Retrieve an attribute from the wrapped object.

Raises: AttributeError — if attribute name doesn’t exist.

add_action (suf fi x, acti on) -~ None
get ()

10

SCons API Documentation

Retrieve the entire wrapped object

cl ass SCons.Builder.DictCmdGenerator (mappi ng=None, sour ce_ext _mat ch: bool = True)

Bases: Selector
This is a callable class that can be used as a command generator function. It holds on to a dictionary mapping file
suffixes to Actions. It uses that dictionary to return the proper action based on the file suffix of the source file.
add_action (suf f i x, acti on) - None
Add a suffix-action pair to the mapping.
clear () - None. Remove all items from D.
copy () —» a shallow copy of D
cl assnet hod fromkeys (i t er abl e, val ue=None, /)
Create a new dictionary with keys from iterable and values set to value.
get (key, def aul t =None, /)
Return the value for key if key is in the dictionary, else default.
items () —» a set-like object providing a view on D's items
keys () — a set-like object providing a view on D's keys
pop (k[, d]) - v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem ()
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.
setdefault (key, def aul t =None, /)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
src_suffixes ()
update ([, E], **F) - None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[K] If E is present and lacks a .keys()
method, then does: for k, v in E: D[K] = v In either case, this is followed by: for k in F: D[K] = F[K]
values () - an object providing a view on D's values

cl ass SCons.Builder.DictEmitter

Bases: Selector
A callable dictionary that maps file suffixes to emitters. When called, it finds the right emitter in its dictionary for the
suffix of the first source file, and calls that emitter to get the right lists of targets and sources to return. If there’s no
emitter for the suffix in its dictionary, the original target and source are returned.
clear () - None. Remove all items from D.
copy () - a shallow copy of D
cl assnet hod fromkeys (i t er abl e, val ue=None, /)
Create a new dictionary with keys from iterable and values set to value.
get (key, def aul t =None, /)
Return the value for key if key is in the dictionary, else default.
items () —» a set-like object providing a view on D's items
keys () — a set-like object providing a view on D's keys
pop (k[, d]) - v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem ()
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.
setdefault (key, def aul t =None, /)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
update ([, E], **F) - None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[K] If E is present and lacks a .keys()
method, then does: for k, v in E: D[K] = v In either case, this is followed by: for k in F: D[K] = F[K]
values () - an object providing a view on D's values

cl ass SCons.Builder.EmitterProxy (var)

11

Bases: object

SCons API Documentation

This is a callable class that can act as a Builder emitter. It holds on to a string that is a key into an Environment
dictionary, and will look there at actual build time to see if it holds a callable. If so, we will call that as the actual
emitter.
cl ass SCons.Builder.ListEmitter (i ni t | i st =None)
Bases: UserList
A callable list of emitters that calls each in sequence, returning the result.
_abc_impl = <_abc._abc_data object>
append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t em)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
cl ass SCons.Builder.OverrideWarner (mappi ng)
Bases: UserDict
A class for warning about keyword arguments that we use as overrides in a Builder call.
This class exists to handle the fact that a single Builder call can actually invoke multiple builders. This class only
emits the warnings once, no matter how many Builders are invoked.
_abc_impl = <_abc._abc_data object>
clear () - None. Remove all items from D.
copy ()
cl assnet hod fromkeys (i t er abl e, val ue=None)
get (k[, d]) — D[K] if kin D, else d. d defaults to None.
items () —» a set-like object providing a view on D's items
keys () — a set-like object providing a view on D's keys
pop (k[, d]) - v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.
popitem () - (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.
setdefault (k[, d]) - D.get(k,d), also set D[k]=d if k not in D
update ([, E], **F) - None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[K] = E[K] If E present and lacks .keys() method, does: for
(k, v) in E: D[K] = v In either case, this is followed by: for k, v in F.items(): D[k] = v
values () - an object providing a view on D's values
warn () - None
cl ass SCons.Builder. Null
Bases: object
SCons.Builder._node_errors (bui | der, env,tlist,slist)
Validate that the lists of target and source nodes are legal for this builder and environment. Raise errors or issue
warnings as appropriate.
SCons.Builder._null
alias of _Null
SCons.Builder.is_a_Builder (obj) - bool

12

SCons API Documentation

“Returns True if the specified obj is one of our Builder classes.
The test is complicated a bit by the fact that CompositeBuilder is a proxy, not a subclass of BuilderBase.
SCons.Builder.match_splitext (pat h, suf fi xes=[])

SCons.CacheDir module

CacheDir support
cl ass SCons.CacheDir.CacheDir (pat h)
Bases: object
CacheDebug (f nt , t ar get, cachefil e) -~ None
_add_config (pat h: str) —» None
Create the cache config file in path.
Locking isn’'t necessary in the normal case - when the cachedir is being created - because it's written to a unique
directory first, before the directory is renamed. But it is legal to call CacheDir with an existing directory, which may
be missing the config file, and in that case we do need locking. Simpler to always lock.
_mkdir_atomic (pat h: str) - bool
Create cache directory at path.
Uses directory renaming to avoid races. If we are actually creating the dir, populate it with the metadata files at the
same time as that's the safest way. But it's not illegal to point CacheDir at an existing directory that wasn't a cache
previously, so we may have to do that elsewhere, too.

Returns: True if it we created the dir, Fal se if already existed,
Raises: SConsEnvironmentError — if we tried and failed to create the cache.

_readconfig (pat h: str) - None
Read the cache config from path.
If directory or config file do not exist, create and populate.

cachepath (node) - tuple
Return where to cache a file.
Given a Node, obtain the configured cache directory and the path to the cached file, which is generated from the
node’s build signature. If caching is not enabled for the None, return a tuple of None.

cl assnet hod copy_from_cache (env, src, dst) - str
Copy a file from cache.

cl assnet hod copy_to _cache (env, src, dst) - str
Copy a file to cache.
Just use the FS copy2 (“with metadata”) method, except do an additional check and if necessary a chmod to
ensure the cachefile is writeable, to forestall permission problems if the cache entry is later updated.

get_cachedir_csig (node) - str

property hit _ratio: float

is_enabled () - bool

is_readonly () —» bool

property misses: int

push (node)

push_if forced (node)

retrieve (node) - bool
Retrieve a node from cache.
Returns True if a successful retrieval resulted.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Note that there’s a special trick here with the execute flag (one that's not normally done for other actions). Basically
if the user requested a no_exec (-n) build, then SCons.Action.execute_actions is set to 0 and when any action is
called, it does its showing but then just returns zero instead of actually calling the action execution operation. The
problem for caching is that if the file does NOT exist in cache then the CacheRetrieveString won't return anything
to show for the task, but the Action._call __ won't call CacheRetrieveFunc; instead it just returns zero, which
makes the code below think that the file was successfully retrieved from the cache, therefore it doesn’'t do any
subsequent building. However, the CacheRetrieveString didn’t print anything because it didn’t actually exist in the
cache, and no more build actions will be performed, so the user just sees nothing. The fix is to tell Action.__call__

13

SCons API Documentation

to always execute the CacheRetrieveFunc and then have the latter explicitly check SCons.Action.execute_actions
itself.

SCons.CacheDir.CachePushFunc (t ar get , sour ce, env) - None

SCons.CacheDir.CacheRetrieveFunc (t ar get , sour ce, env) - int

SCons.CacheDir.CacheRetrieveString (t ar get , sour ce, env) — str

SCons.Conftest module

Autoconf-like configuration support

The purpose of this module is to define how a check is to be performed.

A context class is used that defines functions for carrying out the tests, logging and messages. The following methods
and members must be present:

context.Display(msg)

Function called to print messages that are normally displayed for the user. Newlines are explicitly used. The text
should also be written to the logfile!

context.Log(msg)
Function called to write to a log file.
context.BuildProg(text, ext)

Function called to build a program, using “ext” for the file extension. Must return an empty string for success, an
error message for failure. For reliable test results building should be done just like an actual program would be
build, using the same command and arguments (including configure results so far).

context.CompileProg(text, ext)

Function called to compile a program, using “ext” for the file extension. Must return an empty string for success, an
error message for failure. For reliable test results compiling should be done just like an actual source file would be
compiled, using the same command and arguments (including configure results so far).

context.AppendLIBS(lib_name_list)

Append “lib_name_list” to the value of LIBS. “lib_namelist” is a list of strings. Return the value of LIBS before
changing it (any type can be used, it is passed to SetLIBS() later.)

context.PrependLIBS(lib_name_list)

Prepend “lib_name_list” to the value of LIBS. “lib_namelist” is a list of strings. Return the value of LIBS before
changing it (any type can be used, it is passed to SetLIBS() later.)

context.SetLIBS(value)

Set LIBS to “value”. The type of “value” is what AppendLIBS() returned. Return the value of LIBS before changing it
(any type can be used, it is passed to SetLIBS() later.)

context.headerfilename

Name of file to append configure results to, usually “confdefs.h”. The file must not exist or be empty when starting.
Empty or None to skip this (some tests will not work!).

context.config_h (may be missing).
If present, must be a string, which will be filled with the contents of a config_h file.
context.vardict

Dictionary holding variables used for the tests and stores results from the tests, used for the build commands.
Normally contains “CC”, “LIBS”, “CPPFLAGS", etc.

context.havedict

Dictionary holding results from the tests that are to be used inside a program. Names often start with “HAVE _".
These are zero (feature not present) or one (feature present). Other variables may have any value, e.g.,
“PERLVERSION” can be a number and “SYSTEMNAME” a string.
SCons.Conftest.CheckBuilder (cont ext , t ext =None, | anguage=None)
Configure check to see if the compiler works. Note that this uses the current value of compiler and linker flags, make
sure $CFLAGS, $CPPFLAGS and $LIBS are set correctly. “language” should be “C” or “C++" and is used to select

14

SCons API Documentation

the compiler. Default is “C”. “text” may be used to specify the code to be build. Returns an empty string for success,
an error message for failure.
SCons.Conftest.CheckCC (cont ext)
Configure check for a working C compiler.
This checks whether the C compiler, as defined in the $CC construction variable, can compile a C source file. It uses
the current $CCCOM value too, so that it can test against non working flags.
SCons.Conftest.CheckCXX (cont ext)
Configure check for a working CXX compiler.
This checks whether the CXX compiler, as defined in the $CXX construction variable, can compile a CXX source file.
It uses the current $CXXCOM value too, so that it can test against non working flags.
SCons.Conftest.CheckDeclaration (cont ext , synbol , i ncl udes=None, | anguage=None)
Checks whether symbol is declared.
Use the same test as autoconf, that is test whether the symbol is defined as a macro or can be used as an r-value.

Parameters:
e symbol — str the symbol to check

« includes — str Optional “header” can be defined to include a header file.

 language — str only C and C++ supported.
Returns: boolTrue if the check failed, False if succeeded.

Return type: status

SCons.Conftest.CheckFunc (cont ext, f uncti on_nane, header =None, | anguage=None, f uncar gs=None)
Configure check for a function “function_name”. “language” should be “C” or “C++" and is used to select the compiler.
Default is “C”. Optional “header” can be defined to define a function prototype, include a header file or anything else
that comes before main(). Optional “funcargs” can be defined to define an argument list for the generated function
invocation. Sets HAVE_function_name in context.havedict according to the result. Note that this uses the current
value of compiler and linker flags, make sure $CFLAGS, $CPPFLAGS and $LIBS are set correctly. Returns an empty
string for success, an error message for failure.

Changed in version 4.7.0: The f uncar gs parameter was added.

SCons.Conftest.CheckHeader (cont ext , header _nane, header =None, | anguage=None,

i ncl ude_quot es=None)

Configure check for a C or C++ header file “header_name”. Optional “header” can be defined to do something before
including the header file (unusual, supported for consistency). “language” should be “C” or “C++" and is used to
select the compiler. Default is “C". Sets HAVE_header_name in context.havedict according to the result. Note that
this uses the current value of compiler and linker flags, make sure $CFLAGS and $CPPFLAGS are set correctly.
Returns an empty string for success, an error message for failure.

SCons.Conftest.CheckLib (cont ext , | i bs, f unc_nane=None, header =None, extra_| i bs=None, cal | =None,

| anguage=None, aut oadd: int = 1, append: bool = True, uni que: bool = False)

Configure check for a C or C++ libraries “libs”. Searches through the list of libraries, until one is found where the test
succeeds. Tests if “func_name” or “call” exists in the library. Note: if it exists in another library the test succeeds
anyway! Optional “header” can be defined to include a header file. If not given a default prototype for “func_name” is
added. Optional “extra_libs” is a list of library names to be added after “lib_name” in the build command. To be used
for libraries that “lib_name” depends on. Optional “call” replaces the call to “func_name” in the test code. It must
consist of complete C statements, including a trailing “;”. Both “func_name” and “call” arguments are optional, and in
that case, just linking against the libs is tested. “language” should be “C” or “C++" and is used to select the compiler.
Default is “C”. Note that this uses the current value of compiler and linker flags, make sure $CFLAGS, $CPPFLAGS
and $LIBS are set correctly. Returns an empty string for success, an error message for failure.

SCons.Conftest.CheckMember (cont ext , aggr egat e_nenber , header =None, | anguage=None)

Configure check for a C or C++ member “aggregate_member”. Optional “header” can be defined to include a header
file. “language” should be “C” or “C++" and is used to select the compiler. Default is “C”. Note that this uses the
current value of compiler and linker flags, make sure $CFLAGS, $CPPFLAGS and $LIBS are set correctly.

Parameters:
* aggregate_member — str the member to check. For example, ‘struct tm.tm_gmtoff’.

 includes — str Optional “header” can be defined to include a header file.

» language — str only C and C++ supported.

15

SCons API Documentation

Returns the status (O or False = Passed, True/non-zero = Failed).
SCons.Conftest.CheckProg (cont ext , pr og_nane)
Configure check for a specific program.
Check whether program prog_name exists in path. If it is found, returns the path for it, otherwise returns None.
SCons.Conftest.CheckSHCC (cont ext)
Configure check for a working shared C compiler.
This checks whether the C compiler, as defined in the $SHCC construction variable, can compile a C source file. It
uses the current $SHCCCOM value too, so that it can test against non working flags.
SCons.Conftest.CheckSHCXX (cont ext)
Configure check for a working shared CXX compiler.
This checks whether the CXX compiler, as defined in the $SHCXX construction variable, can compile a CXX source
file. It uses the current $SHCXXCOM value too, so that it can test against non working flags.
SCons.Conftest.CheckType (cont ext , t ype_nane, f al | back=None, header =None, | anguage=None)
Configure check for a C or C++ type “type_name”. Optional “header” can be defined to include a header file.
“language” should be “C” or “C++” and is used to select the compiler. Default is “C”. Sets HAVE_type name in
context.havedict according to the result. Note that this uses the current value of compiler and linker flags, make sure
$CFLAGS, $CPPFLAGS and $LIBS are set correctly. Returns an empty string for success, an error message for
failure.
SCons.Conftest.CheckTypeSize (cont ext , t ype_nane, header =None, | anguage=None, expect =None)
This check can be used to get the size of a given type, or to check whether the type is of expected size.

Parameters:
* type (-) — str the type to check

« includes (-) — sequence list of headers to include in the test code before testing the type
 language (-) — str ‘C’ or ‘C++’

e expect (-) — int if given, will test wether the type has the given number of bytes. If not
given, will automatically find the size.

* Returns — statusintO if the check failed, or the found size of the type if the check
succeeded.
SCons.Conftest._Have (cont ext , key, have, conment =None) — None
Store result of a test in context.havedict and context.headerfilename.

Parameters:)) _)
* key - is a "HAVE_abc” name. It is turned into all CAPITALS and non-alphanumerics are

replaced by an underscore.

* have - value as it should appear in the header file, include quotes when desired and
escape special characters!

« comment is the C comment to add above the line defining the symbol (the comment is
automatically put inside a /* */). If None, no comment is added.

The value of “have” can be:

e 1 - Feature is defined, add “#define key”.

« 0 - Feature is not defined, add “/* #undef key */”. Adding “undef” is what autoconf does. Not useful for the
compiler, but it shows that the test was done.

« number - Feature is defined to this number “#define key have”. Doesn’t work for 0 or 1, use a string then.

* string - Feature is defined to this strina “#define key have”.
SCons.Conftest._LogFailed (cont ext , t ext, nsg) - None

Write to the log about a failed program. Add line numbers, so that error messages can be understood.
SCons.Conftest._YesNoResult (cont ext , r et , key, t ext, conment =None) - None
Handle the result of a test with a “yes” or “no” result.

16

SCons API Documentation

Parameters:)]
« retis the return value: empty if OK, error message when not.

« key is the name of the symbol to be defined (HAVE_foo).
« text is the source code of the program used for testing.

e comment is the C comment to add above the line defining the symbol (the comment is
automatically put inside a /* */). If None, no comment is added.
SCons.Conftest._check _empty program (cont ext, conp, t ext, | anguage, use_shared: bool = False)
Return 0 on success, 1 otherwise.
SCons.Conftest._lang2suffix (I ang)
Convert a language name to a suffix. When “lang” is empty or None C is assumed. Returns a tuple (lang, suffix,
None) when it works. For an unrecognized language returns (None, None, msg).

Where:

« lang = the unified language name
« suffix = the suffix, including the leading dot

* MSg = an error message

SCons.Debug module
Code for debugging SCons internal things.

Shouldn’t be needed by most users. Quick shortcuts:

from SCons. Debug i nmport caller_trace
caller_trace()

SCons.Debug.Trace (msg, tracefi | e=None, node: str = 'w',tstanp: bool = False) -~ None
Write a trace message.
Write messages when debugging which do not interfere with stdout. Useful in tests, which monitor stdout and would
break with unexpected output. Trace messages can go to the console (which is opened as a file), or to a disk file; the
tracefile argument persists across calls unless overridden.

Parameters: . .) . .) .
« tracefile — file to write trace message to. If omitted, write to the previous trace file (default:

console).
« mode — file open mode (default: ‘w’)

e tstamp — write relative timestamps with trace. Outputs time since scons was started, and
time since last trace (default: False)

SCons.Debug._dump_one_caller (key,file,l evel: int = 0) - None
SCons.Debug.caller_stack ()

return caller’s stack
SCons.Debug.caller_trace (back: int = 0) -~ None

Trace caller stack and save info into global dicts, which are printed automatically at the end of SCons execution.
SCons.Debug.countLoggedinstances (cl asses, fil e=<_i 0. Text | OV apper nanme=' <stdout>' node="'w
encodi ng="utf-8"'>) - None
SCons.Debug.dumplLoggedinstances (cl asses, fil e=<_i 0. Text | ON apper name='<stdout>' node="w
encodi ng="utf-8"'>) - None
SCons.Debug.dump_caller_counts (fi | e=<_i 0. Text | ON apper nane=' <stdout>' node="w
encodi ng="utf-8"'>) - None
SCons.Debug.fetchLoggedinstances (cl asses: str = ")
SCons.Debug.func_shorten (f unc_t upl e)
SCons.Debug.listLoggedinstances (cl asses, fil e=<_i 0. Text | OV apper name=' <stdout>' node="w
encodi ng="utf-8'>) - None
SCons.Debug.loginstanceCreation (i nst ance, nanme=None) — None

17

SCons API Documentation

SCons.Debug.memory () - int
SCons.Debug.string_to_classes (s)

SCons.Defaults module
Builders and other things for the local site.

Here's where we’'ll duplicate the functionality of autoconf until we move it into the installation procedure or use
something like gmconf.

The code that reads the registry to find MSVC components was borrowed from distutils.msvccompiler.
SCons.Defaults.DefaultEnvironment (* ar gs, * * kwar gs)
Construct the global (“default”) construction environment.
The environment is provisioned with the values from kwargs.
After the environment is created, this function is replaced with a reference to _fetch DefaultEnvironment() which
efficiently returns the initialized default construction environment without checking for its existence.
Historically, some parts of the code held references to this function. Thus it still has the existence check for
_default_env rather than just blindly creating the environment and overwriting itself.
cl ass SCons.Defaults.NullCmdGenerator (cnd)
Bases: object
Callable class for use as a no-effect command generator.
The __cal | __ method for this class simply returns the thing you instantiated it with. Example usage:

env[" DO _NOTHI NG'] = Nul | ChdGener at or
env["LINKCOM'] = "${ DO NOTHI NG ' $LI NK $SOURCES $TARGET')}"

SCons.Defaults.SharedFlagChecker (sour ce, t ar get , env)
SCons.Defaults.SharedObjectEmitter (t ar get , sour ce, env)
SCons.Defaults.StaticObjectEmitter (t ar get , sour ce, env)
cl ass SCons.Defaults.Variable_Method_Caller (vari abl e, net hod)

Bases: object

A class for finding a construction variable on the stack and calling one of its methods.

Used to support “construction variables” appearing in string
eval " s t hat actual ly st and in for nmet hods- - speci fically, t he use
of "RDirs" in a call to :func: _concat® that should actually execute the

" " TARCET. RDi r s method.
Historical note: This was formerly supported by creating a little “build dictionary” that mapped RDirs to the method,
but this got in the way of Memoizing construction environments, because we had to create new environment objects
to hold the variables.
SCons.Defaults.__lib_either_version_flag (env, ver si on_var 1, versi on_var 2, fl ags_var)
if $version_varl or $version_var2 is not empty, returns env[flags_var], otherwise returns None :param env: :param
version_varl: :param version_var2: :param flags_var: :return:
SCons.Defaults.__libversionflags (env, ver si on_var, f| ags_var)
if version_var is not empty, returns env[flags_var], otherwise returns None :param env: :param version_var: :param
flags_var: :return:
SCons.Defaults._concat (prefi x,itenms_iter,suffix, env,f=<function <l anbda>>,t ar get =None,
sour ce=None, af f ect _si gnature: bool = True)
Creates a new list from ‘items_iter’ by first interpolating each element in the list using the ‘env’ dictionary and then
calling f on the list, and finally calling _concat_ixes to concatenate ‘prefix’ and ‘suffix’ onto each element of the list.
SCons.Defaults._concat_ixes (prefi x,itens_iter,suffix, env)
Creates a new list from ‘items_iter’ by concatenating the ‘prefix’ and ‘suffix’ arguments onto each element of the list.
A trailing space on ‘prefix’ or leading space on ‘suffix’ will cause them to be put into separate list elements rather than
being concatenated.
SCons.Defaults._defines (pr ef i x, def s, suf fi x, env, t ar get =None, sour ce=None, c=<f uncti on
_concat _i xes>)
A wrapper around _concat_ixes() that turns a list or string into a list of C preprocessor command-line definitions.
SCons.Defaults._fetch_DefaultEnvironment (* ar gs, * * kwar gs)

18

SCons API Documentation

Returns the already-created default construction environment.

SCons.Defaults._stripixes (prefi x: str,itens,suffix: str,stripprefixes: list[str],
stripsuffixes: list[str],env,literal _prefix: str = " c: Callable[[list], list] = None) -
list

Returns a list with text added to items after first stripping them.
A companion to _concat_ixes(), used by tools (like the GNU linker) that need to turn something like | i bf 0o. a into
- | f 00. stripprefixes and stripsuffixes are stripped from items. Calls function c to postprocess the result.

Parameters:])
 prefix — string to prepend to elements

* items — string or iterable to transform

« suffix — string to append to elements

« stripprefixes — prefix string(s) to strip from elements

« stripsuffixes — suffix string(s) to strip from elements

e env — construction environment for variable interpolation

e ¢ — optional function to perform a transformation on the list. The default is None, which will
select _concat_ixes().
SCons.Defaults.chmod_func (dest , node) — None
Implementation of the Chmod action function.
mode can be either an integer (normally expressed in octal mode, as in 00755) or a string following the syntax of the
POSIX chmod command (for example “ugo+w”). The latter must be converted, since the underlying Python only
takes the numeric form.
SCons.Defaults.chmod_strfunc (dest , node) - str
strfunction for the Chmod action function.
SCons.Defaults.copy_func (dest, src, sym i nks: bool = True) - int
Implementation of the Copy action function.
Copies src to dest. If src is a list, dest must be a directory, or not exist (will be created).
Since Python shutil methods, which know nothing about SCons Nodes, will be called to perform the actual copying,
args are converted to strings first.
If symlinks evaluates true, then a symbolic link will be shallow copied and recreated as a symbolic link; otherwise,
copying a symbolic link will be equivalent to copying the symbolic link’s final target regardless of symbolic link depth.

SCons.Defaults.copy_strfunc (dest , src, sym i nks: bool = True) - str
strfunction for the Copy action function.
SCons.Defaults.delete_func (dest , must _exi st: bool = False) -~ None

Implementation of the Delete action function.
Lets the Python os.unlink() raise an error if dest does not exist, unless must_exist evaluates false (the default).
SCons.Defaults.delete_strfunc (dest , nust _exi st: bool = False) - str
strfunction for the Delete action function.
SCons.Defaults.get_paths_str (dest) — str
Generates a string from dest for use in a strfunction.
If dest is a list, manually converts each elem to a string.
SCons.Defaults.mkdir_func (dest) — None
Implementation of the Mkdir action function.
SCons.Defaults.move_func (dest , src) — None
Implementation of the Move action function.
SCons.Defaults.processDefines (def s) — list[str]
Return list of strings for preprocessor defines from defs.
Resolves the different forms CPPDEFI NES can be assembled in: if the Append/Prepend routines are used beyond a
initial setting it will be a deque, but if written to only once (Environment initializer, or direct write) it can be a multitude
of types.
Any prefix/suffix is handled elsewhere (usually _concat_ixes()).
Changed in version 4.5.0: Bare tuples are now treated the same as tuple-in-sequence, assumed to describe a valued
macro. Bare strings are now split on space. A dictionary is no longer sorted before handling.
SCons.Defaults.touch_func (dest) — None

19

SCons API Documentation

Implementation of the Touch action function.

SCons.Environment module

Base class for construction Environments.

These are the primary objects used to communicate dependency and construction information to the build engine.

Keyword arguments supplied when the construction Environment is created are construction variables used to initialize
the Environment.

cl ass SCons.Environment.Base (pl at f or m=None, t ool s=None, t ool pat h=None, var i abl es=None,

parse_fl ags=None, **kw)

20

Bases: SubstitutionEnvironment

Base class for “real” construction Environments.

These are the primary objects used to communicate dependency and construction information to the build engine.

Keyword arguments supplied when the construction Environment is created are construction variables used to

initialize the Environment.

Action (*ar gs, ** kw)

AddMethod (f unct i on, nane=None) —» None
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.

AddPostAction (fi | es, acti on)

AddPreAction (fi | es, acti on)

Alias (t ar get , sour ce=[], act i on=None, **kw)

AlwaysBuild (*t ar get s)

Append (* *kw) — None
Append values to construction variables in an Environment.
The variable is created if it is not already present.

AppendENVPath (nane, newpat h, envnane: str = 'ENV', sep="', del ete_exi sting: bool = False) -

None
Append path elements to the path name in the envname dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the case
where the env variable is a list instead of a string.
If delete_existing is False, a newpath element already in the path will not be moved to the end (it will be left where
it is).

AppendUnique (del et e_exi sting: bool = False, **kw) - None
Append values uniquely to existing construction variables.
Similar to Append(), but the result may not contain duplicates of any values passed for each given key
(construction variable), so an existing list may need to be pruned first, however it may still contain other duplicates.
If delete_existing is true, removes existing values first, so values move to the end; otherwise (the default) values
are skipped if already present.

Builder (* * kw)

CacheDir (pat h, cust om cl ass=None) - None

Clean (targets,fil es) - None
Mark additional files for cleaning.
files will be removed if any of targets are selected for cleaning - that is, the combination of target selection and -c
clean mode.

Parameters:])])
« targets (files or nodes) — targets to associate files with.

« files (files or nodes) — items to remove if targets are selected.
Clone (t ool s=[], t ool pat h=None, vari abl es=None, par se_f | ags=None, ** kw)
Return a copy of a construction Environment.
The copy is like a Python “deep copy”: independent copies are made recursively of each object, except that a
reference is copied when an object is not deep-copyable (like a function). There are no references to any mutable
objects in the original environment.
Unrecognized keyword arguments are taken as construction variable assignments.

SCons API Documentation

21

Parameters:] o
» tools — list of tools to initialize.

 toolpath — list of paths to search for tools.

e variables — a Variables object to use to populate construction variables from
command-line variables.

» parse_flags — option strings to parse into construction variables.
Added in version 4.8.0: The optional variables parameter was added.
Command (t ar get , sour ce, acti on, **kw)
Set up a one-off build command.
Builds target from source using action, which may be be any type that the Builder factory will accept for an action.
Generates an anonymous builder and calls it, to add the details to the build graph. The builder is not named, added
to BUI LDERS, or otherwise saved.
Recognizes the Builder() keywords source_scanner, target_scanner, source factory and
target factory. All other arguments from kw are passed on to the builder when it is called.
Configure (*ar gs, ** kw)
Decider (f uncti on)
Depends (t ar get , dependency)
Explicity specify that target depends on dependency.
Detect (pr ogs)
Return the first available program from one or more possibilities.

Parameters: progs (str or list) — one or more command names to check for

Dictionary (*args: str,as_dict: bool = False)
Return construction variables from an environment.

Parameters: .))]]
» args (optional) — construction variable names to select. If omitted, all variables are

selected and returned as a dict.

» as_dict — if true, and args is supplied, return the variables and their values in a dict. If
false (the default), return a single value as a scalar, or multiple values in a list.
Returns: A dictionary of construction variables, or a single value or list of values.

Raises: KeyError —if any of args is not in the construction environment.

Changed in version 4.9.0: Added the as_dict keyword arg to specify always returning a dict.

Dir (nan®e, *ar gs, **kw)

Dump (*key: str,format: str = 'pretty") - str
Return string of serialized construction variables.
Produces a “pretty” output of a dictionary of selected construction variables, or all of them. The display format is
selectable. The result is intended for human consumption (e.g, to print), mainly when debugging. Objects that
cannot directly be represented get a placeholder like <function foo at 0x123456> (pretty-print) or
<<non-seriali zabl e: function>> (JSON).

Parameters:) _) _)
» key — variables to format together with their values. If omitted, format the whole dict of

variables,

» format — specify the format to serialize to. " pretty" generates a pretty-printed string,
"j son" a JSON-formatted string.
Raises: ValueError —format is not a recognized serialization format.

Changed in version 4.9.0: key is no longer limited to a single construction variable name. If key is supplied, a
formatted dictionary is generated like the no-arg case - previously a single key displayed just the value.

Entry (name, *ar gs, ** kw)

Environment (* * kw)

Execute (acti on, *ar gs, **kw)
Directly execute an action through an Environment

File (nane, *ar gs, **kw)

FindFile (fi l e, di rs)

SCons API Documentation

FindInstalledFiles ()
returns the list of all targets of the Install and InstallAs Builder.

Findixes (pat hs: Sequence[str],prefix: str,suffix: str) - str | None
Search paths for a path that has prefix and suffix.
Returns on first match.

Parameters: .
» paths — the list of paths or nodes.

 prefix — construction variable for the prefix.

 suffix — construction variable for the suffix.
Returns: The matched path or None

FindSourceFiles (node: str = "") - list
Return a list of all source files.
Flatten (sequence)
GetBuildPath (fi | es)
Glob (pat t er n, ondi sk: bool = True, source: bool = False,strings: bool = False, excl ude=None)
Ignore (t ar get , dependency)
Ignore a dependency.
Literal (st ri nQg)
Local (*t ar get s)
MergeFlags (ar gs, uni que: bool = True) - None
Merge flags into construction variables.
Merges the flags from args into this construction environent. If args is not a dict, it is first converted to one with
flags distributed into appropriate construction variables. See ParseFlags().
As a side effect, if unique is true, a new object is created for each modified construction variable by the loop at the
end. This is silently expected by the Override() parse_flags functionality, which does not want to share the list (or
whatever) with the environment being overridden.

Parameters:
» args — flags to merge
» unique — merge flags rather than appending (default: True). When merging, path
variables are retained from the front, other construction variables from the end.
NoCache (*t ar get s)
Tag target(s) so that it will not be cached.
NoClean (*t ar get s) - list
Tag targets to not be removed in clean mode.
Override (overri des)
Create an override environment from the current environment.
Produces a modified environment where the current variables are overridden by any same-named variables from
the overrides dict.
An override is much more efficient than doing Clone() or creating a hew Environment because it doesn’t copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn't even create
a wrapper object if there are no overrides.
Using this method is preferred over directly instantiating an OverrideEnvirionment because extra checks are
performed, substitution takes place, and there is special handling for a parse_flags keyword argument.
This method is not currently exposed as part of the public API, but is invoked internally when things like builder
calls have keyword arguments, which are then passed as overrides here. Some tools also call this explicitly.

Returns: A proxy environment of type OverrideEnvironment. or the current environment if overrides is
empty.

ParseConfig (command, f unct i on=None, uni que: bool = True)
Parse the result of running a command to update construction vars.
Use f unct i on to parse the output of running command in order to modify the current environment.

22

SCons API Documentation

23

Parameters: .]]] .
» command — a string or a list of strings representing a command and its arguments.

 function — called to process the result of conmand, which will be passed as ar gs. If
function is omitted or None, MergeFlags() is used. Takes 3 args
(env, args, unique)

» unique — whether no duplicate values are allowed (default true)

ParseDepends (fi | ename, nust _exi st =None, onl y_one: bool = False)
Parse a mkdep-style file for explicit dependencies. This is completely abusable, and should be unnecessary in the
“normal” case of proper SCons configuration, but it may help make the transition from a Make hierarchy easier for
some people to swallow. It can also be genuinely useful when using a tool that can write a .d file, but for which
writing a scanner would be too complicated.

ParseFlags (*f | ags) — dict
Return a dict of parsed flags.
Parse f | ags and return a dict with the flags distributed into the appropriate construction variable names. The flags
are treated as a typical set of command-line flags for a GNU-style toolchain, such as might have been generated
by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in this method -
the choices are not expected to be portable to other toolchains.
If one of the f | ags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest of
the string is executed; the result of that evaluation is then added to the dict.

Platform (pl at f orm

Precious (*t ar get s)
Mark targets as precious: do not delete before building.

Prepend (* *kw) - None
Prepend values to construction variables in an Environment.
The variable is created if it is not already present.

PrependENVPath (nanme, newpat h, envnane: str = 'ENV', sep="', del ete_existing: bool = True) -

None
Prepend path elements to the path name in the envname dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the case
where the env variable is a list instead of a string.
If delete_existing is False, a newpath component already in the path will not be moved to the front (it will be left
where it is).

PrependUnique (del et e_exi sting: bool = False, **kw) - None
Prepend values uniquely to existing construction variables.
Similar to Prepend(), but the result may not contain duplicates of any values passed for each given key
(construction variable), so an existing list may need to be pruned first, however it may still contain other duplicates.
If delete_existing is true, removes existing values first, so values move to the front; otherwise (the default) values
are skipped if already present.

Pseudo (*t ar get s)
Mark targets as pseudo: must not exist.

PyPackageDir (nodul enane)

RemoveMethod (f uncti on) —» None
Removes the specified function’'s MethodWrapper from the added_methods list, so we don't re-bind it when
making a clone.

Replace (* *kw) - None
Replace existing construction variables in an Environment with new construction variables and/or values.

Replacelxes (pat h, ol d_prefix, ol d_suffix, new prefix, new suffix)
Replace old_prefix with new_prefix and old_suffix with new_suffix.
env - Environment used to interpolate variables. path - the path that will be modified. old_prefix - construction
variable for the old prefix. old_suffix - construction variable for the old suffix. new_prefix - construction variable for
the new prefix. new_suffix - construction variable for the new suffix.

Repository (*di rs, **kw) —» None
Specify Repository directories to search.

Requires (t ar get , prerequi site)
Specify that prerequisite must be built before target.

SCons API Documentation

Creates an order-only relationship, not a full dependency. prerequisite must exist before target can be built, but a
change to prerequisite does not trigger a rebuild of target.

SConsignFile (nane=".sconsign’, dbm nodul e=None) - None

Scanner (*ar gs, **kw)

SetDefault (* * kw) - None

SideEffect (si de_ef fect, target)
Tell scons that side_effects are built as side effects of building targets.

Split (ar g)
This function converts a string or list into a list of strings or Nodes. This makes things easier for users by allowing
files to be specified as a white-space separated list to be split.

The input rules are:

A single string containing names separated by spaces. These will be split apart at the spaces.
» A single Node instance

+ Alist containing either strings or Node instances. Any strings in the list are not split at spaces.
In all cases, the function returns a list of Nodes and strings.

Tool (tool : str | Callable,tool path: Collection[str] | None = None, **kwar gs) —» Callable
Find and run tool module tool.
tool is generally a string, but can also be a callable object, in which case it is just called, without any of the setup.
The skipped setup includes storing kwargs into the created Tool instance, which is extracted and used when the
instance is called, so in the skip case, the called object will not get the kwargs.
Changed in version 4.2: returns the tool object rather than None.
Value (val ue, bui I t _val ue=None, nane=None)
Return a Value (Python expression) node.
Changed in version 4.0: the name parameter was added.
VariantDir (vari ant _dir,src_dir,duplicate: int = 1) - None
Wherels (pr og, pat h=None, pat hext =None, r ej ect =None)
Find prog in the path.
_eqg__(other)
Compare two environments.
This is used by checks in Builder to determine if duplicate targets have environments that would cause the same
result. The more reliable way (respecting the admonition to avoid poking at _dict directly) would be to use
Di cti onary so this is sure to work even if one or both are are instances of OverrideEnvironment. However an
actual Substi tuti onEnvi ronnent doesn’'t have a Di cti onary method That causes problems for unit tests
written to excercise Subsi t uti onEnvi ronment directly, although nobody else seems to ever instantiate one.
We count on OverrideEnvironment to fake the _dict to make things work.
__getattr__ (nane)
Handle missing attribute in an environment.
Assume this is a builder that's not instantiated, becasue that has been a common failure mode. Could also be a
typo. Emit a message about this to try to help. We can't get too clever, other parts of SCons depend on seeing the
AttributeError that triggers this call, so all we do is produce our own message.
Added in version 4.10.0.
_canonicalize (pat h)
Allow Dirs and strings beginning with # for top-relative.
Note this uses the current env’s fs (in self).
_changed_build (dependency, t arget, prev_ni,repo_node=None) - bool
_changed_content (dependency, t arget, prev_ni ,repo_node=None) - bool
_changed_timestamp_match (dependency, t ar get, prev_ni ,repo_node=None) - bool
_changed_timestamp_newer (dependency, t ar get, prev_ni ,repo_node=None) - bool
_changed_timestamp_then_content (dependency, t ar get, prev_ni, repo_node=None) - bool
_find_toolpath_dir (t p)
_gsm ()
_init_special () - None
Initial the dispatch tables for special handling of special construction variables.
_update (ot her) — None

24

SCons API Documentation

25

Private method to update an environment’s consvar dict directly.
Bypasses the normal checks that occur when users try to set items.
_update_onlynew (ot her) — None
Private method to add new items to an environment’s consvar dict.
Only adds items from other whose keys do not already appear in the existing dict; values from other are not used
for replacement. Bypasses the normal checks that occur when users try to set items.
arg2nodes (ar gs, node_f act ory=<cl ass ' SCons. Envi ronnment. _Nul | ' >, | ookup_l i st =<cl ass
' SCons. Envi ronment . _Nul | ' >, **kw)
Converts args to a list of nodes.

Parameters:] .)))
* just (args - filename strings or nodes to convert; nodes are) — added to the list without

further processing.

» not (node_factory - optional factory to create the nodes; if) — specified, will use this
environment’s f s. Fi | e method.

» to (lookup_list - optional list of lookup functions to call) — attempt to find the file
referenced by each args.

» add. (kw - keyword arguments that represent additional nodes to)
backtick (command) — str
Emulate command substitution.
Provides behavior conceptually like POSIX Shell notation for running a command in backquotes (backticks) by
running conmand and returning the resulting output string.
This is not really a public API any longer, it is provided for the use of ParseFlags() (which supports it using a syntax
of lcommand) and ParseConfig().

Raises: OSError — if the external command returned non-zero exit status.

get (key, def aul t =None)
Emulates the get() method of dictionaries.
get_CacheDir ()
get_builder (nane)
Fetch the builder with the specified name from the environment.
get _factory (factory,default: str = 'File’)
Return a factory function for creating Nodes for this construction environment.
get_scanner (skey)
Find the appropriate scanner given a key (usually a file suffix).
gvars ()
items ()
Emulates the items() method of dictionaries.
keys ()
Emulates the keys() method of dictionaries.
Ivars ()
scanner_map_delete (kw=None) - None
Delete the cached scanner map (if we need to).
setdefault (key, def aul t =None)
Emulates the setdefault() method of dictionaries.
subst (string,raw. int = 0,target=None, sour ce=None, conv=None, execut or: Executor | None =
None, overri des: dict | None = None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.
subst_kw (kw, raw. int = 0,target =None, sour ce=None)
subst_list (string,raw. int = 0,target=None, sour ce=None, conv=None, execut or: Executor | None
= None,overrides: dict | None = None)
Calls through to SCons.Subst.scons_subst_list().
See the documentation for that function.

SCons API Documentation

subst_path (pat h, t ar get =None, sour ce=None)
Substitute a path list.
Turns EntryProxies into Nodes, leaving Nodes (and other objects) as-is.
subst_target_source (string,raw. int = 0,target=None, sour ce=None, conv=None, execut or:
Executor | None = None,overrides: dict | None = None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.
validate_CacheDir_class (cust om _cl ass=None)
Validate the passed custom CacheDir class, or if no args are passed, validate the custom CacheDir class from the
environment.
values ()
Emulates the values() method of dictionaries.

cl ass SCons.Environment.BuilderDict (mappi ng, env)

Bases: UserDict
This is a dictionary-like class used by an Environment to hold the Builders. We need to do this because every time
someone changes the Builders in the Environment’s BUILDERS dictionary, we must update the Environment's
attributes.
_abc_impl = <_abc._abc_data object>
clear () -~ None. Remove all items from D.
copy ()
cl assnet hod fromkeys (i t er abl e, val ue=None)
get (K[, d]) » D[K] if kin D, else d. d defaults to None.
items () —» a set-like object providing a view on D's items
keys () — a set-like object providing a view on D's keys
pop (k[, d]) - v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.
popitem () - (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.
setdefault (k[, d]) - D.get(k,d), also set D[k]=d if k not in D
update ([, E], **F) - None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[K] = E[K] If E present and lacks .keys() method, does: for
(k, v) in E: D[K] = v In either case, this is followed by: for k, v in F.items(): D[k] = v
values () - an object providing a view on D's values

cl ass SCons.Environment.BuilderWrapper (obj : Any, met hod: Cal | abl e, nanme: str | None = None)

Bases: MethodWrapper
A MethodWrapper subclass that that associates an environment with a Builder.
This mainly exists to wrap the __call__() function so that all calls to Builders can have their argument lists massaged
in the same way (treat a lone argument as the source, treat two arguments as target then source, make sure both
target and source are lists) without having to have cut-and-paste code to do it.
As a bit of obsessive backwards compatibility, we also intercept attempts to get or set the “env” or “builder” attributes,
which were the names we used before we put the common functionality into the MethodWrapper base class. We'll
keep this around for a while in case people shipped Tool modules that reached into the wrapper (like the Tool/gt.py
module does, or did). There shouldn’t be a lot attribute fetching or setting on these, so a little extra work shouldn’t
hurt.
clone (new_obj ect)

Returns an object that re-binds the underlying “method” to the specified new object.

SCons.Environment.NoSubstitutionProxy (subj ect)

26

An entry point for returning a proxy subclass instance that overrides the subst*() methods so they don’t actually
perform construction variable substitution. This is specifically intended to be the shim layer in between global function
calls (which don’t want construction variable substitution) and the DefaultEnvironment() (which would substitute
variables if left to its own devices).

We have to wrap this in a function that allows us to delay definition of the class until it's necessary, so that when it
subclasses Environment it will pick up whatever Environment subclass the wrapper interface might have assigned to
SCons.Environment.Environment.

SCons API Documentation

cl ass SCons.Environment.OverrideEnvironment (subj ect, overri des: dict | None = None)

27

Bases: Base

A proxy that implements override environments.

Returns attributes/methods and construction variables from the base environment subject, except that same-named
construction variables from overrides are returned on read access; assignment to a construction variable creates an
override entry - subject is not modified. This is a much lighter weight approach for limited-use setups than cloning an
environment, for example to handle a builder call with keyword arguments that make a temporary change to the
current environment:

env. Progran(target="fo0", source=sources, DEBUG=True)

While the majority of methods are proxied from the underlying environment class, enough plumbing is defined in this
class for it to behave like an ordinary Environment without the caller needing to know it is “special” in some way. We
don't call the initializer of the class we’re proxying, rather depend on it already being properly set up.
Deletion is handled specially, if a variable was explicitly deleted, it should no longer appear to be in the env, but we
also don’t want to modify the subject environment.
OverrideEnvironment can nest arbitratily, subject can be an existing instance. Although instances can be instantiated
directly, the expected use is to call the Override() method as a factory.
Note Python does not give us a way to assure the subject environment is not modified. Assigning to a variable
creates a new entry in the override, but moditying a variable will first fetch the one from the subject, and if mutable, it
will just be modified in place. For example: over _env. Append(CPPDEFI NES="- O'), where CPPDEFI NES is an
existing list or CLVar, will successfully append to CPPDEFI NES in the subject env. To avoid such leakage, clients
such as Scanners, Emitters and Action functions called by a Builder using override syntax must take care if modifying
an env (which is not advised anyway) in case they were passed an Over ri deEnvi r onnent .
Action (*ar gs, ** kw)
AddMethod (f unct i on, nane=None) - None
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.
AddPostAction (fi | es, acti on)
AddPreAction (fi | es, acti on)
Alias (t ar get , sour ce=[], act i on=None, **kw)
AlwaysBuild (*t ar get s)
Append (* *kw) — None
Append values to construction variables in an Environment.
The variable is created if it is not already present.
AppendENVPath (nane, newpat h, envnane: str = 'ENV', sep="',del ete_exi sting: bool = False) -
None
Append path elements to the path name in the envname dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the case
where the env variable is a list instead of a string.
If delete_existing is False, a newpath element already in the path will not be moved to the end (it will be left where
itis).
AppendUnique (del et e_exi sting: bool = False, **kw) - None
Append values uniquely to existing construction variables.
Similar to Append(), but the result may not contain duplicates of any values passed for each given key
(construction variable), so an existing list may need to be pruned first, however it may still contain other duplicates.
If delete_existing is true, removes existing values first, so values move to the end; otherwise (the default) values
are skipped if already present.
Builder (* * kw)
CacheDir (pat h, cust om cl ass=None) - None
Clean (targets,fil es) - None
Mark additional files for cleaning.
files will be removed if any of targets are selected for cleaning - that is, the combination of target selection and -c
clean mode.

SCons API Documentation

28

Parameters:]]]]
« targets (files or nodes) — targets to associate files with.

« files (files or nodes) — items to remove if targets are selected.
Clone (t ool s=[], t ool pat h=None, vari abl es=None, par se_f | ags=None, ** kw)
Return a copy of a construction Environment.
The copy is like a Python “deep copy”: independent copies are made recursively of each object, except that a
reference is copied when an object is not deep-copyable (like a function). There are no references to any mutable
objects in the original environment.
Unrecognized keyword arguments are taken as construction variable assignments.

Parameters:) .
 tools — list of tools to initialize.

* toolpath — list of paths to search for tools.

» variables — a Variables object to use to populate construction variables from
command-line variables.

» parse_flags — option strings to parse into construction variables.
Added in version 4.8.0: The optional variables parameter was added.
Command (t ar get , sour ce, acti on, **kw)
Set up a one-off build command.
Builds target from source using action, which may be be any type that the Builder factory will accept for an action.
Generates an anonymous builder and calls it, to add the details to the build graph. The builder is not named, added
to BUI LDERS, or otherwise saved.
Recognizes the Builder() keywords source_scanner, target_scanner, source_factory and
target _factory. All other arguments from kw are passed on to the builder when it is called.
Configure (*ar gs, ** kw)
Decider (f uncti on)
Depends (t ar get , dependency)
Explicity specify that target depends on dependency.
Detect (pr ogs)
Return the first available program from one or more possibilities.

Parameters: progs (str or list) — one or more command names to check for

Dictionary (*ar gs, as_di ct: bool = False)
Return construction variables from an environment.
Behavior is as described for SubstitutionEnvironment.Dictionary but understanda about the override.

Raises: KeyError —if any of args is not in the construction environment.

Dir (nane, *ar gs, **kw)

Dump (*key: str,format: str = 'pretty’) - str
Return string of serialized construction variables.
Produces a “pretty” output of a dictionary of selected construction variables, or all of them. The display format is
selectable. The result is intended for human consumption (e.g, to print), mainly when debugging. Objects that
cannot directly be represented get a placeholder like <function foo at 0x123456> (pretty-print) or
<<non-serializabl e: function>>(JSON).

Parameters:] .) .)
» key — variables to format together with their values. If omitted, format the whole dict of

variables,

» format — specify the format to serialize to. " pr et t y" generates a pretty-printed string,
"j son" a JSON-formatted string.
Raises: ValueError — format is not a recognized serialization format.

Changed in version 4.9.0: key is no longer limited to a single construction variable name. If key is supplied, a
formatted dictionary is generated like the no-arg case - previously a single key displayed just the value.

Entry (name, *ar gs, ** kw)

Environment (* * kw)

Execute (acti on, *ar gs, **kw)

SCons API Documentation

Directly execute an action through an Environment
File (name, *ar gs, **kw)
FindFile (fil e, dirs)
FindInstalledFiles ()
returns the list of all targets of the Install and InstallAs Builder.
Findixes (pat hs: Sequence[str],prefix: str,suffix: str) - str | None
Search paths for a path that has prefix and suffix.
Returns on first match.

Parameters: .
» paths — the list of paths or nodes.

 prefix — construction variable for the prefix.

 suffix — construction variable for the suffix.
Returns: The matched path or None

FindSourceFiles (node: str = "") - list
Return a list of all source files.
Flatten (sequence)
GetBuildPath (fi | es)
Glob (pat t er n, ondi sk: bool = True, source: bool = False,strings: bool = False, excl ude=None)
Ignore (t ar get , dependency)
Ignore a dependency.
Literal (st ri ng)
Local (*t ar get s)
MergeFlags (ar gs, uni que: bool = True) - None
Merge flags into construction variables.
Merges the flags from args into this construction environent. If args is not a dict, it is first converted to one with
flags distributed into appropriate construction variables. See ParseFlags().
As a side effect, if unique is true, a new object is created for each modified construction variable by the loop at the
end. This is silently expected by the Override() parse_flags functionality, which does not want to share the list (or
whatever) with the environment being overridden.

Parameters:
» args — flags to merge
» unique — merge flags rather than appending (default: True). When merging, path
variables are retained from the front, other construction variables from the end.
NoCache (*t ar get s)
Tag target(s) so that it will not be cached.
NoClean (*t ar get s) - list
Tag targets to not be removed in clean mode.
Override (overri des)
Create an override environment from the current environment.
Produces a modified environment where the current variables are overridden by any same-named variables from
the overrides dict.
An override is much more efficient than doing Clone() or creating a hew Environment because it doesn’t copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn't even create
a wrapper object if there are no overrides.
Using this method is preferred over directly instantiating an OverrideEnvirionment because extra checks are
performed, substitution takes place, and there is special handling for a parse_flags keyword argument.
This method is not currently exposed as part of the public API, but is invoked internally when things like builder
calls have keyword arguments, which are then passed as overrides here. Some tools also call this explicitly.

Returns: A proxy environment of type OverrideEnvironment. or the current environment if overrides is
empty.
ParseConfig (command, f unct i on=None, uni que: bool = True)

Parse the result of running a command to update construction vars.
Use f unct i on to parse the output of running comand in order to modify the current environment.

29

SCons API Documentation

30

Parameters: .]]] .
» command — a string or a list of strings representing a command and its arguments.

 function — called to process the result of conmand, which will be passed as ar gs. If
function is omitted or None, MergeFlags() is used. Takes 3 args
(env, args, unique)

» unique — whether no duplicate values are allowed (default true)

ParseDepends (fi | ename, nust _exi st =None, onl y_one: bool = False)
Parse a mkdep-style file for explicit dependencies. This is completely abusable, and should be unnecessary in the
“normal” case of proper SCons configuration, but it may help make the transition from a Make hierarchy easier for
some people to swallow. It can also be genuinely useful when using a tool that can write a .d file, but for which
writing a scanner would be too complicated.

ParseFlags (*f | ags) — dict
Return a dict of parsed flags.
Parse f | ags and return a dict with the flags distributed into the appropriate construction variable names. The flags
are treated as a typical set of command-line flags for a GNU-style toolchain, such as might have been generated
by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in this method -
the choices are not expected to be portable to other toolchains.
If one of the f | ags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest of
the string is executed; the result of that evaluation is then added to the dict.

Platform (pl at f orm

Precious (*t ar get s)
Mark targets as precious: do not delete before building.

Prepend (* *kw) - None
Prepend values to construction variables in an Environment.
The variable is created if it is not already present.

PrependENVPath (nanme, newpat h, envnane: str = 'ENV', sep="', del ete_existing: bool = True) -

None
Prepend path elements to the path name in the envname dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the case
where the env variable is a list instead of a string.
If delete_existing is False, a newpath component already in the path will not be moved to the front (it will be left
where it is).

PrependUnique (del et e_exi sting: bool = False, **kw) - None
Prepend values uniquely to existing construction variables.
Similar to Prepend(), but the result may not contain duplicates of any values passed for each given key
(construction variable), so an existing list may need to be pruned first, however it may still contain other duplicates.
If delete_existing is true, removes existing values first, so values move to the front; otherwise (the default) values
are skipped if already present.

Pseudo (*t ar get s)
Mark targets as pseudo: must not exist.

PyPackageDir (nodul enane)

RemoveMethod (f uncti on) —» None
Removes the specified function’'s MethodWrapper from the added_methods list, so we don't re-bind it when
making a clone.

Replace (* *kw) - None
Replace existing construction variables in an Environment with new construction variables and/or values.

Replacelxes (pat h, ol d_prefix, ol d_suffix, new prefix, new suffix)
Replace old_prefix with new_prefix and old_suffix with new_suffix.
env - Environment used to interpolate variables. path - the path that will be modified. old_prefix - construction
variable for the old prefix. old_suffix - construction variable for the old suffix. new_prefix - construction variable for
the new prefix. new_suffix - construction variable for the new suffix.

Repository (*di rs, **kw) —» None
Specify Repository directories to search.

Requires (t ar get , prerequi site)
Specify that prerequisite must be built before target.

SCons API Documentation

31

Creates an order-only relationship, not a full dependency. prerequisite must exist before target can be built, but a
change to prerequisite does not trigger a rebuild of target.

SConsignFile (nane=".sconsign’, dbm nodul e=None) - None

Scanner (*ar gs, **kw)

SetDefault (* * kw) - None

SideEffect (si de_ef fect, target)
Tell scons that side_effects are built as side effects of building targets.

Split (ar g)
This function converts a string or list into a list of strings or Nodes. This makes things easier for users by allowing
files to be specified as a white-space separated list to be split.

The input rules are:

A single string containing names separated by spaces. These will be split apart at the spaces.
» A single Node instance

+ Alist containing either strings or Node instances. Any strings in the list are not split at spaces.
In all cases, the function returns a list of Nodes and strings.

Tool (tool : str | Callable,tool path: Collection[str] | None = None, **kwar gs) —» Callable
Find and run tool module tool.
tool is generally a string, but can also be a callable object, in which case it is just called, without any of the setup.
The skipped setup includes storing kwargs into the created Tool instance, which is extracted and used when the
instance is called, so in the skip case, the called object will not get the kwargs.
Changed in version 4.2: returns the tool object rather than None.
Value (val ue, bui I t _val ue=None, nane=None)
Return a Value (Python expression) node.
Changed in version 4.0: the name parameter was added.
VariantDir (vari ant _dir,src_dir,duplicate: int = 1) - None
Wherels (pr og, pat h=None, pat hext =None, r ej ect =None)
Find prog in the path.
__contains__ (key) - bool
Emulates the cont ai ns method of dictionaries.
Backfills from the subject environment if key is not in the override and not deleted.
__ delitem__ (key) — None
Delete key from override.
Makes key not visible in the override. Previously implemented by deleting from overri des and from __subj ect,
which keeps __getitem__() from filling it back in next time. However, that approach was a form of leak, as the
subject environment was modified. So instead we log that it's deleted and use that to make decisions elsewhere.
_eqg__(other)
Compare two environments.
This is used by checks in Builder to determine if duplicate targets have environments that would cause the same
result. The more reliable way (respecting the admonition to avoid poking at _dict directly) would be to use
Di ctionary so this is sure to work even if one or both are are instances of OverrideEnvironment. However an
actual Substi tuti onEnvi ronnent doesn’'t have a Di cti onary method That causes problems for unit tests
written to excercise Subsi t uti onEnvi ronment directly, although nobody else seems to ever instantiate one.
We count on OverrideEnvironment to fake the _dict to make things work.
__getitem___ (key)
Return the visible value of key.
Backfills from the subject env if key doesn’t have an entry in the override, and is not explicity deleted.
_canonicalize (pat h)
Allow Dirs and strings beginning with # for top-relative.
Note this uses the current env’s fs (in self).
_changed_build (dependency, t arget, prev_ni,repo_node=None) - bool
_changed_content (dependency, t arget, prev_ni ,repo_node=None) - bool
_changed_timestamp_match (dependency, t ar get, prev_ni ,repo_node=None) - bool
_changed_timestamp_newer (dependency, t ar get, prev_ni ,repo_node=None) - bool
_changed_timestamp_then_content (dependency, t ar get, prev_ni, repo_node=None) - bool

SCons API Documentation

_find_toolpath_dir (t p)
_gsm ()
_init_special () - None

Initial the dispatch tables for special handling of special construction variables.
_update (ot her) — None

Private method to update an environment’s consvar dict directly.

Bypasses the normal checks that occur when users try to set items.
_update_onlynew (ot her) — None

Update a dict with new keys.

Unlike the .update method, if the key is already present, it is not replaced.
arg2nodes (ar gs, node_f act ory=<cl ass ' SCons. Envi ronnment. _Nul | ' >, | ookup_l i st =<cl ass
' SCons. Envi ronment . _Nul | ' >, **kw)

Converts args to a list of nodes.

Parameters:] .)))
* just (args - filename strings or nodes to convert; nodes are) — added to the list without

further processing.

» not (node_factory - optional factory to create the nodes; if) — specified, will use this
environment’s f s. Fi | e method.

» to (lookup_list - optional list of lookup functions to call) — attempt to find the file
referenced by each args.

» add. (kw - keyword arguments that represent additional nodes to)
backtick (command) — str
Emulate command substitution.
Provides behavior conceptually like POSIX Shell notation for running a command in backquotes (backticks) by
running conmand and returning the resulting output string.
This is not really a public API any longer, it is provided for the use of ParseFlags() (which supports it using a syntax
of lcommand) and ParseConfig().

Raises: OSError — if the external command returned non-zero exit status.

get (key, def aul t =None)
Emulates the get method of dictionaries.
Backfills from the subject environment if key is not in the override and not deleted.
get_CacheDir ()
get_builder (nane)
Fetch the builder with the specified name from the environment.
get _factory (factory,default: str = 'File’)
Return a factory function for creating Nodes for this construction environment.
get_scanner (skey)
Find the appropriate scanner given a key (usually a file suffix).
gvars ()
items ()
Emulates the i t ens method of dictionaries.
keys ()
Emulates the keys method of dictionaries.
Ivars ()
scanner_map_delete (kw=None) - None
Delete the cached scanner map (if we need to).
setdefault (key, def aul t =None)
Emulates the set def aul t method of dictionaries.
subst (string,raw. int = 0,target=None, sour ce=None, conv=None, execut or: Executor | None =
None, overri des: dict | None = None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.

32

SCons API Documentation

subst_kw (kw, raw. int = 0,target =None, sour ce=None)
subst_list (string,raw. int = 0,target=None, sour ce=None, conv=None, execut or: Executor | None
= None,overrides: dict | None = None)
Calls through to SCons.Subst.scons_subst_list().
See the documentation for that function.
subst_path (pat h, t ar get =None, sour ce=None)
Substitute a path list.
Turns EntryProxies into Nodes, leaving Nodes (and other objects) as-is.
subst_target_source (string,raw. int = 0,target=None, sour ce=None, conv=None, execut or:
Executor | None = None,overrides: dict | None = None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.
validate_CacheDir_class (cust om _cl ass=None)
Validate the passed custom CacheDir class, or if no args are passed, validate the custom CacheDir class from the
environment.
values ()
Emulates the val ues method of dictionaries.
cl ass SCons.Environment.SubstitutionEnvironment (* * kw)
Bases: object
Base class for different flavors of construction environments.
This class contains a minimal set of methods that handle construction variable expansion and conversion of strings to
Nodes, which may or may not be actually useful as a stand-alone class. Which methods ended up in this class is
pretty arbitrary right now. They’re basically the ones which we’ve empirically determined are common to the different
construction environment subclasses, and most of the others that use or touch the underlying dictionary of
construction variables.
Eventually, this class should contain all the methods that we determine are necessary for a “minimal” interface to the
build engine. A full “native Python” SCons environment has gotten pretty heavyweight with all of the methods and
Tools and construction variables we’ve jammed in there, so it would be nice to have a lighter weight alternative for
interfaces that don't need all of the bells and whistles. (At some point, we’ll also probably rename this class “Base,”
since that more reflects what we want this class to become, but because we've released comments that tell people to
subclass Environment.Base to create their own flavors of construction environment, we’ll save that for a future
refactoring when this class actually becomes useful.)
Special note: methods here and in actual child classes might be called via proxy from an OverrideEnvironment, which
isnt in the class inheritance chain. Take care that methods called with a self that's really an
Overri deEnvi ronnent don’'t make bad assumptions.
AddMethod (f unct i on, name=None) —» None
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.
MergeFlags (ar gs, uni que: bool = True) - None
Merge flags into construction variables.
Merges the flags from args into this construction environent. If args is not a dict, it is first converted to one with
flags distributed into appropriate construction variables. See ParseFlags().
As a side effect, if unique is true, a new object is created for each modified construction variable by the loop at the
end. This is silently expected by the Override() parse_flags functionality, which does not want to share the list (or
whatever) with the environment being overridden.

Parameters:
» args — flags to merge
» unique — merge flags rather than appending (default: True). When merging, path
variables are retained from the front, other construction variables from the end.
Override (overri des)

Create an override environment from the current environment.

Produces a modified environment where the current variables are overridden by any same-named variables from

the overrides dict.

33

SCons API Documentation

34

An override is much more efficient than doing Clone() or creating a new Environment because it doesn’t copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn’t even create
a wrapper object if there are no overrides.

Using this method is preferred over directly instantiating an OverrideEnvirionment because extra checks are
performed, substitution takes place, and there is special handling for a parse_flags keyword argument.

This method is not currently exposed as part of the public API, but is invoked internally when things like builder
calls have keyword arguments, which are then passed as overrides here. Some tools also call this explicitly.

Returns: A proxy environment of type OverrideEnvironment. or the current environment if overrides is
empty.

ParseFlags (*f | ags) — dict

Return a dict of parsed flags.

Parse f | ags and return a dict with the flags distributed into the appropriate construction variable names. The flags
are treated as a typical set of command-line flags for a GNU-style toolchain, such as might have been generated
by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in this method -
the choices are not expected to be portable to other toolchains.

If one of the f | ags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest of
the string is executed; the result of that evaluation is then added to the dict.

RemoveMethod (f uncti on) —» None

Removes the specified function’s MethodWrapper from the added_methods list, so we don't re-bind it when
making a clone.

__eq__ (ot her)

Compare two environments.

This is used by checks in Builder to determine if duplicate targets have environments that would cause the same
result. The more reliable way (respecting the admonition to avoid poking at _dict directly) would be to use
Di ctionary so this is sure to work even if one or both are are instances of OverrideEnvironment. However an
actual Substi tuti onEnvi ronnment doesn’t have a Di cti onary method That causes problems for unit tests
written to excercise Subsi t uti onEnvi ronment directly, although nobody else seems to ever instantiate one.
We count on OverrideEnvironment to fake the _dict to make things work.

_init_special () - None

Initial the dispatch tables for special handling of special construction variables.

arg2nodes (ar gs, node_f act ory=<cl ass ' SCons. Envi ronnment. Nul | ' >, 1 ookup_|i st=<cl ass
' SCons. Envi ronment. _Nul |' >, **kw)

Converts args to a list of nodes.

Parameters:) _)))
* just (args - filename strings or nodes to convert; nodes are) — added to the list without

further processing.

* not (node_factory - optional factory to create the nodes; if) — specified, will use this
environment's f s. Fi | e method.

» to (lookup_list - optional list of lookup functions to call) — attempt to find the file
referenced by each args.

» add. (kw - keyword arguments that represent additional nodes to)

backtick (command) - str

Emulate command substitution.

Provides behavior conceptually like POSIX Shell notation for running a command in backquotes (backticks) by
running command and returning the resulting output string.

This is not really a public API any longer, it is provided for the use of ParseFlags() (which supports it using a syntax
of lcommand) and ParseConfig().

Raises: OSError — if the external command returned non-zero exit status.

get (key, def aul t =None)

Emulates the get() method of dictionaries.

gvars ()
items ()

Emulates the items() method of dictionaries.

SCons API Documentation

keys ()
Emulates the keys() method of dictionaries.
Ivars ()
setdefault (key, def aul t =None)
Emulates the setdefault() method of dictionaries.
subst (string,raw. int = 0,target=None, sour ce=None, conv=None, execut or: Executor | None =
None, overri des: dict | None = None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.
subst_kw (kw, raw. int = 0,target =None, sour ce=None)
subst_list (string,raw. int = 0,target=None, sour ce=None, conv=None, execut or: Executor | None
= None,overrides: dict | None = None)
Calls through to SCons.Subst.scons_subst_list().
See the documentation for that function.
subst_path (pat h, t ar get =None, sour ce=None)
Substitute a path list.
Turns EntryProxies into Nodes, leaving Nodes (and other objects) as-is.
subst_target_source (string,raw. int = 0,target=None, sour ce=None, conv=None, execut or:
Executor | None = None,overrides: dict | None = None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.
values ()
Emulates the values() method of dictionaries.

cl ass SCons.Environment. Null

Bases: object

SCons.Environment._add_cppdefines (env_di ct: dict, val, prepend: bool = False, uni que: bool =
False, del et e_exi sting: bool = False) - None

Adds to CPPDEFI NES, using the rules for C preprocessor macros.

This is split out from regular construction variable addition because these entries can express either a macro with a
replacement value or one without. A macro with replacement value can be supplied as val in three ways: as a
combined string " nane=val ue"; as a tuple (nane, val ue), or as an entry in a dictionary { "nane": val ue}. A
list argument with multiple macros can also be given.

Additions can be unconditional (duplicates allowed) or uniquing (no dupes).

Note if a replacement value is supplied, unique requires a full match to decide uniqueness - both the macro name
and the replacement. The inner _is_in() is used to figure that out.

Parameters:) o o -
< env_dict — the dictionary containing the CPPDEFI NES to be modified.

« val — the value to add, can be string, sequence or dict
e prepend — whether to put val in front or back.
e unique — whether to add val if it already exists.

« delete_existing — if unique is true, add val after removing previous.
Added in version 4.5.0.

SCons.Environment._del SCANNERS (env, key) — None
SCons.Environment._delete_duplicates (I , keep_| ast)

Delete duplicates from a sequence, keeping the first or last.

SCons.Environment._null

alias of _Null

SCons.Environment._set BUILDERS (env, key, val ue)
SCons.Environment._set SCANNERS (env, key, val ue) —» None
SCons.Environment._set_future_reserved (env, key, val ue) - None

35

SCons API Documentation

SCons.Environment._set reserved (env, key, val ue) - None

SCons.Environment.alias_builder (env, t ar get , sour ce) — None
SCons.Environment.apply_tools (env, t ool s, t ool pat h) -~ None
SCons.Environment.copy_non_reserved_keywords (di ct)
SCons.Environment.default_copy_from_cache (env, src, dst)
SCons.Environment.default_copy_to_cache (env, src, dst)
SCons.Environment.default_decide_source (dependency, t ar get, prev_ni , repo_node=None)
SCons.Environment.default_decide_target (dependency, t ar get, prev_ni , r epo_node=None)

SCons.Errors module
SCons exception classes.

Used to handle internal and user errors in SCons.
exception SCons.Errors.BuildError (node=None, errstr: str = 'Unknown error, status: int = 2,
exitstatus: int = 2,fil enanme=None, execut or: Executor | None = None, acti on=None,
conmand=None, exc_i nf o=(None, None, None))

Bases: Exception

SCons Errors that can occur while building.

A BuildError exception contains information both about the erorr itself, and what caused the error.

Variables:) o)
* node — (cause) the error occurred while building this target node(s)

* errstr — (info) a description of the error message

 status — (info) the return code of the action that caused the build error. Must be set to a
non-zero value even if the build error is not due to an action returning a non-zero returned

code.

» exitstatus — (info) SCons exit status due to this build error. Must be nonzero unless due
to an explicit Exit() call. Not always the same as st at us, since actions return a status
code that should be respected, but SCons typically exits with 2 irrespective of the return

value of the failed action.

« filename — (info) The name of the file or directory that caused the build error. Set to None
if no files are associated with this error. This might be different from the target being built.
For example, failure to create the directory in which the target file will appear. It can be

None if the error is not due to a particular filename.

» executor — (cause) the executor that caused the build to fail (might be None if the build

failures is not due to the executor failing)

» action — (cause) the action that caused the build to fail (might be None if the build failures

is not due to the an action failure)

« command — (cause) the command line for the action that caused the build to fail (might

be None if the build failures is not due to the an action failure)

« exc_info — (info) Info about exception that caused the build error.
(None, None, None) if this build error is not due to an exception.

excepti on SCons.Errors.ExplicitExit (hode=None, st at us=None, * ar gs)

Bases: Exception
excepti on SCons.Errors.InternalError

Bases: Exception
exception SCons.Errors.MSVCError

Bases: OSError
excepti on SCons.Errors.SConsEnvironmentError

Bases: Exception
except i on SCons.Errors.StopError

Bases: Exception
excepti on SCons.Errors.UserError

36

SCons API Documentation

Bases: Exception
SCons.Errors.convert_to_BuildError (st at us, exc_i nf o=None)
Convert a return code to a BuildError Exception.
The buildError.status we set here will normally be used as the exit status of the “scons” process.

Parameters: .]
 status — can either be a return code or an Exception.

< exc_info (tuple, optional) — explicit exception information.

SCons.Executor module

Execute actions with specific lists of target and source Nodes.
SCons.Executor.AddBatchExecutor (key: str, executor: Executor) — None
cl ass SCons.Executor.Batch (t ar get s=[], sour ces=[])
Bases: object
Remembers exact association between targets and sources of executor.
sources
targets
cl ass SCons.Executor.Executor (acti on, env=None, overri del i st =[{}], t ar get s=[], sour ces=[],
bui | der _kw={})
Bases: object
A class for controlling instances of executing an action.
This largely exists to hold a single association of an action, environment, list of environment override dictionaries,
targets and sources for later processing as needed.
_do_execute
_execute_str
_get_changed_sources (*ar gs, **kw)
_get_changed_targets (*ar gs, ** kw)
_get_changes () - None
Populate all the changed/unchanged lists.
Changed in version 4.10.0: _changed_sources, _changed_ targets, _unchanged_sources and
_unchanged_t ar get s are no longer separate instance attributes, but rather saved in the _memo dict.
_get_source (*ar gs, **kw)
_get_sources (*ar gs, **kw)
_get_target (*ar gs, **kw)
_get_targets (*ar gs, * *kw)
_get_unchanged_sources (*ar gs, ** kw)
_get_unchanged_targets (*ar gs, ** kw)
_get_unignored_sources_key (node, i gnor e=())
_memo
action_list
add_batch (t ar get s, sour ces) — None
Add pair of associated target and source to this Executor’s list. This is necessary for “batch” Builders that can be
called repeatedly to build up a list of matching target and source files that will be used in order to update multiple
target files at once from multiple corresponding source files, for tools like MSVC that support it.
add_post_action (acti on) -~ None
add_pre_action (acti on) -~ None
add_sources (sour ces) - None
Add source files to this Executor’s list. This is necessary for “multi” Builders that can be called repeatedly to build
up a source file list for a given target.
batches
builder_kw
cleanup () - None
env
get_action_list ()
get_action_side_effects ()
Returns all side effects for all batches of this Executor used by the underlying Action.

37

SCons API Documentation

get_action_targets ()

get_all_children ()
Returns all unique children (dependencies) for all batches of this Executor.
The Taskmaster can recognize when it's already evaluated a Node, so we don’t have to make this list unique for its
intended canonical use case, but we expect there to be a lot of redundancy (long lists of batched .cc files
#including the same .h files over and over), so removing the duplicates once up front should save the Taskmaster
a lot of work.

get_all_prerequisites ()
Returns all unique (order-only) prerequisites for all batches of this Executor.

get_all_sources ()
Returns all sources for all batches of this Executor.

get_all_targets ()
Returns all targets for all batches of this Executor.

get_build_env ()
Fetch or create the appropriate build Environment for this Executor.

get_build_scanner_path (scanner)
Fetch the scanner path for this executor’s targets and sources.

get_contents ()
Fetch the signature contents. This is the main reason this class exists, so we can compute this once and cache it
regardless of how many target or source Nodes there are.
Returns bytes

get_implicit_deps ()
Return the executor’s implicit dependencies, i.e. the nodes of the commands to be executed.

get_kw (kw={})

get_lIvars ()

get_sources ()

get_timestamp () - int
Fetch a time stamp for this Executor. We don’t have one, of course (only files do), but this is the interface used by
the timestamp module.

get_unignored_sources (node, i gnor e=())

Ivars

nullify () - None

overridelist

post_actions

pre_actions

prepare ()
Preparatory checks for whether this Executor can go ahead and (try to) build its targets.

scan (scanner, node_I| i st) — None
Scan a list of this Executor’s files (targets or sources) for implicit dependencies and update all of the targets with
them. This essentially short-circuits an N*M scan of the sources for each individual target, which is a hell of a lot
more efficient.

scan_sources (scanner) —» None

scan_targets (scanner) — None

set_action_list (act i on)

SCons.Executor.GetBatchExecutor (key: str) - Executor
cl ass SCons.Executor.Null (*ar gs, ** kw)

38

Bases: object
A null Executor, with a null build Environment, that does nothing when the rest of the methods call it.
This might be able to disappear when we refactor things to disassociate Builders from Nodes entirely, so we're not
going to worry about unit tests for this—at least for now.
Note the slots have to match Executor exactly, or the _morph() will fail.
_do_execute
_execute_str
_memo
_morph () - None
Morph this Null executor to a real Executor object.

SCons API Documentation

action_list

add_post_action (acti on) -~ None
add_pre_action (acti on) - None
batches

builder_kw

cleanup () - None

env

get_action_list ()
get_action_side_effects ()
get_action_targets ()
get_all_children ()
get_all_prerequisites ()
get_all_sources ()

get_all_targets ()

get_build_env ()
get_build_scanner_path ()
get_contents () - str
get_unignored_sources (* ar gs, * *kw)
Ivars

overridelist

post_actions

pre_actions

prepare () - None

set_action_list (act i on) — None

cl ass SCons.Executor.NullEnvironment (* ar gs, * * kwar gs)

Bases: Null

SCons = <module 'SCons' from '/Users/bdbaddog/devel/scons/git/as_scons/SCons/__init__.py™>
_CacheDir = <SCons.CacheDir.CacheDir object>

_CacheDir_path = None

get_CacheDir ()

cl ass SCons.Executor.TSList (f unc)

39

Bases: UserList
A class that implements $TARGETS or $SOURCES expansions by wrapping an executor Method. This class is used
in the Executor.lvars() to delay creation of NodeList objects until they’re needed.
Note that we subclass collections.UserList purely so that the is_Sequence() function will identify an object of this
class as a list during variable expansion. We're not really using any collections.UserList methods in practice.
_abc_impl = <_abc._abc_data object>
append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t en)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)

SCons API Documentation

cl ass SCons.Executor.TSObject (f unc)
Bases: object
A class that implements $TARGET or $SOURCE expansions by wrapping an Executor method.
SCons.Executor.execute_action_list (obj , t ar get , kw)
Actually execute the action list.
SCons.Executor.execute_actions_str (obj)
SCons.Executor.execute_nothing (obj , t ar get , kw) - int
SCons.Executor.execute_null_str (obj) — str
SCons.Executor.get_NullEnvironment ()
Use singleton pattern for Null Environments.
SCons.Executor.rfile (node)
A function to return the results of a Node’s rfile() method, if it exists, and the Node itself otherwise (if it's a Value
Node, e.g.).

SCons.Memoize module

Decorator-based memoizer to count caching stats.

A decorator-based implementation to count hits and misses of the computed values that various methods cache in
memory.

Use of this modules assumes that wrapped methods be coded to cache their values in a consistent way. In particular, it
requires that the class uses a dictionary named “_memo” to store the cached values.

Here is an example of wrapping a method that returns a computed value, with no input parameters:

@Cons. Menpi ze. Count Met hodCal |
def foo(self):

Menoi zati on
Menoi zati on
Menoi zati on
Menoi zati on

try:

return self. _meno[' foo']
except KeyError:

pass

H HHH

result = self.conpute_foo_val ue()

H

self. nmemo['foo'] = result Menoi zat i on

return result
Here is an example of wrapping a method that will return different values based on one or more input arguments:

def _bar_key(sel f, argument): # Menpi zati on
return argunent # Menpi zati on

@Cons. Menoi ze. Count Di ct Cal | (_bar _key)
def bar(self, argument):

meno_key = argunent # Menpi zati on
try: # Menpi zati on
meno_dict = self._meno[' bar'] # Menpi zati on
except KeyError: # Menpi zati on
meno_dict = {} # Menpi zati on
self. nmeno['dict'] = menp_dict # Menpi zati on
el se: # Menoi zati on
try: # Menpi zati on
#

return nmeno_di ct [meno_key] Menoi zat i on

40

SCons API Documentation

except KeyError: # Menoi zation
pass # Menoi zation

result = self.conpute_bar_val ue(argunent)
meno_di ct[meno_key] = result # Menoi zation

return result

Deciding what to cache is tricky, because different configurations can have radically different performance tradeoffs,
and because the tradeoffs involved are often so non-obvious. Consequently, deciding whether or not to cache a given
method will likely be more of an art than a science, but should still be based on available data from this module. Here
are some VERY GENERAL guidelines about deciding whether or not to cache return values from a method that's being
called a lot:

— The first question to ask is, “Can we change the calling code

so this method isn’t called so often?” Sometimes this can be done by changing the algorithm. Sometimes the
caller should be memoized, not the method you're looking at.

The memoized function should be timed with multiple configurations to make sure it doesn’t inadvertently slow
down some other configuration.

—When memoizing values based on a dictionary key composed of

input arguments, you don’t need to use all of the arguments if some of them don't affect the return values.
cl ass SCons.Memoize.CountDict (cl s_name, net hod_nane, keynaker)
Bases: Counter
A counter class for memoized values stored in a dictionary, with keys based on the method’s input arguments.
A CountDict object is instantiated in a decorator for each of the class’s methods that memoizes its return value in a
dictionary, indexed by some key that can be computed from one or more of its input arguments.
count (*ar gs, **kw) - None
Counts whether the computed key value is already present in the memoization dictionary (a hit) or not (a miss).
display () - None
key ()
SCons.Memoize.CountDictCall (keyf unc)
Decorator for counting memoizer hits/misses while accessing dictionary values with a key-generating function. Like
CountMethodCall above, it wraps the given method fn and uses a CountDict object to keep track of the caching
statistics. The dict-key function keyfunc has to get passed in the decorator call and gets stored in the CountDict
instance. Wrapping gets enabled by calling EnableMemoization().
SCons.Memoize.CountMethodCall (f n)
Decorator for counting memoizer hits/misses while retrieving a simple value in a class method. It wraps the given
method fn and uses a CountValue object to keep track of the caching statistics. Wrapping gets enabled by calling
EnableMemoization().
cl ass SCons.Memoize.CountValue (cl s_nane, net hod_nane)
Bases: Counter
A counter class for simple, atomic memoized values.
A CountValue object should be instantiated in a decorator for each of the class’s methods that memoizes its return
value by simply storing the return value in its _memo dictionary.
count (*ar gs, **kw) » None
Counts whether the memoized value has already been set (a hit) or not (a miss).
display () - None
key ()
cl ass SCons.Memoize.Counter (cl s_nane, net hod_nane)
Bases: object
Base class for counting memoization hits and misses.
We expect that the initialization in a matching decorator will fill in the correct class nhame and method name that
represents the name of the function being counted.

41

SCons API Documentation

display () - None

key ()
SCons.Memoize.Dump (ti t | e=None) - None

Dump the hit/miss count for all the counters collected so far.
SCons.Memoize.EnableMemoization () - None

SCons.PathList module
Handle lists of directory paths.

These are the path lists that get set as CPPPATH, LI BPATH, etc.) with as much caching of data and efficiency as we
can, while still keeping the evaluation delayed so that we Do the Right Thing (almost) regardless of how the variable is
specified.
SCons.PathList.PathList (pat hl i st, split=True)
Entry point for getting PathLists.
Returns the cached _PathList object for the specified pathlist, creating and caching a new object as necessary.
cl ass SCons.PathList._PathList (pat hl i st, split=True)
Bases: object
An actual PathList object.
Initializes a PathList object, canonicalizing the input and pre-processing it for quicker substitution later.
The stored representation of the PathList is a list of tuples containing (type, value), where the “type” is one of the
TYPE_* variables defined above. We distinguish between:

« Strings that contain no $ and therefore need no delayed-evaluation string substitution (we expect that there will
be many of these and that we therefore get a pretty big win from avoiding string substitution)

« Strings that contain $ and therefore need substitution (the hard case is things like ${ TARGET. di r}/i ncl ude,
which require re-evaluation for every target + source)

+ Other objects (which may be something like an EntryProxy that needs a method called to return a Node)
Pre-identifying the type of each element in the PathList up-front and storing the type in the list of tuples is intended to

reduce the amount of calculation when we actually do the substitution over and over for each target.
subst_path (env, t ar get , sour ce)
Performs construction variable substitution on a pre-digested PathList for a specific target and source.

SCons.PathList.node_conv (obj)

This is the “string conversion” routine that we have our substitutions use to return Nodes, not strings. This relies on

the fact that an EntryProxy object has a get () method that returns the underlying Node that it wraps, which is a bit

of architectural dependence that we might need to break or modify in the future in response to additional

requirements.

SCons.SConf module
Autoconf-like configuration support.

In other words, SConf allows to run tests on the build machine to detect capabilities of system and do some things
based on result: generate config files, header files for C/C++, update variables in environment.

Tests on the build system can detect if compiler sees header files, if libraries are installed, if some command line
options are supported etc.
SCons.SConf.CheckCC (cont ext) — bool
SCons.SConf.CheckCHeader (cont ext , header, i ncl ude_quotes: str = "")
A test for a C header file.
SCons.SConf.CheckCXX (cont ext) — bool
SCons.SConf.CheckCXXHeader (cont ext , header, i ncl ude_quotes: str = "")
A test for a C++ header file.
cl ass SCons.SConf.CheckContext (sconf)
Bases: object
Provides a context for configure tests. Defines how a test writes to the screen and log file.
A typical test is just a callable with an instance of CheckContext as first argument:

42

SCons API Documentation

def CheckCustom(context, ...):

context.Message(‘Checking my weird test ... ‘) ret = myWeirdTestFunction(...) context.Result(ret)
Often, myWeirdTestFunction will be one of context. TryCompile/context. TryLink/context. TryRun. The results of those
are cached, for they are only rebuild, if the dependencies have changed.
AppendLIBS (I'i b_nane_li st, uni que: bool = False)
BuildProg (t ext , ext) - bool
CompileProg (t ext , ext) - bool
CompileSharedObiject (t ext , ext) - bool
Display (msg) — None
Log (meg) — None
Message (t ext) - None
Inform about what we are doing right now, e.g. ‘Checking for SOMETHING ... *
PrependLIBS (i b_nane_I|ist,uni que: bool = False)
Result (r es) — None
Inform about the result of the test. If res is not a string, displays ‘yes’ or ‘no’ depending on whether res is evaluated
as true or false. The result is only displayed when self.did_show_result is not set.
RunProg (t ext , ext)
SetLIBS (val)
TryAction (*ar gs, ** kw)
TryBuild (*ar gs, **kw)
TryCompile (*ar gs, **kw)
TryLink (*ar gs, ** kw)
TryRun (*ar gs, **kw)
SCons.SConf.CheckDeclaration (cont ext , decl arati on,i ncl udes: str = " | anguage=None) - bool
SCons.SConf.CheckFunc (cont ext , funct i on_nane, header =None, | anguage=None, f uncar gs=None) - bool
SCons.SConf.CheckHeader (cont ext , header, i ncl ude_quotes: str = '<>' | anguage=None) - bool
A test for a C or C++ header file.
SCons.SConf.CheckLib (cont ext , | i brary=None, synbol : str = 'main’, header =None, | anguage=None,
extra_l i bs=None, aut oadd: bool = True, append: bool = True, uni que: bool = False) - bool
A test for a library. See also CheckLibWithHeader(). Note that library may also be None to test whether the given
symbol compiles without flags.
Changed in version 4.9.0: Added the extra libs keyword parameter. The actual implementation is in
SCons.Conftest.CheckLib() which already accepted this parameter, so this is only exposing existing functionality.
SCons.SConf.CheckLibWithHeader (cont ext , | i bs, header, | anguage, extra_| i bs=None, cal | =None,
aut oadd: bool = True, append: bool = True, uni que: bool = False) - bool
Another (more sophisticated) test for a library. Checks, if library and header is available for language (may be ‘C’ or
‘CXX’). Call maybe be a valid expression _with_ a trailing ‘;’. As in CheckLib(), we support library=None, to test if the
call compiles without extra link flags.
Changed in version 4.9.0: Added the extra libs keyword parameter. The actual implementation is in
SCons.Conftest.CheckLib() which already accepted this parameter, so this is only exposing existing functionality.
SCons.SConf.CheckMember (cont ext , aggr egat e_nenber , header =None, | anguage=None) - bool
Returns the status (False : failed, True : ok).
SCons.SConf.CheckProg (cont ext , pr og_nane)
Simple check if a program exists in the path. Returns the path for the application, or None if not found.
SCons.SConf.CheckSHCC (cont ext) - bool
SCons.SConf.CheckSHCXX (cont ext) — bool
SCons.SConf.CheckType (cont ext ,t ype_nane, i ncl udes: str = " | anguage=None) - bool
SCons.SConf.CheckTypeSize (cont ext ,type_nane, i ncl udes: str = ", | anguage=None, expect =None)
excepti on SCons.SConf.ConfigureCacheError (t ar get)
Bases: SConfError
Raised when a use explicitely requested the cache feature, but the test is run the first time.
add_note ()
Exception.add_note(note) — add a note to the exception
args
with_traceback ()
Exception.with_traceback(tb) — set self. _traceback _ to tb and return self.

43

SCons API Documentation

excepti on SCons.SConf.ConfigureDryRunError (t ar get)

Bases: SConfError
Raised when a file or directory needs to be updated during a Configure process, but the user requested a dry-run
add_note ()
Exception.add_note(note) — add a note to the exception
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

SCons.SConf.CreateConfigHBuilder (env) — None

Called if necessary just before the building targets phase begins.

SCons.SConf.NeedConfigHBuilder () - bool

SCons.SConf.SConf (*ar gs, * * kw)

cl ass SCons.SConf.SConfBase (env, custom test s={}, conf _dir: str = '$CONFIGUREDIR',| og fil e:
str = '$CONFIGURELOG', confi g_h=None, _depth: int = 0)

44

Bases: object
This is simply a class to represent a configure context. After creating a SConf object, you can call any tests. After
finished with your tests, be sure to call the Finish() method, which returns the modified environment. Some words
about caching: In most cases, it is not necessary to cache Test results explicitly. Instead, we use the scons
dependency checking mechanism. For example, if one wants to compile a test program (SConf.TryLink), the
compiler is only called, if the program dependencies have changed. However, if the program could not be compiled in
a former SConf run, we need to explicitly cache this error.
AddTest (t est _nane, t est _i nst ance) - None
Adds test_class to this SConf instance. It can be called with self.test_name(...)
AddTests (t est s) —» None
Adds all the tests given in the tests dictionary to this SConf instance
BuildNodes (nodes)
Tries to build the given nodes immediately. Returns 1 on success, 0 on error.
Define (nane, val ue=None, comrent =None) - None
Define a pre processor symbol name, with the optional given value in the current config header.
If value is None (default), then #define name is written. If value is not none, then #define name value is written.
comment is a string which will be put as a C comment in the header, to explain the meaning of the value
(appropriate C comments will be added automatically).
Finish ()
Call this method after finished with your tests: env = sconf.Finish()
cl ass TestWrapper (t est, sconf)
Bases: object
A wrapper around Tests (to ensure sanity)
TryAction (act i on, t ext =None, ext ensi on: str = ")
Tries to execute the given action with optional source file contents <text> and optional source file extension
<extension>, Returns the status (0 : failed, 1 : ok) and the contents of the output file.
TryBuild (bui | der, t ext =None, ext ensi on: str = ")
Low level TryBuild implementation. Normally you don’'t need to call that - you can use TryCompile / TryLink /
TryRun instead
TryCompile (t ext , ext ensi on)
Compiles the program given in text to an env.Object, using extension as file extension (e.g. ‘.c’). Returns 1, if
compilation was successful, O otherwise. The target is saved in self.lastTarget (for further processing).
TryLink (t ext , ext ensi on)
Compiles the program given in text to an executable env.Program, using extension as file extension (e.g. ‘.c)).
Returns 1, if compilation was successful, 0 otherwise. The target is saved in self.lastTarget (for further processing).
TryRun (t ext , ext ensi on)
Compiles and runs the program given in text, using extension as file extension (e.g. ‘.c’). Returns (1, outputStr) on
success, (0, ") otherwise. The target (a file containing the program’s stdout) is saved in self.lastTarget (for further
processing).
_createDir (node)
_shutdown ()
Private method. Reset to non-piped spawn

SCons API Documentation

_startup () - None
Private method. Set up logstream, and set the environment variables necessary for a piped build

pspawn_wrapper (sh, escape, cnd, ar gs, env)
Wrapper function for handling piped spawns.
This looks to the calling interface (in Action.py) like a “normal” spawn, but associates the call with the PSPAWN
variable from the construction environment and with the streams to which we want the output logged. This gets slid
into the construction environment as the SPAWN variable so Action.py doesn’t have to know or care whether it's
spawning a piped command or not.

cl ass SCons.SConf.SConfBuildinfo

Bases: FileBuildInfo

Special build info for targets of configure tests. Additional members are result (did the builder succeed last time?) and

string, which contains messages of the original build phase.

__getstate__ () - dict[str, Any]
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (state: dict[str, Any]) - None
Restore the attributes from a pickled state.

bact

bactsig: str | None

bdepends

bdependsigs: list[BuildinfoBase]

bimplicit

bimplicitsigs: list[BuildinfoBase]

bsources

bsourcesigs: list[BuildinfoBase]

convert_from_sconsign (di r, nane) — None
Converts a newly-read FileBuildinfo object for in-SCons use
For normal up-to-date checking, we don’t have any conversion to perform—but we're leaving this method here to
make that clear.

convert_to_sconsign () - None
Converts this FileBuildinfo object for writing to a .sconsign file
This replaces each Node in our various dependency lists with its usual string representation: relative to the
top-level SConstruct directory, or an absolute path if it's outside.

current_version_id = 2

dependency_map

format (nanmes: int = 0)

merge (ot her: Bui | dl nf oBase) - None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

prepare_dependencies () — None
Prepares a FileBuildinfo object for explaining what changed
The bsources, bdepends and bimplicit lists have all been stored on disk as paths relative to the top-level
SConstruct directory. Convert the strings to actual Nodes (for use by the —debug=explain code and
—implicit-cache).

result

set_build_result (resul t, string) - None

string

cl ass SCons.SConf.SConfBuildTask (t mt ar get s, t op, node)

Bases: AlwaysTask

This is almost the same as SCons.Script.BuildTask. Handles SConfErrors correctly and knows about the current

cache_mode.

LOGGER = None

_abc_impl = <_abc._abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

45

SCons API Documentation

46

_ho_exception_to_raise () - None

collect_node_states () — tuple[bool, bool, bool]

display (message) — None
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

display_cached_string (bi) - None
Logs the original builder messages, given the SConfBuildInfo instance bi.

exc_clear () - None
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (except i on=None) - None
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed () - None
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_with_callbacks () - None
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks () - None
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue () - None
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop () - None
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready () - None

SCons API Documentation

Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.
make_ready_all () - None
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.
make_ready current () - None
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.
needs_execute () - bool
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute
non_sconf _nodes = {}
postprocess () - None

Post-processes a task after it's been executed.

This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no

build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a

common side effect, that can be put back on the candidates list.

prepare () - None

Called just before the task is executed.

This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary

directories before the Action is actually called to build the targets.

trace_message (node, descri ption: str = 'node’) - None
exception SCons.SConf.SConfError (msQ)
Bases: UserError
add_note ()
Exception.add_note(note) — add a note to the exception
args
with_traceback ()

Exception.with_traceback(tb) — set self. _traceback __ to tb and return self.

excepti on SCons.SConf.SConfWarning
Bases: SConsWarning
add_note ()

Exception.add_note(note) — add a note to the exception

args
with_traceback ()

Exception.with_traceback(tb) — set self. _traceback _ to tb and return self.
SCons.SConf.SetBuildType (bui | dt ype) — None
SCons.SConf.SetCacheMode (node)

Set the Configure cache mode. mode must be one of “auto”, “force”, or “cache”.
SCons.SConf.SetProgressDisplay (di spl ay) — None

Set the progress display to use (called from SCons.Script)
cl ass SCons.SConf.Streamer (ori g)

Bases: object

‘Sniffer’ for a file-like writable object. Similar to the unix tool tee.

flush () - None

getvalue ()

Return everything written to orig since the Streamer was created.

write (st r) — None

writelines (1 i nes) - None
SCons.SConf._createConfigH (t ar get , sour ce, env) — None
SCons.SConf._createSource (t ar get, sour ce, env) - None

47

SCons API Documentation

SCons.SConf._set_conftest_node (node) — None

SCons.SConf._stringConfigH (t ar get , sour ce, env)

SCons.SConf._stringSource (t ar get , sour ce, env)

SCons.SConf.createlncludesFromHeaders (header s, | eavelast, i ncl ude_quotes: str = ")

SCons.SConsign module

Operations on signature database files (.sconsign).
cl ass SCons.SConsign.Base

Bases: object
This is the controlling class for the signatures for the collection of entries associated with a specific directory. The
actual directory association will be maintained by a subclass that is specific to the underlying storage method. This
class provides a common set of methods for fetching and storing the individual bits of information that make up
signature entry.
do_not_set_entry (fi | enane, obj) -~ None
do_not_store_info (fi | enane, node) — None
get_entry (fi | enane)
Fetch the specified entry attribute.
merge () — None
set_entry (fi | enane, obj) - None
Set the entry.
store_info (fi | enanme, node) — None

cl ass SCons.SConsign.DB (di r)

Bases: Base
A Base subclass that reads and writes signature information from a global .sconsign.db* file—the actual file suffix is
determined by the database module.
do_not_set_entry (fi | enane, obj) -~ None
do_not_store_info (fi | enane, node) — None
get_entry (fi | enane)

Fetch the specified entry attribute.
merge () — None
set_entry (fi | enane, obj) - None

Set the entry.
store_info (fi | enanme, node) — None
write (sync: int = 1) - None

cl ass SCons.SConsign.Dir (f p=None, di r =None)

Bases: Base
do_not_set_entry (fi | enane, obj) - None
do_not_store_info (fi | enane, node) — None
get_entry (fi | enane)
Fetch the specified entry attribute.
merge () — None
set_entry (fi | enane, obj) - None
Set the entry.
store_info (fi | enanme, node) — None

cl ass SCons.SConsign.DirFile (di r)

48

Bases: Dir
Encapsulates reading and writing a per-directory .sconsign file.
do_not_set_entry (fi | enane, obj) -~ None
do_not_store_info (fi | enane, node) — None
get_entry (fi | enane)
Fetch the specified entry attribute.
merge () » None
set_entry (fi | enane, obj) - None
Set the entry.
store_info (fi | ename, node) — None

SCons API Documentation

write (sync: int = 1) -~ None
Write the .sconsign file to disk.
Try to write to a temporary file first, and rename it if we succeed. If we can’t write to the temporary file, it's probably
because the directory isn't writable (and if so, how did we build anything in this directory, anyway?), so try to write
directly to the .sconsign file as a backup. If we can’t rename, try to copy the temporary contents back to the
.sconsign file. Either way, always try to remove the temporary file at the end.
SCons.SConsign.File (hame, dbm nodul e=None) - None
Arrange for all signatures to be stored in a global .sconsign.db* file.
SCons.SConsign.ForDirectory
alias of DB
SCons.SConsign.Get_DataBase (di r)
SCons.SConsign.Reset () — None
Reset global state. Used by unit tests that end up using SConsign multiple times to get a clean slate for each test.
cl ass SCons.SConsign.SConsignEntry
Bases: object
Wrapper class for the generic entry in a .sconsign file. The Node subclass populates it with attributes as it pleases.
XXX As coded below, we do expect a ‘.binfo’ attribute to be added, but we’ll probably generalize this in the next
refactorings.
binfo
convert_from_sconsign (di r, nane) — None
convert_to_sconsign () - None
current_version_id = 2
ninfo
SCons.SConsign.corrupt_dblite_warning (f i | enane) - None
SCons.SConsign.current_sconsign_filename ()
SCons.SConsign.write () - None

SCons.Subst module

SCons string substitution.
cl ass SCons.Subst.CmdStringHolder (cnd, l i teral : bool = False)
Bases: UserString
Holder for substituted strings intended for the command line.
Holds strings generated by scons_subst(), scons_subst_list(). Defines an escape() method which allows supplying
platform-specific escape and quote functions. The contained string will be escaped, quoted, or neither depending on
the value of literal and the string contents.
_abc_impl = <_abc._abc_data object>
capitalize ()
casefold ()
center (Wi dt h, *ar gs)
count (val ue) — integer -- return number of occurrences of value
encode (encodi ng='utf-8', er r or s='strict’)
endswith (suf fi x, start =0, end=9223372036854775807)
escape (escape_func, quot e_func=<functi on quote_spaces>) - str
Escape the string with the supplied function. The function is expected to take an arbitrary string, then return it with
all special characters escaped and ready for passing to the command interpreter.
After calling this function, the next call to str() will return the escaped string.
expandtabs (t absi ze=8)
find (sub, st art =0, end=9223372036854775807)
format (* ar gs, **kwds)
format_map (mappi ng)
index (val ue[, start[, st op]]) — integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
is_literal () —» bool
isalnum ()

49

SCons API Documentation

isalpha ()
isascii ()
isdecimal ()
isdigit ()
isidentifier ()
islower ()
isnumeric ()
isprintable ()
isspace ()
istitle ()
isupper ()
join (seq)
ljust (Wi dt h, *ar gs)
lower ()
Istrip (char s=None)
maketrans ()
Return a translation table usable for str.translate().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters to Unicode
ordinals, strings or None. Character keys will be then converted to ordinals. If there are two arguments, they must
be strings of equal length, and in the resulting dictionary, each character in x will be mapped to the character at the
same position in y. If there is a third argument, it must be a string, whose characters will be mapped to None in the

result.
partition (sep)
removeprefix (prefi x, /)
removesuffix (suf fi x, /)
replace (ol d, new, maxspl it =-1)
rfind (sub, st art =0, end=9223372036854775807)
rindex (sub, st art =0, end=9223372036854775807)
rjust (wi dt h, *ar gs)
rpartition (sep)
rsplit (sep=None, maxspl i t =-1)
rstrip (char s=None)
split (sep=None, maxspl i t =-1)
splitines (keepends=False)
startswith (pr efi x, st art =0, end=9223372036854775807)
strip (char s=None)
swapcase ()
title ()
translate (* ar gs)

upper ()
zfill (wi dt h)

cl ass SCons.Subst.ListSubber (env, node, conv, gvar s)

50

Bases: UserList
A class to construct the results of a scons_subst_list() call.

Like StringSubber, this class binds a specific construction environment, mode, target and source with two methods

(substitute() and expand()) that handle the expansion.

In addition, however, this class is used to track the state of the result(s) we’re gathering so we can do the appropriate
thing whenever we have to append another word to the result-start a new line, start a new word, append to the
current word, etc. We do this by setting the “append” attribute to the right method so that our wrapper methods only
need ever call ListSubber.append(), and the rest of the object takes care of doing the right thing internally.

_abc_impl = <_abc._abc_data object>
add_new_word (x) - None
add_to_current_word (x) - None

Append the string x to the end of the current last word in the result. If that is not possible, then just add it as a new
word. Make sure the entire concatenated string inherits the object attributes of x (in particular, the escape function)

by wrapping it as CmdStringHolder.

SCons API Documentation

append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
close_strip (x) - None
Handle the “close strip” $) token.
copy ()
count (val ue) - integer -- return number of occurrences of value
expand (s, vars,within_list)
Expand a single “token” as necessary, appending the expansion to the current result.
This handles expanding different types of things (strings, lists, callables) appropriately. It calls the wrapper
substitute() method to re-expand things as necessary, so that the results of expansions of side-by-side strings still
get re-evaluated separately, not smushed together.
expanded (s) — bool
Determines if the string s requires further expansion.
Due to the implementation of ListSubber expand will call itself 2 additional times for an already expanded string.
This method is used to determine if a string is already fully expanded and if so exit the loop early to prevent these
recursive calls.
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
literal (x)
next_line () - None
Arrange for the next word to start a new line. This is like starting a new word, except that we have to append
another line to the result.
next_word () - None
Arrange for the next word to start a new word.
open_strip (x) - None
Handle the “open strip” $(token.
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t em)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
substitute (args, | vars,within_list) - None
Substitute expansions in an argument or list of arguments.
This serves as a wrapper for splitting up a string into separate tokens.
this_word () - None
Arrange for the next word to append to the end of the current last word in the result.

cl ass SCons.Subst.Literal (I str)

Bases: object

A string wrapper for a string to prevent expansion.

If you use this object wrapped around a string, then it will be interpreted as literal. When passed to the command
interpreter, all special characters will be escaped.

escape (escape_f unc)

for_signature ()

is_literal () - bool

cl ass SCons.Subst.NLWrapper (I i st, f unc)

51

Bases: object
A wrapper class that delays turning a list of sources or targets into a NodeList until it's needed. The specified function
supplied when the object is initialized is responsible for turning raw nodes into proxies that implement the special

SCons API Documentation

attributes like .abspath, .source, etc. This way, we avoid creating those proxies just “in case” someone is going to use
$TARGET or the like, and only go through the trouble if we really have to.

In practice, this might be a wash performance-wise, but it's a little cleaner conceptually...

_create_nodelist ()

_gen_nodelist ()

_return_nodelist ()

cl ass SCons.Subst.NullNodeList (* ar gs, ** kwar gs)

Bases: NullSeq
_instance

SCons.Subst.SetAllowableExceptions (* except s) - None
cl ass SCons.Subst.SpecialAttrWrapper (I str, f or _si gnat ur e=None)

Bases: object

This is a wrapper for what we call a ‘Node special attribute.” This is any of the attributes of a Node that we can
reference from Environment variable substitution, such as $TARGET.abspath or $SOURCES[1].filebase. We
implement the same methods as Literal so we can handle special characters, plus a for_signature method, such that
we can return some canonical string during signature calculation to avoid unnecessary rebuilds.

escape (escape_f unc)

for_signature ()

is_literal () - bool

cl ass SCons.Subst.StringSubber (env, node, conv, gvar s)

Bases: object
A class to construct the results of a scons_subst() call.
This binds a specific construction environment, mode, target and source with two methods (substitute() and
expand()) that handle the expansion.
expand (s, | vars)
Expand a single “token” as necessary, returning an appropriate string containing the expansion.
This handles expanding different types of things (strings, lists, callables) appropriately. It calls the wrapper
substitute() method to re-expand things as necessary, so that the results of expansions of side-by-side strings still
get re-evaluated separately, not smushed together.
substitute (ar gs, | var s)
Substitute expansions in an argument or list of arguments.
This serves as a wrapper for splitting up a string into separate tokens.

cl ass SCons.Subst.Target_or_Source (nl)

Bases: object
A class that implements $TARGET or $SOURCE expansions by in turn wrapping a NLWrapper. This class handles
the different methods used to access an individual proxy Node, calling the NLWrapper to create a proxy on demand.

cl ass SCons.Subst.Targets_or_Sources (nl)

52

Bases: UserList
A class that implements $TARGETS or $SOURCES expansions by in turn wrapping a NLWrapper. This class
handles the different methods used to access the list, calling the NLWrapper to create proxies on demand.
Note that we subclass UserList purely so that the is_Sequence() function will identify an object of this class as a list
during variable expansion. We're not really using any UserList methods in practice.
_abc_impl = <_abc._abc_data object>
append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).

SCons API Documentation

Raise IndexError if list is empty or index is out of range.
remove (i t en)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
SCons.Subst._remove_list (1 i st)
SCons.Subst._rm_list (11 st)
SCons.Subst.escape_list (nyl i st , escape_func) - list] str]
Escape a list of arguments by running the specified escape_func on every object in the list that has an escape()
method.
SCons.Subst.quote_spaces (ar g)
Generic function for putting double quotes around any string that has white space in it.
SCons.Subst.raise_exception (excepti on, t arget, s)
SCons.Subst.scons_subst (st r Subst , env, node=1, t ar get =None, sour ce=None, gvar s={}, | var s={},
conv=None, overrides: dict | None = None)
Expand a string or list containing construction variable substitutions.
This is the work-horse function for substitutions in file names and the like. The companion scons_subst_list() function
(below) handles separating command lines into lists of arguments, so see that function if that's what you're looking
for.
SCons.Subst.scons_subst_list (st r Subst , env, node=1, t ar get =None, sour ce=None, gvar s={}, | var s={},
conv=None, overrides: dict | None = None)
Substitute construction variables in a string (or list or other object) and separate the arguments into a command list.
The companion scons_subst() function (above) handles basic substitutions within strings, so see that function
instead if that’s what you're looking for.
SCons.Subst.scons_subst_once (st r Subst, env, key)
Perform single (non-recursive) substitution of a single construction variable keyword.
This is used when setting a variable when copying or overriding values in an Environment. We want to capture
(expand) the old value before we override it, so people can do things like:

env2 = env.Clone(CCFLAGS = ‘$CCFLAGS -g’)
We do this with some straightforward, brute-force code here...
SCons.Subst.subst_dict (t ar get , sour ce)
Create a dictionary for substitution of special construction variables.
This translates the following special arguments:

target - the target (object or array of objects),

used to generate the TARGET and TARGETS construction variables
source - the source (object or array of objects),

used to generate the SOURCES and SOURCE construction variables

SCons.Warnings module
The SCons Warnings framework.

Enables issuing warnings in situations where it is useful to alert the user of a condition that does not warrant raising an
exception that could terminate the program.

A new warning class should inherit (perhaps indirectly) from one of two base classes: SConsWarning or
WarningOnByDefault, which are the same except warnings derived from the latter will start out in an enabled state.
Enabled warnings cause a message to be printed when called, disabled warnings are silent.

There is also a hierarchy for indicating deprecations and future changes: for these, derive from DeprecatedWarning,
MandatoryDeprecatedWarning, FutureDeprecatedWarning or FutureReservedVariableWarning.

Whether or not to display warnings, beyond those that are on by default, is controlled through the command line
(- -war n) or through Set Opt i on(*' war n') . The names used there use a different naming style than the warning class
names. process_warn_strings() converts the names before enabling/disabling.

53

SCons API Documentation

The behavior of issuing only a message (for “enabled” warnings) can be toggled to raising an exception instead by
calling the warningAsException() function.

For new/removed warnings, the manpage needs to be kept in sync. Any warning class defined here is accepted, but we
don’t want to make people have to dig around to find the names. Warnings do not have to be defined in this file, though
it is preferred: those defined elsewhere cannot use the enable/disable functionality unless they monkeypatch the
warning into this module’s namespace.

You issue a warning, either in SCons code or in a build project's SConscripts, by calling the warn() function defined in
this module. Raising directly with an instance of a warning class bypasses the framework and it will behave like an
ordinary exception.
excepti on SCons.Warnings.CacheCleanupErrorWarning
Bases: SConsWarning
Problems removing retrieved target prior to rebuilding.
excepti on SCons.Warnings.CacheVersionWarning
Bases: WarningOnByDefault
The derived-file cache directory has an out of date config.
excepti on SCons.Warnings.CacheWriteErrorWarning
Bases: SConsWarning
Problems writing a derived file to the cache.
excepti on SCons.Warnings.CorruptSConsignWarning
Bases: WarningOnByDefault
Problems decoding the contents of the sconsign database.
excepti on SCons.Warnings.DependencyWarning
Bases: SConsWarning
A scanner identified a dependency but did not add it.
excepti on SCons.Warnings.DeprecatedDebugOptionsWarning
Bases: MandatoryDeprecatedWarning
Option-arguments to —debug that are deprecated.
excepti on SCons.Warnings.DeprecatedOptionsWarning
Bases: MandatoryDeprecatedWarning
Options that are deprecated.
excepti on SCons.Warnings.DeprecatedWarning
Bases: SConsWarning
Base class for deprecated features, will be removed in future.
excepti on SCons.Warnings.DevelopmentVersionWarning
Bases: WarningOnByDefault
Use of a deprecated feature.
excepti on SCons.Warnings.DuplicateEnvironmentWarning
Bases: WarningOnByDefault
A target appears in more than one consenv with identical actions.
A duplicate target with different rules cannot be built; with the same rule it can, but this could indicate a problem in the
build configuration.
excepti on SCons.Warnings.FortranCxxMixWarning
Bases: LinkWarning
Fortran and C++ objects appear together in a link line.
Some compilers support this, others do not.
excepti on SCons.Warnings.FutureDeprecatedWarning
Bases: SConsWarning
Base class for features that will become deprecated in a future release.
excepti on SCons.Warnings.FutureReservedVariableWarning
Bases: WarningOnByDefault
Setting a variable marked to become reserved in a future release.
excepti on SCons.Warnings.LinkWarning
Bases: WarningOnByDefault
Base class for linker warnings.
excepti on SCons.Warnings.MandatoryDeprecatedWarning

54

SCons API Documentation

Bases: DeprecatedWarning
Base class for deprecated features where warning cannot be disabled.
excepti on SCons.Warnings.MisleadingKeywordsWarning
Bases: WarningOnByDefault
Use of possibly misspelled kwargs in Builder calls.
excepti on SCons.Warnings.MissingSConscriptWarning
Bases: WarningOnByDefault
The script specified in an SConscript() call was not found.
TODO: this is now an error, so no need for a warning. Left in for a while in case anyone is using, remove eventually.
Manpage entry removed in 4.6.0.
excepti on SCons.Warnings.NoObjectCountWarning
Bases: WarningOnByDefault
Object counting (debug mode) could not be enabled.
excepti on SCons.Warnings.NoParallelSupportWarning
Bases: WarningOnByDefault
Fell back to single-threaded build, as no thread support found.
excepti on SCons.Warnings.PythonVersionWarning
Bases: DeprecatedWarning
SCons was run with a deprecated Python version.
excepti on SCons.Warnings.ReservedVariableWarning
Bases: WarningOnByDefault
Attempt to set reserved construction variable names.
excepti on SCons.Warnings.SConsWarning
Bases: UserError
Base class for all SCons warnings.
SCons.Warnings.SConsWarningOnByDefault
alias of WarningOnByDefault
excepti on SCons.Warnings.StackSizeWarning
Bases: WarningOnByDefault
Requested thread stack size could not be set.
excepti on SCons.Warnings.TargetNotBuiltWarning
Bases: SConsWarning
A target build indicated success but the file is not found.
excepti on SCons.Warnings.ToolQtDeprecatedWarning
Bases: DeprecatedWarning
excepti on SCons.Warnings.VisualCMissingWarning
Bases: WarningOnByDefault
Requested MSVC version not found and policy is to not fail.
excepti on SCons.Warnings.VisualStudioMissingWarning
Bases: SConsWarning
excepti on SCons.Warnings.VisualVersionMismatch
Bases: WarningOnByDefault
MSVC_VERSI ON and MBVS_VERSI ON do not match.
Note MSVS_VERSI ONis deprecated, use MSVC_VERSI ON.
excepti on SCons.Warnings.WarningOnByDefault
Bases: SConsWarning
Base class for SCons warnings that are enabled by default.
SCons.Warnings.enableWarningClass (cl azz) - None
Enables all warnings of type clazz or derived from clazz.
SCons.Warnings.process_warn_strings (ar gurmrent s: Sequence[str]) —» None
Process requests to enable/disable warnings.
The requests come from the option-argument string passed to the - - war n command line option or as the value
passed to the Set Opt i on function with a first argument of war n;
The arguments are expected to be as documented in the SCons manual page for the - - war n option, in the style
some-t ype, which is converted here to a camel-case name like SoneTypeWar ni ng, to try to match the warning
classes defined here, which are then passed to enableWarningClass() or suppressWarningClass().

55

SCons API Documentation

For example, a string "deprecated”” enables the DeprecatedWarning class, while a string "no-dependency””

disables the DependencyWarning class.

As a special case, the string "al | " disables all warnings and a the string " no- al | " disables all warnings.
SCons.Warnings.suppressWarningClass (cl azz) — None

Suppresses all warnings of type clazz or derived from clazz.
SCons.Warnings.warn (cl azz, *ar gs) - None

Issue a warning, accounting for SCons rules.

Check if warnings for this class are enabled. If warnings are treated as exceptions, raise exception. Use the global

warning emitter _warningOut, which allows selecting different ways of presenting a traceback (see Script/Main.py).
SCons.Warnings.warningAsException (f | ag: bool = True) - bool

Sets global _warningAsExeption flag.

If true, any enabled warning will cause an exception to be raised.

Parameters: flag — new value for warnings-as-exceptions.
Returns: The previous value.

SCons.cpp module

SCons C Pre-Processor module
SCons.cpp.CPP_to_Python (s)
Converts a C pre-processor expression into an equivalent Python expression that can be evaluated.
SCons.cpp.CPP_to_Python_Ops_Sub (m
SCons.cpp.Cleanup_CPP_Expressions (t s)
cl ass SCons.cpp.DumbPreProcessor (*ar gs, * * kw)
Bases: PreProcessor
A preprocessor that ignores all #if/#elif/#else/#endif directives and just reports back all of the #include files (like the
classic SCons scanner did).
This is functionally equivalent to using a regular expression to find all of the #include lines, only slower. It exists
mainly as an example of how the main PreProcessor class can be sub-classed to tailor its behavior.
_call__(file)
Pre-processes a file.
This is the main public entry point.
_do_if_else_condition (condi ti on) - None
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.
_match_tuples (t upl es)
_parse_tuples (cont ent s)
_process_tuples (t upl es, fi | e=None)
all_include (t) —» None
do_define (t) - None
Default handling of a #define line.
do_elif (t) - None
Default handling of a #elif line.
do_else (t) —» None
Default handling of a #else line.
do_endif (t) - None
Default handling of a #endif line.
do_if (t) -» None
Default handling of a #if line.
do_ifdef (t) - None
Default handling of a #ifdef line.
do_ifndef (t) - None
Default handling of a #ifndef line.
do_import (t) — None
Default handling of a #import line.
do_include (t) — None
Default handling of a #include line.

56

SCons API Documentation

do_include_next (t) - None
Default handling of a #include line.
do_nothing (t) - None
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.
do_undef (t) - None
Default handling of a #undef line.
eval_constant_expression (s)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor nhamespace we use to
track #define values.
Returns None if the eval() result is not an integer.
eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor nhamespace we use to
track #define values.
finalize_result (f name)
find_include_file (t)
Finds the #include file for a given preprocessor tuple.
initialize_result (f nane) — None
process_contents (cont ent s)
Pre-processes a file contents.
Is used by tests
process_file (fi |l e)
Pre-processes a file.
This is the main internal entry point.
read_file (fil e) - str
resolve_include (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without *” or <> surrounding the name until an initial “ or < is found, to
handle #include FILE where FILE is a #define somewhere else.
restore () — None
Pops the previous dispatch table off the stack and makes it the current one.
save () - None
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.
scons_current_file (t) — None
start_handling_includes (t =None) —» None
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.
stop_handling_includes (t =None) - None
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.
tupleize (cont ent s)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’s preprocessor directive (#if, #include, #define, etc., minus the initial ‘#).
The remaining elements are specific to the type of directive, as pulled apart by the regular expression.
cl ass SCons.cpp.FunctionEvaluator (hane, ar gs, expansi on)
Bases: object
Handles delayed evaluation of a #define function call.
__call__ (*val ues)
Evaluates the expansion of a #define macro function called with the specified values.
cl ass SCons.cpp.PreProcessor (current ="', cpppat h=(), dict={},all: int = 0,depth=-1)
Bases: object
The main workhorse class for handling C pre-processing.
_call__(file)

57

SCons API Documentation

Pre-processes a file.
This is the main public entry point.
_do_if_else_condition (condi ti on) - None
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.
_match_tuples (t upl es)
_parse_tuples (cont ent s)
_process_tuples (t upl es, fi | e=None)
all_include (t) -~ None
do_define (t) - None
Default handling of a #define line.
do_elif (t) - None
Default handling of a #elif line.
do_else (t) — None
Default handling of a #else line.
do_endif (t) -» None
Default handling of a #endif line.
do_if (t) —» None
Default handling of a #if line.
do_ifdef (t) — None
Default handling of a #ifdef line.
do_ifndef (t) - None
Default handling of a #ifndef line.
do_import (t) — None
Default handling of a #import line.
do_include (t) — None
Default handling of a #include line.
do_include_next (t) - None
Default handling of a #include line.
do_nothing (t) - None
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.
do_undef (t) - None
Default handling of a #undef line.
eval_constant_expression (s)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor nhamespace we use to
track #define values.
Returns None if the eval() result is not an integer.
eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor nhamespace we use to
track #define values.
finalize_result (f nane)
find_include_file (t)
Finds the #include file for a given preprocessor tuple.
initialize_result (f nane) — None
process_contents (cont ent s)
Pre-processes a file contents.
Is used by tests
process_file (fi |l e)
Pre-processes a file.
This is the main internal entry point.
read_file (fil e) - str
resolve_include (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without *” or <> surrounding the name until an initial “ or < is found, to
handle #include FILE where FILE is a #define somewhere else.

58

SCons API Documentation

restore () — None
Pops the previous dispatch table off the stack and makes it the current one.
save () - None
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.
scons_current_file (t) — None
start_handling_includes (t =None) - None
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.
stop_handling_includes (t =None) - None
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.
tupleize (cont ent s)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’s preprocessor directive (#if, #include, #define, etc., minus the initial ‘#).
The remaining elements are specific to the type of directive, as pulled apart by the regular expression.

SCons.dblite module
dblite.py module contributed by Ralf W. Grosse-Kunstleve. Extended for Unicode by Steven Knight.

This is a very simple-minded “database” used for saved signature information, with an interface modeled on the Python
dbm database interface module.
cl ass SCons.dblite. Dblite (fi | e_base_nane, f| ag="r", nrode=438)

59

Bases: object

Lightweight signature database class.

Behaves like a dict when in memory, loads from a pickled disk file on open and writes back out to it on close.
Open the database file using a path derived from file_base_name. The optional flag argument can be:

Value Meaning
r' Open existing database for reading only (default)
"w Open existing database for reading and writing
‘c' Open database for reading and writing, creating it if it doesn’t exist
‘n' Always create a new, empty database, open for reading and writing

The optional mode argument is the POSIX mode of the file, used only when the database has to be created. It

defaults to octal 00666.

_check_writable ()

static _open(fil e, node="T", buf fering=-1, encodi ng=None, err or s=None, new i ne=None,

cl osef d=True, opener =None)
Open file and return a stream. Raise OSError upon failure.
file is either a text or byte string giving the name (and the path if the file isn’t in the current working directory) of the
file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed when
the returned 1/O object is closed, unless closefd is set to False.)
mode is an optional string that specifies the mode in which the file is opened. It defaults to ‘r' which means open for
reading in text mode. Other common values are ‘w’ for writing (truncating the file if it already exists), ‘X’ for creating
and writing to a new file, and ‘a’ for appending (which on some Unix systems, means that all writes append to the
end of the file regardless of the current seek position). In text mode, if encoding is not specified the encoding used
is platform dependent: locale.getencoding() is called to get the current locale encoding. (For reading and writing
raw bytes use binary mode and leave encoding unspecified.) The available modes are:

Character Meaning

r open for reading (default)

‘W’ open for writing, truncating the file first

SCons API Documentation

60

X’ create a new file and open it for writing

‘a’ open for writing, appending to the end of the file if it exists
‘b’ binary mode

‘t text mode (default)

+’ open a disk file for updating (reading and writing)

The default mode is ‘rt’ (open for reading text). For binary random access, the mode ‘w+b’ opens and truncates the
file to O bytes, while ‘r+b’ opens the file without truncation. The ‘x’ mode implies ‘w’ and raises an FileExistsError if
the file already exists.

Python distinguishes between files opened in binary and text modes, even when the underlying operating system
doesn'’t. Files opened in binary mode (appending ‘b’ to the mode argument) return contents as bytes objects
without any decoding. In text mode (the default, or when ‘t’ is appended to the mode argument), the contents of the
file are returned as strings, the bytes having been first decoded using a platform-dependent encoding or using the
specified encoding if given.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed in binary
mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size of a fixed-size
chunk buffer. When no buffering argument is given, the default buffering policy works as follows:

e Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on i0.DEFAULT _BUFFER_SIZE. On many
systems, the buffer will typically be 4096 or 8192 bytes long.

« “Interactive” text files (files for which isatty() returns True) use line buffering. Other text files use the policy

described above for binary files. _))
encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode.

The default encoding is platform dependent, but any encoding supported by Python can be passed. See the
codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding errors are to be handled—this argument should not be used
in binary mode. Pass ‘strict’ to raise a ValueError exception if there is an encoding error (the default of None has
the same effect), or pass ‘ignore’ to ignore errors. (Note that ignoring encoding errors can lead to data loss.) See
the documentation for codecs.register or run ‘help(codecs.Codec)’ for a list of the permitted encoding error strings.
newline controls how universal newlines works (it only applies to text mode). It can be None, “, ‘n’, 'r’, and ‘rn’. It
works as follows:

< On input, if newline is None, universal newlines mode is enabled. Lines in the input can end in ‘n’, ‘r’, or ‘rn’,
and these are translated into ‘n’ before being returned to the caller. If it is , universal newline mode is
enabled, but line endings are returned to the caller untranslated. If it has any of the other legal values, input
lines are only terminated by the given string, and the line ending is returned to the caller untranslated.

< On output, if newline is None, any ‘n’ characters written are translated to the system default line separator,
os.linesep. If newline is “ or ‘n’, no translation takes place. If newline is any of the other legal values, any ‘n’

characters written are translated to the given strin% o)
If closefd is False, the underlying file descriptor will be kept open when the file is closed. This does not work when

a file name is given and must be True in that case.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os.open as
opener results in functionality similar to passing None).

open() returns a file object whose type depends on the mode, and through which the standard file operations such
as reading and writing are performed. When open() is used to open a file in a text mode (‘w’, ‘r’, ‘wt’, ‘rt’, etc.), it
returns a TextlOWrapper. When used to open a file in a binary mode, the returned class varies: in read binary
mode, it returns a BufferedReader; in write binary and append binary modes, it returns a BufferedWriter, and in
read/write mode, it returns a BufferedRandom.

It is also possible to use a string or bytearray as a file for both reading and writing. For strings StringlO can be used
like a file opened in a text mode, and for bytes a ByteslO can be used like a file opened in a binary mode.

static _os_chmod (pat h, node, *, di r _f d=None, f ol | ow_synl i nks=True)

Change the access permissions of a file.

SCons API Documentation

path

Path to be modified. May always be specified as a str, bytes, or a path-like object. On some platforms,
path may also be specified as an open file descriptor. If this functionality is unavailable, using it raises an
exception.

mode
Operating-system mode bitfield.

dir_fd
If not None, it should be a file descriptor open to a directory, and path should be relative; path will then be
relative to that directory.

follow_symlinks

If False, and the last element of the path is a symbolic link, chmod will modify the symbolic link itself
instead of the file the link points to.

It is an error to use dir_fd or follow_symlinks when specifying path as
an open file descriptor.
dir_fd and follow_symlinks may not be implemented on your platform.
If they are unavailable, using them will raise a NotimplementedError.
static _os_chown (path,uid,gid,* dir_fd=None, foll ow sym i nks=True)
Change the owner and group id of path to the numeric uid and gid.
path
Path to be examined; can be string, bytes, a path-like object, or open-file-descriptor int.
dir_fd
If not None, it should be a file descriptor open to a directory, and path should be relative; path will then be
relative to that directory.
follow_symlinks

If False, and the last element of the path is a symbolic link, stat will examine the symbolic link itself
instead of the file the link points to.
path may always be specified as a string. On some platforms, path may also be specified as an open file

descriptor.
If this functionality is unavailable, using it raises an exception.
If dir_fd is not None, it should be a file descriptor open to a directory,
and path should be relative; path will then be relative to that directory.
If follow_symlinks is False, and the last element of the path is a symbolic
link, chown will modify the symbolic link itself instead of the file the link points to.
It is an error to use dir_fd or follow_symlinks when specifying path as
an open file descriptor.
dir_fd and follow_symlinks may not be implemented on your platform.

If they are unavailable, using them will raise a NotimplementedError.
static _os replace (src,dst,* src_dir_fd=None, dst_dir_fd=None)
Rename a file or directory, overwriting the destination.

If either src_dir_fd or dst_dir_fd is not None, it should be a file

descriptor open to a directory, and the respective path string (src or dst) should be relative; the path will then
be relative to that directory.
src_dir_fd and dst_dir_fd, may not be implemented on your platform.

If they are unavailable, using them will raise a NotimplementedError.
static _pickle_dump (obj,fil e, protocol =None, *, fi x_i nport s=True, buf f er _cal | back=None)
Write a pickled representation of obj to the open file object file.
This is equivalent to Pi ckl er (fil e, protocol). dunp(obj), but may be more efficient.

61

SCons API Documentation

The optional protocol argument tells the pickler to use the given protocol; supported protocols are 0, 1, 2, 3, 4 and
5. The default protocol is 4. It was introduced in Python 3.4, and is incompatible with previous versions.
Specifying a negative protocol version selects the highest protocol version supported. The higher the protocol
used, the more recent the version of Python needed to read the pickle produced.
The file argument must have a write() method that accepts a single bytes argument. It can thus be a file object
opened for binary writing, an io.ByteslO instance, or any other custom object that meets this interface.
If fix_imports is True and protocol is less than 3, pickle will try to map the new Python 3 names to the old module
names used in Python 2, so that the pickle data stream is readable with Python 2.
If buffer_callback is None (the default), buffer views are serialized into file as part of the pickle stream. It is an error
if buffer_callback is not None and protocol is None or smaller than 5.

_pickle_protocol = 4

static _shutil_copyfile (src, dst, * fol | ow_sym i nks=True)
Copy data from src to dst in the most efficient way possible.
If follow_symlinks is not set and src is a symbolic link, a new symlink will be created instead of copying the file it
points to.

static _time_time ()
time() -> floating point number
Return the current time in seconds since the Epoch. Fractions of a second may be present if the system clock
provides them.

close () - None

items ()

keys ()

opener (pat h, f| ags)
Database open helper when creation may be needed.
The high-level Python open() function cannot specify a file mode for creation. Using this as the opener with the
saved mode lets us do that.

sync () - None
Flush the database to disk.
This routine must succeed, since the in-memory and on-disk copies are out of sync as soon as we do anything that
changes the in-memory version. Thus, to be cautious, flush to a temporary file and then move it over with some
error handling.

values ()

SCons.dblite._exercise ()
SCons.dblite.open (fi l e, fl ag="r", rode: int = 438)

SCons.exitfuncs module

Register functions which are executed when SCons exits for any reason.
SCons.exitfuncs._run_exitfuncs () - None
run any registered exit functions
_exithandlers is traversed in reverse order so functions are executed last in, first out.
SCons.exitfuncs.register (f unc, *t ar gs, **kar gs) — None
register a function to be executed upon normal program termination
func - function to be called at exit targs - optional arguments to pass to func kargs - optional keyword arguments to
pass to func

SConsDoc documentation module

This module is NOT part of the SCons build tool itself. It is supporting tooling, invoked by tools used to build
documentation components.

SCons Documentation Processing module

This module parses home-brew XML files that document important SCons components. Currently it handles Builders,
Environment functions/methods, Construction Variables, and Tools (further expansion is possible). These
documentation snippets are turned into files with content and reference tags that can be included into the manpage
and/or user guide, which prevents a lot of duplication.

62

SCons API Documentation

In general, you can use any DocBook tag in the input, and this module just adds processing various home-brew tags to
try to make life a little easier.

Builder example:

<bui | der nane="BUl LDER" >
<summary>
<para>This is the summary description of an SCons Buil der
It will get placed in the man page,
and in the appropriate User's Gui de appendi x.
The nane of this builder may be interpol ated
anywhere in the docunent by specifying the
element. Alink to this definition nay be
i nterpol ated by specifying the el ement .
</ par a>

Unli ke vanilla DocBook, blank lines are significant in these
descriptions and serve to separate paragraphs.

They' Il get replaced in DocBook output with appropriate tags
to indicate a new paragraph.

<exanpl e>
print("this is exanple code, it will be offset and i ndented")
</ exanpl e>
</ summar y>
</ bui | der>

Function example:

<scons_function nanme="FUNCTI ON'>

<argunments si gnat ure="SI GTYPE" >

(argl, arg2, key=val ue)

</ ar gunent s>

<summary>

<para>This is the summary description of an SCons function

It will get placed in the nan page,

and in the appropriate User's QGui de appendi Xx.

If the "signature" attribute is specified, SIGIYPE may be one
of "global", "env" or "both" (the default if omtted is "both"),
to indicate the signature applies to the global formor the
environment form or to generate both with the same signature
(excepting the insertion of "env.").

This allows for the cases of

describing that only one signature should be generat ed,

or both signatures should be generated and they differ,

or both signatures should be generated and they are the sane.
The nane of this function may be interpol ated

anywhere in the docunment by specifying the

el ement or the el ement .
Links to this definition may be interpol ated by specifying
t he or el ement .
</ par a>
<exanpl e>

print("this is exanple code, it will be offset and indented")

63

SCons API Documentation

</ exanpl e>
</ summar y>
</ scons_functi on>

Construction variable example:

<cvar nane="VARI ABLE">
<summrar y>
<para>This is the summary description of a construction variable.
It will get placed in the man page,
and in the appropriate User's Gui de appendi x.
The name of this construction variable rmay be interpol ated
anywhere in the docunent by specifying the
element. Alink to this definition my be
i nterpolated by specifying the el ement .
</ par a>

<exanpl e>

print("this is exanple code, it will be offset and indented")
</ exanpl e>

</ summar y>

</ cvar >

Tool example:

(&

(&

(&

(&

64

<t ool nane="TOOL" >
<summary>
<para>This is the summary description of an SCons Tool
It will get placed in the man page,
and in the appropriate User's Gui de appendi x.
The nane of this tool may be interpol ated
anywhere in the docunent by specifying the
element. Alink to this definition nay be
i nterpol ated by specifying the el ement .
</ par a>

<examnpl e>

print("this is exanple code, it will be offset and indented")
</ exanpl e>

</ summar y>

</t ool >

| ass bin.SConsDoc.Arguments (si gnat ur e, body=None)
Bases: object

append (dat a)

| ass bin.SConsDoc.Builder (nane)

Bases: Item

cmp_name (nane)

| ass bin.SConsDoc.ConstructionVariable (nane)
Bases: Item

cmp_name (nane)

| ass bin.SConsDoc.DoctypeDeclaration (nane_=None)
Bases: object

addEntity (nane, uri)

SCons API Documentation

createDoctype ()
cl ass bin.SConsDoc.DoctypeEntity (name_, uri _)
Bases: object
getEntityString () — str
cl ass bin.SConsDoc.Function (hane)
Bases: Item
cmp_name (nane)
cl ass bin.SConsDoc.ltem (nane)
Bases: object
cmp_name (nane)
cl ass bin.SConsDoc.Libxml2ValidityHandler
Bases: object
error (Mg, dat a)
warning (msg, dat a)
cl ass bin.SConsDoc.SConsDocHandler
Bases: object
parseContent (cont ent , i ncl ude_entiti es=True)
Parse the given content as XML.
This method is used when we generate the basic lists of entities for the builders, tools and functions. So we usually
don’t bother about namespaces and resolving entities here... this is handled in parseXmlFile below (step 2 of the
overall process).
parseDomtree (r oot , xpat h_cont ext =None, nsmap=None, i ncl ude_enti ti es=True)
parselnstance (domel em map, Cl ass, xpat h_cont ext, nsmap, i ncl ude_entiti es=True)
parseltems (domel em xpat h_cont ext , nsmap)
parseUsesSets (donmel em xpat h_cont ext , nsmap)
parseXmlFile (f pat h)
cl ass bin.SConsDoc.SConsDocTree
Bases: object
parseContent (cont ent , i ncl ude_entiti es=True)
Parses the given text content as XML
This is the setup portion, called from parseContent in an SConsDocHandler instance - see the notes there.
parseXmlFile (f pat h)
cl ass bin.SConsDoc.Tool (nane)
Bases: Item
cmp_name (nane)
cl ass bin.SConsDoc.TreeFactory
Bases: object
static appendCvLink (r oot , key, I ntail)
stati c appendNode (parent, chil d)
stati c convertElementTree (r oot)
Convert the given tree of etree.Element entries to a list of tree nodes for the current XML toolkit.
stati c copyNode (node)

stati c decorateWithHeader (r oot)

static findAll (root,tag, ns=None, xp_ct xt =None, nsmap=None)

static findAllIChildrenOf (r oot , t ag, ns=None, xp_ct xt =None, nsnmap=None)
st ati c getAttribute (node, att)

static getTail (root)

static getText (r oot)

st ati ¢ hasAttribute (node, att)

stati c newEtreeNode (t ag, i ni t _ns=False, **kwar gs)

static newNode (t ag, * * kwar gs)

st ati ¢ newSubNode (par ent, t ag, **kwar gs)

newXmlTree (r oot)
Return a XML file tree with the correct namespaces set, the element root as top entry and the given header
comment.

stati c prettyPrintFile (f pat h)

65

SCons API Documentation

static setAttribute (node, att, val ue)

static setTail (root,txt)

static setText(root,txt)

stati c validateXml (f pat h, xm schema_cont ext)
static writeGenTree (r oot , f p)

static writeTree (root, f pat h)
xmlschema = None
bin.SConsDoc.importfile (pat h)
Import a Python source file or compiled file given its path.
bin.SConsDoc.isSConsXml (f pat h)
Check whether the given file is an SCons XML file.
Itis SCons XML if it contains the default target namespace definition described by dbxsdpat
bin.SConsDoc.remove_entities (cont ent)
bin.SConsDoc.validate_all_xml (dpat hs, xsdf i | e='doc/xsd/scons.xsd")

SConsExamples documentation module

This module is NOT part of the SCons build tool itself. It is supporting tooling, invoked by tools used to build
documentation components.

SCons Example Generator

Generate example outputs for the SCons documentation (primarily the User Guide) by processing custom XML tags
that describe example SCons projects. The generator automates tasks that would otherwise require considerable
manual effort: verifying that example projects run correctly, and capturing their output for documentation. Conceptually
this is a bit like Python doct est , but file-based rather than snippet-based.

An example consists of three parts:

1. Project files (scons_exanpl e tag)
2. Build commands (scons_out put _commrand tag)

3. Generated output (scons_out put tag)
Here’s a minimal example project:

<scons_exanpl e nane="ex1">
<file name="SConstruct" printnme="1">
env = Environment ()
env. Program(' foo')
</[file>
<file name="foo.c">
int main(void) { printf("foo.c\n"); }
</[file>
</ scons_exanpl e>

The example project’'s nane attribute provides a handle for later associating the output with this project.

Each fi | e tag describes the contents of a file to be created when setting up the project, and each di r ect ory tag
describes a directory to be created. Both take a nane attribute. The optional chnod attribute can be used if the created
file or directory needs something other than default permissions, usually to make a file executable. The pri nt ne
attribute indicates whether a file’s contents should be shown in the documentation. Any file with a pri nt ne value of 1
will have contents generated for inclusion; SConst r uct and other SConscript files will normally set this. The default is
to not show, since often the contents of the source files is needed to make the build work, but is not often not that
interesting when illustrating an SCons concept.

To show just an SConstruct file, use the shorthand sconst r uct tag:

66

SCons API Documentation

<sconstruct >
env = Environnent ()
env. Program(' foo')
</ sconstruct >

This is equivalent to:

<scons_exanpl e>
<file name="SConstruct" printnme="1">
...contents. ..
</[file>
</ scons_exanpl e>

The scons_exanpl e_fil e tag allows you to display the contents of a file outside the context of its definition in
scons_exanpl e. This looks like:

<scons_exanple_fil e exanpl e="exanpl el" nane="hello.h"/>
Link an example project to its output using the scons_out put tag:

<scons_out put exanpl e="ex1" os="posix">
<scons_out put _comand>scons -Q foo</scons_out put _conmmand>
</ scons_out put >

The exanpl e attribute associates the project of that name with the output. The os attribute can be used to indicate a
specific platform (for example, to display a suitable shell prompt). The default is posi x. The suf fi x attribute allows
tracking outputs from multiple ways of running a project. The optional t ool s attribute gives a non-default tool list for
this run.

An scons_out put _comand tag inside an scons_out put contains the instructions to build the project. There can be
several build commands defined for a given example project:

<scons_out put exanpl e="ex1" os="posi x" suffix="1">
<scons_out put _command>scons -Q foo</scons_out put _comrand>

</ scons_out put >

<scons_out put exanpl e="ex1" os="posi x" suffix="2">
<scons_out put _command>scons -Q --option foo</scons_out put _comrand>

</ scons_out put >

The command’s envi r onnent attribute can be used to set environment variables before the command is run. The
out put attribute can be used to emit commentary in the output display that is not produced by the command itself, for
example:

<scons_out put _command out put ="[CHANGE THE CONTENTS OF hell 0. h]">edit hell 0. h</scons_out put _c¢

The actual command text has some special recognized values:

e scons - to run scons

* touch - to update the file change time

« edi t -to change a file’'s contents without changing its behavior (works for C / C++)
* | s - generate a directory listing

* sl eep - delay for a while

67

SCons.compat package

The generator will: 1. Show the OS-appropriate command prompt 2. Execute the command in a temporary directory 3.
Capture SCons standard output for the documentation 4. Pass through error output for troubleshooting
cl ass bin.SConsExamples.ExampleCommand
Bases: object
cl ass bin.SConsExamples.ExampleFile (t ype_=0)
Bases: object
isFileRef ()
cl ass bin.SConsExamples.ExampleFolder
Bases: object
cl ass bin.SConsExamples.Examplelnfo
Bases: object
getFileContents (f nane)
cl ass bin.SConsExamples.ExampleOutput
Bases: object
bin.SConsExamples.ExecuteCommand (ar gs, c, t, val ues)
bin.SConsExamples.collectSConsExampleNames (f pat h)
Return a set() of example names, used in the given file fpath.
bin.SConsExamples.command_edit (ar gs, c, t est, val ues)
bin.SConsExamples.command_Is (ar gs, c, t est, val ues)
bin.SConsExamples.command_scons (ar gs, conmand, t est , val ues)
Fake scons command
bin.SConsExamples.command_sleep (ar gs, c, t est, val ues)
bin.SConsExamples.command_touch (ar gs, conmand, t est , val ues)
bin.SConsExamples.createAllExampleOutputs (dpat h)
Scan for XML files in the given directory and creates all output files for every example in the ‘generated/examples’
folder.
bin.SConsExamples.create_scons_output (e)
The real raison d’etre for this script, this is where we actually execute SCons to fetch the output.
bin.SConsExamples.ensureExampleOutputsExist (dpat h)
Scan for XML files in the given directory and ensure that for every example output we have a corresponding output
file in the ‘generated/examples’ folder.
bin.SConsExamples.exampleNamesAreUnique (dpat h)
Scan for XML files in the given directory and check whether the scons_example names are unique.
bin.SConsExamples.readAllExamplelnfos (dpat h)
Scan for XML files in the given directory and collect together all relevant infos (files/folders, output commands) in a
map, which gets returned.
bin.SConsExamples.readExamplelnfos (f pat h, exanpl es)
Add the example infos for the file fpath to the global dictionary examples.

SCons.compat package

Module contents
SCons compatibility package for old Python versions

This subpackage holds modules that provide backwards-compatible implementations of various things from newer
Python versions that we cannot count on because SCons still supported older Pythons.

Other code will not generally reference things in this package through the SCons.compat namespace. The modules
included here add things to the builtins namespace or the global module list so that the rest of our code can use the
objects and names imported here regardless of Python version. As a result, if this module is used, it should violate the
normal convention for imports (standard library imports first, then program-specific imports, each ordered
aplhabetically) and needs to be listed first.

The rest of the things here will be in individual compatibility modules that are either: 1) suitably modified copies of the
future modules that we want to use; or 2) backwards compatible re-implementations of the specific portions of a future
module’s API that we want to use.

68

SCons.Node package

GENERAL WARNINGS: Implementations of functions in the SCons.compat modules are NOT guaranteed to be fully
compliant with these functions in later versions of Python. We are only concerned with adding functionality that we
actually use in SCons, so be wary if you lift this code for other uses. (That said, making these more nearly the same as
later, official versions is still a desirable goal, we just don’t need to be obsessive about it.)

We name the compatibility modules with an initial *_scons_’ (for example, _scons_subprocess.py is our compatibility
module for subprocess) so that we can still try to import the real module name and fall back to our compatibility module
if we get an ImportError. The import_as() function defined below loads the module as the “real” name (without the
‘_scons’), after which all of the “import {module}” statements in the rest of our code will find our pre-loaded compatibility
module.
cl ass SCons.compat.NoSlotsPyPy (nane, bases, dct)

Bases: type

Metaclass for PyPy compatitbility.

PyPy does not work well with __slots___and __class__ assignment.

mro ()

Return a type’s method resolution order.

SCons.compat.rename_module (new, ol d) — bool

Attempt to import the old module and load it under the new name. Used for purely cosmetic name changes in Python

3.X.

SCons.Node package

Module contents
The Node package for the SCons software construction utility.
This is, in many ways, the heart of SCons.

A Node is where we encapsulate all of the dependency information about any thing that SCons can build, or about any
thing which SCons can use to build some other thing. The canonical “thing,” of course, is a file, but a Node can also
represent something remote (like a web page) or something completely abstract (like an Alias).

Each specific type of “thing” is specifically represented by a subclass of the Node base class: Node.FS.File for files,
Node.Alias for aliases, etc. Dependency information is kept here in the base class, and information specific to
files/aliases/etc. is in the subclass. The goal, if we've done this correctly, is that any type of “thing” should be able to
depend on any other type of “thing.”
SCons.Node.Annotate (node) - None
cl ass SCons.Node.BuildinfoBase
Bases: object
The generic base class for build information for a Node.
This is what gets stored in a .sconsign file for each target file. It contains a Nodelnfo instance for this node (signature
information that's specific to the type of Node) and direct attributes for the generic build stuff we have to track:
sources, explicit dependencies, implicit dependencies, and action information.
__getstate__ () - dict[str, Any]
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict_’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state: dict[str, Any]) - None
Restore the attributes from a pickled state.
bact
bactsig: str | None
bdepends
bdependsigs: list[BuildinfoBase]
bimplicit
bimplicitsigs: list[BuildinfoBase]
bsources
bsourcesigs: list[BuildinfoBase]
current_version_id = 2

69

SCons.Node package

merge (ot her: Bui | dl nf oBase) - None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

cl ass SCons.Node.Node

70

Bases: object
The base Node class, for entities that we know how to build, or use to build other Nodes.
cl ass Attrs
Bases: object
A generic place to store extra information about the Node.
Defines __sl ots__ for performance, but different consumers define their own attributes, so to avoid having to
collect them all here, we add a __di ct __ slot to get dynamic attributes.
shared
BuildInfo
alias of BuildinfoBase
Decider (f uncti on: Cal |l abl e[[Node, Node, Nodel nf oBase, Node | None], bool]) - None
GetTag (key: str) - Any | None
Return a user-defined tag.
Nodelnfo
alias of NodelnfoBase
Tag (key: str,value: Any | None) —» None
Add a user-defined tag.
_add_child (col I ection: list[Node],set: set[Node],child: |ist[Node]) - None
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get () - list][Node]
_children_reset () - None
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_target_from_source
_get_scanner (env: Environment,initial_scanner: ScannerBase | None,root_node_scanner:
Scanner Base | None,kw dict[str, Any] | None) - ScannerBase | None
_memo
_specific_sources
_tags: dict[str, Any] | None
add_dependency (depend: 1i st[Node]) — None
Adds dependencies.
add_ignore (depend: i st[Node]) — None
Adds dependencies to ignore.
add_prerequisite (prerequi site: 1ist[Node]) - None
Adds prerequisites
add_source (source: |ist[Node]) - None
Adds sources.
add_to_implicit (deps: |ist[Node]) — None
add_to_waiting_parents (node: Node) - int
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node: Node) - None
add_wkid (wki d: Node) —» None
Add a node to the list of kids waiting to be evaluated
all_children (scan: bool = True) - list] Node]
Return a list of all the node’s direct children.
alter_targets ()
Return a list of alternate targets for this Node.
always_build

SCons.Node package

71

attributes

binfo

build (* *kw) — None
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

builder

builder_set (bui | der: Bui | der Base | None) —» None

built () - None
Called just after this node is successfully built.

cached

changed (node: Node | None = None, al | owcache: bool = False) - bool
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane: str) - Any | None
Simple API to check if the node.attributes for name has been set

children (scan: bool = True) - list[Node]
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date () — bool
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear () - None
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values () - None

del_binfo () - None
Delete the build info from this node.

depends: list[Node]

depends_set: set[Node]

disambiguate (must _exi st: bool = False)

env: Environment | None

env_set (env: Environment,safe: bool = False) - None
executor

executor_cleanup () - None
Let the executor clean up any cached information.

exists () - bool
Reports whether node exists.

explain ()

for_signature () - str
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to

SCons.Node package

72

return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.
get_abspath () - str
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.
get_binfo () — BuildinfoBase
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.
get_build_env () - Environment
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner: Scanner Base)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der: Bui |l derBase | None = None) - BuilderBase | None
Return the set builder, or a specified default value
get_cachedir_csig () — str
get_contents () - bytes | str
Fetch the contents of the entry.
get_csig () — str
get_env () - Environment
get_env_scanner (env: Environment,kw dict[str, Any] | None = {}) - ScannerBase | None
get_executor (creat e: bool = True) - Executor
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env: Environnent, scanner: ScannerBase | None, pat h) - listf Node]
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.
get_implicit_deps (env: Environnent,initial_scanner: ScannerBase | None, path_func, kw={}) -
listf Node]
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_ninfo () - NodelnfoBase
get_source_scanner (node: Node) —» ScannerBase | None
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.
get_state () - int
get_stored_implicit () — listf Node] | None
Fetch the stored implicit dependencies
get_stored_info () - SConsignEntry | None
get_string (f or _si gnature: bool) - str
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.
get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a

SCons.Node package

73

tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix () — str

get_target_scanner () — ScannerBase | None

has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder () —» bool
Return whether this Node has an explicit builder.
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore: list] Node]

ignore_set: set[Node]

implicit: listf Node] | None

implicit_set

includes: list[str] | None

is_conftest () - bool
Returns true if this node is an conftest node

is_derived () - bool
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal () - bool
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript () - bool
Returns true if this node is an sconscript

is_up_to_date () — bool
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will always
get built.

linked

make_ready () - None
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing () — bool

multiple_side_effect_has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

new_binfo () - BuildinfoBase

new_ninfo () - NodelnfoBase

ninfo: NodelnfoBase | None

nocache

noclean

postprocess () - None
Clean up anything we don’t need to hang onto after we've been built.

precious

prepare () — None
Prepare for this Node to be built.

SCons.Node package

74

This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the Buildinfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites: UniqueList | None
pseudo
push_to_cache () - bool
Try to push a node into a cache
ref _count
release_target_info () — None
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove () - None
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
reset_executor () - None
Remove cached executor; forces recompute when needed.
retrieve_from_cache () - bool
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists () — bool
Does this node exist locally or in a repository?
scan () —» None
Scan this node’s dependents for implicit dependencies.
scanner_key () — str | None
select_scanner (scanner: Scanner Base) » ScannerBase | None
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d: bool = True) - None
Set the Node’s always_build value.
set_executor (execut or: Execut or) — None
Set the action executor for this node.
set_explicit (i s_explicit: bool) — None

set_nocache (nocache: bool = True) -» None
Set the Node’s nocache value.

set_noclean (nocl ean: bool = True) -~ None
Set the Node’s noclean value.

set_precious (pr eci ous: bool = True) - None
Set the Node’s precious value.

set_pseudo (pseudo: bool = True) —» None
Set the Node’s pseudo value.

set_specific_source (source: |ist[Node]) - None

set_state (state: int) — None

side_effect

SCons.Node package

side_effects: list[Node]
sources: list] Node]
sources_set: set[Node]
state
store_info
target_peers
visited () - None
Called just after this node has been visited (with or without a build).
waiting_parents: set[Node]
waiting_s_e: set[Node]
wkids: listf Node] | None
cl ass SCons.Node.NodelnfoBase
Bases: object
The generic base class for signature information for a Node.
Node subclasses should subclass NodelnfoBase to provide their own logic for dealing with their own Node-specific
signature information.
__getstate__ () - dict[str, Any]
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state: dict[str, Any]) - None
Restore the attributes from a pickled state. The version is discarded.
convert (node, val) -~ None
current_version_id = 2
format (field list: list[str] | None = None, nanmes: bool = False)
merge (ot her: Nodel nf oBase) - None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
update (node: Node) —» None
cl ass SCons.Node.NodeList (i ni tli st =None)
Bases: UserList
_abc_impl = <_abc._abc_data object>
append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t en)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
cl ass SCons.Node.Walker (node: ~SCons.Node.Node, kids_func: ~typing.Callable[[~SCons.Node.Node,
~SCons.Node.Node | None], list~SCons.Node.Node]] = <function get_children>, cycle_func:
~typing.Callable[[~-SCons.Node.Node, list~SCons.Node.Node]], None] = <function ignore_cycle>, eval_func:
~typing.Callable[[~SCons.Node.Node, ~SCons.Node.Node | None], None] = <function do_nothing>)
Bases: object

75

SCons.Node package

An iterator for walking a Node tree.
This is depth-first, children are visited before the parent. The Walker object can be initialized with any node, and
returns the next node on the descent with each get_next() call. get the children of a node instead of calling ‘children’.
‘cycle_func’ is an optional function that will be called when a cycle is detected.
This class does not get caught in node cycles caused, for example, by C header file include loops.
get_next ()
Return the next node for this walk of the tree.
This function is intentionally iterative, not recursive, to sidestep any issues of stack size limitations.
is_done () - bool
SCons.Node.changed_since_last _build_alias (node, t ar get , prev_ni, repo_node=None) - bool
SCons.Node.changed_since_last build_entry (node, t ar get, prev_ni, repo_node=None) - bool
SCons.Node.changed_since_last build_node (node, t ar get, prev_ni, repo_node=None) - bool
Must be overridden in a specific subclass to return True if this Node (a dependency) has changed since the last time
it was used to build the specified target. prev_ni is this Node’s state (for example, its file timestamp, length, maybe
content signature) as of the last time the target was built.
Note that this method is called through the dependency, not the target, because a dependency Node must be able to
use its own logic to decide if it changed. For example, File Nodes need to obey if we're configured to use timestamps,
but Python Value Nodes never use timestamps and always use the content. If this method were called through the
target, then each Node’s implementation of this method would have to have more complicated logic to handle all the
different Node types on which it might depend.
SCons.Node.changed_since_last build_python (node, t ar get , prev_ni , repo_node=None) - bool
SCons.Node.changed_since_last build_state_changed (node, t ar get , prev_ni , r epo_node=None) - bool
SCons.Node.classname (obj)
SCons.Node.decide_source (node, t ar get, prev_ni, repo_node=None) - bool
SCons.Node.decide_target (node, t ar get, prev_ni , repo_node=None) - bool
SCons.Node.do_nothing (node: Node, parent: Node | None) — None
SCons.Node.do_nothing_node (node) —» None
SCons.Node.exists_always (node) - bool
SCons.Node.exists_base (node) - bool
SCons.Node.exists_entry (node) — bool
Return if the Entry exists. Check the file system to see what we should turn into first. Assume a file if there’s no
directory.
SCons.Node.exists_file (node) - bool
SCons.Node.exists_none (hode) — bool
SCons.Node.get_children (node: Node, parent: Node | None) - listf Node]
SCons.Node.get_contents_dir (node)
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.
SCons.Node.get_contents_entry (node)
Fetch the contents of the entry. Returns the exact binary contents of the file.
SCons.Node.get_contents_file (node) - bytes
SCons.Node.get_contents_none (node)
SCons.Node.ignore_cycle (node: Node, stack: |ist[Node]) - None
SCons.Node.is_derived_node (node) - bool
Returns true if this node is derived (i.e. built).
SCons.Node.is_derived_none (node)
SCons.Node.rexists_base (node)
SCons.Node.rexists_node (node)
SCons.Node.rexists_none (node)
SCons.Node.store_info_file (node) — None
SCons.Node.store_info_pass (node) — None
SCons.Node.target_from_source_base (node, prefi x, suf fi x, splitext)
SCons.Node.target_from_source_none (node, prefi x, suffi x, splitext)

76

SCons.Node package

Submodules

SCons.Node.Alias module

Alias nodes.

This creates a hash of global Aliases (dummy targets).
cl ass SCons.Node.Alias.Alias (nane)

77

Bases: Node
cl ass Attrs
Bases: object
A generic place to store extra information about the Node.
Defines __sl ots__ for performance, but different consumers define their own attributes, so to avoid having to
collect them all here, we add a __di ct __ slot to get dynamic attributes.
shared
BuildInfo
alias of AliasBuildInfo
Decider (f uncti on: Cal |l abl e[[Node, Node, Nodel nf oBase, Node | None], bool]) - None
GetTag (key: str) - Any | None
Return a user-defined tag.
Nodelnfo
alias of AliasNodelnfo
Tag (key: str,value: Any | None) —» None
Add a user-defined tag.
_add_child (col I ection: list[Node],set: set[Node],child: |ist[Node]) - None
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get () - list][Node]
_children_reset () - None
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_target_from_source
_get_scanner (env: Environment,initial_scanner: ScannerBase | None,root_node_scanner:
Scanner Base | None,kw dict[str, Any] | None) - ScannerBase | None
_memo
_specific_sources
_tags: dict[str, Any] | None
add_dependency (depend: 1i st[Node]) — None
Adds dependencies.
add_ignore (depend: |ist[Node]) — None
Adds dependencies to ignore.
add_prerequisite (prerequi site: 1ist[Node]) - None
Adds prerequisites
add_source (source: |ist[Node]) - None
Adds sources.
add_to_implicit (deps: |ist[Node]) — None
add_to_waiting_parents (node: Node) - int
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node: Node) - None
add_wkid (wki d: Node) —» None
Add a node to the list of kids waiting to be evaluated
all_children (scan: bool = True) - list] Node]
Return a list of all the node’s direct children.
alter_targets ()

SCons.Node package

78

Return a list of alternate targets for this Node.

always_build
attributes

binfo

build (* *kw) — None

A “builder” for aliases.

builder
builder_set (bui | der: Bui | der Base | None) —» None
built () - None

Called just after this node is successfully built.

cached
changed (node: Node | None = None, al | owcache: bool = False) - bool

Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.

Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.

The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().

@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build
check_attributes (nane: str) — Any | None

Simple API to check if the node.attributes for name has been set

children (scan: bool = True) - list[Node]

Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date () — bool

Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear () - None

Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values () - None
convert () - None
del_binfo () - None

Delete the build info from this node.

depends: list[Node]
depends_set: set[Node]

disambiguate (must _exi st: bool = False)

env: Environment | None

env_set (env: Environment,safe: bool = False) - None
executor

executor_cleanup () - None

Let the executor clean up any cached information.

exists () - bool

Reports whether node exists.

explain ()
for_signature () — str

Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

SCons.Node package

79

get_abspath () - str
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.
get_binfo () — BuildinfoBase
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.
get_build_env () - Environment
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner: Scanner Base)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der: Bui |l derBase | None = None) - BuilderBase | None
Return the set builder, or a specified default value
get_cachedir_csig () — str
get_contents ()
The contents of an alias is the concatenation of the content signatures of all its sources.
get_csig ()
Generate a node’s content signature, the digested signature of its content.
node - the node cache - alternate node to use for the signature cache returns - the content signature
get_env () - Environment
get_env_scanner (env: Environment,kw dict[str, Any] | None = {}) - ScannerBase | None
get_executor (creat e: bool = True) - Executor
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env: Environnent, scanner: ScannerBase | None, pat h) - listf Node]
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.
get_implicit_deps (env: Environnent,initial_scanner: ScannerBase | None, path_func, kw={}) -
listf Node]
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_ninfo () - NodelnfoBase
get_source_scanner (node: Node) —» ScannerBase | None
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.
get_state () - int
get_stored_implicit () — listf Node] | None
Fetch the stored implicit dependencies
get_stored_info () - SConsignEntry | None
get_string (f or _si gnature: bool) - str
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.
get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a

SCons.Node package

80

tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix () — str

get_target_scanner () — ScannerBase | None

has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder () —» bool
Return whether this Node has an explicit builder.
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore: list] Node]

ignore_set: set[Node]

implicit: listf Node] | None

implicit_set

includes: list[str] | None

is_conftest () - bool
Returns true if this node is an conftest node

is_derived () - bool
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal () - bool
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript () - bool
Returns true if this node is an sconscript

is_under (di r) - bool

is_up_to_date () — bool
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

linked

make_ready () - None
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing () — bool

multiple_side_effect_has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

new_binfo () - BuildinfoBase

new_ninfo () - NodelnfoBase

ninfo: NodelnfoBase | None

nocache

noclean

postprocess () - None
Clean up anything we don’t need to hang onto after we've been built.

precious

SCons.Node package

81

prepare () - None
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the Buildinfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites: UniqueList | None
pseudo
push_to_cache () - bool
Try to push a node into a cache
really build (* *kw) — None
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
ref _count
release_target_info () — None
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove () - None
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
reset_executor () - None
Remove cached executor; forces recompute when needed.
retrieve_from_cache () - bool
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists () — bool
Does this node exist locally or in a repository?
scan () — None
Scan this node’s dependents for implicit dependencies.
scanner_key () — str | None
sconsign () - None
An Alias is not recorded in .sconsign files
select_scanner (scanner: Scanner Base) » ScannerBase | None
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d: bool = True) - None
Set the Node’s always_build value.
set_executor (execut or: Execut or) — None
Set the action executor for this node.
set_explicit (i s_explicit: bool) — None
set_nocache (nocache: bool = True) -» None

SCons.Node package

Set the Node’s nocache value.
set_noclean (nocl ean: bool = True) -~ None
Set the Node’s noclean value.
set_precious (pr eci ous: bool = True) - None
Set the Node’s precious value.
set_pseudo (pseudo: bool = True) —» None
Set the Node’s pseudo value.
set_specific_source (source: |ist[Node]) - None
set_state (state: int) —» None
side_effect
side_effects: list[Node]
sources: list] Node]
sources_set: set[Node]
state
store_info
str_for_display ()
target_peers
visited () - None
Called just after this node has been visited (with or without a build).
waiting_parents: set[Node]
waiting_s_e: set[Node]
wkids: listf Node] | None
cl ass SCons.Node.Alias.AliasBuildinfo
Bases: BuildinfoBase
__getstate__ () - dict[str, Any]
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state: dict[str, Any]) - None
Restore the attributes from a pickled state.
bact
bactsig: str | None
bdepends
bdependsigs: list[BuildinfoBase]
bimplicit
bimplicitsigs: list[BuildinfoBase]
bsources
bsourcesigs: list[BuildinfoBase]
current_version_id = 2
merge (ot her: Bui | dl nf oBase) - None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
cl ass SCons.Node.Alias.AliasNameSpace (di ct =None, /, * * kwar gs)
Bases: UserDict
Alias (nane, ** kw)
_abc_impl = <_abc._abc_data object>
clear () - None. Remove all items from D.
copy ()
cl assnet hod fromkeys (i t er abl e, val ue=None)
get (k[, d]) - D[K] if kin D, else d. d defaults to None.
items () —» a set-like object providing a view on D's items
keys () — a set-like object providing a view on D's keys
lookup (name, ** kw)
pop (k[, d]) - v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.
popitem () - (k, v), remove and return some (key, value) pair

82

SCons.Node package

as a 2-tuple; but raise KeyError if D is empty.

setdefault (k[, d]) - D.get(k,d), also set D[k]=d if k not in D

update ([, E], **F) - None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[K] = E[K] If E present and lacks .keys() method, does: for
(k, v) in E: D[K] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values () - an object providing a view on D's values

cl ass SCons.Node.Alias.AliasNodelnfo

Bases: NodelnfoBase

__getstate__ () - dict[str, Any]
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (state: dict[str, Any]) - None
Restore the attributes from a pickled state. The version is discarded.

convert (node, val) -~ None

csig

current_version_id = 2

field_list = ['csig']

format (field list: list[str] | None = None, nanes: bool = False)

merge (ot her: Nodel nf oBase) — None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

update (node: Node) - None

SCons.Node.FS module

File system nodes.

These Nodes represent the canonical external objects that people think of when they think of building software: files
and directories.

This holds a “default_fs” variable that should be initialized with an FS that can be used by scripts or modules looking for
the canonical default.
cl ass SCons.Node.FS.Base (nane, di rectory, fs)

83

Bases: Node
A generic class for file system entries. This class is for when we don’t know yet whether the entry being looked up is
a file or a directory. Instances of this class can morph into either Dir or File objects by a later, more precise lookup.
Note: this class does not define __cmp___ and __hash__ for efficiency reasons. SCons does a lot of comparing of
Node.FS.{Base,Entry,File,Dir} objects, so those operations must be as fast as possible, which means we want to use
Python’s built-in object identity comparisons.
cl ass Attrs
Bases: object
A generic place to store extra information about the Node.
Defines sl ots__ for performance, but different consumers define their own attributes, so to avoid having to
collect them all here, we add a __di ct __ slot to get dynamic attributes.
shared
BuildInfo
alias of BuildInfoBase
Decider (functi on: Cal |l abl e[[Node, Node, Nodel nf oBase, Node | None], bool]) - None
GetTag (key: str) - Any | None
Return a user-defined tag.
Nodelnfo
alias of NodelnfoBase
RDirs (pat hl i st)
Search for a list of directories in the Repository list.
Rfindalldirs (pat hl i st)

SCons.Node package

Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.

Tag (key: str,value: Any | None) —» None
Add a user-defined tag.

_Rfindalldirs_key (pat hl i st)

__Qetattr__ (attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr __is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)
less than operator used by sorting on py3

str () - str
A Node.FS.Base object’s string representation is its path name.

_abspath

_add_child (col I ection: list[Node],set: set[Node],child: |ist[Node]) - None
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get () - list][Node]

_children_reset () - None

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_sconsign

_func_target_from_source

_get_scanner (env: Environment,initial_scanner: ScannerBase | None,root_node_scanner:

Scanner Base | None,kw dict[str, Any] | None) - ScannerBase | None

_get_str ()

_globl (patt ern, ondi sk: bool = True, source: bool = False,strings: bool = False)

_labspath

_local

_memo

_path

_path_elements

_proxy

_save_str ()

_specific_sources

_tags: dict[str, Any] | None

_tpath

add_dependency (depend: 1i st[Node]) — None
Adds dependencies.

add_ignore (depend: |ist[Node]) — None
Adds dependencies to ignore.

add_prerequisite (prerequi site: |ist[Node]) —» None
Adds prerequisites
add_source (source: |ist[Node]) - None

Adds sources.

add_to_implicit (deps: |ist[Node]) — None

add_to_waiting_parents (node: Node) - int
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)

84

SCons.Node package

85

add_to_waiting_s_e (node: Node) - None

add_wkid (wki d: Node) —» None
Add a node to the list of kids waiting to be evaluated

all_children (scan: bool = True) - list] Node]
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

binfo

build (* *kw) — None
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

builder

builder_set (bui | der: Bui | der Base | None) —» None

built () - None
Called just after this node is successfully built.

cached

changed (node: Node | None = None, al | owcache: bool = False) - bool
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane: str) - Any | None
Simple API to check if the node.attributes for name has been set

children (scan: bool = True) - list[Node]
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date () — bool
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear () - None
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values () - None

cwd

del_binfo () - None
Delete the build info from this node.

depends: list[Node]

depends_set: set][Node]

dir

disambiguate (must _exi st: bool = False)

duplicate

env: Environment | None

env_set (env: Environnment,safe: bool = False) - None
executor

SCons.Node package

86

executor_cleanup () - None
Let the executor clean up any cached information.
exists ()
Reports whether node exists.
explain ()
for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.
fs
Reference to parent Node.FS object
get_abspath ()
Get the absolute path of the file.
get_binfo () — BuildinfoBase
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’'s wanted.
get_build_env () - Environment
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner: Scanner Base)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der: Bui |l derBase | None = None) - BuilderBase | None
Return the set builder, or a specified default value
get_cachedir_csig () — str
get_contents () - bytes | str
Fetch the contents of the entry.
get_csig () — str
get_dir ()
get_env () - Environment
get_env_scanner (env: Environment,kw dict[str, Any] | None = {}) - ScannerBase | None
get_executor (creat e: bool = True) - Executor
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env: Environnent, scanner: ScannerBase | None, pat h) - list[Node]
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.
get_implicit_deps (env: Environnent,initial_scanner: ScannerBase | None, path_func, kw={}) -
listf Node]
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath ()
Get the absolute path of the file.
get_ninfo () - NodelnfoBase
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.
get_path_elements ()
get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.
get_source_scanner (node: Node) - ScannerBase | None

SCons.Node package

87

Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state () - int

get_stored_implicit () — listf Node] | None
Fetch the stored implicit dependencies

get_stored_info () - SConsignEntry | None

get_string (f or _si gnature: bool) - str
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner () — ScannerBase | None

get_tpath ()

getmtime ()

getsize ()

has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder () —» bool
Return whether this Node has an explicit builder.
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore: list] Node]

ignore_set: set[Node]

implicit: listf Node] | None

implicit_set

includes: list[str] | None

is_conftest () - bool
Returns true if this node is an conftest node

is_derived () —» bool
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal () - bool
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript () - bool
Returns true if this node is an sconscript

is_under (di r) - bool

is_up_to_date () - bool

SCons.Node package

88

Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will always
get built.
isdir () - bool
isfile () - bool
islink () - bool
linked
Istat ()
make_ready () - None
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.
missing () — bool
multiple_side_effect_has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
must_be_same (kl ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.
name
new_binfo () - BuildinfoBase
new_ninfo () - NodelnfoBase
ninfo: NodelnfoBase | None
nocache
noclean
postprocess () - None
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare () - None
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the Buildinfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites: UniqueList | None
pseudo
push_to_cache () - bool
Try to push a node into a cache
ref _count
release_target_info () — None
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove () - None
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()

SCons.Node package

reset_executor () - None
Remove cached executor; forces recompute when needed.
retrieve_from_cache () - bool
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
rstr () - str
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan () — None
Scan this node’s dependents for implicit dependencies.
scanner_key () — str | None
select_scanner (scanner: Scanner Base) » ScannerBase | None
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d: bool = True) - None
Set the Node’s always_build value.
set_executor (execut or: Execut or) — None
Set the action executor for this node.
set_explicit (i s_explicit: bool) — None
set_local () - None

set_nocache (nocache: bool = True) -» None
Set the Node’s nocache value.
set_noclean (nocl ean: bool = True) -~ None
Set the Node’s noclean value.
set_precious (pr eci ous: bool = True) - None
Set the Node’s precious value.
set_pseudo (pseudo: bool = True) —» None
Set the Node’s pseudo value.
set_specific_source (source: |ist[Node]) - None

set_src_builder (bui | der) — None
Set the source code builder for this node.

set_state (state: int) — None

side_effect

side_effects: list[Node]

sources: list] Node]

sources_set: set[Node]

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for_display ()

target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

89

SCons.Node package

target_peers

visited () - None
Called just after this node has been visited (with or without a build).

waiting_parents: set[Node]

waiting_s_e: set[Node]

wkids: listf Node] | None

cl ass SCons.Node.FS.Dir (nane, directory, fs)

Bases: Base

A class for directories in a file system.

cl ass Attrs
Bases: object
A generic place to store extra information about the Node.
Defines __sl ots__ for performance, but different consumers define their own attributes, so to avoid having to
collect them all here, we add a __di ct __ slot to get dynamic attributes.
shared

BuildInfo
alias of DirBuildinfo

Decider (f uncti on: Cal |l abl e[[Node, Node, Nodel nf oBase, Node | None], bool]) - None

Dir (nane, creat e: bool = True)
Looks up or creates a directory node named ‘name’ relative to this directory.

Entry (nane)
Looks up or creates an entry node named ‘name’ relative to this directory.

File (nane)
Looks up or creates a file node named ‘name’ relative to this directory.

GetTag (key: str) - Any | None
Return a user-defined tag.

Nodelnfo
alias of DirNodelnfo

RDirs (pat hl i st)
Search for a list of directories in the Repository list.

Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.

Tag (key: str,value: Any | None) —» None
Add a user-defined tag.

_Rfindalldirs_key (pat hl i st)

__clearRepositoryCache (dupl i cat e=None) —» None
Called when we change the repository(ies) for a directory. This clears any cached information that is invalidated by
changing the repository.

__Qetattr__ (attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr __is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)
less than operator used by sorting on py3

__resetDuplicate (node) — None

str () - str
A Node.FS.Base object’s string representation is its path name.

_abspath

_add_child (col I ection: list[Node],set: set[Node],child: |ist[Node]) - None
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

90

SCons.Node package

_children_get () — list][Node]
_children_reset () - None
_create ()
Create this directory, silently and without worrying about whether the builder is the default or not.
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_sconsign
_func_target_from_source
_get_scanner (env: Environment,initial_scanner: ScannerBase | None,root_node_scanner:
Scanner Base | None,kw dict[str, Any] | None) - ScannerBase | None
_get_str ()
_globl (patt ern, ondi sk: bool = True, source: bool = False,strings: bool = False)
Globs for and returns a list of entry names matching a single pattern in this directory.
This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.
TODO: handle pattern with no wildcard. Python’s glob.glob uses a separate _glob0 function to do this.
_labspath
_local
_memo
_morph () - None
Turn a file system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.
Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don’t use
signatures for calculating whether they’re current.
_path
_path_elements
_proxy
_rel_path_key (ot her)
_save_str ()
_sconsign
_specific_sources
_srcdir_find_file_key (fi | enane)
_tags: dict[str, Any] | None
_tpath
addRepository (di r) — None
add_dependency (depend: 1i st[Node]) — None
Adds dependencies.
add_ignore (depend: |ist[Node]) — None
Adds dependencies to ignore.
add_prerequisite (prerequi site: 1ist[Node]) - None
Adds prerequisites
add_source (source: |ist[Node]) - None
Adds sources.
add_to_implicit (deps: |ist[Node]) — None
add_to_waiting_parents (node: Node) - int
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node: Node) - None
add_wkid (wki d: Node) —» None
Add a node to the list of kids waiting to be evaluated
all_children (scan: bool = True) - list] Node]
Return a list of all the node’s direct children.
alter_targets ()

91

SCons.Node package

92

Return any corresponding targets in a variant directory.

always_build

attributes

binfo

build (* *kw) — None
A null “builder” for directories.

builder

builder_set (bui | der: Bui | der Base | None) —» None

built () - None
Called just after this node is successfully built.

cached

cachedir_csig

cachesig

changed (node: Node | None = None, al | owcache: bool = False) - bool
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane: str) - Any | None
Simple API to check if the node.attributes for name has been set

children (scan: bool = True) - list[Node]
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date () — bool
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear () - None
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values () - None

contentsig

cwd

del_binfo () - None
Delete the build info from this node.

depends: list[Node]

depends_set: set][Node]

dir

dir_on_disk (nane)

dirname

disambiguate (must _exi st: bool = False)

diskcheck_match () — None

do_duplicate (src) — None

duplicate

entries

entry_abspath (nane)

entry_exists_on_disk (nhane)
Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given
name could be found.
@see rentry_exists_on_disk

SCons.Node package

93

entry_labspath (nane)

entry_path (nane)

entry_tpath (nane)

env: Environment | None

env_set (env: Environment,safe: bool = False) - None

executor

executor_cleanup () - None
Let the executor clean up any cached information.

exists ()
Reports whether node exists.

explain ()

file_on_disk (namne)

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

fs
Reference to parent Node.FS object

getRepositories ()
Returns a list of repositories for this directory.

get_abspath () - str
Get the absolute path of the file.

get_all_rdirs ()

get_binfo () —» BuildinfoBase
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.

get_build_env () - Environment
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner: Scanner Base)
Fetch the appropriate scanner path for this node.

get_builder (def aul t _bui | der: Bui |l derBase | None = None) - BuilderBase | None
Return the set builder, or a specified default value

get_cachedir_csig () — str

get_contents ()
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.

get_csig ()
Compute the content signature for Directory nodes. In general, this is not needed and the content signature is not
stored in the DirNodelnfo. However, if get_contents on a Dir node is called which has a child directory, the child
directory should return the hash of its contents.

get_dir ()

get_env () - Environment

get_env_scanner (env, kw={})

get_executor (creat e: bool = True) - Executor
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, pat h)
Return this directory’s implicit dependencies.
We don't bother caching the results because the scan typically shouldn’t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).

SCons.Node package

94

get_implicit_deps (env: Environnent,initial_scanner: ScannerBase | None, path_func, kw={}) -
listf Node]
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath () - str
Get the absolute path of the file.
get_ninfo () - NodelnfoBase
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.
get_path_elements ()
get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.
get_source_scanner (node: Node) —» ScannerBase | None
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.
get_state () - int
get_stored_implicit () — listf Node] | None
Fetch the stored implicit dependencies
get_stored_info () - SConsignEntry | None
get_string (f or _si gnature: bool) - str
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.
get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.
get_suffix ()
get_target_scanner ()
get_text _contents ()
We already emit things in text, so just return the binary version.
get_timestamp () - int
Return the latest timestamp from among our children
get_tpath ()
getmtime ()
getsize ()
glob (pat hnane, ondi sk: bool = True, source: bool = False,strings: bool = False, excl ude=None)
- list
Returns a list of Nodes (or strings) matching a pathname pattern.
Pathname patterns follow POSIX shell syntax:

* mat ches everyt hi ng

? mat ches any singl e character

[seq] matches any character in seq (ranges all owed)
[!seq] matches any char not in seq

SCons.Node package

95

The wildcard characters can be escaped by enclosing in brackets. A leading dot is not matched by a wildcard, and
needs to be explicitly included in the pattern to be matched. Matches also do not span directory separators.

The matches take into account Repositories, returning a local Node if a corresponding entry exists in a Repository
(either an in-memory Node or something on disk).

The underlying algorithm is adapted from a rather old version of glob.glob() function in the Python standard library
(heavily modified), and uses fnmatch.fnmatch() under the covers.

This is the internal implementation of the external Glob API.

Parameters:
e pattern — pathname pattern to match.

» ondisk — if false, restricts matches to in-memory Nodes. By defafult, matches entries
that exist on-disk in addition to in-memory Nodes.

e source — if true, corresponding source Nodes are returned if globbing in a variant
directory. The default behavior is to return Nodes local to the variant directory.

 strings — if true, returns the matches as strings instead of Nodes. The strings are path
names relative to this directory.

» exclude — if not None, must be a pattern or a list of patterns following the same POSIX
shell semantics. Elements matching at least one pattern from exclude will be excluded
from the result.

has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr _ for both the
__len__and _ bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder () —» bool
Return whether this Node has an explicit builder.
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore: list[Node]

ignore_set: set[Node]

implicit: listf Node] | None

implicit_set

includes: list[str] | None

is_conftest () — bool
Returns true if this node is an conftest node

is_derived () —» bool
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build signatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal () - bool
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript () —» bool
Returns true if this node is an sconscript

is_under (di r) - bool

is_up_to_date () - bool
If any child is not up-to-date, then this directory isn't, either.

isdir () - bool

isfile () — bool

islink () - bool

link (srcdi r, dupl i cate) -» None
Set this directory as the variant directory for the supplied source directory.

linked

SCons.Node package

96

Istat ()
make_ready () - None
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.
missing () — bool
multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
must_be_same (kl ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.
name
new_binfo () - BuildinfoBase
new_ninfo () - NodelnfoBase
ninfo: NodelnfoBase | None
nocache
noclean
on_disk_entries
postprocess () - None
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare () - None
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites: UniqueList | None
pseudo
push_to_cache () - bool
Try to push a node into a cache
rdir ()
ref _count
rel_path (ot her)
Return a path to “other” relative to this directory.
release_target_info () — None
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
released_target_info
remove () - None
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
rentry_exists_on_disk (namne)

SCons.Node package

Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk
repositories
reset_executor () - None
Remove cached executor; forces recompute when needed.
retrieve_from_cache () - bool
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
root
rstr () - str
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan () — None
Scan this node’s dependents for implicit dependencies.
scanner_key ()
A directory does not get scanned.
scanner_paths
sconsign ()
Return the .sconsign file info for this directory.
searched
select_scanner (scanner: Scanner Base) — ScannerBase | None
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d: bool = True) - None
Set the Node’s always_build value.
set_executor (execut or: Execut or) — None
Set the action executor for this node.
set_explicit (i s_explicit: bool) — None
set_local () - None

set_nocache (nocache: bool = True) -» None
Set the Node’s nocache value.
set_noclean (nocl ean: bool = True) -~ None
Set the Node’s noclean value.
set_precious (pr eci ous: bool = True) - None
Set the Node’s precious value.
set_pseudo (pseudo: bool = True) —» None
Set the Node’s pseudo value.
set_specific_source (source: |ist[Node]) - None

set_src_builder (bui | der) — None
Set the source code builder for this node.
set_state (state: int) —» None
side_effect
side_effects: list[Node]
sources: list] Node]
sources_set: set[Node]
src_builder ()
Fetch the source code builder for this node.

97

SCons.Node package

If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcdir_duplicate (namne)

srcdir_find_file (fi | enane)

sredir_list ()

srcnode ()
Dir has a special need for srcnode()...if we have a srcdir attribute set, then that is our srcnode.

stat ()

state

store_info

str_for_display ()

target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

up ()

variant_dirs

visited () - None
Called just after this node has been visited (with or without a build).

waiting_parents: set[Node]

waiting_s_e: set[Node]

walk (f unc, ar g) - None
Walk this directory tree by calling the specified function for each directory in the tree.
This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the same
arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)
Except that “dirname” will actually be the directory Node, not the string. The ‘" and ‘.. entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a specific
order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing None is
common).
wkids: listf Node] | None

cl ass SCons.Node.FS.DirBuildInfo

Bases: BuildinfoBase

__getstate__ () - dict[str, Any]
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (state: dict[str, Any]) - None
Restore the attributes from a pickled state.

bact

bactsig: str | None

bdepends

bdependsigs: list[BuildinfoBase]

bimplicit

bimplicitsigs: list[BuildinfoBase]

bsources

bsourcesigs: list[BuildinfoBase]

current_version_id = 2

merge (ot her: Bui | dl nf oBase) - None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

cl ass SCons.Node.FS.DirNodelnfo

98

Bases: NodelnfoBase
__getstate_ () - dict[str, Any]

SCons.Node package

Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (state: dict[str, Any]) - None
Restore the attributes from a pickled state. The version is discarded.

convert (node, val) -~ None

current_version_id = 2

format (field list: list[str] | None = None, nanmes: bool = False)

fs = None

merge (ot her: Nodel nf oBase) - None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

update (node: Node) - None

cl ass SCons.Node.FS.DiskChecker (di sk_check_t ype, do_check_functi on,i gnore_check_functi on)

Bases: object

Implement disk check variation.

This Class will hold functions to determine what this particular disk checking implementation should do when enabled

or disabled.

enable (di sk_check_type_list) - None
If the current object’'s disk_check_type matches any in the list passed :param disk_check_type_list: List of disk
checks to enable :return:

cl ass SCons.Node.FS.Entry (nane, di rectory, fs)

Bases: Base

This is the class for generic Node.FS entries—that is, things that could be a File or a Dir, but we're just not sure yet.

Consequently, the methods in this class really exist just to transform their associated object into the right class when

the time comes, and then call the same-named method in the transformed class.

cl ass Attrs
Bases: object
A generic place to store extra information about the Node.
Defines __sl ots__ for performance, but different consumers define their own attributes, so to avoid having to
collect them all here, we add a __di ct __ slot to get dynamic attributes.
shared

BuildInfo
alias of BuildInfoBase

Decider (f uncti on: Cal |l abl e[[Node, Node, Nodel nf oBase, Node | None], bool]) - None

GetTag (key: str) - Any | None
Return a user-defined tag.

Nodelnfo
alias of NodelnfoBase

RDirs (pat hl i st)
Search for a list of directories in the Repository list.

Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.

Tag (key: str,value: Any | None) —» None
Add a user-defined tag.

_Rfindalldirs_key (pat hl i st)

__Qetattr__ (attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr _is

99

SCons.Node package

only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.
_ It (ot her)
less than operator used by sorting on py3
str () - str
A Node.FS.Base object’s string representation is its path name.
_abspath
_add_child (col I ection: list[Node],set: set[Node],child: |ist[Node]) - None
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get () — list][Node]
_children_reset () - None
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_sconsign
_func_target_from_source
_get_scanner (env: Environment,initial_scanner: ScannerBase | None,root_node_scanner:
Scanner Base | None,kw dict[str, Any] | None) - ScannerBase | None
_get_str ()
_globl (pat t ern, ondi sk: bool = True, source: bool = False,strings: bool = False)
_labspath
_local
_memo
_path
_path_elements
_proxy
_save_str ()
_sconsign
_specific_sources
_tags: dict[str, Any] | None
_tpath
add_dependency (depend: 1i st[Node]) —» None
Adds dependencies.
add_ignore (depend: i st[Node]) — None
Adds dependencies to ignore.
add_prerequisite (prerequi site: 1ist[Node]) - None
Adds prerequisites
add_source (source: 1ist[Node]) - None
Adds sources.
add_to_implicit (deps: |ist[Node]) — None
add_to_waiting_parents (node: Node) - int
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node: Node) - None
add_wkid (wki d: Node) —» None
Add a node to the list of kids waiting to be evaluated
all_children (scan: bool = True) - list] Node]
Return a list of all the node’s direct children.
alter_targets ()
Return a list of alternate targets for this Node.
always_build
attributes
binfo
build (* *kw) — None

100

SCons.Node package

101

Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

builder

builder_set (bui | der: Bui | der Base | None) —» None

built () - None
Called just after this node is successfully built.

cached

cachedir_csig

cachesig

changed (node: Node | None = None, al | owcache: bool = False) - bool
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane: str) - Any | None
Simple API to check if the node.attributes for name has been set

children (scan: bool = True) - list[Node]
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date () — bool
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear () - None
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values () - None

contentsig

cwd

del_binfo () - None
Delete the build info from this node.

depends: list[Node]

depends_set: set][Node]

dir

dirname

disambiguate (must _exi st =False)

diskcheck_match () - None

duplicate

entries

env: Environment | None

env_set (env: Environment,safe: bool = False) - None
executor

executor_cleanup () - None

Let the executor clean up any cached information.
exists ()

Reports whether node exists.
explain ()

SCons.Node package

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.
fs
Reference to parent Node.FS object
get_abspath ()
Get the absolute path of the file.
get_binfo () — BuildinfoBase
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.
get_build_env () - Environment
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner: Scanner Base)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der: Bui |l derBase | None = None) - BuilderBase | None
Return the set builder, or a specified default value
get_cachedir_csig () — str
get_contents ()
Fetch the contents of the entry. Returns the exact binary contents of the file.
get_csig () — str
get_dir ()
get_env () - Environment
get_env_scanner (env: Environment,kw dict[str, Any] | None = {}) - ScannerBase | None
get_executor (creat e: bool = True) - Executor
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env: Environnent, scanner: ScannerBase | None, pat h) - listf Node]
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.
get_implicit_deps (env: Environnent,initial_scanner: ScannerBase | None, path_func, kw={}) -
listf Node]
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath ()
Get the absolute path of the file.
get_ninfo () - NodelnfoBase
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.
get_path_elements ()
get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.
get_source_scanner (node: Node) —» ScannerBase | None
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.
get_state () - int

102

SCons.Node package

103

get_stored_implicit () — listf Node] | None
Fetch the stored implicit dependencies

get_stored_info () - SConsignEntry | None

get_string (f or _si gnature: bool) - str
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner () — ScannerBase | None

get_text contents () — str
Fetch the decoded text contents of a Unicode encoded Entry.
Since this should return the text contents from the file system, we check to see into what sort of subclass we
should morph this Entry.

get_tpath ()

getmtime ()

getsize ()

has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder () —» bool
Return whether this Node has an explicit builder.
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore: list] Node]

ignore_set: set[Node]

implicit: listf Node] | None

implicit_set

includes: list[str] | None

is_conftest () - bool
Returns true if this node is an conftest node

is_derived () —» bool
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal () - bool
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript () - bool
Returns true if this node is an sconscript

is_under (di r) - bool

is_up_to_date () - bool

SCons.Node package

104

Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will always
get built.

isdir () - bool

isfile () - bool

islink () - bool

linked

Istat ()

make_ready () - None
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing () — bool

multiple_side_effect_has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

must_be_same (kl ass) - None
Called to make sure a Node is a Dir. Since we’re an Entry, we can morph into one.

name

new_binfo () - BuildinfoBase

new_ninfo ()

ninfo: NodelnfoBase | None

nocache

noclean

on_disk_entries

postprocess () - None
Clean up anything we don’t need to hang onto after we've been built.

precious

prepare () - None
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites: UniqueList | None

pseudo

push_to_cache () - bool
Try to push a node into a cache

ref _count

rel_path (ot her)

release_target_info () — None
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

released_target_info

remove () - None
Remove this Node: no-op by default.

SCons.Node package

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
repositories
reset_executor () - None
Remove cached executor; forces recompute when needed.
retrieve_from_cache () - bool
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
We’'re a generic Entry, but the caller is actually looking for a File at this point, so morph into one.
root
rstr () - str
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan () — None
Scan this node’s dependents for implicit dependencies.
scanner_key ()
scanner_paths
searched
select_scanner (scanner: Scanner Base) » ScannerBase | None
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d: bool = True) - None
Set the Node’s always_build value.
set_executor (execut or: Execut or) — None
Set the action executor for this node.
set_explicit (i s_explicit: bool) — None
set_local () - None

set_nocache (nocache: bool = True) -» None
Set the Node’s nocache value.
set_noclean (nocl ean: bool = True) -~ None
Set the Node’s noclean value.
set_precious (pr eci ous: bool = True) - None
Set the Node’s precious value.
set_pseudo (pseudo: bool = True) —» None
Set the Node’s pseudo value.
set_specific_source (source: |ist[Node]) - None

set_src_builder (bui | der) — None
Set the source code builder for this node.
set_state (state: int) —» None
side_effect
side_effects: list[Node]
sources: list] Node]
sources_set: set[Node]
src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcdir
srcnode ()

105

SCons.Node package

If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.
stat ()
state
store_info
str_for_display ()
target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.
target_peers
variant_dirs
visited () - None
Called just after this node has been visited (with or without a build).
waiting_parents: set[Node]
waiting_s_e: set[Node]
wkids: listf Node] | None
cl ass SCons.Node.FS.EntryProxy (subj ect)
Bases: Proxy
__get_abspath ()
__get_base_path ()
Return the file’s directory and file name, with the suffix stripped.
__get dir ()
__get file ()
__get filebase ()
__get_posix_path ()
Return the path with / as the path separator, regardless of platform.
__get_relpath ()
__get_rsrcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node if
not linked.
__get_rsrcnode ()
__get_srcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node if
not linked.
__get_srcnode ()
__get_suffix ()
__get_windows_path ()
Return the path with as the path separator, regardless of platform.
dictSpecialAttrs = {'abspath’: <function EntryProxy.__get_abspath>, 'base’: <function
EntryProxy.__get base_path>, 'dir': <function EntryProxy.__get_dir>, file": <function EntryProxy. _get file>,
'filebase'": <function EntryProxy.__get_filebase>, 'posix’: <function EntryProxy.__get posix_path>, 'relpath': <function
EntryProxy.__get_relpath>, 'rsrcdir': <function EntryProxy.__get_rsrcdir>, 'rsrcpath’: <function
EntryProxy.__get_rsrcnode>, 'srcdir': <function EntryProxy.__get_srcdir>, 'srcpath’: <function
EntryProxy.__get_srcnode>, 'suffix': <function EntryProxy.__get_suffix>, 'win32": <function
EntryProxy.__get windows_path>, 'windows": <function EntryProxy. _get_windows_path>}
get ()
Retrieve the entire wrapped object
excepti on SCons.Node.FS.EntryProxyAttributeError (entry_proxy, attri bute)
Bases: AttributeError
An AttributeError subclass for recording and displaying the name of the underlying Entry involved in an AttributeError
exception.
add_note ()
Exception.add_note(note) — add a note to the exception
args
name
attribute name

106

SCons.Node package

obj
object

with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

cl ass SCons.Node.FS.FS (pat h=None)

Bases: LocalFS

Dir (nan®e, di r ect or y=None, creat e: bool = True)
Look up or create a Dir node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied at
construction time) if no directory is supplied.
This method will raise TypeError if a normal file is found at the specified path.

Entry (name, di rect or y=None, create: bool = True)
Look up or create a generic Entry node with the specified name. If the name is a relative path (begins with ./, ../, or
a file name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS
(supplied at construction time) if no directory is supplied.

File (name, di r ect or y=None, creat e: bool = True)
Look up or create a File node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied at
construction time) if no directory is supplied.
This method will raise TypeError if a directory is found at the specified path.

Glob (pat hnane, ondi sk: bool = True, source: bool = True,strings: bool = False, excl ude=None,

cwd=None)
Globs
This is mainly a shim layer

PyPackageDir (nodul enane) - Dir | None
Locate the directory of Python module modulename.
For example ‘SCons’ might resolve to Windows: C:Python311Libsite-packagesSCons Linux:
{usr/lib64/python3.11/site-packages/SCons
Can be used to determine a toolpath based on a Python module name.
This is the backend called by the public API function PyPackageDir().

Repository (*di rs) - None
Specify Repository directories to search.

VariantDir (vari ant _dir,src_dir,duplicate: int = 1)
Link the supplied variant directory to the source directory for purposes of building files.

_lookup (p,directory, fscl ass, create: bool = True)
The generic entry point for Node lookup with user-supplied data.
This translates arbitrary input into a canonical Node.FS object of the specified fsclass. The general approach for
strings is to turn it into a fully normalized absolute path and then call the root directory’s lookup_abs() method for
the heavy lifting.
If the path name begins with ‘#, it is unconditionally interpreted relative to the top-level directory of this FS. ‘#' is
treated as a synonym for the top-level SConstruct directory, much like ‘~’ is treated as a synonym for the user’s
home directory in a UNIX shell. So both ‘#foo’ and ‘#/foo’ refer to the ‘foo’ subdirectory underneath the top-level
SConstruct directory.
If the path name is relative, then the path is looked up relative to the specified directory, or the current directory
(self._cwd, typically the SConscript directory) if the specified directory is None.

chdir (di r, change_os_dir: bool = False)
Change the current working directory for lookups. If change_os_dir is true, we will also change the “real” cwd to
match.

chmod (pat h, node)
copy (src, dst)
copy2 (src, dst)
exists (pat h)
get_max_drift ()
get_root (dri ve)
Returns the root directory for the specified drive, creating it if necessary.
getcwd ()

107

SCons.Node package

cl

108

getmtime (pat h)
getsize (pat h)
isdir (pat h) - bool
isfile (pat h) - bool
islink (pat h) - bool
link (src, dst)
listdir (pat h)
Istat (pat h)
makedirs (pat h, nrode: int = 511, exi st_ok: bool = False)
mkdir (pat h, node: int = 511)
open (pat h)
readlink (fi | e) - str
rename (ol d, new)
scandir (pat h)
set_SConstruct_dir (di r) — None
set_max_drift (max_dri ft) - None
stat (pat h)
symlink (src, dst)
unlink (pat h)
variant_dir_target_climb (ori g, dir,tail)
Create targets in corresponding variant directories
Climb the directory tree, and look up path names relative to any linked variant directories we find.
Even though this loops and walks up the tree, we don’'t memoize the return value because this is really only used
to process the command-line targets.
ass SCons.Node.FS.File (nane, di rectory, fs)
Bases: Base
A class for files in a file system.
cl ass Attrs
Bases: object
A generic place to store extra information about the Node.
Defines __sl ots__ for performance, but different consumers define their own attributes, so to avoid having to
collect them all here, we add a __di ct __ slot to get dynamic attributes.
shared
BuildInfo
alias of FileBuildInfo
Decider (f uncti on: Cal |l abl e[[Node, Node, Nodel nf oBase, Node | None], bool]) - None
Dir (nane, creat e: bool = True)
Create a directory node named ‘name’ relative to the directory of this file.
Dirs (pat hl i st)
Create a list of directories relative to the SConscript directory of this file.
Entry (nane)
Create an entry node named ‘name’ relative to the directory of this file.
File (nane)
Create a file node named ‘name’ relative to the directory of this file.
GetTag (key: str) - Any | None
Return a user-defined tag.
Nodelnfo
alias of FileNodelnfo
RDirs (pat hl i st)
Search for a list of directories in the Repository list.
Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.
Tag (key: str,value: Any | None) —» None
Add a user-defined tag.

SCons.Node package

_Rfindalldirs_key (pat hl i st)

__dmap_cache = {}

__dmap_sig_cache = {}

__Qetattr__ (attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr __is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)
less than operator used by sorting on py3

str () - str
A Node.FS.Base object’s string representation is its path name.

_abspath

_add_child (col I ection: list[Node],set: set[Node],child: |ist[Node]) - None
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_add_strings_to_dependency_map (dmap)
In the case comparing node objects isn't sufficient, we’ll add the strings for the nodes to the dependency map
‘return:

_build_dependency_map (bi nf 0)
Build mapping from file -> signature

Parameters:
* self (self -)

» considered (binfo - buildinfo from node being)
Returns: dictionary of file->signature mappings

_children_get () - list][Node]
_children_reset () - None
_createDir () - None
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_sconsign
_func_target_from_source
_get_found_includes_key (env, scanner, pat h)
_get_previous_signatures (dmap)
Return a list of corresponding csigs from previous build in order of the node/files in children.

Parameters:
* self (self -)

 csig (dmap - Dictionary of file ->)

Returns: List of csigs for provided list of children
_get_scanner (env: Environment,initial_scanner: ScannerBase | None,root_node_scanner:
Scanner Base | None,kw dict[str, Any] | None) - ScannerBase | None
_get_str ()
_globl (patt ern, ondi sk: bool = True, source: bool = False,strings: bool = False)
_labspath
_local
_memo
_morph () - None

Turn a file system node into a File object.

_path
_path_elements

109

SCons.Node package

_proxy

110

rmv_existing ()
save_str ()
sconsign
specific_sources
tags: dict[str, Any] | None
tpath
add_dependency (depend: 1i st[Node]) —» None
Adds dependencies.
add_ignore (depend: i st[Node]) — None
Adds dependencies to ignore.
add_prerequisite (prerequi site: |ist[Node]) - None
Adds prerequisites
add_source (source: |ist[Node]) - None
Adds sources.
add_to_implicit (deps: |ist[Node]) — None
add_to_waiting_parents (node: Node) - int
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node: Node) - None
add_wkid (wki d: Node) —» None
Add a node to the list of kids waiting to be evaluated
all_children (scan: bool = True) - list] Node]
Return a list of all the node’s direct children.
alter_targets ()
Return any corresponding targets in a variant directory.
always_build
attributes
binfo
build (* *kw) — None
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
builder
builder_set (bui | der) - None
built () - None
Called just after this File node is successfully built.
Just like for ‘release_target_info’ we try to release some more target node attributes in order to minimize the overall
memory consumption.
@see: release_target_info
cached
cachedir_csig
cachesig
changed (node=None, al | omcache: bool = False) - bool
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built.
For File nodes this is basically a wrapper around Node.changed(), but we allow the return value to get cached after
the reference to the Executor got released in release_target_info().
@see: Node.changed()
changed_content (t ar get , prev_ni , repo_node=None) - bool
changed_since_last_build
changed_state (t ar get, prev_ni, repo_node=None) - bool
changed_timestamp_match (t ar get , prev_ni , r epo_node=None) - bool

SCons.Node package

Return True if the timestamps don’'t match or if there is no previous timestamp :param target: :param prev_ni:
Information about the node from the previous build :return:

changed_timestamp_newer (t ar get , prev_ni , r epo_node=None) - bool

changed_timestamp_then_content (t ar get, prev_ni , node=None) - bool
Used when decider for file is Timestamp-MD5

NOTE: If the timestamp hasn’t changed this will skip md5’ing the

file and just copy the prev_ni provided. If the prev_ni is wrong. It will propagate it. See:
https://github.com/SCons/scons/issues/2980

Parameters:
» dependency (self -)

* target (target -)
» .sconsign (prev_ni - The Nodelnfo object loaded from previous builds)

» existence/timestamp (node - Node instance. Check this node for file) — if specified.
Returns: Boolean - Indicates if node(File) has changed.

check_attributes (nane: str) - Any | None
Simple API to check if the node.attributes for name has been set
children (scan: bool = True) - list[Node]
Return a list of the node’s direct children, minus those that are ignored by this node.
children_are_up_to_date () - bool
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
clear () - None
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).
clear_memoized_values () - None
contentsig
convert_copy_attrs = ['bsources', 'bimplicit', 'bdepends’, 'bact’, 'bactsig’, 'ninfo]
convert_old_entry (ol d_entry)
convert_sig_attrs = ['bsourcesigs', 'bimplicitsigs’, 'bdependsigs’]
cwd
del_binfo () - None
Delete the build info from this node.
depends: list[Node]
depends_set: set[Node]
dir
dirname
disambiguate (nust _exi st: bool = False)
diskcheck_match () -~ None
do_duplicate (src)
Create a duplicate of this file from the specified source.

duplicate

entries

env: Environment | None

env_set (env: Environment,safe: bool = False) - None
executor

executor_cleanup () - None
Let the executor clean up any cached information.
exists ()
Reports whether node exists.
explain ()
find_repo_file ()

111

https://github.com/SCons/scons/issues/2980

SCons.Node package

For this node, find if there exists a corresponding file in one or more repositories :return: list of corresponding files
in repositories
find_src_builder ()
for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.
fs
Reference to parent Node.FS object
get_abspath ()
Get the absolute path of the file.
get_binfo () — BuildinfoBase
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.
get_build_env () - Environment
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner: Scanner Base)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der: Bui |l derBase | None = None) - BuilderBase | None
Return the set builder, or a specified default value
get_cachedir_bsig ()
Return the signature for a cached file, including its children.
It adds the path of the cached file to the cache signature, because multiple targets built by the same action will all
have the same build signature, and we have to differentiate them somehow.
Signature should normally be string of hex digits.
get_cachedir_csig ()
Fetch a Node’s content signature for purposes of computing another Node’s cachesig.
This is a wrapper around the normal get csig() method that handles the somewhat obscure case of using
CacheDir with the -n option. Any files that don’t exist would normally be “built” by fetching them from the cache, but
the normal get_csig() method will try to open up the local file, which doesn’t exist because the -n option meant we
didn’'t actually pull the file from cachedir. But since the file does actually exist in the cachedir, we can use its
contents for the csig.
get_content_hash () - str
Compute and return the hash for this file.
get_contents () - bytes
Return the contents of the file as bytes.
get_contents_sig ()
A helper method for get_cachedir_bsig.
It computes and returns the signature for this node’s contents.
get_csig () — str
Generate a node’s content signature.
get_dir ()
get_env () - Environment
get_env_scanner (env: Environment,kw dict[str, Any] | None = {}) - ScannerBase | None
get_executor (creat e: bool = True) - Executor
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return the included implicit dependencies in this file. Cache results so we only scan the file once per path
regardless of how many times this information is requested.

112

SCons.Node package

get_implicit_deps (env: Environnent,initial_scanner: ScannerBase | None, path_func, kw={}) -

listf Node]
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_internal_path ()

get_labspath ()
Get the absolute path of the file.

get_max_drift_csig () - str | None
Returns the content signature currently stored for this node if it's been unmodified longer than the max_drift value,
or the max_drift value is 0. Returns None otherwise.

get_ninfo () - NodelnfoBase

get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_size () - int

get_source_scanner (node: Node) —» ScannerBase | None
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state () - int

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnature: bool) - str
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner () — ScannerBase | None

get_text contents () — str
Return the contents of the file as text.

get_timestamp () - int

get_tpath ()

getmtime ()

getsize ()

has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder () —» bool

113

SCons.Node package

Return whether this Node has an explicit builder.
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

has_src_builder () - bool
Return whether this Node has a source builder or not.
If this Node doesn’t have an explicit source code builder, this is where we figure out, on the fly, if there’'s a
transparent source code builder for it.
Note that if we found a source builder, we also set the self.builder attribute, so that all of the methods that actually
build this file don’t have to do anything different.

hash_chunksize = 65536

ignore: list] Node]

ignore_set: set[Node]

implicit: listf Node] | None

implicit_set

includes: list[str] | None

is_conftest () - bool
Returns true if this node is an conftest node

is_derived () —» bool
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal () - bool
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript () - bool
Returns true if this node is an sconscript

is_under (di r) - bool

is_up_to_date () — bool
Check for whether the Node is current.
In all cases self is the target we're checking to see if it's up to date

isdir () - bool

isfile () - bool

islink () - bool

linked

Istat ()

make_ready () - None
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing () — bool

multiple_side_effect_has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

must_be_same (kl ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

name

new_binfo () - BuildinfoBase

new_ninfo () - NodelnfoBase

ninfo: NodelnfoBase | None

nocache

noclean

on_disk_entries

114

SCons.Node package

postprocess () - None
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare ()
Prepare for this file to be created.
prerequisites: UniqueList | None
pseudo
push_to_cache () - bool
Try to push the node into a cache
ref _count
rel_path (ot her)
release_target_info () — None
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
We'd like to remove a lot more attributes like self.sources and self.sources_set, but they might get used in a next
build step. For example, during configuration the source files for a built E{*}.o file are used to figure out which linker
to use for the resulting Program (gcc vs. g++)! That's why we check for the ‘keep_targetinfo’ attribute, config Nodes
and the Interactive mode just don't allow an early release of most variables.
In the same manner, we can't simply remove the self.attributes here. The smart linking relies on the shared flag,
and some parts of the java Tool use it to transport information about nodes...
@see: built() and Node.release_target_info()
released_target_info
remove ()
Remove this file.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
repositories
reset_executor () - None
Remove cached executor; forces recompute when needed.
retrieve_from_cache () - bool
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns True if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
root
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan () — None
Scan this node’s dependents for implicit dependencies.
scanner_key ()
scanner_paths
searched
select_scanner (scanner: Scanner Base) » ScannerBase | None
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d: bool = True) - None
Set the Node’s always_build value.
set_executor (execut or: Execut or) — None
Set the action executor for this node.

115

SCons.Node package

set_explicit (i s_explicit: bool) — None
set_local () - None

set_nocache (nocache: bool = True) -» None
Set the Node’s nocache value.
set_noclean (nocl ean: bool = True) -~ None
Set the Node’s noclean value.
set_precious (pr eci ous: bool = True) - None
Set the Node’s precious value.
set_pseudo (pseudo: bool = True) —» None
Set the Node’s pseudo value.
set_specific_source (source: |ist[Node]) - None

set_src_builder (bui | der) — None
Set the source code builder for this node.

set_state (state: int) —» None

side_effect

side_effects: list[Node]

sources: list] Node]

sources_set: set[Node]

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for_display ()

target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

variant_dirs

visited () - None
Called just after this node has been visited (with or without a build).

waiting_parents: set[Node]

waiting_s_e: set[Node]

wkids: listf Node] | None

cl ass SCons.Node.FS.FileBuildinfo
Bases: BuildinfoBase
This is info loaded from sconsign.

Attributes unique to FileBuildInfo:
dependency_map : Caches file->csig mapping

for all dependencies. Currently this is only used when using MD5-timestamp decider. It's used to ensure that
we copy the correct csig from the previous build to be written to .sconsign when current build is done.
Previously the matching of csig to file was strictly by order they appeared in bdepends, bsources, or
bimplicit, and so a change in order or count of any of these could yield writing wrong csig, and then false
positive rebuilds
__getstate__ () - dict[str, Any]
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict_’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state: dict[str, Any]) - None

116

SCons.Node package

Restore the attributes from a pickled state.
bact
bactsig: str | None
bdepends
bdependsigs: list[BuildinfoBase]
bimplicit
bimplicitsigs: list[BuildinfoBase]
bsources
bsourcesigs: list[BuildinfoBase]
convert_from_sconsign (di r, nane) — None
Converts a newly-read FileBuildInfo object for in-SCons use
For normal up-to-date checking, we don’t have any conversion to perform—but we're leaving this method here to
make that clear.
convert_to_sconsign () - None
Converts this FileBuildinfo object for writing to a .sconsign file
This replaces each Node in our various dependency lists with its usual string representation: relative to the
top-level SConstruct directory, or an absolute path if it's outside.
current_version_id = 2
dependency_map
format (nanmes: int = 0)
merge (ot her: Bui | dl nf oBase) - None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
prepare_dependencies () — None
Prepares a FileBuildinfo object for explaining what changed
The bsources, bdepends and bimplicit lists have all been stored on disk as paths relative to the top-level
SConstruct directory. Convert the strings to actual Nodes (for use by the -—debug=explain code and
—implicit-cache).
excepti on SCons.Node.FS.FileBuildinfoFileToCsigMappingError
Bases: Exception
add_note ()
Exception.add_note(note) — add a note to the exception
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
cl ass SCons.Node.FS.FileFinder
Bases: object
_find_file_key (fi | enane, pat hs, ver bose=None)
filedir_lookup (p, f d=None)
A helper method for find_file() that looks up a directory for a file we're trying to find. This only creates the Dir Node
if it exists on-disk, since if the directory doesn’t exist we know we won't find any files in it... :-)
It would be more compact to just use this as a nested function with a default keyword argument (see the
commented-out version below), but that doesn’t work unless you have nested scopes, so we define it here just so
this work under Python 1.5.2.
find_file (fi | ename, pat hs, ver bose=None)
Find a node corresponding to either a derived file or a file that exists already.
Only the first file found is returned, and none is returned if no file is found.
filename: A filename to find paths: A list of directory path nodes to search in. Can be represented as a list, a tuple,
or a callable that is called with no arguments and returns the list or tuple.
returns The node created from the found file.
cl ass SCons.Node.FS.FileNodelnfo
Bases: NodelnfoBase
__getstate__ () - dict[str, Any]
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

117

SCons.Node package

__setstate (state: dict[str, Any]) - None
Restore the attributes from a pickled state. The version is discarded.
convert (node, val) -~ None
csig
current_version_id = 2
field_list = ['csig', 'timestamp’, 'size’]
format (field list: list[str] | None = None, nanes: bool = False)
fs = None
merge (ot her: Nodel nf oBase) — None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
size
str_to_node (s)
timestamp
update (node: Node) - None
SCons.Node.FS.LinkFunc (t ar get , sour ce, env) - int
Relative paths cause problems with symbolic links, so we use absolute paths, which may be a problem for people
who want to move their soft-linked src-trees around. Those people should use the ‘hard-copy’ mode, softlinks cannot
be used for that; at least | have no idea how ...
cl ass SCons.Node.FS.LocalFS
Bases: object
This class implements an abstraction layer for operations involving a local file system. Essentially, this wraps any
function in the os, os.path or shutil modules that we use to actually go do anything with or to the local file system.
Note that there’s a very good chance we’ll refactor this part of the architecture in some way as we really implement
the interface(s) for remote file system Nodes. For example, the right architecture might be to have this be a subclass
instead of a base class. Nevertheless, we're using this as a first step in that direction.
We’'re not using chdir() yet because the calling subclass method needs to use os.chdir() directly to avoid recursion.
Will we really need this one?
chmod (pat h, node)
copy (src, dst)
copy2 (src, dst)
exists (pat h)
getmtime (pat h)
getsize (pat h)
isdir (pat h) - bool
isfile (pat h) - bool
islink (pat h) - bool
link (src, dst)
listdir (pat h)
Istat (pat h)
makedirs (pat h, rode: int = 511, exi st_ok: bool = False)
mkdir (pat h, node: int = 511)
open (pat h)
readlink (fi | e) - str
rename (ol d, new)
scandir (pat h)
stat (pat h)
symlink (src, dst)
unlink (pat h)
SCons.Node.FS.LocalString (t ar get , sour ce, env) - str
SCons.Node.FS.MkdirFunc (t ar get , sour ce, env) - int
cl ass SCons.Node.FS.RootDir (dri ve, fs)
Bases: Dir
A class for the root directory of a file system.
This is the same as a Dir class, except that the path separator (*/' or “) is actually part of the name, so we don’t need
to add a separator when creating the path names of entries within this directory.

118

SCons.Node package

cl ass Attrs
Bases: object
A generic place to store extra information about the Node.
Defines __sl ots__ for performance, but different consumers define their own attributes, so to avoid having to
collect them all here, we add a __di ct __ slot to get dynamic attributes.
shared
BuildInfo
alias of DirBuildinfo
Decider (f uncti on: Cal |l abl e[[Node, Node, Nodel nf oBase, Node | None], bool]) - None
Dir (nane, creat e: bool = True)
Looks up or creates a directory node named ‘name’ relative to this directory.
Entry (nane)
Looks up or creates an entry node named ‘name’ relative to this directory.
File (nane)
Looks up or creates a file node named ‘name’ relative to this directory.
GetTag (key: str) - Any | None
Return a user-defined tag.
Nodelnfo
alias of DirNodelnfo
RDirs (pat hl i st)
Search for a list of directories in the Repository list.
Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.
Tag (key: str,value: Any | None) —» None
Add a user-defined tag.
_Rfindalldirs_key (pat hl i st)
__Qetattr__(attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr _is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.
_ It (ot her)
less than operator used by sorting on py3
_abspath
_add_child (col I ection: list[Node],set: set[Node],child: |ist[Node]) - None
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get () — list][Node]
_children_reset () - None
_create ()
Create this directory, silently and without worrying about whether the builder is the default or not.
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_sconsign
_func_target_from_source
_get_scanner (env: Environment,initial_scanner: ScannerBase | None,root_node_scanner:
Scanner Base | None,kw dict[str, Any] | None) - ScannerBase | None
_get_str ()
_globl (patt ern, ondi sk: bool = True, source: bool = False,strings: bool = False)
Globs for and returns a list of entry names matching a single pattern in this directory.

119

SCons.Node package

This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.

TODO: handle pattern with no wildcard. Python’s glob.glob uses a separate _glob0 function to do this.

labspath

local

lookupDict

lookup_abs (p, kl ass, create: bool = True)

Fast (?) lookup of a normalized absolute path.

This method is intended for use by internal lookups with already-normalized path data. For general-purpose
lookups, use the FS.Entry(), FS.Dir() or FS.File() methods.

The caller is responsible for making sure we’re passed a normalized absolute path; we merely let Python’s
dictionary look up and return the One True Node.FS object for the path.

If a Node for the specified “p” doesn’t already exist, and “create” is specified, the Node may be created after
recursive invocation to find or create the parent directory or directories.

memo

morph () — None

Turn a file system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.

Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don’t use
signatures for calculating whether they’re current.

path

path_elements

__proxy

rel_path_key (ot her)

save_str ()

sconsign

specific_sources
srcdir_find_file_key (fi | enane)
tags: dict[str, Any] | None
tpath

abspath
addRepository (di r) — None
add_dependency (depend: 1i st[Node]) —» None

Adds dependencies.

add_ignore (depend: i st[Node]) — None

Adds dependencies to ignore.

add_prerequisite (prerequi site: |ist[Node]) - None

Adds prerequisites

add_source (source: 1ist[Node]) - None

Adds sources.

add_to_implicit (deps: |ist[Node]) — None
add_to_waiting_parents (node: Node) - int

Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)

add_to_waiting_s_e (node: Node) - None
add_wkid (wki d: Node) — None

Add a node to the list of kids waiting to be evaluated

all_children (scan: bool = True) - list] Node]

Return a list of all the node’s direct children.

alter_targets ()

Return any corresponding targets in a variant directory.

always_build
attributes

binfo

build (* *kw) — None

120

SCons.Node package

A null “builder” for directories.

builder

builder_set (bui | der: Bui | der Base | None) —» None

built () - None
Called just after this node is successfully built.

cached

cachedir_csig

cachesig

changed (node: Node | None = None, al | owcache: bool = False) - bool
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane: str) - Any | None
Simple API to check if the node.attributes for name has been set

children (scan: bool = True) - list[Node]
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date () — bool
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear () - None
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values () - None

contentsig

cwd

del_binfo () - None
Delete the build info from this node.

depends: list[Node]

depends_set: set][Node]

dir

dir_on_disk (nane)

dirname

disambiguate (must _exi st: bool = False)

diskcheck_match () — None

do_duplicate (src) — None

duplicate

entries

entry_abspath (nane)

entry_exists_on_disk (nane)
Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given
name could be found.
@see rentry_exists_on_disk

entry_labspath (nane)

entry_path (nane)

entry_tpath (nane)

env: Environment | None

env_set (env: Environnment,safe: bool = False) - None

121

SCons.Node package

executor
executor_cleanup () - None
Let the executor clean up any cached information.
exists ()
Reports whether node exists.
explain ()
file_on_disk (namne)
for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.
fs
Reference to parent Node.FS object
getRepositories ()
Returns a list of repositories for this directory.
get_abspath () - str
Get the absolute path of the file.
get_all_rdirs ()
get_binfo () — BuildinfoBase
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.
get_build_env () - Environment
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner: Scanner Base)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der: Bui |l derBase | None = None) - BuilderBase | None
Return the set builder, or a specified default value
get_cachedir_csig () — str
get_contents ()
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.
get_csig ()
Compute the content signature for Directory nodes. In general, this is not needed and the content signature is not
stored in the DirNodelnfo. However, if get_contents on a Dir node is called which has a child directory, the child
directory should return the hash of its contents.
get_dir ()
get_env () - Environment
get_env_scanner (env, kw={})
get_executor (creat e: bool = True) - Executor
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return this directory’s implicit dependencies.
We don't bother caching the results because the scan typically shouldn’t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).
get_implicit_deps (env: Environnent,initial_scanner: ScannerBase | None, path_func, kw={}) -
listf Node]
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()

122

SCons.Node package

get_labspath () - str
Get the absolute path of the file.

get_ninfo () - NodelnfoBase

get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_source_scanner (node: Node) - ScannerBase | None
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state () - int

get_stored_implicit () — listf Node] | None
Fetch the stored implicit dependencies

get_stored_info () - SConsignEntry | None

get_string (f or _si gnature: bool) - str
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text _contents ()
We already emit things in text, so just return the binary version.

get_timestamp () - int
Return the latest timestamp from among our children

get_tpath ()

getmtime ()

getsize ()

glob (pat hnane, ondi sk: bool = True, source: bool = False,strings: bool = False, excl ude=None)

- list
Returns a list of Nodes (or strings) matching a pathname pattern.
Pathname patterns follow POSIX shell syntax:

* mat ches everyt hi ng

? mat ches any singl e character

[seq] matches any character in seq (ranges all owed)
[!seq] matches any char not in seq

The wildcard characters can be escaped by enclosing in brackets. A leading dot is not matched by a wildcard, and
needs to be explicitly included in the pattern to be matched. Matches also do not span directory separators.

The matches take into account Repositories, returning a local Node if a corresponding entry exists in a Repository
(either an in-memory Node or something on disk).

The underlying algorithm is adapted from a rather old version of glob.glob() function in the Python standard library
(heavily modified), and uses fnmatch.fnmatch() under the covers.

123

SCons.Node package

This is the internal implementation of the external Glob API.

Parameters:
e pattern — pathname pattern to match.

» ondisk — if false, restricts matches to in-memory Nodes. By defafult, matches entries
that exist on-disk in addition to in-memory Nodes.

e source — if true, corresponding source Nodes are returned if globbing in a variant
directory. The default behavior is to return Nodes local to the variant directory.

 strings — if true, returns the matches as strings instead of Nodes. The strings are path
names relative to this directory.

» exclude — if not None, must be a pattern or a list of patterns following the same POSIX
shell semantics. Elements matching at least one pattern from exclude will be excluded
from the result.

has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr _ for both the
__len__and _ bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder () —» bool
Return whether this Node has an explicit builder.
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore: list[Node]

ignore_set: set[Node]

implicit: listf Node] | None

implicit_set

includes: list[str] | None

is_conftest () — bool
Returns true if this node is an conftest node

is_derived () —» bool
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build signatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal () - bool
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript () —» bool
Returns true if this node is an sconscript

is_under (di r) - bool

is_up_to_date () - bool
If any child is not up-to-date, then this directory isn't, either.

isdir () - bool

isfile () — bool

islink () - bool

link (srcdi r, dupl i cate) - None
Set this directory as the variant directory for the supplied source directory.

linked

Istat ()

make_ready () - None
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing () — bool

124

SCons.Node package

125

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
must_be_same (kl ass) - None
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.
name
new_binfo () - BuildinfoBase
new_ninfo () - NodelnfoBase
ninfo: NodelnfoBase | None
nocache
noclean
on_disk_entries
path
postprocess () - None
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare () - None
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites: UniqueList | None
pseudo
push_to_cache () - bool
Try to push a node into a cache
rdir ()
ref _count
rel_path (ot her)
Return a path to “other” relative to this directory.
release_target_info () — None
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
released_target_info
remove () - None
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
rentry_exists_on_disk (namne)
Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk
repositories

SCons.Node package

reset_executor () - None
Remove cached executor; forces recompute when needed.
retrieve_from_cache () - bool
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
root
rstr () - str
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan () — None
Scan this node’s dependents for implicit dependencies.
scanner_key ()
A directory does not get scanned.
scanner_paths
sconsign ()
Return the .sconsign file info for this directory.
searched
select_scanner (scanner: Scanner Base) » ScannerBase | None
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d: bool = True) - None
Set the Node’s always_build value.
set_executor (execut or: Execut or) — None
Set the action executor for this node.
set_explicit (i s_explicit: bool) — None
set_local () - None

set_nocache (nocache: bool = True) -» None
Set the Node’s nocache value.
set_noclean (nocl ean: bool = True) -~ None
Set the Node’s noclean value.
set_precious (pr eci ous: bool = True) - None
Set the Node’s precious value.
set_pseudo (pseudo: bool = True) —» None
Set the Node’s pseudo value.
set_specific_source (source: |ist[Node]) - None

set_src_builder (bui | der) — None
Set the source code builder for this node.
set_state (state: int) —» None
side_effect
side_effects: list[Node]
sources: list] Node]
sources_set: set[Node]
src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcdir
srcdir_duplicate (namne)
srcdir_find_file (fi | enane)
sredir_list ()

126

SCons.Node package

srcnode ()
Dir has a special need for srcnode()...if we have a srcdir attribute set, then that is our srcnode.

stat ()

state

store_info

str_for_display ()

target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

up ()

variant_dirs

visited () - None
Called just after this node has been visited (with or without a build).

waiting_parents: set[Node]

waiting_s_e: set[Node]

walk (f unc, ar g) - None
Walk this directory tree by calling the specified function for each directory in the tree.
This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the same
arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)
Except that “dirname” will actually be the directory Node, not the string. The ‘" and ‘..’ entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a specific
order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing None is
common).
wkids: listf Node] | None
SCons.Node.FS.UnlinkFunc (t ar get , sour ce, env) - int
cl ass SCons.Node.FS. Null
Bases: object
SCons.Node.FS._classEntry
alias of Entry
SCons.Node.FS._copy_func (f s, src, dest) — None
SCons.Node.FS._hardlink_func (f s, src, dst) — None
SCons.Node.FS._my_normcase (x)
SCons.Node.FS._softlink_func (f s, src, dst) — None
SCons.Node.FS.diskcheck_types ()
SCons.Node.FS.do_diskcheck _match (node, predi cate, errorfnt)
SCons.Node.FS.find_file (fi | enamne, pat hs, ver bose=None)
Find a node corresponding to either a derived file or a file that exists already.
Only the first file found is returned, and none is returned if no file is found.
filename: A filename to find paths: A list of directory path nodes to search in. Can be represented as a list, a tuple, or
a callable that is called with no arguments and returns the list or tuple.
returns The node created from the found file.
SCons.Node.FS.get_MkdirBuilder ()
SCons.Node.FS.get_default_fs ()
SCons.Node.FS.has_glob_magic (s) - bool
SCons.Node.FS.ignore_diskcheck_match (node, predi cate, errorfnt) — None
SCons.Node.FS.initialize_do_splitdrive () - None
Set up splitdrive usage.
Avoid unnecessary function calls by recording a flag that tells us whether or not os.path.splitdrive() actually does
anything on this system, and therefore whether we need to bother calling it when looking up path names in various
methods below.
If do_splitdrive is True, _my_splitdrive() will be a real function which we can call. As all supported Python versions’
ntpath module now handle UNC paths correctly, we no longer special-case that.

127

SCons.Node package

Deferring the setup of _ny_splitdrive also lets unit tests do their thing and test UNC path handling on a POSIX
host.

SCons.Node.FS.invalidate_node_memos (t ar get s) — None
Invalidate the memoized values of all Nodes (files or directories) that are associated with the given entries. Has been
added to clear the cache of nodes affected by a direct execution of an action (e.g. Delete/Copy/Chmod). Existing
Node caches become inconsistent if the action is run through Execute(). The argument targets can be a single Node
object or filename, or a sequence of Nodes/filenames.

SCons.Node.FS.needs_normpath_match (st ri ng, pos=0, endpos=9223372036854775807)
Matches zero or more characters at the beginning of the string.

SCons.Node.FS.save_strings (val) - None

SCons.Node.FS.sconsign_dir (node)
Return the .sconsign file info for this directory, creating it first if necessary.

SCons.Node.FS.sconsign_none (node)

SCons.Node.FS.set_diskcheck (enabl ed_checker s) — None

SCons.Node.FS.set_duplicate (dupl i cat e)

SCons.Node.Python module

Python nodes.
cl ass SCons.Node.Python.Value (val ue, bui | t _val ue=None, nane=None)
Bases: Node
A Node class for values represented by Python expressions.
Values are typically passed on the command line or generated by a script, but not from a file or some other source.
Changed in version 4.0: the name parameter was added.
cl ass Attrs
Bases: object
A generic place to store extra information about the Node.
Defines sl ots__ for performance, but different consumers define their own attributes, so to avoid having to
collect them all here, we add a __di ct __ slot to get dynamic attributes.
shared
BuildInfo
alias of ValueBuildInfo
Decider (functi on: Cal |l abl e[[Node, Node, Nodel nf oBase, Node | None], bool]) - None
GetTag (key: str) - Any | None
Return a user-defined tag.
Nodelnfo
alias of ValueNodelnfo
Tag (key: str,value: Any | None) —» None
Add a user-defined tag.
_add_child (col | ection: list[Node],set: set[Node],child: I|ist[Node]) - None
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get () — list[Node]
_children_reset () - None
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_target_from_source
_get_scanner (env: Environnent,initial_scanner: ScannerBase | None,root_node_scanner:
Scanner Base | None,kw dict[str, Any] | None) - ScannerBase | None
_memo
_specific_sources
_tags: dict[str, Any] | None
add_dependency (depend: 1i st[Node]) » None
Adds dependencies.
add_ignore (depend: |ist[Node]) — None

128

SCons.Node package

Adds dependencies to ignore.

add_prerequisite (prerequi site: |ist[Node]) - None
Adds prerequisites

add_source (source: |ist[Node]) - None
Adds sources.

add_to_implicit (deps: |ist[Node]) — None

add_to_waiting_parents (node: Node) - int
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)

add_to_waiting_s_e (node: Node) - None

add_wkid (wki d: Node) —» None
Add a node to the list of kids waiting to be evaluated

all_children (scan: bool = True) - list] Node]
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

binfo

build (* *kw) — None
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

builder

builder_set (bui | der: Bui | der Base | None) —» None

built () - None
Called just after this node is successfully built.

cached

changed (node: Node | None = None, al | owcache: bool = False) - bool
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane: str) - Any | None
Simple API to check if the node.attributes for name has been set

children (scan: bool = True) - list[Node]
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date () — bool
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear () - None
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values () - None

del_binfo () - None

129

SCons.Node package

Delete the build info from this node.
depends: list[Node]
depends_set: set[Node]

disambiguate (must _exi st: bool = False)

env: Environment | None

env_set (env: Environment,safe: bool = False) - None
executor

executor_cleanup () - None
Let the executor clean up any cached information.
exists () - bool
Reports whether node exists.
explain ()
for_signature () - str
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.
get_abspath () - str
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.
get_binfo () — BuildinfoBase
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.
get_build_env () - Environment
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner: Scanner Base)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der: Bui |l derBase | None = None) - BuilderBase | None
Return the set builder, or a specified default value
get_cachedir_csig () — str
get_contents () - bytes
Get contents for signature calculations.
get_csig (cal c=None)
Because we're a Python value node and don'’t have a real timestamp, we get to ignore the calculator and just use
the value contents.
Returns string. Ideally string of hex digits. (Not bytes)
get_env () - Environment
get_env_scanner (env: Environment,kw dict[str, Any] | None = {}) - ScannerBase | None
get_executor (creat e: bool = True) - Executor
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env: Environnent, scanner: ScannerBase | None, pat h) - listf Node]
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.
get_implicit_deps (env: Environnent,initial_scanner: ScannerBase | None, path_func, kw={}) -
listf Node]
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_ninfo () - NodelnfoBase
get_source_scanner (node: Node) - ScannerBase | None

130

SCons.Node package

131

Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state () - int

get_stored_implicit () — listf Node] | None
Fetch the stored implicit dependencies

get_stored_info () - SConsignEntry | None

get_string (f or _si gnature: bool) - str
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix () — str

get_target_scanner () — ScannerBase | None

get_text contents () — str
By the assumption that the node.built_value is a deterministic product of the sources, the contents of a Value are
the concatenation of all the contents of its sources. As the value need not be built when get_contents() is called,
we cannot use the actual node.built_value.

has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder () —» bool
Return whether this Node has an explicit builder.
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore: list] Node]

ignore_set: set[Node]

implicit: listf Node] | None

implicit_set

includes: list[str] | None

is_conftest () - bool
Returns true if this node is an conftest node

is_derived () —» bool
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal () - bool
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript () - bool
Returns true if this node is an sconscript

is_under (di r) - bool

SCons.Node package

132

is_up_to_date () - bool
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
linked
make_ready () - None
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.
missing () — bool
multiple_side_effect_has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
new_binfo () - BuildinfoBase
new_ninfo () - NodelnfoBase
ninfo: NodelnfoBase | None
nocache
noclean
postprocess () - None
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare () - None
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites: UniqueList | None
pseudo
push_to_cache () - bool
Try to push a node into a cache
read ()
Return the value. If necessary, the value is built.
ref _count
release_target_info () — None
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove () - None
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
reset_executor () - None
Remove cached executor; forces recompute when needed.
retrieve_from_cache () — bool
Try to retrieve the node’s content from a cache

SCons.Node package

This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists () — bool
Does this node exist locally or in a repository?
scan () — None
Scan this node’s dependents for implicit dependencies.
scanner_key () — str | None
select_scanner (scanner: Scanner Base) - ScannerBase | None
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d: bool = True) - None
Set the Node’s always_build value.
set_executor (execut or: Execut or) — None
Set the action executor for this node.
set_explicit (i s_explicit: bool) — None

set_nocache (nocache: bool = True) -» None
Set the Node’s nocache value.

set_noclean (nocl ean: bool = True) -~ None
Set the Node’s noclean value.

set_precious (pr eci ous: bool = True) - None
Set the Node’s precious value.

set_pseudo (pseudo: bool = True) —» None
Set the Node’s pseudo value.

set_specific_source (source: |ist[Node]) - None

set_state (state: int) —» None

side_effect

side_effects: list[Node]

sources: list] Node]

sources_set: set[Node]

state

store_info

str_for_display ()

target_peers

visited () - None
Called just after this node has been visited (with or without a build).

waiting_parents: set[Node]

waiting_s_e: set[Node]

wkids: listf Node] | None

write (bui | t _val ue) - None
Set the value of the node.

cl ass SCons.Node.Python.ValueBuildinfo

Bases: BuildinfoBase

__getstate__ () - dict[str, Any]
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (state: dict[str, Any]) - None
Restore the attributes from a pickled state.

bact

bactsig: str | None

bdepends

bdependsigs: list[BuildinfoBase]
bimplicit

bimplicitsigs: list[BuildinfoBase]

133

SCons.Platform package

bsources

bsourcesigs: list[BuildinfoBase]

current_version_id = 2

merge (ot her: Bui | dl nf oBase) - None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

cl ass SCons.Node.Python.ValueNodelnfo

Bases: NodelnfoBase

__getstate__ () - dict[str, Any]
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (state: dict[str, Any]) - None
Restore the attributes from a pickled state. The version is discarded.

convert (node, val) -~ None

csig

current_version_id = 2

field_list = ['csig']

format (field list: list[str] | None = None, nanes: bool = False)

merge (ot her: Nodel nf oBase) — None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

update (node: Node) - None

SCons.Node.Python.ValueWithMemo (val ue, bui I t _val ue=None, nane=None)
Memoized Value node factory.
Changed in version 4.0: the name parameter was added.

SCons.Platform package

Module contents
SCons platform selection.

Looks for modules that define a callable object that can modify a construction environment as appropriate for a given
platform.

Note that we take a more simplistic view of “platform” than Python does. We're looking for a single string that
determines a set of tool-independent variables with which to initialize a construction environment. Consequently, we’ll
examine both sys.platform and os.name (and anything else that might come in to play) in order to return some
specification which is unique enough for our purposes.

Note that because this subsystem just selects a callable that can modify a construction environment, it's possible for
people to define their own “platform specification” in an arbitrary callable function. No one needs to use or tie in to this
subsystem in order to roll their own platform definition.
SCons.Platform.DefaultToolList (pl at f or m env)
Select a default tool list for the specified platform.
SCons.Platform.Platform (hame="'darwin")
Select a canned Platform specification.
cl ass SCons.Platform.PlatformSpec (nane, gener at e)
Bases: object
cl ass SCons.Platform.TempFileMunge (cnd, cndst r =None)
Bases: object
Convert long command lines to use a temporary file.
You can set an Environment variable (usually TEMPFI LE) to this, then call it with a string argument, and it will
perform temporary file substitution on it. This is used to circumvent limitations on the length of command lines.
Example:

134

SCons.Platform package

env[" TEMPFI LE"] = TenpFi | eMunge
env["LINKCOM'] = "${ TEMPFI LE(' $LI NK $TARGET $SOURCES , ' $LI NKCOVSTR)}*

By default, the name of the temporary file used begins with a prefix of ‘@’. This may be configured for other tool
chains by setting the TEMPFI LEPREFI X variable. Example:

env[" TEMPFI LEPREFI X"]
env[" TEMPFI LEPREFI X"]
env[" TEMPFI LEPREFI X"]

-@ # diab conpiler
"-via' # armtool chain
v # (the enpty string) PC Lint

You can configure the extension of the temporary file through the TEMPFI LESUFFI X variable, which defaults to “.Ink’
(see comments in the code below). Example:

env[" TEMPFI LESUFFI X*] = ".Int’ # PC Lint

Entries in the temporary file are separated by the value of the TEMPFI LEARGIQO N variable, which defaults to an
OS-appropriate value.

A default argument escape function is SCons. Subst . quot e_spaces. If you need to apply extra operations on a
command argument before writing to a temporary file(fix Windows slashes, normalize paths, etc.), please set
TEMPFILEARGESCFUNC variable to a custom function. Example:

i mport sys
i mport re
from SCons. Subst i nmport quote_spaces

W NPATHSEP_RE = re.conpile(r"\([*""\]|$")

def tenpfile_arg esc func(arg):
arg = quote_spaces(arg)
if sys.platform!= "w n32":
return arg
GCC requires doubl e Wndows sl ashes, let's use UNl X separat or
return W NPATHSEP_RE. sub(r"/m", arg)

env[" TEMPFI LEARGESCFUNC'] = tenpfile_arg_esc_func

_print_cmd_str (t ar get , sour ce, env, cndstr) — None
SCons.Platform.platform_default ()
Return the platform string for our execution environment.
The returned value should map to one of the SCons/Platform/*.py files. Since scons is architecture independent,
though, we don’t care about the machine architecture.
SCons.Platform.platform_module (hame="darwin")
Return the imported module for the platform.
This looks for a module name that matches the specified argument. If the name is unspecified, we fetch the
appropriate default for our execution environment.

Submodules

SCons.Platform.aix module

Platform-specific initialization for IBM AIX systems.

135

SCons.Platform package

There normally shouldn’t be any need to import this module directly.
SCons.Platform.Platform() selection method.
SCons.Platform.aix.generate (env) — None
SCons.Platform.aix.get_xIc (env, xI c=None, packages=[])

SCons.Platform.cygwin module
Platform-specific initialization for Cygwin systems.

There normally shouldn’'t be any need to import this module directly.
SCons.Platform.Platform() selection method.
SCons.Platform.cygwin.generate (env) —» None

SCons.Platform.darwin module
Platform-specific initialization for Mac OS X systems.

There normally shouldn’t be any need to import this module directly.
SCons.Platform.Platform() selection method.
SCons.Platform.darwin.generate (env) — None

SCons.Platform.hpux module
Platform-specific initialization for HP-UX systems.

There normally shouldn’t be any need to import this module directly.
SCons.Platform.Platform() selection method.
SCons.Platform.hpux.generate (env) — None

SCons.Platform.irix module
Platform-specific initialization for SGI IRIX systems.

There normally shouldn’t be any need to import this module directly.
SCons.Platform.Platform() selection method.
SCons.Platform.irix.generate (env) — None

SCons.Platform.mingw module

Platform-specific initialization for the MinGW system.

SCons.Platform.os2 module
Platform-specific initialization for OS/2 systems.

There normally shouldn’t be any need to import this module directly.
SCons.Platform.Platform() selection method.
SCons.Platform.os2.generate (env) — None

SCons.Platform.posix module
Platform-specific initialization for POSIX (Linux, UNIX, etc.) systems.

There normally shouldn’'t be any need to import this module directly.
SCons.Platform.Platform() selection method.
SCons.Platform.posix.escape (ar g)

escape shell special characters
SCons.Platform.posix.exec_popen3 (I , env, st dout , st derr)
SCons.Platform.posix.exec_subprocess (I , env)
SCons.Platform.posix.generate (env) — None

It will usually be imported through the generic

It will usually be imported through the generic

It will usually be imported through the generic

It will usually be imported through the generic

It will usually be imported through the generic

It will usually be imported through the generic

It will usually be imported through the generic

SCons.Platform.posix.piped_env_spawn (sh, escape, cnd, ar gs, env, st dout , st derr)

136

SCons.Platform package

SCons.Platform.posix.subprocess_spawn (sh, escape, cnd, ar gs, env)

SCons.Platform.sunos module
Platform-specific initialization for Sun systems.

There normally shouldn’'t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
SCons.Platform.sunos.generate (env) — None

SCons.Platform.virtualenv module
Platform support for a Python virtualenv.

This is support code, not a loadable Platform module.
SCons.Platform.virtualenv.ImportVirtualenv (env) — None

Add virtualenv information to env.
SCons.Platform.virtualenv.IsInVirtualenv (pat h: str) - bool

Check whether path is under the virtualenv’s directory.

Returns Fal se if not using a virtualenv.
SCons.Platform.virtualenv.Virtualenv () - str

Return whether operating in a virtualenv.

Returns the path to the virtualenv home if scons is executing within a virtualenv, else and empty string.
SCons.Platform.virtualenv._enable_virtualenv_default ()
SCons.Platform.virtualenv._ignore_virtualenv_default ()
SCons.Platform.virtualenv._inject_venv_path (env, pat h_| i st =None) - None

Insert virtualenv-related paths from os. envi r one to env.
SCons.Platform.virtualenv._inject_venv_variables (env) — None

Copy any set virtualenv variables from os. envi r on to env.
SCons.Platform.virtualenv._is_path_in (pat h: str, base: str) - bool

Check if path is located under the base directory.
SCons.Platform.virtualenv._running_in_virtualenv () - bool

Check whether scons is running in a virtualenv.
SCons.Platform.virtualenv.select_paths_in_venv (path_list: str | list[str]) - list] str]

Filter path_list, returning values under the virtualenv.

SCons.Platform.win32 module
Platform-specific initialization for Win32 systems.

There normally shouldn’'t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
cl ass SCons.Platform.win32.ArchDefinition (ar ch, synonyns=[])
Bases: object
Determine which windows CPU were running on. A class for defining architecture-specific settings and logic.
SCons.Platform.win32.escape (x)
SCons.Platform.win32.exec_spawn (I , env)
SCons.Platform.win32.generate (env)
SCons.Platform.win32.get_architecture (ar ch=None)
Returns the definition for the specified architecture string.
If no string is specified, the system default is returned (as defined by the registry PROCESSOR_ARCHITECTURE
value, PROCESSOR_ARCHITEW6432 environment variable, PROCESSOR_ARCHITECTURE environment
variable, or the platform machine).
SCons.Platform.win32.get_program_files_dir ()
Get the location of the program files directory
SCons.Platform.win32.get_system_root ()
SCons.Platform.win32.piped_spawn (sh, escape, cnd, ar gs, env, st dout , st derr)
SCons.Platform.win32.spawn (sh, escape, cnd, ar gs, env)

137

SCons.Scanner package

SCons.Platform.win32.spawnve (node, fi |l e, ar gs, env)

SCons.Scanner package

Module contents

The Scanner package for the SCons software construction utility.
SCons.Scanner.Base
alias of ScannerBase
cl ass SCons.Scanner.Classic (nane, suf fi xes, pat h_vari abl e, r egex, *ar gs, **kwar gs)
Bases: Current
A Scanner subclass to contain the common logic for classic CPP-style include scanning, but which can be
customized to use different regular expressions to find the includes.
Note that in order for this to work “out of the box” (without overriding the find_include() and sort_key1() methods), the
regular expression passed to the constructor must return the name of the include file in group 0.
__call__ (node, env, pat h=()) - list
Scans a single object.

Parameters:))
» node — the node that will be passed to the scanner function

* env —the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

static _recurse_all nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner) - None
add_skey (skey) — None
Add a skey to the list of skeys
static find_include (i ncl ude, sour ce_di r, pat h)
find_include_names (node)
get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
scan (node, pat h=())
select (node)
static sort_key (i ncl ude)
cl ass SCons.Scanner.ClassicCPP (nane, suf fi xes, pat h_vari abl e, r egex, *args, **kwar gs)
Bases: Classic
A Classic Scanner subclass which takes into account the type of bracketing used to include the file, and uses classic
CPP rules for searching for the files based on the bracketing.
Note that in order for this to work, the regular expression passed to the constructor must return the leading bracket in
group 0, and the contained filename in group 1.
__call__(node, env, pat h=()) - list
Scans a single object.

Parameters:))
» node — the node that will be passed to the scanner function

» env —the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

static _recurse_all nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner) - None
add_skey (skey) — None
Add a skey to the list of skeys
static find_include (i ncl ude, sour ce_di r, pat h)

138

SCons.Scanner package

find_include_names (node)
get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
scan (node, pat h=())
select (node)
static sort_key (i ncl ude)
cl ass SCons.Scanner.Current (*ar gs, * *kwar gs)
Bases: ScannerBase
A class for scanning files that are source files (have no builder) or are derived files and are current (which implies that
they exist, either locally or in a repository).
__call__ (node, env, pat h=()) - list
Scans a single object.

Parameters:)]
» node — the node that will be passed to the scanner function

» env — the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner) - None
add_skey (skey) — None
Add a skey to the list of skeys
get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
select (node)
cl ass SCons.Scanner.FindPathDirs (var i abl e)
Bases: object
Class to bind a specific E{*}PATH variable name to a function that will return all of the E{*}path directories.
SCons.Scanner.Scanner (f unct i on, *ar gs, **kwar gs)
Factory function to create a Scanner Object.
Creates the appropriate Scanner based on the type of “function”.
TODO: Deprecate this some day. We've moved the functionality inside the ScannerBase class and really don’t need
this factory function any more. It was, however, used by some of our Tool modules, so the call probably ended up in
various people’s custom modules patterned on SCons code.
cl ass SCons.Scanner.ScannerBase (f uncti on, nanme: str = ' NONE , ar gunment =<cl ass
' SCons. Scanner. Nul | ' >, skeys=<cl ass ' SCons. Scanner._Nul | ' >, pat h_functi on=None,
node_cl ass=<cl ass ' SCons. Node. FS. Base' >, node_f act or y=None, scan_check=None,
recur si ve=None)
Bases: object
Base class for dependency scanners.
Implements straightforward, single-pass scanning of a single file.
A Scanner is usually set up with a scanner function (and optionally a path function), but can also be a kind of
dispatcher which passes control to other Scanners.
A scanner function takes three arguments: a Node to scan for dependecies, the construction environment to use, and
an optional tuple of paths (as generated by the optional path function). It must return a list containing the Nodes for all
the direct dependencies of the file.
The optional path function is called to return paths that can be searched for implicit dependency files. It takes five
arguments: a construction environment, a Node for the directory containing the SConscript file that defined the
primary target, a list of target nodes, a list of source nodes, and the optional argument for this instance.
Examples:

s = Scanner (ny_scanner _functi on)
s = Scanner (functi on=ny_scanner _functi on)
s = Scanner (function=ny_scanner_functi on, argunent="foo0')

139

SCons.Scanner package

Parameters:

function — either a scanner function taking two or three arguments and returning a list of
File Nodes; or a mapping of keys to other Scanner objects.

name — an optional name for identifying this scanner object (defaults to “NONE").
argument — an optional argument that will be passed to both function and path_function.

skeys — an optional list argument that can be used to determine if this scanner can be
used for a given Node. In the case of File nodes, for example, the skeys would be file
suffixes.

path_function — an optional function which returns a tuple of the directories that can be
searched for implicit dependency files. May also return a callable which is called with no
args and returns the tuple (supporting Bindable class).

node_class — optional class of Nodes which this scan will return. If not specified, defaults
to SCons.Node.FS.Base. If node_class is None, then this scanner will not enforce any
Node conversion and will return the raw results from function.

node_factory — optional factory function to be called to translate the raw results returned
by function into the expected node_class objects.

scan_check — optional function to be called to first check whether this node really needs
to be scanned.

recursive — optional specifier of whether this scanner should be invoked recursively on all
of the implicit dependencies it returns (for example #include lines in C source files, which
may refer to header files which should themselves be scanned). May be a callable, which
will be called to filter the list of nodes found to select a subset for recursive scanning (the
canonical example being only recursively scanning subdirectories within a directory). The
default is to not do recursive scanning.

__call__ (node, env, pat h=()) - list

Scans a single object.

Parameters:

* node — the node that will be passed to the scanner function
» env —the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function

Returns: A list of direct dependency nodes for the specified node.

static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner) - None
add_skey (skey) — None

Add a skey to the list of skeys

get_skeys (env=None)

path (env, di r =None, t ar get =None, sour ce=None)

select (node)

cl ass SCons.Scanner.Selector (mappi ng, *ar gs, **kwar gs)

Bases: ScannerBase

A class for selecting a more specific scanner based on the scanner_key() (suffix) for a specific Node.

TODO: This functionality has been moved into the inner workings of the ScannerBase class, and this class will be
deprecated at some point. (It was never exposed directly as part of the public interface, although it is used by the
Scanner() factory function that was used by various Tool modules and therefore was likely a template for custom
modules that may be out there.)

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

add_scanner (skey, scanner) - None

add_skey (skey) — None

140

SCons.Scanner package

Add a skey to the list of skeys
get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
select (node)
cl ass SCons.Scanner._Null
Bases: object
SCons.Scanner._null
alias of _Null

Submodules

SCons.Scanner.C module
Dependency scanner for C/C++ code.

Two scanners are defined here: the default CScanner, and the optional CConditionalScanner, which must be explicitly
selected by calling add_scanner() for each affected suffix.
SCons.Scanner.C.CConditionalScanner ()
Return an advanced conditional Scanner instance for scanning source files
Interprets C/C++ Preprocessor conditional syntax (#ifdef, #if, defined, #else, #elif, etc.).
SCons.Scanner.C.CScanner ()
Return a prototype Scanner instance for scanning source files that use the C pre-processor
cl ass SCons.Scanner.C.SConsCPPConditionalScanner (* ar gs, * * kwar gs)
Bases: PreProcessor
SCons-specific subclass of the cpp.py module’s processing.
We subclass this so that: 1) we can deal with files represented by Nodes, not strings; 2) we can keep track of the files
that are missing.
_call__(file)
Pre-processes a file.
This is the main public entry point.
_do_if_else_condition (condi ti on) - None
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.
_match_tuples (t upl es)
_parse_tuples (cont ent s)
_process_tuples (t upl es, fi | e=None)
all_include (t) -~ None
do_define (t) - None
Default handling of a #define line.
do_elif (t) - None
Default handling of a #elif line.
do_else (t) — None
Default handling of a #else line.
do_endif (t) -» None
Default handling of a #endif line.
do_if (t) —» None
Default handling of a #if line.
do_ifdef (t) — None
Default handling of a #ifdef line.
do_ifndef (t) - None
Default handling of a #ifndef line.
do_import (t) — None
Default handling of a #import line.
do_include (t) — None
Default handling of a #include line.
do_include_next (t) - None
Default handling of a #include line.
do_nothing (t) - None

141

SCons.Scanner package

Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.
do_undef (t) - None
Default handling of a #undef line.
eval_constant_expression (s)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor nhamespace we use to
track #define values.
Returns None if the eval() result is not an integer.
eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor nhamespace we use to
track #define values.
finalize_result (f name)
find_include_file (t)
Finds the #include file for a given preprocessor tuple.
initialize_result (f nane) — None
process_contents (cont ent s)
Pre-processes a file contents.
Is used by tests
process_file (fi |l e)
Pre-processes a file.
This is the main internal entry point.
read_file (fil e) - str
resolve_include (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without *” or <> surrounding the name until an initial “ or < is found, to
handle #include FILE where FILE is a #define somewhere else.
restore () - None
Pops the previous dispatch table off the stack and makes it the current one.
save () - None
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.
scons_current_file (t) — None
start_handling_includes (t =None) - None
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.
stop_handling_includes (t =None) - None
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.
tupleize (cont ent s)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’s preprocessor directive (#if, #include, #define, etc., minus the initial ‘#).
The remaining elements are specific to the type of directive, as pulled apart by the regular expression.
cl ass SCons.Scanner.C.SConsCPPConditionalScannerWrapper (namne, vari abl e)
Bases: object
The SCons wrapper around a cpp.py scanner.
This is the actual glue between the calling conventions of generic SCons scanners, and the (subclass of) cpp.py
class that knows how to look for #include lines with reasonably real C-preprocessor-like evaluation of
#if/#ifdef/#else/#elif lines.
recurse_nodes (hodes)
select (node)
cl ass SCons.Scanner.C.SConsCPPScanner (*ar gs, * * kwar gs)
Bases: PreProcessor
SCons-specific subclass of the cpp.py module’s processing.

142

SCons.Scanner package

We subclass this so that: 1) we can deal with files represented by Nodes, not strings; 2) we can keep track of the files
that are missing.
_call__(file)
Pre-processes a file.
This is the main public entry point.
_do_if_else_condition (condi ti on) - None
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.
_match_tuples (t upl es)
_parse_tuples (cont ent s)
_process_tuples (t upl es, fi | e=None)
all_include (t) -~ None
do_define (t) - None
Default handling of a #define line.
do_elif (t) - None
Default handling of a #elif line.
do_else (t) — None
Default handling of a #else line.
do_endif (t) -» None
Default handling of a #endif line.
do_if (t) —» None
Default handling of a #if line.
do_ifdef (t) — None
Default handling of a #ifdef line.
do_ifndef (t) - None
Default handling of a #ifndef line.
do_import (t) — None
Default handling of a #import line.
do_include (t) — None
Default handling of a #include line.
do_include_next (t) - None
Default handling of a #include line.
do_nothing (t) - None
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.
do_undef (t) - None
Default handling of a #undef line.
eval_constant_expression (s)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor nhamespace we use to
track #define values.
Returns None if the eval() result is not an integer.
eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor namespace we use to
track #define values.
finalize_result (f name)
find_include_file (t)
Finds the #include file for a given preprocessor tuple.
initialize_result (f nane) — None
process_contents (cont ent s)
Pre-processes a file contents.
Is used by tests
process_file (fi |l e)
Pre-processes a file.
This is the main internal entry point.
read_file (fil e) - str
resolve_include (t)

143

SCons.Scanner package

Resolve a tuple-ized #include line.
This handles recursive expansion of values without *” or <> surrounding the name until an initial “ or < is found, to
handle #include FILE where FILE is a #define somewhere else.
restore () — None
Pops the previous dispatch table off the stack and makes it the current one.
save () - None
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.
scons_current_file (t) — None
start_handling_includes (t =None) - None
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.
stop_handling_includes (t =None) - None
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.
tupleize (cont ent s)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’s preprocessor directive (#if, #include, #define, etc., minus the initial ‘#).
The remaining elements are specific to the type of directive, as pulled apart by the regular expression.
cl ass SCons.Scanner.C.SConsCPPScannerWrapper (nane, vari abl e)
Bases: object
The SCons wrapper around a cpp.py scanner.
This is the actual glue between the calling conventions of generic SCons scanners, and the (subclass of) cpp.py
class that knows how to look for #include lines with reasonably real C-preprocessor-like evaluation of
#if/#ifdef/#else/#elif lines.
recurse_nodes (hodes)
select (node)
SCons.Scanner.C.dictify CPPDEFINES (env, r epl ace: bool = False) - dict
Return CPPDEFINES converted to a dict for preprocessor emulation.
The concept is similar to processDefines(): turn the values stored in an internal form in env[' CPPDEFI NES'] into
one needed for a specific context - in this case the cpp-like work the C/C++ scanner will do. We can't reuse
processDef i nes output as that's a list of strings for the command line. We also can’t pass the CPPDEFI NES
variable directly to the di ct constructor, as SCons allows it to be stored in several different ways - it's only after
Append and relatives has been called we know for sure it will be a deque of tuples.
If requested (replace is true), simulate some of the macro replacement that would take place if an actual
preprocessor ran, to avoid some conditional inclusions comeing out wrong. A bit of an edge case, but does happen
(GH #4623). See 6.10.5 in the C standard and 15.6 in the C++ standard).

Parameters: replace — if true, simulate macro replacement
Changed in version 4.9.0: Simple macro replacement added, and replace arg to enable it.

SCons.Scanner.D module
Scanner for the Digital Mars “D” programming language.

Coded by Andy Friesen, 17 Nov 2003
cl ass SCons.Scanner.D.D
Bases: Classic
__call__ (node, env, pat h=()) - list
Scans a single object.

Parameters:)]
» node — the node that will be passed to the scanner function

» env — the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

144

SCons.Scanner package

static _recurse_all_nodes (nodes)

static _recurse_no_nodes (nodes)

add_scanner (skey, scanner) - None

add_skey (skey) — None

Add a skey to the list of skeys

static find_include (i ncl ude, sour ce_di r, pat h)

find_include_names (node)

get_skeys (env=None)

path (env, di r =None, t ar get =None, sour ce=None)

scan (node, pat h=())

select (node)

static sort_key (i ncl ude)
SCons.Scanner.D.DScanner ()

Return a prototype Scanner instance for scanning D source files

SCons.Scanner.Dir module

SCons.Scanner.Dir.DirEntryScanner (* * kwar gs)
Return a prototype Scanner instance for “scanning” directory Nodes for their in-memory entries
SCons.Scanner.Dir.DirScanner (* * kwar gs)
Return a prototype Scanner instance for scanning directories for on-disk files
SCons.Scanner.Dir.do_not_scan (k)
SCons.Scanner.Dir.only_dirs (nodes)
SCons.Scanner.Dir.scan_in_memory (node, env, pat h=())
“Scans” a Node.FS.Dir for its in-memory entries.
SCons.Scanner.Dir.scan_on_disk (node, env, pat h=())
Scans a directory for on-disk files and directories therein.
Looking up the entries will add these to the in-memory Node tree representation of the file system, so all we have to
do is just that and then call the in-memory scanning function.

SCons.Scanner.Fortran module

Dependency scanner for Fortran code.

cl ass SCons.Scanner.Fortran.F90Scanner (namne, suf fi xes, pat h_vari abl e, use_r egex, i ncl _r egex,

def _regex, *args, **kwar gs)
Bases: Classic
A Classic Scanner subclass for Fortran source files which takes into account both USE and INCLUDE statements.
This scanner will work for both F77 and F90 (and beyond) compilers.
Currently, this scanner assumes that the include files do not contain USE statements. To enable the ability to deal
with USE statements in include files, add logic right after the module names are found to loop over each include file,
search for and locate each USE statement, and append each module name to the list of dependencies. Caching the
search results in a common dictionary somewhere so that the same include file is not searched multiple times would
be a smart thing to do.
__call__ (node, env, pat h=()) - list

Scans a single object.

Parameters:)]
» node — the node that will be passed to the scanner function

» env —the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner) - None
add_skey (skey) — None

Add a skey to the list of skeys

145

SCons.Scanner package

static find_include (i ncl ude, sour ce_di r, pat h)
find_include_names (node)
get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
scan (node, env, pat h=())
select (node)
static sort_key (i ncl ude)
SCons.Scanner.Fortran.FortranScan (pat h_vari abl e: str = 'FORTRANPATHY)
Return a prototype Scanner instance for scanning source files for Fortran USE & INCLUDE statements

SCons.Scanner.IDL module

Dependency scanner for IDL (Interface Definition Language) files.
SCons.Scanner.IDL.IDLScan ()
Return a prototype Scanner instance for scanning IDL source files

SCons.Scanner.Java module

SCons.Scanner.Java.JavaScanner ()
Scanner for .java files.
Added in version 4.4.

SCons.Scanner.Java._collect_classes (cl assl i st, di rname, fil es) - None

SCons.Scanner.Java._subst_paths (env, pat hs) - list
Return a list of substituted path elements.
If paths is a string, it is split on the search-path separator. Otherwise, substitution is done on string-valued list
elements but they are not split.
Note helps support behavior like pulling in the external CLASSPATH and setting it directly into JAVACLASSPATH,
however splitting on os. pat hsep makes the interpretation system-specific (this is warned about in the manpage
entry for JAVACLASSPATH).

SCons.Scanner.Java.scan (node, env, | i bpat h=()) - list
Scan for files both on JAVACLASSPATH and JAVAPROCESSORPATH.

JAVACLASSPATH/JAVAPROCESSORPATH path can contain:

« Explicit paths to JAR/Zip files

« Wildcards (*)

« Directories which contain classes in an unnamed package

 Parent directories of the root package for classes in a named package

Class path entries that are neither directories nor archives (.zip or JAFE files) nor the asterisk (*) wildcard character
are ignored.

SCons.Scanner.LaTeX module

Dependency scanner for LaTeX code.

cl ass SCons.Scanner.LaTeX.FindENVPathDirs (vari abl e)
Bases: object
A class to bind a specific E{*}PATH variable name to a function that will return all of the E{*}path directories.

cl ass SCons.Scanner.LaTeX.LaTeX (nane, suf f i xes, gr aphi cs_ext ensi ons, *ar gs, **kwar gs)
Bases: ScannerBase
Class for scanning LaTeX files for included files.
Unlike most scanners, which use regular expressions that just return the included file name, this returns a tuple
consisting of the keyword for the inclusion (“include”, “includegraphics”, “input”, or “bibliography”), and then the file
name itself. Based on a quick look at LaTeX documentation, it seems that we should append .tex suffix for the
“include” keywords, append .tex if there is no extension for the “input” keyword, and need to add .bib for the
“bibliography” keyword that does not accept extensions by itself.

146

SCons.Scanner package

Finally, if there is no extension for an “includegraphics” keyword latex will append .ps or .eps to find the file, while
pdftex may use .pdf, .jpg, .tif, .mps, or .png.

The actual subset and search order may be altered by DeclareGraphicsExtensions command. This complication is
ignored. The default order corresponds to experimentation with teTeX:

$ latex --version
pdf eTeX 3.141592-1.21a-2.2 (Wb2C 7.5. 4)
kpat hsea version 3.5.4

The order is:
[.eps’, ‘.ps’] for latex ['.png’, “.pdf, “.jpg’, ‘tif].

Another difference is that the search path is determined by the type of the file being searched: env[TEXINPUTS’] for
“input” and “include” keywords env['TEXINPUTS’] for “includegraphics” keyword env[TEXINPUTS’] for
“Istinputlisting” keyword env['‘BIBINPUTS’] for “bibliography” keyword env['BSTINPUTS’] for “bibliographystyle”
keyword env['INDEXSTYLE'] for “makeindex” keyword, no scanning support needed just allows user to set it if
needed.
FIXME: also look for the class or style in document[class|style{} FIXME: also look for the argument of
bibliographystyle{}
__call__ (node, env, pat h=()) - list

Scans a single object.

Parameters:))
» node — the node that will be passed to the scanner function

» env — the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

_latex_names (i ncl ude_t ype, fil enane)
static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner) - None
add_skey (skey) —» None

Add a skey to the list of skeys
canonical_text (t ext)

Standardize an input TeX-file contents.

Currently:

_ * removes comments, unwr?\Fngn comment-wrapped lines.
env_variables = [TEXINPUTS', 'BIBINPUTS', 'BSTINPUTS', 'INDEXSTYLE']

find_include (i ncl ude, source_di r, pat h)
get_skeys (env=None)
keyword_paths = {'addbibresource": 'BIBINPUTS', 'addglobalbib’: 'BIBINPUTS', 'addsectionbib": 'BIBINPUTS',
‘bibliography': '‘BIBINPUTS', 'bibliographystyle': 'BSTINPUTS', 'include: "TEXINPUTS', 'includegraphics":
‘TEXINPUTS', 'input’: 'TEXINPUTS', 'Istinputlisting”: ' TEXINPUTS', 'makeindex’: 'INDEXSTYLE', 'usecolortheme":
"TEXINPUTS', 'usefonttheme". "TEXINPUTS', 'useinnertheme’: ' TEXINPUTS', 'useoutertheme". TEXINPUTS',
‘usepackage": 'TEXINPUTS', 'usetheme". TEXINPUTS'}
path (env, di r =None, t ar get =None, sour ce=None)
scan (node, subdir: str ="
scan_recurse (node, pat h=())
do a recursive scan of the top level target file This lets us search for included files based on the directory of the
main file just as latex does
select (node)
static sort_key (i ncl ude)
two_arg_commands = ['import’, 'subimport’, ‘includefrom’, 'subincludefrom’, ‘inputfrom’, 'subinputfrom’]
SCons.Scanner.LaTeX.LaTeXScanner ()
Return a prototype Scanner instance for scanning LaTeX source files when built with latex.

147

SCons.Script package

SCons.Scanner.LaTeX.PDFLaTeXScanner ()
Return a prototype Scanner instance for scanning LaTeX source files when built with pdflatex.
cl ass SCons.Scanner.LaTeX._Null
Bases: object
SCons.Scanner.LaTeX._null
alias of _Null
SCons.Scanner.LaTeX.modify_env_var (env, var, abspat h)

SCons.Scanner.Prog module

Dependency scanner for program files.
SCons.Scanner.Prog.ProgramScanner (* * kwar gs)
Return a prototype Scanner instance for scanning executable files for static-lib dependencies
SCons.Scanner.Prog._subst_libs (env, | i bs)
Substitute environment variables and split into list.
SCons.Scanner.Prog.scan (node, env, | i bpat h=())
Scans program files for static-library dependencies.
It will search the LIBPATH environment variable for libraries specified in the LIBS variable, returning any files it finds
as dependencies.

SCons.Scanner.RC module

Dependency scanner for RC (Interface Definition Language) files.
SCons.Scanner.RC.RCScan ()

Return a prototype Scanner instance for scanning RC source files
SCons.Scanner.RC.no_tlb (nodes)

Filter out .tIb files as they are binary and shouldn’t be scanned.

SCons.Scanner.SWIG module

Dependency scanner for SWIG code.
SCons.Scanner.SWIG.SWIGScanner ()

SCons. Script package

Module contents
The main() function used by the scons script.

Architecturally, this is the scons script, and will likely only be called from the external “scons” wrapper. Consequently,
anything here should not be, or be considered, part of the build engine. If it's something that we expect other software
to want to use, it should go in some other module. If it's specific to the “scons” script invocation, it goes here.

SCons.Script.HelpFunction (t ext , append: bool = False,| ocal _only: bool = False) -~ None
The implementaion of the the Hel p method.
See Help().

Changed in version 4.6.0: The keep_local parameter was added.

Changed in version 4.9.0: The keep_local parameter was renamed local_only to match manpage
cl ass SCons.Script.TargetList (i ni t1i st =None)

Bases: UserList

_abc_impl = <_abc._abc_data object>

_add_Default (Ii st) - None

_clear () - None

_do_nothing (*ar gs, **kw) - None

append (i tem

S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S

copy ()

148

SCons.Script package

count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t en)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
SCons.Script.Variables (f i | es=None, ar gs={})

SCons.Script._Add_Arguments (al i st: list[str]) - None
Add value(s) to ARGLI ST and ARGUMENTS.
SCons.Script._Add_Targets (tlist: list[str]) — None

Add value(s) to COMWWAND_LI NE_TARGETS and BUl LD_TARGETS.
SCons.Script._Get_Default_Targets (d, f s)
SCons.Script._Remove_Argument (aar g: str) —» None
Remove aarg from ARGLI ST and ARGUVENTS.
Used to remove a variables-style argument that is no longer valid. This can happpen because the command line is
processed once early, before we see any SCons.Script.Main.AddOption() calls, so we could not recognize it belongs
to an option and is not a standalone variable=value argument.
Added in version 4.10.0.
SCons.Script._Remove_Target (t arg: str) — None
Remove targ from BUI LD_TARGETS and COVWAND LI NE_TARGETS.
Used to remove a target that is no longer valid. This can happpen because the command line is processed once
early, before we see any SCons.Script.Main.AddOption() calls, so we could not recognize it belongs to an option and
is not a standalone target argument.
Since we are “correcting an error”, we also have to fix up the internal _build_plus_default list.
Added in version 4.10.0.
SCons.Script._Set_Default_Targets (env, tli st) - None
SCons.Script._Set_Default_Targets_Has_Been_Called (d, f s)
SCons.Script._Set_Default_Targets_Has_Not Been_Called (d, f s)
SCons.Script.set_missing_sconscript_error (f | ag: bool = True) - bool
Set behavior on missing file in SConscript() call.

Returns: previous value

Submodules

SCons.Script.Interactive module

SCons interactive mode.

cl ass SCons.Script.Interactive.SConslinteractiveCmd (* * kw)
Bases: Cmd
build [TARGETS] Build the specified TARGETS and their dependencies. ‘b’ is a synonym. clean [TARGETS] Clean
(remove) the specified TARGETS and their dependencies. ‘c’ is a synonym. exit Exit SCons interactive mode. help
[COMMAND] Prints help for the specified COMMAND. ‘h’ and ‘?' are synonyms. shell [COMMANDLINE] Execute
COMMANDLINE in a subshell. ‘'sh’ and ‘I" are synonyms. version Prints SCons version information.
_do_one_help (ar g) - None
_doc_to_help (obj)
_strip_initial_spaces (s)

149

SCons.Script package

cmdloop (i nt r o=None)
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.
columnize (1 i st, di spl ayw dt h=80)
Display a list of strings as a compact set of columns.
Each column is only as wide as necessary. Columns are separated by two spaces (one was not legible enough).
complete (t ext , st ate)
Return the next possible completion for ‘text’.
If a command has not been entered, then complete against command list. Otherwise try to call
complete_<command> to get list of completions.
complete_help (*ar gs)
completedefault (*i gnor ed)
Method called to complete an input line when no command-specific complete_*() method is available.
By default, it returns an empty list.
completenames (t ext, *i gnor ed)
default (ar gv) — None
Called on an input line when the command prefix is not recognized.
If this method is not overridden, it prints an error message and returns.
do_EOF (ar gv) - None
do_build (ar gv) — None
build [TARGETS] Build the specified TARGETS and their dependencies. ‘b’ is a synonym.
do_clean (ar gv)
clean [TARGETS] Clean (remove) the specified TARGETS and their dependencies. ‘c’ is a synonym.
do_exit (ar gv) — None
exit Exit SCons interactive mode.
do_help (ar gv) - None
help [COMMAND] Prints help for the specified COMMAND. ‘h’ and *?’ are synonyms.
do_shell (ar gv) - None
shell [COMMANDLINE] Execute COMMANDLINE in a subshell. ‘sh’ and ‘I" are synonyms.
do_version (ar gv) — None
version Prints SCons version information.
doc_header = 'Documented commands (type help <topic>):'
doc_leader = "
emptyline ()
Called when an empty line is entered in response to the prompt.
If this method is not overridden, it repeats the last nonempty command entered.
get_names ()
identchars = 'abcdefghijkimnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_'
intro = None
lastemd = "
misc_header = 'Miscellaneous help topics:'
nohelp = "*** No help on %s'
onecmd (I i ne)
Interpret the argument as though it had been typed in response to the prompt.
This may be overridden, but should not normally need to be; see the precmd() and postcmd() methods for useful
execution hooks. The return value is a flag indicating whether interpretation of commands by the interpreter should
stop.
parseline (I i ne)
Parse the line into a command name and a string containing the arguments. Returns a tuple containing (command,
args, line). ‘command’ and ‘args’ may be None if the line couldn’t be parsed.
postcmd (st op, | i ne)
Hook method executed just after a command dispatch is finished.
postloop ()
Hook method executed once when the cmdloop() method is about to return.
precmd (I i ne)

150

SCons.Script package

Hook method executed just before the command line is interpreted, but after the input prompt is generated and
issued.

preloop ()
Hook method executed once when the cmdloop() method is called.

print_topics (header, cnds, cndl en, maxcol)

prompt = '(Cmd) "’

ruler = '='

synonyms = {'b": 'build’, 'c": 'clean’, 'h": 'help’, 'scons": 'build’, 'sh': 'shell’}

undoc_header = 'Undocumented commands:'

use_rawinput = 1

SCons.Script.Interactive.interact (f s, par ser, opti ons,targets, target _top) — None

SCons.Script.Main module
The main() function used by the scons script.

Architecturally, this is the scons script, and will likely only be called from the external “scons” wrapper. Consequently,
anything here should not be, or be considered, part of the build engine. If it's something that we expect other software
to want to use, it should go in some other module. If it's specific to the “scons” script invocation, it goes here.
SCons.Script.Main.AddOption (*ar gs, **kw) - SConsOption
Add a local option to the option parser - Public API.
If the SCons-specific settable kwarg is true (default Fal se), the option will allow calling SetOption().
Changed in version 4.8.0: The settable parameter added to allow including the new option in the table of options
eligible to use SetOption().
cl ass SCons.Script.Main.BuildTask (t m t ar get s, t op, node)
Bases: OutOfDateTask
An SCons build task.
LOGGER = None
_abc_impl = <_abc._abc_data object>
_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.
__Nno_exception_to_raise () - None
display (message) — None
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.
do_failed (status: int = 2) - None
exc_clear () - None
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.
exc_info ()
Returns info about a recorded exception.
exception_set (except i on=None) - None
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact
execute () - None
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().
executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call

151

SCons.Script package

“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_with_callbacks () - None
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks () - None
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue () - None
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop () - None
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed () - None
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready () - None
Make a task ready for execution

make_ready_all () - None
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute () - bool
Returns True (indicating this Task should be executed) if this Task’s target state indicates it needs executing,
which has already been determined by an earlier up-to-date check.

postprocess () - None
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (node, descri ption: str = 'node’) - None

cl ass SCons.Script.Main.CleanTask (t m t ar get s, t op, node)

Bases: AlwaysTask

An SCons clean task.

LOGGER = None

_abc_impl = <_abc._abc_data object>

_clean_targets (r enove: bool = True) - None

152

SCons.Script package

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_get_files_to_clean ()

_ho_exception_to_raise () - None

display (message) — None
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear () - None
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (except i on=None) - None
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute () - None
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed () - None
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

executed_with_callbacks () - None
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks () - None
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue () - None
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop () - None
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed () - None
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fs_delete (pat h, pat hstr, remove: bool = True)

get_target ()
Fetch the target being built or updated by this task.

make_ready () - None
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.

153

SCons.Script package

make_ready_all () - None
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.
make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.
needs_execute () — bool
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute
postprocess () - None
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.
prepare () - None
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.
remove () - None
show () - None
trace_message (node, descri ption: str = 'node’) - None
SCons.Script.Main.DebugOptions (j son: str | None = None) - None
Specify options to SCons debug logic - Public API.
Currently only json is supported, which changes the JSON file written to if the - - debug=j son command-line option
is specified to the value supplied.
Added in version 4.6.0.
cl ass SCons.Script.Main.FakeOptionParser
Bases: object
A do-nothing option parser, used for the initial OptionsParser value.
During normal SCons operation, the OptionsParser is created right away by the main() function. Certain test scripts
however, can introspect on different Tool modules, the initialization of which can try to add a new, local option to an
otherwise uninitialized OptionsParser object. This allows that introspection to happen without blowing up.
cl ass FakeOptionValues
Bases: object
add_local_option (*ar gs, **kw) - SConsOption
values = <SCons.Script.Main.FakeOptionParser.FakeOptionValues object>
SCons.Script.Main.GetBuildFailures ()
SCons.Script.Main.GetOption (nane: str)
Get the value from an option - Public API.
SCons.Script.Main.PrintHelp (fi | e=None, | ocal _only: bool = False) - None
SCons.Script.Main.Progress (*ar gs, **kw) — None
Show progress during building - Public API.
cl ass SCons.Script.Main.Progressor (obj ,i nterval: int = 1,fil e=None,overwite: bool = False)
Bases: object
count = 0
erase_previous () - None
prev = "
replace_string (node) — None
spinner (hode) - None
string (hode) — None
target_string = '$STARGET'

154

SCons.Script package

write (s) - None
cl ass SCons.Script.Main.QuestionTask (t m t ar get s, t op, node)

Bases: AlwaysTask

An SCons task for the -q (question) option.

LOGGER = None

_abc_impl = <_abc._abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_ho_exception_to_raise () - None

display (message) — None
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear () - None
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (except i on=None) - None
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute () - None
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed () - None
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_with_callbacks () - None
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks () - None
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue () - None
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop () - None
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed () - None
Default action when a task fails: stop the build.

155

SCons.Script package

Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().
get_target ()
Fetch the target being built or updated by this task.
make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.
make_ready_all () - None
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.
make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.
needs_execute () - bool
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute
postprocess () - None
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.
prepare () - None
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.
trace_message (node, descri ption: str = 'node’) - None
excepti on SCons.Script.Main.SConsPrintHelpException
Bases: Exception
add_note ()
Exception.add_note(note) — add a note to the exception
args
with_traceback ()
Exception.with_traceback(tb) — set self. _traceback _ to tb and return self.
SCons.Script.Main.SetOption (nane: str, val ue)
Set the value of an option - Public API.
cl ass SCons.Script.Main.TreePrinter (deri ved: bool = False, prune: bool = False, status: bool =
False, sLi neDraw. bool = False)
Bases: object
display (t) —» None
get_all_children (node)
get_derived_children (node)
SCons.Script.Main.ValidateOptions (t hr ow_excepti on: bool = False) - None
Validate options passed to SCons on the command line.
Checks that all options given on the command line are known to this instance of SCons. Call after all of the cli options
have been set up through AddOption() calls. For example, if you added an option - - xyz and you call SCons with
- - XYYy you can cause SCons to issue an error message and exit by calling this function.

Parameters: throw_exception — if an invalid option is present on the command line, raises an exception if
this optional parameter evaluates true; if false (the default), issue a message and exit with error
status.

156

SCons.Script package

Raises: SConsBadOptionError — If throw_exception is true and there are invalid options on the
command line.

Added in version 4.5.0.
SCons.Script.Main._SConstruct_exists (di rname: str,repositories: list[str],filelist: list[str])
- str | None

Check that an SConstruct file exists in a directory.

Parameters:)))
« dirname — the directory to search. If empty, look in cwd.

* repositories — a list of repositories to search in addition to the project directory tree.

« filelist — names of SConstruct file(s) to search for. If empty list, use the built-in list of
names.
Returns: The path to the located SConstruct file, or None.

SCons.Script.Main._build_targets (f s, opti ons,targets, target _top)
SCons.Script.Main._create_path (pl i st)
SCons.Script.Main._exec_main (par ser, val ues) — None
SCons.Script.Main._load_all_site_scons_dirs (t opdi r, ver bose: bool = False) - None
Load all of the predefined site_scons dir. Order is significant; we load them in order from most generic
(machine-wide) to most specific (topdir). The verbose argument is only for testing.
SCons.Script.Main._load_site_scons_dir (t opdi r, si te_di r _nanme=None)
Load the site directory under topdir.
If a site dir name is supplied use it, else use default “site_scons” Prepend site dir to sys.path. If a “site_tools” subdir
exists, prepend to toolpath. Import “site_init.py” from site dir if it exists.
SCons.Script.Main._main (par ser)
SCons.Script.Main._scons_internal_error () - None
Handle all errors but user errors. Print out a message telling the user what to do in this case and print a normal trace.
SCons.Script.Main._scons_internal_warning (e) - None
Slightly different from _scons_user_warning in that we use the current call stack rather than sys.exc_info() to get our
stack trace. This is used by the warnings framework to print warnings.
SCons.Script.Main._scons_syntax_error (e) - None
Handle syntax errors. Print out a message and show where the error occurred.
SCons.Script.Main._scons_user_error (€) - None
Handle user errors. Print out a message and a description of the error, along with the line number and routine where
it occured. The file and line number will be the deepest stack frame that is not part of SCons itself.
SCons.Script.Main._scons_user_warning (e) — None
Handle user warnings. Print out a message and a description of the warning, along with the line humber and routine
where it occured. The file and line number will be the deepest stack frame that is not part of SCons itself.
SCons.Script.Main._set_debug_values (opt i ons) —» None
SCons.Script.Main.find_deepest_user_frame (t b)
Find the deepest stack frame that is not part of SCons.
Input is a “pre-processed” stack trace in the form returned by traceback.extract_th() or traceback.extract_stack()
SCons.Script.Main.main () - None
SCons.Script.Main.path_string (I abel , nodul e) - str
SCons.Script.Main.python_version_deprecated (ver si on=(3, 11, 14, final', 0))
SCons.Script.Main.python_version_string ()
SCons.Script.Main.python_version_unsupported (ver si on=(3, 11, 14, final', 0))
SCons.Script.Main.revert_io () - None
SCons.Script.Main.test_load_all_site_scons_dirs (d) —» None
SCons.Script.Main.version_string (I abel , nodul e)

SCons.Script.SConsOptions module

SCons.Script.SConsOptions.Parser (ver si on)
Returns a parser object initialized with the standard SCons options.
Add options in the order we want them to show up in the - H help text, basically alphabetical. For readability, Each
add_option() call should have a consistent format:

157

SCons.Script package

op. add_opti on(
"-L", "--long-option-nanme",
nargs=1, type="string",
dest="1ong_opti on_nane", default='foo',
action="cal | back", call back=opt | ong _option,
hel p="hel p text goes here",
met avar =" VAR'

)

Even though the optparse module constructs reasonable default destination names from the long option names,
we’re going to be explicit about each one for easier readability and so this code will at least show up when grepping
the source for option attribute names, or otherwise browsing the source code.

exception SCons.Script.SConsOptions.SConsBadOptionError (opt _str: str, parser: SConsQpti onParser

| None = None)
Bases: BadOptionError
Raised if an invalid option value is encountered on the command line.

Variables:)))
e opt_str — The unrecognized command-line option.
e parser — The active argument parser.
add_note ()
Exception.add_note(note) — add a note to the exception

args
with_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.
cl ass SCons.Script.SConsOptions.SConsindentedHelpFormatter (i ndent _i ncr enment =2,
max_hel p_posi ti on=24, wi dt h=None, short _first=1)
Bases: IndentedHelpFormatter
NO_DEFAULT_VALUE = 'none'
_format_text (t ext)
Format a paragraph of free-form text for inclusion in the help output at the current indentation level.
dedent ()
expand_default (opti on)
format_description (descri pti on)
format_epilog (epi | 0Q)
format_heading (headi ng)
Translate heading to “SCons Options”
Heading of “Options” changed to “SCons Options.” Unfortunately, we have to do this here, because those titles are
hard-coded in the optparse calls.
format_option (opt i on)
SCons-specific option formatter.
A copy of the optparse.IndentedHelpFormatter.format_option() method. Overridden so we can modify text
wrapping to our liking:

e add our own regular expression that doesn’t break on hyphens (so things like - - no-print-directory
don't get broken).

< wrap the list of options themselves when it's too long (the wr apper . fil | (opts) call below).

* set the subsequent_indent when wrapping the help_text.
The help for each option consists of two parts:

« the opt strings and metavars e.g. (- x, or - f FI LENAME, --fi | e=FI LENANVE)

« the user-supplied help string e.g. (turn on expert node,read data from FI LENAVE)
If possible, we write both of these on the same line:

158

SCons.Script package

-X turn on expert node

If the opt string list is too long, we put the help string on a second line, indented to the same column it would start in
if it fit on the first line:

-f FI LENAVE, --fil e=FI LENAME
read data from FI LENAME

Help strings are wrapped for terminal width and do not preserve any hand-made formatting that may have been
used in the AddOpt i on call, so don’t attempt prettying up a list of choices (for example).
format_option_strings (opt i on)
Return a comma-separated list of option strings & metavariables.
format_usage (usage) - str
Format the usage message for SCons.
indent ()
set_long_opt_delimiter (del i m
set_parser (par ser)
set_short_opt_delimiter (del i m)
store_local_option_strings (par ser, gr oup)
Local-only version of store_option_strings.
We need to replicate this so the formatter will be set up properly if we didn't go through the “normal”
optparse. HelpFormatter. store ptionstrings.
Added in version 4.6.0.
store_option_strings (par ser)
cl ass SCons.Script.SConsOptions.SConsOption (*opt s, **attrs)
Bases: Option
SCons added option.
Changes CHECK_METHODS and CONST_ACTIONS settings from optparse.Option base class to tune for our
usage.
New function _check _nargs_optional() implements the nar gs=? syntax from argparse, and is added to the
CHECK_METHODS list. Overridden convert_value() supports this usage.
Changed in version 4.9.0: The settable attribute is added to ATTRS, allowing it to be set in the option. A parameter to
mark the option settable was added in 4.8.0, but was not initially made part of the option object itself.
ACTIONS = ('store', 'store_const', 'store_true', 'store_false’, 'append’, 'append_const', ‘count’, ‘callback’, ‘help’,
‘version’)
ALWAYS_TYPED_ACTIONS = ('store', ‘append’)
ATTRS = ['action’, 'type', 'dest’, 'default’, 'nargs’, ‘const’, 'choices', 'callback’, 'callback_args', 'callback_kwargs',
'help’, 'metavar’, 'settable’]
CHECK_METHODS = [<function Option._check_action>, <function Option._check_type>, <function
Option._check_choice>, <function Option._check_dest>, <function Option._check_const>, <function
Option._check_nargs>, <function Option._check_callback>, <function SConsOption._check_nargs_optional>]
CONST_ACTIONS = ('store_const', 'append_const', 'store’, ‘append’, ‘callback’)
STORE_ACTIONS = ('store’, 'store_const', 'store_true', 'store_false', '‘append’, 'append_const', ‘count’)
TYPED_ACTIONS = ('store’, 'append’, ‘callback’)
TYPES = ('string’, 'int', 'long’, 'float’, ‘complex’, ‘choice")
TYPE_CHECKER = {'choice": <function check_choice>, 'complex': <function check_builtin>, 'float": <function
check_builtin>, 'int": <function check_builtin>, 'long": <function check_builtin>}
_check_action ()
_check_callback ()
_check_choice ()
_check_const ()
_check_dest ()
_check_nargs ()
_check_nargs_optional () - None
SCons added: deal with optional option-arguments.

159

SCons.Script package

_check_opt_strings (opt s)
_check_type ()
_set_attrs (attrs)
_set_opt_strings (opt s)
check_value (opt, val ue)
convert_value (opt: str,val ue)
SCons override: recognize nargs="?".
get_opt_string ()
process (opt, val ue, val ues, par ser)
Process a value.
Direct copy of optparse version including the comments - we don’t change anything so this could just be dropped.
take_action (acti on, dest, opt, val ue, val ues, par ser)
takes_value ()
cl ass SCons.Script.SConsOptions.SConsOptionGroup (par ser, titl e, descri pti on=None)
Bases: OptionGroup
A subclass for SCons-specific option groups.
The only difference between this and the base class is that we print the group’s help text flush left, underneath their
own title but lined up with the normal “SCons Options”.
_check_conflict (opt i on)
_create_option_list ()
_create_option_mappings ()
_share_option_mappings (par ser)
add_option (Opt i on)

add_option (opt _str, ..., kwarg=val,...) - None
add_options (opti on_li st)
destroy ()

see OptionParser.destroy().
format_description (f or mat t er)
format_help (f ormatter) - str
SCons-specific formatting of an option group’s help text.
The title is dedented so it's flush with the “SCons Options” title we print at the top.
format_option_help (f or mat t er)
get_description ()
get_option (opt _str)
has_option (opt _str)
remove_option (opt _str)
set_conflict_handler (handl er)
set_description (descri pti on)
set title (title)
cl ass SCons.Script.SConsOptions.SConsOptionParser (usage=None, opti on_| i st =None,
option_cl ass=<cl ass ' opt parse. Opti on' >, ver si on=None, conflict_handl er="error',
descri pti on=None, f or mat t er =None, add_hel p_opt i on=Tr ue, pr og=None, epi | og=None)
Bases: OptionParser
_add_help_option ()
_add_version_option ()
_check_conflict (opt i on)
_create_option_list ()
_create_option_mappings ()
_get_all_options ()
_get_args (ar gs)
_init_parsing_state ()
_match_long_opt (opt: string) - string
Determine which long option string ‘opt’ matches, ie. which one it is an unambiguous abbreviation for. Raises
BadOptionError if ‘opt’ doesn’t unambiguously match any long option string.
_populate_option_list (opti on_l i st, add_hel p=True)
_process_args (I ar gs, r ar gs, val ues)

160

SCons.Script package

_process_args(largs : [string],

rargs : [string], values : Values)

Process command-line arguments and populate ‘values’, consuming options and arguments from ‘rargs’. If
‘allow_interspersed_args’ is false, stop at the first non-option argument. If true, accumulate any interspersed
non-option arguments in ‘largs’.

_process_long_opt (r ar gs, val ues) — None
SCons-specific processing of long options.
This is copied directly from the normal Optparse _process_long_opt() method, except that, if configured to do so,
we catch the exception thrown when an unknown option is encountered and just stick it back on the “leftover”
arguments for later (re-)processing. This is because we may see the option definition later, while processing
SConscript files.

_process_short_opts (r ar gs, val ues) - None
SCons-specific processing of short options.
This is copied directly from the normal Optparse _process_short_opts() method, except that, if configured to do so,
we catch the exception thrown when an unknown option is encountered and just stick it back on the “leftover”
arguments for later (re-)processing. This is because we may see the option definition later, while processing
SConscript files.

_share_option_mappings (par ser)

add_local_option (*ar gs, **kw) - SConsOption
Add a local option to the parser.
This is the implementation of AddOption(), to add a project-defined command-line option. Local options are added
to a separate option group, which is created if necessary.
The keyword argument settable is recognized specially (and removed from kw). If true, the option is marked as
modifiable; by default “local” (project-added) options are not eligible for SetOption() calls.
Changed in version NEXT_VERSION: If the option’s settable attribute is true, it is added to the
SConsValues.settable list. settable handling was added in 4.8.0, but was not made an option attribute at the time.

add_option (Opt i on)

add_option (opt _str,...,kwarg=val,...) - None

add_option_group (*ar gs, * *kwar gs)

add_options (option_Ilist)

check values (val ues: Val ues,args: [string])
-> (values : Values, args : [string])
Check that the supplied option values and leftover arguments are valid. Returns the option values and leftover
arguments (possibly adjusted, possibly completely new — whatever you like). Default implementation just returns
the passed-in values; subclasses may override as desired.

destroy ()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and all
objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser is unusable.

disable_interspersed_args ()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don't get confused.

enable_interspersed_args ()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments. This is
the default behavior. See also disable_interspersed_args() and the class documentation description of the attribute
allow_interspersed_args.

error (m6g: str) —» None
SCons-specific handling of option errors.

exit (st at us=0, nsg=None)

expand_prog_name (s)

format_description (f or nat t er)

format_epilog (f or mat t er)

format_help (f or mat t er =None)

format_local_option_help (f or mat t er =None, fi | e=None)
Return the help for the project-level (“local”) SCons options.
Added in version 4.6.0.

format_option_help (f or mat t er =None)

161

SCons.Script package

get_default_values ()

get_description ()

get_option (opt _str)

get_option_group (opt _str)

get_prog_name ()

get_usage ()

get_version ()

has_option (opt _str)

parse_args (ar gs=None, val ues=None)
parse_args(args : [string] = sys.argv[1:],

values : Values = None)

-> (values : Values, args : [string])
Parse the command-line options found in ‘args’ (default: sys.argv[1:]). Any errors result in a call to ‘error()’, which
by default prints the usage message to stderr and calls sys.exit() with an error message. On success returns a pair
(values, args) where ‘values’ is a Values instance (with all your option values) and ‘args’ is the list of arguments left
over after parsing options.

preserve_unknown_options = False

print_help (file: file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default stdout).

print_local_option_help (fi | e=None)
Print help for just local SCons options.
Writes to file (default stdout).
Added in version 4.6.0.

print_usage (file: file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the string
“%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]). Does nothing if
self.usage is empty or not defined.

print_version (fil e: file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(), any
occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if self.version is
empty or undefined.

raise_exception_on_error = False

remove_option (opt _str)

reparse_local_options () -— None
Re-parse the leftover command-line options.
Leftover options are stored in sel f. | args, so that any value overridden on the command line is immediately
available if the user turns around and does a GetOption() right away.
We mimic the processing of the single args in the original OptionParser _process_args(), but here we allow exact
matches for long-opts only (no partial argument names!). Otherwise there could be problems in add_local_option()
below. When called from there, we try to reparse the command-line arguments that haven’t been processed so far
(sel f. | args), but are possibly not added to the options list yet.
So, when we only have a value for - - nyar gunent so far, a command-line argument of - - nyar g=t est would set
it, per the behaviour of _match_long_opt(), which allows for partial matches of the option name, as long as the
common prefix appears to be unique. This would lead to further confusion, because we might want to add another
option - - myar g later on (see issue #2929).

set_conflict_handler (handl er)

set_default (dest , val ue)

set_defaults (* * kwar gs)

set_description (descri pti on)

set_process_default_values (pr ocess)

set_usage (usage)

standard_option_list =]

cl ass SCons.Script.SConsOptions.SConsValues (def aul t s)
Bases: Values
Holder class for uniform access to SCons options.

162

SCons.Script package

A SCons option value can originate three different ways:

1. set onthe command line.
2. setin an SConscript file via SetOption().

3. the default setting (from the the op. add_opti on() calls in the Parser() function.))
The command line always overrides a value set in a SConscript file, which in turn always overrides default settings.

Because we want to support user-specified options in the SConscript file itself, though, we may not know about all of
the options when the command line is first parsed, so we can’t make all the necessary precedence decisions at the
time the option is configured.
The solution implemented in this class is to keep these different sets of settings separate (command line, SConscript
file, and default) and to override the __ getattr () method to check them in turn. This allows the rest of the code to
just fetch values as attributes of an instance of this class, without having to worry about where they came from (the
scheme is similar to a Chai nMap).
Note that not all command line options are settable from SConscript files, and the ones that are must be explicitly
added to the settable list in this class, and optionally validated and coerced in the set_option() method.
__Qetattr__ (attr)
Fetch an options value, respecting priority rules.
This is a little tricky: since we're answering questions about outselves, we have avoid lookups that would send us
into into infinite recursion, thus the __ di ct __ stuff.
_update (di ct, node)
_update_careful (di ct)
Update the option values from an arbitrary dictionary, but only use keys from dict that already have a
corresponding attribute in self. Any keys in dict without a corresponding attribute are silently ignored.
_update_loose (di ct)
Update the option values from an arbitrary dictionary, using all keys from the dictionary regardless of whether they
have a corresponding attribute in self or not.
ensure_value (attr, val ue)
read_file (fi | enanme, node="careful’)
read_module (modnane, node="careful’)
set_option (nane: str,val ue) -~ None
Set an option value from a SetOption() call.
Validation steps for settable options (those defined in SCons itself) are in-line here. Duplicates the logic for the
matching command-line options in Parse() - these need to be kept in sync. Cannot provide validation for options
added via AddOption() since we don’t know about those ahead of time - it is up to the developer to figure that out.

Raises: UserError —the option is not settable.
settable = ['clean’, 'diskcheck’, 'duplicate’, 'experimental’, 'hash_chunksize', 'hash_format', 'help’, ‘implicit_cache’,
'implicit_deps_changed', 'implicit_deps_unchanged’, 'max_drift', 'md5_chunksize', 'no_exec', 'no_progress',
‘num_jobs', 'random’, 'silent’, 'stack_size', 'warn']
SCons.Script.SConsOptions.diskcheck convert (val ue)

SCons.Script.SConscript module

This module defines the Python API provided to SConscript files.
SCons.Script.SConscript.BuildDefaultGlobals ()
Create a dictionary containing all the default globals for SConstruct and SConscript files.
SCons.Script.SConscript.Configure (* ar gs, * * kw)
cl ass SCons.Script.SConscript.DefaultEnvironmentCall (net hod_nane, subst: int = 0)
Bases: object
A class that implements “global function” calls of Environment methods by fetching the specified method from the
DefaultEnvironment’s class. Note that this uses an intermediate proxy class instead of calling the DefaultEnvironment
method directly so that the proxy can override the subst() method and thereby prevent expansion of construction
variables (since from the user’s point of view this was called as a global function, with no associated construction
environment).
cl ass SCons.Script.SConscript.Frame (f s, exports, sconscri pt)
Bases: object

163

SCons.Script package

A frame on the SConstruct/SConscript call stack

SCons.Script.SConscript.Return (*var s, * * kw)

cl

ass SCons.Script.SConscript.SConsEnvironment (pl at f or m=None, t ool s=None, t ool pat h=None,

vari abl es=None, par se_f | ags=None, ** kw)

164

Bases: Base
An Environment subclass that contains all of the methods that are particular to the wrapper SCons interface and
which aren’t (or shouldn’t be) part of the build engine itself.
Note that not all of the methods of this class have corresponding global functions, there are some private methods.
Action (*ar gs, ** kw)
AddMethod (f unct i on, name=None) —» None
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.
AddPostAction (fi | es, acti on)
AddPreAction (fi | es, acti on)
Alias (t ar get , sour ce=[], act i on=None, ** kw)
AlwaysBuild (*t ar get s)
Append (* *kw) — None
Append values to construction variables in an Environment.
The variable is created if it is not already present.
AppendENVPath (nane, newpat h, envnanme: str = 'ENV', sep="', del ete_exi sting: bool = False) -
None
Append path elements to the path name in the envname dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the case
where the env variable is a list instead of a string.
If delete_existing is False, a newpath element already in the path will not be moved to the end (it will be left where
it is).
AppendUnique (del et e_exi sti ng: bool = False, **kw) - None
Append values uniquely to existing construction variables.
Similar to Append(), but the result may not contain duplicates of any values passed for each given key
(construction variable), so an existing list may need to be pruned first, however it may still contain other duplicates.
If delete_existing is true, removes existing values first, so values move to the end; otherwise (the default) values
are skipped if already present.
Builder (* * kw)
CacheDir (pat h, cust om _cl ass=None) - None
Clean (targets,fil es) - None
Mark additional files for cleaning.
files will be removed if any of targets are selected for cleaning - that is, the combination of target selection and -c
clean mode.

Parameters:]]]]
« targets (files or nodes) — targets to associate files with.

« files (files or nodes) — items to remove if targets are selected.
Clone (t ool s=[], t ool pat h=None, vari abl es=None, par se_f | ags=None, ** kw)
Return a copy of a construction Environment.
The copy is like a Python “deep copy”: independent copies are made recursively of each object, except that a
reference is copied when an object is not deep-copyable (like a function). There are no references to any mutable
objects in the original environment.
Unrecognized keyword arguments are taken as construction variable assignments.

Parameters:) .
 tools — list of tools to initialize.

* toolpath — list of paths to search for tools.

» variables — a Variables object to use to populate construction variables from
command-line variables.

» parse_flags — option strings to parse into construction variables.
Added in version 4.8.0: The optional variables parameter was added.

SCons.Script package

Command (t ar get , sour ce, acti on, **kw)
Set up a one-off build command.
Builds target from source using action, which may be be any type that the Builder factory will accept for an action.
Generates an anonymous builder and calls it, to add the details to the build graph. The builder is not named, added
to BUI LDERS, or otherwise saved.
Recognizes the Builder() keywords source_scanner, target_scanner, source_factory and
target _factory. All other arguments from kw are passed on to the builder when it is called.

Configure (*ar gs, ** kw)

Decider (f uncti on)

Default (*t ar get s) — None

Depends (t ar get , dependency)
Explicity specify that target depends on dependency.

Detect (pr ogs)
Return the first available program from one or more possibilities.

Parameters: progs (str or list) — one or more command names to check for

Dictionary (*args: str,as_dict: bool = False)
Return construction variables from an environment.

Parameters: _))))
» args (optional) — construction variable names to select. If omitted, all variables are

selected and returned as a dict.

» as_dict — if true, and args is supplied, return the variables and their values in a dict. If
false (the default), return a single value as a scalar, or multiple values in a list.
Returns: A dictionary of construction variables, or a single value or list of values.

Raises: KeyError —if any of args is not in the construction environment.

Changed in version 4.9.0: Added the as_dict keyword arg to specify always returning a dict.

Dir (nane, *ar gs, **kw)

Dump (*key: str,format: str = 'pretty’) - str
Return string of serialized construction variables.
Produces a “pretty” output of a dictionary of selected construction variables, or all of them. The display format is
selectable. The result is intended for human consumption (e.g, to print), mainly when debugging. Objects that
cannot directly be represented get a placeholder like <function foo at 0x123456> (pretty-print) or
<<non-serializabl e: function>>(JSON).

Parameters:] .) .)
» key — variables to format together with their values. If omitted, format the whole dict of

variables,

» format — specify the format to serialize to. " pr et t y" generates a pretty-printed string,
"j son" a JSON-formatted string.
Raises: ValueError — format is not a recognized serialization format.

Changed in version 4.9.0: key is no longer limited to a single construction variable name. If key is supplied, a
formatted dictionary is generated like the no-arg case - previously a single key displayed just the value.
st ati ¢ EnsurePythonVersion (maj or, mi nor) — None
Exit abnormally if the Python version is not late enough.
static EnsureSConsVersion (major: int,mnor: int,revision: int = 0) - None
Exit abnormally if the SCons version is not late enough.
Entry (name, *ar gs, ** kw)
Environment (* * kw)
Execute (acti on, *ar gs, **kw)
Directly execute an action through an Environment
static Exit(value: int = 0) -~ None
Export (*var s, **kw) - None
File (name, *ar gs, **kw)
FindFile (fil e, dirs)
FindInstalledFiles ()

165

SCons.Script package

returns the list of all targets of the Install and InstallAs Builder.

Findixes (pat hs: Sequence[str],prefix: str,suffix: str) - str | None
Search paths for a path that has prefix and suffix.
Returns on first match.

Parameters: .
» paths — the list of paths or nodes.

 prefix — construction variable for the prefix.

 suffix — construction variable for the suffix.
Returns: The matched path or None

FindSourceFiles (node: str = "") - list
Return a list of all source files.
Flatten (sequence)
GetBuildPath (fi | es)
static GetLaunchDir ()
GetOption (nane)
static GetSConsVersion () - tuple[int, int, int]
Return the current SCons version.
Added in version 4.8.0.
Glob (pat t er n, ondi sk: bool = True, source: bool = False,strings: bool = False, excl ude=None)
Help (t ext , append: bool = False,| ocal only: bool = False) -~ None
Update the help text.
The previous help text has text appended to it, except on the first call. On first call, the values of append and
local_only are considered to determine what is appended to.

Parameters:)
* text — string to add to the help text.

» append — on first call, if true, keep the existing help text (default False).

» local_only — on first call, if true and append is also true, keep only the help text from
AddOption calls.
Changed in version 4.6.0: The keep_local parameter was added.
Changed in version 4.9.0: The keep_local parameter was renamed local_only to match manpage
Ignore (t ar get , dependency)
Ignore a dependency.
Import (*vars)
Literal (st ri ng)
Local (*t ar get s)
MergeFlags (ar gs, uni que: bool = True) - None
Merge flags into construction variables.
Merges the flags from args into this construction environent. If args is not a dict, it is first converted to one with
flags distributed into appropriate construction variables. See ParseFlags().
As a side effect, if unique is true, a new object is created for each modified construction variable by the loop at the
end. This is silently expected by the Override() parse_flags functionality, which does not want to share the list (or
whatever) with the environment being overridden.

Parameters:
» args — flags to merge
* unique — merge flags rather than appending (default: True). When merging, path
variables are retained from the front, other construction variables from the end.
NoCache (*t ar get s)
Tag target(s) so that it will not be cached.
NoClean (*t ar get s) - list
Tag targets to not be removed in clean mode.
Override (overri des)
Create an override environment from the current environment.

166

SCons.Script package

Produces a modified environment where the current variables are overridden by any same-named variables from
the overrides dict.

An override is much more efficient than doing Clone() or creating a new Environment because it doesn’t copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn’t even create
a wrapper object if there are no overrides.

Using this method is preferred over directly instantiating an OverrideEnvirionment because extra checks are
performed, substitution takes place, and there is special handling for a parse_flags keyword argument.

This method is not currently exposed as part of the public API, but is invoked internally when things like builder
calls have keyword arguments, which are then passed as overrides here. Some tools also call this explicitly.

Returns: A proxy environment of type OverrideEnvironment. or the current environment if overrides is
empty.
ParseConfig (command, f unct i on=None, uni que: bool = True)

Parse the result of running a command to update construction vars.
Use f unct i on to parse the output of running comand in order to modify the current environment.

Parameters: _))) _
 command — a string or a list of strings representing a command and its arguments.

» function — called to process the result of command, which will be passed as ar gs. If
function is omitted or None, MergeFlags() is used. Takes 3 args
(env, args, unique)

* unique — whether no duplicate values are allowed (default true)

ParseDepends (f i | enanme, nust _exi st =None, onl y_one: bool = False)
Parse a mkdep-style file for explicit dependencies. This is completely abusable, and should be unnecessary in the
“normal” case of proper SCons configuration, but it may help make the transition from a Make hierarchy easier for
some people to swallow. It can also be genuinely useful when using a tool that can write a .d file, but for which
writing a scanner would be too complicated.

ParseFlags (*f | ags) - dict
Return a dict of parsed flags.
Parse f | ags and return a dict with the flags distributed into the appropriate construction variable names. The flags
are treated as a typical set of command-line flags for a GNU-style toolchain, such as might have been generated
by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in this method -
the choices are not expected to be portable to other toolchains.
If one of the f | ags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest of
the string is executed; the result of that evaluation is then added to the dict.

Platform (pl at f orm

Precious (*t ar get s)
Mark targets as precious: do not delete before building.

Prepend (* * kw) - None
Prepend values to construction variables in an Environment.
The variable is created if it is not already present.

PrependENVPath (name, newpat h, envnane: str = 'ENV', sep="', del ete_exi sting: bool = True) -

None
Prepend path elements to the path name in the envname dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the case
where the env variable is a list instead of a string.
If delete_existing is False, a newpath component already in the path will not be moved to the front (it will be left
where it is).

PrependUnique (del et e_exi sting: bool = False, **kw) —» None
Prepend values uniquely to existing construction variables.
Similar to Prepend(), but the result may not contain duplicates of any values passed for each given key
(construction variable), so an existing list may need to be pruned first, however it may still contain other duplicates.
If delete_existing is true, removes existing values first, so values move to the front; otherwise (the default) values
are skipped if already present.

Pseudo (*t ar get s)
Mark targets as pseudo: must not exist.

167

SCons.Script package

PyPackageDir (nodul enane)
RemoveMethod (f unct i on) — None
Removes the specified function’s MethodWrapper from the added_methods list, so we don’t re-bind it when
making a clone.
Replace (* * kw) - None
Replace existing construction variables in an Environment with new construction variables and/or values.
Replacelxes (pat h, ol d_prefix, ol d_suffix, new_prefix, new_suffix)
Replace old_prefix with new_prefix and old_suffix with new_suffix.
env - Environment used to interpolate variables. path - the path that will be modified. old_prefix - construction
variable for the old prefix. old_suffix - construction variable for the old suffix. new_prefix - construction variable for
the new prefix. new_suffix - construction variable for the new suffix.
Repository (*di r s, **kw) — None
Specify Repository directories to search.
Requires (t ar get , prerequi site)
Specify that prerequisite must be built before target.
Creates an order-only relationship, not a full dependency. prerequisite must exist before target can be built, but a
change to prerequisite does not trigger a rebuild of target.
SConscript (*I s, **kw)
Execute SCons configuration files.

Parameters: *Is (str or list) — configuration file(s) to execute.

Keyword o . _ _
Arguments: « dirs (list) — execute SConscript in each listed directory.

* name (str) — execute script ‘name’ (used only with ‘dirs’).
» exports (list or dict) — locally export variables the called script(s) can import.

 variant_dir (str) — mirror sources needed for the build in a variant directory to allow
building in it.

» duplicate (bool) — physically duplicate sources instead of just adjusting paths of
derived files (used only with ‘variant_dir’) (default is True).

» must_exist (bool) — fail if a requested script is missing (default is False, default is
deprecated).
Returns: list of variables returned by the called script
Raises: UserError — a script is not found and such exceptions are enabled.

static SConscriptChdir (f| ag: bool) - None
SConsignFile (hane=".sconsign’, dbm nodul e=None) - None
Scanner (*ar gs, **kw)
SetDefault (* * kw) - None
SetOption (nane, val ue) - None
SideEffect (si de_ef fect, tar get)

Tell scons that side_effects are built as side effects of building targets.
Split (ar g)

This function converts a string or list into a list of strings or Nodes. This makes things easier for users by allowing

files to be specified as a white-space separated list to be split.

The input rules are:

A single string containing names separated by spaces. These will be split apart at the spaces.
» A single Node instance

+ Alist containing either strings or Node instances. Any strings in the list are not split at spaces.
In all cases, the function returns a list of Nodes and strings.

Tool (tool : str | Callable,tool path: Collection[str] | None = None, **kwargs) - Callable

168

Find and run tool module tool.

SCons.Script package

tool is generally a string, but can also be a callable object, in which case it is just called, without any of the setup.
The skipped setup includes storing kwargs into the created Tool instance, which is extracted and used when the
instance is called, so in the skip case, the called object will not get the kwargs.
Changed in version 4.2: returns the tool object rather than None.
Value (val ue, bui I t _val ue=None, nane=None)
Return a Value (Python expression) node.
Changed in version 4.0: the name parameter was added.
VariantDir (vari ant _dir,src_dir,duplicate: int = 1) - None
Wherels (pr og, pat h=None, pat hext =None, r ej ect =None)
Find prog in the path.
__eq__ (ot her)
Compare two environments.
This is used by checks in Builder to determine if duplicate targets have environments that would cause the same
result. The more reliable way (respecting the admonition to avoid poking at _dict directly) would be to use
Di ctionary so this is sure to work even if one or both are are instances of OverrideEnvironment. However an
actual Substi tuti onEnvi ronment doesn’t have a Di cti onary method That causes problems for unit tests
written to excercise Subsi t uti onEnvi ronment directly, although nobody else seems to ever instantiate one.
We count on OverrideEnvironment to fake the _dict to make things work.
__Qgetattr__ (nane)
Handle missing attribute in an environment.
Assume this is a builder that's not instantiated, becasue that has been a common failure mode. Could also be a
typo. Emit a message about this to try to help. We can’t get too clever, other parts of SCons depend on seeing the
AttributeError that triggers this call, so all we do is produce our own message.
Added in version 4.10.0.
_canonicalize (pat h)
Allow Dirs and strings beginning with # for top-relative.
Note this uses the current env’s fs (in self).
_changed_build (dependency, t ar get, prev_ni,repo_node=None) - bool
_changed_content (dependency, t ar get, prev_ni ,repo_node=None) - bool
_changed_timestamp_match (dependency, t ar get, prev_ni ,repo_node=None) - bool
_changed_timestamp_newer (dependency, t ar get, prev_ni ,repo_node=None) - bool
_changed_timestamp_then_content (dependency, t ar get, prev_ni, repo_node=None) - bool
_find_toolpath_dir (t p)
_get_SConscript_filenames (I s, kw)
Convert the parameters passed to SConscript() calls into a list of files and export variables. If the parameters are
invalid, throws SCons.Errors.UserError. Returns a tuple (I, €) where | is a list of SConscript filenames and e is a list
of exports.
static _get_major_minor_revision (ver si on_string: str) - tuple[int, int, int]
Split a version string into major, minor and (optionally) revision parts.
This is complicated by the fact that a version string can be something like 3.2b1.
_gsm ()
_init_special () - None
Initial the dispatch tables for special handling of special construction variables.
_update (ot her) — None
Private method to update an environment’s consvar dict directly.
Bypasses the normal checks that occur when users try to set items.
_update_onlynew (ot her) — None
Private method to add new items to an environment’s consvar dict.
Only adds items from other whose keys do not already appear in the existing dict; values from other are not used
for replacement. Bypasses the normal checks that occur when users try to set items.
arg2nodes (ar gs, node_f act ory=<cl ass ' SCons. Envi ronnment. _Nul | ' >, | ookup_l i st =<cl ass
' SCons. Envi ronment . _Nul | ' >, **kw)
Converts args to a list of nodes.

169

SCons.Script package

Parameters:] .)))
* just (args - filename strings or nodes to convert; nodes are) — added to the list without

further processing.

» not (node_factory - optional factory to create the nodes; if) — specified, will use this
environment’s f s. Fi | e method.

» to (lookup_list - optional list of lookup functions to call) — attempt to find the file
referenced by each args.

» add. (kw - keyword arguments that represent additional nodes to)
backtick (command) — str
Emulate command substitution.
Provides behavior conceptually like POSIX Shell notation for running a command in backquotes (backticks) by
running conmand and returning the resulting output string.
This is not really a public API any longer, it is provided for the use of ParseFlags() (which supports it using a syntax
of lcommand) and ParseConfig().

Raises: OSError — if the external command returned non-zero exit status.

get (key, def aul t =None)
Emulates the get() method of dictionaries.
get_CacheDir ()
get_builder (nane)
Fetch the builder with the specified name from the environment.
get _factory (factory,default: str = 'File’)
Return a factory function for creating Nodes for this construction environment.
get_scanner (skey)
Find the appropriate scanner given a key (usually a file suffix).
gvars ()
items ()
Emulates the items() method of dictionaries.
keys ()
Emulates the keys() method of dictionaries.
Ivars ()
scanner_map_delete (kw=None) - None
Delete the cached scanner map (if we need to).
setdefault (key, def aul t =None)
Emulates the setdefault() method of dictionaries.
subst (string,raw. int = 0,target=None, sour ce=None, conv=None, execut or: Executor | None =
None, overri des: dict | None = None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.
subst_kw (kw, raw. int = 0,target =None, sour ce=None)
subst_list (string,raw. int = 0,target=None, sour ce=None, conv=None, execut or: Executor | None
= None,overrides: dict | None = None)
Calls through to SCons.Subst.scons_subst_list().
See the documentation for that function.
subst_path (pat h, t ar get =None, sour ce=None)
Substitute a path list.
Turns EntryProxies into Nodes, leaving Nodes (and other objects) as-is.
subst_target_source (string,raw. int = 0,target=None, sour ce=None, conv=None, execut or:
Executor | None = None,overrides: dict | None = None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.

170

SCons.Taskmaster package

validate_CacheDir_class (cust om cl ass=None)

Validate the passed custom CacheDir class, or if no args are passed, validate the custom CacheDir class from the

environment.

values ()

Emulates the values() method of dictionaries.
excepti on SCons.Script.SConscript.SConscriptReturn

Bases: Exception
add_note ()

Exception.add_note(note) — add a note to the exception

args
with_traceback ()

Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
SCons.Script.SConscript.SConscript_exception (fi | e=<_i 0. Text | ON apper nane='<stderr>' node="'w
encodi ng="utf-8"'>) - None

Print an exception stack trace just for the SConscript file(s). This will show users who have Python errors where the
problem is, without cluttering the output with all of the internal calls leading up to where we exec the SConscript.
SCons.Script.SConscript._SConscript (f s, *fi | es, **kw)
SCons.Script.SConscript.annotate (node)
Annotate a node with the stack frame describing the SConscript file and line number that created it.
SCons.Script.SConscript.compute_exports (export s)
Compute a dictionary of exports given one of the parameters to the Export() function or the exports argument to
SConscript().
SCons.Script.SConscript.get_DefaultEnvironmentProxy ()
SCons.Script.SConscript.get_calling_namespaces ()
Return the locals and globals for the function that called into this module in the current call stack.
SCons.Script.SConscript.handle_missing_SConscript (f : str, nust _exi st: bool = True) - None
Take appropriate action on missing file in SConscript() call.
Print a warning or raise an exception on missing file, unless missing is explicitly allowed by the must_exist parameter
or by a global flag.

Parameters: o] o
 f — path to missing configuration file

« must_exist — if true (the default), fail. If false do nothing, allowing a build to declare it's
okay to be missing.
Raises: UserError —if must_exist is true or if global SCons.Script._no_missing_sconscript is true.

SCons.Taskmaster package

Module contents

Generic Taskmaster module for the SCons build engine.

This module contains the primary interface(s) between a wrapping user interface and the SCons build engine. There
are two key classes here:

Taskmaster

This is the main engine for walking the dependency graph and calling things to decide what does or doesn’t need
to be built.

Task
This is the base class for allowing a wrapping interface to decide what does or doesn’t actually need to be done.
The intention is for a wrapping interface to subclass this as appropriate for different types of behavior it may need.

The canonical example is the SCons native Python interface, which has Task subclasses that handle its specific
behavior, like printing “foo’ is up to date” when a top-level target doesn’t need to be built, and handling the -c
option by removing targets as its “build” action. There is also a separate subclass for suppressing this output when
the -gq option is used.

171

SCons.Taskmaster package

The Taskmaster instantiates a Task object for each (set of) target(s) that it decides need to be evaluated and/or
built.
cl ass SCons.Taskmaster.AlwaysTask (t m t ar get s, t op, node)

Bases: Task

LOGGER = None

_abc_impl = <_abc._abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_Nho_exception_to_raise () - None

display (message) — None
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear () - None
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (except i on=None) - None
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed () - None
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_with_callbacks () — None
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks () - None
Called when the task has been successfully executed and the Taskmaster instance doesn’'t want to call the Node’s
callback methods.

fail_continue () -— None
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop () - None
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed () — None
Default action when a task fails: stop the build.

172

SCons.Taskmaster package

Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().
get_target ()
Fetch the target being built or updated by this task.
make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.
make_ready_all () - None
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.
make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.
needs_execute () - bool
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute
postprocess () - None
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.
prepare () - None
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (node, descri ption: str = 'node’) - None
cl ass SCons.Taskmaster.OutOfDateTask (t m t ar get s, t op, node)
Bases: Task

LOGGER = None
_abc_impl = <_abc._abc_data object>
_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.
__Nno_exception_to_raise () - None
display (message) — None
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.
exc_clear () - None
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.
exc_info ()
Returns info about a recorded exception.
exception_set (except i on=None) - None
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact
execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

173

SCons.Taskmaster package

executed () - None
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_with_callbacks () - None
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks () - None
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue () - None
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop () - None
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed () - None
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

make_ready_all () - None
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute ()
Returns True (indicating this Task should be executed) if this Task’s target state indicates it needs executing,
which has already been determined by an earlier up-to-date check.

postprocess () - None
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare () - None
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (node, descri ption: str = 'node’) - None

174

SCons.Taskmaster package

cl ass SCons.Taskmaster.Stats

Bases: object

A simple class for holding statistics about the disposition of a Node by the Taskmaster. If we're collecting statistics,
each Node processed by the Taskmaster gets one of these attached, in which case the Taskmaster records its
decision each time it processes the Node. (Ideally, that’s just once per Node.)

cl ass SCons.Taskmaster.Task (t mt argets, t op, node)

Bases: ABC

SCons build engine abstract task class.

This controls the interaction of the actual building of node and the rest of the engine.

This is expected to handle all of the normally-customizable aspects of controlling a build, so any given application
should be able to do what it wants by sub-classing this class and overriding methods as appropriate. If an application

needs to customize something by sub-classing Taskmaster (or some other build engine class), we should first try to
migrate that functionality into this class.

Note that it's generally a good idea for sub-classes to call these methods explicitly to update state, etc., rather than
roll their own interaction with Taskmaster from scratch.

LOGGER = None

_abc_impl = <_abc._abc_data object>
_exception_raise ()

Raises a pending exception that was recorded while getting a Task ready for execution.

_ho_exception_to_raise () - None
display (message) — None

Hook to allow the calling interface to display a message.

This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear () - None

Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()

Returns info about a recorded exception.

exception_set (except i on=None) - None

Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()

Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed () - None

Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.

This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_with_callbacks () - None

Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.

This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks () - None

Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue () - None

175

SCons.Taskmaster package

Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop () - None
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed () - None
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

make_ready_all () - None
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

abstract met hod needs_execute ()

postprocess () - None
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare () - None
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (node, descri ption: str = 'node’) - None

cl ass SCons.Taskmaster.Taskmaster (t ar get s=[], t asker =None, or der =None, t r ace=None)

Bases: object

The Taskmaster for walking the dependency DAG.

_find_next_ready_node ()
Finds the next node that is ready to be built.
This is the main guts of the DAG walk. We loop through the list of candidates, looking for something that has no
un-built children (i.e., that is a leaf Node or has dependencies that are all leaf Nodes or up-to-date). Candidate
Nodes are re-scanned (both the target Node itself and its sources, which are always scanned in the context of a
given target) to discover implicit dependencies. A Node that must wait for some children to be built will be put back
on the candidates list after the children have finished building. A Node that has been put back on the candidates
list in this way may have itself (or its sources) re-scanned, in order to handle generated header files (e.g.) and the
implicit dependencies therein.
Note that this method does not do any signature calculation or up-to-date check itself. All of that is handled by the
Task class. This is purely concerned with the dependency graph walk.

_validate_pending_children () - None
Validate the content of the pending_children set. Assert if an internal error is found.
This function is used strictly for debugging the taskmaster by checking that no invariants are violated. It is not used
in normal operation.
The pending_children set is used to detect cycles in the dependency graph. We call a “pending child” a child that is
found in the “pending” state when checking the dependencies of its parent node.

176

SCons.Taskmaster package

A pending child can occur when the Taskmaster completes a loop through a cycle. For example, let's imagine a
graph made of three nodes (A, B and C) making a cycle. The evaluation starts at node A. The Taskmaster first
considers whether node A’s child B is up-to-date. Then, recursively, node B needs to check whether node C is
up-to-date. This leaves us with a dependency graph looking like:

Next candi date

Now, when the Taskmaster examines the Node C’s child Node A, it finds that Node A is in the “pending” state.
Therefore, Node A is a pending child of node C.

Pending children indicate that the Taskmaster has potentially loop back through a cycle. We say potentially
because it could also occur when a DAG is evaluated in parallel. For example, consider the following graph:

Node A (Pending) --> Node B(Pending) --> Node C (Pending) --> ...
N

e > Node D (NoState) -------- i
/
Next candi date /

The Taskmaster first evaluates the nodes A, B, and C and starts building some children of node C. Assuming, that
the maximum parallel level has not been reached, the Taskmaster will examine Node D. It will find that Node C is a
pending child of Node D.
In summary, evaluating a graph with a cycle will always involve a pending child at one point. A pending child might
indicate either a cycle or a diamond-shaped DAG. Only a fraction of the nodes ends-up being a “pending child” of
another node. This keeps the pending_children set small in practice.
We can differentiate between the two cases if we wait until the end of the build. At this point, all the pending
children nodes due to a diamond-shaped DAG will have been properly built (or will have failed to build). But, the
pending children involved in a cycle will still be in the pending state.
The taskmaster removes nodes from the pending_children set as soon as a pending_children node moves out of
the pending state. This also helps to keep the pending_children set small.

cleanup ()
Check for dependency cycles.

configure_trace (t r ace=None) —» None
This handles the command line option —taskmastertrace= It can be: - : output to stdout <filename> : output to a file
False/None : Do not trace

find_next_candidate ()
Returns the next candidate Node for (potential) evaluation.
The candidate list (really a stack) initially consists of all of the top-level (command line) targets provided when the
Taskmaster was initialized. While we walk the DAG, visiting Nodes, all the children that haven't finished processing
get pushed on to the candidate list. Each child can then be popped and examined in turn for whether their children
are all up-to-date, in which case a Task will be created for their actual evaluation and potential building.
Here is where we also allow candidate Nodes to alter the list of Nodes that should be examined. This is used, for
example, when invoking SCons in a source directory. A source directory Node can return its corresponding build
directory Node, essentially saying, “Hey, you really need to build this thing over here instead.”

next_task ()
Returns the next task to be executed.
This simply asks for the next Node to be evaluated, and then wraps it in the specific Task subclass with which we
were initialized.

no_next_candidate ()
Stops Taskmaster processing by not returning a next candidate.
Note that we have to clean-up the Taskmaster candidate list because the cycle detection depends on the fact all
nodes have been processed somehow.

177

SCons.Taskmaster package

stop () - None
Stops the current build completely.
tm_trace_node (node) - str
will_not_build (nodes, node_f unc=<functi on Taskmast er. <l anbda>>) - None
Perform clean-up about nodes that will never be built. Invokes a user defined function on all of these nodes
(including all of their parents).
SCons.Taskmaster.dump_stats () - None
SCons.Taskmaster.find_cycle (st ack, vi si t ed)

Submodules

SCons.Taskmaster.Job module
Serial and Parallel classes to execute build tasks.

The Jobs class provides a higher level interface to start, stop, and wait on jobs.
cl ass SCons.Taskmaster.Job.InterruptState
Bases: object
set () - None
cl ass SCons.Taskmaster.Job.Jobs (num t asknast er)
Bases: object
An instance of this class initializes N jobs, and provides methods for starting, stopping, and waiting on all N jobs.
_reset_sig_handler () - None
Restore the signal handlers to their previous state (before the call to _setup_sig_handler().
_setup_sig_handler () - None
Setup an interrupt handler so that SCons can shutdown cleanly in various conditions:

a. SIGINT: Keyboard interrupt
b. SIGTERM: kill or system shutdown

c. SIGHUP: Controlling shell exiting) .)
We handle all of these cases by stopping the taskmaster. It turns out that it's very difficult to stop the build process

by throwing asynchronously an exception such as KeyboardInterrupt. For example, the python Condition variables
(threading.Condition) and queues do not seem to be asynchronous-exception-safe. It would require adding a
whole bunch of try/finally block and except Keyboardinterrupt all over the place.
Note also that we have to be careful to handle the case when SCons forks before executing another process. In
that case, we want the child to exit immediately.

run (post f unc=<f uncti on Jobs. <l anbda>>) - None
Run the jobs.
postfunc() will be invoked after the jobs has run. It will be invoked even if the jobs are interrupted by a keyboard
interrupt (well, in fact by a signal such as either SIGINT, SIGTERM or SIGHUP). The execution of postfunc() is
protected against keyboard interrupts and is guaranteed to run to completion.

were_interrupted ()
Returns whether the jobs were interrupted by a signal.

cl ass SCons.Taskmaster.Job.LegacyParallel (t asknast er, num st ack_si ze)

Bases: object

This class is used to execute tasks in parallel, and is somewhat less efficient than Serial, but is appropriate for

parallel builds.

This class is thread safe.

start ()
Start the job. This will begin pulling tasks from the taskmaster and executing them, and return when there are no

more tasks. If a task fails to execute (i.e. execute() raises an exception), then the job will stop.
cl ass SCons.Taskmaster.Job.NewParallel (t asknast er, num st ack_si ze)
Bases: object
cl ass FakeCondition (I ock)
Bases: object

notify ()

178

SCons.Taskmaster package

notify_all ()

wait ()

cl ass FakelLock

Bases: object
lock ()
unlock ()

cl ass State (val ue)

Bases: Enum
COMPLETED = 3

READY = 0
SEARCHING =1
STALLED = 2

cl assnmet hod __contains__ (menber)
Return True if member is a member of this enum raises TypeError if member is not an enum member
note: in 3.12 TypeError will no longer be raised, and True will also be returned if member is the value of a
member in this enum
cl assnmet hod __getitem__ (nane)
Return the member matching name.
cl assmet hod __iter__ ()
Return members in definition order.
classmet hod __len__ ()
Return the number of members (no aliases)

cl ass Worker (owner)

179

Bases: Thread
_bootstrap ()
_bootstrap_inner ()
_delete ()
Remove current thread from the dict of currently running threads.
_initialized = False
_reset_internal_locks (i s_al i ve)
_set_ident ()
_set_native_id ()
_set_tstate_lock ()
Set a lock object which will be released by the interpreter when the underlying thread state (see pystate.h) gets
deleted.
_stop ()
_wait_for_tstate lock (bl ock=True, ti meout =-1)
property daemon
A boolean value indicating whether this thread is a daemon thread.
This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from the
creating thread; the main thread is not a daemon thread and therefore all threads created in the main thread
default to daemon = False.
The entire Python program exits when only daemon threads are left.
getName ()
Return a string used for identification purposes only.
This method is deprecated, use the name attribute instead.
property ident
Thread identifier of this thread or None if it has not been started.
This is a nonzero integer. See the get_ident() function. Thread identifiers may be recycled when a thread exits
and another thread is created. The identifier is available even after the thread has exited.
isDaemon ()
Return whether this thread is a daemon.
This method is deprecated, use the daemon attribute instead.
is_alive ()
Return whether the thread is alive.

SCons.Taskmaster package

This method returns True just before the run() method starts until just after the run() method terminates. See also
the module function enumerate().
join (t i meout =None)
Wait until the thread terminates.
This blocks the calling thread until the thread whose join() method is called terminates — either normally or
through an unhandled exception or until the optional timeout occurs.
When the timeout argument is present and not None, it should be a floating point number specifying a timeout for
the operation in seconds (or fractions thereof). As join() always returns None, you must call is_alive() after join()
to decide whether a timeout happened — if the thread is still alive, the join() call timed out.
When the timeout argument is not present or None, the operation will block until the thread terminates.
A thread can be join()ed many times.
join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock. It is
also an error to join() a thread before it has been started and attempts to do so raises the same exception.
property name
A string used for identification purposes only.
It has no semantics. Multiple threads may be given the same name. The initial name is set by the constructor.
property native_id
Native integral thread ID of this thread, or None if it has not been started.
This is a non-negative integer. See the get_native_id() function. This represents the Thread ID as reported by
the kernel.
run () - None
Method representing the thread’s activity.
You may override this method in a subclass. The standard run() method invokes the callable object passed to
the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from the
args and kwargs arguments, respectively.
setDaemon (daenoni c)
Set whether this thread is a daemon.
This method is deprecated, use the .daemon property instead.
setName (nane)
Set the name string for this thread.
This method is deprecated, use the name attribute instead.
start ()
Start the thread'’s activity.
It must be called at most once per thread object. It arranges for the object’'s run() method to be invoked in a
separate thread of control.
This method will raise a RuntimeError if called more than once on the same thread object.
_adjust_stack_size ()
_maybe_start_worker () - None
_restore_stack_size (prev_si ze) -~ None
_setup_logging ()
_start_worker () - None
_work ()
start () - None
trace_message (message) — None
cl ass SCons.Taskmaster.Job.Serial (t askmast er)
Bases: object
This class is used to execute tasks in series, and is more efficient than Parallel, but is only appropriate for
non-parallel builds. Only one instance of this class should be in existence at a time.
This class is not thread safe.
start ()
Start the job. This will begin pulling tasks from the taskmaster and executing them, and return when there are no
more tasks. If a task fails to execute (i.e. execute() raises an exception), then the job will stop.
cl ass SCons.Taskmaster.Job.ThreadPool (num st ack_si ze, i nt er r upt ed)
Bases: object
This class is responsible for spawning and managing worker threads.
cleanup () - None

180

SCons.Taskmaster package

Shuts down the thread pool, giving each worker thread a chance to shut down gracefully.
get ()
Remove and return a result tuple from the results queue.
preparation_failed (t ask) -~ None
put (t ask) - None
Put task into request queue.
cl ass SCons.Taskmaster.Job.Worker (r equest Queue, r esul t sQueue, i nt err upt ed)
Bases: Thread
A worker thread waits on a task to be posted to its request queue, dequeues the task, executes it, and posts a tuple
including the task and a boolean indicating whether the task executed successfully.
_bootstrap ()
_bootstrap_inner ()
_delete ()
Remove current thread from the dict of currently running threads.
_initialized = False
_reset_internal_locks (i s_al i ve)
_set_ident ()
_set_native_id ()
_set_tstate lock ()
Set a lock object which will be released by the interpreter when the underlying thread state (see pystate.h) gets
deleted.
_stop ()
_wait_for_tstate lock (bl ock=True, ti meout =-1)
property daemon
A boolean value indicating whether this thread is a daemon thread.
This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from the
creating thread; the main thread is not a daemon thread and therefore all threads created in the main thread
default to daemon = False.
The entire Python program exits when only daemon threads are left.
getName ()
Return a string used for identification purposes only.
This method is deprecated, use the name attribute instead.
property ident
Thread identifier of this thread or None if it has not been started.
This is a nonzero integer. See the get_ident() function. Thread identifiers may be recycled when a thread exits and
another thread is created. The identifier is available even after the thread has exited.
isDaemon ()
Return whether this thread is a daemon.
This method is deprecated, use the daemon attribute instead.
is_alive ()
Return whether the thread is alive.
This method returns True just before the run() method starts until just after the run() method terminates. See also
the module function enumerate().
join (t i meout =None)
Wait until the thread terminates.
This blocks the calling thread until the thread whose join() method is called terminates — either normally or through
an unhandled exception or until the optional timeout occurs.
When the timeout argument is present and not None, it should be a floating point number specifying a timeout for
the operation in seconds (or fractions thereof). As join() always returns None, you must call is_alive() after join() to
decide whether a timeout happened — if the thread is still alive, the join() call timed out.
When the timeout argument is not present or None, the operation will block until the thread terminates.
A thread can be join()ed many times.
join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock. It is
also an error to join() a thread before it has been started and attempts to do so raises the same exception.
property name
A string used for identification purposes only.

181

SCons.Tool package

It has no semantics. Multiple threads may be given the same name. The initial name is set by the constructor.
property native_id
Native integral thread ID of this thread, or None if it has not been started.
This is a non-negative integer. See the get_native_id() function. This represents the Thread ID as reported by the
kernel.
run ()
Method representing the thread’s activity.
You may override this method in a subclass. The standard run() method invokes the callable object passed to the
object’s constructor as the target argument, if any, with sequential and keyword arguments taken from the args and
kwargs arguments, respectively.
setDaemon (daenoni c)
Set whether this thread is a daemon.
This method is deprecated, use the .daemon property instead.
setName (namne)
Set the name string for this thread.
This method is deprecated, use the name attribute instead.
start ()
Start the thread’s activity.
It must be called at most once per thread object. It arranges for the object’s run() method to be invoked in a
separate thread of control.
This method will raise a RuntimeError if called more than once on the same thread object.

SCons.Tool package

Module contents
SCons tool selection.

Looks for modules that define a callable object that can modify a construction environment as appropriate for a given
tool (or tool chain).

Note that because this subsystem just selects a callable that can modify a construction environment, it's possible for
people to define their own “tool specification” in an arbitrary callable function. No one needs to use or tie in to this
subsystem in order to roll their own tool specifications.
SCons.Tool.CreateJarBuilder (env)
The Jar builder expects a list of class files which it can package into a jar file.
The jar tool provides an interface for passing other types of java files such as .java, directories or swig interfaces and
will build them to class files in which it can package into the jar.
SCons.Tool.CreateJavaClassDirBuilder (env)
SCons.Tool.CreateJavaClassFileBuilder (env)
SCons.Tool.CreateJavaFileBuilder (env)
SCons.Tool.CreateJavaHBuilder (env)
SCons.Tool.FindAllTools (t ool s, env)
SCons.Tool.FindTool (t ool s, env)
SCons.Tool.Initializers (env) — None
cl ass SCons.Tool.Tool (nane, t ool pat h=None, ** kwar gs)
Bases: object
_tool_module ()
Try to load a tool module.
This will hunt in the toolpath for both a Python file (toolname.py) and a Python module (toolname directory), then
try the regular import machinery, then fallback to try a zipfile.
cl ass SCons.Tool.Toollnitializer (env, t ool s, nanes)
Bases: object
A class for delayed initialization of Tools modules.
Instances of this class associate a list of Tool modules with a list of Builder method names that will be added by those
Tool modules. As part of instantiating this object for a particular construction environment, we also add the

182

SCons.Tool package

appropriate ToollnitializerMethod objects for the various Builder methods that we want to use to delay Tool searches
until necessary.
apply_tools (env) — None
Searches the list of associated Tool modules for one that exists, and applies that to the construction environment.
remove_methods (env) — None
Removes the methods that were added by the tool initialization so we no longer copy and re-bind them when the
construction environment gets cloned.
cl ass SCons.Tool.ToollnitializerMethod (name, i niti al i zer)
Bases: object
This is added to a construction environment in place of a method(s) normally called for a Builder (env.Object,
env.StaticObject, etc.). When called, it has its associated Toollnitializer object search the specified list of tools and
apply the first one that exists to the construction environment. It then calls whatever builder was (presumably) added
to the construction environment in place of this particular instance.
__call__ (env, *args, **kw)
get_builder (env)
Returns the appropriate real Builder for this method name after having the associated Toollnitializer object apply
the appropriate Tool module.
SCons.Tool.createCFileBuilders (env)
This is a utility function that creates the CFile/CXXFile Builders in an Environment if they are not there already.
If they are there already, we return the existing ones.
This is a separate function because soooo many Tools use this functionality.
The return is a 2-tuple of (CFile, CXXFile)
SCons.Tool.createLoadableModuleBuilder (env, | oadabl e_nodul e_suffix: str = '$ LDMODULESUFFIX")
This is a utility function that creates the LoadableModule Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

Parameters: loadable_module_suffix — The suffix specified for the loadable module builder

SCons.Tool.createObjBuilders (env)
This is a utility function that creates the StaticObject and SharedObject Builders in an Environment if they are not
there already.
If they are there already, we return the existing ones.
This is a separate function because soooo many Tools use this functionality.
The return is a 2-tuple of (StaticObject, SharedObject)
SCons.Tool.createProgBuilder (env)
This is a utility function that creates the Program Builder in an Environment if it is not there already.
If it is already there, we return the existing one.
SCons.Tool.createSharedLibBuilder (env, shl i b_suffix: str = '$ SHLIBSUFFIX")
This is a utility function that creates the SharedLibrary Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

Parameters: shlib_suffix — The suffix specified for the shared library builder

SCons.Tool.createStaticLibBuilder (env)

This is a utility function that creates the StaticLibrary Builder in an Environment if it is not there already.

If it is already there, we return the existing one.
SCons.Tool.find_program_path (env, key _pr ogr am def aul t _pat hs=None, add_pat h: bool = False) - str |
None

Find the location of a tool using various means.

Mainly for windows where tools aren’t all installed in /usr/bin, etc.

Parameters: . .
 env — Current Construction Environment.

e key_program — Tool to locate.
« default_paths — List of additional paths this tool might be found in.

e add_path — If true, add path found if it was from default_paths.
SCons.Tool.tool_list (pl at f or m env)

183

SCons.Util package

SCons.Util package

Module contents
SCons utility functions

This package contains routines for use by other parts of SCons. Candidates for inclusion here are routines that do not
need other parts of SCons (other than Util), and have a reasonable chance of being useful in multiple places, rather
then being topical only to one module/package.
cl ass SCons.Util.CLVar (i ni t|i st =None)
Bases: UserList
A container for command-line construction variables.
Forces the use of a list of strings intended as command-line arguments. Like collections.UserList, but the argument
passed to the initializter will be processed by the Split() function, which includes special handling for string types: they
will be split into a list of words, not coereced directly to a list. The same happens if a string is added to a CLVar,
which allows doing the right thing with both Append()/Prepend() methods, as well as with pure Python addition,
regardless of whether adding a list or a string to a construction variable.
Side effect: spaces will be stripped from individual string arguments. If you need spaces preserved, pass strings
containing spaces inside a list argument.

>>> u = UserList("--sone --opts and args")

>>> print(len(u), repr(u))
22[|_|1l_lalslalolalmalelall!l_lal_lalolalplaltlalslallalalalnlaldla
>>> ¢ = CLVar("--sonme --opts and args")

>>> print(len(c), repr(c))

4 ['--sone', '--opts', 'and', 'args']

>>> ¢ += " strips spaces "

>>> print(len(c), repr(c))

6 ['--sonme', '--opts', 'and', 'args', 'strips', 'spaces']

>>> ¢ += [" does not split or strip "]

7' --sonme', '--opts', 'and', 'args', 'strips', 'spaces', ' does not split or strip

_abc_impl = <_abc._abc_data object>
append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) — integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t em
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
cl ass SCons.Util.Delegate (attri but e)
Bases: object
A Python Descriptor class that delegates attribute fetches to an underlying wrapped subject of a Proxy. Typical use:

184

"]

SCons.Util package

cl ass Foo(Proxy):
__str__ = Delegate('__str__")

cl ass SCons.Util.DispatchingFormatter (f ormatt ers, default _fornmatter)
Bases: Formatter

Logging formatter which dispatches to various formatters.

converter ()

localtime([seconds]) -> (tm_year,tm_mon,tm_mday,tm_hour,tm_min,

tm_sec,tm_wday,tm_yday,tm_isdst)

Convert seconds since the Epoch to a time tuple expressing local time. When ‘seconds’ is not passed in, convert
the current time instead.

default_msec_format = '%s,%03d'

default_time_format = '%Y-%m-%d %H:%M:%S'

format (r ecor d)
Format the specified record as text.
The record’s attribute dictionary is used as the operand to a string formatting operation which yields the returned
string. Before formatting the dictionary, a couple of preparatory steps are carried out. The message attribute of the
record is computed using LogRecord.getMessage(). If the formatting string uses the time (as determined by a call
to usesTime(), formatTime() is called to format the event time. If there is exception information, it is formatted using
formatException() and appended to the message.

formatException (ei)
Format and return the specified exception information as a string.
This default implementation just uses traceback.print_exception()

formatMessage (r ecor d)

formatStack (st ack_i nf o)
This method is provided as an extension point for specialized formatting of stack information.
The input data is a string as returned from a call to traceback.print_stack(), but with the last trailing newline
removed.
The base implementation just returns the value passed in.

formatTime (r ecor d, dat ef nt =None)
Return the creation time of the specified LogRecord as formatted text.
This method should be called from format() by a formatter which wants to make use of a formatted time. This
method can be overridden in formatters to provide for any specific requirement, but the basic behaviour is as
follows: if datefmt (a string) is specified, it is used with time.strftime() to format the creation time of the record.
Otherwise, an ISO8601-like (or RFC 3339-like) format is used. The resulting string is returned. This function uses a
user-configurable function to convert the creation time to a tuple. By default, time.localtime() is used; to change this
for a particular formatter instance, set the ‘converter’ attribute to a function with the same signature as
time.localtime() or time.gmtime(). To change it for all formatters, for example if you want all logging times to be
shown in GMT, set the ‘converter’ attribute in the Formatter class.

usesTime ()
Check if the format uses the creation time of the record.

cl ass SCons.Util.DisplayEngine

Bases: object

A callable class used to display SCons messages.

print_it = True

set_mode (node) — None

SCons.Util.IDX (n) - bool

Generate in index into strings from the tree legends.

These are always a choice between two, so bool works fine.

cl ass SCons.Util.LogicalLines (fi | eobj)

Bases: object

Wrapper class for the logical_lines() function.

Allows us to read all “logical” lines at once from a given file object.

readlines ()

cl ass SCons.Util.NodeList (i ni t| i st =None)

185

SCons.Util package

Bases: UserList

A list of Nodes with special attribute retrieval.

Unlike an ordinary list, access to a member’s attribute returns a NodeList containing the same attribute for each
member. Although this can hold any object, it is intended for use when processing Nodes, where fetching an attribute
of each member is very commone, for example getting the content signature of each node. The term “attribute” here
includes the string representation.

>>> sonelLi st = NodeList([' foo ', ' bar '])
>>> sonelLi st.strip()
['foo', '"bar']

__getattr__ (name) - NodelList
Returns a NodeList of name from each member.
__getitem__ (i ndex)
Returns one item, forces a NodelList if index is a slice.
_abc_impl = <_abc._abc_data object>
append (i tem)
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) — integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,iten)
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t en)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, ** kwds)
cl ass SCons.Util.Proxy (subj ect)
Bases: object
A simple generic Proxy class, forwarding all calls to subject.
This means you can take an object, let’s call it ‘obj_a’, and wrap it in this Proxy class, with a statement like this:

proxy_obj = Proxy(obj _a)
Then, if in the future, you do something like this:
X = proxy_obj.varl

since the Proxy class does not have a varl attribute (but presumably obj _a does), the request actually is equivalent
to saying:

X = obj _a.varl

Inherit from this class to create a Proxy.
With Python 3.5+ this does not work transparently for Proxy subclasses that use special dunder method names,
because those names are now bound to the class, not the individual instances. You now need to know in advance

186

SCons.Util package

which special method names you want to pass on to the underlying Proxy object, and specifically delegate their calls
like this:

cl ass Foo(Proxy):
__str___ = Delegate(' __str__")

__getattr__ (nane)
Retrieve an attribute from the wrapped object.

Raises: AttributeError — if attribute name doesn’t exist.

get ()
Retrieve the entire wrapped object
SCons.Util.RegError
alias of _NoError
SCons.Util.RegGetValue (r oot , key)
SCons.Util.RegOpenKeyEXx (r oot , key)
cl ass SCons.Util.Selector
Bases: dict
A callable dict for file suffix lookup.
Often used to associate actions or emitters with file types.
Depends on insertion order being preserved so that get_suffix() calls always return the first suffix added.
clear () - None. Remove all items from D.
copy () - a shallow copy of D
cl assnet hod fromkeys (i t er abl e, val ue=None, /)
Create a new dictionary with keys from iterable and values set to value.
get (key, def aul t =None, /)
Return the value for key if key is in the dictionary, else default.
items () - a set-like object providing a view on D's items
keys () — a set-like object providing a view on D's keys
pop (K[, d]) - v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem ()
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.
setdefault (key, def aul t =None, /)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
update ([, E], **F) -~ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[K] If E is present and lacks a .keys()
method, then does: for k, v in E: D[K] = v In either case, this is followed by: for k in F: D[K] = F[k]
values () —» an object providing a view on D's values
SCons.Util.Split (ar g) — list
Returns a list of file names or other objects.
If arg is a string, it will be split on whitespace within the string. If arg is already a list, the list will be returned
untouched. If arg is any other type of object, it will be returned in a single-item list.

>>> print(Split(" this is a string "))
["this', "is', "a', 'string']

>>> print(Split(["stringlist", " preserving ",
['stringlist', ' preserving ', spaces ']

spaces "]))

cl ass SCons.Util.Unbuffered (fi | e)
Bases: object
A proxy that wraps a file object, flushing after every write.
Delegates everything else to the wrapped object.

187

SCons.Util package

write (ar g) - None
writelines (ar g) — None
cl ass SCons.Util.UniqueList (i ni t1i st =None)
Bases: UserList
A list which maintains uniqueness.
Uniquing is lazy: rather than being enforced on list changes, it is fixed up on access by those methods which need to
act on a unique list to be correct. That means things like membership tests don’t have to eat the uniquing time.
__make_unique () - None
_abc_impl = <_abc._abc_data object>
append (i t em) - None
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her) — None
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,iten) -» None
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t em)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse () - None
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
SCons.Util.Wherels (fi | e, pat h=None, pat hext =None, r ej ect =None) - str | None
Return the path to an executable that matches file.
Searches the given path for file, considering any filename extensions in pathext (on the Windows platform only), and
returns the full path to the matching command of the first match, or None if there are no matches. Will not select any
path name or names in the optional reject list.
If path is None (the default), os.environ[PATH] is used. On Windows, If pathext is None (the default),
0s.environ[PATHEXT] is used.
The construction environment method of the same name wraps a call to this function by filling in path from the
execution environment if it is None (and for pathext on Windows, if necessary), so if called from there, this function
will not backfill from os.environ.

Note

Finding things in os.environ may answer the question “does file exist on the system”, but not the question “can
SCons use that executable”, unless the path element that yields the match is also in the the Execution
Environment (e.g. env[' ENV'] [' PATH]). Since this utility function has no environment reference, it cannot
make that determination.

exception SCons.Util._NoError
Bases: Exception
add_note ()
Exception.add_note(note) — add a note to the exception
args
with_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.
SCons.Util._is_process_alive (pi d: i nt) - bool

188

SCons.Util package

SCons.Util._semi_deepcopy_list (obj) - list
SCons.Util._semi_deepcopy_tuple (obj) - tuple
SCons.Util._wait_for_process_to_die_non_psutil (pi d: int,timeout: float = 60.0) -~ None
SCons.Util.adjustixes (f nane, pr e, suf , ensure_suffi x: bool = False) - str

Adjust filename prefixes and suffixes as needed.

Add prefix to fname if specified. Add suffix to fname if specified and if ensure_suffix is Tr ue
SCons.Util.case_sensitive_suffixes (s1: str,s2: str) - bool

Returns whether platform distinguishes case in file suffixes.
SCons.Util.cmp (a, b) - bool

A cmp function because one is no longer available in Python3.
SCons.Util.containsAll (s, pat) - bool

Check whether string s contains ALL of the items in pat.
SCons.Util.containsAny (s, pat) - bool

Check whether string s contains ANY of the items in pat.
SCons.Util.containsOnly (s, pat) - bool

Check whether string s contains ONLY items in pat.
SCons.Util.dictify (keys, val ues, r esul t =None) - dict
SCons.Util.do_flatten (sequence, resul t,i si nstance=<built-in function isinstance>,
StringTypes=(<class 'str'> <class 'collections.UserString' >), SequenceTypes=(<cl ass
"list'> <class '"tuple'> <class 'collections.deque' > <class 'collections.UserList'>,
<class 'collections. abc. KeysVi ew >, <cl ass 'coll ections. abc. Val uesVi ew >, <cl ass
‘collections.abc.ltensView >)) - None
SCons.Util.flatten (obj , i si nst ance=<built-in function isinstance>, StringTypes=(<class 'str'>,
<class 'collections.UserString' >), SequenceTypes=(<class 'list'> <class 'tuple'>, <class
‘col | ections. deque' >, <cl ass 'collections. UserList'>, <class 'collections. abc. KeysVi ew >,
<cl ass 'coll ections. abc. Val uesVi ew >, <cl ass 'col |l ections. abc.|tensView >),
do_fl atten=<function do_flatten>) - list

Flatten a sequence to a non-nested list.

Converts either a single scalar or a nested sequence to a non-nested list. Note that flatten() considers strings to be

scalars instead of sequences like pure Python would.
SCons.Util.flatten_sequence (sequence, i si nst ance=<built-in function isinstance>,
StringTypes=(<class 'str'> <class 'collections.UserString' >), SequenceTypes=(<cl ass
"list'> <class '"tuple' > <class 'collections.deque' > <class 'collections.UserList'>,
<class 'collections. abc. KeysVi ew >, <cl ass 'coll ections. abc. Val uesVi ew >, <cl ass
‘collections.abc.ltensView >),do_flatten=<function do_flatten>) - list

Flatten a sequence to a non-nested list.

Same as flatten(), but it does not handle the single scalar case. This is slightly more efficient when one knows that

the sequence to flatten can not be a scalar.
SCons.Util.get_native_path (pat h: str) - str

Transform an absolute path into a native path for the system.

In Cygwin, this converts from a Cygwin path to a Windows path, without regard to whether path refers to an existing

file system object. For other platforms, path is unchanged.
SCons.Util.logical_lines (physi cal _lines,joiner=<built-in nmethod join of str object>)
SCons.Util.make_path_relative (pat h) — str

Converts an absolute path name to a relative pathname.
SCons.Util.print_time ()

Hack to return a value from Main if can’t import Main.

SCons.Util.print_tree (root, chi | d_f unc, prune: bool = False, showtags: int = 0,margin: |ist[bool]
= [False],visited: dict | None = None,lastChild: bool = False,singleLineDraw. bool = False)
- None

Print a tree of nodes.
This is like func:render_tree, except it prints lines directly instead of creating a string representation in memory, so
that huge trees can be handled.

189

SCons.Util package

Parameters:
* root — the root node of the tree

 child_func — the function called to get the children of a node
e prune — don't visit the same node twice

« showtags — print status information to the left of each node line The default is false (value
0). A value of 2 will also print a legend for the margin tags.

« margin — the format of the left margin to use for children of root. Each entry represents a
column, where a true value will display a vertical bar and a false one a blank.

« visited — a dictionary of visited nodes in the current branch if prune is false, or in the
whole tree if prune is true.

* lastChild — this is the last leaf of a branch

 singleLineDraw — use line-drawing characters rather than ASCII.
SCons.Util.render_tree (root, chil d_func, prune: bool = False,margin: |ist[bool] = [False],Vvisited:
dict | None = None) - str
Render a tree of nodes into an ASCII tree view.

Parameters:
* root — the root node of the tree

« child_func — the function called to get the children of a node
e prune — don't visit the same node twice

* margin — the format of the left margin to use for children of root. Each entry represents a
column where a true value will display a vertical bar and a false one a blank.

« visited — a dictionary of visited nodes in the current branch if prune is false, or in the
whole tree if prune is true.
SCons.Util.rightmost_separator (pat h, sep)
SCons.Util.sanitize_shell_env (executi on_env: dict) - dict
Sanitize all values in execution_env
The execution environment (typically comes from env[' ENV']) is propagated to the shell, and may need to be
cleaned first.

Parameters: .])
e execution_env — The shell environment variables to be propagated

« shell. (to the spawned)
Returns: sanitized dictionary of env variables (similar to what you'd get from os.environ)

SCons.Util.semi_deepcopy (obj)
SCons.Util.semi_deepcopy_dict (obj , excl ude=None) - dict
SCons.Util.silent_intern (__string: Any) - str
Intern a string without failing.
Perform sys.intern on the passed argument and return the result. If the input is ineligible for interning the original
argument is returned and no exception is thrown.
SCons.Util.splitext (pat h) - tuple
Split path into a (root, ext) pair.
Same as os.path.splitext but faster.
SCons.Util.unique (seq)
Return a list of the elements in seq without duplicates, ignoring order.
For best speed, all sequence elements should be hashable. Then unique() will usually work in linear time.
If not possible, the sequence elements should enjoy a total ordering, and if list(s).sort() doesn’t raise
TypeError itis assumed that they do enjoy a total ordering. Then unique() will usually work in O(N*log2(N)) time.
If that's not possible either, the sequence elements must support equality-testing. Then unique() will usually work in
quadratic time.

190

SCons.Util package

>>> nylist = unique([1, 2, 3, 1, 2, 3])

>>> print(sorted(nylist))

[1, 2, 3]

>>> nylist = uni que("abcabc")

>>> print(sorted(nylist))

["a'", 'b'", '"c']

>>> nylist = unique(([1, 2], [2, 3], [1, 2]))
>>> print(sorted(nylist))

[([1, 2], [2, 3]]

SCons.Util.uniquer_hashables (seq)
SCons.Util.updrive (pat h) — str
Make the drive letter (if any) upper case.
This is useful because Windows is inconsistent on the case of the drive letter, which can cause inconsistencies when
calculating command signatures.
SCons.Util.wait_for_process_to_die (pi d: int) - None
Wait for the specified process to die.
TODO: Add timeout which raises exception

Submodules

SCons.Util.envs module
SCons environment utility functions.

Routines for working with environments and construction variables that don't need the specifics of the Environment
class.
SCons.Util.envs.AddMethod (obj , functi on: Cal | abl e, name: str | None = None) — None
Add a method to an object.
Adds function to obj if obj is a class object. Adds function as a bound method if obj is an instance object. If obj looks
like an environment instance, use MethodWrapper to add it. If name is supplied it is used as the name of function.
Although this works for any class object, the intent as a public API is to be used on Environment, to be able to add a
method to all construction environments; it is preferred to use env. AddMet hod to add to an individual environment.

>>> cl ass A

>>> a = A()

>>> def f(self, x, y):
self.z = x +vy

\%

>>> AddMet hod(A, f, "add")
>>> a.add(2, 4)
>>> print(a.z)

6
>>>a.data:['a','b','C','d','e','f']
>>> AddMet hod(a, |anbda self, i: self.data[i], "listlndex")
>>> print(a.listlndex(3))
d
SCons.Util.envs.AddPathlfNotExists (env_di ct , key, pat h, sep: str = "') - None

Add a path element to a construction variable.

191

SCons.Util package

key is looked up in env_dict, and path is added to it if it is not already present. env_dict[key] is assumed to be in the
format of a PATH variable: a list of paths separated by sep tokens.

>>> env = {' PATH : '/bin:/usr/bin:/usr/local/bin'}
>>> AddPat hl f Not Exi st s(env, 'PATH , '/opt/bin')
>>> print(env[' PATH])
/opt/bin:/bin:/usr/bin:/usr/local/bin

SCons.Util.envs.AppendPath (ol dpat h, newpat h, sep="', del et e_exi sti ng: bool = True, canoni cali ze:
Cal l abl e | None = None) - list | str
Append newpath path elements to oldpath.
Will only add any particular path once (leaving the last one it encounters and ignoring the rest, to preserve path
order), and will os.path.normpath and os.path.normcase all paths for comparisons to help assure this. oldpath may
be a list instead of a string, in which case a list is returned.
Example:

>>> p = AppendPat h("/foo/ bar:/foo", "/biz/boom/foo")
>>> print(p)
/ fool bar:/biz/boom/foo

If delete_existing is Fal se, then adding a path that exists will not move it to the end; it will stay where it is in the list.

>>> p = AppendPat h("/foo/ bar:/foo", "/biz/boom/foo", delete_existing=Fal se)
>>> print(p)
/ f oo/ bar:/foo:/biz/boom

If canonicalize is not None, it is applied to each element of newpath before use.
cl ass SCons.Util.envs.MethodWrapper (obj : Any, net hod: Cal | abl e, nane: str | None = None)
Bases: object
A generic Wrapper class that associates a method with an object.
As part of creating this MethodWrapper object an attribute with the specified name (by default, the name of the
supplied method) is added to the underlying object. When that new “method” is called, our __call__() method adds
the object as the first argument, simulating the Python behavior of supplying “self” on method calls.
We hang on to the name by which the method was added to the underlying base class so that we can provide a
method to “clone” ourselves onto a new underlying object being copied (without which we wouldn’t need to save that
info).
clone (new_obj ect)
Returns an object that re-binds the underlying “method” to the specified new object.
SCons.Util.envs.PrependPath (ol dpat h, newpat h, sep="", del et e_exi sting: bool = True, canoni cali ze:
Call able | None = None) - list | str
Prepend newpath path elements to oldpath.
Will only add any particular path once (leaving the first one it encounters and ignoring the rest, to preserve path
order), and will os.path.normpath and os.path.normcase all paths for comparisons to help assure this. oldpath may
be a list instead of a string, in which case a list is returned.
Example:

>>> p = PrependPath("/foo/bar:/foo", "/biz/boom/foo")
>>> print(p)
/ bi z/ boom / f 0o: / f oo/ bar

If delete_existing is Fal se, then adding a path that exists will not move it to the beginning; it will stay where it is in the
list.

192

SCons.Util package

>>> p = PrependPat h("/foo/ bar:/foo", "/biz/boom/foo", delete_existing=Fal se)
>>> print(p)
/ bi z/ boom / f oo/ bar: / f oo

If canonicalize is not None, it is applied to each element of newpath before use.
SCons.Util.envs.is_valid_construction_var (varstr: str) - bool
Return True if varstr is a legitimate name of a construction variable.

SCons.Util.filelock module

SCons file locking functions.

Simple-minded filesystem-based locking. Provides a context manager which acquires a lock (or at least, permission) on
entry and releases it on exit.

Usage:

fromSCons. Util.filelock inmport FilelLock

with FileLock("nmyfile.txt", witer=True) as | ock:
print(f"Lock on {lock.file} acquired.")
work with the file as it is now | ocked

cl ass SCons.Util.filelock.FileLock (fil e: str,timeout: int | None = None,delay: float | None =
0.05,writer: bool = False)
Bases: object
Lock a file using a lockfile.
Basic locking for when multiple processes may hit an externally shared resource that cannot depend on locking
within a single SCons process. SCons does not have a lot of those, but caches come to mind.
Cross-platform safe, does not use any OS-specific features. Provides context manager support, or can be called with
acquire_lock() and release_lock().
Lock can be a write lock, which is held until released, or a read lock, which releases immediately upon aquisition - we
want to not read a file which somebody else may be writing, but not create the writers starvation problem of the
classic readers/writers lock.

TODO: Should default timeout be None (non-blocking), or 0 (block forever),
or some arbitrary number?

Parameters: _] _)
« file — name of file to lock. Only used to build the lockfile name.

 timeout — optional time (sec) to give up trying. If None, quit now if we failed to get the lock
(non-blocking). If O, block forever (well, a long time).

« delay — optional delay between tries [default 0.05s]

» writer — if True, obtain the lock for safe writing. If False (default), just wait till the lock is
available, give it back right away.
Raises: SConsLockFailure — if the operation “timed out”, including the non-blocking mode.

__enter__ () —» FileLock
Context manager entry: acquire lock if not holding.
__exit__ (exc_type, exc_val ue, exc_tb) » None
Context manager exit: release lock if holding.
_repr__ () - str
Nicer display if someone repr’s the lock class.
acquire_lock () - None
Acquire the lock, if possible.
If the lock is in use, check again every delay seconds. Continue until lock acquired or timeout expires.

193

SCons.Util package

release_lock () - None
Release the lock by deleting the lockfile.
excepti on SCons.Util.filelock.SConsLockFailure
Bases: Exception
Lock failure exception.
add_note ()
Exception.add_note(note) — add a note to the exception
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

SCons.Util.hashes module

SCons hash utility routines.

Routines for working with content and signature hashes.
SCons.Util.hashes.MD5collect (si ghat ur es)
Deprecated. Use hash_collect() instead.
SCons.Util.hashes.MD5filesignature (f nane, chunksi ze: int = 65536)
Deprecated. Use hash_file_signature() instead.
SCons.Util.hashes.MD5signature (s)
Deprecated. Use hash_signature() instead.
SCons.Util.hashes._attempt_get_hash_function (hash_nane, hashl i b_used=<nodul e ' hashlib' from"'/opt
/1 ocal / Li brary/ Franewor ks/ Pyt hon. f ramewor k/ Ver si ons/ 3. 11/ 1 i b/ pyt hon3. 11/ hashl i b. py' >,
sys_used=<nodul e 'sys' (built-in)>)
Wrapper used to try to initialize a hash function given.
If successful, returns the name of the hash function back to the user.
Otherwise returns None.
SCons.Util.hashes._attempt_init_of python_3 9 hash_object (hash_functi on_obj ect, sys_used=<nodul e
'sys' (built-in)>)
Initialize hash function with non-security indicator.
In Python 3.9 and onwards, hashlib constructors accept a keyword argument usedforsecurity, which, if set to Fal se,
lets us continue to use algorithms that have been deprecated either by FIPS or by Python itself, as the MD5 algorithm
SCons prefers is not being used for security purposes as much as a short, 32 char hash that is resistant to accidental
collisions.
In prior versions of python, hashlib returns a native function wrapper, which errors out when it's queried for the
optional parameter, so this function wraps that call.
It can still throw a ValueError if the initialization fails due to FIPS compliance issues, but that is assumed to be the
responsibility of the caller.
SCons.Util.hashes._get hash_object (hash_f or mat , hashl i b_used=<npdul e ' hashlib' from'/opt/I ocal
/ Li brary/ Framewor ks/ Pyt hon. f ramewor k/ Ver si ons/ 3. 11/ 1i b/ pyt hon3. 11/ hashl i b. py' >,
sys_used=<nodul e 'sys' (built-in)>)
Allocates a hash object using the requested hash format.

Parameters: hash_format — Hash format to use.
Returns: hashlib object.

SCons.Util.hashes._set_allowed_viable default_hashes (hashl i b_used, sys_used=<nodul e
(built-in)>) - None
Check if the default hash algorithms can be called.
This util class is sometimes called prior to setting the user-selected hash algorithm, meaning that on FIPS-compliant
systems the library would default-initialize MD5 and throw an exception in set_hash_format. A common case is using
the SConf options, which can run prior to main, and thus ignore the options.hash_format variable.
This function checks the DEFAULT_HASH_FORMATS and sets the ALLOWED_HASH_FORMATS to only the ones
that can be called. In Python >= 3.9 this will always default to MD5 as in Python 3.9 there is an optional attribute
“usedforsecurity” set for the method.
Throws if no allowed hash formats are detected.
SCons.Util.hashes._show_md5_warning (f uncti on_nane) — None

sys

194

SCons.Util package

Shows a deprecation warning for various MD5 functions.
SCons.Util.hashes.get_current_hash_algorithm_used ()
Returns the current hash algorithm name used.
Where the python version >= 3.9, this is expected to return md>5. If python’s version is <= 3.8, this returns md5 on
non-FIPS-mode platforms, and shal or sha256 on FIPS-mode Linux platforms.
This function is primarily useful for testing, where one expects a value to be one of N distinct hashes, and therefore
the test needs to know which hash to select.
SCons.Util.hashes.get_hash_format ()
Retrieves the hash format or None if not overridden.
A return value of None does not guarantee that MD5 is being used; instead, it means that the default precedence
order documented in SCons.Util.set_hash_format() is respected.
SCons.Util.hashes.hash_collect (si gnat ur es, hash_f or mat =None)
Collects a list of signatures into an aggregate signature.

Parameters:] .)
 signatures — a list of signatures

< hash_format — Specify to override default hash format
Returns: the aggregate signature

SCons.Util.hashes.hash_file_signature (f nane: str, chunksi ze: int = 65536, hash_f or mat =None) - str
Generate the md>5 signature of a file

Parameters:]
* fname — file to hash

¢ chunksize — chunk size to read

< hash_format — Specify to override default hash format
Returns: String of Hex digits representing the signature

SCons.Util.hashes.hash_signature (s, hash_f or mat =None)
Generate hash signature of a string

Parameters:]]
e s — either string or bytes. Normally should be bytes

< hash_format — Specify to override default hash format
Returns: String of hex digits representing the signature

SCons.Util.hashes.set_hash_format (hash_f or mat , hashl i b_used=<nodul e ' hashlib' from'/opt/I|ocal/
Li brary/ Framewor ks/ Pyt hon. f ramewor k/ Ver si ons/ 3. 11/1i b/ pyt hon3. 11/ hashl i b. py' >,
sys_used=<nodul e 'sys' (built-in)>)

Sets the default hash format used by SCons.

If hash_format is None or an empty string, the default is determined by this function.

Currently the default behavior is to use the first available format of the following options: MD5, SHA1, SHA256.

SCons.Util.sctypes module
Various SCons utility functions

Routines which check types and do type conversions.

cl ass SCons.Util.sctypes.Null (*ar gs, ** kwar gs)
Bases: object
Null objects always and reliably ‘do nothing’.

cl ass SCons.Util.sctypes.NullSeq (* ar gs, * * kwar gs)

Bases: Null
A Null object that can also be iterated over.
SCons.Util.sctypes.get_env_bool (env, nane: str,default: bool = False) - bool

Convert a construction variable to bool.
If the value of name in dict-like object env is ‘true’, ‘yes’, 'y’, ‘on’ (case insensitive) or anything convertible to int that

yields non-zero, return Tr ue; if ‘false’, ‘no’, ‘n’, ‘off’ (case insensitive) or a number that converts to integer zero return
Fal se. Otherwise, or if name is not found, return the value of default.

195

SCons.Util package

Parameters:]] o)
e env — construction environment, or any dict-like object.

* name — name of the variable.

 default — value to return if name not in env or cannot be converted (default: False).
SCons.Util.sctypes.get_environment_var (varstr) - str | None

Return undecorated construction variable string.

Determine if varstr looks like a reference to a single environment variable, like " $FOO0"' or " ${ FOG " . If so, return

that variable with no decorations, like " FOO'. If not, return None.
SCons.Util.sctypes.get_os_env_bool (hane: str,default: bool = False) - bool

Convert an external environment variable to boolean.

Like get_env_bool(), but uses os.environ as the lookup dict.

SCons.Util.sctypes.is_Dict (obj , i si nst ance=<built-in function isinstance>, Di ct Types=(<cl ass
"dict'> <class 'collections.UserDict'>)) - TypeGuard[dict | UserDict]

Check if object is a dict.

SCons.Util.sctypes.is_List (obj , i si nstance=<built-in function isinstance>, Li st Types=(<cl ass
"l'ist'> <class 'collections.UserlList'> <class 'collections.deque'>)) - TypeGuard] list |
UserList | deque]

Check if object is a list.

SCons.Util.sctypes.is_Scalar (obj , i si nstance=<built-in function isinstance>, StringTypes=(<cl ass
"str'>,<class 'collections.UserString' >),lterabl e=<class 'collections.abc.lterable'>) -
bool

Check if object is a scalar: not a container or iterable.

SCons.Util.sctypes.is_Sequence (obj , i si nstance=<built-in function isinstance>,
SequenceTypes=(<class 'list'> <class 'tuple' > <class 'collections.deque' >, <cl ass

‘col l ections. UserList'> <class 'collections.abc. KeysVi ew >, <cl ass

'col | ections. abc. Val uesVi ew >, <cl ass 'coll ections.abc.|tensView >)) - TypeGuard[list | tuple
| deque | UserList | KeysView | ValuesView | ItemsView]

Check if object is a sequence.

SCons.Util.sctypes.is_String (obj , i si nstance=<built-in function isinstance>, StringTypes=(<cl ass
"str'>,<class 'collections.UserString' >)) - TypeGuard[str | UserString]
Check if object is a string.
SCons.Util.sctypes.is_Tuple (obj , i si nstance=<built-in function isinstance>,tupl e=<cl ass
"tupl e'>) - TypeGuard[tuple]

Check if object is a tuple.

SCons.Util.sctypes.to_String (obj , i si nstance=<built-in function isinstance>, str=<class 'str'>,
User String=<class 'collections.UserString' > BaseStringTypes=<class 'str'>) - str

Return a string version of obj.

Use this for data likely to be well-behaved. Use to_Text() for unknown file data that needs to be decoded.
SCons.Util.sctypes.to_String_for_signature (obj ,to_String for_subst=<function to_String for_subst>,
AttributeError=<class 'AttributeError'>) - str

Return a string version of obj for signature usage.

Like to_String_for_subst() but has special handling for scons objects that have a for_signature() method, and for

dicts.
SCons.Util.sctypes.to_String_for_subst (obj , i si nstance=<built-in function isinstance>, str=<cl ass
"str' >, BaseStringTypes=<class 'str'>, SequenceTypes=(<class 'list'> <class 'tuple'>,
<class 'collections.deque' > <class 'collections.UserlList'>, <class
‘col | ections. abc. KeysVi ew >, <cl ass 'coll ections. abc. Val uesVi ew >, <cl ass
"collections.abc.ltensView >), UserString=<class 'collections.UserString' >) - str

Return a string version of obj for subst usage.
SCons.Util.sctypes.to_Text (dat a: bytes) - str

Return bytes data converted to text.

Useful for whole-file reads where the data needs some interpretation, particularly for Scanners. Attempts to figure out

what the encoding of the text is based upon the BOM bytes, and then decodes the contents so that it's a valid python

string.
SCons.Util.sctypes.to_bytes (s) — bytes

196

SCons.Util package

Convert object to bytes.
SCons.Util.sctypes.to_str (s) — str
Convert object to string.

SCons.Util.stats module

SCons statistics routines.

This package provides a way to gather various statistics during an SCons run and dump that info in several formats
Additionally, it probably makes sense to do stderr/stdout output of those statistics here as well

There are basically two types of stats:

1. Timer (start/stop/time) for specific event. These events can be hierarchical. So you can record the children events
of some parent. Think program compile could contain the total Program builder time, which could include linking,
and stripping the executable

2. Counter. Counting the number of events and/or objects created. This would likely only be reported at the end of a

niven SCons run, though it might be useful to query during a run.
cl ass SCons.Util.stats.CountStats

Bases: Stats
_abc_impl = <_abc._abc_data object>
do_append (I abel)
do_nothing (*ar gs, * *kw)
do_print ()
enable (out f p)
cl ass SCons.Util.stats.MemStats
Bases: Stats
_abc_impl = <_abc._abc_data object>
do_append (I abel)
do_nothing (*ar gs, * *kw)
do_print ()
enable (out f p)
cl ass SCons.Util.stats.Stats
Bases: ABC
_abc_impl = <_abc._abc_data object>
do_append (I abel)
do_nothing (*ar gs, * *kw)
do_print ()
enable (out f p)
cl ass SCons.Util.stats. TimeStats
Bases: Stats
_abc_impl = <_abc._abc_data object>
add_command (conmand, start _tine,finish_tine)
do_append (I abel)
do_nothing (*ar gs, **kw)
do_print ()
enable (out f p)
total_times (bui | d_ti ne, sconscript _time,scons_exec_tine, comand_exec_tine)
SCons.Util.stats.add_stat_type (nane, st at _obj ect)
Add a statistic type to the global collection
SCons.Util.stats.write_scons_stats_file ()
Actually write the JSON file with debug information. Depending which of : count, time, action-timestamps,memory
their information will be written.

197

SCons.Variables package

SCons.Variables package

Module contents

Adds user-friendly customizable variables to an SCons build.
SCons.Variables.BoolVariable (key, hel p: str,defaul t) - tuple[str, str, str, Callable, Callable]
Return a tuple describing a boolean SCons Variable.
The input parameters describe a boolean variable, using a string value as described by TRUE_STRINGS and
FALSE_STRINGS. Returns a tuple including the correct converter and validator. The help text will have (yes| no)
automatically appended to show the valid values. The result is usable as input to Add().
SCons.Variables.EnumVariable (key, hel p: str,default: str,all owed values: list[str],map: dict |
None = None, i gnorecase: int = 0) - tuple[str, str, str, Callable, Callable]
Return a tuple describing an enumaration SCons Variable.
An Enum Variable is an abstraction that allows choosing one value from a provided list of possibilities
(allowed_values). The value of ignorecase defines the behavior of the validator and converter. if 0, the
validator/converter are case-sensitive; if 1, the validator/converter are case-insensitive; if 2, the validator/converter
are case-insensitive and the converted value will always be lower-case.

Parameters: _
* key — the name of the variable.

» default — default value, passed directly through to the return tuple.

* help — descriptive part of the help text, will have the allowed values automatically
appended.

« allowed_values — the values for the choice.

* map — optional dictionary which may be used for converting the input value into canonical
values (e.g. for aliases).

» ignorecase — defines the behavior of the validator and converter.
Returns: A tuple including an appropriate converter and validator. The result is usable as input to Add().
and AddVariables().

SCons.Variables.ListVariable (key, hel p: str,default: str | list[str],nanes: list[str],map: dict
| None = None,validator: Callable | None = None) - tuple[str, str, str, Callable, Callable]
Return a tuple describing a list variable.
A List Variable is an abstraction that allows choosing one or more values from a provided list of possibilities (hames).
The special terms “all” and “none” are also provided to help make the selection.

Parameters:))
» key — the name of the list variable.

* help — the basic help message. Will have text appended indicating the allowed values
(not including any extra names from map).

» default — the default value(s) for the list variable. Can be given as string (use commas to
-separated multiple values), or as a list of strings. “all” or “none” are allowed as default. A
must-specify list variable can be simulated by giving a value that is not part of names,
which will cause validation to fail if the variable is not supplied in the input sources.

* names — the values to choose from. Must be a list of strings.

* map — optional dictionary to map alternative names to the ones in names, providing a
form of alias. The converter will perform the replacement. Names from map are not
stored, and will not appear in the help message.

 validator — optional callback to validate supplied values. The default validator is used if
not specified.
Returns: A tuple including the correct converter and validator. The result is usable as input to Add().
Changed in version 4.8.0: The validation step was split from the converter to allow for custom validators. The
validator keyword argument was added.

198

SCons.Variables package

SCons.Variables.PackageVariable (key: str, hel p: str,default,searchfunc: Callable | None = None)

—

cl

tuple[str, str, str, Callable, Callable]

Return a tuple describing a package list SCons Variable.

The input parameters describe a ‘package list' variable. Returns a tuple with the correct converter and validator
appended. The result is usable as input to Add().

A ‘package list’ variable may be specified as a truthy string from ENABLE_STRINGS, a falsy string from
DISABLE_STRINGS, or as a pathname string. This information is appended to help using only one string each for
truthy/falsy.

ass SCons.Variables.Variable (key: str,aliases: list[str],help: str,default: Any,validator:

Cal l abl e | None,converter: Callable | None,do_subst: bool)

cl

Bases: object

A Build Variable.

aliases: list[str]

converter: Callable | None

default: Any
do_subst: bool
help: str

key: str

validator: Callable | None
ass SCons.Variables.Variables (fil es: str | Sequence[str | None] = None,args: dict | None =

None, i s_gl obal : bool = False)

199

Bases: object

A container for Build Variables.

Includes a method to populate the variables with values into a construction envirionment, and methods to render the
help text.

Note that the pubic API for creating a Var i abl es object is SCons.Script.Variables(), a kind of factory function, which
defaults to supplying the contents of ARGUMENTS as the args parameter if it was not otherwise given. That is the
behavior documented in the manpage for Var i abl es - and different from the default if you instantiate this directly.

Parameters:] .
« files — string or list of strings naming variable config scripts (default None)

 args — dictionary to override values set from files. (default None)

« is_global — if true, return a global singleton Variables object instead of a fresh instance.
Currently inoperable (default Fal se)
Changed in version 4.8.0: The default for is_global changed to Fal se (the previous default Tr ue had no effect due
to an implementation error).
Deprecated since version 4.8.0: is_global is deprecated.
Added in version 4.9.0: The defaulted attribute now lists those variables which were filled in from default values.
Add (key: str | Sequence, *args, **kwar gs) - None
Add a Build Variable.

Parameters:))
» key — the name of the variable, or a 5-tuple (or other sequence). If key is a tuple, and

there are no additional arguments except the help, default, validator and converter
keyword arguments, key is unpacked into the variable name plus the help, default,
validator and converter arguments; if there are additional arguments, the first elements
of key is taken as the variable name, and the remainder as aliases.

» args — optional positional arguments, corresponding to the help, default, validator and
converter keyword args.

» kwargs — arbitrary keyword arguments used by the variable itself.

SCons.Variables package

Keyword))
Arguments: * help — help text for the variable (default: empty string)

 default — default value for variable (default: None)
« validator — function called to validate the value (default: None)

» converter — function to be called to convert the variable’s value before putting it in the
environment. (default: None)

» subst — perform substitution on the value before the converter and validator functions
(if any) are called (default: Tr ue)
Added in version 4.8.0: The subst keyword argument is now specially recognized.
AddVariables (*opt | i st) -~ None
Add Build Variables.
Each optlist element is a sequence of arguments to be passed on to the underlying method for adding variables.
Example:

opt = Vari abl es()
opt . AddVar i abl es(
(' debug', "', 0),
('cC, 'The C conpiler'),
(' VALI DATE', 'An option for testing validation', 'notset', validator, None),

FormatVariableHelpText (env, key: str,hel p: str,default,actual,aliases: list[str | None] =
None) — str

Format the help text for a single variable.

The caller is responsible for obtaining all the values, although now the Variable class is more publicly exposed, this

method could easily do most of that work - however that would change the existing published API.
GenerateHelpText (env, sort: bool | Call able = False) - str

Generate the help text for the Variables object.

Parameters: .]]
e env — an environment that is used to get the current values of the variables.

e sort — Either a comparison function used for sorting (must take two arguments and
return - 1, 0 or 1) or a boolean to indicate if it should be sorted.
Save (fi | enane, env) - None
Save the variables to a script.
Saves all the variables which have non-default settings to the given file as Python expressions. This script can then
be used to load the variables for a subsequent run. This can be used to create a build variable “cache” or capture
different configurations for selection.

Parameters:)))
» filename — Name of the file to save into

* env — the environment to get the option values from

UnknownVariables () — dict
Return dict of unknown variables.
Identifies variables that were not recognized in this object.

Update (env, args: dict | None = None) - None
Update an environment with the Build Variables.
This is where the work of adding variables to the environment happens, The input sources saved at init time are
scanned for variables to add, though if args is passed, then it is used instead of the saved one. If any variable
description set up a callback for a validator and/or converter, those are called. Variables from the input sources
which do not match a variable description in this object are ignored for purposes of adding to env, but are saved in
the unknown dict attribute. Variables which are set in env from the default in a variable description and not from the
input sources are saved in the defaulted list attribute.

200

SCons.Variables package

Parameters:)
* env —the environment to update.

» args — a dictionary of keys and values to update in env. If omitted, uses the saved args

_str () - str

Provide a way to “print” a Variables object.
_do_add (key: str | Sequence[str],help: str = " default=None,validator: Callable | None
= None, converter: Callable | None = None, **kwar gs) - None

Create a Variable and add it to the list.

This is the internal implementation for Add() and AddVariables(). Not part of the public API.

Added in version 4.8.0: subst keyword argument is now recognized.
aliasfmt = "\n%s: %s\n default: %s\n actual: %s\n aliases: %s\n'
fmt = "\n%s: %s\n default: %s\n actual: %s\n'
keys () - list

Return the variable names.

Submodules

SCons.Variables.Bool Variable module

Variable type for true/false Variables.

Usage example:

opts = Vari abl es()

opt s. Add(Bool Vari abl e(' enbedded', 'build for an enbedded systeni, Fal se))
env = Environnent (vari abl es=opt s)

i f env['enbedded']:

SCons.Variables.BoolVariable.BoolVariable (key, hel p: str,defaul t) - tuple[str, str, str, Callable,
Callable]
Return a tuple describing a boolean SCons Variable.
The input parameters describe a boolean variable, using a string value as described by TRUE_STRINGS and
FALSE_STRINGS. Returns a tuple including the correct converter and validator. The help text will have (yes| no)
automatically appended to show the valid values. The result is usable as input to Add().
SCons.Variables.BoolVariable._text2bool (val : str | bool) - bool
Convert boolean-like string to boolean.
If val looks like it expresses a bool-like value, based on the TRUE_STRINGS and FALSE_STRINGS tuples, return
the appropriate value.
This is usable as a converter function for SCons Variables.

Raises: ValueError — if val cannot be converted to boolean.

SCons.Variables.BoolVariable._validator (key: str,val, env) - None
Validate that the value of key in env is a boolean.
Parameter val is not used in the check.
Usable as a validator function for SCons Variables.

Raises:]))
» KeyError —if key is not set in env

* UserError —if the value of key is not Tr ue or Fal se.

SCons.Variables.EnumV ariable module
Variable type for enumeration Variables.
Enumeration variables allow selection of one from a specified set of values.

Usage example:

201

SCons.Variables package

opts = Vari abl es()
opt s. Add(
EnunVari abl e(
' debug',
hel p=' debug out put and synbol s',
def aul t =" no',

al | oned_val ues=("'yes', 'no', 'full'),
map={},
i gnhor ecase=2,
)

)

env = Environnent (vari abl es=opt s)

if env['debug'] == "full":

SCons.Variables.EnumVariable.EnumVariable (key, hel p: str,default: str,all owed values: list[str],

map: dict | None = None,ignorecase: int = 0) - tuple[str, str, str, Callable, Callable]
Return a tuple describing an enumaration SCons Variable.
An Enum Variable is an abstraction that allows choosing one value from a provided list of possibilities
(allowed_values). The value of ignorecase defines the behavior of the validator and converter: if 0, the
validator/converter are case-sensitive; if 1, the validator/converter are case-insensitive; if 2, the validator/converter
are case-insensitive and the converted value will always be lower-case.

Parameters: _
* key — the name of the variable.

« default — default value, passed directly through to the return tuple.

* help — descriptive part of the help text, will have the allowed values automatically
appended.

« allowed_values — the values for the choice.

¢ map — optional dictionary which may be used for converting the input value into canonical
values (e.g. for aliases).

« ignorecase — defines the behavior of the validator and converter.
Returns: A tuple including an appropriate converter and validator. The result is usable as input to Add().
and AddVariables().

SCons.Variables.EnumVariable._validator (key, val , env, val s) » None
Validate that val is in vals.
Usable as the base for EnumVariable validators.

SCons.Variables.ListVariable module
Variable type for List Variables.

A list variable allows selecting one or more from a supplied set of allowable values, as well as from an optional mapping
of alternate names (such as aliases and abbreviations) and the special names “all” and “none”. Specified values are
converted during processing into values only from the allowable values set.

Usage example:
list of libs = Split('x11 gl gt ical")
opts = Vari abl es()
opt s. Add(

Li st Vari abl e(
"shared',

202

SCons.Variables package

hel p="libraries to build as shared libraries',
default="all",
el ems=list_of |ibs,

)

env = Environnent (vari abl es=opt s)
for libin list_of I|ibs:
if libin env['shared]:
env. Sharedhject(...)
el se:
env. Gbject(...)

SCons.Variables.ListVariable.ListVariable (key, hel p: str,default: str | list[str],names: list[str],
map: dict | None = None,validator: Callable | None = None) - tuple[str, str, str, Callable,
Callable]

Return a tuple describing a list variable.
A List Variable is an abstraction that allows choosing one or more values from a provided list of possibilities (hnames).
The special terms “all” and “none” are also provided to help make the selection.

Parameters:))
» key — the name of the list variable.

* help — the basic help message. Will have text appended indicating the allowed values
(not including any extra names from map).

« default — the default value(s) for the list variable. Can be given as string (use commas to
-separated multiple values), or as a list of strings. “all” or “none” are allowed as default. A
must-specify list variable can be simulated by giving a value that is not part of names,
which will cause validation to fail if the variable is not supplied in the input sources.

* names — the values to choose from. Must be a list of strings.

* map — optional dictionary to map alternative names to the ones in names, providing a
form of alias. The converter will perform the replacement. Names from map are not
stored, and will not appear in the help message.

« validator — optional callback to validate supplied values. The default validator is used if
not specified.
Returns: A tuple including the correct converter and validator. The result is usable as input to Add().

Changed in version 4.8.0: The validation step was split from the converter to allow for custom validators. The
validator keyword argument was added.
cl ass SCons.Variables.ListVariable._ListVariable (initlist: list | None = None,al |l owedEl ens: |ist |
None = None)
Bases: UserList
Internal class holding the data for a List Variable.
This is normally not directly instantiated, rather the ListVariable converter callback “converts” string input (or the
default value if none) into an instance and stores it.

Parameters: o))
« initlist — the list of actual values given.

« allowedElems — the list of allowable values.

_abc_impl = <_abc._abc_data object>
append (i t em)

S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)

S.extend(iterable) — extend sequence by appending elements from the iterable

203

SCons.Variables package

index (val ue[, start[, st op]]) — integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
prepare_to_store ()
remove (i t en)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
SCons.Variables.ListVariable._converter (val , al | owedEl ens, mapdi ct) - _ListVariable
Callback to convert list variables into a suitable form.
The arguments allowedElems and mapdict are non-standard for a Variables converter: the lambda in the
ListVariable() function arranges for us to be called correctly.
Incoming values “all” and “none” are recognized and converted into their expanded form.
SCons.Variables.ListVariable. validator (key, val , env) - None
Callback to validate supplied value(s) for a ListVariable.
Validation means “is val in the allowed list"? val has been subject to substitution before the validator is called. The
converter created a _ListVariable container which is stored in env after it runs; this includes the allowable elements
list. Substitution makes a string made out of the values (only), so we need to fish the allowed elements list out of the
environment to complete the validation.
Note that since 18b45e456, whether subst has been called is conditional on the value of the subst argument to
Add(), so we have to account for possible different types of val.

Raises: UserError — if validation failed.
Added in version 4.8.0: _val i dat or split off from _converter() with an additional check for whether val has been

substituted before the call.
SCons.V ariables.PackageV ariable module
Variable type for package Variables.
To be used whenever a ‘package’ may be enabled/disabled and the package path may be specified.
Given these options
x11l=no (di sabl es X11 support)

x1ll=yes (will search for the package installation dir)
x11=/usr/local / X11 (will check this path for existence)

Can be used as a replacement for autoconf’s - - wi t h- xxx=yyy

opts = Vari abl es()

opt s. Add(
PackageVari abl e(
key='x11",

hel p="use X11 installed here (yes = search sone pl aces)"',
defaul t =" yes'
)
)

env = Environnent (vari abl es=opt s)
if env['x11l'] is True:
dir = ... # search X11 in sone standard pl aces ...

204

SCons.Variables package

env['x11l'] = dir
if env['x1l']:
build with x11 ...

SCons.Variables.PackageVariable.PackageVariable (key: str,hel p: str,default,searchfunc: Callable
| None = None) - tuple[str, str, str, Callable, Callable]
Return a tuple describing a package list SCons Variable.
The input parameters describe a ‘package list’ variable. Returns a tuple with the correct converter and validator
appended. The result is usable as input to Add().
A ‘package list' variable may be specified as a truthy string from ENABLE_STRINGS, a falsy string from
DISABLE_STRINGS, or as a pathname string. This information is appended to help using only one string each for
truthy/falsy.
SCons.Variables.PackageVariable. _converter (val : str | bool,default: str) - str | bool
Convert a package variable.
Returns val if it looks like a path string, and Fal se if it is a disabling string. If val is an enabling string, returns default
unless default is an enabling or disabling string, in which case ignore default and return Tr ue.
SCons.Variables.PackageVariable. validator (key: str,val, env, sear chfunc) —» None
Validate package variable for valid path.
Checks that if a path is given as the value, that pathname actually exists.

SCons.Variables.PathV ariable module
Variable type for path Variables.

To be used whenever a user-specified path override setting should be allowed.
Arguments to PathVariable are:

¢ key - name of this variable on the command line (e.g. “prefix”)
« help - help string for variable
« default - default value for this variable

« validator - [optional] validator for variable value. Predefined are:

» PathAccept - accepts any path setting; no validation
« PathisDir - path must be an existing directory

» PathisDirCreate - path must be a dir; will create

» PathisFile - path must be a file

« PathExists - path must exist (any type) [default]
The validator is a function that is called and which should return True or False to indicate if the path is valid. The
arguments to the validator function are: (key, val, env). key is the name of the variable, val is the path specified for
the variable, and env is the environment to which the Variables have been added.

Usage example:

opts = Vari abl es()
opt s. Add(
Pat hVari abl e(
‘qtdir',
hel p=" where the root of @ is installed,
defaul t=qtdir,
val i dat or =Pat hl sDi r,

205

Indices and Tables

opt s. Add(
Pat hVari abl e(
‘gt _i ncl udes',
hel p="where the @ includes are installed',
defaul t="$qtdir/includes',
val i dat or =Pat hl sDi r Cr eat e,

)

)
opt s. Add(
Pat hVari abl e(
‘qt _libraries',
hel p="where the @ library is installed',
defaul t="$qtdir/lib",

)

cl ass SCons.Variables.PathVariable._PathVariableClass
Bases: object
Class implementing path variables.
This class exists mainly to expose the validators without code having to import the names: they will appear as
methods of Pat hVar i abl e, a statically created instance of this class, which is placed in the SConscript namespace.
Instances are callable to produce a suitable variable tuple.
static PathAccept (key: str,val,env) - None
Validate path with no checking.
static PathExists (key: str,val,env) —» None
Validate path exists.
static PathlsDir (key: str,val,env) - None
Validate path is a directory.
static PathlsDirCreate (key: str,val,env) — None
Validate path is a directory, creating if needed.
static PathlsFile (key: str,val,env) - None
Validate path is a file.
__call__ (key: str,help: str,default,validator: Callable | None = None) - tuple[str, str, str,
Callable, None]
Return a tuple describing a path list SCons Variable.

The input parameters describe a ‘path list' variable. Returns a tuple with the correct converter and validator

appended. The result is usable for input to Add().
The default parameter specifies the default path to use if the user does not specify an override with this variable.
validator is a validator, see this file for examples

Indices and Tables

e genindex
« modindex

* search

206

| ndex

__call__() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.FunctionEvaluator method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
(SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.Current method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)
(SCons.Scanner.LaTeX.LaTeX method)
(SCons.Scanner.ScannerBase method)
(SCons.Tool.ToollnitializerMethod method)

(SCons.Variables.PathVariable. _PathVariableClass
method)

__clearRepositoryCache() (SCons.Node.FS.Dir method)

__contains__ ()
(SCons.Environment.OverrideEnvironment method)

(SCons.Taskmaster.Job.NewParallel.State class
method)

__delitem__()
(SCons.Environment.OverrideEnvironment method)

__dmap_cache (SCons.Node.FS.File attribute)
__dmap_sig_cache (SCons.Node.FS.File attribute)
__enter__ () (SCons.Util.filelock.FileLock method)
__eg__() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

__exit_ () (SCons.Uftil.filelock.FileLock method)
__get_abspath() (SCons.Node.FS.EntryProxy method)

__get_base_path() (SCons.Node.FS.EntryProxy
method)

__get_dir() (SCons.Node.FS.EntryProxy method)
__get file() (SCons.Node.FS.EntryProxy method)
__get _filebase() (SCons.Node.FS.EntryProxy method)

__get_posix_path() (SCons.Node.FS.EntryProxy
method)

__get_relpath() (SCons.Node.FS.EntryProxy method)
__get_rsrcdir() (SCons.Node.FS.EntryProxy method)
__get_rsrcnode() (SCons.Node.FS.EntryProxy method)
__get_srcdir() (SCons.Node.FS.EntryProxy method)
__get_srcnode() (SCons.Node.FS.EntryProxy method)
__get_suffix() (SCons.Node.FS.EntryProxy method)

__get_windows_path() (SCons.Node.FS.EntryProxy
method)

__getattr__ () (SCons.Builder.CompositeBuilder method)

(SCons.Environment.Base method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Script.SConsOptions.SConsValues method)
(SCons.Util.NodeList method)
(SCons.Util.Proxy method)

__getitem__()
(SCons.Environment.OverrideEnvironment method)

(SCons.Taskmaster.Job.NewParallel.State class
method)

(SCons.Util.NodeList method)

__Qgetstate__ () (SCons.Node.Alias.AliasBuildInfo
method)

(SCons.Node.Alias.AliasNodelnfo method)
(SCons.Node.BuildinfoBase method)
(SCons.Node.FS.DirBuildinfo method)
(SCons.Node.FS.DirNodelnfo method)
(SCons.Node.FS.FileBuildinfo method)
(SCons.Node.FS.FileNodelnfo method)
(SCons.Node.NodelnfoBase method)
(SCons.Node.Python.ValueBuildIinfo method)
(SCons.Node.Python.ValueNodelnfo method)
(SCons.SConf.SConfBuildinfo method)

__iter__() (SCons.Taskmaster.Job.NewParallel.State
class method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.FunctionEvaluator.__call__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.__call__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.__call__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.__call__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.__call__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Classic.__call__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.__call__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current.__call__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.__call__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.__call__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.__call__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ScannerBase.__call__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Tool.ToolInitializerMethod.__call__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.PathVariable._PathVariableClass.__call__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.PathVariable._PathVariableClass.__call__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.NewParallel.State.__contains__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.NewParallel.State.__contains__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.__eq__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.__eq__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.__eq__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.__eq__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.__eq__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.__getattr__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.__getattr__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.__getattr__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.__getattr__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.__getattr__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.__getattr__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.__getattr__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.__getattr__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsValues.__getattr__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.__getattr__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Proxy.__getattr__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.NewParallel.State.__getitem__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.NewParallel.State.__getitem__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.__getitem__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNodeInfo.__getstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.__getstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.__getstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.__getstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.__getstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.__getstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.__getstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.__getstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.__getstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.__getstate__')

len () (SCons.Taskmaster.Job.NewParallel.State

class method)

__lib_either_version_flag() (in module SCons.Defaults)

__libversionflags() (in module SCons.Defaults)
It () (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
__make_unique() (SCons.Util.UniqueList method)
__repr__() (SCons.Util filelock.FileLock method)
__resetDuplicate() (SCons.Node.FS.Dir method)

__setstate ()
method)

(SCons.Node.Alias.AliasNodelnfo method)
(SCons.Node.BuildInfoBase method)
(SCons.Node.FS.DirBuildinfo method)
(SCons.Node.FS.DirNodelnfo method)
(SCons.Node.FS.FileBuildinfo method)
(SCons.Node.FS.FileNodelnfo method)
(SCons.Node.NodelnfoBase method)
(SCons.Node.Python.ValueBuildinfo method)
(SCons.Node.Python.ValueNodelnfo method)
(SCons.SConf.SConfBuildinfo method)
__str__() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Variables.Variables method)
_abc_impl (SCons.Action._ActionAction attribute)
(SCons.Action.ActionBase attribute)

(SCons.Action.CommandAction attribute)

(SCons.Action.CommandGeneratorAction attribute)

(SCons.Action.FunctionAction attribute)
(SCons.Action.LazyAction attribute)
(SCons.Action.ListAction attribute)
(SCons.Builder.ListEmitter attribute)
(SCons.Builder.OverrideWarner attribute)

(SCons.Environment.BuilderDict attribute)
(SCons.Executor.TSList attribute)

(SCons.Node.Alias.AliasBuildInfo

(SCons.Node.Alias.AliasNameSpace attribute)
(SCons.Node.NodeList attribute)
(SCons.SConf.SConfBuildTask attribute)
(SCons.Script.Main.BuildTask attribute)
(SCons.Script.Main.CleanTask attribute)
(SCons.Script.Main.QuestionTask attribute)
(SCons.Script.TargetList attribute)
(SCons.Subst.CmdStringHolder attribute)
(SCons.Subst.ListSubber attribute)
(SCons.Subst.Targets_or_Sources attribute)
(SCons.Taskmaster.AlwaysTask attribute)
(SCons.Taskmaster.OutOfDateTask attribute)
(SCons.Taskmaster.Task attribute)
(SCons.Util.CLVar attribute)
(SCons.Util.NodeList attribute)
(SCons.Util.stats.CountStats attribute)
(SCons.Util.stats.MemStats attribute)
(SCons.Util.stats.Stats attribute)
(SCons.Util.stats. TimeStats attribute)
(SCons.Util.UniquelList attribute)

(SCons.Variables.ListVariable._ListVariable
attribute)

_abspath (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

_ActionAction (class in SCons.Action)

_actionAppend() (in module SCons.Action)

_Add_Arguments() (in module SCons.Script)

_add_child() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

_add_config() (SCons.CacheDir.CacheDir method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.__lt__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.__lt__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.__lt__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.__lt__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNodeInfo.__setstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.__setstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.__setstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.__setstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.__setstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.__setstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.__setstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.__setstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.__setstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.__setstate__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.__str__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.__str__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.__str__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.Variables.__str__')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.ListEmitter._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildTask._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.CountStats._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.MemStats._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.Stats._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.TimeStats._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._add_child')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._add_child')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._add_child')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._add_child')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._add_child')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._add_child')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._add_child')

_add_cppdefines() (in module SCons.Environment)
_add_Default() (SCons.Script.TargetList method)

_add_help_option()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_add_strings_to_dependency_map()
(SCons.Node.FS.File method)

_Add_Targets() (in module SCons.Script)

_add_version_option()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_adjust_stack_size()
(SCons.Taskmaster.Job.NewParallel method)

_adjustixes() (SCons.Builder.BuilderBase method)

_attempt_get_hash_function() (in module

SCons.Util.hashes)

_attempt_init_of_python_3 9 hash_object() (in module
SCons.Util.hashes)

_bootstrap()
(SCons.Taskmaster.Job.NewParallel.Worker method)

(SCons.Taskmaster.Job.Worker method)

_bootstrap_inner()
(SCons.Taskmaster.Job.NewParallel.Worker method)

(SCons.Taskmaster.Job.Worker method)

_build_dependency_map() (SCons.Node.FS.File

method)
_build_targets() (in module SCons.Script.Main)
_CacheDir (SCons.Executor.NullEnvironment attribute)

_CacheDir_path
attribute)

(SCons.Executor.NullEnvironment

_callable_contents() (in module SCons.Action)
_canonicalize() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

_changed_build() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

_changed_content() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

_changed_timestamp_match()

(SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

_changed_timestamp_newer()
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

_changed_timestamp_then_content()

(SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

_check_action()
(SCons.Script.SConsOptions.SConsOption method)

_check_callback()
(SCons.Script.SConsOptions.SConsOption method)

_check_choice()
(SCons.Script.SConsOptions.SConsOption method)

_check_conflict()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

_check_const()
(SCons.Script.SConsOptions.SConsOption method)

_check_dest()
(SCons.Script.SConsOptions.SConsOption method)

_check_empty program() (in module SCons.Conftest)

_check_nargs()
(SCons.Script.SConsOptions.SConsOption method)

_check_nargs_optional()
(SCons.Script.SConsOptions.SConsOption method)

_check_opt_strings()
(SCons.Script.SConsOptions.SConsOption method)

_check_type()
(SCons.Script.SConsOptions.SConsOption method)

_check_writable() (SCons.dblite._Dblite method)
_children_get() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker._bootstrap')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker._bootstrap_inner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._canonicalize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._canonicalize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._canonicalize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_content')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_content')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_content')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_timestamp_match')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_match')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_match')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_timestamp_newer')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_newer')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_newer')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_timestamp_then_content')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_then_content')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_then_content')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._check_conflict')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._check_conflict')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._children_get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._children_get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._children_get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._children_get')

(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
_children_reset() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
_classEntry (in module SCons.Node.FS)
_clean_targets() (SCons.Script.Main.CleanTask method)
_clear() (SCons.Script.TargetList method)
_code_contents() (in module SCons.Action)
_collect_classes() (in module SCons.Scanner.Java)
_concat() (in module SCons.Defaults)
_concat_ixes() (in module SCons.Defaults)
_converter() (in module SCons.Variables.ListVariable)
(in module SCons.Variables.PackageVariable)
_copy_func() (in module SCons.Node.FS)
_create() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
_create_nodelist() (SCons.Subst.NLWrapper method)
_create_nodes() (SCons.Builder.BuilderBase method)

_create_option_list()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

_create_option_mappings()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

_create_path() (in module SCons.Script.Main)
_createConfigH() (in module SCons.SConf)
_createDir() (SCons.Node.FS.File method)

(SCons.SConf.SConfBase method)
_createSource() (in module SCons.SConf)
_Dblite (class in SCons.dblite)

_defines() (in module SCons.Defaults)
_del_SCANNERS() (in module SCons.Environment)

_delete()
method)

(SCons.Taskmaster.Job.NewParallel.Worker

(SCons.Taskmaster.Job.Worker method)
_delete_duplicates() (in module SCons.Environment)
_do_add() (SCons.Variables.Variables method)
_do_create_action() (in module SCons.Action)
_do_create_keywords() (in module SCons.Action)
_do_create_list_action() (in module SCons.Action)
_do_execute (SCons.Executor.Executor attribute)

(SCons.Executor.Null attribute)

_do_if_else_condition() (SCons.cpp.DumbPreProcessor
method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
_do_nothing() (SCons.Script.TargetList method)

_do_one_help()
(SCons.Script.Interactive.SConsinteractiveCmd method)

_doc_to_help()
(SCons.Script.Interactive.SConsInteractiveCmd method)

_dump_one_caller() (in module SCons.Debug)

enable_virtualenv_default() (in module

§Cons.Platform.virtualenv)

_exception_raise() (SCons.SConf.SConfBuildTask

method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)
_exec_main() (in module SCons.Script.Main)
_execute() (SCons.Builder.BuilderBase method)
_execute_str (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)
_exercise() (in module SCons.dblite)
_fetch_DefaultEnvironment() (in module SCons.Defaults)
_find_file_key() (SCons.Node.FS.FileFinder method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._children_get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._children_get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._children_get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._children_reset')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._children_reset')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._children_reset')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._children_reset')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._children_reset')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._children_reset')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._children_reset')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.PackageVariable._converter')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._create')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._create_option_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._create_option_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._create_option_mappings')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._create_option_mappings')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase._createDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker._delete')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._do_execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor._do_if_else_condition')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._do_if_else_condition')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._do_if_else_condition')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner._do_if_else_condition')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask._exception_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask._exception_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask._exception_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask._exception_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask._exception_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task._exception_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._execute_str')

_find_next_ready_node()
(SCons.Taskmaster.Taskmaster method)

_find_toolpath_dir() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

_format_text() (SCons.Script.SConsOptions.SConsinden
tedHelpFormatter method)

_func_exists (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

_func_get_contents (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

_func_is_derived (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

_func_rexists (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

_func_sconsign (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

_func_target_from_source (SCons.Node.Alias.Alias

attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

_function_contents() (in module SCons.Action)

_gen_nodelist() (SCons.Subst.NLWrapper method)

_generate()
method)

(SCons.Action.CommandGeneratorAction

(SCons.Action.LazyAction method)
_generate_cache() (SCons.Action.LazyAction method)

_get_all_options()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_get_args()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_get_changed_sources()
method)

(SCons.Executor.Executor

_get_changed_targets()
method)

(SCons.Executor.Executor

_get_changes() (SCons.Executor.Executor method)
_Get_Default_Targets() (in module SCons.Script)

_get files_to_clean()
method)

(SCons.Script.Main.CleanTask

_get_found_includes_key()
method)

(SCons.Node.FS.File

_get_hash_object() (in module SCons.Util.hashes)

_get_implicit_deps_heavyweight()
(SCons.Action.CommandAction method)

(SCons.Action.LazyAction method)

_get_implicit_deps_lightweight()
(SCons.Action.CommandAction method)

(SCons.Action.LazyAction method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._find_toolpath_dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._find_toolpath_dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._find_toolpath_dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._func_exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._func_exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._func_exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._func_get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._func_get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._func_get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._func_is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._func_is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._func_is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._func_rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._func_rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._func_rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._func_target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._func_target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._func_target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction._generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction._get_implicit_deps_heavyweight')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction._get_implicit_deps_lightweight')

_get_major_minor_revision()
(SCons.Script.SConscript.SConsEnvironment static
method)

_get_previous_signatures()
method)

(SCons.Node.FS.File

_get_scanner() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

_get_SConscript_filenames()
(SCons.Script.SConscript.SConsEnvironment method)

_get_sdict() (SCons.Builder.BuilderBase method)
_get_source() (SCons.Executor.Executor method)
_get_sources() (SCons.Executor.Executor method)

_get_src_builders_key() (SCons.Builder.BuilderBase

method)

_get_str() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

_get_target() (SCons.Executor.Executor method)

_get_targets() (SCons.Executor.Executor method)

_get_unchanged_sources()
method)

(SCons.Executor.Executor

_get_unchanged_targets()
method)

(SCons.Executor.Executor

_get_unignored_sources_key()
(SCons.Executor.Executor method)

_glob1() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

_gsm() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

_hardlink_func() (in module SCons.Node.FS)
_Have() (in module SCons.Conftest)

_ignore_virtualenv_default() (in module

SCons.Platform.virtualenv)

_init_parsing_state()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_init_special() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_initialized (SCons.Taskmaster.Job.NewParallel.Worker
attribute)

(SCons.Taskmaster.Job.Worker attribute)

_inject_venv_path() (in module
SCons.Platform.virtualenv)
inject_venv_variables() (in module

§Cons.Platform.virtualenv)
_instance (SCons.Subst.NullNodeList attribute)
_is_path_in() (in module SCons.Platform.virtualenv)
_is_process_alive() (in module SCons.Util)
_labspath (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
_lang2suffix() (in module SCons.Conftest)
_latex_names() (SCons.Scanner.LaTeX.LaTeX method)
_ListVariable (class in SCons.Variables.ListVariable)

load_all_site_scons_dirs() (in module

§Cons.Script.Main)

_load_site_scons_dir() (in module SCons.Script.Main)

_local (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

_LogFailed() (in module SCons.Conftest)

_lookup() (SCons.Node.FS.FS method)

_lookup_abs() (SCons.Node.FS.RootDir method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._get_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._get_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._get_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._get_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._glob1')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._glob1')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._glob1')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._glob1')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._gsm')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._gsm')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._gsm')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._init_special')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment._init_special')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment._init_special')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._init_special')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._init_special')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker._initialized')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._local')

_lookupDict (SCons.Node.FS.RootDir attribute)
_main() (in module SCons.Script.Main)

_match_long_opt()
(SCons.Script.SConsOptions.SConsOptionParser
method)

match_tuples()

N (SCons.cpp.DumbPreProcessor
method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

_maybe_start_worker()
(SCons.Taskmaster.Job.NewParallel method)

_memo (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)
(SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

_mkdir_atomic() (SCons.CacheDir.CacheDir method)

_morph() (SCons.Executor.Null method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

_my_normcase() (in module SCons.Node.FS)

_Nno_exception_to_raise()
(SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

_node_errors() (in module SCons.Builder)

_NoError

_null (class in SCons.Action)

_Null (class in SCons.Builder)

(class in SCons.Environment)

(class in SCons.Node.FS)

(class in SCons.Scanner)

(class in SCons.Scanner.LaTeX)

_null (in module SCons.Builder)

(in module SCons.Environment)

(in module SCons.Scanner)

(in module SCons.Scanner.LaTeX)
_object_contents() (in module SCons.Action)
_object_instance_content() (in module SCons.Action)
_open() (SCons.dblite._Dblite static method)
_os_chmod() (SCons.dblite._Dblite static method)
_os_chown() (SCons.dblite._Dblite static method)
_os_replace() (SCons.dblite._Dblite static method)

_parse_tuples()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
_path (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
_path_elements (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
_PathList (class in SCons.PathList)

_PathVariableClass
SCons.Variables.PathVariable)

_pickle_dump() (SCons.dblite._Dblite static method)

(class in

_pickle_protocol (SCons.dblite._Dblite attribute)

_populate_option_list()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_print_cmd_str()
method)

(SCons.Platform.TempFileMunge

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor._match_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._match_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._match_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner._match_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._morph')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._morph')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._morph')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask._no_exception_to_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask._no_exception_to_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask._no_exception_to_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask._no_exception_to_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask._no_exception_to_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task._no_exception_to_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment._Null')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS._Null')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner._Null')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX._Null')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment._null')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner._null')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX._null')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor._parse_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._parse_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._parse_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner._parse_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._path_elements')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._path_elements')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._path_elements')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._path_elements')

_process_args()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_process_long_opt()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_process_short_opts()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_process_tuples()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
_proxy (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
_readconfig() (SCons.CacheDir.CacheDir method)

_recurse_all_nodes()
method)

(SCons.Scanner.Classic static

(SCons.Scanner.ClassicCPP static method)
(SCons.Scanner.Current static method)
(SCons.Scanner.D.D static method)
(SCons.Scanner.Fortran.F90Scanner static method)
(SCons.Scanner.LaTeX.LaTeX static method)
(SCons.Scanner.ScannerBase static method)
(SCons.Scanner.Selector static method)

_recurse_no_nodes()
method)

(SCons.Scanner.Classic ~ static

(SCons.Scanner.ClassicCPP static method)
(SCons.Scanner.Current static method)
(SCons.Scanner.D.D static method)
(SCons.Scanner.Fortran.F90Scanner static method)
(SCons.Scanner.LaTeX.LaTeX static method)
(SCons.Scanner.ScannerBase static method)
(SCons.Scanner.Selector static method)
_rel_path_key() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

_Remove_Argument() (in module SCons.Script)

_remove_list() (in module SCons.Subst)
_Remove_Target() (in module SCons.Script)

_reset_internal_locks()
(SCons.Taskmaster.Job.NewParallel.Worker method)

(SCons.Taskmaster.Job.Worker method)

reset_sig_handler()

N (SCons.Taskmaster.Job.Jobs
method)
_resolve_shell_env() (in module SCons.Action)

_restore_stack_size()
(SCons.Taskmaster.Job.NewParallel method)

_return_nodelist() (SCons.Subst.NLWrapper method)

_Rfindalldirs_key() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

_rm_list() (in module SCons.Subst)

_rmv_existing() (SCons.Node.FS.File method)

_run_exitfuncs() (in module SCons.exitfuncs)

running_in_virtualenv() (in module

§Cons.Platform.virtualenv)

_save_str() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

_scons_internal_error() (in module SCons.Script.Main)

_scons_internal_warning()
SCons.Script.Main)

(in module
_scons_syntax_error() (in module SCons.Script.Main)
_scons_user_error() (in module SCons.Script.Main)
_scons_user_warning() (in module SCons.Script.Main)
_SConscript() (in module SCons.Script.SConscript)
_sconsign (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
_SConstruct_exists() (in module SCons.Script.Main)
_semi_deepcopy_list() (in module SCons.Util)

_semi_deepcopy_tuple() (in module SCons.Util)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor._process_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._process_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._process_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner._process_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP._recurse_all_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current._recurse_all_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D._recurse_all_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner._recurse_all_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX._recurse_all_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ScannerBase._recurse_all_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector._recurse_all_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP._recurse_no_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current._recurse_no_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D._recurse_no_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner._recurse_no_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX._recurse_no_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ScannerBase._recurse_no_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector._recurse_no_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._rel_path_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker._reset_internal_locks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._Rfindalldirs_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._Rfindalldirs_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._Rfindalldirs_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._Rfindalldirs_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._save_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._save_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._save_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._save_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._sconsign')

_set_allowed_viable_default_hashes()
SCons.Util.hashes)

(in module

_set_attrs() (SCons.Script.SConsOptions.SConsOption
method)

_set BUILDERS() (in module SCons.Environment)
_set_conftest_node() (in module SCons.SConf)
_set_debug_values() (in module SCons.Script.Main)
_Set_Default_Targets() (in module SCons.Script)

_Set_Default_Targets Has Been_Called() (in module
SCons.Script)

_Set_Default_Targets Has_ Not_Been_Called() (in
module SCons.Script)

_set future_reserved() (in module SCons.Environment)

_set_ident()
(SCons.Taskmaster.Job.NewParallel.Worker method)

(SCons.Taskmaster.Job.Worker method)

_set _native_id()
(SCons.Taskmaster.Job.NewParallel.Worker method)

(SCons.Taskmaster.Job.Worker method)

_set_opt_strings()
(SCons.Script.SConsOptions.SConsOption method)

_set_reserved() (in module SCons.Environment)
_set SCANNERS() (in module SCons.Environment)

_set _tstate lock()
(SCons.Taskmaster.Job.NewParallel.Worker method)

(SCons.Taskmaster.Job.Worker method)

_setup_logging()
method)

(SCons.Taskmaster.Job.NewParallel

_setup_sig_handler()
method)

(SCons.Taskmaster.Job.Jobs

_share_option_mappings()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

_show_md5_warning() (in module SCons.Util.hashes)
_shutdown() (SCons.SConf.SConfBase method)
_shutil_copyfile() (SCons.dblite._Dblite static method)
_softlink_func() (in module SCons.Node.FS)
_specific_sources (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
_srcdir_find_file_key() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

_start_waorker() (SCons.Taskmaster.Job.NewParallel

method)

_startup() (SCons.SConf.SConfBase method)

_stop() (SCons.Taskmaster.Job.NewParallel.Worker
method)

(SCons.Taskmaster.Job.Worker method)
_string_from_cmd_list() (in module SCons.Action)
_stringConfigH() (in module SCons.SConf)
_stringSource() (in module SCons.SConf)

_strip_initial_spaces()
(SCons.Script.Interactive.SConsInteractiveCmd method)

_stripixes() (in module SCons.Defaults)
_subproc() (in module SCons.Action)
_subst_libs() (in module SCons.Scanner.Prog)
_subst_paths() (in module SCons.Scanner.Java)

subst_src_suffixes_key() (SCons.Builder.BuilderBase

method)

_tags (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

_text2bool() (in module SCons.Variables.BoolVariable)

_time_time() (SCons.dblite._Dblite static method)

_tool_module() (SCons.Tool.Tool method)

_tpath (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

_update() (SCons.Environment.Base method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker._set_ident')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker._set_native_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker._set_tstate_lock')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._share_option_mappings')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._share_option_mappings')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._specific_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._specific_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._specific_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._specific_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._specific_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._specific_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._specific_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._srcdir_find_file_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker._stop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._tags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._tags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._tags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._tags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._tags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._tags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._tags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._tpath')

(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Script.SConsOptions.SConsValues method)

_update_careful()
(SCons.Script.SConsOptions.SConsValues method)

_update_loose()
(SCons.Script.SConsOptions.SConsValues method)

_update_onlynew() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

_validate_pending_children()
(SCons.Taskmaster.Taskmaster method)

_validator() (in module SCons.Variables.BoolVariable)
(in module SCons.Variables.EnumVariable)
(in module SCons.Variables.ListVariable)
(in module SCons.Variables.PackageVariable)

_wait_for_process_to_die_non_psultil() (in module

SCons.Util)

_wait_for_tstate lock()
(SCons.Taskmaster.Job.NewParallel.Worker method)

(SCons.Taskmaster.Job.Worker method)
_work() (SCons.Taskmaster.Job.NewParallel method)

_YesNoResult() (in module SCons.Conftest)

A

abspath (SCons.Node.FS.RootDir attribute)

acquire_lock() (SCons.Uftil.filelock.FileLock method)

Action() (in module SCons.Action)
(SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

action_list (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)
ActionBase (class in SCons.Action)
ActionCaller (class in SCons.Action)
ActionFactory (class in SCons.Action)

ACTIONS
attribute)

Add() (SCons.Variables.Variables method)

(SCons.Script.SConsOptions.SConsOption

add_action() (SCons.Builder.CompositeBuilder method)

(SCons.Builder.DictCmdGenerator method)
add_batch() (SCons.Executor.Executor method)
add_command() (SCons.Util.stats.TimeStats method)
add_dependency() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)
add_emitter() (SCons.Builder.BuilderBase method)
add_ignore() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

add_local_option()
(SCons.Script.Main.FakeOptionParser method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

add_new_word() (SCons.Subst.ListSubber method)

add_note() (SCons.Node.FS.EntryProxyAttributeError
method)

(SCons.Node.FS.FileBuildInfoFileToCsigMappingEr
ror method)

(SCons.SConf.ConfigureCacheError method)
(SCons.SConf.ConfigureDryRunError method)
(SCons.SConf.SConfError method)
(SCons.SConf.SConfWarning method)

(SCons.Script.Main.SConsPrintHelpException
method)

(SCons.Script.SConscript.SConscriptReturn
method)

(SCons.Script.SConsOptions.SConsBadOptionError
method)

(SCons.Util._NoError method)
(SCons.Uitil.filelock.SConsLockFailure method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsValues._update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._update_onlynew')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._update_onlynew')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._update_onlynew')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.EnumVariable._validator')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._validator')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.PackageVariable._validator')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker._wait_for_tstate_lock')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.action_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.add_action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_dependency')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_dependency')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_dependency')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_dependency')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_dependency')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_dependency')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_dependency')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_local_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_local_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfoFileToCsigMappingError.add_note')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfoFileToCsigMappingError.add_note')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.ConfigureCacheError.add_note')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.ConfigureDryRunError.add_note')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfError.add_note')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfWarning.add_note')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.SConsPrintHelpException.add_note')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.SConsPrintHelpException.add_note')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConscriptReturn.add_note')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConscriptReturn.add_note')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsBadOptionError.add_note')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsBadOptionError.add_note')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util._NoError.add_note')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.filelock.SConsLockFailure.add_note')

add_option()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

add_option_group()
(SCons.Script.SConsOptions.SConsOptionParser
method)

add_options()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

add_post_action() (SCons.Executor.Executor method)
(SCons.Executor.Null method)

add_pre_action() (SCons.Executor.Executor method)
(SCons.Executor.Null method)

add_prerequisite() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

add_scanner() (SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.Current method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)
(SCons.Scanner.LaTeX.LaTeX method)
(SCons.Scanner.ScannerBase method)
(SCons.Scanner.Selector method)

add_skey() (SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.Current method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)
(SCons.Scanner.LaTeX.LaTeX method)
(SCons.Scanner.ScannerBase method)
(SCons.Scanner.Selector method)

add_source() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
add_sources() (SCons.Executor.Executor method)
add_src_builder() (SCons.Builder.BuilderBase method)
add_stat_type() (in module SCons.Util.stats)

add_to_current_word() (SCons.Subst.ListSubber

method)

add_to_implicit() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

add_to_waiting_parents() (SCons.Node.Alias.Alias

method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

add_to_waiting_s_e() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

add_wkid() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_options')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_options')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.add_post_action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.add_pre_action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_prerequisite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_prerequisite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_prerequisite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_prerequisite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_prerequisite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_prerequisite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_prerequisite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.add_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current.add_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.add_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.add_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.add_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ScannerBase.add_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector.add_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.add_skey')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current.add_skey')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.add_skey')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.add_skey')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.add_skey')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ScannerBase.add_skey')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector.add_skey')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_to_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_to_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_to_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_to_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_to_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_to_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_to_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_to_waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_to_waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_to_waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_to_waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_to_waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_to_waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_to_waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_to_waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_to_waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_to_waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_to_waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_to_waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_to_waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_to_waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_wkid')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_wkid')

(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
AddBatchExecutor() (in module SCons.Executor)
addEntity() (bin.SConsDoc.DoctypeDeclaration method)
AddMethod() (in module SCons.Util.envs)
(SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

AddOption() (in module SCons.Script.Main)

AddPathlfNotExists() (in module SCons.Util.envs)

AddPostAction() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

AddPreAction() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

addRepository() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

AddTest() (SCons.SConf.SConfBase method)

AddTests() (SCons.SConf.SConfBase method)

AddVariables() (SCons.Variables.Variables method)

adjust_suffix() (SCons.Builder.BuilderBase method)

adjustixes() (in module SCons.Util)

Alias (class in SCons.Node.Alias)

Alias() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)
(SCons.Node.Alias.AliasNameSpace method)

(SCons.Script.SConscript.SConsEnvironment
method)

Alias.Attrs (class in SCons.Node.Alias)
alias_builder() (in module SCons.Environment)
AliasBuildInfo (class in SCons.Node.Alias)

aliases (SCons.Variables.Variable attribute)

aliasfmt (SCons.Variables.Variables attribute)
AliasNameSpace (class in SCons.Node.Alias)
AliasNodelnfo (class in SCons.Node.Alias)
all_children() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
all_include() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
alter_targets() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
always_build (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

ALWAYS_TYPED_ACTIONS
(SCons.Script.SConsOptions.SConsOption attribute)

AlwaysBuild() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

AlwaysTask (class in SCons.Taskmaster)

Annotate() (in module SCons.Node)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_wkid')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_wkid')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_wkid')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_wkid')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_wkid')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.AddMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AddMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.AddMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.AddMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AddPostAction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddPostAction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddPostAction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AddPreAction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddPreAction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddPreAction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.addRepository')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Alias')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.Alias')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Alias')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Alias')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.all_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.all_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.all_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.all_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.alter_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.alter_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.alter_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.alter_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.alter_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.alter_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.alter_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AlwaysBuild')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AlwaysBuild')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AlwaysBuild')

annotate() (in module SCons.Script.SConscript)

append() (bin.SConsDoc.Arguments method)
(SCons.Builder.ListEmitter method)

Append() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

append() (SCons.Executor.TSList method)
(SCons.Node.NodeList method)

Append() (SCons.Script.SConscript.SConsEnvironment
method)

append() (SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.UniqueList method)

(SCons.Variables.ListVariable._ListVariable
method)

appendCvLink()
method)

(bin.SConsDoc.TreeFactory static

AppendENVPath() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

AppendLIBS() (SCons.SConf.CheckContext method)

appendNode()
method)

(bin.SConsDoc.TreeFactory static

AppendPath() (in module SCons.Util.envs)
AppendUnique() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

apply_tools() (in module SCons.Environment)
(SCons.Tool.Toollnitializer method)

ArchDefinition (class in SCons.Platform.win32)

arg2nodes() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

args (SCons.Node.FS.EntryProxyAttributeError attribute)

(SCons.Node.FS.FileBuildInfoFileToCsigMappingEr
ror attribute)

(SCons.SConf.ConfigureCacheError attribute)
(SCons.SConf.ConfigureDryRunError attribute)
(SCons.SConf.SConfError attribute)
(SCons.SConf.SConfWarning attribute)

(SCons.Script.Main.SConsPrintHelpException
attribute)

(SCons.Script.SConscript.SConscriptReturn
attribute)

(SCons.Script.SConsOptions.SConsBadOptionError
attribute)

(SCons.Util._NoError attribute)
(SCons.Util.filelock.SConsLockFailure attribute)
Arguments (class in bin.SConsDoc)
attributes (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

ATTRS
attribute)

(SCons.Script.SConsOptions.SConsOption

B
backtick() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

bact (SCons.Node.Alias.AliasBuildInfo attribute)
(SCons.Node.BuildinfoBase attribute)
(SCons.Node.FS.DirBuildinfo attribute)
(SCons.Node.FS.FileBuildInfo attribute)
(SCons.Node.Python.ValueBuildinfo attribute)
(SCons.SConf.SConfBuildInfo attribute)

bactsig (SCons.Node.Alias.AliasBuildInfo attribute)
(SCons.Node.BuildinfoBase attribute)
(SCons.Node.FS.DirBuildinfo attribute)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.ListEmitter.append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AppendENVPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AppendENVPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AppendENVPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AppendUnique')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AppendUnique')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AppendUnique')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Tool.ToolInitializer.apply_tools')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.arg2nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.arg2nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.arg2nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.arg2nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.arg2nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfoFileToCsigMappingError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfoFileToCsigMappingError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.ConfigureCacheError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.ConfigureDryRunError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.SConsPrintHelpException.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.SConsPrintHelpException.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConscriptReturn.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConscriptReturn.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsBadOptionError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsBadOptionError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util._NoError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.filelock.SConsLockFailure.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.backtick')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.backtick')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.backtick')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.backtick')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.backtick')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bact')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bact')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bact')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bact')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bact')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bactsig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bactsig')

(SCons.Node.FS.FileBuildInfo attribute)
(SCons.Node.Python.ValueBuildinfo attribute)
(SCons.SConf.SConfBuildInfo attribute)

Base (class in SCons.Environment)

(class in SCons.Node.FS)
(class in SCons.SConsign)

(in module SCons.Scanner)

Base.Attrs (class in SCons.Node.FS)
Batch (class in SCons.Executor)

batch_key() (SCons.Action._ActionAction method)

(SCons.Action.ActionBase method)
(SCons.Action.CommandAction method)
(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)

batches (SCons.Executor.Executor attribute)

(SCons.Executor.Null attribute)

bdepends (SCons.Node.Alias.AliasBuildInfo attribute)

(SCons.Node.BuildinfoBase attribute)
(SCons.Node.FS.DirBuildInfo attribute)
(SCons.Node.FS.FileBuildInfo attribute)
(SCons.Node.Python.ValueBuildinfo attribute)
(SCons.SConf.SConfBuildInfo attribute)

bdependsigs (SCons.Node.Alias.AliasBuildIinfo attribute)

(SCons.Node.BuildInfoBase attribute)
(SCons.Node.FS.DirBuildInfo attribute)
(SCons.Node.FS.FileBuildInfo attribute)
(SCons.Node.Python.ValueBuildinfo attribute)
(SCons.SConf.SConfBuildInfo attribute)

bimplicit (SCons.Node.Alias.AliasBuildInfo attribute)

(SCons.Node.BuildinfoBase attribute)
(SCons.Node.FS.DirBuildInfo attribute)
(SCons.Node.FS.FileBuildInfo attribute)
(SCons.Node.Python.ValueBuildinfo attribute)
(SCons.SConf.SConfBuildInfo attribute)

bimplicitsigs (SCons.Node.Alias.AliasBuildInfo attribute)

(SCons.Node.BuildinfoBase attribute)
(SCons.Node.FS.DirBuildInfo attribute)

(SCons.Node.FS.FileBuildInfo attribute)
(SCons.Node.Python.ValueBuildinfo attribute)

(SCons.SConf.SConfBuildInfo attribute)
bin.SConsDoc

module
bin.SConsExamples

module

binfo (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
(SCons.SConsign.SConsignEntry attribute)
BoolVariable() (in module SCons.Variables)
(in module SCons.Variables.BoolVariable)
bsources (SCons.Node.Alias.AliasBuildInfo attribute)
(SCons.Node.BuildinfoBase attribute)
(SCons.Node.FS.DirBuildinfo attribute)
(SCons.Node.FS.FileBuildInfo attribute)
(SCons.Node.Python.ValueBuildinfo attribute)
(SCons.SConf.SConfBuildInfo attribute)
bsourcesigs (SCons.Node.Alias.AliasBuildInfo attribute)
(SCons.Node.BuildinfoBase attribute)
(SCons.Node.FS.DirBuildinfo attribute)
(SCons.Node.FS.FileBuildInfo attribute)
(SCons.Node.Python.ValueBuildinfo attribute)
(SCons.SConf.SConfBuildInfo attribute)
build() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

BuildDefaultGlobals() (in module
SCons.Script.SConscript)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bactsig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bactsig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bactsig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Base')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Base')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.batches')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bdepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bdepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bdepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bdepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bdepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bdependsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bdependsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bdependsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bdependsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bdependsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bimplicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bimplicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bimplicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bimplicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bimplicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bimplicitsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bimplicitsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bimplicitsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bimplicitsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bimplicitsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-bin.SConsDoc')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-bin.SConsExamples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.SConsignEntry.binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.BoolVariable.BoolVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bsources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bsources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bsources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bsources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bsources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bsourcesigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bsourcesigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bsourcesigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bsourcesigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bsourcesigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.build')

Builder (class in bin.SConsDoc)

builder (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

Builder() (in module SCons.Builder)

(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

builder_kw (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)
builder_set() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
BuilderBase (class in SCons.Builder)
BuilderDict (class in SCons.Environment)
BuildError
BuilderWrapper (class in SCons.Environment)
Buildinfo (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
BuildinfoBase (class in SCons.Node)
BuildNodes() (SCons.SConf.SConfBase method)
BuildProg() (SCons.SConf.CheckContext method)

BuildTask (class in SCons.Script.Main)
built() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

C

CacheCleanupErrorWarning

cached (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

CacheDebug() (SCons.CacheDir.CacheDir method)

CacheDir (class in SCons.CacheDir)

CacheDir() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

cachedir_csig (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
cachepath() (SCons.CacheDir.CacheDir method)
CachePushFunc() (in module SCons.CacheDir)
CacheRetrieveFunc() (in module SCons.CacheDir)
CacheRetrieveString() (in module SCons.CacheDir)
cachesig (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
CacheVersionWarning

CacheWriteErrorWarning

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.builder_kw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.builder_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.builder_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.builder_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.builder_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.builder_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.builder_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.builder_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.BuildInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.BuildInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.BuildInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.BuildInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.BuildInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.BuildInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.BuildInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.built')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.built')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.built')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.built')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.built')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.built')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.built')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.cached')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.cached')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.cached')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.cached')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.cached')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.cached')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.cached')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.cachesig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.cachesig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.cachesig')

CallableSelector (class in SCons.Builder)
caller_stack() (in module SCons.Debug)
caller_trace() (in module SCons.Debug)
canonical_text() (SCons.Scanner.LaTeX.LaTeX method)
capitalize() (SCons.Subst.CmdStringHolder method)
case_sensitive_suffixes() (in module SCons.Util)
casefold() (SCons.Subst.CmdStringHolder method)
CConditionalScanner() (in module SCons.Scanner.C)
center() (SCons.Subst.CmdStringHolder method)
changed() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
changed_content() (SCons.Node.FS.File method)

changed_since_last_build (SCons.Node.Alias.Alias

attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

changed_since_last_build_alias() (in module
SCons.Node)
changed_since_last_build_entry() (in module
SCons.Node)
changed_since_last_build_node() (in module
SCons.Node)
changed_since_last_build_python() (in module

SCons.Node)

changed_since_last_build_state_changed() (in module
SCons.Node)

changed_state() (SCons.Node.FS.File method)

changed_timestamp_match() (SCons.Node.FS.File

method)

changed_timestamp_newer()
method)

(SCons.Node.FS.File

changed_timestamp_then_content()
(SCons.Node.FS.File method)

chdir() (SCons.Node.FS.FS method)

check_attributes() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

CHECK_METHODS
(SCons.Script.SConsOptions.SConsOption attribute)

check_value()
(SCons.Script.SConsOptions.SConsOption method)

check_values()
(SCons.Script.SConsOptions.SConsOptionParser
method)

CheckBuilder() (in module SCons.Conftest)
CheckCC() (in module SCons.Conftest)

(in module SCons.SConf)
CheckCHeader() (in module SCons.SConf)
CheckContext (class in SCons.SConf)
CheckCXX() (in module SCons.Conftest)

(in module SCons.SConf)
CheckCXXHeader() (in module SCons.SConf)
CheckDeclaration() (in module SCons.Conftest)

(in module SCons.SConf)

CheckFunc() (in module SCons.Conftest)

(in module SCons.SConf)

CheckHeader() (in module SCons.Conftest)

(in module SCons.SConf)

CheckLib() (in module SCons.Conftest)

(in module SCons.SConf)
CheckLibWithHeader() (in module SCons.SConf)
CheckMember() (in module SCons.Conftest)

(in module SCons.SConf)

CheckProg() (in module SCons.Conftest)

(in module SCons.SConf)
CheckSHCC() (in module SCons.Conftest)

(in module SCons.SConf)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.changed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.changed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.changed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.changed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.changed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.changed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.changed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.changed_since_last_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.changed_since_last_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.changed_since_last_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.changed_since_last_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.changed_since_last_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.changed_since_last_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.changed_since_last_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.check_attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.check_attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.check_attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.check_attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.check_attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.check_attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.check_attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckCC')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckCXX')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckDeclaration')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckFunc')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckHeader')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckLib')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckMember')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckProg')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckSHCC')

CheckSHCXX() (in module SCons.Conftest)
(in module SCons.SConf)

CheckType() (in module SCons.Conftest)
(in module SCons.SConf)

CheckTypeSize() (in module SCons.Conftest)
(in module SCons.SConf)

children() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

children_are_up_to_date() (SCons.Node.Alias.Alias

method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
chmod() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
chmod_func() (in module SCons.Defaults)
chmod_strfunc() (in module SCons.Defaults)
Classic (class in SCons.Scanner)
ClassicCPP (class in SCons.Scanner)
classname() (in module SCons.Node)
Clean() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

CleanTask (class in SCons.Script.Main)

cleanup() (SCons.Executor.Executor method)
(SCons.Executor.Null method)
(SCons.Taskmaster.Job.ThreadPool method)
(SCons.Taskmaster.Taskmaster method)

Cleanup_CPP_Expressions() (in module SCons.cpp)

clear() (SCons.Builder.CallableSelector method)
(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.ListEmitter method)
(SCons.Builder.OverrideWarner method)
(SCons.Environment.BuilderDict method)
(SCons.Executor.TSList method)
(SCons.Node.Alias.Alias method)
(SCons.Node.Alias.AliasNameSpace method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.NodeList method)
(SCons.Node.Python.Value method)
(SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.Selector method)
(SCons.Util.UniqueList method)

(SCons.Variables.ListVariable._ListVariable
method)

clear_memoized_values()
method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

(SCons.Node.Alias.Alias

Clone() (SCons.Environment.Base method)
clone() (SCons.Environment.BuilderWrapper method)

Clone()
method)

(SCons.Environment.OverrideEnvironment

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckSHCXX')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckType')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckTypeSize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.children_are_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.children_are_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.children_are_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.children_are_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.children_are_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.children_are_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.children_are_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.chmod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Clean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Clean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Clean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.ThreadPool.cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Taskmaster.cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.ListEmitter.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.clear_memoized_values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.clear_memoized_values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.clear_memoized_values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.clear_memoized_values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.clear_memoized_values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.clear_memoized_values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.clear_memoized_values')

(SCons.Script.SConscript.SConsEnvironment
method)

clone() (SCons.Util.envs.MethodWrapper method)
close() (SCons.dblite._Dblite method)
close_strip() (SCons.Subst.ListSubber method)
CLVar (class in SCons.Util)

cmdloop()
(SCons.Script.Interactive.SConslinteractiveCmd method)

CmdsStringHolder (class in SCons.Subst)

cmp() (in module SCons.Util)

cmp_name() (bin.SConsDoc.Builder method)
(bin.SConsDoc.ConstructionVariable method)
(bin.SConsDoc.Function method)
(bin.SConsDoc.Iltem method)
(bin.SConsDoc.Tool method)

collect_node_states() (SCons.SConf.SConfBuildTask

method)

collectSConsExampleNames() (in module

bin.SConsExamples)

columnize()
(SCons.Script.Interactive.SConslinteractiveCmd method)

Command() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

command_edit() (in module bin.SConsExamples)
command_Is() (in module bin.SConsExamples)
command_scons() (in module bin.SConsExamples)
command_sleep() (in module bin.SConsExamples)
command_touch() (in module bin.SConsExamples)
CommandAction (class in SCons.Action)
CommandGeneratorAction (class in SCons.Action)
CompileProg() (SCons.SConf.CheckContext method)

CompileSharedObiject() (SCons.SConf.CheckContext
method)

complete()
(SCons.Script.Interactive.SConslinteractiveCmd method)

complete_help()
(SCons.Script.Interactive.SConslinteractiveCmd method)

COMPLETED
(SCons.Taskmaster.Job.NewParallel.State attribute)

completedefault()
(SCons.Script.Interactive.SConslinteractiveCmd method)

completenames()
(SCons.Script.Interactive.SConsinteractiveCmd method)

CompositeBuilder (class in SCons.Builder)

compute_exports() (in module SCons.Script.SConscript)

Configure() (in module SCons.Script.SConscript)
(SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

configure_trace()
method)

(SCons.Taskmaster.Taskmaster

ConfigureCacheError
ConfigureDryRunError

CONST_ACTIONS
(SCons.Script.SConsOptions.SConsOption attribute)

ConstructionVariable (class in bin.SConsDoc)

containsAll() (in module SCons.Util)

containsAny() (in module SCons.Util)

containsOnly() (in module SCons.Util)

contentsig (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

convert() (SCons.Node.Alias.Alias method)
(SCons.Node.Alias.AliasNodelnfo method)
(SCons.Node.FS.DirNodelnfo method)
(SCons.Node.FS.FileNodelnfo method)
(SCons.Node.NodelnfoBase method)
(SCons.Node.Python.ValueNodelnfo method)

convert_copy_attrs (SCons.Node.FS.File attribute)

convert_from_sconsign() (SCons.Node.FS.FileBuildinfo
method)

(SCons.SConf.SConfBuildinfo method)

(SCons.SConsign.SConsignEntry method)
convert_old_entry() (SCons.Node.FS.File method)
convert_sig_attrs (SCons.Node.FS.File attribute)
convert_to_BuildError() (in module SCons.Errors)

convert_to_sconsign() (SCons.Node.FS.FileBuildInfo

method)
(SCons.SConf.SConfBuildinfo method)
(SCons.SConsign.SConsignEntry method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Clone')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Clone')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#bin.SConsDoc.ConstructionVariable.cmp_name')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#bin.SConsDoc.Function.cmp_name')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#bin.SConsDoc.Item.cmp_name')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#bin.SConsDoc.Tool.cmp_name')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Command')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Command')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Command')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Configure')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Configure')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Configure')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Configure')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.contentsig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.contentsig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.contentsig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNodeInfo.convert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.convert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.convert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.convert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.convert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.convert_from_sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.SConsignEntry.convert_from_sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.convert_to_sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.SConsignEntry.convert_to_sconsign')

convert_value()
(SCons.Script.SConsOptions.SConsOption method)

convertElementTree() (bin.SConsDoc.TreeFactory static
method)

converter (SCons.Variables.Variable attribute)

converter() (SCons.Util.DispatchingFormatter method)

copy() (SCons.Builder.CallableSelector method)
(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.ListEmitter method)
(SCons.Builder.OverrideWarner method)
(SCons.Environment.BuilderDict method)
(SCons.Executor.TSList method)
(SCons.Node.Alias.AliasNameSpace method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
(SCons.Node.NodeList method)
(SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.Selector method)
(SCons.Util.UniqueList method)

(SCons.Variables.ListVariable._ListVariable
method)

copy2() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)

copy_from_cache()
method)

(SCons.CacheDir.CacheDir class

copy_func() (in module SCons.Defaults)

copy_non_reserved_keywords() (in module

SCons.Environment)
copy_strfunc() (in module SCons.Defaults)

copy_to_cache()
method)

(SCons.CacheDir.CacheDir class

copyNode() (bin.SConsDoc.TreeFactory static method)
corrupt_dblite_warning() (in module SCons.SConsign)
CorruptSConsignWarning

count (SCons.Script.Main.Progressor attribute)

count() (SCons.Builder.ListEmitter method)

(SCons.Executor.TSList method)
(SCons.Memoize.CountDict method)
(SCons.Memoize.CountValue method)
(SCons.Node.NodeList method)
(SCons.Script.TargetList method)
(SCons.Subst.CmdStringHolder method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.UniqueList method)

(SCons.Variables.ListVariable._ListVariable
method)

CountDict (class in SCons.Memoize)

CountDictCall() (in module SCons.Memoize)

Counter (class in SCons.Memoize)
countLoggedInstances() (in module SCons.Debug)
CountMethodCall() (in module SCons.Memoize)
CountStats (class in SCons.Util.stats)

CountValue (class in SCons.Memoize)
CPP_to_Python() (in module SCons.cpp)
CPP_to_Python_Ops_Sub() (in module SCons.cpp)
create_scons_output() (in module bin.SConsExamples)

createAllExampleOutputs()
bin.SConsExamples)

(in module

createCFileBuilders() (in module SCons.Tool)
CreateConfigHBuilder() (in module SCons.SConf)

createDoctype()
method)

(bin.SConsDoc.DoctypeDeclaration

createlncludesFromHeaders() (in module SCons.SConf)
CreateJarBuilder() (in module SCons.Tool)
CreateJavaClassDirBuilder() (in module SCons.Tool)
CreateJavaClassFileBuilder() (in module SCons.Tool)
CreateJavaFileBuilder() (in module SCons.Tool)
CreateJavaHBuilder() (in module SCons.Tool)
createLoadableModuleBuilder() (in module SCons.Tool)
createObjBuilders() (in module SCons.Tool)
createProgBuilder() (in module SCons.Tool)
createSharedLibBuilder() (in module SCons.Tool)

createStaticLibBuilder() (in module SCons.Tool)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.ListEmitter.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.copy2')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Memoize.CountDict.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Memoize.CountValue.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.count')

CScanner() (in module SCons.Scanner.C)

csig (SCons.Node.Alias.AliasNodelnfo attribute)
(SCons.Node.FS.FileNodelnfo attribute)
(SCons.Node.Python.ValueNodelnfo attribute)

Current (class in SCons.Scanner)

current_sconsign_filename() (in module

SCons.SConsign)

current_version_id
attribute)

(SCons.Node.Alias.AliasNodelnfo attribute)
(SCons.Node.BuildinfoBase attribute)
(SCons.Node.FS.DirBuildInfo attribute)
(SCons.Node.FS.DirNodelnfo attribute)
(SCons.Node.FS.FileBuildInfo attribute)
(SCons.Node.FS.FileNodelnfo attribute)
(SCons.Node.NodelnfoBase attribute)
(SCons.Node.Python.ValueBuildinfo attribute)
(SCons.Node.Python.ValueNodelnfo attribute)
(SCons.SConf.SConfBuildInfo attribute)

(SCons.Node.Alias.AliasBuildInfo

(SCons.SConsign.SConsignEntry attribute)
cwd (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

D
D (class in SCons.Scanner.D)

daemon
property)
(SCons.Taskmaster.Job.Worker property)

(SCons.Taskmaster.Job.NewParallel. Worker

DB (class in SCons.SConsign)

DebugOptions() (in module SCons.Script.Main)

decide_source() (in module SCons.Node)

decide_target() (in module SCons.Node)

Decider() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)
(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

(SCons.Script.SConscript.SConsEnvironment
method)

decorateWithHeader() (bin.SConsDoc.TreeFactory static
method)

dedent() (SCons.Script.SConsOptions.SConsindentedH
elpFormatter method)

default (SCons.Variables.Variable attribute)

default() (SCons.Script.Interactive.SConsinteractiveCmd
method)

Default() (SCons.Script.SConscript.SConsEnvironment
method)

default_copy_from_cache() (in module
SCons.Environment)

default_copy_to_cache() (in module

SCons.Environment)

default_decide_source() (in module SCons.Environment)
default_decide_target() (in module SCons.Environment)
default_exitstatfunc() (in module SCons.Action)

default_msec_format (SCons.Util.DispatchingFormatter
attribute)

default_time_format
attribute)

(SCons.Util.DispatchingFormatter

DefaultEnvironment() (in module SCons.Defaults)

DefaultEnvironmentCall
SCons.Script.SConscript)

(class in

DefaultToolList() (in module SCons.Platform)

Define() (SCons.SConf.SConfBase method)

del_binfo() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

Delegate (class in SCons.Util)

delete_func() (in module SCons.Defaults)

delete_strfunc() (in module SCons.Defaults)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNodeInfo.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.SConsignEntry.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.cwd')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.cwd')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.cwd')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.cwd')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker.daemon')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.del_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.del_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.del_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.del_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.del_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.del_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.del_binfo')

dependency_map
attribute)

(SCons.SConf.SConfBuildInfo attribute)

(SCons.Node.FS.FileBuildInfo

DependencyWarning

depends (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

Depends() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

depends_set (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
DeprecatedDebugOptionsWarning
DeprecatedOptionsWarning
DeprecatedWarning

destroy()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

Detect() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

DevelopmentVersionWarning

DictCmdGenerator (class in SCons.Builder)
DictEmitter (class in SCons.Builder)

dictify() (in module SCons.Util)

dictify CPPDEFINES() (in module SCons.Scanner.C)

Dictionary() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

dictSpecialAttrs (SCons.Node.FS.EntryProxy attribute)
Dir (class in SCons.Node.FS)
(class in SCons.SConsign)

dir (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

Dir() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.RootDir method)

(SCons.Script.SConscript.SConsEnvironment
method)

Dir.Attrs (class in SCons.Node.FS)
dir_on_disk() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
DirBuildInfo (class in SCons.Node.FS)
DirEntryScanner() (in module SCons.Scanner.Dir)
DirFile (class in SCons.SConsign)
dirname (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
DirNodelnfo (class in SCons.Node.FS)
Dirs() (SCons.Node.FS.File method)
DirScanner() (in module SCons.Scanner.Dir)

disable_interspersed_args()
(SCons.Script.SConsOptions.SConsOptionParser
method)

disambiguate() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.dependency_map')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.depends_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.depends_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.depends_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.depends_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.depends_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.depends_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.depends_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.destroy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.destroy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Detect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Detect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Detect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Dictionary')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dictionary')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dictionary')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.dir_on_disk')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.dirname')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.dirname')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.dirname')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.disambiguate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.disambiguate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.disambiguate')

(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

diskcheck_convert() (in module

SCons.Script.SConsOptions)
diskcheck_match() (SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
diskcheck_types() (in module SCons.Node.FS)
DiskChecker (class in SCons.Node.FS)
DispatchingFormatter (class in SCons.Util)
display() (SCons.Memoize.CountDict method)
(SCons.Memoize.Counter method)
(SCons.Memoize.CountValue method)
Display() (SCons.SConf.CheckContext method)
display() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Script.Main.TreePrinter method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

display_cached_string() (SCons.SConf.SConfBuildTask
method)

DisplayEngine (class in SCons.Util)

do_append() (SCons.Util.stats.CountStats method)
(SCons.Util.stats.MemStats method)
(SCons.Util.stats.Stats method)
(SCons.Util.stats. TimeStats method)

do_build()
(SCons.Script.Interactive.SConslinteractiveCmd method)

do_clean()
(SCons.Script.Interactive.SConslinteractiveCmd method)

do_define() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_diskcheck_match() (in module SCons.Node.FS)

do_duplicate() (SCons.Node.FS.Dir method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

do_elif() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
do_else() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
do_endif() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_EOF()
(SCons.Script.Interactive.SConsinteractiveCmd method)

do_exit()
(SCons.Script.Interactive.SConsInteractiveCmd method)

do_failed() (SCons.Script.Main.BuildTask method)
do_flatten() (in module SCons.Util)

do_help()
(SCons.Script.Interactive.SConsinteractiveCmd method)

do_if() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
do_ifdef() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
do_ifndef() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.disambiguate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.disambiguate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.disambiguate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.disambiguate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.diskcheck_match')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.diskcheck_match')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.diskcheck_match')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Memoize.Counter.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Memoize.CountValue.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.TreePrinter.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.MemStats.do_append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.Stats.do_append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.TimeStats.do_append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_define')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_define')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_define')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_define')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.do_duplicate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.do_duplicate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_elif')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_elif')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_elif')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_elif')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_else')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_else')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_else')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_else')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_endif')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_endif')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_endif')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_endif')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_if')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_if')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_if')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_if')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_ifdef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_ifdef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_ifdef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_ifdef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_ifndef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_ifndef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_ifndef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_ifndef')

do_import() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
do_include() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_include_next()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
do_not_scan() (in module SCons.Scanner.Dir)
do_not_set_entry() (SCons.SConsign.Base method)

(SCons.SConsign.DB method)

(SCons.SConsign.Dir method)

(SCons.SConsign.DirFile method)
do_not_store_info() (SCons.SConsign.Base method)

(SCons.SConsign.DB method)

(SCons.SConsign.Dir method)

(SCons.SConsign.DirFile method)
do_nothing() (in module SCons.Node)

(SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
(SCons.Util.stats.CountStats method)
(SCons.Util.stats.MemStats method)
(SCons.Util.stats.Stats method)
(SCons.Util.stats. TimeStats method)
do_nothing_node() (in module SCons.Node)
do_print() (SCons.Util.stats.CountStats method)
(SCons.Util.stats.MemStats method)
(SCons.Util.stats.Stats method)
(SCons.Util.stats. TimeStats method)

do_shell()
(SCons.Script.Interactive.SConsinteractiveCmd method)

do_subst (SCons.Variables.Variable attribute)
do_undef() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_version()
(SCons.Script.Interactive.SConsInteractiveCmd method)

doc_header
(SCons.Script.Interactive.SConsinteractiveCmd
attribute)

doc_leader
(SCons.Script.Interactive.SConsinteractiveCmd
attribute)

DoctypeDeclaration (class in bin.SConsDoc)

DoctypeEntity (class in bin.SConsDoc)

DScanner() (in module SCons.Scanner.D)

DumbPreProcessor (class in SCons.cpp)

Dump() (in module SCons.Memoize)
(SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

dump_caller_counts() (in module SCons.Debug)
dump_stats() (in module SCons.Taskmaster)
dumpLoggedinstances() (in module SCons.Debug)
duplicate (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

DuplicateEnvironmentWarning

E
EmitterProxy (class in SCons.Builder)

emptyline()
(SCons.Script.Interactive.SConsInteractiveCmd method)

enable() (SCons.Node.FS.DiskChecker method)
(SCons.Util.stats.CountStats method)

(SCons.Util.stats.MemStats method)
(SCons.Util.stats.Stats method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_import')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_import')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_import')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_import')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_include_next')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_include_next')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_include_next')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_include_next')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.do_not_set_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.do_not_set_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.do_not_set_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.do_not_store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.do_not_store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.do_not_store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.DumbPreProcessor.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.CountStats.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.MemStats.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.Stats.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.TimeStats.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.MemStats.do_print')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.Stats.do_print')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.TimeStats.do_print')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_undef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_undef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_undef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_undef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Dump')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Dump')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dump')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dump')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.duplicate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.duplicate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.duplicate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.duplicate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.CountStats.enable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.MemStats.enable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.Stats.enable')

(SCons.Util.stats. TimeStats method)

enable_interspersed_args()
(SCons.Script.SConsOptions.SConsOptionParser
method)

EnableMemoization() (in module SCons.Memoize)
enableWarningClass() (in module SCons.Warnings)
encode() (SCons.Subst.CmdStringHolder method)
endswith() (SCons.Subst.CmdStringHolder method)

ensure_value()
(SCons.Script.SConsOptions.SConsValues method)

ensureExampleOutputsExist() (in module

bin.SConsExamples)

EnsurePythonVersion()
(SCons.Script.SConscript.SConsEnvironment static
method)

EnsureSConsVersion()
(SCons.Script.SConscript.SConsEnvironment static
method)

entries (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

Entry (class in SCons.Node.FS)

Entry() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.RootDir method)

(SCons.Script.SConscript.SConsEnvironment
method)

Entry.Attrs (class in SCons.Node.FS)

entry_abspath() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

entry_exists_on_disk() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

entry labspath() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

entry_path() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

entry_tpath() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

EntryProxy (class in SCons.Node.FS)
EntryProxyAttributeError
EnumVariable() (in module SCons.Variables)
(in module SCons.Variables.EnumVariable)
env (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)
(SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
env_set() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
env_variables (SCons.Scanner.LaTeX.LaTeX attribute)
Environment() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

erase_previous()
method)

error() (bin.SConsDoc.Libxml2ValidityHandler method)

(SCons.Script.Main.Progressor

(SCons.Script.SConsOptions.SConsOptionParser
method)

escape() (in module SCons.Platform.posix)
(in module SCons.Platform.win32)
(SCons.Subst.CmdStringHolder method)
(SCons.Subst.Literal method)
(SCons.Subst.Special AttrWrapper method)
escape_list() (in module SCons.Subst)

eval_constant_expression()
(SCons.cpp.DumbPreProcessor method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.TimeStats.enable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.entries')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.entries')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entries')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.Entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entry_abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entry_exists_on_disk')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entry_labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entry_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entry_tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.EnumVariable.EnumVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.env_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.env_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.env_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.env_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.env_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.env_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.env_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Environment')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Environment')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Environment')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.error')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.error')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.win32.escape')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.escape')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Literal.escape')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.SpecialAttrWrapper.escape')

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

eval_expression()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
ExampleCommand (class in bin.SConsExamples)
ExampleFile (class in bin.SConsExamples)
ExampleFolder (class in bin.SConsExamples)
Examplelnfo (class in bin.SConsExamples)

exampleNamesAreUnique() (in module

bin.SConsExamples)

ExampleOutput (class in bin.SConsExamples)

exc_clear() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

exc_info() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

exception_set() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

exec_popen3() (in module SCons.Platform.posix)

exec_spawn() (in module SCons.Platform.win32)

exec_subprocess() (in module SCons.Platform.posix)

execute() (SCons.Action.CommandAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)

Execute() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

execute() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)

Execute() (SCons.Script.SConscript.SConsEnvironment
method)

execute() (SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)
execute_action_list() (in module SCons.Executor)
execute_actions_str() (in module SCons.Executor)
execute_nothing() (in module SCons.Executor)
execute_null_str() (in module SCons.Executor)
ExecuteCommand() (in module bin.SConsExamples)
executed() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

executed_with_callbacks()
(SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

executed_without_callbacks()
(SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.eval_constant_expression')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.eval_constant_expression')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.eval_constant_expression')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.eval_constant_expression')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.eval_expression')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.eval_expression')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.eval_expression')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.eval_expression')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.exc_clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.exc_clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.exc_clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.exc_clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.exc_clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.exc_clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.exc_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.exc_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.exc_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.exc_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.exc_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.exc_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.exception_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.exception_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.exception_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.exception_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.exception_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.exception_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.executed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.executed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.executed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.executed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.executed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.executed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.executed_with_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.executed_with_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.executed_with_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.executed_with_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.executed_with_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.executed_with_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.executed_without_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.executed_without_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.executed_without_callbacks')

(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)
Executor (class in SCons.Executor)
executor (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
executor_cleanup() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
exists() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
exists_always() (in module SCons.Node)
exists_base() (in module SCons.Node)
exists_entry() (in module SCons.Node)
exists_file() (in module SCons.Node)
exists_none() (in module SCons.Node)

Exit() (SCons.Script.SConscript.SConsEnvironment
static method)

exit() (SCons.Script.SConsOptions.SConsOptionParser
method)

expand() (SCons.Subst.ListSubber method)

(SCons.Subst.StringSubber method)

expand_default() (SCons.Script.SConsOptions.SConsin
dentedHelpFormatter method)

expand_prog_name()
(SCons.Script.SConsOptions.SConsOptionParser
method)

expanded() (SCons.Subst.ListSubber method)
expandtabs() (SCons.Subst.CmdStringHolder method)
explain() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
ExplicitExit

Export()
method)

(SCons.Script.SConscript.SConsEnvironment

extend() (SCons.Builder.ListEmitter method)
(SCons.Executor.TSList method)
(SCons.Node.NodeList method)
(SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.UniqueList method)
(SCons.Variables.ListVariable._ListVariable
method)

F

F90Scanner (class in SCons.Scanner.Fortran)

fail_continue() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

fail_stop() (SCons.SConf.SConfBuildTask method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.executed_without_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.executed_without_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.executed_without_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.executor_cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.executor_cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.executor_cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.executor_cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.executor_cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.executor_cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.executor_cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.StringSubber.expand')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.explain')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.explain')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.explain')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.explain')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.explain')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.explain')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.explain')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.fail_continue')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.fail_continue')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.fail_continue')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.fail_continue')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.fail_continue')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.fail_continue')

(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

failed() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

FakeOptionParser (class in SCons.Script.Main)

FakeOptionParser.FakeOptionValues
SCons.Script.Main)

(class in

fetchLoggedInstances() (in module SCons.Debug)

field_list (SCons.Node.Alias.AliasNodelnfo attribute)
(SCons.Node.FS.FileNodelnfo attribute)
(SCons.Node.Python.ValueNodelnfo attribute)

File (class in SCons.Node.FS)

File() (in module SCons.SConsign)
(SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.RootDir method)

(SCons.Script.SConscript.SConsEnvironment
method)

File.Attrs (class in SCons.Node.FS)

file_on_disk() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

FileBuildinfo (class in SCons.Node.FS)

FileBuildinfoFileToCsigMappingError

filedir_lookup() (SCons.Node.FS.FileFinder method)

FileFinder (class in SCons.Node.FS)

FileLock (class in SCons.Util.filelock)

FileNodelnfo (class in SCons.Node.FS)

finalize_result()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
find() (SCons.Subst.CmdStringHolder method)
find_cycle() (in module SCons.Taskmaster)

find_deepest_user_frame()
SCons.Script.Main)

find_file() (in module SCons.Node.FS)
(SCons.Node.FS.FileFinder method)

(in module

find_include() (SCons.Scanner.Classic static method)
(SCons.Scanner.ClassicCPP static method)
(SCons.Scanner.D.D static method)
(SCons.Scanner.Fortran.F90Scanner static method)
(SCons.Scanner.LaTeX.LaTeX method)

find_include_file()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
find_include_names() (SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)

find_next_candidate()
method)

(SCons.Taskmaster.Taskmaster

find_program_path() (in module SCons.Tool)
find_repo_file() (SCons.Node.FS.File method)
find_src_builder() (SCons.Node.FS.File method)
findAll() (bin.SConsDoc.TreeFactory static method)

findAlIChildrenOf()
method)

FindAllTools() (in module SCons.Tool)
FindENVPathDirs (class in SCons.Scanner.LaTeX)

(bin.SConsDoc.TreeFactory static

FindFile() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

FindInstalledFiles() (SCons.Environment.Base method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.fail_stop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.fail_stop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.fail_stop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.fail_stop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.fail_stop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.fail_stop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.failed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.failed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.failed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.failed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.failed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.failed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.field_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.field_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.file_on_disk')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.finalize_result')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.finalize_result')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.finalize_result')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.finalize_result')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileFinder.find_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.find_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.find_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.find_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.find_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.find_include_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.find_include_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.find_include_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.find_include_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.find_include_names')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.find_include_names')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.find_include_names')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindFile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindFile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindFile')

(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

FindIxes() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

FindPathDirs (class in SCons.Scanner)
FindSourceFiles() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

FindTool() (in module SCons.Tool)

Finish() (SCons.SConf.SConfBase method)

flatten() (in module SCons.Util)

Flatten() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

flatten_sequence() (in module SCons.Util)

flush() (SCons.SConf.Streamer method)

fmt (SCons.Variables.Variables attribute)

for_signature() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
(SCons.Subst.Literal method)
(SCons.Subst.SpecialAttrWrapper method)

ForDirectory (in module SCons.SConsign)

format() (SCons.Node.Alias.AliasNodelnfo method)
(SCons.Node.FS.DirNodelnfo method)
(SCons.Node.FS.FileBuildinfo method)
(SCons.Node.FS.FileNodelnfo method)
(SCons.Node.NodelnfoBase method)
(SCons.Node.Python.ValueNodelnfo method)
(SCons.SConf.SConfBuildinfo method)

(SCons.Subst.CmdStringHolder method)
(SCons.Util.DispatchingFormatter method)

format_description() (SCons.Script.SConsOptions.SCon
sIndentedHelpFormatter method)

(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

format_epilog() (SCons.Script.SConsOptions.SConsinde
ntedHelpFormatter method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

format_heading() (SCons.Script.SConsOptions.SConsin
dentedHelpFormatter method)

format_help()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

format_local_option_help()
(SCons.Script.SConsOptions.SConsOptionParser
method)

format_map() (SCons.Subst.CmdStringHolder method)

format_option() (SCons.Script.SConsOptions.SConsinde
ntedHelpFormatter method)

format_option_help()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

format_option_strings() (SCons.Script.SConsOptions.SC
onsindentedHelpFormatter method)

format_usage() (SCons.Script.SConsOptions.SConsinde
ntedHelpFormatter method)

formatException() (SCons.Util.DispatchingFormatter
method)
formatMessage() (SCons.Util.DispatchingFormatter
method)

formatStack() (SCons.Util.DispatchingFormatter method)
formatTime() (SCons.Util.DispatchingFormatter method)

FormatVariableHelpText()
method)

(SCons.Variables.Variables

FortranCxxMixWarning
FortranScan() (in module SCons.Scanner.Fortran)

Frame (class in SCons.Script.SConscript)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindInstalledFiles')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindInstalledFiles')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindInstalledFiles')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindIxes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindIxes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindIxes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindSourceFiles')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindSourceFiles')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindSourceFiles')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Flatten')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Flatten')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Flatten')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Literal.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.SpecialAttrWrapper.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.format')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.format')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.format')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.format')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.format')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.format')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.format')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.DispatchingFormatter.format')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionGroup.format_description')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionGroup.format_description')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_description')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_description')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_epilog')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_epilog')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_help')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_help')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_option_help')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_option_help')

fromkeys()
method)

(SCons.Builder.CallableSelector class

(SCons.Builder.DictCmdGenerator class method)
(SCons.Builder.DictEmitter class method)
(SCons.Builder.OverrideWarner class method)
(SCons.Environment.BuilderDict class method)
(SCons.Node.Alias.AliasNameSpace class method)
(SCons.Util.Selector class method)

FS (class in SCons.Node.FS)

fs (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.DirNodelnfo attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.FileNodelnfo attribute)
(SCons.Node.FS.RootDir attribute)

fs_delete() (SCons.Script.Main.CleanTask method)

func_shorten() (in module SCons.Debug)

Function (class in bin.SConsDoc)

function_name() (SCons.Action.FunctionAction method)

FunctionAction (class in SCons.Action)

FunctionEvaluator (class in SCons.cpp)

FutureDeprecatedWarning

FutureReservedVariableWarning

G

generate() (in module SCons.Platform.aix)
(in module SCons.Platform.cygwin)
(in module SCons.Platform.darwin)
(in module SCons.Platform.hpux)
(in module SCons.Platform.irix)
(in module SCons.Platform.os2)
(in module SCons.Platform.posix)
(in module SCons.Platform.sunos)
(in module SCons.Platform.win32)

GenerateHelpText()
method)

(SCons.Variables.Variables

genstring() (SCons.Action._ActionAction method)
(SCons.Action.ActionBase method)

(SCons.Action.CommandAction method)

(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)

get() (SCons.Builder.CallableSelector method)
(SCons.Builder.CompositeBuilder method)
(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.OverrideWarner method)
(SCons.Environment.Base method)
(SCons.Environment.BuilderDict method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Node.Alias.AliasNameSpace method)
(SCons.Node.FS.EntryProxy method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Taskmaster.Job.ThreadPool method)
(SCons.Util.Proxy method)
(SCons.Util.Selector method)

get_abspath() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

get_action_list() (SCons.Executor.Executor method)
(SCons.Executor.Null method)

get_action_side_effects()
method)

(SCons.Executor.Executor

(SCons.Executor.Null method)

get_action_targets() (SCons.Executor.Executor method)
(SCons.Executor.Null method)

get_all_children() (SCons.Executor.Executor method)
(SCons.Executor.Null method)

(SCons.Script.Main.TreePrinter method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.fromkeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.fromkeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.fromkeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.fromkeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.fromkeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.fromkeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.fs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.fs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.fs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.fs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.fs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.fs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.cygwin.generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.darwin.generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.hpux.generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.irix.generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.os2.generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.posix.generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.sunos.generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.win32.generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.genstring')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.genstring')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.genstring')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.genstring')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.genstring')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.genstring')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.CompositeBuilder.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.EntryProxy.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.ThreadPool.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Proxy.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_action_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_action_side_effects')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_action_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.TreePrinter.get_all_children')

get_all_prerequisites()
method)

(SCons.Executor.Executor

(SCons.Executor.Null method)

get_all_rdirs() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

get_all_sources() (SCons.Executor.Executor method)
(SCons.Executor.Null method)

get_all_targets() (SCons.Executor.Executor method)
(SCons.Executor.Null method)

get_architecture() (in module SCons.Platform.win32)

get_binfo() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

get_build_env() (SCons.Executor.Executor method)
(SCons.Executor.Null method)
(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

get_build_scanner_path()
method)

(SCons.Executor.Executor

(SCons.Executor.Null method)
(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

get_builder() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment method)
(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Tool.ToollnitializerMethod method)
get_CacheDir() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment method)

(SCons.Executor.NullEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

get_cachedir_bsig() (SCons.Node.FS.File method)

get_cachedir_csig() (SCons.CacheDir.CacheDir method)
(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

get_calling_namespaces() (in module

SCons.Script.SConscript)

get_children() (in module SCons.Node)

get_content_hash() (SCons.Node.FS.File method)

get_contents() (SCons.Action._ActionAction method)
(SCons.Action.ActionBase method)
(SCons.Action.ActionCaller method)
(SCons.Action.CommandAction method)
(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)

(SCons.Executor.Executor method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_all_prerequisites')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_all_rdirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_all_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_all_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Tool.ToolInitializerMethod.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.NullEnvironment.get_CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionCaller.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Executor.get_contents')

(SCons.Executor.Null method)
(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_contents_dir() (in module SCons.Node)
get_contents_entry() (in module SCons.Node)
get_contents_file() (in module SCons.Node)
get_contents_none() (in module SCons.Node)
get_contents_sig() (SCons.Node.FS.File method)
get_csig() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

get_current_hash_algorithm_used() (in module

SCons.Util.hashes)

Get_DataBase() (in module SCons.SConsign)
get_default_ ENV() (in module SCons.Action)
get_default_fs() (in module SCons.Node.FS)

get_default_values()
(SCons.Script.SConsOptions.SConsOptionParser
method)

get_DefaultEnvironmentProxy() (in module

SCons.Script.SConscript)

get_derived_children()
method)

(SCons.Script.Main.TreePrinter

get_description()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

get_dir() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
get_entry() (SCons.SConsign.Base method)
(SCons.SConsign.DB method)
(SCons.SConsign.Dir method)
(SCons.SConsign.DirFile method)
get_env() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_env_bool() (in module SCons.Util.sctypes)
get_env_scanner() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_environment_var() (in module SCons.Util.sctypes)
get_executor() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_factory() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

get_found_includes() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.get_description')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.get_description')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.get_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.get_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.get_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_env_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_env_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_env_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_env_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_env_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_env_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_env_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_factory')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_factory')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_factory')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_found_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_found_includes')

(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_hash_format() (in module SCons.Util.hashes)

get_implicit_deps()
method)

(SCons.Action._ActionAction

(SCons.Action.ActionBase method)
(SCons.Action.CommandAction method)
(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)
(SCons.Executor.Executor method)
(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_internal_path() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
get_kw() (SCons.Executor.Executor method)
get_labspath() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
get_Ivars() (SCons.Executor.Executor method)
get_max_drift() (SCons.Node.FS.FS method)
get_max_drift_csig() (SCons.Node.FS.File method)
get_MkdirBuilder() (in module SCons.Node.FS)

get_name() (SCons.Builder.BuilderBase method)

get_names()
(SCons.Script.Interactive.SConsinteractiveCmd method)

get_native_path() (in module SCons.Util)
get_next() (SCons.Node.Walker method)
get_ninfo() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_NullEnvironment() (in module SCons.Executor)

get_opt_string()
(SCons.Script.SConsOptions.SConsOption method)

get_option()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

get_option_group()
(SCons.Script.SConsOptions.SConsOptionParser
method)

get_os_env_bool() (in module SCons.Util.sctypes)
get_parent_class() (SCons.Action.LazyAction method)
get_path() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
get_path_elements() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
get_paths_str() (in module SCons.Defaults)
get_prefix() (SCons.Builder.BuilderBase method)
get_presig() (SCons.Action._ActionAction method)
(SCons.Action.ActionBase method)
(SCons.Action.CommandAction method)

(SCons.Action.CommandGeneratorAction method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_found_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_found_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_found_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_found_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_found_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Executor.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_internal_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_internal_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_internal_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_internal_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.get_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.get_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_path_elements')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_path_elements')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_path_elements')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_path_elements')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.get_presig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.get_presig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.get_presig')

(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)

get_prog_name()
(SCons.Script.SConsOptions.SConsOptionParser
method)

get_program_files_dir()
SCons.Platform.win32)

get_relpath() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

get_root() (SCons.Node.FS.FS method)

(in module

get_scanner() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

get_size() (SCons.Node.FS.File method)
get_skeys() (SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.Current method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)
(SCons.Scanner.LaTeX.LaTeX method)
(SCons.Scanner.ScannerBase method)
(SCons.Scanner.Selector method)
get_source_scanner() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_sources() (SCons.Executor.Executor method)
get_src_builders() (SCons.Builder.BuilderBase method)
get_src_suffix() (SCons.Builder.BuilderBase method)
get_state() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_stored_implicit() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_stored_info() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_string() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_subst_proxy() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_suffix() (SCons.Builder.BuilderBase method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.get_presig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.get_presig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.get_presig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_relpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_relpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_relpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_relpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.get_skeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current.get_skeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.get_skeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.get_skeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.get_skeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ScannerBase.get_skeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector.get_skeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_source_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_source_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_source_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_source_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_source_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_source_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_source_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_stored_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_stored_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_stored_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_stored_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_stored_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_stored_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_stored_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_stored_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_stored_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_stored_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_stored_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_stored_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_stored_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_stored_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_string')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_string')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_string')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_string')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_string')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_string')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_string')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_subst_proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_subst_proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_subst_proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_subst_proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_subst_proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_subst_proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_subst_proxy')

(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_system_root() (in module SCons.Platform.win32)
get_target() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)
get_target_scanner() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_targets() (SCons.Action._ActionAction method)
(SCons.Action.ActionBase method)
(SCons.Action.CommandAction method)
(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)
get_text _contents() (SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Python.Value method)
get_timestamp() (SCons.Executor.Executor method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)
get_tpath() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

get_unignored_sources()
method)

(SCons.Executor.Executor

(SCons.Executor.Null method)

get_usage()
(SCons.Script.SConsOptions.SConsOptionParser
method)

get_varlist() (SCons.Action._ActionAction method)
(SCons.Action.ActionBase method)
(SCons.Action.CommandAction method)
(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)

get_version()
(SCons.Script.SConsOptions.SConsOptionParser
method)

get_xlc() (in module SCons.Platform.aix)

getAttribute() (bin.SConsDoc.TreeFactory static method)

GetBatchExecutor() (in module SCons.Executor)

GetBuildFailures() (in module SCons.Script.Main)

GetBuildPath() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

getcwd() (SCons.Node.FS.FS method)
getEntityString() (bin.SConsDoc.DoctypeEntity method)

getFileContents()
method)

GetLaunchDir()
(SCons.Script.SConscript. SConsEnvironment static
method)

(bin.SConsExamples.Examplelnfo

getmtime() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_suffix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_suffix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_suffix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_suffix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_suffix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_suffix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_suffix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_suffix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.get_target')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.get_target')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.get_target')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.get_target')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.get_target')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.get_target')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_target_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_target_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_target_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_target_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_target_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_target_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_target_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.get_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.get_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.get_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.get_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.get_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.get_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_text_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_text_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_text_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_text_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_timestamp')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_timestamp')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_timestamp')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_unignored_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.get_varlist')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.get_varlist')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.get_varlist')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.get_varlist')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.get_varlist')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.get_varlist')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.GetBuildPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.GetBuildPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.GetBuildPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.getmtime')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.getmtime')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.getmtime')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.getmtime')

(SCons.Node.FS.LocalFS method)
(SCons.Node.FS.RootDir method)

getName() (SCons.Taskmaster.Job.NewParallel.Worker
method)

(SCons.Taskmaster.Job.Worker method)
GetOption() (in module SCons.Script.Main)

(SCons.Script.SConscript.SConsEnvironment
method)

getRepositories() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

GetSConsVersion()
(SCons.Script.SConscript.SConsEnvironment static
method)

getsize() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
(SCons.Node.FS.RootDir method)

GetTag() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

getTail() (bin.SConsDoc.TreeFactory static method)

getText() (bin.SConsDoc.TreeFactory static method)

getvalue() (SCons.SConf.Streamer method)

Glob() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

glob() (SCons.Node.FS.Dir method)

Glob() (SCons.Node.FS.FS method)

glob() (SCons.Node.FS.RootDir method)

Glob()
method)

(SCons.Script.SConscript.SConsEnvironment

gvars() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment

method)
(SCons.Script.SConscript.SConsEnvironment
method)

H

handle_missing_SConscript() (in module

SCons.Script.SConscript)

has_builder() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

has_explicit_builder() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

has_glob_magic() (in module SCons.Node.FS)

has_option()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

has_src_builder() (SCons.Node.FS.File method)
hasAttribute() (bin.SConsDoc.TreeFactory static method)
hash_chunksize (SCons.Node.FS.File attribute)
hash_collect() (in module SCons.Util.hashes)
hash_file_signature() (in module SCons.Util.hashes)
hash_signature() (in module SCons.Util.hashes)

help (SCons.Variables.Variable attribute)

Help()
method)

(SCons.Script.SConscript.SConsEnvironment

HelpFunction() (in module SCons.Script)
hit_ratio (SCons.CacheDir.CacheDir property)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.getmtime')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.getmtime')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker.getName')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.GetOption')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.GetOption')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.getRepositories')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.getsize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.getsize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.getsize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.getsize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.getsize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.getsize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.GetTag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.GetTag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.GetTag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.GetTag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.GetTag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.GetTag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.GetTag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Glob')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.gvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.gvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.gvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.gvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.gvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.has_explicit_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.has_explicit_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.has_explicit_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.has_explicit_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.has_explicit_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.has_explicit_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.has_explicit_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.has_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.has_option')

ident (SCons.Taskmaster.Job.NewParallel.Worker
property)
(SCons.Taskmaster.Job.Worker property)

identchars
(SCons.Script.Interactive.SConslinteractiveCmd
attribute)

IDLScan() (in module SCons.Scanner.IDL)

IDX() (in module SCons.Util)

ignore (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

Ignore() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

ignore_cycle() (in module SCons.Node)
ignore_diskcheck_match() (in module SCons.Node.FS)
ignore_set (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
implicit (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

implicit_set (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

Import()
method)

(SCons.Script.SConscript.SConsEnvironment

importfile() (in module bin.SConsDoc)

ImportVirtualenv() (in module SCons.Platform.virtualenv)

includes (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

indent() (SCons.Script.SConsOptions.SConsindentedHe
IpFormatter method)

index() (SCons.Builder.ListEmitter method)
(SCons.Executor.TSList method)
(SCons.Node.NodeList method)
(SCons.Script.TargetList method)
(SCons.Subst.CmdStringHolder method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.UniqueList method)

(SCons.Variables.ListVariable._ListVariable
method)

initialize_do_splitdrive() (in module SCons.Node.FS)

initialize_result()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

Initializers() (in module SCons.Tool)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker.ident')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.ignore_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.ignore_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.ignore_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.ignore_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.ignore_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.ignore_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.ignore_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.implicit_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.implicit_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.implicit_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.implicit_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.implicit_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.implicit_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.implicit_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.initialize_result')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.initialize_result')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.initialize_result')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.initialize_result')

insert() (SCons.Builder.ListEmitter method)
(SCons.Executor.TSList method)
(SCons.Node.NodeList method)
(SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)

(SCons.Subst.Targets_or_Sources method)

(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.UniqueList method)

(SCons.Variables.ListVariable._ListVariable

method)
interact() (in module SCons.Script.Interactive)

InternalError

InterruptState (class in SCons.Taskmaster.Job)

intro (SCons.Script.Interactive.SConslinteractiveCmd

attribute)

invalidate_node_memos() (in module SCons.Node.FS)

is_a_Builder() (in module SCons.Builder)

is_alive() (SCons.Taskmaster.Job.NewParallel.Worker

method)
(SCons.Taskmaster.Job.Worker method)
is_conftest() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
is_derived() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
is_derived_node() (in module SCons.Node)
is_derived_none() (in module SCons.Node)

is_Dict() (in module SCons.Util.sctypes)

is_done() (SCons.Node.Walker method)

is_enabled() (SCons.CacheDir.CacheDir method)

is_explicit (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

is_List() (in module SCons.Util.sctypes)

is_literal() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
(SCons.Subst.CmdStringHolder method)
(SCons.Subst.Literal method)
(SCons.Subst.Special AttrWrapper method)

is_readonly() (SCons.CacheDir.CacheDir method)

is_Scalar() (in module SCons.Util.sctypes)

is_sconscript() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
is_Sequence() (in module SCons.Util.sctypes)
is_String() (in module SCons.Util.sctypes)
is_Tuple() (in module SCons.Util.sctypes)
is_under() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker.is_alive')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Literal.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.SpecialAttrWrapper.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_sconscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_sconscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_sconscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_sconscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_sconscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_sconscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_sconscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_under')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_under')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_under')

(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Python.Value method)
is_up_to_date() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
is_valid_construction_var() (in module SCons.Util.envs)
isalnum() (SCons.Subst.CmdStringHolder method)
isalpha() (SCons.Subst.CmdStringHolder method)
isascii() (SCons.Subst.CmdStringHolder method)

isDaemon()
(SCons.Taskmaster.Job.NewParallel.Worker method)

(SCons.Taskmaster.Job.Worker method)
isdecimal() (SCons.Subst.CmdStringHolder method)
isdigit() (SCons.Subst.CmdStringHolder method)
isdir() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

(SCons.Node.FS.RootDir method)
isfile() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

(SCons.Node.FS.RootDir method)
isFileRef() (bin.SConsExamples.ExampleFile method)
isidentifier() (SCons.Subst.CmdStringHolder method)
IsinVirtualenv() (in module SCons.Platform.virtualenv)
islink() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
(SCons.Node.FS.RootDir method)

islower() (SCons.Subst.CmdStringHolder method)

isnumeric() (SCons.Subst.CmdStringHolder method)

isprintable() (SCons.Subst.CmdStringHolder method)

isSConsXml() (in module bin.SConsDoc)

isspace() (SCons.Subst.CmdStringHolder method)

istitle() (SCons.Subst.CmdStringHolder method)

isupper() (SCons.Subst.CmdStringHolder method)

Item (class in bin.SConsDoc)

items() (SCons.Builder.CallableSelector method)
(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.OverrideWarner method)
(SCons.dblite._Dblite method)
(SCons.Environment.Base method)

(SCons.Environment.BuilderDict method)

(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Util.Selector method)

J

JavaScanner() (in module SCons.Scanner.Java)
Jobs (class in SCons.Taskmaster.Job)

join() (SCons.Subst.CmdsStringHolder method)

(SCons.Taskmaster.Job.NewParallel.Worker
method)

(SCons.Taskmaster.Job.Worker method)

K

key (SCons.Variables.Variable attribute)

key() (SCons.Memoize.CountDict method)
(SCons.Memoize.Counter method)

(SCons.Memoize.CountValue method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_under')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_under')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_under')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker.isDaemon')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.isdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.isdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.isdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.isdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.isdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.isdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.isfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.isfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.isfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.isfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.isfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.isfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.islink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.islink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.islink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.islink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.islink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.islink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.dblite._Dblite.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.NewParallel.Worker.join')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.NewParallel.Worker.join')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker.join')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Memoize.Counter.key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Memoize.CountValue.key')

keys() (SCons.Builder.CallableSelector method)
(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.OverrideWarner method)
(SCons.dblite._Dblite method)
(SCons.Environment.Base method)
(SCons.Environment.BuilderDict method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Util.Selector method)
(SCons.Variables.Variables method)

keyword_paths (SCons.Scanner.LaTeX.LaTeX attribute)

L

lastcmd (SCons.Script.Interactive.SConslinteractiveCmd
attribute)

LaTeX (class in SCons.Scanner.LaTeX)

LaTeXScanner() (in module SCons.Scanner.LaTeX)

LazyAction (class in SCons.Action)

LegacyParallel (class in SCons.Taskmaster.Job)

Libxml2ValidityHandler (class in bin.SConsDoc)

link() (SCons.Node.FS.Dir method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
(SCons.Node.FS.RootDir method)

linked (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

LinkFunc() (in module SCons.Node.FS)

LinkWarning

ListAction (class in SCons.Action)

listdir() (SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)
ListEmitter (class in SCons.Builder)
listLoggedIinstances() (in module SCons.Debug)
ListSubber (class in SCons.Subst)
ListVariable() (in module SCons.Variables)
(in module SCons.Variables.ListVariable)
Literal (class in SCons.Subst)
Literal() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

literal() (SCons.Subst.ListSubber method)

ljust() (SCons.Subst.CmdStringHolder method)

Local() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

LocalFS (class in SCons.Node.FS)
LocalString() (in module SCons.Node.FS)

lock() (SCons.Taskmaster.Job.NewParallel.FakeLock
method)

Log() (SCons.SConf.CheckContext method)
LOGGER (SCons.SConf.SConfBuildTask attribute)
(SCons.Script.Main.BuildTask attribute)
(SCons.Script.Main.CleanTask attribute)
(SCons.Script.Main.QuestionTask attribute)
(SCons.Taskmaster.AlwaysTask attribute)
(SCons.Taskmaster.OutOfDateTask attribute)
(SCons.Taskmaster.Task attribute)
logical_lines() (in module SCons.Util)
LogicalLines (class in SCons.Util)
loginstanceCreation() (in module SCons.Debug)
lookup() (SCons.Node.Alias.AliasNameSpace method)
lower() (SCons.Subst.CmdStringHolder method)
Istat() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.dblite._Dblite.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.Variables.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.link')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.link')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.link')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.linked')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.linked')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.linked')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.linked')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.linked')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.linked')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.linked')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.listdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable.ListVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.LOGGER')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.LOGGER')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.LOGGER')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.LOGGER')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.LOGGER')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.LOGGER')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.lstat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.lstat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.lstat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.lstat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.lstat')

(SCons.Node.FS.RootDir method)

Istrip() (SCons.Subst.CmdStringHolder method)

Ivars (SCons.Executor.Executor attribute)

(SCons.Executor.Null attribute)

Ivars() (SCons.Environment.Base method)

M

(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

main() (in module SCons.Script.Main)

make_path_relative() (in module SCons.Util)

make_ready() (SCons.Node.Alias.Alias method)

make_ready_all()

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
(SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)
(SCons.SConf.SConfBuildTask

method)

make_ready_current()

(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)
(SCons.SConf.SConfBuildTask

method)

(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)

(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

makedirs() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)

maketrans() (SCons.Subst.CmdStringHolder method)

MandatoryDeprecatedWarning

match_splitext() (in module SCons.Builder)

MD5collect() (in module SCons.Util.hashes)

MD5filesignature() (in module SCons.Util.hashes)

MD5signature() (in module SCons.Util.hashes)

memory() (in module SCons.Debug)

MemStats (class in SCons.Util.stats)

merge() (SCons.Node.Alias.AliasBuildinfo method)
(SCons.Node.Alias.AliasNodelnfo method)
(SCons.Node.BuildinfoBase method)
(SCons.Node.FS.DirBuildinfo method)
(SCons.Node.FS.DirNodelnfo method)
(SCons.Node.FS.FileBuildinfo method)
(SCons.Node.FS.FileNodelnfo method)
(SCons.Node.NodelnfoBase method)
(SCons.Node.Python.ValueBuildinfo method)
(SCons.Node.Python.ValueNodelnfo method)
(SCons.SConf.SConfBuildinfo method)
(SCons.SConsign.Base method)
(SCons.SConsign.DB method)
(SCons.SConsign.Dir method)
(SCons.SConsign.DirFile method)

MergeFlags() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

Message() (SCons.SConf.CheckContext method)
MethodWrapper (class in SCons.Util.envs)

misc_header
(SCons.Script.Interactive.SConsinteractiveCmd
attribute)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.lstat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.lvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.lvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.lvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.lvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.lvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.lvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildTask.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.make_ready_all')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.make_ready_all')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.make_ready_all')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.make_ready_all')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.make_ready_all')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.make_ready_all')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.make_ready_current')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.make_ready_current')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.make_ready_current')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.make_ready_current')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.make_ready_current')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.make_ready_current')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.makedirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNodeInfo.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Base.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.MergeFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.MergeFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.MergeFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.MergeFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.MergeFlags')

MisleadingKeywordsWarning

misses (SCons.CacheDir.CacheDir property)

missing() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

MissingSConscriptWarning

mkdir() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)

mkdir_func() (in module SCons.Defaults)

MkdirFunc() (in module SCons.Node.FS)

modify_env_var() (in module SCons.Scanner.LaTeX)
module
bin.SConsDoc

bin.SConsExamples
SCons
SCons.Action
SCons.Builder
SCons.CacheDir
SCons.compat
SCons.Conftest
SCons.cpp
SCons.dblite
SCons.Debug
SCons.Defaults
SCons.Environment
SCons.Errors
SCons.Executor
SCons.exitfuncs
SCons.Memoize
SCons.Node
SCons.Node.Alias
SCons.Node.FS
SCons.Node.Python
SCons.PathList

SCons.Platform
SCons.Platform.aix
SCons.Platform.cygwin
SCons.Platform.darwin
SCons.Platform.hpux
SCons.Platform.irix
SCons.Platform.mingw
SCons.Platform.o0s2
SCons.Platform.posix
SCons.Platform.sunos
SCons.Platform.virtualenv
SCons.Platform.win32
SCons.Scanner
SCons.Scanner.C
SCons.Scanner.D
SCons.Scanner.Dir
SCons.Scanner.Fortran
SCons.Scanner.IDL
SCons.Scanner.Java
SCons.Scanner.LaTeX
SCons.Scanner.Prog
SCons.Scanner.RC
SCons.Scanner.SWIG
SCons.SConf
SCons.SConsign
SCons.Script
SCons.Script.Interactive
SCons.Script.Main
SCons.Script.SConscript
SCons.Script.SConsOptions
SCons.Subst
SCons.Taskmaster
SCons.Taskmaster.Job
SCons.Tool

SCons.Util
SCons.Util.envs
SCons.Ustil.filelock
SCons.Util.hashes
SCons.Util.sctypes

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.missing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.missing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.missing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.missing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.missing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.missing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.missing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.mkdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-bin.SConsDoc')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-bin.SConsExamples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.compat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.cpp')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.dblite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Debug')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Defaults')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Environment')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Errors')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.exitfuncs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Memoize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Node')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Node.Alias')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Node.FS')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Node.Python')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.PathList')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.aix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.cygwin')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.darwin')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.hpux')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.irix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.mingw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.os2')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.posix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.sunos')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.virtualenv')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.win32')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.C')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.D')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Fortran')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.IDL')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Java')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.LaTeX')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Prog')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.RC')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.SWIG')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.SConf')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.SConsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script.Interactive')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script.Main')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script.SConscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script.SConsOptions')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Taskmaster')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Taskmaster.Job')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Tool')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Util')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Util.envs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Util.filelock')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Util.hashes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Util.sctypes')

SCons.Util.stats
SCons.Variables
SCons.Variables.BoolVariable
SCons.Variables.EnumVariable
SCons.Variables.ListVariable
SCons.Variables.PackageVariable
SCons.Variables.PathVariable
SCons.Warnings
move_func() (in module SCons.Defaults)
mro() (SCons.compat.NoSlotsPyPy method)
MSVCError

multiple_side_effect_has_builder()
(SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
must_be_same() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

N

name (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.EntryProxyAttributeError attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

(SCons.Taskmaster.Job.NewParallel. Worker
property)

(SCons.Taskmaster.Job.Worker property)
native_id
property)

(SCons.Taskmaster.Job.Worker property)

NeedConfigHBuilder() (in module SCons.SConf)

(SCons.Taskmaster.Job.NewParallel.Worker

needs_execute()
method)

(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)

(SCons.SConf.SConfBuildTask

(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)
needs_normpath_match() (in module SCons.Node.FS)
new_binfo() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
new_ninfo() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

newEtreeNode()
method)

(bin.SConsDoc.TreeFactory static

newNode() (bin.SConsDoc.TreeFactory static method)
NewParallel (class in SCons.Taskmaster.Job)

NewParallel.FakeCondition
SCons.Taskmaster.Job)

(class in

NewParallel.FakeLock (class in SCons.Taskmaster.Job)
NewParallel.State (class in SCons.Taskmaster.Job)
NewParallel.Worker (class in SCons.Taskmaster.Job)

newSubNode()
method)

(bin.SConsDoc.TreeFactory static

newXmliTree() (bin.SConsDoc.TreeFactory method)
next_line() (SCons.Subst.ListSubber method)
next_task() (SCons.Taskmaster.Taskmaster method)
next_word() (SCons.Subst.ListSubber method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Util.stats')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.BoolVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.EnumVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.ListVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.PackageVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.PathVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Warnings')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.multiple_side_effect_has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.multiple_side_effect_has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.multiple_side_effect_has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.multiple_side_effect_has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.multiple_side_effect_has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.multiple_side_effect_has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.multiple_side_effect_has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.must_be_same')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.must_be_same')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.must_be_same')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.must_be_same')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.name')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.name')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.EntryProxyAttributeError.name')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.name')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.name')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.NewParallel.Worker.name')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.NewParallel.Worker.name')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker.name')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker.native_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.needs_execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.needs_execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.needs_execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.needs_execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.needs_execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.needs_execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.new_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.new_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.new_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.new_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.new_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.new_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.new_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.new_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.new_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.new_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.new_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.new_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.new_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.new_ninfo')

ninfo (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
(SCons.SConsign.SConsignEntry attribute)

NLWrapper (class in SCons.Subst)

no_batch_key() (SCons.Action._ActionAction method)
(SCons.Action.ActionBase method)
(SCons.Action.CommandAction method)
(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)

NO_DEFAULT_VALUE (SCons.Script.SConsOptions.S
ConsindentedHelpFormatter attribute)

no_next_candidate()
method)

(SCons.Taskmaster.Taskmaster

no_tlb() (in module SCons.Scanner.RC)

nocache (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

NoCache() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

noclean (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

NoClean() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

Node (class in SCons.Node)

Node.Attrs (class in SCons.Node)

node_conv() (in module SCons.PathList)

Nodelnfo (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

NodelnfoBase (class in SCons.Node)

NodelList (class in SCons.Node)
(class in SCons.Util)

nohelp (SCons.Script.Interactive.SConsinteractiveCmd
attribute)

non_sconf_nodes
attribute)

(SCons.SConf.SConfBuildTask

NoObjectCountWarning
NoParallelSupportWarning
NoSlotsPyPy (class in SCons.compat)

NoSubstitutionProxy() (in module SCons.Environment)

notify()

(SCons.Taskmaster.Job.NewParallel.FakeCondition
method)

notify_all()

(SCons.Taskmaster.Job.NewParallel.FakeCondition
method)

Null (class in SCons.Executor)

(class in SCons.Util.sctypes)
NullCmdGenerator (class in SCons.Defaults)
NullEnvironment (class in SCons.Executor)
nullify() (SCons.Executor.Executor method)
NullNodeList (class in SCons.Subst)

NullSeq (class in SCons.Util.sctypes)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.SConsignEntry.ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.no_batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.no_batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.no_batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.no_batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.no_batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.no_batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.NoCache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.NoCache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.NoCache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.NoClean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.NoClean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.NoClean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.NodeInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.NodeInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.NodeInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.NodeInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.NodeInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.NodeInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.NodeInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.sctypes.Null')

O

obj (SCons.Node.FS.EntryProxyAttributeError attribute)

on_disk_entries (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

onecmd()
(SCons.Script.Interactive.SConslinteractiveCmd method)

only_dirs() (in module SCons.Scanner.Dir)

open() (in module SCons.dblite)
(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)

open_strip() (SCons.Subst.ListSubber method)

opener() (SCons.dblite._Dblite method)

OutOfDateTask (class in SCons.Taskmaster)

Override() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

OverrideEnvironment (class in SCons.Environment)
overridelist (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)

OverrideWarner (class in SCons.Builder)

P
PackageVariable() (in module SCons.Variables)
(in module SCons.Variables.PackageVariable)

parse_args()
(SCons.Script.SConsOptions.SConsOptionParser
method)

ParseConfig() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

parseContent()
method)

(bin.SConsDoc.SConsDocTree method)

(bin.SConsDoc.SConsDocHandler

ParseDepends() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment method)
(SCons.Script.SConscript.SConsEnvironment
method)

parseDomtree()
method)

(bin.SConsDoc.SConsDocHandler

ParseFlags() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

parselnstance()
method)

(bin.SConsDoc.SConsDocHandler

parseltems() (bin.SConsDoc.SConsDocHandler method)

parseline()
(SCons.Script.Interactive.SConsInteractiveCmd method)

Parser() (in module SCons.Script.SConsOptions)

parseUsesSets() (bin.SConsDoc.SConsDocHandler

method)

parseXmlFile()
method)

(bin.SConsDoc.SConsDocTree method)
partition() (SCons.Subst.CmdStringHolder method)
path (SCons.Node.FS.RootDir attribute)

(bin.SConsDoc.SConsDocHandler

path() (SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.Current method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)
(SCons.Scanner.LaTeX.LaTeX method)
(SCons.Scanner.ScannerBase method)
(SCons.Scanner.Selector method)

path_string() (in module SCons.Script.Main)

PathAccept()
(SCons.Variables.PathVariable._PathVariableClass
static method)

PathExists()
(SCons.Variables.PathVariable._PathVariableClass
static method)

PathisDir()
(SCons.Variables.PathVariable._PathVariableClass
static method)

PathisDirCreate()
(SCons.Variables.PathVariable._PathVariableClass
static method)

PathisFile()
(SCons.Variables.PathVariable._PathVariableClass
static method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.on_disk_entries')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.on_disk_entries')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.on_disk_entries')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.open')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.open')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Override')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.Override')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.Override')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Override')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Override')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.overridelist')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.PackageVariable.PackageVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ParseConfig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseConfig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseConfig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#bin.SConsDoc.SConsDocTree.parseContent')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ParseDepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseDepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseDepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ParseFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.ParseFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.ParseFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#bin.SConsDoc.SConsDocTree.parseXmlFile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current.path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ScannerBase.path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector.path')

PathList() (in module SCons.PathList) postcmd()

PDFLaTeXScanner() (in module SCons.Scanner.LaTeX) (SCons.Script.Interactive.SConsinteractiveCmd method)
postloop()

piped_env_spawn() (in module SCons.Platform.posix) (SCons.Script.Interactive.SConslInteractiveCmd method)

piped_spawn() (in module SCons.Platform.win32) postprocess() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
(SCons.SConf.SConfBuildTask method)

Platform() (in module SCons.Platform)
(SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

platform_default() (in module SCons.Platform)
platform_module() (in module SCons.Platform)
PlatformSpec (class in SCons.Platform)

pop() (SCons.Builder.CallableSelector method)

(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.ListEmitter method)

(SCons.Builder.OverrideWarner method)

(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)

(SCons.Taskmaster.AlwaysTask method)

(SCons.Environment BuilderDict method) (SCons.Taskmaster.OutOfDateTask method)

(SCons.Executor.TSList method) (SCons Taskmaster.Task method)

(SCons.Node.Alias.AliasNameSpace method) pre_actions (SCons.Executor.Executor attribute)

(SCons.Node.NodeList method) (SCons.Executor.Null attribute)

precious (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

(SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.Selector method)
(SCons.Util.UniqueList method)

(SCons.Variables.ListVariable._ListVariable

method) Precious() (SCons.Environment.Base method)
popitem() (SCons.Builder.CallableSelector method) (SCons.Environment.OverrideEnvironment method)

(SCons.Builder.DictCmdGenerator method) (SCons.Script.SConscript.SConsEnvironment

(SCons.Builder.DictEmitter method) method)
_) precmd()
(SCons.Builder.OverrideWarner method) (SCons.Script.Interactive.SConsInteractiveCmd method)
(SCons.Environment.BuilderDict method)
preloop()

(SCons.Node.Alias.AliasNameSpace method) (SCons.Script.Interactive.SConsInteractiveCmd method)

(SCons.Util.Selector method) preparation_failed() (SCons.Taskmaster.Job.ThreadPool

post_actions (SCons.Executor.Executor attribute) method)

(SCons.Executor.Null attribute) prepare() (SCons.Executor.Executor method)

(SCons.Executor.Null method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Platform')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Platform')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Platform')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Platform')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.ListEmitter.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.popitem')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.popitem')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.popitem')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.popitem')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.popitem')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.popitem')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.post_actions')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildTask.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.pre_actions')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.prepare')

(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
(SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

prepare_dependencies() (SCons.Node.FS.FileBuildinfo
method)

(SCons.SConf.SConfBuildinfo method)

prepare_to_store()
(SCons.Variables.ListVariable._ListVariable method)

Prepend() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

PrependENVPath() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

PrependLIBS() (SCons.SConf.CheckContext method)

PrependPath() (in module SCons.Util.envs)

PrependUnique() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

PreProcessor (class in SCons.cpp)

prerequisites (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

preserve_unknown_options
(SCons.Script.SConsOptions.SConsOptionParser
attribute)

presub_lines() (SCons.Action._ActionAction method)
(SCons.Action.ActionBase method)
(SCons.Action.CommandAction method)
(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)

prettyPrintFile()
method)

(bin.SConsDoc.TreeFactory static

prev (SCons.Script.Main.Progressor attribute)

print_cmd_line() (SCons.Action._ActionAction method)
(SCons.Action.CommandAction method)
(SCons.Action.FunctionAction method)

(SCons.Action.LazyAction method)

print_help()
(SCons.Script.SConsOptions.SConsOptionParser
method)

print_it (SCons.Util.DisplayEngine attribute)

print_local_option_help()
(SCons.Script.SConsOptions.SConsOptionParser
method)

print_time() (in module SCons.Util)

print_topics()
(SCons.Script.Interactive.SConsInteractiveCmd method)

print_tree() (in module SCons.Util)

print_usage()
(SCons.Script.SConsOptions.SConsOptionParser
method)

print_version()
(SCons.Script.SConsOptions.SConsOptionParser
method)

PrintHelp() (in module SCons.Script.Main)

process() (SCons.Action.CommandAction method)
(SCons.Action.LazyAction method)
(SCons.Script.SConsOptions.SConsOption method)

process_contents()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildTask.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.prepare_dependencies')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Prepend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Prepend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Prepend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.PrependENVPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PrependENVPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PrependENVPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.PrependUnique')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PrependUnique')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PrependUnique')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.prerequisites')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.prerequisites')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.prerequisites')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.prerequisites')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.prerequisites')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.prerequisites')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.prerequisites')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.presub_lines')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.presub_lines')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.presub_lines')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.presub_lines')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.presub_lines')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.presub_lines')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.print_cmd_line')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.print_cmd_line')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.print_cmd_line')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.process')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOption.process')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.process_contents')

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
process_file() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
process_warn_strings() (in module SCons.Warnings)
processDefines() (in module SCons.Defaults)
ProgramScanner() (in module SCons.Scanner.Prog)
Progress() (in module SCons.Script.Main)
Progressor (class in SCons.Script.Main)

prompt (SCons.Script.Interactive.SConslinteractiveCmd
attribute)

Proxy (class in SCons.Util)

pseudo (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

Pseudo() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

pspawn_wrapper() (SCons.SConf.SConfBase method)

push() (SCons.CacheDir.CacheDir method)

push_if forced() (SCons.CacheDir.CacheDir method)

push_to_cache() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

put() (SCons.Taskmaster.Job.ThreadPool method)

PyPackageDir() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)
(SCons.Node.FS.FS method)

(SCons.Script.SConscript.SConsEnvironment
method)

python_version_deprecated() (in module

SCons.Script.Main)
python_version_string() (in module SCons.Script.Main)

python_version_unsupported()
SCons.Script.Main)

(in module

PythonVersionWarning

Q

QuestionTask (class in SCons.Script.Main)

quote_spaces() (in module SCons.Subst)

R
raise_exception() (in module SCons.Subst)

raise_exception_on_error
(SCons.Script.SConsOptions.SConsOptionParser
attribute)

RCScan() (in module SCons.Scanner.RC)
rdir() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
RDirs() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
read() (SCons.Node.Python.Value method)
read_file() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
(SCons.Script.SConsOptions.SConsValues method)

read_module()
(SCons.Script.SConsOptions.SConsValues method)

readAllExamplelnfos() (in module bin.SConsExamples)

readExamplelnfos() (in module bin.SConsExamples)

readlines() (SCons.Util.LogicalLines method)

readlink() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.process_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.process_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.process_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.process_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.process_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.process_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.process_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.push_to_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.push_to_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.push_to_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.push_to_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.push_to_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.push_to_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.push_to_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.PyPackageDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.PyPackageDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PyPackageDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PyPackageDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.RDirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.RDirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.RDirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.RDirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.read_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.read_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.read_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.read_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsValues.read_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.readlink')

READY
attribute)

really_build() (SCons.Node.Alias.Alias method)

recurse_nodes() (SCons.Scanner.C.SConsCPPConditio

nalScannerWrapper method)

(SCons.Scanner.C.SConsCPPScannerWrapper
method)

ref_count (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
RegError (in module SCons.Util)
RegGetValue() (in module SCons.Util)
register() (in module SCons.exitfuncs)
RegOpenKeyEx() (in module SCons.Util)
rel_path() (SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
release_lock() (SCons.Util.filelock.FileLock method)
release_target_info() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
released_target_info (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
remove() (SCons.Builder.ListEmitter method)
(SCons.Executor.TSList method)
(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)

(SCons.Taskmaster.Job.NewParallel.State

(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.NodeList method)
(SCons.Node.Python.Value method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.UniqueList method)

(SCons.Variables.ListVariable._ListVariable
method)

remove_entities() (in module bin.SConsDoc)
remove_methods() (SCons.Tool.Toollnitializer method)

remove_option()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

RemoveMethod() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

removeprefix() (SCons.Subst.CmdStringHolder method)

removesuffix() (SCons.Subst.CmdStringHolder method)

rename() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)

rename_module() (in module SCons.compat)

render_include_tree() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScannerWrapper.recurse_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScannerWrapper.recurse_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.ref_count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.ref_count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.ref_count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.ref_count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.ref_count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.ref_count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.ref_count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.rel_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.rel_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rel_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.release_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.release_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.release_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.release_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.release_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.release_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.release_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.released_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.released_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.released_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.remove_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.remove_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.RemoveMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.RemoveMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.RemoveMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.RemoveMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.RemoveMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.rename')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.render_include_tree')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.render_include_tree')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.render_include_tree')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.render_include_tree')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.render_include_tree')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.render_include_tree')

(SCons.Node.Python.Value method)

render_tree() (in module SCons.Util)

rentry() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

rentry_exists_on_disk() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

reparse_local_options()
(SCons.Script.SConsOptions.SConsOptionParser
method)

Replace() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

replace() (SCons.Subst.CmdStringHolder method)

replace_string() (SCons.Script.Main.Progressor method)

Replacelxes() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

repositories (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

Repository() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)
(SCons.Node.FS.FS method)

(SCons.Script.SConscript.SConsEnvironment
method)

Requires() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

ReservedVariableWarning

Reset() (in module SCons.SConsign)

reset_executor() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

resolve_include()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
restore() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
result (SCons.SConf.SConfBuildInfo attribute)
Result() (SCons.SConf.CheckContext method)
retrieve() (SCons.CacheDir.CacheDir method)
retrieve_from_cache() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)
Return() (in module SCons.Script.SConscript)
reverse() (SCons.Builder.ListEmitter method)

(SCons.Executor.TSList method)

(SCons.Node.NodeList method)

(SCons.Script.TargetList method)

(SCons.Subst.ListSubber method)

(SCons.Subst.Targets_or_Sources method)

(SCons.Util.CLVar method)

(SCons.Util.NodeList method)

(SCons.Util.UniqueList method)

(SCons.Variables.ListVariable._ListVariable
method)

revert_io() (in module SCons.Script.Main)

rexists() (SCons.Node.Alias.Alias method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.render_include_tree')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.rentry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.rentry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.rentry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rentry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rentry_exists_on_disk')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Replace')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Replace')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Replace')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ReplaceIxes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ReplaceIxes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ReplaceIxes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.repositories')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.repositories')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.repositories')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Repository')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.Repository')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Repository')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Repository')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Requires')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Requires')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Requires')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.reset_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.reset_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.reset_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.reset_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.reset_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.reset_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.reset_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.resolve_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.resolve_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.resolve_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.resolve_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.restore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.restore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.restore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.restore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.retrieve_from_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.retrieve_from_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.retrieve_from_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.retrieve_from_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.retrieve_from_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.retrieve_from_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.retrieve_from_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.reverse')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.reverse')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.reverse')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.reverse')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.reverse')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.reverse')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.reverse')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.reverse')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.reverse')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.reverse')

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
rexists_base() (in module SCons.Node)
rexists_node() (in module SCons.Node)
rexists_none() (in module SCons.Node)
rfile() (in module SCons.Action)
(in module SCons.Executor)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
rfind() (SCons.Subst.CmdStringHolder method)
Rfindalldirs() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
rightmost_separator() (in module SCons.Util)
rindex() (SCons.Subst.CmdStringHolder method)
rjust() (SCons.Subst.CmdStringHolder method)
root (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
RootDir (class in SCons.Node.FS)
RootDir.Attrs (class in SCons.Node.FS)
rpartition() (SCons.Subst.CmdStringHolder method)
rsplit() (SCons.Subst.CmdStringHolder method)
rstr() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

rstrip() (SCons.Subst.CmdStringHolder method)

ruler (SCons.Script.Interactive.SConsinteractiveCmd
attribute)

run() (SCons.Taskmaster.Job.Jobs method)

(SCons.Taskmaster.Job.NewParallel.Worker
method)

(SCons.Taskmaster.Job.Worker method)
RunProg() (SCons.SConf.CheckContext method)

S

sanitize_shell_env() (in module SCons.Util)

save() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
Save() (SCons.Variables.Variables method)
save_strings() (in module SCons.Node.FS)
sbuilder (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)
scan() (in module SCons.Scanner.Java)

(in module SCons.Scanner.Prog)

(SCons.Executor.Executor method)

(SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)

(SCons.Node.Python.Value method)

(SCons.Scanner.Classic method)

(SCons.Scanner.ClassicCPP method)

(SCons.Scanner.D.D method)

(SCons.Scanner.Fortran.F90Scanner method)

(SCons.Scanner.LaTeX.LaTeX method)
scan_in_memory() (in module SCons.Scanner.Dir)

scan_on_disk() (in module SCons.Scanner.Dir)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.rfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.rfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.rfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.rfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.rfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Rfindalldirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.Rfindalldirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Rfindalldirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Rfindalldirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.root')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.root')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.root')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.rstr')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.rstr')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.rstr')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rstr')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.NewParallel.Worker.run')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.NewParallel.Worker.run')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker.run')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.save')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.save')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.save')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.save')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.sbuilder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.sbuilder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.sbuilder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.sbuilder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Prog.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Executor.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Classic.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.scan')

scan_recurse() (SCons.Scanner.LaTeX.LaTeX method)

scan_sources() (SCons.Executor.Executor method)

scan_targets() (SCons.Executor.Executor method)

scandir() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)

Scanner() (in module SCons.Scanner)
(SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

scanner_key() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

scanner_map_delete()
method)

(SCons.Environment.Base

(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

scanner_paths (SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)
ScannerBase (class in SCons.Scanner)
SConf() (in module SCons.SConf)
SConfBase (class in SCons.SConf)
SConfBase.TestWrapper (class in SCons.SConf)
SConfBuildInfo (class in SCons.SConf)
SConfBuildTask (class in SCons.SConf)
SConfError

SConfWarning
SCons
module
SCons (SCons.Executor.NullEnvironment attribute)
SCons.Action
module
SCons.Builder

module
SCons.CacheDir
module
SCons.compat
module
SCons.Conftest
module
SCons.cpp
module
SCons.dblite
module
SCons.Debug
module
SCons.Defaults
module
SCons.Environment
module
SCons.Errors
module
SCons.Executor
module
SCons.exitfuncs
module
SCons.Memoize
module
SCons.Node
module
SCons.Node.Alias
module
SCons.Node.FS
module
SCons.Node.Python
module
SCons.PathList
module
SCons.Platform
module
SCons.Platform.aix
module
SCons.Platform.cygwin
module
SCons.Platform.darwin
module
SCons.Platform.hpux
module

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.scandir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.scanner_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.scanner_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.scanner_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.scanner_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.scanner_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.scanner_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.scanner_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.scanner_map_delete')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.scanner_map_delete')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.scanner_map_delete')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.scanner_paths')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.scanner_paths')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.scanner_paths')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.compat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.cpp')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.dblite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Debug')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Defaults')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Environment')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Errors')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.exitfuncs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Memoize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Node')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Node.Alias')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Node.FS')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Node.Python')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.PathList')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.aix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.cygwin')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.darwin')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.hpux')

SCons.Platform.irix
module

SCons.Platform.mingw
module

SCons.Platform.os2
module

SCons.Platform.posix
module

SCons.Platform.sunos
module

SCons.Platform.virtualenv

module
SCons.Platform.win32
module
SCons.Scanner
module
SCons.Scanner.C
module
SCons.Scanner.D
module
SCons.Scanner.Dir
module
SCons.Scanner.Fortran
module
SCons.Scanner.IDL
module
SCons.Scanner.Java
module
SCons.Scanner.LaTeX
module
SCons.Scanner.Prog
module
SCons.Scanner.RC
module
SCons.Scanner.SWIG
module
SCons.SConf
module
SCons.SConsign
module
SCons.Script
module
SCons.Script.Interactive
module
SCons.Script.Main

module
SCons.Script.SConscript
module
SCons.Script.SConsOptions
module
SCons.Subst
module
SCons.Taskmaster
module
SCons.Taskmaster.Job
module
SCons.Tool
module
SCons.Util
module
SCons.Util.envs
module
SCons.Util.filelock
module
SCons.Util.hashes
module
SCons.Util.sctypes
module
SCons.Util.stats
module
SCons.Variables
module
SCons.Variables.BoolVariable
module
SCons.Variables.EnumVariable
module
SCons.Variables.ListVariable
module
SCons.Variables.PackageVariable
module
SCons.Variables.PathVariable
module
SCons.Warnings
module

scons_current_file() (SCons.cpp.DumbPreProcessor
method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.irix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.mingw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.os2')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.posix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.sunos')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.virtualenv')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.win32')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.C')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.D')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Fortran')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.IDL')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Java')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.LaTeX')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Prog')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.RC')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.SWIG')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.SConf')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.SConsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script.Interactive')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script.Main')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script.SConscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script.SConsOptions')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Taskmaster')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Taskmaster.Job')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Tool')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Util')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Util.envs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Util.filelock')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Util.hashes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Util.sctypes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Util.stats')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.BoolVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.EnumVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.ListVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.PackageVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.PathVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Warnings')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.scons_current_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.scons_current_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.scons_current_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.scons_current_file')

scons_subproc_run() (in module SCons.Action)
scons_subst() (in module SCons.Subst)
scons_subst_list() (in module SCons.Subst)
scons_subst_once() (in module SCons.Subst)
SConsBadOptionError

SConsCPPConditionalScanner
SCons.Scanner.C)

(class in

SConsCPPConditionalScannerWrapper
SCons.Scanner.C)

(class in

SConsCPPScanner (class in SCons.Scanner.C)
SConsCPPScannerWrapper (class in SCons.Scanner.C)

SConscript()
(SCons.Script.SConscript.SConsEnvironment method)

SConscript_exception() (in module

SCons.Script.SConscript)

SConscriptChdir()
(SCons.Script.SConscript.SConsEnvironment static
method)

SConscriptReturn

SConsDocHandler (class in bin.SConsDoc)

SConsDocTree (class in bin.SConsDoc)

SConsEnvironment (class in SCons.Script.SConscript)

SConsEnvironmentError

sconsign() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

sconsign_dir() (in module SCons.Node.FS)

sconsign_none() (in module SCons.Node.FS)

SConsignEntry (class in SCons.SConsign)

SConsignFile() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

SConsindentedHelpFormatter
SCons.Script.SConsOptions)

(class in

SConslnteractiveCmd (class in SCons.Script.Interactive)
SConsLockFailure

SConsOption (class in SCons.Script.SConsOptions)

SConsOptionGroup (class in
SCons.Script.SConsOptions)
SConsOptionParser (class in

SCons.Script.SConsOptions)

SConsPrintHelpException
SConsValues (class in SCons.Script.SConsOptions)
SConsWarning

SConsWarningOnByDefault
SCons.Warnings)

(in module

searched (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

SEARCHING (SCons.Taskmaster.Job.NewParallel.State
attribute)

select() (SCons.Scanner.C.SConsCPPConditionalScann
erWrapper method)

(SCons.Scanner.C.SConsCPPScannerWrapper
method)

(SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.Current method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)
(SCons.Scanner.LaTeX.LaTeX method)
(SCons.Scanner.ScannerBase method)
(SCons.Scanner.Selector method)

select_paths_in_venv()
SCons.Platform.virtualenv)

(in module

select_scanner() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

Selector (class in SCons.Scanner)
(class in SCons.Util)

semi_deepcopy() (in module SCons.Util)

semi_deepcopy_dict() (in module SCons.Util)

Serial (class in SCons.Taskmaster.Job)

set() (SCons.Taskmaster.Job.InterruptState method)

set_action_list() (SCons.Executor.Executor method)

(SCons.Executor.Null method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.SConsignFile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SConsignFile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SConsignFile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.searched')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.searched')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.searched')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScannerWrapper.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScannerWrapper.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Classic.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ScannerBase.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.select_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.select_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.select_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.select_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.select_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.select_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.select_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.set_action_list')

set_always_build() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

set_build_result() (SCons.SConf.SConfBuildInfo

method)

set_conflict_handler()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

set_default()
(SCons.Script.SConsOptions.SConsOptionParser
method)

set_defaults()
(SCons.Script.SConsOptions.SConsOptionParser
method)

set_description()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

set_diskcheck() (in module SCons.Node.FS)
set_duplicate() (in module SCons.Node.FS)
set_entry() (SCons.SConsign.Base method)
(SCons.SConsign.DB method)
(SCons.SConsign.Dir method)
(SCons.SConsign.DirFile method)
set_executor() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
set_explicit() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
set_hash_format() (in module SCons.Util.hashes)
set_local() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

set_long_opt_delimiter() (SCons.Script.SConsOptions.S
ConsindentedHelpFormatter method)

set_max_drift() (SCons.Node.FS.FS method)
set_missing_sconscript_error() (in module SCons.Script)
set_mode() (SCons.Util.DisplayEngine method)
set_nocache() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
set_noclean() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

set_option() (SCons.Script.SConsOptions.SConsValues
method)

set_parser() (SCons.Script.SConsOptions.SConsIndente
dHelpFormatter method)

set_precious() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.set_conflict_handler')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.set_conflict_handler')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.set_description')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.set_description')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.set_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.set_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.set_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_precious')

(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

set_process_default_values()
(SCons.Script.SConsOptions.SConsOptionParser
method)

set_pseudo() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

set_SConstruct_dir() (SCons.Node.FS.FS method)

set_short_opt_delimiter() (SCons.Script.SConsOptions.S
ConsindentedHelpFormatter method)

set_specific_source() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
set_src_builder() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
set_src_suffix() (SCons.Builder.BuilderBase method)
set_state() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

set_suffix() (SCons.Builder.BuilderBase method)

set_title()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

set_usage()
(SCons.Script.SConsOptions.SConsOptionParser
method)

SetAllowableExceptions() (in module SCons.Subst)
setAttribute() (bin.SConsDoc.TreeFactory static method)
SetBuildType() (in module SCons.SConf)
SetCacheMode() (in module SCons.SConf)

setDaemon()
(SCons.Taskmaster.Job.NewParallel.Worker method)

(SCons.Taskmaster.Job.Worker method)
setdefault() (SCons.Builder.CallableSelector method)
(SCons.Builder.DictCmdGenerator method)

(SCons.Builder.DictEmitter method)

(SCons.Builder.OverrideWarner method)
SetDefault() (SCons.Environment.Base method)
setdefault() (SCons.Environment.Base method)

(SCons.Environment.BuilderDict method)

SetDefault() (SCons.Environment.OverrideEnvironment
method)

setdefault()
method)

(SCons.Environment.OverrideEnvironment

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Node.Alias.AliasNameSpace method)

SetDefault()
(SCons.Script.SConscript.SConsEnvironment method)

setdefault()
(SCons.Script.SConscript. SConsEnvironment method)

(SCons.Util.Selector method)
SetLIBS() (SCons.SConf.CheckContext method)

setName() (SCons.Taskmaster.Job.NewParallel.Worker
method)

(SCons.Taskmaster.Job.Worker method)
SetOption() (in module SCons.Script.Main)

(SCons.Script.SConscript.SConsEnvironment
method)

SetProgressDisplay() (in module SCons.SConf)

settable
attribute)

(SCons.Script.SConsOptions.SConsValues

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_specific_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_specific_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_specific_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_specific_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_specific_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_specific_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_specific_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_src_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_src_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_src_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_src_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker.setDaemon')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.setdefault')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.setdefault')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.setdefault')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.setdefault')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.setdefault')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.setdefault')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.setdefault')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.setdefault')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker.setName')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SetOption')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SetOption')

setTail() (bin.SConsDoc.TreeFactory static method)
setText() (bin.SConsDoc.TreeFactory static method)
shared (SCons.Node.Alias.Alias.Attrs attribute)
(SCons.Node.FS.Base.Attrs attribute)
(SCons.Node.FS.Dir.Attrs attribute)
(SCons.Node.FS.Entry.Attrs attribute)
(SCons.Node.FS.File.Attrs attribute)
(SCons.Node.FS.RootDir.Attrs attribute)
(SCons.Node.Node.Attrs attribute)
(SCons.Node.Python.Value.Attrs attribute)
SharedFlagChecker() (in module SCons.Defaults)
SharedObjectEmitter() (in module SCons.Defaults)
show() (SCons.Script.Main.CleanTask method)
side_effect (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
side_effects (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
SideEffect() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

silent_intern() (in module SCons.Util)

size (SCons.Node.FS.FileNodelnfo attribute)

sort() (SCons.Builder.ListEmitter method)
(SCons.Executor.TSList method)
(SCons.Node.NodeList method)
(SCons.Script.TargetList method)

(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.UniqueList method)

(SCons.Variables.ListVariable._ListVariable
method)

sort_key() (SCons.Scanner.Classic static method)
(SCons.Scanner.ClassicCPP static method)
(SCons.Scanner.D.D static method)
(SCons.Scanner.Fortran.F90Scanner static method)
(SCons.Scanner.LaTeX.LaTeX static method)
sources (SCons.Executor.Batch attribute)
(SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
sources_set (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
spawn() (in module SCons.Platform.win32)
spawnve() (in module SCons.Platform.win32)
SpecialAttrWrapper (class in SCons.Subst)
spinner() (SCons.Script.Main.Progressor method)
Split() (in module SCons.Util)
(SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

split() (SCons.Subst.CmdStringHolder method)
splitext() (in module SCons.Util)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.Attrs.shared')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Attrs.shared')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.Attrs.shared')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Attrs.shared')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Attrs.shared')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.Attrs.shared')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.Attrs.shared')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.side_effect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.side_effect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.side_effect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.side_effect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.side_effect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.side_effect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.side_effect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.side_effects')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.side_effects')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.side_effects')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.side_effects')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.side_effects')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.side_effects')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.side_effects')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.SideEffect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SideEffect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SideEffect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.ListVariable._ListVariable.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.sort_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.sort_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.sort_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.sort_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.sources_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.sources_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.sources_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.sources_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.sources_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.sources_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.sources_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Split')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Split')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Split')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Split')

(SCons.Builder.BuilderBase method)
splitlines() (SCons.Subst.CmdStringHolder method)
src_builder() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)

src_builder_sources() (SCons.Builder.BuilderBase

method)
src_suffixes() (SCons.Builder.BuilderBase method)
(SCons.Builder.DictCmdGenerator method)
srcdir (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
srcdir_duplicate() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
srcdir_find_file() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
srcdir_list() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
srcnode() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
StackSizeWarning

STALLED
attribute)

(SCons.Taskmaster.Job.NewParallel.State

standard_option_list
(SCons.Script.SConsOptions.SConsOptionParser
attribute)

start() (SCons.Taskmaster.Job.LegacyParallel method)
(SCons.Taskmaster.Job.NewParallel method)

(SCons.Taskmaster.Job.NewParallel. Worker
method)

(SCons.Taskmaster.Job.Serial method)
(SCons.Taskmaster.Job.Worker method)

start_handling_includes()
(SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
startswith() (SCons.Subst.CmdStringHolder method)
stat() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

(SCons.Node.FS.RootDir method)
state (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)
StaticObjectEmitter() (in module SCons.Defaults)
Stats (class in SCons.Taskmaster)

(class in SCons.Util.stats)
stop() (SCons.Taskmaster.Taskmaster method)

stop_handling_includes()
(SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
StopError

STORE_ACTIONS
(SCons.Script.SConsOptions.SConsOption attribute)

store_info (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.BuilderBase.splitext')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.src_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.src_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.src_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.src_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.src_suffixes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.srcdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.srcdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.srcdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.srcdir_duplicate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.srcdir_find_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.srcdir_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.srcnode')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.srcnode')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.srcnode')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.srcnode')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.NewParallel.start')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.NewParallel.Worker.start')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.NewParallel.Worker.start')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Serial.start')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.Worker.start')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.start_handling_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.start_handling_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.start_handling_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.start_handling_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.stat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.stat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.stat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.stat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.stat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.stat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.stats.Stats')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.stop_handling_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.stop_handling_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.stop_handling_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.stop_handling_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.store_info')

store_info() (SCons.SConsign.Base method)
(SCons.SConsign.DB method)
(SCons.SConsign.Dir method)
(SCons.SConsign.DirFile method)

store_info_file() (in module SCons.Node)

store_info_pass() (in module SCons.Node)

store_local_option_strings() (SCons.Script.SConsOption
s.SConslIndentedHelpFormatter method)

store_option_strings() (SCons.Script.SConsOptions.SCo
nsindentedHelpFormatter method)

str_for_display() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Python.Value method)

str_to_node() (SCons.Node.Alias.AliasNodelnfo method)
(SCons.Node.FS.DirNodelnfo method)
(SCons.Node.FS.FileNodelnfo method)
(SCons.Node.Python.ValueNodelnfo method)

Streamer (class in SCons.SConf)

strfunction() (SCons.Action.ActionCaller method)
(SCons.Action.CommandAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)

string (SCons.SConf.SConfBuildInfo attribute)

string() (SCons.Script.Main.Progressor method)

string_to_classes() (in module SCons.Debug)

StringSubber (class in SCons.Subst)

strip() (SCons.Subst.CmdStringHolder method)

subprocess_spawn() (in module SCons.Platform.posix)

subst() (SCons.Action.ActionCaller method)
(SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

subst_args() (SCons.Action.ActionCaller method)

subst_dict() (in module SCons.Subst)

subst_kw() (SCons.Action.ActionCaller method)
(SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

subst_list() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

subst_path() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.PathList._PathList method)

(SCons.Script.SConscript.SConsEnvironment
method)

subst_src_suffixes()
method)

(SCons.Builder.BuilderBase

subst_target_source()
method)

(SCons.Environment.Base

(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

substitute() (SCons.Subst.ListSubber method)
(SCons.Subst.StringSubber method)
SubstitutionEnvironment (class in SCons.Environment)
suppressWarningClass() (in module SCons.Warnings)
swapcase() (SCons.Subst.CmdStringHolder method)
SWIGScanner() (in module SCons.Scanner.SWIG)
symlink() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
sync() (SCons.dblite._Dblite method)

synonyms
(SCons.Script.Interactive.SConsinteractiveCmd
attribute)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.str_for_display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.str_for_display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.str_for_display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.str_for_display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.str_for_display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.str_for_display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.str_to_node')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.str_to_node')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.str_to_node')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.strfunction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.strfunction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.strfunction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.subst_kw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_kw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_kw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_kw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_kw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_kw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.PathList._PathList.subst_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_target_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_target_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_target_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_target_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_target_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.StringSubber.substitute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.symlink')

T

Tag() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

take_action() (SCons.Script.SConsOptions.SConsOption
method)

takes_value()
(SCons.Script.SConsOptions.SConsOption method)

target_from_source() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
target_from_source_base() (in module SCons.Node)
target_from_source_none() (in module SCons.Node)
Target_or_Source (class in SCons.Subst)
target_peers (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
target_string (SCons.Script.Main.Progressor attribute)
TargetList (class in SCons.Script)
TargetNotBuiltWarning
targets (SCons.Executor.Batch attribute)
Targets_or_Sources (class in SCons.Subst)
Task (class in SCons.Taskmaster)
Taskmaster (class in SCons.Taskmaster)
TempFileMunge (class in SCons.Platform)

test_load_all_site_scons_dirs() (in module

SCons.Script.Main)
this_word() (SCons.Subst.ListSubber method)

ThreadPool (class in SCons.Taskmaster.Job)
timestamp (SCons.Node.FS.FileNodelnfo attribute)
TimeStats (class in SCons.Util.stats)

title() (SCons.Subst.CmdStringHolder method)

tm_trace_node()
method)

(SCons.Taskmaster.Taskmaster

to_bytes() (in module SCons.Util.sctypes)
to_str() (in module SCons.Util.sctypes)
to_String() (in module SCons.Util.sctypes)
to_String_for_signature() (in module SCons.Util.sctypes)
to_String_for_subst() (in module SCons.Util.sctypes)
to_Text() (in module SCons.Util.sctypes)
Tool (class in bin.SConsDoc)
(class in SCons.Tool)
Tool() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

tool_list() (in module SCons.Tool)

Toollnitializer (class in SCons.Tool)
ToollnitializerMethod (class in SCons.Tool)
ToolQtDeprecatedWarning

total_times() (SCons.Util.stats. TimeStats method)
touch_func() (in module SCons.Defaults)

Trace() (in module SCons.Debug)

trace_message() (SCons.SConf.SConfBuildTask

method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.Job.NewParallel method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

translate() (SCons.Subst.CmdStringHolder method)

TreeFactory (class in bin.SConsDoc)

TreePrinter (class in SCons.Script.Main)

TryAction() (SCons.SConf.CheckContext method)
(SCons.SConf.SConfBase method)

TryBuild() (SCons.SConf.CheckContext method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.Tag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Tag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.Tag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Tag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Tag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.Tag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.Tag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.target_peers')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.target_peers')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.target_peers')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.target_peers')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.target_peers')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.target_peers')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.target_peers')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Tool.Tool')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Tool')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Tool')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Tool')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.trace_message')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.trace_message')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.trace_message')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.trace_message')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Job.NewParallel.trace_message')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.trace_message')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.trace_message')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase.TryAction')

(SCons.SConf.SConfBase method)

TryCompile() (SCons.SConf.CheckContext method)
(SCons.SConf.SConfBase method)

TryLink() (SCons.SConf.CheckContext method)
(SCons.SConf.SConfBase method)

TryRun() (SCons.SConf.CheckContext method)
(SCons.SConf.SConfBase method)

TSList (class in SCons.Executor)

TSObiject (class in SCons.Executor)

tupleize() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

two_arg_commands (SCons.Scanner.LaTeX.LaTeX

attribute)

TYPE_CHECKER
(SCons.Script.SConsOptions.SConsOption attribute)

TYPED_ACTIONS
(SCons.Script.SConsOptions.SConsOption attribute)

TYPES
attribute)

(SCons.Script.SConsOptions.SConsOption

U
Unbuffered (class in SCons.Util)

undoc_header
(SCons.Script.Interactive.SConslinteractiveCmd
attribute)

unique() (in module SCons.Util)
UniquelList (class in SCons.Util)
uniquer_hashables() (in module SCons.Util)

UnknownVariables()
method)

unlink() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
UnlinkFunc() (in module SCons.Node.FS)

(SCons.Variables.Variables

unlock() (SCons.Taskmaster.Job.NewParallel.FakeLock
method)

up() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
update() (SCons.Builder.CallableSelector method)

(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)

(SCons.Builder.OverrideWarner method)
(SCons.Environment.BuilderDict method)
(SCons.Node.Alias.AliasNameSpace method)
(SCons.Node.Alias.AliasNodelnfo method)
(SCons.Node.FS.DirNodelnfo method)
(SCons.Node.FS.FileNodelnfo method)
(SCons.Node.NodelnfoBase method)
(SCons.Node.Python.ValueNodelnfo method)
(SCons.Util.Selector method)

Update() (SCons.Variables.Variables method)

updrive() (in module SCons.Util)

upper() (SCons.Subst.CmdStringHolder method)

use_rawinput
(SCons.Script.Interactive.SConsinteractiveCmd
attribute)

UserError

usesTime() (SCons.Util.DispatchingFormatter method)

Y,
validate_all_xml() (in module bin.SConsDoc)

validate _CacheDir_class()
method)

(SCons.Environment.Base

(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

ValidateOptions() (in module SCons.Script.Main)

validateXml() (bin.SConsDoc.TreeFactory static method)

validator (SCons.Variables.Variable attribute)

Value (class in SCons.Node.Python)

Value() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment
method)

Value.Attrs (class in SCons.Node.Python)

ValueBuildInfo (class in SCons.Node.Python)

ValueNodelnfo (class in SCons.Node.Python)

values (SCons.Script.Main.FakeOptionParser attribute)

values() (SCons.Builder.CallableSelector method)
(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)

(SCons.Builder.OverrideWarner method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase.TryBuild')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase.TryCompile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase.TryLink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase.TryRun')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.tupleize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.tupleize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.tupleize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.tupleize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.unlink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.up')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNodeInfo.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.validate_CacheDir_class')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.validate_CacheDir_class')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.validate_CacheDir_class')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Value')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Value')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Value')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.values')

(SCons.dblite._Dblite method)
(SCons.Environment.Base method)
(SCons.Environment.BuilderDict method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Util.Selector method)

ValueWithMemo() (in module SCons.Node.Python)

Variable (class in SCons.Variables)

Variable_Method_Caller (class in SCons.Defaults)

Variables (class in SCons.Variables)

Variables() (in module SCons.Script)

variant_dir_target_climb() (SCons.Node.FS.FS method)

variant_dirs (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

VariantDir() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)
(SCons.Node.FS.FS method)

(SCons.Script.SConscript.SConsEnvironment
method)

version_string() (in module SCons.Script.Main)
Virtualenv() (in module SCons.Platform.virtualenv)
visited() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
VisualCMissingWarning
VisualStudioMissingWarning

VisualVersionMismatch

w

wait()
(SCons.Taskmaster.Job.NewParallel.FakeCondition
method)

wait_for_process_to_die() (in module SCons.Util)

waiting_parents (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

waiting_s_e (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

walk() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

Walker (class in SCons.Node)

warn() (in module SCons.Warnings)
(SCons.Builder.OverrideWarner method)

warning() (bin.SConsDoc.Libxml2ValidityHandler

method)
warningAsException() (in module SCons.Warnings)
WarningOnByDefault

were_interrupted()
method)

Wherels() (in module SCons.Util)

(SCons.Taskmaster.Job.Jobs

(SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment method)

(SCons.Script.SConscript.SConsEnvironment

method)
will_not_build() (SCons.Taskmaster.Taskmaster
method)

with_traceback()
(SCons.Node.FS.EntryProxyAttributeError method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.dblite._Dblite.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.variant_dirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.variant_dirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.variant_dirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.VariantDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.VariantDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.VariantDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.VariantDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.visited')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.visited')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.visited')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.visited')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.visited')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.visited')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.visited')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.walk')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.warn')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.WhereIs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.WhereIs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.WhereIs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.WhereIs')

(SCons.Node.FS.FileBuildInfoFileToCsigMappingEr
ror method)

(SCons.SConf.ConfigureCacheError method)
(SCons.SConf.ConfigureDryRunError method)
(SCons.SConf.SConfError method)
(SCons.SConf.SConfWarning method)

(SCons.Script.Main.SConsPrintHelpException
method)

(SCons.Script.SConscript.SConscriptReturn
method)

(SCons.Script.SConsOptions.SConsBadOptionError
method)

(SCons.Util._NoError method)
(SCons.Uftil.filelock.SConsLockFailure method)

wkids (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

Worker (class in SCons.Taskmaster.Job)

write() (in module SCons.SConsign)
(SCons.Node.Python.Value method)
(SCons.SConf.Streamer method)
(SCons.SConsign.DB method)
(SCons.SConsign.DirFile method)
(SCons.Script.Main.Progressor method)
(SCons.Util.Unbuffered method)

write_scons_stats_file() (in module SCons.Util.stats)

writeGenTree() (bin.SConsDoc.TreeFactory static
method)

writelines() (SCons.SConf.Streamer method)
(SCons.Util.Unbuffered method)

writeTree() (bin.SConsDoc.TreeFactory static method)

X

xmlschema (bin.SConsDoc.TreeFactory attribute)

z
zfill() (SCons.Subst.CmdStringHolder method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfoFileToCsigMappingError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfoFileToCsigMappingError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.ConfigureCacheError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.ConfigureDryRunError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.SConsPrintHelpException.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.SConsPrintHelpException.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConscriptReturn.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConscriptReturn.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsBadOptionError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsBadOptionError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util._NoError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.filelock.SConsLockFailure.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.wkids')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.wkids')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.wkids')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.wkids')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.wkids')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.wkids')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.wkids')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.write')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.Streamer.write')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.write')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.write')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.Progressor.write')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Unbuffered.write')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Unbuffered.writelines')

Python Module Index

b
bin
bin.SConsDoc

bin.SConsExamples

s
SCons

SCons.Action
SCons.Builder
SCons.CacheDir
SCons.compat
SCons.Conftest
SCons.cpp
SCons.dblite
SCons.Debug
SCons.Defaults
SCons.Environment
SCons.Errors
SCons.Executor
SCons.exitfuncs
SCons.Memoize
SCons.Node
SCons.Node.Alias
SCons.Node.FS
SCons.Node.Python
SCons.PathList
SCons.Platform
SCons.Platform.aix
SCons.Platform.cygwin
SCons.Platform.darwin
SCons.Platform.hpux
SCons.Platform.irix
SCons.Platform.mingw
SCons.Platform.os2
SCons.Platform.posix
SCons.Platform.sunos
SCons.Platform.virtualenv

SCons.Platform.win32

SCons.Scanner
SCons.Scanner.C
SCons.Scanner.D
SCons.Scanner.Dir
SCons.Scanner.Fortran
SCons.Scanner.IDL
SCons.Scanner.Java
SCons.Scanner.LaTeX
SCons.Scanner.Prog
SCons.Scanner.RC
SCons.Scanner.SWIG
SCons.SConf
SCons.SConsign
SCons.Script
SCons.Script.Interactive
SCons.Script.Main
SCons.Script.SConscript
SCons.Script.SConsOptions
SCons.Subst
SCons.Taskmaster
SCons.Taskmaster.Job
SCons.Tool

SCons. Util

SCons.Util.envs

SCons.Util filelock
SCons.Util.hashes
SCons.Util.sctypes
SCons.Util.stats
SCons.Variables
SCons.Variables.BoolVariable
SCons.Variables.EnumVariable
SCons.Variables.ListVariable
SCons.Variables.PackageVariable
SCons.Variables.PathVariable

SCons.Warnings

	SCons API Documentation
	SCons package
	Module contents
	Submodules
	SCons.Action module
	SCons.Builder module
	SCons.CacheDir module
	SCons.Conftest module
	SCons.Debug module
	SCons.Defaults module
	SCons.Environment module
	SCons.Errors module
	SCons.Executor module
	SCons.Memoize module
	SCons.PathList module
	SCons.SConf module
	SCons.SConsign module
	SCons.Subst module
	SCons.Warnings module
	SCons.cpp module
	SCons.dblite module
	SCons.exitfuncs module
	SConsDoc documentation module
	SCons Documentation Processing module

	SConsExamples documentation module
	SCons Example Generator

	SCons.compat package
	Module contents

	SCons.Node package
	Module contents
	Submodules
	SCons.Node.Alias module
	SCons.Node.FS module
	SCons.Node.Python module

	SCons.Platform package
	Module contents
	Submodules
	SCons.Platform.aix module
	SCons.Platform.cygwin module
	SCons.Platform.darwin module
	SCons.Platform.hpux module
	SCons.Platform.irix module
	SCons.Platform.mingw module
	SCons.Platform.os2 module
	SCons.Platform.posix module
	SCons.Platform.sunos module
	SCons.Platform.virtualenv module
	SCons.Platform.win32 module

	SCons.Scanner package
	Module contents
	Submodules
	SCons.Scanner.C module
	SCons.Scanner.D module
	SCons.Scanner.Dir module
	SCons.Scanner.Fortran module
	SCons.Scanner.IDL module
	SCons.Scanner.Java module
	SCons.Scanner.LaTeX module
	SCons.Scanner.Prog module
	SCons.Scanner.RC module
	SCons.Scanner.SWIG module

	SCons.Script package
	Module contents
	Submodules
	SCons.Script.Interactive module
	SCons.Script.Main module
	SCons.Script.SConsOptions module
	SCons.Script.SConscript module

	SCons.Taskmaster package
	Module contents
	Submodules
	SCons.Taskmaster.Job module

	SCons.Tool package
	Module contents

	SCons.Util package
	Module contents
	Submodules
	SCons.Util.envs module
	SCons.Util.filelock module
	SCons.Util.hashes module
	SCons.Util.sctypes module
	SCons.Util.stats module

	SCons.Variables package
	Module contents
	Submodules
	SCons.Variables.BoolVariable module
	SCons.Variables.EnumVariable module
	SCons.Variables.ListVariable module
	SCons.Variables.PackageVariable module
	SCons.Variables.PathVariable module

	Indices and Tables
	Index
	Python Module Index

