SCons API Docs

version 4.2

SCons Project

July 31, 2021

Contents

SCons Project API Documentation 1
SCons package 1
Module contents 1
Subpackages 1
SCons.Node package 1
Submodules 1
SCons.Node.Alias module 1
SCons.Node.FS module 9
SCons.Node.Python module 68

Module contents 76
SCons.Platform package 85
Submodules 85
SCons.Platform.aix module 85
SCons.Platform.cygwin module 85
SCons.Platform.darwin module 86
SCons.Platform.hpux module 86
SCons.Platform.irix module 86
SCons.Platform.mingw module 86
SCons.Platform.os2 module 86
SCons.Platform.posix module 86
SCons.Platform.sunos module 86
SCons.Platform.virtualenv module 87
SCons.Platform.win32 module 87

Module contents 87
SCons.Scanner package 89
Submodules 89
SCons.Scanner.C module 89
SCons.Scanner.D module 93
SCons.Scanner.Dir module 93
SCons.Scanner.Fortran module 94
SCons.Scanner.IDL module 94
SCons.Scanner.LaTeX module 94
SCons.Scanner.Prog module 96
SCons.Scanner.RC module 96
SCons.Scanner.SWIG module 96

Module contents 96
SCons.Script package 99
Submodules 99
SCons.Script.Interactive module 99

SCons.Script.Main module 101

SCons.Script.SConsOptions module 108

SCons.Script.SConscript module 115

Module contents 122
SCons.Tool package 123
Module contents 123
SCons.Variables package 125
Submodules 125
SCons.Variables.BoolVariable module 125
SCons.Variables.EnumVariable module 125
SCons.Variables.ListVariable module 126
SCons.Variables.PackageVariable module 126
SCons.Variables.PathVariable module 127

Module contents 127
SCons.compat package 129
Module contents 129
Submodules 129
SCons.Action module 129
SCons.Builder module 136
SCons.CacheDir module 142
SCons.Conftest module 143
SCons.Debug module 146
SCons.Defaults module 146
SCons.Environment module 148
SCons.Errors module 162
SCons.Executor module 164
SCons.Job module 169
SCons.Memoize module 172
SCons.PathList module 173
SCons.SConf module 174
SCons.SConsign module 180
SCons.Subst module 182
SCons.Taskmaster module 188
SCons.Util module 195
SCons.Warnings module 205
SCons.cpp module 209
SCons.dblite module 213
SCons.exitfuncs module 216
SCons.compat package 216
Module contents 216
SCons.Node package 217
Submodules 217

SCons.Node.Alias module 217

SCons.Node.FS module 225

SCons.Node.Python module 284
Module contents 292
SCons.Platform package 301
Submodules 301
SCons.Platform.aix module 301
SCons.Platform.cygwin module 301
SCons.Platform.darwin module 302
SCons.Platform.hpux module 302
SCons.Platform.irix module 302
SCons.Platform.mingw module 302
SCons.Platform.os2 module 302
SCons.Platform.posix module 302
SCons.Platform.sunos module 302
SCons.Platform.virtualenv module 303
SCons.Platform.win32 module 303
Module contents 303
SCons.Scanner package 305
Submodules 305
SCons.Scanner.C module 305
SCons.Scanner.D module 309
SCons.Scanner.Dir module 309
SCons.Scanner.Fortran module 310
SCons.Scanner.IDL module 310
SCons.Scanner.LaTeX module 310
SCons.Scanner.Prog module 312
SCons.Scanner.RC module 312
SCons.Scanner.SWIG module 312
Module contents 312
SCons.Script package 315
Submodules 315
SCons.Script.Interactive module 315
SCons.Script.Main module 317
SCons.Script.SConsOptions module 325
SCons.Script.SConscript module 331
Module contents 338
SCons.Tool package 339
Module contents 339
SCons.Variables package 341
Submodules 341
SCons.Variables.BoolVariable module 341

SCons.Variables.EnumVariable module 341

SCons.Variables.ListVariable module
SCons.Variables.PackageVariable module
SCons.Variables.PathVariable module
Module contents

Indices and Tables

Index

Python Module Index

342
342
343
344
345
347
403

SCons Project APl Documentation

SCons Project API Documentation

This is the internal APl Documentation for SCons. The Documentation is generated using the Sphinx tool. The target
audience is developers working on SCons itself, so it does not clearly delineate what is “Public API” - interfaces for
use in your SCons configuration scripts which have a consistency guarantee, and what is internal, so always keep
the SCons manual page around for helping with such determinations.

SCons package
Module contents

Subpackages

SCons.Node package
Submodules

SCons.Node.Alias module
Alias nodes.

This creates a hash of global Aliases (dummy targets).

class SCons. Node. Al i as. Al i as (hame)
Bases: SCons. Node. Node

class Attrs
Bases: obj ect

shar ed

Bui | dl nfo
alias of SCons. Node. Al i as. Al i asBui | dl nfo

Deci der (function)

Cet Tag (key)
Return a user-defined tag.

Nodel nf o
alias of SCons. Node. Al i as. Al i asNodel nf o

Tag (key, value)
Add a user-defined tag.

_add_chi | d (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()
_children_reset ()
_func_exists
_func_get _contents

_func_is_derived

SCons Project APl Documentation

_func_rexists

_func_target fromsource

_get _scanner (env, initial_scanner, root_node_scanner, kw)
_nmeno

_specific_sources

_tags

add_dependency (depend)
Adds dependencies.

add_i gnor e (depend)
Adds dependencies to ignore.

add_prerequi sit e (prerequisite)
Adds prerequisites

add_sour ce (source)
Adds sources.

add_to_inplicit (deps)

add_t o_wai ti ng_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don'’t think you can
“clean up” this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wki d (wkid)
Add a node to the list of kids waiting to be evaluated

al | _chil dren (scan=1)
Return a list of all the node’s direct children.

alter _targets ()
Return a list of alternate targets for this Node.

al ways_buil d
attributes
bi nfo

build()
A “builder” for aliases.

bui | der
bui | der _set (builder)

built ()
Called just after this node is successfully built.

cached

changed (node=None, allowcache=False)

SCons Project APl Documentation

Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored Buildinfo, but the stored Buildinfo from another Node (typically
one in a Repository) can be used instead.

Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.

The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().

@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last _build

check_attri butes (name)
Simple API to check if the node.attributes for name has been set

chi | dren (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_ up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).
cl ear _nenoi zed_val ues ()

convert ()

del _binfo ()
Delete the build info from this node.

depends

depends_set

di sanbi guat e (must_exist=None)
env

env_set (env, safe=0)

execut or

execut or _cl eanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

expl ain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need

SCons Project APl Documentation

to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

get _abspat h ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get _binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what's wanted.

get _build_env ()
Fetch the appropriate Environment to build this node.

get _buil d_scanner _pat h (scanner)
Fetch the appropriate scanner path for this node.

get _bui | der (default_builder=None)
Return the set builder, or a specified default value

get _cachedir_csig()

get _contents ()
The contents of an alias is the concatenation of the content signatures of all its sources.

get _csig()
Generate a node’s content signature, the digested signature of its content.
node - the node cache - alternate node to use for the signature cache returns - the content signature

get _env ()
get _env_scanner (env, kw={})

get _execut or (create=1)
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.

get _found_i ncl udes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get _inplicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_ninfo()

get _source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get _state ()

get _stored_inplicit ()
Fetch the stored implicit dependencies

SCons Project APl Documentation

get _stored_info()

get _stri ng (for_signature)

This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get _subst _proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get _suffix()
get _target _scanner ()

has_bui | der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

i gnore

i gnor e_set

implicit

implicit_set

i ncl udes

is_conftest ()
Returns true if this node is an conftest node

is_derived|()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

i s_sconscript ()
Returns true if this node is an sconscript

SCons Project APl Documentation

i s_under (dir)

is_ up_to_date()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

l'i nked

make ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

m ssing ()

mul ti ple_side_effect_has_buil der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len___and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

new_bi nfo ()
new_ni nf o ()
ni nfo
nocache
nocl ean

post process ()
Clean up anything we don'’t need to hang onto after we've been built.

pr eci ous

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites
pseudo

push_to_cache ()
Try to push a node into a cache

real ly_bui |l d (**kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.

SCons Project APl Documentation

This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

ref count

rel ease_target _info()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

renove ()
Remove this Node: no-op by default.

render _include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

reset _executor ()
Remove cached executor; forces recompute when needed.

retrieve_fromcache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

scan ()
Scan this node’s dependents for implicit dependencies.

scanner _key ()

sconsi gn ()
An Alias is not recorded in .sconsign files

sel ect _scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that's configured for the target.

set _al ways_bui | d (always_build=1)
Set the Node’s always_build value.

set _execut or (executor)
Set the action executor for this node.

set _explicit (is_explicit)

set _nocache (nocache=1)
Set the Node's nocache value.

set _nocl ean (noclean=1)
Set the Node’s noclean value.

set _preci ous (precious=1)
Set the Node’s precious value.

SCons Project APl Documentation

set _pseudo (pseudo=True)
Set the Node’s precious value.

set _specific_source (source)
set st at e (state)

si de_ef f ect

side_effects

sour ces

sources_set

state

store_info

str_for _display()

target _peers

visited ()
Called just after this node has been visited (with or without a build).

wai ting_parents
waiting s e
wki ds

class SCons. Node. Al i as. Al i asBui | dl nfo
Bases: SCons. Node. Bui | dI nf oBase

bact
bactsi g
bdepends
bdependsi gs
bimplicit
bi nmplicitsigs
bsour ces
bsour cesi gs
current _version_id=2
mer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other

instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons. Node. Al i as. Al i asNaneSpace (**kwargs)
Bases: col | ecti ons. User Di ct

Al'i as (name, **kw)

SCons Project APl Documentation

_abc_i mpl =<_abc_data object>

cl ear () - None. Remove all items from D.

copy ()

classmethod f r onkeys (iterable, value=None)

get (k[,d]) - DIK] if kin D, else d. d defaults to None.

i tems () - a set-like object providing a view on D’s items
keys () —» a set-like object providing a view on D’s keys

| ookup (hame, **kw)

pop (K[, d]) - v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popi tem() - (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefaul t (k[,d]) - D.get(k,d), also set D[k]=d if k not in D

update ([, E], **F) - None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[K] If E present and lacks .keys() method, does:
for (k, v) in E: D[K] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

val ues () - an object providing a view on D’s values

class SCons. Node. Al i as. Al i asNodel nfo
Bases: SCons. Node. Nodel nf oBase

convert (node, val)

csig

current _version_id=2

field Iist =[csig]

f or mat (field_list=None, names=0)

mer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

updat e (hode)

SCons.Node.FS module

File system nodes.

These Nodes represent the canonical external objects that people think of when they think of building software: files
and directories.

This holds a “default_fs” variable that should be initialized with an FS that can be used by scripts or modules looking
for the canonical default.

class SCons. Node. FS. Base (name, directory, fs)

SCons Project APl Documentation

Bases: SCons. Node. Node

A generic class for file system entries. This class is for when we don’t know yet whether the entry being looked up
is a file or a directory. Instances of this class can morph into either Dir or File objects by a later, more precise
lookup.

Note: this class does not define __cmp___and __hash__ for efficiency reasons. SCons does a lot of comparing of
Node.FS.{Base,Entry,File,Dir} objects, so those operations must be as fast as possible, which means we want to
use Python’s built-in object identity comparisons.

class Attrs
Bases: obj ect

shar ed

Bui | dl nfo
alias of SCons. Node. Bui | dl nf oBase

Deci der (function)

Cet Tag (key)
Return a user-defined tag.

Nodel nf o
alias of SCons. Node. Nodel nf oBase

RDi r s (pathlist)
Search for a list of directories in the Repository list.

Rf i ndal | di r s (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindal I di rs_key (pathlist)
_abspath

_add_chi | d (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()

_children_reset ()

_func_exists

_func_get _contents

_func_is_derived

_func_rexists

_func_sconsi gn

_func_target fromsource

_get _scanner (env, initial_scanner, root_node_scanner, kw)

_get _str ()

10

SCons Project APl Documentation

_gl obl (pattern, ondisk=True, source=False, strings=False)
_labspath

_l ocal

_neno

_path
_path_elenments
_proxy

_save_str ()
_specific_sources
_tags

_tpath

add_dependency (depend)
Adds dependencies.

add_i gnor e (depend)
Adds dependencies to ignore.

add_prerequi sit e (prerequisite)
Adds prerequisites

add_sour ce (source)
Adds sources.

add_to_inplicit (deps)

add_t o_wai ti ng_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don'’t think you can
“clean up” this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wki d (wkid)
Add a node to the list of kids waiting to be evaluated

al | _chi I dren (scan=1)
Return a list of all the node’s direct children.

alter _targets ()
Return a list of alternate targets for this Node.

al ways_buil d
attributes
bi nfo

bui | d (**kw)
Actually build the node.

11

SCons Project APl Documentation

12

This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.

This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

bui | der
bui | der _set (builder)

built ()
Called just after this node is successfully built.

cached

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored Buildinfo, but the stored Buildinfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last _build

check_attri butes (name)
Simple API to check if the node.attributes for name has been set

chi | dren (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).
cl ear _nenoi zed_val ues ()

cwd

del _binfo ()
Delete the build info from this node.

depends

depends_set

dir

di sanbi guat e (must_exist=None)
duplicate

env

SCons Project APl Documentation

env_set (env, safe=0)
execut or

execut or _cl eanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

expl ain ()

for_signature()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs
Reference to parent Node.FS object

get _abspat h ()
Get the absolute path of the file.

get _binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what's wanted.

get _build_env ()
Fetch the appropriate Environment to build this node.

get _buil d_scanner _pat h (scanner)
Fetch the appropriate scanner path for this node.

get _bui | der (default_builder=None)
Return the set builder, or a specified default value

get _cachedir_csig()

get _contents ()
Fetch the contents of the entry.

get _csig()

get _dir ()

get _env ()

get _env_scanner (env, kw={})

get _execut or (create=1)
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.

get _found_i ncl udes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.

13

SCons Project APl Documentation

14

The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get _inplicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get _internal _path ()

get | abspath ()
Get the absolute path of the file.

get _ninfo()

get _pat h (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get _path_el enents ()

get _relpath()
Get the path of the file relative to the root SConstruct file’s directory.

get _source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get _state ()

get _stored_inplicit ()
Fetch the stored implicit dependencies

get _stored_info()

get _stri ng (for_signature)

This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get _subst _proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __ getattr () method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get _suffix()

get _target _scanner ()

get _tpath()

getmtine ()

getsi ze ()

SCons Project APl Documentation

15

has_bui | der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_buil der ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

i gnore

i gnor e_set

implicit

implicit_set

i ncl udes

is_conftest ()
Returns true if this node is an conftest node

is_derived|()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

i s_sconscript ()
Returns true if this node is an sconscript

i s_under (dir)
is up_to_date()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will
always get built.
isdir ()
isfile()
i slink()
l'i nked
I stat ()
make ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a

Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

m ssing ()

SCons Project APl Documentation

16

mul ti ple_side_effect_has_buil der ()

Return whether this Node has a builder or not.

In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

must _be_ sane (klass)

This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

nane

new_bi nfo ()
new_ni nfo ()
ni nf o
nocache
nocl ean

post process ()

Clean up anything we don'’t need to hang onto after we've been built.

pr eci ous

prepare ()

Prepare for this Node to be built.

This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.

This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.

(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)

Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites
pseudo

push_to_cache ()

Try to push a node into a cache

ref count

rel ease_target _info()

Called just after this node has been marked up-to-date or was built completely.

This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.

By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.

@see: built() and File.release_target_info()

renove ()

Remove this Node: no-op by default.

render _include_tree ()

Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

SCons Project APl Documentation

rentry ()

reset _executor ()
Remove cached executor; forces recompute when needed.

retrieve_fromcache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

rfile()

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbui | der

scan ()
Scan this node’s dependents for implicit dependencies.

scanner _key ()

sel ect _scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that's configured for the target.

set _al ways_bui | d (always_build=1)
Set the Node’s always_build value.

set _execut or (executor)
Set the action executor for this node.

set _explicit (is_explicit)
set _local ()

set _nocache (nocache=1)
Set the Node's nocache value.

set _nocl ean (noclean=1)
Set the Node’s noclean value.

set _preci ous (precious=1)
Set the Node’s precious value.

set _pseudo (pseudo=True)
Set the Node’s precious value.

set _specific_source (source)

set _src_buil der (builder)
Set the source code builder for this node.

set st at e (state)

side_effect

17

SCons Project APl Documentation

side_effects
sour ces
sources_set
src_buil der ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value

from its parent directory, and so on up to the file system root).

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for _display()

target _from source (prefix,suffix,splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target _peers

visited()
Called just after this node has been visited (with or without a build).

wai ting_parents
waiting s e

wKki ds

class SCons. Node. FS. Di r (name, directory, fs)

18

Bases: SCons. Node. FS. Base
A class for directories in a file system.

class Attrs
Bases: obj ect

shar ed

Bui | dl nfo
alias of SCons. Node. FS. Di r Bui | dl nfo

Deci der (function)

Di r (name, create=True)
Looks up or creates a directory node named ‘name’ relative to this directory.

Entry (name)
Looks up or creates an entry hode named ‘name’ relative to this directory.

Fi | e (name)
Looks up or creates a file node named ‘name’ relative to this directory.

SCons Project APl Documentation

Cet Tag (key)
Return a user-defined tag.

Nodel nf o
alias of SCons. Node. FS. Di r Nodel nf o

RDi r s (pathlist)
Search for a list of directories in the Repository list.

Rfi ndal | di r s (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindal I di rs_key (pathlist)

__cl earReposi t or yCache (duplicate=None)
Called when we change the repository(ies) for a directory. This clears any cached information that is invalidated
by changing the repository.

__resetDupli cat e (node)

_abspath

_add_chi | d (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()
_children_reset ()

_create()
Create this directory, silently and without worrying about whether the builder is the default or not.

_func_exists

_func_get _contents

_func_is_derived

_func_rexists

_func_sconsi gn

_func_target fromsource

_get _scanner (env, initial_scanner, root_node_scanner, kw)

_get_str ()

_gl obl (pattern, ondisk=True, source=False, strings=False)
Globs for and returns a list of entry names matching a single pattern in this directory.
This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.

TODO: handle pattern with no wildcard

_labspath

19

SCons Project APl Documentation

_l ocal
neno

_rr'?l:rahaoﬁle system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.
Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don't use
signatures for calculating whether they're current.

_path

_path_elenments

_proxy

_rel _pat h_key (other)

_save_str ()

_sconsign

_specific_sources

_srcdir_find_fil e_key (filename)

_tags

_tpath

addReposi t ory (dir)

add_dependency (depend)
Adds dependencies.

add_i gnor e (depend)
Adds dependencies to ignore.

add_prerequi sit e (prerequisite)
Adds prerequisites

add_sour ce (source)
Adds sources.

add_to_inplicit (deps)

add_t o_wai ti ng_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don'’t think you can
“clean up” this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wki d (wkid)
Add a node to the list of kids waiting to be evaluated

al | _chi I dren (scan=1)
Return a list of all the node’s direct children.

alter _targets ()
Return any corresponding targets in a variant directory.

20

SCons Project APl Documentation

21

al ways_buil d
attributes
bi nfo

bui | d (**kw)
A null “builder” for directories.

bui | der
bui | der _set (builder)

built ()
Called just after this node is successfully built.

cached
cachedir_csig
cachesig

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored Buildinfo, but the stored Buildinfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last _build

check_attri butes (name)
Simple API to check if the node.attributes for name has been set

chi | dren (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).
cl ear _nenoi zed_val ues ()
contentsig

cwd

del _binfo ()
Delete the build info from this node.

depends

SCons Project APl Documentation

depends_set

dir

di r _on_di sk (name)

di r nane

di sanbi guat e (must_exist=None)
di skcheck_mat ch ()

do_dupl i cat e (src)

duplicate

entries

entry_abspat h (hame)
entry_exi sts_on_di sk (name)

Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given

name could be found.

@see rentry_exists_on_disk
entry_| abspat h (name)
entry_pat h (name)
entry_t path (name)
env
env_set (env, safe=0)
execut or

execut or _cl eanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

expl ain ()

file_on_di sk (name)

for_signature()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs

get Repositories ()
Returns a list of repositories for this directory.

get _abspat h ()

22

SCons Project APl Documentation

23

Get the absolute path of the file.
get _all _rdirs ()

get _binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what's wanted.

get _build_env ()
Fetch the appropriate Environment to build this node.

get _buil d_scanner _pat h (scanner)
Fetch the appropriate scanner path for this node.

get _bui | der (default_builder=None)
Return the set builder, or a specified default value

get _cachedir_csig ()

get _contents ()
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are
sorted.

get _csig()
Compute the content signature for Directory nodes. In general, this is not needed and the content signature is
not stored in the DirNodelnfo. However, if get_contents on a Dir node is called which has a child directory, the
child directory should return the hash of its contents.

get _dir ()
get _env ()
get _env_scanner (env, kw={})

get _execut or (create=1)
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.

get _found_i ncl udes (env, scanner, path)
Return this directory’s implicit dependencies.
We don'’t bother caching the results because the scan typically shouldn’'t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).

get _inplicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get _internal _path ()

get | abspath ()
Get the absolute path of the file.

get _ninfo()

get _pat h (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

SCons Project APl Documentation

24

get _path_el enents ()

get _relpath()
Get the path of the file relative to the root SConstruct file’s directory.

get _source_scanner (nhode)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get _state ()

get _stored_inplicit ()
Fetch the stored implicit dependencies

get _stored_info()

get _stri ng (for_signature)

This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get _subst _proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get _suffix()
get _target _scanner ()

get _text _contents ()
We already emit things in text, so just return the binary version.

get _tinestanp ()
Return the latest timestamp from among our children

get _tpath()
getmtine ()
getsi ze ()

gl ob (pathname, ondisk=True, source=False, strings=False, exclude=None)
Returns a list of Nodes (or strings) matching a specified pathname pattern.
Pathname patterns follow UNIX shell semantics: * matches any-length strings of any characters, ? matches any
character, and [] can enclose lists or ranges of characters. Matches do not span directory separators.
The matches take into account Repositories, returning local Nodes if a corresponding entry exists in a
Repository (either an in-memory Node or something on disk).
By defafult, the glob() function matches entries that exist on-disk, in addition to in-memory Nodes. Setting the
“ondisk” argument to False (or some other non-true value) causes the glob() function to only match in-memory
Nodes. The default behavior is to return both the on-disk and in-memory Nodes.

SCons Project APl Documentation

25

The “source” argument, when true, specifies that corresponding source Nodes must be returned if you're
globbing in a build directory (initialized with VariantDir()). The default behavior is to return Nodes local to the
VariantDir().

The “strings” argument, when true, returns the matches as strings, not Nodes. The strings are path names
relative to this directory.

The “exclude” argument, if not None, must be a pattern or a list of patterns following the same UNIX shell
semantics. Elements matching a least one pattern of this list will be excluded from the result.

The underlying algorithm is adapted from the glob.glob() function in the Python library (but heavily modified), and
uses fnmatch() under the covers.

has_bui | der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

i gnore

i gnor e_set

implicit

implicit_set

i ncl udes

is_conftest ()
Returns true if this node is an conftest node

is_derived|()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

i s_sconscript ()
Returns true if this node is an sconscript

i s_under (dir)

is up_to_date()
If any child is not up-to-date, then this directory isn't, either.

isdir ()
isfile()
i slink()

I i nk (srcdir, duplicate)

SCons Project APl Documentation

26

Set this directory as the variant directory for the supplied source directory.
l'i nked
I stat ()

make ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

nm ssing ()

mul tiple_side_effect_has_buil der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

must _be_sane (klass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

name
new_bi nfo ()
new_ni nf o ()

ni nfo

nocache

nocl ean

on_di sk_entries

post process ()
Clean up anything we don'’t need to hang onto after we've been built.

pr eci ous

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites
pseudo

push_to_cache ()
Try to push a node into a cache

rdir ()

SCons Project APl Documentation

27

ref count

rel _pat h (other)
Return a path to “other” relative to this directory.

rel ease_target _info()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

rel eased target _info

renove ()
Remove this Node: no-op by default.

render _include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()

rentry_exi sts_on_di sk (name)
Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk

repositories

reset _executor ()
Remove cached executor; forces recompute when needed.

retrieve_fromcache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

rfile()
root

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbui | der

scan ()
Scan this node’s dependents for implicit dependencies.

scanner _key ()
A directory does not get scanned.

scanner _pat hs

sconsi gn ()

SCons Project APl Documentation

Return the .sconsign file info for this directory.
sear ched
sel ect _scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that's configured for the target.

set _al ways_bui | d (always_build=1)
Set the Node’s always_build value.

set _execut or (executor)
Set the action executor for this node.

set _explicit (is_explicit)
set _local ()

set _nocache (nocache=1)
Set the Node's nocache value.

set _nocl ean (noclean=1)
Set the Node’s noclean value.

set _preci ous (precious=1)
Set the Node’s precious value.

set _pseudo (pseudo=True)
Set the Node’s precious value.

set _specific_source (source)

set _src_buil der (builder)
Set the source code builder for this node.

set st at e (state)
si de_ef f ect
side_effects
sour ces
sour ces_set
src_buil der ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcdir
srcdi r_dupl i cat e (hame)
srcdir_find_fil e (filename)
srcdir_list ()

srcnode ()
Dir has a special need for srcnode()...if we have a srcdir attribute set, then that is our srcnode.

28

SCons Project APl Documentation

stat ()

state

store_info

str_for _display()

target _from source (prefix,suffix,splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target _peers

up ()

variant _dirs

visited ()
Called just after this node has been visited (with or without a build).

wai ting_parents
waiting s e

wal k (func, arg)
Walk this directory tree by calling the specified function for each directory in the tree.
This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the
same arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)
Except that “dirname” will actually be the directory Node, not the string. The ‘.’ and *..” entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a
specific order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing
None is common).

wKki ds

class SCons. Node. FS. Di r Bui | dl nfo

29

Bases: SCons. Node. Bui | dI nf oBase
bact

bactsig

bdepends

bdependsi gs

bimplicit

bi nmplicitsigs

bsour ces

bsour cesi gs

current _version_id=2

mer ge (other)

SCons Project APl Documentation

Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons. Node. FS. Di r Nodel nf o
Bases: SCons. Node. Nodel nf oBase

convert (node, val)

current _version_id=2

f or mat (field_list=None, names=0)

fs = None

nmer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

updat e (hode)

class SCons. Node. FS. Di skChecker (type, do, ignore)
Bases: obj ect

set (list)

class SCons. Node. FS. Ent ry (name, directory, fs)
Bases: SCons. Node. FS. Base
This is the class for generic Node.FS entries—that is, things that could be a File or a Dir, but we're just not sure yet.
Consequently, the methods in this class really exist just to transform their associated object into the right class
when the time comes, and then call the same-named method in the transformed class.

class Attrs
Bases: obj ect

shar ed

Bui | dl nfo
alias of SCons. Node. Bui | dl nf oBase

Deci der (function)

Cet Tag (key)
Return a user-defined tag.

Nodel nf o
alias of SCons. Node. Nodel nf oBase

RDi r s (pathlist)
Search for a list of directories in the Repository list.

Rf i ndal | di r s (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindal I di rs_key (pathlist)

30

SCons Project APl Documentation

_abspath

_add_chi | d (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()
_children_reset ()
_func_exists

_func_get _contents
_func_is_derived
_func_rexists
_func_sconsi gn
_func_target fromsource
_get _scanner (env, initial_scanner, root_node_scanner, kw)
_get _str ()

_gl ob1l (pattern, ondisk=True, source=False, strings=False)
_labspath

_l ocal

_nmeno

_path

_path_elenments

_proxy

_save_str ()

_sconsign
_specific_sources

_tags

_tpath

add_dependency (depend)
Adds dependencies.

add_i gnor e (depend)
Adds dependencies to ignore.

add_prerequi sit e (prerequisite)
Adds prerequisites

add_sour ce (source)
Adds sources.

31

SCons Project APl Documentation

32

add_to_inplicit (deps)

add_t o_wai ti ng_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don'’t think you can
“clean up” this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wki d (wkid)
Add a node to the list of kids waiting to be evaluated

al | _chil dren (scan=1)
Return a list of all the node’s direct children.

alter _targets ()
Return a list of alternate targets for this Node.

al ways_buil d
attributes
bi nf o

bui I d (**kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

bui | der
bui | der _set (builder)

built ()
Called just after this node is successfully built.

cached
cachedir_csig
cachesig

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored Buildinfo, but the stored Buildinfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last _build

check_attri butes (name)
Simple API to check if the node.attributes for name has been set

SCons Project APl Documentation

chi I dren (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_ up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).
cl ear _nenoi zed_val ues ()
contentsig

cwd

del _binfo ()
Delete the build info from this node.

depends

depends_set

dir

di r nane

di sanbi guat e (must_exist=None)

di skcheck_mat ch ()

duplicate
entries
env

env_set (env, safe=0)
execut or

execut or _cl eanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

expl ain ()

for_signature()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs

33

SCons Project APl Documentation

34

get _abspat h ()
Get the absolute path of the file.

get _binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what's wanted.

get _build_env ()
Fetch the appropriate Environment to build this node.

get _buil d_scanner _pat h (scanner)
Fetch the appropriate scanner path for this node.

get _bui | der (default_builder=None)
Return the set builder, or a specified default value

get _cachedir_csig ()

get _contents ()
Fetch the contents of the entry. Returns the exact binary contents of the file.

get _csig()

get _dir ()

get _env ()

get _env_scanner (env, kw={})

get _execut or (create=1)
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.

get found_i ncl udes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get _inplicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get _internal _path ()

get | abspath ()
Get the absolute path of the file.

get _ninfo()

get _pat h (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get _path_el enents ()

get _relpath()
Get the path of the file relative to the root SConstruct file’s directory.

get _source_scanner (nhode)

SCons Project APl Documentation

35

Fetch the source scanner for the specified node

NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get _state ()

get _stored_inplicit ()
Fetch the stored implicit dependencies

get _stored_info()

get _stri ng (for_signature)

This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get _subst _proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get _suffix()

get _target _scanner ()

get _text _contents ()
Fetch the decoded text contents of a Unicode encoded Entry.
Since this should return the text contents from the file system, we check to see into what sort of subclass we
should morph this Entry.

get _tpath()

getmtine ()

getsi ze ()

has_bui | der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

i gnore

i gnor e_set

implicit

SCons Project APl Documentation

36

implicit_set
i ncl udes

is_conftest ()
Returns true if this node is an conftest node

is_derived|()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

i s_sconscript ()
Returns true if this node is an sconscript

i s_under (dir)

is_ up_to_date()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will
always get built.

isdir ()

isfile()

i slink()

l'i nked

I stat ()

make ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

nm ssing ()

mul tiple_side_effect_has_buil der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the

len__and _ bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls

and slowing things down immensely.

must _be_ sane (klass)
Called to make sure a Node is a Dir. Since we're an Entry, we can morph into one.

name
new_bi nfo ()
new_ni nf o ()

ni nfo

SCons Project APl Documentation

37

nocache
nocl ean
on_di sk_entries

post process ()
Clean up anything we don'’t need to hang onto after we've been built.

pr eci ous

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites
pseudo

push_to_cache ()
Try to push a node into a cache

ref count
rel _pat h (other)

rel ease_target _info()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

rel eased target _info

renove ()
Remove this Node: no-op by default.

render _include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()
repositories

reset _executor ()
Remove cached executor; forces recompute when needed.

retrieve_fromcache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

SCons Project APl Documentation

rexists ()
Does this node exist locally or in a repository?

rfile()
We're a generic Entry, but the caller is actually looking for a File at this point, so morph into one.

root

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbui | der

scan ()
Scan this node’s dependents for implicit dependencies.

scanner _key ()
scanner _pat hs
sear ched
sel ect _scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use

their own Scanner and don't select one the Scanner.Selector that's configured for the target.

set _al ways_bui | d (always_build=1)
Set the Node’s always_build value.

set _execut or (executor)
Set the action executor for this node.

set _explicit (is_explicit)
set _local ()

set _nocache (nocache=1)
Set the Node's nocache value.

set _nocl ean (noclean=1)
Set the Node’s noclean value.

set _preci ous (precious=1)
Set the Node’s precious value.

set _pseudo (pseudo=True)
Set the Node’s precious value.

set _specific_source (source)

set _src_buil der (builder)
Set the source code builder for this node.

set st at e (state)
si de_effect
side_effects

sour ces

38

SCons Project APl Documentation

sources_set

src_buil der ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for _display()

target _from source (prefix,suffix,splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target _peers

variant _dirs

visited()
Called just after this node has been visited (with or without a build).

wai ting_parents
waiting s e

wKki ds

class SCons. Node. FS. Ent r yPr oxy (subject)

39

Bases: SCons. Uti | . Proxy
__get_abspath ()

__get_base_path ()
Return the file’s directory and file name, with the suffix stripped.

_get _dir ()
__get _file(
__get _filebase ()

__get_posix_path ()
Return the path with / as the path separator, regardless of platform.

__get _relpath()
__get _rsrcdir ()

Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node
if not linked.

SCons Project APl Documentation

__get_rsrcnode ()

__get _srcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node

if not linked.
__get_srcnode ()
_get_suffix()

__get_wi ndows_path ()
Return the path with as the path separator, regardless of platform.

di ct Speci al Attrs = {'abspath". <function EntryProxy.__get_abspath>, '‘base" <function
EntryProxy.__get_base_path>, 'dir': <function EntryProxy._ get_dir>, ‘file": <function EntryProxy.__get_file>,
filebase': <function EntryProxy._ get_filebase>, 'posix: <function EntryProxy._ get posix_path>, 'relpath"
<function EntryProxy.__get relpath>, ‘rsrcdir: <function EntryProxy.__get rsrcdir>, ‘'rsrcpath: <function
EntryProxy.__get_rsrcnode>, 'srcdir': <function EntryProxy.__get_srcdir>, 'srcpath': <function
EntryProxy.__get_srcnode>, 'suffix': <function EntryProxy.__get_suffix>, 'win32"; <function
EntryProxy. get windows_path>, 'windows": <function EntryProxy. get windows_path>}

get ()
Retrieve the entire wrapped object

exception SCons. Node. FS. Ent r yPr oxyAt t ri but eErr or (entry_proxy, attribute)

cl

40

Bases: Attri but eError
An AttributeError subclass for recording and displaying the name of the underlying Entry involved in an

AttributeError exception.
args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

ass SCons. Node. FS. FS (path=None)
Bases: SCons. Node. FS. Local FS

Di r (name, directory=None, create=True)
Look up or create a Dir node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied
at construction time) if no directory is supplied.
This method will raise TypeError if a normal file is found at the specified path.

Ent ry (name, directory=None, create=1)
Look up or create a generic Entry node with the specified name. If the name is a relative path (begins with ./, ../,
or a file name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS
(supplied at construction time) if no directory is supplied.

Fi | e (hame, directory=None, create=1)
Look up or create a File node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied
at construction time) if no directory is supplied.
This method will raise TypeError if a directory is found at the specified path.

d ob (pathname, ondisk=True, source=True, strings=False, exclude=None, cwd=None)
Globs
This is mainly a shim layer

PyPackageDi r (modulename)
Locate the directory of a given python module name
For example scons might resolve to Windows: C:Python27Libsite-packagesscons-2.5.1 Linux: /usr/lib/scons

SCons Project APl Documentation

41

This can be useful when we want to determine a toolpath based on a python module name

Reposi t ory (*dirs)
Specify Repository directories to search.

Vari ant Di r (variant_dir, src_dir, duplicate=1)
Link the supplied variant directory to the source directory for purposes of building files.

_l ookup (p, directory, fsclass, create=1)
The generic entry point for Node lookup with user-supplied data.
This translates arbitrary input into a canonical Node.FS object of the specified fsclass. The general approach for
strings is to turn it into a fully normalized absolute path and then call the root directory’s lookup_abs() method for
the heavy lifting.
If the path name begins with ‘#, it is unconditionally interpreted relative to the top-level directory of this FS. ‘#' is
treated as a synonym for the top-level SConstruct directory, much like ‘~' is treated as a synonym for the user’s
home directory in a UNIX shell. So both ‘#foo’ and ‘#/foo’ refer to the ‘foo’ subdirectory underneath the top-level
SConstruct directory.
If the path name is relative, then the path is looked up relative to the specified directory, or the current directory
(self._cwd, typically the SConscript directory) if the specified directory is None.

chdi r (dir, change_os_dir=0)
Change the current working directory for lookups. If change_os_dir is true, we will also change the “real” cwd to
match.

chmod (path, mode)

copy (src, dst)

copy?2 (src, dst)

exi st s (path)

get _max_drift ()

get _root (drive)
Returns the root directory for the specified drive, creating it if necessary.

getcwd ()

get mt i me (path)

get si ze (path)

i sdir (path)

i sfile (path)

i slink (path)

I'i nk (src, dst)

I'istdir (path)

| st at (path)

makedi r s (path, mode=511, exist_ok=False)
mkdi r (path, mode=511)

open (path)

SCons Project APl Documentation

readl i nk (file)

r enane (old, new)

scandi r (path)

set _SConstruct _di r (dir)

set _max_drift (max_drift)

st at (path)

sym i nk (src, dst)

unl i nk (path)

variant _dir_target_clinb (orig, dir, tail)
Create targets in corresponding variant directories
Climb the directory tree, and look up path names relative to any linked variant directories we find.
Even though this loops and walks up the tree, we don’t memoize the return value because this is really only
used to process the command-line targets.

class SCons. Node. FS. Fi | e (hame, directory, fs)
Bases: SCons. Node. FS. Base

A class for files in a file system.

class Attrs
Bases: obj ect

shar ed

Bui | dl nfo
alias of SCons. Node. FS. Fi | eBui | dl nfo

Deci der (function)

Di r (name, create=True)
Create a directory node named ‘name’ relative to the directory of this file.

Di r s (pathlist)
Create a list of directories relative to the SConscript directory of this file.

Entry (name)
Create an entry node named ‘name’ relative to the directory of this file.

Fi | e (name)
Create a file node named ‘name’ relative to the directory of this file.

Cet Tag (key)
Return a user-defined tag.

Nodel nf o
alias of SCons. Node. FS. Fi | eNodel nf o

RDi r s (pathlist)
Search for a list of directories in the Repository list.

Rf i ndal | di r s (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

42

SCons Project APl Documentation

Tag (key, value)
Add a user-defined tag.

_Rfindal I di rs_key (pathlist)
__dmap_cache ={}
__dmap_sig_cache={}
_abspath

_add_chi | d (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_add_strings_to_dependency_nap (dmap)
In the case comparing node objects isn't sufficient, we'll add the strings for the nodes to the dependency map
return;

_bui I d_dependency_nap (binfo)
Build mapping from file -> signature

Parameters:
« - self (self) —

e - buildinfo from node being considered (binfo) —
Returns: dictionary of file->signature mappings

_children_get ()

_children_reset ()

_createDir ()

_func_exists

_func_get _contents

_func_is_derived

_func_rexists

_func_sconsi gn

_func_target fromsource

_get _found_i ncl udes_key (env, scanner, path)

_get _previous_signatures (dmap)
Return a list of corresponding csigs from previous build in order of the node/files in children.

Parameters:
« - self (self) —

e - Dictionary of file -> csig (dmap) —
Returns: List of csigs for provided list of children

_get _scanner (env, initial_scanner, root_node_scanner, kw)
_get_str ()
_gl obl (pattern, ondisk=True, source=False, strings=False)

_labspath

43

SCons Project APl Documentation

_l ocal
neno

_mor ph ()
Turn a file system node into a File object.

_path
_path_elenments
_proxy
_rmv_existing()
_save_str ()
_sconsign
_specific_sources
_tags

_tpath

add_dependency (depend)
Adds dependencies.

add_i gnor e (depend)
Adds dependencies to ignore.

add_prerequi sit e (prerequisite)
Adds prerequisites

add_sour ce (source)
Adds sources.

add_to_inplicit (deps)

add_t o_wai ti ng_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don'’t think you can
“clean up” this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wki d (wkid)
Add a node to the list of kids waiting to be evaluated

al | _chi I dren (scan=1)
Return a list of all the node’s direct children.

alter _targets ()
Return any corresponding targets in a variant directory.

al ways_buil d
attributes

bi nfo

44

SCons Project APl Documentation

45

bui I d (**kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

bui | der
bui | der _set (builder)

built ()
Called just after this File node is successfully built.
Just like for ‘release_target_info’ we try to release some more target node attributes in order to minimize the
overall memory consumption.
@see: release_target_info

cached
cachedir_csig
cachesig

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built.
For File nodes this is basically a wrapper around Node.changed(), but we allow the return value to get cached
after the reference to the Executor got released in release_target_info().
@see: Node.changed()

changed_cont ent (target, prev_ni, repo_node=None)
changed_since_last _build
changed_st at e (target, prev_ni, repo_node=None)

changed_ti mest anp_nmmat ch (target, prev_ni, repo_node=None)
Return True if the timestamps don’t match or if there is no previous timestamp :param target: :param prev_ni:
Information about the node from the previous build :return:

changed_ti mest anp_newer (target, prev_ni, repo_node=None)

changed_ti mest anp_t hen_cont ent (target, prev_ni, node=None)
Used when decider for file is Timestamp-MD5

NOTE: If the timestamp hasn’t changed this will skip md5’ing the

file and just copy the prev_ni provided. If the prev_ni is wrong. It will propagate it. See:
https://github.com/SCons/scons/issues/2980

Parameters:
« - dependency (self) —

* - target (target) —
* - The Nodelnfo object loaded from previous builds .sconsign (prev_ni) —

* - Node instance. Check this node for file existence/timestamp (node) — if
specified.
Returns: Boolean - Indicates if node(File) has changed.

check_attri butes (name)
Simple API to check if the node.attributes for name has been set

chi I dren (scan=1)

https://github.com/SCons/scons/issues/2980

SCons Project APl Documentation

46

Return a list of the node’s direct children, minus those that are ignored by this node.
children_are_ up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).
cl ear _nenoi zed_val ues ()
contentsig
convert _copy_attrs =[bsources', 'bimplicit, '‘bdepends', 'bact’, 'bactsig’, 'ninfo’]
convert_ol d_entry (old_entry)
convert _sig_attrs =[bsourcesigs', 'bimplicitsigs', '‘bdependsigs']

cwd

del _binfo ()
Delete the build info from this node.

depends

depends_set

dir

di r nane

di sanbi guat e (must_exist=None)
di skcheck_mat ch ()

do_dupl i cat e (src)

duplicate
entries
env

env_set (env, safe=0)
execut or

execut or _cl eanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

expl ain ()
find repo file()

For this node, find if there exists a corresponding file in one or more repositories :return: list of corresponding
files in repositories

SCons Project APl Documentation

find_src_builder ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs

get _abspat h ()
Get the absolute path of the file.

get _binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what's wanted.

get _build_env ()
Fetch the appropriate Environment to build this node.

get _buil d_scanner _pat h (scanner)
Fetch the appropriate scanner path for this node.

get _bui | der (default_builder=None)
Return the set builder, or a specified default value

get _cachedir_bsig()
Return the signature for a cached file, including its children.
It adds the path of the cached file to the cache signature, because multiple targets built by the same action will
all have the same build signature, and we have to differentiate them somehow.
Signature should normally be string of hex digits.

get _cachedir_csig()
Fetch a Node’s content signature for purposes of computing another Node’s cachesig.
This is a wrapper around the normal get _csig() method that handles the somewhat obscure case of using
CacheDir with the -n option. Any files that don't exist would normally be “built” by fetching them from the cache,
but the normal get_csig() method will try to open up the local file, which doesn't exist because the -n option
meant we didn’t actually pull the file from cachedir. But since the file does actually exist in the cachedir, we can
use its contents for the csig.

get _content _hash () - str
Compute and return the hash for this file.

get _contents () » bytes
Return the contents of the file as bytes.

get _contents_sig ()
A helper method for get_cachedir_bsig.
It computes and returns the signature for this node’s contents.

get _csig () - str
Generate a node’s content signature.

get _dir ()

get _env ()

47

SCons Project APl Documentation

get _env_scanner (env, kw={})

get _execut or (create=1)
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.

get found_i ncl udes (env, scanner, path)
Return the included implicit dependencies in this file. Cache results so we only scan the file once per path
regardless of how many times this information is requested.

get _inplicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get _internal _path ()

get | abspath ()
Get the absolute path of the file.

get _max_drift_csig () - Optional[str]
Returns the content signature currently stored for this node if it's been unmodified longer than the max_drift
value, or the max_drift value is 0. Returns None otherwise.

get _ninfo()

get _pat h (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get _path_el enents ()

get _relpath()
Get the path of the file relative to the root SConstruct file’s directory.

get _size () - int

get _source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get _state ()

get _stored_inplicit ()
Fetch the stored implicit dependencies

get _stored_info()

get _stri ng (for_signature)

This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get _subst _proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself

48

SCons Project APl Documentation

49

has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get _suffix()
get _target _scanner ()

get _text _contents () - str
Return the contents of the file in text form.
This attempts to figure out what the encoding of the text is based upon the BOM bytes, and then decodes the
contents so that it's a valid python string.

get _tinestanp () - int
get _tpath()
getmtine ()

getsi ze ()

has_bui | der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len___and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

has_src_buil der ()
Return whether this Node has a source builder or not.
If this Node doesn’t have an explicit source code builder, this is where we figure out, on the fly, if there’s a
transparent source code builder for it.

Note that if we found a source builder, we also set the self.builder attribute, so that all of the methods that
actually build this file don’t have to do anything different.

hash_chunksi ze = 65536
i gnore

i gnor e_set

implicit

implicit_set

i ncl udes

is_conftest ()
Returns true if this node is an conftest node

is_derived|()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

SCons Project APl Documentation

50

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

i s_sconscript ()
Returns true if this node is an sconscript

i s_under (dir)

is_ up_to_date()
Check for whether the Node is current In all cases self is the target we're checking to see if it's up to date

isdir ()

isfile()

i slink()

l'i nked

I stat ()

make ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

nm ssing ()

mul tiple_side_effect_has_buil der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the

len__and _ bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls

and slowing things down immensely.

must _be_ sane (klass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

nanme
new_bi nfo ()
new_ni nf o ()

ni nfo

nocache

nocl ean

on_di sk_entries

post process ()
Clean up anything we don’t need to hang onto after we've been built.

pr eci ous

prepare ()
Prepare for this file to be created.

prerequisites

SCons Project APl Documentation

51

pseudo

push_to_cache ()
Try to push the node into a cache

ref count
rel _pat h (other)

rel ease_target _info()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
We'd like to remove a lot more attributes like self.sources and self.sources_set, but they might get used in a next
build step. For example, during configuration the source files for a built E{*}.0 file are used to figure out which
linker to use for the resulting Program (gcc vs. g++)! That's why we check for the ‘keep_targetinfo’ attribute,
config Nodes and the Interactive mode just don't allow an early release of most variables.
In the same manner, we can’t simply remove the self.attributes here. The smart linking relies on the shared flag,
and some parts of the java Tool use it to transport information about nodes...
@see: built() and Node.release_target_info()

rel eased target _info

renove ()
Remove this file.

render _include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()
repositories

reset _executor ()
Remove cached executor; forces recompute when needed.

retrieve_fromcache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

rfile()
root

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbui | der

scan ()
Scan this node’s dependents for implicit dependencies.

scanner _key ()

scanner _pat hs

SCons Project APl Documentation

sear ched

sel ect _scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that's configured for the target.

set _al ways_bui | d (always_build=1)
Set the Node’s always_build value.

set _execut or (executor)
Set the action executor for this node.

set _explicit (is_explicit)
set _local ()

set _nocache (nocache=1)
Set the Node's nocache value.

set _nocl ean (noclean=1)
Set the Node’'s noclean value.

set _preci ous (precious=1)
Set the Node’s precious value.

set _pseudo (pseudo=True)
Set the Node’s precious value.

set _specific_source (source)

set _src_buil der (builder)
Set the source code builder for this node.

set st at e (state)

si de_ef f ect

side_effects

sour ces

sources_set

src_buil der ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()
state
store_info

str_for_display ()

52

SCons Project APl Documentation

target _from source (prefix,suffix,splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target _peers

variant _dirs

visited ()
Called just after this node has been visited (with or without a build).

wai ting_parents
waiting s e
wKki ds
class SCons. Node. FS. Fi | eBui | dI nfo

Bases: SCons. Node. Bui | dl nf oBase
This is info loaded from sconsign.

Attributes unique to FileBuildInfo:
dependency_map : Caches file->csig mapping
for all dependencies. Currently this is only used when using MD5-timestamp decider. It's used to ensure

that we copy the correct csig from the previous build to be written to .sconsign when current build is done.
Previously the matching of csig to file was strictly by order they appeared in bdepends, bsources, or
bimplicit, and so a change in order or count of any of these could yield writing wrong csig, and then false
positive rebuilds
bact
bactsi g
bdepends
bdependsi gs
binplicit
bi nplicitsigs
bsour ces
bsour cesi gs
convert _from sconsi gn (dir, name)
Converts a newly-read FileBuildInfo object for in-SCons use
For normal up-to-date checking, we don’t have any conversion to perform—but we’re leaving this method here to
make that clear.
convert _to_sconsign ()
Converts this FileBuildInfo object for writing to a .sconsign file
This replaces each Node in our various dependency lists with its usual string representation: relative to the
top-level SConstruct directory, or an absolute path if it's outside.
current _version_id=2

dependency_map

f or mat (names=0)

53

SCons Project APl Documentation

nmer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

pr epar e_dependenci es ()
Prepares a FileBuildinfo object for explaining what changed
The bsources, bdepends and bimplicit lists have all been stored on disk as paths relative to the top-level
SConstruct directory. Convert the strings to actual Nodes (for use by the —debug=explain code and

—implicit-cache).

exception SCons. Node. FS. Fi | eBui | dI nf oFi | eToCsi gMappi ngErr or
Bases: Excepti on

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

class SCons. Node. FS. Fi | eFi nder
Bases: obj ect

_find_fil e_key (filename, paths, verbose=None)

filedir_| ookup (p, fd=None)
A helper method for find_file() that looks up a directory for a file we're trying to find. This only creates the Dir
Node if it exists on-disk, since if the directory doesn’t exist we know we won't find any files in it... :-)
It would be more compact to just use this as a nested function with a default keyword argument (see the

commented-out version below), but that doesn’t work unless you have nested scopes, so we define it here just
so this work under Python 1.5.2.
find_fil e (filename, paths, verbose=None)
Find a node corresponding to either a derived file or a file that exists already.
Only the first file found is returned, and none is returned if no file is found.
filename: A filename to find paths: A list of directory path nodes to search in. Can be represented as a list, a
tuple, or a callable that is called with no arguments and returns the list or tuple.
returns The node created from the found file.

class SCons. Node. FS. Fi | eNodel nfo
Bases: SCons. Node. Nodel nf oBase

convert (node, val)

csig

current _version_id=2

field_ Iist =[csig, timestamp', 'size']

f or mat (field_list=None, names=0)

fs = None

mer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

si ze

str_to_node (s)

ti mestanp

54

SCons Project APl Documentation

updat e (hode)

SCons. Node. FS. Li nkFunc (target, source, env)

Relative paths cause problems with symbolic links, so we use absolute paths, which may be a problem for people
who want to move their soft-linked src-trees around. Those people should use the ‘hard-copy’ mode, softlinks
cannot be used for that; at least | have no idea how ...

class SCons. Node. FS. Local FS

Bases: obj ect

This class implements an abstraction layer for operations involving a local file system. Essentially, this wraps any
function in the os, os.path or shutil modules that we use to actually go do anything with or to the local file system.
Note that there’s a very good chance we’ll refactor this part of the architecture in some way as we really implement
the interface(s) for remote file system Nodes. For example, the right architecture might be to have this be a
subclass instead of a base class. Nevertheless, we're using this as a first step in that direction.

We're not using chdir() yet because the calling subclass method needs to use os.chdir() directly to avoid recursion.
Will we really need this one?

chmod (path, mode)

copy (src, dst)

copy?2 (src, dst)

exi st s (path)

get mt i me (path)

get si ze (path)

i sdir (path)

i sfil e (path)

i slink (path)

I'i nk (src, dst)

listdir (path)

| st at (path)

makedi r s (path, mode=511, exist_ok=False)

nkdi r (path, mode=511)

open (path)

readl i nk (file)

r enane (old, new)

scandi r (path)

st at (path)

sym i nk (src, dst)

unl i nk (path)

SCons. Node. FS. Local Stri ng (target, source, env)
SCons. Node. FS. Mkdi r Func (target, source, env)

55

SCons Project APl Documentation

class SCons. Node. FS. Root Di r (drive, fs)

56

Bases: SCons. Node. FS. Di r

A class for the root directory of a file system.

This is the same as a Dir class, except that the path separator (/' or ") is actually part of the name, so we don’t
need to add a separator when creating the path names of entries within this directory.

class Attrs
Bases: obj ect

shar ed

Bui | dl nfo
alias of SCons. Node. FS. Di r Bui | dl nfo

Deci der (function)

Di r (name, create=True)
Looks up or creates a directory node named ‘name’ relative to this directory.

Ent ry (name)
Looks up or creates an entry hode named ‘name’ relative to this directory.

Fi | e (name)
Looks up or creates a file node named ‘name’ relative to this directory.

Cet Tag (key)
Return a user-defined tag.

Nodel nf o
alias of SCons. Node. FS. Di r Nodel nf o

RDi r s (pathlist)
Search for a list of directories in the Repository list.

Rfi ndal | di r s (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindal I di rs_key (pathlist)
_abspath

_add_chi | d (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()
_children_reset ()

_create()
Create this directory, silently and without worrying about whether the builder is the default or not.

_func_exists
_func_get _contents

_func_is_derived

SCons Project APl Documentation

57

_func_rexists

_func_sconsi gn

_func_target fromsource

_get _scanner (env, initial_scanner, root_node_scanner, kw)

_get _str ()

_gl obl (pattern, ondisk=True, source=False, strings=False)
Globs for and returns a list of entry names matching a single pattern in this directory.
This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.
TODO: handle pattern with no wildcard

_labspath

_l ocal

_l ookupDi ct

_| ookup_abs (p, klass, create=1)
Fast (?) lookup of a normalized absolute path.
This method is intended for use by internal lookups with already-normalized path data. For general-purpose
lookups, use the FS.Entry(), FS.Dir() or FS.File() methods.
The caller is responsible for making sure we're passed a normalized absolute path; we merely let Python's
dictionary look up and return the One True Node.FS object for the path.
If a Node for the specified “p” doesn't already exist, and “create” is specified, the Node may be created after
recursive invocation to find or create the parent directory or directories.
meno

_rr'?l:rahaofile system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.
Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don't use
signatures for calculating whether they’re current.

_path

_path_elenments

_proxy

_rel _pat h_key (other)

_save_str ()

_sconsign

_specific_sources

_srcdir_find_fil e_key (filename)

_tags

_tpath

abspat h

SCons Project APl Documentation

58

addReposi t ory (dir)

add_dependency (depend)
Adds dependencies.

add_i gnor e (depend)
Adds dependencies to ignore.

add_prerequi sit e (prerequisite)
Adds prerequisites

add_sour ce (source)
Adds sources.

add_to_inplicit (deps)

add_t o_wai ti ng_parent s (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don'’t think you can
“clean up” this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wki d (wkid)
Add a node to the list of kids waiting to be evaluated

al | _chil dren (scan=1)
Return a list of all the node’s direct children.

alter _targets ()
Return any corresponding targets in a variant directory.

al ways_buil d
attributes
bi nfo

bui | d (**kw)
A null “builder” for directories.

bui | der
bui | der _set (builder)

built ()
Called just after this node is successfully built.

cached
cachedir_csig
cachesig

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored Buildinfo, but the stored Buildinfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.

SCons Project APl Documentation

59

The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last _build

check_attri butes (name)
Simple API to check if the node.attributes for name has been set

chi | dren (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_ up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).
cl ear _nenoi zed_val ues ()
contentsig

cwd

del _binfo ()
Delete the build info from this node.

depends

depends_set

dir

di r _on_di sk (name)

di r nane

di sanbi guat e (must_exist=None)

di skcheck_mat ch ()

do_dupl i cat e (src)

duplicate

entries

entry_abspat h (hame)

entry_exi sts_on_di sk (name)
Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given
name could be found.
@see rentry_exists_on_disk

entry_| abspat h (name)

entry_pat h (name)

SCons Project APl Documentation

60

entry_tpath (name)
env

env_set (env, safe=0)
execut or

execut or _cl eanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

expl ain ()
file_on_di sk (name)

for_signature()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs
Reference to parent Node.FS object

get Repositories ()
Returns a list of repositories for this directory.

get _abspat h ()
Get the absolute path of the file.

get _all _rdirs ()

get _binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what's wanted.

get _build_env ()
Fetch the appropriate Environment to build this node.

get _buil d_scanner _pat h (scanner)
Fetch the appropriate scanner path for this node.

get _bui | der (default_builder=None)
Return the set builder, or a specified default value

get _cachedir_csig ()
get_contents ()

Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are
sorted.

get _csig()

SCons Project APl Documentation

61

Compute the content signature for Directory nodes. In general, this is not needed and the content signature is
not stored in the DirNodelnfo. However, if get_contents on a Dir node is called which has a child directory, the
child directory should return the hash of its contents.

get _dir ()
get _env ()
get _env_scanner (env, kw={})

get _execut or (create=1)
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.

get _found_i ncl udes (env, scanner, path)
Return this directory’s implicit dependencies.
We don'’t bother caching the results because the scan typically shouldn’'t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).

get _inplicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get _internal _path ()

get | abspath ()
Get the absolute path of the file.

get _ninfo()

get _pat h (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get _path_el enents ()

get _relpath()
Get the path of the file relative to the root SConstruct file’s directory.

get _source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get _state ()

get _stored_inplicit ()
Fetch the stored implicit dependencies

get _stored_info()

get _stri ng (for_signature)

This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

SCons Project APl Documentation

62

get _subst _proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get _suffix()
get _target _scanner ()

get _text _contents ()
We already emit things in text, so just return the binary version.

get _tinestanp ()
Return the latest timestamp from among our children

get _tpath()
getmtine ()
getsi ze ()

gl ob (pathname, ondisk=True, source=False, strings=False, exclude=None)
Returns a list of Nodes (or strings) matching a specified pathname pattern.
Pathname patterns follow UNIX shell semantics: * matches any-length strings of any characters, ? matches any
character, and [] can enclose lists or ranges of characters. Matches do not span directory separators.
The matches take into account Repositories, returning local Nodes if a corresponding entry exists in a
Repository (either an in-memory Node or something on disk).
By defafult, the glob() function matches entries that exist on-disk, in addition to in-memory Nodes. Setting the
“ondisk” argument to False (or some other non-true value) causes the glob() function to only match in-memory
Nodes. The default behavior is to return both the on-disk and in-memory Nodes.
The “source” argument, when true, specifies that corresponding source Nodes must be returned if you're
globbing in a build directory (initialized with VariantDir()). The default behavior is to return Nodes local to the
VariantDir().
The “strings” argument, when true, returns the matches as strings, not Nodes. The strings are path names
relative to this directory.
The “exclude” argument, if not None, must be a pattern or a list of patterns following the same UNIX shell
semantics. Elements matching a least one pattern of this list will be excluded from the result.
The underlying algorithm is adapted from the glob.glob() function in the Python library (but heavily modified), and
uses fnmatch() under the covers.

has_bui | der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

i gnore

i gnor e_set

implicit

implicit_set

SCons Project APl Documentation

63

i ncl udes

is_conftest ()
Returns true if this node is an conftest node

is_derived|()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

i s_sconscript ()
Returns true if this node is an sconscript

i s_under (dir)

is_ up_to_date()
If any child is not up-to-date, then this directory isn't, either.

isdir ()
isfile()
i slink()

I i nk (srcdir, duplicate)
Set this directory as the variant directory for the supplied source directory.

l'i nked

I stat ()

make ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

nm ssing ()

mul tiple_side_effect_has_buil der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the

len__and _ bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls

and slowing things down immensely.

must _be_ sane (klass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

name
new_bi nfo ()
new_ni nf o ()

ni nfo

SCons Project APl Documentation

64

nocache

nocl ean

on_di sk_entries
pat h

post process ()
Clean up anything we don'’t need to hang onto after we've been built.

pr eci ous

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites
pseudo

push_to_cache ()
Try to push a node into a cache

rdir ()
ref count

rel _pat h (other)
Return a path to “other” relative to this directory.

rel ease_target _info()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

rel eased target _info

renove ()
Remove this Node: no-op by default.

render _include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()

rentry_exi sts_on_di sk (name)
Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk

SCons Project APl Documentation

repositories

reset _executor ()
Remove cached executor; forces recompute when needed.

retrieve_fromcache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

rfile()
root

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbui | der

scan ()
Scan this node’s dependents for implicit dependencies.

scanner _key ()
A directory does not get scanned.

scanner _pat hs

sconsi gn ()
Return the .sconsign file info for this directory.

sear ched

sel ect _scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that's configured for the target.

set _al ways_bui | d (always_build=1)
Set the Node’s always_build value.

set _execut or (executor)
Set the action executor for this node.

set _explicit (is_explicit)
set _local ()

set _nocache (nocache=1)
Set the Node's nocache value.

set _nocl ean (noclean=1)
Set the Node’s noclean value.

set _preci ous (precious=1)
Set the Node’s precious value.

set _pseudo (pseudo=True)

65

SCons Project APl Documentation

66

Set the Node’s precious value.
set _specific_source (source)

set _src_buil der (builder)
Set the source code builder for this node.

set st at e (state)
si de_ef f ect
side_effects
sour ces
sour ces_set
src_buil der ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcdir
srcdi r_dupl i cat e (hame)
srcdir_find_fil e (filename)
srcdir_list ()

srcnode ()
Dir has a special need for srcnode()...if we have a srcdir attribute set, then that is our srcnode.

stat ()

state

store_info

str_for _display()

target _from source (prefix,suffix,splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target _peers

up ()

variant _dirs

visited()
Called just after this node has been visited (with or without a build).

wai ting_parents
waiting s e

wal k (func, arg)
Walk this directory tree by calling the specified function for each directory in the tree.

SCons Project APl Documentation

This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the
same arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)

Except that “dirname” will actually be the directory Node, not the string. The ‘. and *..” entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a
specific order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing
None is common).

wki ds
SCons. Node. FS. Unl i nkFunc (target, source, env)

class SCons. Node. FS. _Nul |
Bases: obj ect

SCons. Node. FS. cl assEntry
alias of SCons. Node. FS. Entry

SCons.
SCons.
SCons.
SCons.
SCons.
SCons.
SCons.
SCons.

Node. FS. _copy_func (fs, src, dest)
Node. FS. _hardl i nk_func (fs, src, dst)

Node.
Node.
Node.
Node.
Node.
Node.

FS.
FS.
FS.
FS.
FS.
FS.

_my_norntase (X)

_ny_splitdrive (p)

_softlink_func (fs, src, dst)

di skcheck_types ()

do_di skcheck_mat ch (node, predicate, errorfmt)

find_fil e (flename, paths, verbose=None)

Find a node corresponding to either a derived file or a file that exists already.

Only the first file found is returned, and none is returned if no file is found.

filename: A filename to find paths: A list of directory path nodes to search in. Can be represented as a list, a tuple,
or a callable that is called with no arguments and returns the list or tuple.

returns The node created from the found file.

SCons.
SCons.
SCons.
SCons.
SCons.
SCons.

Node.
Node.
Node.
Node.
Node.
Node.

FS.
FS.
FS.
FS.
FS.
FS.

get _Mdi r Bui | der ()

get _default _fs ()

has_gl ob_mmagi c (s)

i gnor e_di skcheck_mat ch (node, predicate, errorfmt)
initialize do_splitdrive()

i nval i dat e_node_nenos (targets)

Invalidate the memoized values of all Nodes (files or directories) that are associated with the given entries. Has
been added to clear the cache of nodes affected by a direct execution of an action (e.g. Delete/Copy/Chmod).
Existing Node caches become inconsistent if the action is run through Execute(). The argument targets can be a
single Node object or filename, or a sequence of Nodes/filenames.

SCons. Node. FS. needs_nor npat h_mat ch (string, pos=0, endpos=9223372036854775807)
Matches zero or more characters at the beginning of the string.

SCons. Node. FS. save_stri ngs (val)

SCons. Node. FS. sconsi gn_di r (node)
Return the .sconsign file info for this directory, creating it first if necessary.

SCons. Node. FS. sconsi gn_none (node)
SCons. Node. FS. set _di skcheck (list)
SCons. Node. FS. set _dupl i cat e (duplicate)

67

SCons Project APl Documentation

SCons.Node.Python module

Python nodes.

class SCons. Node. Pyt hon. Val ue (value, built_value=None, name=None)
Bases: SCons. Node. Node
A class for Python variables, typically passed on the command line or generated by a script, but not from a file or
some other source.

class Attrs
Bases: obj ect

shar ed

Bui I dInfo
alias of SCons. Node. Pyt hon. Val ueBui | dl nfo

Deci der (function)

Cet Tag (key)
Return a user-defined tag.

Nodel nf o
alias of SCons. Node. Pyt hon. Val ueNodel nf o

Tag (key, value)
Add a user-defined tag.

_add_chi | d (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()
_children_reset ()
_func_exists

_func_get _contents
_func_is_derived
_func_rexists
_func_target _fromsource
_get _scanner (env, initial_scanner, root_node_scanner, kw)
_nmeno

_specific_sources

_tags

add_dependency (depend)
Adds dependencies.

add_i gnor e (depend)
Adds dependencies to ignore.

add_prerequi sit e (prerequisite)
Adds prerequisites

68

SCons Project APl Documentation

69

add_sour ce (source)
Adds sources.

add_to_inplicit (deps)

add_t o_wai ti ng_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don'’t think you can
“clean up” this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wki d (wkid)
Add a node to the list of kids waiting to be evaluated

al | _chil dren (scan=1)
Return a list of all the node’s direct children.

alter _targets ()
Return a list of alternate targets for this Node.

al ways_buil d
attributes
bi nf o

bui I d (**kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

bui | der
bui | der _set (builder)

built ()
Called just after this node is successfully built.

cached

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored Buildinfo, but the stored Buildinfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last _build

check_attri butes (name)
Simple API to check if the node.attributes for name has been set

chi | dren (scan=1)

SCons Project APl Documentation

70

Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_ up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

cl ear _nenoi zed_val ues ()

del _binfo ()
Delete the build info from this node.

depends

depends_set

di sanbi guat e (must_exist=None)
env

env_set (env, safe=0)

execut or

execut or _cl eanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

expl ain()

for_signature()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

get _abspat h ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get _binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what's wanted.

get _build_env ()
Fetch the appropriate Environment to build this node.

get _buil d_scanner _pat h (scanner)
Fetch the appropriate scanner path for this node.

SCons Project APl Documentation

71

get _bui | der (default_builder=None)
Return the set builder, or a specified default value

get _cachedir_csig ()

get _contents () » bytes
Get contents for signature calculations.

get _csi g (calc=None)
Because we're a Python value node and don't have a real timestamp, we get to ignore the calculator and just
use the value contents.
Returns string. Ideally string of hex digits. (Not bytes)

get _env ()
get _env_scanner (env, kw={})

get _execut or (create=1)
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.

get _found_i ncl udes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get _inplicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get _ninfo()

get _source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get _state ()

get _stored_inplicit ()
Fetch the stored implicit dependencies

get _stored_info()

get _stri ng (for_signature)

This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get _subst _proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

SCons Project APl Documentation

72

get _suffix()
get _target _scanner ()

get _text _contents () - str
By the assumption that the node.built_value is a deterministic product of the sources, the contents of a Value
are the concatenation of all the contents of its sources. As the value need not be built when get_contents() is
called, we cannot use the actual node.built_value.

has_bui | der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len___and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

i gnore

i gnor e_set
implicit
implicit_set
i ncl udes

is_conftest ()
Returns true if this node is an conftest node

is_derived|()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

i s_sconscript ()
Returns true if this node is an sconscript

i s_under (dir)

is up_to_date()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

l'i nked

make ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

SCons Project APl Documentation

73

m ssing ()

mul ti ple_side_effect_has_buil der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

new_bi nfo ()
new_ni nfo ()
ni nfo
nocache
nocl ean

post process ()
Clean up anything we don'’t need to hang onto after we've been built.

pr eci ous

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites
pseudo

push_to_cache ()
Try to push a node into a cache

read ()
Return the value. If necessary, the value is built.

ref count

rel ease_target _info()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

renove ()
Remove this Node: no-op by default.

render _include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

SCons Project APl Documentation

reset _executor ()
Remove cached executor; forces recompute when needed.

retrieve_fromcache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

scan ()
Scan this node’s dependents for implicit dependencies.

scanner _key ()

sel ect _scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that's configured for the target.

set _al ways_bui | d (always_build=1)
Set the Node’s always_build value.

set _execut or (executor)
Set the action executor for this node.

set _explicit (is_explicit)

set _nocache (nocache=1)
Set the Node's nocache value.

set _nocl ean (noclean=1)
Set the Node’s noclean value.

set _preci ous (precious=1)
Set the Node’s precious value.

set _pseudo (pseudo=True)
Set the Node’s precious value.

set _specific_source (source)
set st at e (state)

si de_ef f ect

side_effects

sour ces

sources_set

state

store_info

str_for _display()

target _peers

74

SCons Project APl Documentation

visited ()
Called just after this node has been visited (with or without a build).

wai ting_parents
waiting s e
wki ds

wr i t e (built_value)
Set the value of the node.

class SCons. Node. Pyt hon. Val ueBui | dl nfo
Bases: SCons. Node. Bui | dl nf oBase

bact
bactsi g
bdepends
bdependsi gs
bimplicit
bi nmpl i citsigs
bsour ces
bsour cesi gs
current _version_id=2
mer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other

instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons. Node. Pyt hon. Val ueNodel nf o
Bases: SCons. Node. Nodel nf oBase

convert (node, val)

csig

current _version_id=2

field_ Iist =[csig]

f or mat (field_list=None, names=0)

mer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

updat e (hode)

SCons. Node. Pyt hon. Val ueW t hMeno (value, built_value=None, name=None)
Memoized Value() node factory.

75

SCons Project APl Documentation

Module contents
The Node package for the SCons software construction utility.
This is, in many ways, the heart of SCons.

A Node is where we encapsulate all of the dependency information about any thing that SCons can build, or about
any thing which SCons can use to build some other thing. The canonical “thing,” of course, is a file, but a Node can
also represent something remote (like a web page) or something completely abstract (like an Alias).

Each specific type of “thing” is specifically represented by a subclass of the Node base class: Node.FS.File for files,
Node.Alias for aliases, etc. Dependency information is kept here in the base class, and information specific to
files/aliases/etc. is in the subclass. The goal, if we've done this correctly, is that any type of “thing” should be able to
depend on any other type of “thing.”

SCons. Node. Annot at e (hode)
class SCons. Node. Bui | dI nf oBase
Bases: obj ect
The generic base class for build information for a Node.
This is what gets stored in a .sconsign file for each target file. It contains a Nodelnfo instance for this node
(signature information that's specific to the type of Node) and direct attributes for the generic build stuff we have to
track: sources, explicit dependencies, implicit dependencies, and action information.
bact
bactsi g
bdepends
bdependsi gs
bimplicit
bi nmpl i citsigs
bsour ces
bsour cesi gs
current _version_id=2
mer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
class SCons. Node. Node
Bases: obj ect

The base Node class, for entities that we know how to build, or use to build other Nodes.

class Attrs
Bases: obj ect

shar ed

Bui | dl nfo
alias of SCons. Node. Bui | dl nf oBase

Deci der (function)

Cet Tag (key)
Return a user-defined tag.

76

SCons Project APl Documentation

Nodel nf o
alias of SCons. Node. Nodel nf oBase

Tag (key, value)
Add a user-defined tag.

_add_chi | d (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()
_children_reset ()
_func_exists

_func_get _contents
_func_is_derived
_func_rexists
_func_target fromsource
_get _scanner (env, initial_scanner, root_node_scanner, kw)
_nmeno

_specific_sources

_tags

add_dependency (depend)
Adds dependencies.

add_i gnor e (depend)
Adds dependencies to ignore.

add_prerequi sit e (prerequisite)
Adds prerequisites

add_sour ce (source)
Adds sources.

add_to_inplicit (deps)

add_t o_wai ti ng_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don'’t think you can
“clean up” this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wki d (wkid)
Add a node to the list of kids waiting to be evaluated

al | _chil dren (scan=1)
Return a list of all the node’s direct children.

alter _targets ()
Return a list of alternate targets for this Node.

77

SCons Project APl Documentation

78

al ways_buil d
attributes
bi nfo

bui I d (**kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

bui | der
bui | der _set (builder)

built ()
Called just after this node is successfully built.

cached

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored Buildinfo, but the stored Buildinfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last _build

check_attri butes (name)
Simple API to check if the node.attributes for name has been set

chi | dren (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

cl ear _nenoi zed_val ues ()

del _binfo ()
Delete the build info from this node.

depends
depends_set

di sanbi guat e (must_exist=None)

SCons Project APl Documentation

79

env
env_set (env, safe=0)
execut or

execut or _cl eanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

expl ain ()

for_signature()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

get _abspat h ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get _binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what's wanted.

get _build_env ()
Fetch the appropriate Environment to build this node.

get _buil d_scanner _pat h (scanner)
Fetch the appropriate scanner path for this node.

get _bui | der (default_builder=None)
Return the set builder, or a specified default value

get _cachedir_csig()

get _contents ()
Fetch the contents of the entry.

get_csig()
get _env ()
get _env_scanner (env, kw={})

get _execut or (create=1)
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.

get _found_i ncl udes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

SCons Project APl Documentation

80

get _inplicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get _ninfo()

get _source_scanner (nhode)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get _state ()

get _stored_inplicit ()
Fetch the stored implicit dependencies

get _stored_info()

get _stri ng (for_signature)

This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get _subst _proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get _suffix()

get _target _scanner ()

has_bui | der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

i gnore

i gnor e_set

implicit

implicit_set

i ncl udes

SCons Project APl Documentation

81

is_conftest ()
Returns true if this node is an conftest node

is_derived|()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

i s_sconscript ()
Returns true if this node is an sconscript

is_ up_to_date()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will
always get built.

l'i nked

make ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

m ssing ()

mul tiple_side_effect_has_buil der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len___and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

new_bi nfo ()
new_ni nf o ()
ni nfo
nocache
nocl ean

post process ()
Clean up anything we don’t need to hang onto after we've been built.

pr eci ous

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)

SCons Project APl Documentation

82

Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites
pseudo

push_to_cache ()
Try to push a node into a cache

ref count

rel ease_target _info()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

renove ()
Remove this Node: no-op by default.

render _include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

reset _executor ()
Remove cached executor; forces recompute when needed.

retrieve_fromcache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

scan ()
Scan this node’s dependents for implicit dependencies.

scanner _key ()

sel ect _scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that's configured for the target.

set _al ways_bui | d (always_build=1)
Set the Node’s always_build value.

set _execut or (executor)
Set the action executor for this node.

set _explicit (is_explicit)

set _nocache (nocache=1)
Set the Node's nocache value.

set _nocl ean (noclean=1)
Set the Node’s noclean value.

SCons Project APl Documentation

set _preci ous (precious=1)
Set the Node’s precious value.

set _pseudo (pseudo=True)
Set the Node’s precious value.

set _specific_source (source)
set st at e (state)

si de_ef f ect

side_effects

sour ces

sources_set

state

store_info

target _peers

visited ()
Called just after this node has been visited (with or without a build).

wai ting_parents

waiting s e

wKki ds

class SCons. Node. Nodel nf oBase

Bases: obj ect

The generic base class for signature information for a Node.

Node subclasses should subclass NodelnfoBase to provide their own logic for dealing with their own Node-specific

signature information.

convert (node, val)

current _version_id=2

f or mat (field_list=None, names=0)

mer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

updat e (hode)

class SCons. Node. NodelLi st (initlist=None)
Bases: col | ecti ons. User Li st

_abc_i mpl =<_abc_data object>

append (item)
S.append(value) — append value to the end of the sequence

cl ear () - None —remove all items from S

83

SCons Project APl Documentation

copy ()

count (value) - integer — return number of occurrences of value

ext end (other)
S.extend(iterable) — extend sequence by appending elements from the iterable

i ndex (val ue[,start[,stop]]) - integer — return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

i nsert (i, item)
S.insert(index, value) — insert value before index

pop ([,i ndex]) - item —remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

renove (item)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() — reverse IN PLACE

sort (*args, **kwds)

class SCons. Node. WAl ker (node, kids_func=<function get_children>, cycle_func=<function
i gnore_cycl e>, eval _func=<functi on do_not hi ng>)

Bases: obj ect

An iterator for walking a Node tree.

This is depth-first, children are visited before the parent. The Walker object can be initialized with any node, and
returns the next node on the descent with each get next() call. get the children of a node instead of calling
‘children’. ‘cycle_func’ is an optional function that will be called when a cycle is detected.

This class does not get caught in node cycles caused, for example, by C header file include loops.

get _next ()
Return the next node for this walk of the tree.
This function is intentionally iterative, not recursive, to sidestep any issues of stack size limitations.

i s_done ()

SCons. Node. changed_si nce_| ast _bui | d_al i as (node, target, prev_ni, repo_node=None)

SCons. Node. changed_si nce_| ast _bui | d_ent ry (node, target, prev_ni, repo_node=None)

SCons. Node. changed_si nce_| ast _bui | d_node (node, target, prev_ni, repo_node=None)

Must be overridden in a specific subclass to return True if this Node (a dependency) has changed since the last
time it was used to build the specified target. prev_ni is this Node’s state (for example, its file timestamp, length,
maybe content signature) as of the last time the target was built.

Note that this method is called through the dependency, not the target, because a dependency Node must be able
to use its own logic to decide if it changed. For example, File Nodes need to obey if we're configured to use
timestamps, but Python Value Nodes never use timestamps and always use the content. If this method were
called through the target, then each Node’s implementation of this method would have to have more complicated
logic to handle all the different Node types on which it might depend.

SCons. Node. changed_si nce_| ast _bui | d_pyt hon (node, target, prev_ni, repo_node=None)

SCons. Node. changed_si nce_| ast _bui | d_st at e_changed (node, target, prev_ni, repo_node=None)

SCons. Node. cl assnane (obj)

SCons. Node. deci de_sour ce (node, target, prev_ni, repo_node=None)

SCons. Node. deci de_t ar get (node, target, prev_ni, repo_node=None)

SCons. Node. do_not hi ng (node, parent)

84

SCons Project APl Documentation

SCons. Node. do_not hi ng_node (node)
SCons. Node. exi st s_al ways (node)
SCons. Node. exi st s_base (node)

SCons. Node. exi st s_ent ry (node)
Return if the Entry exists. Check the file system to see what we should turn into first. Assume a file if there’s no
directory.

SCons. Node. exi sts_fil e (node)
SCons. Node. exi st s_none (node)
SCons. Node. get _chi | dr en (node, parent)

SCons. Node. get _contents_dir (node)
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.

SCons. Node. get _contents_entry (node)
Fetch the contents of the entry. Returns the exact binary contents of the file.

SCons. Node. get _contents_fil e (node)
SCons. Node. get _cont ent s_none (node)
SCons. Node. i gnor e_cycl e (node, stack)

SCons. Node. i s_deri ved_node (node)
Returns true if this node is derived (i.e. built).

SCons. Node. i s_deri ved_none (node)

SCons. Node. rexi st s_base (node)

SCons. Node. rexi st s_node (node)

SCons. Node. rexi st s_none (node)

SCons. Node. store_info_fil e (node)

SCons. Node. st ore_i nf o_pass (node)

SCons. Node. t arget _from sour ce_base (node, prefix, suffix, splitext)

SCons. Node. t arget _from sour ce_none (node, prefix, suffix, splitext)
SCons.Platform package
Submodules

SCons.Platform.aix module
Platform-specific initialization for IBM AIX systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons. Pl at f or m ai x. gener at e (env)

SCons. Pl at f orm ai x. get _xI ¢ (env, xlc=None, packages=[])

SCons.Platform.cygwin module
Platform-specific initialization for Cygwin systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons. Pl at f or m cygwi n. gener at e (env)

85

SCons Project APl Documentation

SCons.Platform.darwin module
Platform-specific initialization for Mac OS X systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons. Pl at f or m dar wi n. gener at e (env)

SCons.Platform.hpux module
Platform-specific initialization for HP-UX systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons. Pl at f or m hpux. gener at e (env)

SCons.Platform.irix module
Platform-specific initialization for SGI IRIX systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons. Pl atform i ri x. generat e (env)

SCons.Platform.mingw module

Platform-specific initialization for the MinGW system.

SCons.Platform.os2 module
Platform-specific initialization for OS/2 systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons. Pl at f or m 0s2. gener at e (env)

SCons.Platform.posix module
Platform-specific initialization for POSIX (Linux, UNIX, etc.) systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons. Pl at f or m posi x. escape (arg)
escape shell special characters

SCons. Pl at f or m posi x. exec_popen3 (I, env, stdout, stderr)

SCons. Pl at f or m posi x. exec_subprocess (I, env)

SCons. Pl at f or m posi x. gener at e (env)

SCons. Pl at f or m posi x. pi ped_env_spawn (sh, escape, cmd, args, env, stdout, stderr)

SCons. Pl at f or m posi x. subprocess_spawn (sh, escape, cmd, args, env)

SCons.Platform.sunos module
Platform-specific initialization for Sun systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons. Pl at f or m sunos. gener at e (env)

86

SCons Project APl Documentation

SCons.Platform.virtualenv module
‘Platform” support for a Python virtualenv.

SCons. Pl atform vi rtual env. | nport Vi rtual env (env)
Copies virtualenv-related environment variables from OS environment to env[' ENV'] and prepends virtualenv’s
PATHtoenv[' ENV'][' PATH].

SCons. Pl atform vi rtual env. I sl nVirtual env (path)
Returns True, if path is under virtualenv’'s home directory. If not, or if we don’t use virtualenv, returns False.

SCons. Pl atform vi rtual env. Virtual env ()
Returns path to the virtualenv home if scons is executing within a virtualenv or None, if not.

SCons. Pl atform virtual env. _enabl e_virtual env_default ()
SCons. Platformvirtual env. _ignore_virtual env_default ()

SCons. Pl atform vi rtual env. _i nj ect _venv_pat h (env, path_list=None)
Modify environment such that SCons will take into account its virtualenv when running external tools.

SCons. Pl atform vi rtual env. _i nj ect_venv_vari abl es (env)

SCons. Pl atform vi rtual env. _i s_pat h_i n (path, base)
Returns true if path is located under the base directory.

SCons. Pl atform vi rtual env. _running_in_virtual env ()
Returns True if scons is executed within a virtualenv

SCons. Pl atf orm vi rtual env. sel ect _pat hs_i n_venv (path_list)
Returns a list of paths from path_list which are under virtualenv’'s home directory.

SCons.Platform.win32 module

Platform-specific initialization for Win32 systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

class SCons. Pl at f orm wi n32. Ar chDef i ni ti on (arch, synonyms=[])
Bases: obj ect
Determine which windows CPU were running on. A class for defining architecture-specific settings and logic.

SCons. Pl at f orm wi n32. escape (X)
SCons. Pl at f orm wi n32. exec_spawn (I, env)
SCons. Pl at f or m wi n32. gener at e (env)

SCons. Pl at f orm wi n32. get _ar chi t ect ur e (arch=None)
Returns the definition for the specified architecture string.
If no string is specified, the system default is returned (as defined by the PROCESSOR_ARCHITEW6432 or
PROCESSOR_ARCHITECTURE environment variables).

SCons. Pl at form wi n32. get _program files_dir ()
Get the location of the program files directory

SCons. Pl at f orm wi n32. get _system r oot ()
SCons. Pl at f orm wi n32. pi ped_spawn (sh, escape, cmd, args, env, stdout, stderr)
SCons. Pl at f orm wi n32. spawn (sh, escape, cmd, args, env)

SCons. Pl at f orm wi n32. spawnve (mode, file, args, env)

Module contents
SCons platform selection.

Looks for modules that define a callable object that can modify a construction environment as appropriate for a given
platform.

87

SCons Project APl Documentation

Note that we take a more simplistic view of “platform” than Python does. We're looking for a single string that
determines a set of tool-independent variables with which to initialize a construction environment. Consequently,
we’'ll examine both sys.platform and os.name (and anything else that might come in to play) in order to return some
specification which is unique enough for our purposes.

Note that because this subsystem just selects a callable that can modify a construction environment, it's possible for
people to define their own “platform specification” in an arbitrary callable function. No one needs to use or tie in to
this subsystem in order to roll their own platform definition.

SCons. Pl at f or m Def aul t Tool Li st (platform, env)
Select a default tool list for the specified platform.

SCons. Pl at f or m PI at f or m(name="'darwin’)
Select a canned Platform specification.

class SCons. Pl at f orm Pl at f or nSpec (name, generate)
Bases: obj ect

class SCons. Pl at f or m TenpFi | eMunge (cmd, cmdstr=None)
Bases: obj ect
Convert long command lines to use a temporary file.
You can set an Environment variable (usually TEMPFI LE) to this, then call it with a string argument, and it will
perform temporary file substitution on it. This is used to circumvent limitations on the length of command lines.
Example:

env[" TEMPFI LE"'] = TenpFi | eMunge
env["LI NKCOM'] = "${ TEMPFI LE(' $LI NK $TARGET $SOURCES', ' $LI NKCOMSTR)} "

By default, the name of the temporary file used begins with a prefix of ‘@’. This may be configured for other tool
chains by setting the TEMPFI LEPREFI X variable. Example:

env[" TEMPFI LEPREFI X"]
env[" TEMPFI LEPREFI X"]
env[" TEMPFI LEPREFI X"]

'-@ # diab conpil er
"-via' # armtool chain
v # (the enpty string) PC Lint

You can configure the extension of the temporary file through the TEMPFI LESUFFI X variable, which defaults to
“Ink’ (see comments in the code below). Example:

env[" TEMPFI LESUFFI X"'] = '.Int' # PC Lint

Entries in the temporary file are separated by the value of the TEMPFI LEARGIQ N variable, which defaults to an
OS-appropriate value.

A default argument escape function is SCons. Subst . quot e_spaces. If you need to apply extra operations on a
command argument before writing to a temporary file(fix Windows slashes, normalize paths, etc.), please set
TEMPFILEARGESCFUNC variable to a custom function. Example:

i mport sys
import re
from SCons. Subst i nport quote_spaces

W NPATHSEP_RE = re.conpile(r"\([*"'\]|$)")
def tenpfile_arg _esc_func(arg):
arg = quote_spaces(arg)
if sys.platform!= "wi n32":
return arg

GCC requires doubl e Wndows sl ashes, let's use UNI X separ at or
return W NPATHSEP_RE. sub(r"/m", arg)

env[" TEMPFI LEARGESCFUNC'] = tenpfil e_arg_esc_func

_print_cnd_str (target, source, env, cmdstr)

88

SCons Project APl Documentation

SCons. Pl atform pl atform default ()
Return the platform string for our execution environment.
The returned value should map to one of the SCons/Platform/*.py files. Since scons is architecture independent,
though, we don't care about the machine architecture.

SCons. Pl at f or m pl at f or m_nodul e (hame="darwin")
Return the imported module for the platform.
This looks for a module name that matches the specified argument. If the name is unspecified, we fetch the
appropriate default for our execution environment.

SCons.Scanner package
Submodules

SCons.Scanner.C module
Dependency scanner for C/C++ code.

SCons. Scanner . C. CCondi ti onal Scanner ()
Return an advanced conditional Scanner instance for scanning source files
Interprets C/C++ Preprocessor conditional syntax (#ifdef, #if, defined, #else, #elif, etc.).

SCons. Scanner. C. CScanner ()
Return a prototype Scanner instance for scanning source files that use the C pre-processor

class SCons. Scanner . C. SConsCPPCondi ti onal Scanner (*args, **kw)
Bases: SCons. cpp. PreProcessor
SCons-specific subclass of the cpp.py module’s processing.
We subclass this so that: 1) we can deal with files represented by Nodes, not strings; 2) we can keep track of the
files that are missing.

_do_if_else_condition (condition)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.

_mat ch_t upl es (tuples)

_parse_t upl es (contents)
_process_t upl es (tuples, file=None)
al | _i ncl ude (1)

do_define (1)
Default handling of a #define line.

do_elif (t)
Default handling of a #elif line.

do_el se ()
Default handling of a #else line.

do_endi f (1)
Default handling of a #endif line.

do_if ()
Default handling of a #if line.

do_i f def ()
Default handling of a #ifdef line.

do_i f ndef (1)

89

SCons Project APl Documentation

90

Default handling of a #ifndef line.

do_inport (1)
Default handling of a #import line.

do_i ncl ude (t)
Default handling of a #include line.

do_i ncl ude_next ()
Default handling of a #include line.

do_not hi ng (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.

do_undef (t)
Default handling of a #undef line.

eval _expression ()
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor namespace we use to
track #define values.

finalize result (fname)

find_include file(t)
Finds the #include file for a given preprocessor tuple.

initialize_result (fname)

process_cont ent s (contents)
Pre-processes a file contents.
Is used by tests

process_fil e (file)
Pre-processes a file.
This is the main internal entry point.

read_fil e (file)

resol ve_i ncl ude (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without “” or <> surrounding the name until an initial ” or < is found,
to handle #include FILE where FILE is a #define somewhere else.

restore ()
Pops the previous dispatch table off the stack and makes it the current one.

save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.

scons_current _file(t)

start _handl i ng_i ncl udes (t=None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.

stop_handl i ng_i ncl udes (t=None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.

SCons Project APl Documentation

t upl ei ze (contents)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’'s preprocessor directive (#if, #include, #define, etc., minus the initial
‘#). The remaining elements are specific to the type of directive, as pulled apart by the regular expression.

class SCons. Scanner . C. SConsCPPCondi ti onal Scanner W apper (name, variable)
Bases: obj ect
The SCons wrapper around a cpp.py scanner.
This is the actual glue between the calling conventions of generic SCons scanners, and the (subclass of) cpp.py
class that knows how to look for #include lines with reasonably real C-preprocessor-like evaluation of
#if/#ifdef/#else/#elif lines.

recur se_nodes (nodes)
sel ect (node)

class SCons. Scanner . C. SConsCPPScanner (*args, **kw)
Bases: SCons. cpp. PreProcessor
SCons-specific subclass of the cpp.py module’s processing.
We subclass this so that: 1) we can deal with files represented by Nodes, not strings; 2) we can keep track of the
files that are missing.

_do_if_else_condition (condition)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.

_mat ch_t upl es (tuples)

_parse_t upl es (contents)
_process_t upl es (tuples, file=None)
al | _incl ude (1)

do_define (1)
Default handling of a #define line.

do_elif (t)
Default handling of a #elif line.

do_el se ()
Default handling of a #else line.

do_endi f (1)
Default handling of a #endif line.

do_if ()
Default handling of a #if line.

do_i f def ()
Default handling of a #ifdef line.

do_i f ndef (1)
Default handling of a #ifndef line.

do_inport (1)
Default handling of a #import line.

do_i ncl ude (t)
Default handling of a #include line.

do_i ncl ude_next ()

91

SCons Project APl Documentation

Default handling of a #include line.

do_not hi ng (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.

do_undef (t)
Default handling of a #undef line.

eval _expression ()
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor namespace we use to
track #define values.

finalize result (fname)

find_include file(t)
Finds the #include file for a given preprocessor tuple.

initialize_result (fname)

process_cont ent s (contents)
Pre-processes a file contents.
Is used by tests

process_fil e (file)
Pre-processes a file.
This is the main internal entry point.

read_fil e (file)

resol ve_i ncl ude (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without “” or <> surrounding the name until an initial ” or < is found,
to handle #include FILE where FILE is a #define somewhere else.

restore ()
Pops the previous dispatch table off the stack and makes it the current one.

save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.

scons_current _file(t)

start _handl i ng_i ncl udes (t=None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.

stop_handl i ng_i ncl udes (t=None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.

t upl ei ze (contents)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’'s preprocessor directive (#if, #include, #define, etc., minus the initial
‘#). The remaining elements are specific to the type of directive, as pulled apart by the regular expression.

class SCons. Scanner . C. SConsCPPScanner W apper (name, variable)

Bases: obj ect
The SCons wrapper around a cpp.py scanner.

92

SCons Project APl Documentation

This is the actual glue between the calling conventions of generic SCons scanners, and the (subclass of) cpp.py
class that knows how to look for #include lines with reasonably real C-preprocessor-like evaluation of
#if/#ifdef/#else/#elif lines.

recur se_nodes (nodes)
sel ect (node)

SCons. Scanner . C. di cti fy_CPPDEFI NES (env)

SCons.Scanner.D module
Scanner for the Digital Mars “D” programming language.
Coded by Andy Friesen, 17 Nov 2003

class SCons. Scanner. D. D
Bases: SCons. Scanner . Cl assi c

_recurse_al |l _nodes (nodes)
_recurse_no_nodes (nodes)
add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

fi nd_i ncl ude (include, source_dir, path)
find_i ncl ude_nanes (node)

get _skeys (env=None)

pat h (env, dir=None, target=None, source=None)
scan (node, path=())

sel ect (node)

sort _key (include)

SCons. Scanner . D. DScanner ()
Return a prototype Scanner instance for scanning D source files

SCons.Scanner.Dir module
SCons. Scanner. Dir. Di r Ent ryScanner (**kw)
Return a prototype Scanner instance for “scanning” directory Nodes for their in-memory entries

SCons. Scanner. Di r. Di r Scanner (**kw)
Return a prototype Scanner instance for scanning directories for on-disk files

SCons. Scanner. Di r.do_not _scan (k)
SCons. Scanner. Di r.only_dirs (nodes)

SCons. Scanner. Di r. scan_i n_menory (node, env, path=())
“Scans” a Node.FS.Dir for its in-memory entries.

SCons. Scanner. Di r. scan_on_di sk (node, env, path=())
Scans a directory for on-disk files and directories therein.
Looking up the entries will add these to the in-memory Node tree representation of the file system, so all we have
to do is just that and then call the in-memory scanning function.

93

SCons Project APl Documentation

SCons.Scanner.Fortran module
Dependency scanner for Fortran code.
class SCons. Scanner . Fort ran. F90Scanner (name, suffixes, path_variable, use_regex, incl_regex, def_regex,
*args, **kw)
Bases: SCons. Scanner . Cl assi ¢
A Classic Scanner subclass for Fortran source files which takes into account both USE and INCLUDE statements.
This scanner will work for both F77 and F90 (and beyond) compilers.
Currently, this scanner assumes that the include files do not contain USE statements. To enable the ability to deal
with USE statements in include files, add logic right after the module names are found to loop over each include
file, search for and locate each USE statement, and append each module name to the list of dependencies.

Caching the search results in a common dictionary somewhere so that the same include file is not searched
multiple times would be a smart thing to do.

_recurse_al |l _nodes (nodes)
_recurse_no_nodes (nodes)
add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

fi nd_i ncl ude (include, source_dir, path)
find_i ncl ude_nanes (node)

get _skeys (env=None)

pat h (env, dir=None, target=None, source=None)
scan (node, env, path=())

sel ect (node)

sort _key (include)

SCons. Scanner . For tran. FortranScan (path_variable="FORTRANPATH)
Return a prototype Scanner instance for scanning source files for Fortran USE & INCLUDE statements

SCons.Scanner.IDL module
Dependency scanner for IDL (Interface Definition Language) files.

SCons. Scanner. | DL. | DLScan ()
Return a prototype Scanner instance for scanning IDL source files

SCons.Scanner.LaTeX module

Dependency scanner for LaTeX code.

class SCons. Scanner . LaTeX. Fi ndENVPat hDi r s (variable)
Bases: obj ect
A class to bind a specific E{*}PATH variable name to a function that will return all of the E{*}path directories.

class SCons. Scanner . LaTeX. LaTeX (hame, suffixes, graphics_extensions, *args, **kw)
Bases: SCons. Scanner . Base
Class for scanning LaTeX files for included files.
Unlike most scanners, which use regular expressions that just return the included file name, this returns a tuple

consisting of the keyword for the inclusion (“include”, “includegraphics”, “input”, or “bibliography”), and then the file
name itself. Based on a quick look at LaTeX documentation, it seems that we should append .tex suffix for the

94

SCons Project APl Documentation

95

“include” keywords, append .tex if there is no extension for the “input” keyword, and need to add .bib for the
“bibliography” keyword that does not accept extensions by itself.

Finally, if there is no extension for an “includegraphics” keyword latex will append .ps or .eps to find the file, while
pdftex may use .pdf, .jpg, .tif, .mps, or .png.

The actual subset and search order may be altered by DeclareGraphicsExtensions command. This complication is
ignored. The default order corresponds to experimentation with teTeX:

$ latex --version
pdf eTeX 3.141592-1. 21a-2.2 (Web2C 7.5. 4)
kpat hsea version 3.5.4

The order is:

[‘.eps’, “.psT for latex ['.png’, “.pdf, “.jpg’, "tif].

Another difference is that the search path is determined by the type of the file being searched: env[TEXINPUTS']
for “input” and “include” keywords env[TEXINPUTS' for “includegraphics” keyword env[TEXINPUTS'] for
“Istinputlisting” keyword env['‘BIBINPUTS’] for “bibliography” keyword env['BSTINPUTS’] for “bibliographystyle”
keyword env['INDEXSTYLE’] for “makeindex” keyword, no scanning support needed just allows user to set it if
needed.

FIXME: also look for the class or style in document[class|style[{} FIXME: also look for the argument of
bibliographystyle{}

_| at ex_nanes (include_type, filename)
_recurse_al |l _nodes (nodes)
_recurse_no_nodes (nodes)
add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

canoni cal _t ext (text)
Standardize an input TeX-file contents.

Currently:

* removes comments, unwrapping comment-wrapped lines.

env_vari abl es =[TEXINPUTS', 'BIBINPUTS', 'BSTINPUTS', 'INDEXSTYLE']
find_i ncl ude (include, source_dir, path)
get _skeys (env=None)
keywor d_pat hs = {'addbibresource': 'BIBINPUTS', 'addglobalbib": 'BIBINPUTS', 'addsectionbib": 'BIBINPUTS',
'bibliography': 'BIBINPUTS', ‘'bibliographystyle’: 'BSTINPUTS', 'include": 'TEXINPUTS', ‘includegraphics"
TEXINPUTS', ‘input: "TEXINPUTS', 'Istinputlisting: "'TEXINPUTS', 'makeindex": 'INDEXSTYLE', 'usepackage":
"TEXINPUTS"}
pat h (env, dir=None, target=None, source=None)
scan (node, subdir="")
scan_r ecur se (node, path=())
do a recursive scan of the top level target file This lets us search for included files based on the directory of the
main file just as latex does

sel ect (node)

sort _key (include)

SCons Project APl Documentation

two_arg_comuands = ['import’, 'subimport’, includefrom’, 'subincludefrom’, ‘inputfrom’, 'subinputfrom’]

SCons. Scanner . LaTeX. LaTeXScanner ()
Return a prototype Scanner instance for scanning LaTeX source files when built with latex.

SCons. Scanner . LaTeX. PDFLaTeXScanner ()
Return a prototype Scanner instance for scanning LaTeX source files when built with pdflatex.

class SCons. Scanner . LaTeX. _Nul |
Bases: obj ect

SCons. Scanner. LaTeX. _nul |
alias of SCons. Scanner . LaTeX. _Nul |

SCons. Scanner . LaTeX. modi fy_env_var (env, var, abspath)

SCons.Scanner.Prog module
Dependency scanner for program files.

SCons. Scanner . Prog. Progr anScanner (**kw)
Return a prototype Scanner instance for scanning executable files for static-lib dependencies

SCons. Scanner . Prog. _subst _|i bs (env, libs)
Substitute environment variables and split into list.

SCons. Scanner . Prog. scan (node, env, libpath=())
Scans program files for static-library dependencies.
It will search the LIBPATH environment variable for libraries specified in the LIBS variable, returning any files it
finds as dependencies.

SCons.Scanner.RC module
Dependency scanner for RC (Interface Definition Language) files.

SCons. Scanner . RC. RCScan ()
Return a prototype Scanner instance for scanning RC source files

SCons. Scanner. RC. no_t | b (nodes)
Filter out .tlb files as they are binary and shouldn’t be scanned.

SCons.Scanner.SWIG module
Dependency scanner for SWIG code.
SCons. Scanner . SW G SW GScanner ()
Module contents
The Scanner package for the SCons software construction utility.
class SCons. Scanner. Base (function, name=" NONE' , argunent=<cl ass ' SCons. Scanner._Null" >,
skeys=<cl ass ' SCons. Scanner. _Nul ' >, pat h_f uncti on=None, node_cl ass=<cl ass
' SCons. Node. FS. Base' >, node_f act or y=None, scan_check=None, r ecur si ve=None)
Bases: obj ect
Base class for dependency scanners.
This implements straightforward, single-pass scanning of a single file.
_recurse_al |l _nodes (nodes)
_recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)

96

SCons Project APl Documentation

Add a skey to the list of skeys
get _skeys (env=None)
pat h (env, dir=None, target=None, source=None)
sel ect (node)
class SCons. Scanner . d assi ¢ (name, suffixes, path_variable, regex, *args, **kw)
Bases: SCons. Scanner . Current
A Scanner subclass to contain the common logic for classic CPP-style include scanning, but which can be
customized to use different regular expressions to find the includes.
Note that in order for this to work “out of the box” (without overriding the find_include() and sort_key() methods),
the regular expression passed to the constructor must return the name of the include file in group 0.
_recurse_al |l _nodes (nodes)
_recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

fi nd_i ncl ude (include, source_dir, path)
find_i ncl ude_nanes (node)
get _skeys (env=None)
pat h (env, dir=None, target=None, source=None)
scan (node, path=())
sel ect (node)
sort _key (include)
class SCons. Scanner . C assi cCPP (name, suffixes, path_variable, regex, *args, **kw)
Bases: SCons. Scanner . Cl assi ¢
A Classic Scanner subclass which takes into account the type of bracketing used to include the file, and uses
classic CPP rules for searching for the files based on the bracketing.
Note that in order for this to work, the regular expression passed to the constructor must return the leading bracket
in group 0, and the contained filename in group 1.
_recurse_al |l _nodes (nodes)
_recurse_no_nodes (nhodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

fi nd_i ncl ude (include, source_dir, path)
find_i ncl ude_nanes (node)
get _skeys (env=None)

pat h (env, dir=None, target=None, source=None)

97

SCons Project APl Documentation

scan (node, path=())
sel ect (node)
sort _key (include)
class SCons. Scanner . Current (*args, **kw)
Bases: SCons. Scanner . Base
A class for scanning files that are source files (have no builder) or are derived files and are current (which implies
that they exist, either locally or in a repository).
_recurse_al |l _nodes (nodes)
_recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

get _skeys (env=None)
pat h (env, dir=None, target=None, source=None)
sel ect (node)

class SCons. Scanner . Fi ndPat hDi r s (variable)
Bases: obj ect
Class to bind a specific E{*}PATH variable name to a function that will return all of the E{*}path directories.

SCons. Scanner . Scanner (function, *args, **kw)
Factory function to create a Scanner Object.
Creates the appropriate Scanner based on the type of “function”.
TODO: Deprecate this some day. We've moved the functionality inside the Base class and really don't need this
factory function any more. It was, however, used by some of our Tool modules, so the call probably ended up in
various people’s custom modules patterned on SCons code.

class SCons. Scanner . Sel ect or (dict, *args, **kw)
Bases: SCons. Scanner . Base
A class for selecting a more specific scanner based on the scanner_key() (suffix) for a specific Node.
TODO: This functionality has been moved into the inner workings of the Base class, and this class will be
deprecated at some point. (It was never exposed directly as part of the public interface, although it is used by the
Scanner() factory function that was used by various Tool modules and therefore was likely a template for custom
modules that may be out there.)
_recurse_al |l _nodes (nodes)
_recurse_no_nodes (nhodes)
add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

get _skeys (env=None)
pat h (env, dir=None, target=None, source=None)
sel ect (node)

class SCons. Scanner. _Nul |

98

SCons Project APl Documentation

Bases: obj ect

SCons. Scanner. nul |

alias of SCons. Scanner. _Nul |

SCons.Script package

Submodules

SCons.Script.Interactive module

SCons interactive mode.

class SCons. Scri pt. I nteractive. SConsl nteracti veCrd (**kw)

99

Bases: cnd. Cnd

build [TARGETS] Build the specified TARGETS and their dependencies. ‘b’ is a synonym. clean [TARGETS]
Clean (remove) the specified TARGETS and their dependencies. ‘c’ is a synonym. exit Exit SCons interactive
mode. help [COMMAND] Prints help for the specified COMMAND. ‘h’ and ‘?° are synonyms. shell
[COMMANDLINE] Execute COMMANDLINE in a subshell. ‘sh’ and ‘I are synonyms. version Prints SCons version
information.

_do_one_hel p (arg)
_doc_t o_hel p (obj)
_strip_initial_spaces (s)
cndl oop (intro=None)
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.
col ummi ze (list, displaywidth=80)
Display a list of strings as a compact set of columns.
Each column is only as wide as necessary. Columns are separated by two spaces (one was not legible enough).
conpl et e (text, state)
Return the next possible completion for ‘text’.
If a command has not been entered, then complete against command list. Otherwise try to call
complete_<command> to get list of completions.
conpl et e_hel p (*args)
conpl et edef aul t (*Yignored)
Method called to complete an input line when no command-specific complete_*() method is available.
By default, it returns an empty list.
conpl et enames (text, *ignored)
def aul t (argv)
Called on an input line when the command prefix is not recognized.
If this method is not overridden, it prints an error message and returns.

do_EOF (argv)

do_bui | d (argv)
build [TARGETS] Build the specified TARGETS and their dependencies. ‘b’ is a synonym.

do_cl ean (argv)
clean [TARGETS] Clean (remove) the specified TARGETS and their dependencies. ‘c’ is a synonym.

SCons Project APl Documentation

do_exit (argv)
exit Exit SCons interactive mode.

do_hel p (argv)
help [COMMAND] Prints help for the specified COMMAND. ‘h’ and ‘?’ are synonyms.

do_shel I (argv)
shell [COMMANDLINE] Execute COMMANDLINE in a subshell. ‘sh’ and ‘I" are synonyms.

do_versi on (argv)
version Prints SCons version information.

doc_header ='Documented commands (type help <topic>):'

doc_| eader =

enptyline()
Called when an empty line is entered in response to the prompt.
If this method is not overridden, it repeats the last nonempty command entered.

get _nanes ()

i dent char s = "abcdefghijkimnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 '

i ntro=None

lastcnd ="

ni sc_header ='Miscellaneous help topics:'

nohel p ="*** No help on %s'

onecnd (line)
Interpret the argument as though it had been typed in response to the prompt.
This may be overridden, but should not normally need to be; see the precmd() and postcmd() methods for useful
execution hooks. The return value is a flag indicating whether interpretation of commands by the interpreter
should stop.

par sel i ne (line)
Parse the line into a command name and a string containing the arguments. Returns a tuple containing

(command, args, line). ‘command’ and ‘args’ may be None if the line couldn’t be parsed.

post cnd (stop, line)
Hook method executed just after a command dispatch is finished.

post | oop ()
Hook method executed once when the cmdloop() method is about to return.

precnd (line)

Hook method executed just before the command line is interpreted, but after the input prompt is generated and
issued.

prel oop ()
Hook method executed once when the cmdloop() method is called.

print _topics (header, cmds, cmdlen, maxcol)
pronmpt ='(Cmd) "

rul er ='=

100

SCons Project APl Documentation

synonyns ={b" 'build’, 'c": ‘clean’, 'h": 'help, 'scons". 'build’, 'sh": 'shell’}
undoc_header ='Undocumented commands:'

use_rawi nput =1

SCons. Script.Interactive.interact (fs, parser, options, targets, target_top)

SCons.Script.Main module
The main() function used by the scons script.

Architecturally, this is the scons script, and will likely only be called from the external “scons” wrapper. Consequently,
anything here should not be, or be considered, part of the build engine. If it's something that we expect other
software to want to use, it should go in some other module. If it's specific to the “scons” script invocation, it goes
here.

SCons. Scri pt. Mai n. AddOpt i on (*args, **kw)

class SCons. Scri pt. Mai n. Bui | dTask (tm, targets, top, node)
Bases: SCons. Taskmast er. Qut Of Dat eTask
An SCons build task.

_abc_i mpl =<_abc_data object>

_exception_raise|()
Raises a pending exception that was recorded while getting a Task ready for execution.

_no_exception_to_raise|()

di spl ay (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see

those messages.
do_fail ed (status=2)

exc_cl ear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

excepti on_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execut e ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread

unsafe stuff in prepare(), executed() or failed().

execut ed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s

callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

101

SCons Project APl Documentation

executed_wi th_cal | backs ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

execut ed_wi t hout cal I backs ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

fail _continue()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail _stop()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get _target ()
Fetch the target being built or updated by this task.

make ready ()
Make a task ready for execution

make ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons
-Cc” option.

make ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what's necessary.

needs_execut e ()
Returns True (indicating this Task should be executed) if this Task’s target state indicates it needs executing,
which has already been determined by an earlier up-to-date check.

post process ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_nessage (method, node, description="node")

102

SCons Project APl Documentation

class SCons. Scri pt . Mai n. C eanTask (tm, targets, top, node)
Bases: SCons. Taskmast er . Al waysTask
An SCons clean task.

_abc_i mpl =<_abc_data object>
_clean_targets (remove=True)

_exception_raise|)
Raises a pending exception that was recorded while getting a Task ready for execution.

_get files_to_clean)
_no_exception_to_raise()

di spl ay (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_cl ear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info()
Returns info about a recorded exception.

excepti on_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execut e ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

execut ed ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the

Node’s callback methods.

executed_wi th_cal | backs ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

execut ed_wi t hout cal | backs ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the

Node’s callback methods.

fail _continue()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail _stop()

103

SCons Project APl Documentation

Explicit stop-the-build failure.

This sets failure status on the target nodes and all of their dependent parent nodes.

Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fs_del et e (path, pathstr, remove=True)

get _target ()
Fetch the target being built or updated by this task.

make ready ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons
-Cc” option.

make ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons
-Cc” option.

make ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what's necessary.

needs_execut e ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:
class MyTaskSubclass(SCons.Taskmaster.Task):
needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute
post process ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no

build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

renove ()

show ()

trace_nessage (method, node, description="node")

class SCons. Scri pt. Mai n. Count Stat s
Bases: SCons. Scri pt. Mai n. Stats

do_append (label)

do_not hi ng (*args, **kw)

104

SCons Project APl Documentation

do_print ()
enabl e (outfp)
class SCons. Scri pt. Mai n. FakeOpt i onPar ser
Bases: obj ect
A do-nothing option parser, used for the initial OptionsParser variable.
During normal SCons operation, the OptionsParser is created right away by the main() function. Certain tests

scripts however, can introspect on different Tool modules, the initialization of which can try to add a new, local
option to an otherwise uninitialized OptionsParser object. This allows that introspection to happen without blowing

up.

class FakeOpt i onVal ues
Bases: obj ect

add_| ocal _opti on (*args, **kw)

val ues = <SCons.Script.Main.FakeOptionParser.FakeOptionValues object>
SCons. Scri pt. Mai n. Get Bui | dFai | ures ()
SCons. Scri pt. Mai n. Get Opt i on (name)

class SCons. Scri pt. Mai n. Mentt at s
Bases: SCons. Scri pt. Mai n. Stats

do_append (label)
do_not hi ng (*args, **kw)
do_print ()

enabl e (outfp)
SCons. Scri pt . Mai n. Pri nt Hel p (file=None)
SCons. Scri pt. Mai n. Progr ess (*args, **kw)

class SCons. Scri pt . Mai n. Progr essor (obj, interval=1, file=None, overwrite=False)
Bases: obj ect

count =0
erase_previous ()
prev ="
repl ace_string (node)
spi nner (node)
string (node)
target _string="$TARGET
wite(s)
class SCons. Scri pt. Mai n. Quest i onTask (tm, targets, top, node)
Bases: SCons. Taskmast er . Al waysTask

An SCons task for the -q (question) option.

_abc_i mpl =<_abc_data object>

105

SCons Project APl Documentation

_exception_raise|)
Raises a pending exception that was recorded while getting a Task ready for execution.

_no_exception_to_raise()

di spl ay (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_cl ear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info()
Returns info about a recorded exception.

excepti on_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execut e ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

execut ed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_wi th_cal | backs ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

execut ed_wi t hout cal I backs ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

fail _continue()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail _stop()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed()

106

SCons Project APl Documentation

Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get _target ()
Fetch the target being built or updated by this task.

make ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what's necessary.

make ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons
-Cc” option.

make ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what's necessary.

needs_execut e ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:
class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute

post process ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_nessage (method, node, description="node")

exception SCons. Scri pt. Mai n. SConsPri nt Hel pExcepti on
Bases: Excepti on

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

SCons. Scri pt. Mai n. Set Opt i on (hame, value)

class SCons. Scri pt. Main. Stats
Bases: obj ect

do_not hi ng (*args, **kw)
enabl e (outfp)

class SCons. Scri pt. Mai n. TreePri nt er (derived=False, prune=False, status=False, sLineDraw=False)
Bases: obj ect

107

SCons Project APl Documentation

di spl ay ()
get _all _chil dren (node)

get _derived_chil dren (node)

SCons. Scri pt. Mai n. _SConst ruct _exi st s (dirname=", repositories=[], filelist=None)
This function checks that an SConstruct file exists in a directory. If so, it returns the path of the file. By default, it
checks the current directory.

SCons. Scri pt. Mai n. _bui | d_t arget s (fs, options, targets, target_top)
SCons. Scri pt. Mai n. _creat e_pat h (plist)
SCons. Scri pt. Mai n. _exec_nmmai n (parser, values)

SCons. Script. Main. _load_all_site_scons_dirs (topdir, verbose=False)
Load all of the predefined site_scons dir. Order is significant; we load them in order from most generic
(machine-wide) to most specific (topdir). The verbose argument is only for testing.

SCons. Scri pt. Main. _| oad_site_scons_dir (topdir, site_dir_name=None)
Load the site directory under topdir.
If a site dir name is supplied use it, else use default “site_scons” Prepend site dir to sys.path. If a “site_tools” subdir
exists, prepend to toolpath. Import “site_init.py” from site dir if it exists.

SCons. Scri pt . Mai n. _nmai n (parser)

SCons. Scri pt. Mai n. _scons_internal _error ()
Handle all errors but user errors. Print out a message telling the user what to do in this case and print a normal
trace.

SCons. Scri pt. Mai n. _scons_i nternal _war ni ng (e)
Slightly different from _scons_user_warning in that we use the current call stack rather than sys.exc_info() to get
our stack trace. This is used by the warnings framework to print warnings.

SCons. Scri pt. Mai n. _scons_syntax_error (e)
Handle syntax errors. Print out a message and show where the error occurred.

SCons. Scri pt. Mai n. _scons_user _error (e)
Handle user errors. Print out a message and a description of the error, along with the line humber and routine
where it occured. The file and line number will be the deepest stack frame that is not part of SCons itself.

SCons. Scri pt. Mai n. _scons_user _war ni ng (e)
Handle user warnings. Print out a message and a description of the warning, along with the line number and
routine where it occured. The file and line number will be the deepest stack frame that is not part of SCons itself.

SCons. Scri pt. Mai n. _set _debug_val ues (options)

SCons. Scri pt. Mai n. fi nd_deepest _user _framne (th)
Find the deepest stack frame that is not part of SCons.
Input is a “pre-processed” stack trace in the form returned by traceback.extract_tb() or traceback.extract_stack()

SCons. Scri pt. Mai n. nmai n ()
SCons. Scri pt . Mai n. pat h_st ri ng (label, module)

SCons. Scri pt. Mai n. pyt hon_ver si on_depr ecat ed (version=sys.version_info(major=3, minor=7, micro=11,
releaselevel="final', serial=0))

SCons. Scri pt. Mai n. pyt hon_versi on_string ()

SCons. Scri pt. Mai n. pyt hon_ver si on_unsupport ed (version=sys.version_info(major=3, minor=7, micro=11,
releaselevel="final', serial=0))

SCons. Script. Main.revert _io()
SCons. Script.Main.test load _all _site_scons_dirs (d)

SCons. Scri pt. Mai n. ver si on_st ri ng (label, module)

SCons.Script.SConsOptions module

108

SCons Project APl Documentation

SCons. Scri pt. SConsOpt i ons. Par ser (version)
Returns an options parser object initialized with the standard SCons options.

class SCons. Scri pt. SConsOpt i ons. SConsl ndent edHel pFor nmat t er (indent_increment=2,
max_help_position=24, width=None, short_first=1)
Bases: opt par se. | ndent edHel pFor nat t er

NO_DEFAULT_VALUE = 'none'

_format _text (text)
Format a paragraph of free-form text for inclusion in the help output at the current indentation level.

dedent ()

expand_def aul t (option)

format _descri pti on (description)

format _epi | og (epilog)

f or mat _headi ng (heading)
This translates any heading of “options” or “Options” into “SCons Options.” Unfortunately, we have to do this
here, because those titles are hard-coded in the optparse calls.

format _opti on (option)

A copy of the normal optparse.IndentedHelpFormatter.format_option() method. This has been snarfed so we
can modify text wrapping to out liking:

—add our own regular expression that doesn’t break on hyphens
(so things like —no-print-directory don’t get broken);
—wrap the list of options themselves when it’s too long

(the wrapper.fill(opts) call below);
— set the subsequent_indent when wrapping the help_text.

format _option_strings (option)
Return a comma-separated list of option strings & metavariables.

f or mat _usage (usage)

i ndent ()

set _long opt _deliniter (delim)
set _parser (parser)

set _short_opt _deliniter (delim)
store_option_strings (parser)

class SCons. Scri pt . SConsOpt i ons. SConsQpt i on (*opts, **attrs)
Bases: opt par se. Opti on

ACTI ONS = ('store’, 'store_const', 'store_true', 'store_false', 'append', 'append_const’, 'count’, 'callback’, 'help’,
'version')

ALVAYS TYPED ACTI ONS = (‘store’, 'append’)

ATTRS = [‘action', 'type', 'dest', 'default’, 'nargs’, 'const’, 'choices', 'callback’, ‘callback args', 'callback kwargs',
‘help’, 'metavar]

109

SCons Project APl Documentation

CHECK_METHODS = [<function Option._check_action>, <function Option._check_type>, <function
Option._check _choice>, <function Option._check dest>, <function Option._check const>, <function
Option._check_nargs>, <function Option._check_callback>, <function SConsOption._check_nargs_optional>]
CONST_ACTI ONS = ('store_const', ‘append_const', 'store’, 'append’, ‘callback’)

STORE_ACTI ONS = ('store’, 'store_const', 'store_true', 'store_false', 'append’, ‘append_const', 'count’)

TYPED_ACTI ONS = ('store’, ‘append’, 'callback’)

TYPES = (‘string’, 'int’, 'long’, 'float’, 'complex’, ‘choice")

TYPE_CHECKER = {choice": <function check_choice>, '‘complex’ <function check_builtin>, ‘float: <function
check_builtin>, 'int": <function check_builtin>, 'long": <function check_builtin>}

_check_action ()
_check_cal | back ()
_check_choi ce ()
_check_const ()
_check_dest ()
_check_nargs ()
_check_nargs_optional ()
_check_opt _strings (opts)
_check_type ()
_set _attrs (attrs)
_set_opt _strings (opts)
check_val ue (opt, value)
convert _val ue (opt, value)
get _opt _string()
pr ocess (opt, value, values, parser)
t ake_act i on (action, dest, opt, value, values, parser)
t akes_val ue ()
class SCons. Scri pt . SConsOpt i ons. SConsOpt i onG oup (parser, title, description=None)
Bases: opt par se. Opti onG oup
A subclass for SCons-specific option groups.
The only difference between this and the base class is that we print the group’s help text flush left, underneath
their own title but lined up with the normal “SCons Options”.
_check_conflict (option)
_create_option_list ()

_create_option_mappi ngs ()

110

SCons Project APl Documentation

_share_opti on_mappi ngs (parser)

add_opti on (Option)
add_option(opt_str, ..., kwarg=val, ...)

add_opti ons (option_list)

destroy ()
see OptionParser.destroy().

format _descri pti on (formatter)
f or mat _hel p (formatter)
Format an option group’s help text, outdenting the title so it's flush with the “SCons Options” title we print at the
top.
format _opti on_hel p (formatter)
get _description ()
get _opti on (opt_str)
has_opti on (opt_str)
renove_opti on (opt_str)
set _conflict_handl er (handler)
set _descri pti on (description)
set _titl e (title)
class SCons. Scri pt. SConsOpt i ons. SConsOpt i onPar ser (usage=None, option_Iist=None,
option_cl ass=<cl ass ' opt parse. Opti on' >, ver si on=None, conflict_handler="error',
descri pti on=None, f or mat t er =None, add_hel p_opt i on=Tr ue, pr og=None, epi | og=None)
Bases: opt par se. Opt i onPar ser
_add_hel p_option ()
_add_version_option ()
_check_conflict (option)
_create_option_list ()
_create_option_mappi ngs ()
_get_all _options ()
_get _args (args)
_init_parsing_state ()
mat ch| ong_opt (opt: string) - string
Determine which long option string ‘opt’ matches, ie. which one it is an unambiguous abbreviation for. Raises
BadOptionError if ‘opt’ doesn’t unambiguously match any long option string.
_popul ate_option_list (option_list, add_help=True)

_process_ar gs (largs, rargs, values)

111

SCons Project APl Documentation

_process_args(largs : [string],

rargs : [string], values : Values)
Process command-line arguments and populate ‘values’, consuming options and arguments from ‘rargs’. If
‘allow_interspersed_args’ is false, stop at the first non-option argument. If true, accumulate any interspersed
non-option arguments in ‘largs’.

process| ong_opt (rargs, values)
SCons-specific processing of long options.
This is copied directly from the normal optparse._process_long_opt() method, except that, if configured to do so,
we catch the exception thrown when an unknown option is encountered and just stick it back on the “leftover”
arguments for later (re-)processing.

_process_short _opts (rargs, values)
_share_opti on_nmappi ngs (parser)

add_| ocal _opti on (*args, **kw)
Adds a local option to the parser.
This is initiated by an AddOption() call to add a user-defined command-line option. We add the option to a
separate option group for the local options, creating the group if necessary.

add_opti on (Option)
add_option(opt_str, ..., kwarg=val, ...)

add_opti on_group (*args, **kwargs)
add_opti ons (option_list)

check_val ues (values: Values, args: [string])
-> (values : Values, args : [string])
Check that the supplied option values and leftover arguments are valid. Returns the option values and leftover
arguments (possibly adjusted, possibly completely new — whatever you like). Default implementation just returns
the passed-in values; subclasses may override as desired.

destroy ()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and all
objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser is
unusable.

di sabl e_interspersed_args ()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don't get confused.

enabl e_interspersed_args ()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments. This is
the default behavior. See also disable_interspersed_args() and the class documentation description of the
attribute allow_interspersed_args.

error (msg: string)
Print a usage message incorporating ‘msg’ to stderr and exit. If you override this in a subclass, it should not
return — it should either exit or raise an exception.

exi t (status=0, msg=None)

expand_prog_nane (s)

format _descri pti on (formatter)

f ormat _epi | og (formatter)

112

SCons Project APl Documentation

113

f or mat _hel p (formatter=None)

format _opti on_hel p (formatter=None)
get _default_val ues ()

get _description()

get _opti on (opt_str)

get _option_group (opt_str)

get _prog_nane ()

get _usage ()

get _version ()

has_opti on (opt_str)

par se_ar gs (args=None, values=None)
parse_args(args : [string] = sys.argv[1:],
values : Values = None)

-> (values : Values, args : [string])

Parse the command-line options found in ‘args’ (default: sys.argv[1:]). Any errors result in a call to ‘error()’, which
by default prints the usage message to stderr and calls sys.exit() with an error message. On success returns a
pair (values, args) where ‘values’ is a Values instance (with all your option values) and ‘args’ is the list of
arguments left over after parsing options.

preserve_unknown_opti ons = False

print _hel p (file: file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default stdout).

print _usage (file: file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the
string “%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]). Does
nothing if self.usage is empty or not defined.

print_version (file: file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(), any
occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if self.version is
empty or undefined.

renove_opti on (opt_str)

reparse_|l ocal _options ()
Re-parse the leftover command-line options.
Parse options stored in self.largs, so that any value overridden on the command line is immediately available if
the user turns around and does a Get Opt i on() right away.
We mimic the processing of the single args in the original OptionParser _process_ar gs() , but here we allow
exact matches for long-opts only (no partial argument names!). Otherwise there could be problems in
add_| ocal _option() below. When called from there, we try to reparse the command-line arguments that

1. haven't been processed so far (self.largs), but

2. are possibl?/ not added to the list of options yet.)
So, when we only have a value for “~myargument” so far, a command-line argument of “—~myarg=test” would set

it, per the behaviour of _mat ch_| ong_opt (), which allows for partial matches of the option name, as long as
the common prefix appears to be unique. This would lead to further confusion, because we might want to add
another option “—myarg” later on (see issue #2929).

SCons Project APl Documentation

set _conflict_handl er (handler)

set _defaul t (dest, value)

set _defaul ts (**kwargs)

set _descri pti on (description)

set _process_default_val ues (process)
set _usage (usage)
standard_option_list =]]

class SCons. Scri pt . SConsOpt i ons. SConsVal ues (defaults)
Bases: opt par se. Val ues
Holder class for uniform access to SCons options, regardless of whether or not they can be set on the command
line or in the SConscript files (using the SetOption() function).
A SCons option value can originate three different ways:

1. set on the command line;
2. set in an SConscript file;

3. the default setting (from the the op.add_option() calls in the Parser() function, below).]
The command line always overrides a value set in a SConscript file, which in turn always overrides default

settings. Because we want to support user-specified options in the SConscript file itself, though, we may not know
about all of the options when the command line is first parsed, so we can't make all the necessary precedence
decisions at the time the option is configured.

The solution implemented in this class is to keep these different sets of settings separate (command line,
SConscript file, and default) and to override the __ getattr () method to check them in turn. This should allow the
rest of the code to just fetch values as attributes of an instance of this class, without having to worry about where
they came from.

Note that not all command line options are settable from SConscript files, and the ones that are must be explicitly
added to the “settable” list in this class, and optionally validated and coerced in the set_option() method.

_updat e (dict, mode)

_updat e_car ef ul (dict)
Update the option values from an arbitrary dictionary, but only use keys from dict that already have a
corresponding attribute in self. Any keys in dict without a corresponding attribute are silently ignored.

updat e| oose (dict)
Update the option values from an arbitrary dictionary, using all keys from the dictionary regardless of whether
they have a corresponding attribute in self or not.

ensur e_val ue (attr, value)

read_fil e (filename, mode="'careful’)

r ead_nodul e (modname, mode="careful’)

set _opti on (name, value)
Sets an option from an SConscript file.

Raises: UserError —invalid or malformed option (“error in your script”)

settable = [clean', 'diskcheck’, 'duplicate’, ‘'experimental’, ‘hash_chunksize', ‘'hash_format', ‘help’,
'implicit_cache', ‘implicit_deps_changed', 'implicit_deps_unchanged', 'max_drift’, 'md5_chunksize', 'no_exec',
'no_progress', 'num_jobs', random’, 'silent’, 'stack_size', 'warn', 'disable_execute_ninja’, 'disable_ninja']

SCons. Scri pt. SConsOpt i ons. di skcheck _convert (value)

114

SCons Project APl Documentation

SCons.Script.SConscript module
This module defines the Python API provided to SConscript files.

SCons. Scri pt. SConscri pt. Bui | dDef aul t G obal s ()
Create a dictionary containing all the default globals for SConstruct and SConscript files.

SCons. Scri pt. SConscri pt. Confi gur e (*args, **kw)

class SCons. Scri pt. SConscri pt. Def aul t Envi ronnment Cal | (method_name, subst=0)
Bases: obj ect
A class that implements “global function” calls of Environment methods by fetching the specified method from the
DefaultEnvironment's class. Note that this uses an intermediate proxy class instead of calling the
DefaultEnvironment method directly so that the proxy can override the subst() method and thereby prevent
expansion of construction variables (since from the user’s point of view this was called as a global function, with no
associated construction environment).

class SCons. Scri pt. SConscri pt. Frane (fs, exports, sconscript)
Bases: obj ect
A frame on the SConstruct/SConscript call stack

SCons. Scri pt. SConscri pt. Ret ur n (*vars, **kw)

class SCons. Scri pt. SConscri pt. SConsEnvi ronnment (platform=None, tools=None, toolpath=None,
variables=None, parse_flags=None, **kw)
Bases: SCons. Envi r onnent . Base
An Environment subclass that contains all of the methods that are particular to the wrapper SCons interface and
which aren’t (or shouldn’t be) part of the build engine itself.
Note that not all of the methods of this class have corresponding global functions, there are some private methods.

Act i on (*args, **kw)

AddMet hod (function, name=None)
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.

AddPost Act i on (files, action)

AddPr eAct i on (files, action)

Al'i as (target, source=[], action=None, **kw)

Al waysBui | d (*targets)

Append (**kw)
Append values to construction variables in an Environment.
The variable is created if it is not already present.

AppendENVPat h (name, newpath, envhame='"ENV', sep="', delete_existing=0)
Append path elements to the path ‘name’ in the ‘ENV’ dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the
case where the env variable is a list instead of a string.
If delete_existing is 0, a newpath which is already in the path will not be moved to the end (it will be left where it
is).

AppendUni que (delete_existing=0, **kw)
Append values to existing construction variables in an Environment, if they're not already there. If
delete_existing is 1, removes existing values first, so values move to end.

Bui | der (**kw)

CacheDi r (path, custom_class=None)

115

SCons Project APl Documentation

d ean (targets, files)

Cl one (tools=[], toolpath=None, parse_flags=None, **kw)
Return a copy of a construction Environment.
The copy is like a Python “deep copy”-that is, independent copies are made recursively of each objects—except
that a reference is copied when an object is not deep-copyable (like a function). There are no references to any
mutable objects in the original Environment.

Command (target, source, action, **kw)
Builds the supplied target files from the supplied source files using the supplied action. Action may be any type
that the Builder constructor will accept for an action.

Conf i gur e (*args, **kw)
Deci der (function)
Def aul t (*targets)

Depends (target, dependency)
Explicity specify that ‘target’s depend on ‘dependency’.

Det ect (progs)
Return the first available program from one or more possibilities.
Parameters: progs (str or list) — one or more command names to check for
Di cti onary (*args)
Return construction variables from an environment.

Parameters: *args (optional) — variable names to look up

Returns: If args omitted, the dictionary of all construction variables. If one arg, the corresponding
value is returned. If more than one arg, a list of values is returned.

Raises: KeyError —if any of args is not in the construction environment.

Di r (name, *args, **kw)

Dunp (key=None, format="pretty")
Return construction variables serialized to a string.

Parameters:]]))
« key (optional) — if None, format the whole dict of variables. Else format the value of

key (Default value = None)

e format (str, optional) — specify the format to serialize to. “pretty” generates a
pretty-printed string, “json” a JSON-formatted string. (Default value = “pretty”)

Ensur ePyt honVer si on (major, minor)
Exit abnormally if the Python version is not late enough.

Ensur eSConsVer si on (major, minor, revision=0)
Exit abnormally if the SCons version is not late enough.

Ent ry (name, *args, **kw)
Envi ronment (**kw)

Execut e (action, *args, **kw)
Directly execute an action through an Environment

Exi t (value=0)

Export (*vars, **kw)

116

SCons Project APl Documentation

Fi | e (name, *args, **kw)
Fi ndFi | e (file, dirs)

Fi ndl nstal | edFil es ()
returns the list of all targets of the Install and InstallAs Builder.

Fi ndl xes (paths, prefix, suffix)
Search a list of paths for something that matches the prefix and suffix.

Parameters:)
* paths — the list of paths or nodes.

« prefix — construction variable for the prefix.
« suffix — construction variable for the suffix.
Returns: the matched path or None

Fi ndSour ceFi | es (node="")
returns a list of all source files.

Fl at t en (sequence)

Get Bui | dPat h (files)

Get LaunchDir ()

Get Opt i on (name)

d ob (pattern, ondisk=True, source=False, strings=False, exclude=None)
Hel p (text, append=False)

| gnor e (target, dependency)
Ignore a dependency.

| mport (*vars)
Li teral (string)
Local (*targets)

Mer geFl ags (args, unique=True)
Merge flags into construction variables.
Merges the flags from ar gs into this construction environent. If ar gs is not a dict, it is first converted to a
dictionary with flags distributed into appropriate construction variables. See Par seFl ags() .

Parameters:
« args — flags to merge

* uniqgue — merge flags rather than appending (default: True)

NoCache (*targets)
Tags a target so that it will not be cached

Nod ean (*targets)
Tags a target so that it will not be cleaned by -c

Overri de (overrides)
Produce a modified environment whose variables are overridden by the overrides dictionaries. “overrides” is a
dictionary that will override the variables of this environment.
This function is much more efficient than Clone() or creating a new Environment because it doesn’'t copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn’t even
create a wrapper object if there are no overrides.

117

SCons Project APl Documentation

118

Par seConf i g (command, function=None, unique=True)
Use the specified function to parse the output of the command in order to modify the current environment. The
‘command’ can be a string or a list of strings representing a command and its arguments. ‘Function’ is an
optional argument that takes the environment, the output of the command, and the unique flag. If no function is
specified, MergeFlags, which treats the output as the result of a typical ‘X-config’ command (i.e. gtk-config), will
merge the output into the appropriate variables.

Par seDepends (filename, must_exist=None, only_one=False)
Parse a mkdep-style file for explicit dependencies. This is completely abusable, and should be unnecessary in
the “normal” case of proper SCons configuration, but it may help make the transition from a Make hierarchy
easier for some people to swallow. It can also be genuinely useful when using a tool that can write a .d file, but
for which writing a scanner would be too complicated.

Par seFl ags (*flags)

Return a dict of parsed flags.

Parse f | ags and return a dict with the flags distributed into the appropriate construction variable names. The
flags are treated as a typical set of command-line flags for a GNU-like toolchain, such as might have been
generated by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in
this method - the choices are not expected to be portable to other toolchains.

If one of the f | ags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest
of the string is executed; the result of that evaluation is then added to the dict.

Pl at f or m(platform)
Pr eci ous (*targets)

Prepend (**kw)
Prepend values to construction variables in an Environment.
The variable is created if it is not already present.

Pr ependENVPat h (name, newpath, envhame="ENV', sep="", delete_existing=1)
Prepend path elements to the path ‘name’ in the ‘ENV’ dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the
case where the env variable is a list instead of a string.
If delete_existing is 0, a newpath which is already in the path will not be moved to the front (it will be left where it
is).

Pr ependUni que (delete_existing=0, **kw)
Prepend values to existing construction variables in an Environment, if they’re not already there. If
delete_existing is 1, removes existing values first, so values move to front.

Pseudo (*targets)
PyPackageDi r (modulename)
RenmoveMet hod (function)
Removes the specified function’s MethodWrapper from the added_methods list, so we don’t re-bind it when

making a clone.

Repl ace (**kw)
Replace existing construction variables in an Environment with new construction variables and/or values.

Repl acel xes (path, old_prefix, old_suffix, new_prefix, new_suffix)
Replace old_prefix with new_prefix and old_suffix with new_suffix.
env - Environment used to interpolate variables. path - the path that will be modified. old_prefix - construction
variable for the old prefix. old_suffix - construction variable for the old suffix. new_prefix - construction variable
for the new prefix. new_suffix - construction variable for the new suffix.

Reposi t ory (*dirs, **kw)

Requi r es (target, prerequisite)

SCons Project APl Documentation

Specify that ‘prerequisite’ must be built before ‘target’, (but ‘target’ does not actually depend on ‘prerequisite’
and need not be rebuilt if it changes).

SConscri pt (*Is, **kw)
Execute SCons configuration files.

Parameters: *Is (str or list) — configuration file(s) to execute.

Keyword N o : .
Arguments: » dirs (list) — execute SConscript in each listed directory.

* name (str) — execute script ‘name’ (used only with ‘dirs’).
» exports (list or dict) — locally export variables the called script(s) can import.

* variant_dir (str) — mirror sources needed for the build in a variant directory to allow
building in it.

» duplicate (bool) — physically duplicate sources instead of just adjusting paths of
derived files (used only with ‘variant_dir’) (default is True).

* must_exist (bool) — fail if a requested script is missing (default is False, default is
deprecated).
Returns: list of variables returned by the called script

Raises: UserError — a script is not found and such exceptions are enabled.

SConscri pt Chdi r (flag)

SConsi gnFi | e (name=".sconsign', dom_module=None)
Scanner (*args, **kw)

Set Def aul t (**kw)

Set Opt i on (name, value)

Si deEf f ect (side_effect, target)
Tell scons that side_effects are built as side effects of building targets.

Split (arg)

This function converts a string or list into a list of strings or Nodes. This makes things easier for users by
allowing files to be specified as a white-space separated list to be split.

The input rules are:

* A single string containing names separated by spaces. These will be split apart at the spaces.
* A single Node instance

+ A list containing either strings or Node instances. Any strings in the list are not split at spaces.
In all cases, the function returns a list of Nodes and strings.

Tool (tool, toolpath=None, **kwargs) - SCons.Tool.Tool
Val ue (value, built_value=None, hame=None)
Vari ant Di r (variant_dir, src_dir, duplicate=1)

Wher el s (prog, path=None, pathext=None, reject=None)
Find prog in the path.

_canoni cal i ze (path)
Allow Dirs and strings beginning with # for top-relative.
Note this uses the current env’s fs (in self).

_changed_bui | d (dependency, target, prev_ni, repo_node=None)

119

SCons Project APl Documentation

_changed_cont ent (dependency, target, prev_ni, repo_node=None)

_changed_sour ce (dependency, target, prev_ni, repo_node=None)

_changed_ti mest anp_mat ch (dependency, target, prev_ni, repo_node=None)
_changed_ti nmest anp_newer (dependency, target, prev_ni, repo_node=None)
_changed_ti mestanp_t hen_cont ent (dependency, target, prev_ni, repo_node=None)

_exceeds_ver si on (major, minor, v_major, v_minor)
Return 1 if ‘major’ and ‘minor’ are greater than the version in ‘v_major’ and ‘v_minor’, and O otherwise.

_find_tool path_dir (tp)

_get _SConscript_fil enanes (Is, kw)
Convert the parameters passed to SConscript() calls into a list of files and export variables. If the parameters are
invalid, throws SCons.Errors.UserError. Returns a tuple (I, €) where | is a list of SConscript filenames and e is a
list of exports.

_get _nmmj or _mi nor_revi si on (version_string)

Split a version string into major, minor and (optionally) revision parts.
This is complicated by the fact that a version string can be something like 3.2b1.

_gsm()

_init_special ()
Initial the dispatch tables for special handling of special construction variables.

_updat e (other)
Private method to update an environment’s consvar dict directly.
Bypasses the normal checks that occur when users try to set items.
_updat e_onl ynew (other)
Private method to add new items to an environment’s consvar dict.
Only adds items from other whose keys do not already appear in the existing dict; values from other are not
used for replacement. Bypasses the normal checks that occur when users try to set items.

arg2nodes (args, node_factory=<class 'SCons.Environment._Null'>, |ookup_Ilist=<class
' SCons. Envi ronment . _Nul |' >, **kw)

backt i ck (command)

get (key, default=None)
Emulates the get() method of dictionaries.

get _CacheDir ()

get _bui |l der (name)
Fetch the builder with the specified name from the environment.

get factory (factory, default="File")
Return a factory function for creating Nodes for this construction environment.

get _scanner (skey)
Find the appropriate scanner given a key (usually a file suffix).

get _src_sig type()

get _tgt _sig type()

120

SCons Project APl Documentation

gvars ()

itens ()
Emulates the items() method of dictionaries.

keys ()
Emulates the keys() method of dictionaries.

I vars ()

scanner _map_del et e (kw=None)
Delete the cached scanner map (if we need to).

set def aul t (key, default=None)
Emulates the setdefault() method of dictionaries.

subst (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

subst _kw (kw, raw=0, target=None, source=None)

subst | i st (string, raw=0, target=None, source=None, conv=None, executor=None)
Calls through to SCons.Subst.scons_subst_list(). See the documentation for that function.

subst _pat h (path, target=None, source=None)
Substitute a path list, turning EntryProxies into Nodes and leaving Nodes (and other objects) as-is.

subst _target source (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

val i dat e_CacheDi r _cl ass (custom_class=None)
Validate the passed custom CacheDir class, or if no args are passed, validate the custom CacheDir class from
the environment.

val ues ()
Emulates the values() method of dictionaries.

exception SCons. Scri pt. SConscri pt. SConscri pt Return
Bases: Excepti on

ar gs
wi th_traceback ()

Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

SCons. Scri pt. SConscri pt. SConscri pt _exception (fil e=<_i 0. Text| OV apper nane=' <stderr>'
node='w encodi ng='utf-8"'>)
Print an exception stack trace just for the SConscript file(s). This will show users who have Python errors where
the problem is, without cluttering the output with all of the internal calls leading up to where we exec the
SConscript.

SCons. Scri pt. SConscri pt. _SConscri pt (fs, *files, **kw)

SCons. Scri pt. SConscri pt. annot at e (nhode)
Annotate a node with the stack frame describing the SConscript file and line number that created it.

SCons. Scri pt. SConscri pt. conmput e_exports (exports)

121

SCons Project APl Documentation

Compute a dictionary of exports given one of the parameters to the Export() function or the exports argument to
SConscript().

SCons. Scri pt. SConscri pt. get _Def aul t Envi r onrment Pr oxy ()

SCons. Scri pt. SConscri pt.get_cal |l i ng_nanespaces ()
Return the locals and globals for the function that called into this module in the current call stack.

SCons. Scri pt. SConscri pt. handl e_m ssi ng_SConscri pt (f, must_exist=None)
Take appropriate action on missing file in SConscript() call.
Print a warning or raise an exception on missing file, unless missing is explicitly allowed by the must_exist value.
On first warning, print a deprecation message.

Parameters: o . o
« f (str) — path of missing configuration file

* must_exist (bool) — if true, falil. If false, but not None, allow the file to be missing. The
default is None, which means issue the warning. The default is deprecated.
Raises: UserError — if must_exist is true or if global SCons. Scri pt. _no_ni ssi ng_sconscri pt
is true.

Module contents
The main() function used by the scons script.

Architecturally, this is the scons script, and will likely only be called from the external “scons” wrapper. Consequently,
anything here should not be, or be considered, part of the build engine. If it's something that we expect other
software to want to use, it should go in some other module. If it's specific to the “scons” script invocation, it goes
here.

SCons. Scri pt . Hel pFuncti on (text, append=False)

class SCons. Scri pt. Tar get Li st (initlist=None)
Bases: col | ecti ons. User Li st

_abc_i mpl =<_abc_data object>
_add_Def aul t (list)

_clear ()

_do_not hi ng (*args, **kw)

append (item)
S.append(value) — append value to the end of the sequence

cl ear () - None —remove all items from S
copy ()
count (value) - integer — return number of occurrences of value

ext end (other)
S.extend(iterable) — extend sequence by appending elements from the iterable

i ndex (val ue[,start[,stop]]) — integer —return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

i nsert (i, item)
S.insert(index, value) — insert value before index

pop ([,i ndex]) - item —remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

122

SCons Project APl Documentation

renove (item)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() — reverse IN PLACE

sort (*args, **kwds)

SCons.
SCons.
SCons.
SCons.
SCons.
SCons.
SCons.
SCons.

Script. Vari abl es (files=None, args={})

Script. _Add_Argunent s (alist)

Script. _Add_Target s (tlist)

Script. Get_Default_ Targets (d, fs)

Script._Set Default_Targets (env, tlist)

Script. _Set Default_ Targets Has Been_Call ed (d, fs)
Script. _Set Default Targets Has Not Been_Call ed (d, fs)

Script.set _missing_sconscript_error (flag=1)

Set behavior on missing file in SConscript() call.

Returns: previous value

SCons.Tool package

Module contents
SCons.Tool

SCons tool selection.

This looks for modules that define a callable object that can modify a construction environment as appropriate for a
given tool (or tool chain).

Note that because this subsystem just selects a callable that can modify a construction environment, it's possible for
people to define their own “tool specification” in an arbitrary callable function. No one needs to use or tie in to this
subsystem in order to roll their own tool specifications.

SCons.

Tool . Creat eJar Bui | der (env)

The Jar builder expects a list of class files which it can package into a jar file.
The jar tool provides an interface for passing other types of java files such as .java, directories or swig interfaces
and will build them to class files in which it can package into the jar.

SCons.
SCons.
SCons.
SCons.
SCons.
SCons.
SCons.

Tool . Creat eJavaC assDi r Bui | der (env)
Tool . Creat eJavad assFi | eBui | der (env)
Tool . Creat eJavaFi | eBui | der (env)

Tool . Creat eJavaHBui | der (env)

Tool . Fi ndAl | Tool s (tools, env)

Tool . Fi ndTool (tools, env)

Tool . Initializers (env)

class SCons. Tool . Tool (name, toolpath=None, **kwargs)
Bases: obj ect

_l oad_dot t ed_nodul e_py?2 (short_name, full_name, searchpaths=None)

_tool _nmodul e ()

class SCons. Tool . Tool I ni ti alizer (env, tools, names)
Bases: obj ect

123

SCons Project APl Documentation

A class for delayed initialization of Tools modules.

Instances of this class associate a list of Tool modules with a list of Builder method names that will be added by
those Tool modules. As part of instantiating this object for a particular construction environment, we also add the
appropriate ToollnitializerMethod objects for the various Builder methods that we want to use to delay Tool
searches until necessary.

appl y_t ool s (env)
Searches the list of associated Tool modules for one that exists, and applies that to the construction
environment.

renove_net hods (env)
Removes the methods that were added by the tool initialization so we no longer copy and re-bind them when the
construction environment gets cloned.

class SCons. Tool . Tool I ni ti al i zer Met hod (name, initializer)
Bases: obj ect
This is added to a construction environment in place of a method(s) normally called for a Builder (env.Object,
env.StaticObject, etc.). When called, it has its associated Toollnitializer object search the specified list of tools and
apply the first one that exists to the construction environment. It then calls whatever builder was (presumably)
added to the construction environment in place of this particular instance.

get _bui | der (env)
Returns the appropriate real Builder for this method name after having the associated Toollnitializer object apply
the appropriate Tool module.

SCons. Tool . cr eat eCFi | eBui | der s (env)
This is a utility function that creates the CFile/CXXFile Builders in an Environment if they are not there already.
If they are there already, we return the existing ones.
This is a separate function because soooo many Tools use this functionality.
The return is a 2-tuple of (CFile, CXXFile)

SCons. Tool . cr eat eLoadabl eMbdul eBui | der (env, loadable_module_suffix='$_LDMODULESUFFIX")
This is a utility function that creates the LoadableModule Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

Parameters: loadable_module_suffix — The suffix specified for the loadable module builder

SCons. Tool . cr eat eCbj Bui | der s (env)
This is a utility function that creates the StaticObject and SharedObject Builders in an Environment if they are not
there already.
If they are there already, we return the existing ones.
This is a separate function because soooo many Tools use this functionality.
The return is a 2-tuple of (StaticObject, SharedObject)

SCons. Tool . cr eat eProgBui | der (env)
This is a utility function that creates the Program Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

SCons. Tool . cr eat eShar edLi bBui | der (env, shlib_suffix="$_SHLIBSUFFIX")
This is a utility function that creates the SharedLibrary Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

Parameters: shlib_suffix — The suffix specified for the shared library builder

SCons. Tool . createStati cLi bBui | der (env)
This is a utility function that creates the StaticLibrary Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

SCons. Tool . fi nd_program pat h (env, key_program, default_paths=None)
Find the location of a tool using various means.
Mainly for windows where tools aren't all installed in /usr/bin, etc.

124

SCons Project APl Documentation

Parameters:))
* env — Current Construction Environment.
» key _program — Tool to locate.
» default_paths — List of additional paths this tool might be found in.
SCons. Tool . t ool _|i st (platform, env)

SCons.Variables package
Submodules

SCons.Variables.BoolVariable module

Option type for true/false Variables.

Usage example:

opts = Vari abl es()

opt s. Add(Bool Vari abl e(' enmbedded', 'build for an enbedded systeni, 0))

i f env['enbedded'] ==

SCons. Vari abl es. Bool Vari abl e. Bool Vari abl e (key, help, default)
The input parameters describe a boolean option, thus they are returned with the correct converter and validator
appended. The ‘help’ text will by appended by ‘(yes|no) to show the valid valued. The result is usable for input to
opts.Add().

SCons. Vari abl es. Bool Vari abl e. _t ext 2bool (val)
Converts strings to True/False depending on the ‘truth’ expressed by the string. If the string can’'t be converted, the
original value will be returned.
See ‘' true_strings’ and ‘__ false_strings’ for values considered ‘true’ or ‘false respectively.
This is usable as ‘converter’ for SCons’ Variables.

SCons. Vari abl es. Bool Vari abl e. _val i dat or (key, val, env)
Validates the given value to be either ‘0’ or ‘1'.
This is usable as ‘validator’ for SCons’ Variables.

SCons.Variables.EnumVariable module

Option type for enumeration Variables.

This file defines the option type for SCons allowing only specified input-values.
Usage example:

opts = Vari abl es()

opt s. Add(
EnunVvari abl e(
' debug',
' debug out put and synbol s',
'no',
al | owed_val ues=("'yes', 'no', 'full'),
map={},

i gnor ecase=2,

)

if env['debug'] == "full":
SCons. Vari abl es. EnunVar i abl e. EnumVar i abl e (key, help, default, allowed_values, map={}, ignorecase=0)

125

SCons Project APl Documentation

The input parameters describe an option with only certain values allowed. They are returned with an appropriate
converter and validator appended. The result is usable for input to Variables.Add().

‘key’ and ‘default’ are the values to be passed on to Variables.Add().

‘help’ will be appended by the allowed values automatically

‘allowed_values' is a list of strings, which are allowed as values for this option.

The ‘map’-dictionary may be used for converting the input value into canonical values (e.g. for aliases).
‘ignorecase’ defines the behaviour of the validator:

If ignorecase == 0, the validator/converter are case-sensitive. If ignorecase == 1, the validator/converter are
case-insensitive. If ignorecase == 2, the validator/converter is case-insensitive and the converted value will
always be lower-case.
The ‘validator’ tests whether the value is in the list of allowed values. The ‘converter’ converts input values
according to the given ‘map’-dictionary (unmapped input values are returned unchanged).

SCons.Variables.ListVariable module
Option type for list Variables.
This file defines the option type for SCons implementing ‘lists’.

A ‘list’ option may either be ‘all’, ‘none’ or a list of names separated by comma. After the option has been processed,
the option value holds either the named list elements, all list elements or no list elements at all.

Usage example:
list of libs = Split('x11l gl qt ical')
opts = Vari abl es()
opt s. Add(
Li st Vari abl e(
'shared',
"libraries to build as shared libraries',
“al ',
el enms=list_of libs,

)

for libin list_of I|ibs:
if libin env['shared']:
env. Sharedoj ect (...)
el se:
env. Gbject(...)

SCons. Vari abl es. Li st Vari abl e. Li st Vari abl e (key, help, default, names, map={})
The input parameters describe a ‘package list' option, thus they are returned with the correct converter and
validator appended. The result is usable for input to opts.Add() .
A ‘package list’ option may either be ‘all’, ‘none’ or a list of package names (separated by space).

SCons. Vari abl es. Li st Vari abl e. _convert er (val, allowedElems, mapdict)

SCons.Variables.PackageVariable module

Option type for package Variables.

This file defines the option type for SCons implementing ‘package activation’.

To be used whenever a ‘package’ may be enabled/disabled and the package path may be specified.
Usage example:

Examples:

x11=no (disables X11 support) x11=yes (will search for the package installation dir) x11=/usr/local/X11 (will
check this path for existence)

To replace autoconf's —with-xxx=yyy

126

SCons Project APl Documentation

opts = Vari abl es()
opt s. Add(PackageVari abl e(' x11',
‘use X11 installed here (yes = search sone pl aces',

‘yes'))
if env['x11l'] == True:
dir = ... search X11 in sone standard pl aces ...
env['x11'] =dir
if env['x1l']:
build with x11 ...
SCons. Vari abl es. PackageVari abl e. PackageVari abl e (key, help, default, searchfunc=None)
The input parameters describe a ‘package list' option, thus they are returned with the correct converter and

validator appended. The result is usable for input to opts.Add() .
A ‘package list’ option may either be ‘all’, ‘none’ or a list of package names (separated by space).

SCons. Vari abl es. PackageVari abl e. _converter (val)

SCons. Vari abl es. PackageVari abl e. _val i dat or (key, val, env, searchfunc)

SCons.Variables.PathVariable module
Option type for path Variables.
This file defines an option type for SCons implementing path settings.

To be used whenever a user-specified path override should be allowed.

Arguments to PathVariable are:

option-name = name of this option on the command line (e.g. “prefix”) option-help = help string for option
option-dfit = default value for this option validator = [optional] validator for option value. Predefined are:

PathAccept — accepts any path setting; no validation PathlsDir — path must be an existing directory
PathisDirCreate — path must be a dir; will create PathlsFile — path must be a file PathExists — path must
exist (any type) [default]

The validator is a function that is called and which should return True or False to indicate if the path is valid. The
arguments to the validator function are: (key, val, env). The key is the name of the option, the val is the path
specified for the option, and the env is the env to which the Options have been added.

Usage example:

Exanpl es:
prefix=/usr/Iocal

opts Var i abl es()
opts = Vari abl es()
opts. Add(Pat hvVari abl e(' qtdir",
"where the root of @ is installed,
gtdir, PathlsDir))
opt s. Add(Pat hVari abl e(' gt _i ncl udes',
"where the @ includes are installed',
"$qtdir/includes', PathlsDirCreate))
opts. Add(Pat hVari abl e(' qt_Ilibraries',
"where the @ library is installed',
"$qtdir/lib'))

Module contents
Add user-friendly customizable variables to an SCons build.
class SCons. Vari abl es. Vari abl es (files=None, args=None, is_global=True)

Bases: obj ect
Holds all the options, updates the environment with the variables, and renders the help text.

127

SCons Project APl Documentation

If is_global is True, this is a singleton, create only once.

Parameters:)]))]]] o
« files (optional) — List of option configuration files to load (backward compatibility). If a

single string is passed it is automatically placed in a file list (Default value = None)
« args (optional) — dictionary to override values set from files. (Default value = None)

« is_global (optional) — global instance? (Default value = True)

Add (key, help=", default=None, validator=None, converter=None, **kw)
Add an option.

Parameters:) .
 key — the name of the variable, or a list or tuple of arguments

* help — optional help text for the options (Default value = *)
« default — optional default value for option (Default value = None)

« validator — optional function called to validate the option’s value (Default value =
None)

 converter — optional function to be called to convert the option’s value before putting
it in the environment. (Default value = None)

» **kw — keyword args, unused.

AddVari abl es (*optlist)
Add a list of options.
Each list element is a tuple/list of arguments to be passed on to the underlying method for adding options.
Example:

opt . AddVar i abl es(
(' debug', '', 0),
('cCc, 'The C conpiler'),
(' VALI DATE', 'An option for testing validation', 'notset', validator, None),

For mat Var i abl eHel pText (env, key, help, default, actual, aliases=[])

Cener at eHel pText (env, sort=None)
Generate the help text for the options.

env - an environment that is used to get the current values
of the options.

cmp - Either a function as follows: The specific sort function should take two arguments and return -1, 0
orl

or a boolean to indicate if it should be sorted.
Save (filename, env)
Saves all the options in the given file. This file can then be used to load the options next run. This can be used to
create an option cache file.
filename - Name of the file to save into env - the environment get the option values from

UnknownVar i abl es ()
Returns any options in the specified arguments lists that were not known, declared options in this object.

Updat e (env, args=None)
Update an environment with the option variables.
env - the environment to update.

_do_add (key, help=", default=None, validator=None, converter=None)

f ormat = "\n%s: %s\n default: %s\n actual: %s\n'

128

SCons Project APl Documentation

f or mat _ ="'\n%s: %s\n default: %s\n actual: %s\n aliases: %s\n'

i nst ance = None

keys ()
Returns the keywords for the options

SCons.compat package

Module contents
SCons compatibility package for old Python versions

This subpackage holds modules that provide backwards-compatible implementations of various things from newer
Python versions that we cannot count on because SCons still supported older Pythons.

Other code will not generally reference things in this package through the SCons.compat namespace. The modules
included here add things to the builtins namespace or the global module list so that the rest of our code can use the
objects and names imported here regardless of Python version. As a result, if this module is used, it should violate
the normal convention for imports (standard library imports first, then program-specific imports, each ordered
aplhabetically) and needs to be listed first.

The rest of the things here will be in individual compatibility modules that are either: 1) suitably modified copies of the
future modules that we want to use; or 2) backwards compatible re-implementations of the specific portions of a
future module’s API that we want to use.

GENERAL WARNINGS: Implementations of functions in the SCons.compat modules are NOT guaranteed to be fully
compliant with these functions in later versions of Python. We are only concerned with adding functionality that we
actually use in SCons, so be wary if you lift this code for other uses. (That said, making these more nearly the same
as later, official versions is still a desirable goal, we just don't need to be obsessive about it.)

We name the compatibility modules with an initial *_scons_’ (for example, _scons_subprocess.py is our compatibility
module for subprocess) so that we can still try to import the real module name and fall back to our compatibility
module if we get an ImportError. The import_as() function defined below loads the module as the “real” name
(without the ‘ scons’), after which all of the “import {module}’ statements in the rest of our code will find our
pre-loaded compatibility module.

class SCons. conpat . NoSl ot sPyPy (name, bases, dct)
Bases: type
Metaclass for PyPy compatithility.
PyPy does not work well with __slots__and __ class___ assignment.

nTo ()
Return a type’s method resolution order.

SCons. conpat . r enane_nodul e (new, old)
Attempt to import the old module and load it under the new name. Used for purely cosmetic name changes in
Python 3.x.

Submodules

SCons.Action module

SCons Actions.

Information about executing any sort of action that can build one or more target Nodes (typically files) from one or
more source Nodes (also typically files) given a specific Environment.

The base class here is ActionBase. The base class supplies just a few utility methods and some generic methods for
displaying information about an Action in response to the various commands that control printing.

A second-level base class is _ActionAction. This extends ActionBase by providing the methods that can be used to
show and perform an action. True Action objects will subclass _ActionAction; Action factory class objects will
subclass ActionBase.

129

SCons Project APl Documentation

The heavy lifting is handled by subclasses for the different types of actions we might execute:

CommandAction CommandGeneratorAction FunctionAction ListAction

The subclasses supply the following public interface methods used by other modules:

cal(

THE public interface, “calling” an Action object executes the command or Python function. This also takes
care of printing a pre-substitution command for debugging purposes.

get_contents()

Fetches the “contents” of an Action for signature calculation plus the varlist. This is what gets checksummed
to decide if a target needs to be rebuilt because its action changed.

genstring()

Returns a string representation of the Action without command substitution, but allows a
CommandGeneratorAction to generate the right action based on the specified target, source and env. This
is used by the Signature subsystem (through the Executor) to obtain an (imprecise) representation of the
Action operation for informative purposes.

Subclasses also supply the following methods for internal use within this module:

str()
Returns a string approximation of the Action; no variable substitution is performed.
execute()

The internal method that really, truly, actually handles the execution of a command or Python function. This
is used so that the __call () methods can take care of displaying any pre-substitution representations, and
then execute an action without worrying about the specific Actions involved.

get_presig()
Fetches the “contents” of a subclass for signature calculation. The varlist is added to this to produce the
Action’s contents. TODO(?): Change this to always return bytes and not str?

strfunction()

Returns a substituted string representation of the Action. This is used by the _ActionAction.show()
command to display the command/function that will be executed to generate the target(s).

There is a related independent ActionCaller class that looks like a regular Action, and which serves as a wrapper for
arbitrary functions that we want to let the user specify the arguments to now, but actually execute later (when an
out-of-date check determines that it's needed to be executed, for example). Objects of this class are returned by an
ActionFactory class that provides a __call__() method as a convenient way for wrapping up the functions.

SCons. Acti on. Acti on (act, *args, **kw)
A factory for action objects.

class SCons. Acti on. Acti onBase

Bases: obj ect
Base class for all types of action objects that can be held by other objects (Builders, Executors, etc.) This provides

the common methods for manipulating and combining those actions.

bat ch_key (env, target, source)

genst ri ng (target, source, env)

get _cont ent s (target, source, env)

get _t arget s (env, executor)

Returns the type of targets ($STARGETS, $CHANGED_TARGETS) used by this action.

get _varli st (target, source, env, executor=None)

no_bat ch_key (env, target, source)

presub_l i nes (env)

130

SCons Project APl Documentation

class SCons. Acti on. Acti onCal | er (parent, args, kw)
Bases: obj ect
A class for delaying calling an Action function with specific (positional and keyword) arguments until the Action is
actually executed.
This class looks to the rest of the world like a normal Action object, but what it's really doing is hanging on to the
arguments until we have a target, source and env to use for the expansion.

get _cont ent s (target, source, env)
strfuncti on (target, source, env)
subst (s, target, source, env)

subst _ar gs (target, source, env)
subst _kw (target, source, env)

class SCons. Acti on. Acti onFactory (act f unc, strfunc, convert=<function
Act i onFact ory. <l anbda>>)
Bases: obj ect
A factory class that will wrap up an arbitrary function as an SCons-executable Action object.
The real heavy lifting here is done by the ActionCaller class. We just collect the (positional and keyword)
arguments that we're called with and give them to the ActionCaller object we create, so it can hang onto them until
it needs them.

class SCons. Act i on. ConmandAct i on (cmd, **kw)
Bases: SCons. Acti on. _Acti onActi on
Class for command-execution actions.

_get _inplicit_deps_heavywei ght (target, source, env, executor, icd_int)
Heavyweight dependency scanning involves scanning more than just the first entry in an action string. The exact
behavior depends on the value of icd_int. Only files are taken as implicit dependencies; directories are ignored.
If icd_int is an integer value, it specifies the number of entries to scan for implicit dependencies. Action strings
are also scanned after a &&. So for example, if icd_int=2 and the action string is “cd <some_dir> && $PYTHON
$SCRIPT_PATH <another_path>", the implicit dependencies would be the path to the python binary and the
path to the script.
If icd_int is None, all entries are scanned for implicit dependencies.

_get _inmplicit_deps_Iightweight (target, source, env, executor)
Lightweight dependency scanning involves only scanning the first entry in an action string, even if it contains &&.

bat ch_key (env, target, source)

execut e (target, source, env, executor=None)
Execute a command action.
This will handle lists of commands as well as individual commands, because construction variable substitution
may turn a single “command” into a list. This means that this class can actually handle lists of commands, even
though that’s not how we use it externally.

genst ri ng (target, source, env)

get _cont ent s (target, source, env)

get _inplicit_deps (target, source, env, executor=None)
Return the implicit dependencies of this action’s command line.

get _presi g (target, source, env, executor=None)
Return the signature contents of this action’s command line.
This strips $(-$) and everything in between the string, since those parts don't affect signatures.

get _targets (env, executor)

131

SCons Project APl Documentation

Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.
get varli st (target, source, env, executor=None)
no_bat ch_key (env, target, source)
presub_lines (env)
print_cnd_Iine (s, target, source, env)
In python 3, and in some of our tests, sys.stdout is a String io object, and it takes unicode strings only This code
assumes s is a regular string.
pr ocess (target, source, env, executor=None)
strfuncti on (target, source, env, executor=None)
class SCons. Act i on. ConmandGener at or Act i on (generator, kw)
Bases: SCons. Acti on. Acti onBase
Class for command-generator actions.
_gener at e (target, source, env, for_signature, executor=None)
bat ch_key (env, target, source)
genst ri ng (target, source, env, executor=None)
get _cont ent s (target, source, env)
get _inplicit_deps (target, source, env, executor=None)
get _presi g (target, source, env, executor=None)
Return the signature contents of this action’s command line.

This strips $(-$) and everything in between the string, since those parts don't affect signatures.

get _targets (env, executor)
Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.

get varli st (target, source, env, executor=None)
no_bat ch_key (env, target, source)
presub_l i nes (env)
class SCons. Act i on. Functi onAct i on (execfunction, kw)
Bases: SCons. Acti on. _Acti onActi on
Class for Python function actions.
bat ch_key (env, target, source)
execut e (target, source, env, executor=None)
function_nane ()
genst ri ng (target, source, env)
get _cont ent s (target, source, env)
get _inplicit_deps (target, source, env)

get _presi g (target, source, env)
Return the signature contents of this callable action.

132

SCons Project APl Documentation

get _targets (env, executor)
Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.

get varli st (target, source, env, executor=None)
no_bat ch_key (env, target, source)
presub_lines (env)

print_cnd_Iine (s, target, source, env)
In python 3, and in some of our tests, sys.stdout is a String io object, and it takes unicode strings only This code
assumes s is a regular string.

strfuncti on (target, source, env, executor=None)

class SCons. Acti on. LazyActi on (var, kw)
Bases: SCons. Acti on. CommandCener at or Act i on, SCons. Act i on. ConmandAct i on
A LazyAction is a kind of hybrid generator and command action for strings of the form “$VAR”. These strings
normally expand to other strings (think “$CCCOM” to “$CC -c -0 $TARGET $SOURCE"), but we also want to be
able to replace them with functions in the construction environment. Consequently, we want lazy evaluation and
creation of an Action in the case of the function, but that’s overkill in the more normal case of expansion to other
strings.
So we do this with a subclass that's both a generator and a command action. The overridden methods all do a
quick check of the construction variable, and if it's a string we just call the corresponding CommandAction method
to do the heavy lifting. If not, then we call the same-named CommandGeneratorAction method. The
CommandGeneratorAction methods work by using the overridden _generate() method, that is, our own way of
handling “generation” of an action based on what'’s in the construction variable.

_gener at e (target, source, env, for_signature, executor=None)
_generate_cache (env)

_get _inplicit_deps_heavywei ght (target, source, env, executor, icd_int)
Heavyweight dependency scanning involves scanning more than just the first entry in an action string. The exact
behavior depends on the value of icd_int. Only files are taken as implicit dependencies; directories are ignored.
If icd_int is an integer value, it specifies the number of entries to scan for implicit dependencies. Action strings
are also scanned after a &&. So for example, if icd_int=2 and the action string is “cd <some_dir> && $PYTHON
$SCRIPT_PATH <another_path>", the implicit dependencies would be the path to the python binary and the
path to the script.
If icd_int is None, all entries are scanned for implicit dependencies.

_get _inmplicit_deps_Iightweight (target, source, env, executor)
Lightweight dependency scanning involves only scanning the first entry in an action string, even if it contains &&.

bat ch_key (env, target, source)

execut e (target, source, env, executor=None)
Execute a command action.
This will handle lists of commands as well as individual commands, because construction variable substitution
may turn a single “command” into a list. This means that this class can actually handle lists of commands, even
though that’s not how we use it externally.

genst ri ng (target, source, env, executor=None)

get _cont ent s (target, source, env)

get _inplicit_deps (target, source, env, executor=None)
Return the implicit dependencies of this action’s command line.

get _parent _cl ass (env)

133

SCons Project APl Documentation

get _presi g (target, source, env)
Return the signature contents of this action’s command line.
This strips $(-$) and everything in between the string, since those parts don't affect signatures.

get _targets (env, executor)
Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.

get varli st (target, source, env, executor=None)
no_bat ch_key (env, target, source)
presub_l i nes (env)
print_cnd_Iine (s, target, source, env)
In python 3, and in some of our tests, sys.stdout is a String io object, and it takes unicode strings only This code
assumes s is a regular string.
pr ocess (target, source, env, executor=None)
strfuncti on (target, source, env, executor=None)
class SCons. Act i on. Li st Acti on (actionlist)
Bases: SCons. Acti on. Acti onBase
Class for lists of other actions.
bat ch_key (env, target, source)
genst ri ng (target, source, env)
get _cont ent s (target, source, env)
get _inplicit_deps (target, source, env)
get presi g (target, source, env)
Return the signature contents of this action list.

Simple concatenation of the signatures of the elements.

get _targets (env, executor)
Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.

get varli st (target, source, env, executor=None)

no_bat ch_key (env, target, source)

presub_l i nes (env)
class SCons. Acti on. _Acti onAction (cnmdstr=<class 'SCons. Action._null'>, strfuncti on=<cl ass
' SCons. Action. _null'> wvarlist=(), presub=<class 'SCons.Action._null'> chdir=None,
exitstatfunc=None, bat ch_key=None, t ar get s=' $TARGETS' , **kw)

Bases: SCons. Acti on. Acti onBase

Base class for actions that create output objects.

bat ch_key (env, target, source)

genst ri ng (target, source, env)

get _cont ent s (target, source, env)

get _targets (env, executor)
Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.

134

SCons Project APl Documentation

get varli st (target, source, env, executor=None)
no_bat ch_key (env, target, source)
presub_lines (env)

print_cnd_Iine (s, target, source, env)
In python 3, and in some of our tests, sys.stdout is a String io object, and it takes unicode strings only This code
assumes s is a regular string.

SCons. Action. _acti onAppend (actl, act2)

SCons. Action. cal | abl e_cont ent s (obj)
Return the signature contents of a callable Python object.

SCons. Acti on. _code_cont ent s (code, docstring=None)
Return the signature contents of a code object.
By providing direct access to the code object of the function, Python makes this extremely easy. Hooray!
Unfortunately, older versions of Python include line number indications in the compiled byte code. Boo! So we
remove the line number byte codes to prevent recompilations from moving a Python function.

See:

« https://docs.python.org/2/library/inspect.html

_« http://python-reference.readthedocs.io/en/latest/docs/code/index.html
For info on what each co_ variable provides

The signature is as follows (should be byte/chars): co_argcount, len(co_varnames), len(co_cellvars),
len(co_freevars), (comma separated signature for each object in co_consts), (comma separated signature for
each object in co_names), (The bytecode with line number bytecodes removed from co_code)

co_argcount - Returns the number of positional arguments (including arguments with default values).
co_varnames - Returns a tuple containing the names of the local variables (starting with the argument names).
co_cellvars - Returns a tuple containing the names of local variables that are referenced by nested functions.
co_freevars - Returns a tuple containing the names of free variables. (?) co_consts - Returns a tuple containing
the literals used by the bytecode. co_names - Returns a tuple containing the names used by the bytecode.
co_code - Returns a string representing the sequence of bytecode instructions.

SCons. Action. _do_create_action (act, kw)
This is the actual “implementation” for the Action factory method, below. This handles the fact that passing lists to
Action() itself has different semantics than passing lists as elements of lists.
The former will create a ListAction, the latter will create a CommandAction by converting the inner list elements to
strings.

SCons. Action. _do_create_keywor ds (args, kw)
This converts any arguments after the action argument into their equivalent keywords and adds them to the kw
argument.

SCons. Action. _do_create_list_action (act, kw)
A factory for list actions. Convert the input list into Actions and then wrap them in a ListAction.

SCons. Action. _function_contents (func)
The signature is as follows (should be byte/chars): < code_contents (see above) from func.__code__ > ,(comma
separated _object_contents for function argument defaults) ,(comma separated _object_contents for any closure
contents)

See also: https://docs.python.org/3/reference/datamodel.html

« func.__code__ - The code object representing the compiled function body.

« func.__defaults _ - A tuple containing default argument values for those arguments that have defaults,
or None if no arguments have a default value

« func.__closure__ - None or a tuple of cells that contain bindings for the function’s free variables.
Returns: Signature contents of a function. (in bytes)

class SCons. Acti on. _nul |
Bases: obj ect

135

https://docs.python.org/2/library/inspect.html
http://python-reference.readthedocs.io/en/latest/docs/code/index.html
https://docs.python.org/3/reference/datamodel.html

SCons Project APl Documentation

SCons. Acti on. _obj ect _cont ent s (obj)
Return the signature contents of any Python object.
We have to handle the case where object contains a code object since it can be pickled directly.

SCons. Acti on. _obj ect _i nstance_cont ent (obj)
Returns consistant content for a action class or an instance thereof

Parameters: .)))
« 0bj Should be either and action class or an instance thereof

Returns: hbytearray or bytes representing the obj suitable for generating a signature from.

SCons. Action. _string_fromecnd_list (cmd_list)
Takes a list of command line arguments and returns a pretty representation for printing.

SCons. Acti on. _subpr oc (scons_env, cmd, error='ignore', **kw)
Wrapper for subprocess which pulls from construction env.
Use for calls to subprocess which need to interpolate values from an SCons construction environment into the
environment passed to subprocess. Adds an an error-handling argument. Adds ability to specify std{in,out,err} with
“devnull” tag.

SCons. Acti on. def aul t _exitstatfunc (s)

SCons. Acti on. get _def aul t _ENV (env)
A fiddlin’ little function that has an ‘import SCons.Environment’ which can’'t be moved to the top level without
creating an import loop. Since this import creates a local variable named ‘SCons’, it blocks access to the global
variable, so we move it here to prevent complaints about local variables being used uninitialized.

SCons. Action.rfile(n)

SCons.Builder module
SCons.Builder
Builder object subsystem.

A Builder object is a callable that encapsulates information about how to execute actions to create a target Node
(file) from source Nodes (files), and how to create those dependencies for tracking.

The main entry point here is the Builder() factory method. This provides a procedural interface that creates the right
underlying Builder object based on the keyword arguments supplied and the types of the arguments.

The goal is for this external interface to be simple enough that the vast majority of users can create new Builders as
necessary to support building new types of files in their configurations, without having to dive any deeper into this
subsystem.

The base class here is BuilderBase. This is a concrete base class which does, in fact, represent the Builder objects
that we (or users) create.

There is also a proxy that looks like a Builder:
CompositeBuilder

This proxies for a Builder with an action that is actually a dictionary that knows how to map file suffixes to a
specific action. This is so that we can invoke different actions (compilers, compile options) for different
flavors of source files.

Builders and their proxies have the following public interface methods used by other modules:

e call_(

THE public interface. Calling a Builder object (with the use of internal helper methods) sets up the
target and source dependencies, appropriate mapping to a specific action, and the environment
manipulation necessary for overridden construction variable. This also takes care of warning about
possible mistakes in keyword arguments.

e add_emitter()
Adds an emitter for a specific file suffix, used by some Tool modules to specify that (for example) a
yacc invocation on a .y can create a .h and a .c file.

e add_action()

136

SCons Project APl Documentation

Adds an action for a specific file suffix, heavily used by Tool modules to add their specific action(s) for
turning a source file into an object file to the global static and shared object file Builders.

There are the following methods for internal use within this module:

o _execute()
The internal method that handles the heavily lifting when a Builder is called. This is used so that the
__call__() methods can set up warning about possible mistakes in keyword-argument overrides, and
then execute all of the steps necessary so that the warnings only occur once.

e get_name()
Returns the Builder's name within a specific Environment, primarily used to try to return helpful
information in error messages.

« adjust_suffix()

* get_prefix()

« get_suffix()

« get_src_suffix()

e set_src_suffix()

Miscellaneous stuff for handling the prefix and suffix manipulation we use in turning source file names
into target file names.

SCons. Bui | der. Bui | der (**kw)
A factory for builder objects.

class SCons. Bui |l der. Bui | der Base (acti on=None, prefix="", suffix="", src_suffix="",
target _factory=None, source_factory=None, target_scanner=None, source_scanner=None,
em tter=None, mul ti =0, env=None, si ngl e_sour ce=0, nane=None, chdi r =<cl ass

'SCons. Builder. Null'>is explicit=1,src_buil der=None, ensure_suffi x=Fal se,**overri des)
Bases: obj ect
Base class for Builders, objects that create output nodes (files) from input nodes (files).

_adj usti xes (files, pre, suf, ensure_suffix=False)

_creat e_nodes (env, target=None, source=None)
Create and return lists of target and source nodes.

_execut e (env, target, source, overwarn={}, executor_kw={})

_get _sdict (env)
Returns a dictionary mapping all of the source suffixes of all src_builders of this Builder to the underlying Builder
that should be called first.
This dictionary is used for each target specified, so we save a lot of extra computation by memoizing it for each
construction environment.
Note that this is re-computed each time, not cached, because there might be changes to one of our source
Builders (or one of their source Builders, and so on, and so on...) that we can’t “see.”
The underlying methods we call cache their computed values, though, so we hope repeatedly aggregating them
into a dictionary like this won't be too big a hit. We may need to look for a better way to do this if performance
data show this has turned into a significant bottleneck.

_get _src_buil ders_key (env)
_subst _src_suffixes_key (env)
add_enmi t t er (suffix, emitter)
Add a suffix-emitter mapping to this Builder.
This assumes that emitter has been initialized with an appropriate dictionary type, and will throw a TypeError if

not, so the caller is responsible for knowing that this is an appropriate method to call for the Builder in question.

add_src_bui |l der (builder)

137

SCons Project APl Documentation

Add a new Builder to the list of src_builders.
This requires wiping out cached values so that the computed lists of source suffixes get re-calculated.

adj ust _suf fi x (suff)

get _nane (env)
Attempts to get the name of the Builder.
Look at the BUILDERS variable of env, expecting it to be a dictionary containing this Builder, and return the key
of the dictionary. If there’s no key, then return a directly-configured name (if there is one) or the name of the
class (by default).

get _prefix (env, sources=[])

get _src_buil ders (env)
Returns the list of source Builders for this Builder.
This exists mainly to look up Builders referenced as strings in the ‘BUILDER’ variable of the construction
environment and cache the result.

get _src_suffix (env)
Get the first src_sulffix in the list of src_suffixes.

get _suffix (env, sources=[])

set _src_suf fi x (src_suffix)

set _suf fi x (suffix)

splitext (path, env=None)

src_bui |l der _sour ces (env, source, overwarn={})

src_suffixes (env)
Returns the list of source suffixes for all src_builders of this Builder.
This is essentially a recursive descent of the src_builder “tree.” (This value isn't cached because there may be
changes in a src_builder many levels deep that we can't see.)

subst _src_suffixes (env)
The suffix list may contain construction variable expansions, so we have to evaluate the individual strings. To
avoid doing this over and over, we memoize the results for each construction environment.

class SCons. Bui | der. Cal | abl eSel ect or

Bases: SCons. Uti | . Sel ect or

A callable dictionary that will, in turn, call the value it finds if it can.

cl ear () - None. Remove all items from od.

copy () — a shallow copy of od

f ronkeys (value=None)
Create a new ordered dictionary with keys from iterable and values set to value.

get (key, def aul t =None, /)
Return the value for key if key is in the dictionary, else default.

i tens () - a set-like object providing a view on D’s items
keys () - a set-like object providing a view on D’s keys
nmove_t o_end (key, last=True)

Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.

138

SCons Project APl Documentation

pop (k[,d]) - v, remove specified key and return the corresponding
value. If key is not found, d is returned if given, otherwise KeyError is raised.

popi t em(last=True)
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.

set def aul t (key, default=None)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
update ([, E], **F) - None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[K] = E[K] If E is present and lacks a .keys()
method, then does: for k, v in E: D[K] = v In either case, this is followed by: for k in F: D[K] = F[K]
val ues () - an object providing a view on D’s values
class SCons. Bui | der . Conposi t eBui | der (builder, cmdgen)
Bases: SCons. Uti | . Proxy
A Builder Proxy whose main purpose is to always have a DictCmdGenerator as its action, and to provide access to
the DictCmdGenerator’'s add_action() method.

add_act i on (suffix, action)

get ()
Retrieve the entire wrapped object

class SCons. Bui | der. Di ct CndGener at or (dict=None, source_ext_match=1)
Bases: SCons. Uti | . Sel ect or
This is a callable class that can be used as a command generator function. It holds on to a dictionary mapping file
suffixes to Actions. It uses that dictionary to return the proper action based on the file suffix of the source file.

add_act i on (suffix, action)
Add a suffix-action pair to the mapping.

cl ear () - None. Remove all items from od.
copy () — a shallow copy of od

f ronkeys (value=None)
Create a new ordered dictionary with keys from iterable and values set to value.

get (key, def aul t =None, /)
Return the value for key if key is in the dictionary, else default.

i tens () — a set-like object providing a view on D’s items
keys () - a set-like object providing a view on D’s keys
nmove_t o_end (key, last=True)
Move an existing element to the end (or beginning if last is false).

Raise KeyError if the element does not exist.

pop (k[,d]) - v, remove specified key and return the corresponding
value. If key is not found, d is returned if given, otherwise KeyError is raised.

popi t em(last=True)
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.

set def aul t (key, default=None)

139

SCons Project APl Documentation

Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.

src_suffixes ()

update ([, E], **F) - None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[K] = E[K] If E is present and lacks a .keys()
method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[K] = F[K]

val ues () - an object providing a view on D’s values

class SCons. Buil der.DictEnitter
Bases: SCons. Uti | . Sel ect or
A callable dictionary that maps file suffixes to emitters. When called, it finds the right emitter in its dictionary for the
suffix of the first source file, and calls that emitter to get the right lists of targets and sources to return. If there's no
emitter for the suffix in its dictionary, the original target and source are returned.

cl ear () - None. Remove all items from od.
copy () — a shallow copy of od

f ronkeys (value=None)
Create a new ordered dictionary with keys from iterable and values set to value.

get (key, def aul t =None, /)
Return the value for key if key is in the dictionary, else default.

i tens () — a set-like object providing a view on D’s items
keys () - a set-like object providing a view on D’s keys

nmove_t o_end (key, last=True)
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.

pop (k[,d]) - v, remove specified key and return the corresponding
value. If key is not found, d is returned if given, otherwise KeyError is raised.

popi t em(last=True)
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.

set def aul t (key, default=None)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.

update ([, E], **F) - None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[K] = E[K] If E is present and lacks a .keys()
method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[K] = F[K]

val ues () - an object providing a view on D’s values

class SCons. Bui | der . Eni tt er Proxy (var)
Bases: obj ect
This is a callable class that can act as a Builder emitter. It holds on to a string that is a key into an Environment
dictionary, and will look there at actual build time to see if it holds a callable. If so, we will call that as the actual
emitter.

class SCons. Bui | der. Li st Emi tt er (initlist=None)

Bases: col | ecti ons. User Li st
A callable list of emitters that calls each in sequence, returning the result.

140

SCons Project APl Documentation

_abc_i mpl =<_abc_data object>

append (item)
S.append(value) — append value to the end of the sequence

cl ear () - None —remove all items from S
copy ()
count (value) - integer — return number of occurrences of value

ext end (other)
S.extend(iterable) — extend sequence by appending elements from the iterable

i ndex (val ue[,start[,stop]]) - integer — return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

i nsert (i, item)
S.insert(index, value) — insert value before index

pop ([,i ndex]) - item —remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

renove (item)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() — reverse IN PLACE

sort (*args, **kwds)
class SCons. Bui | der. Overri deWar ner (dict)
Bases: col | ecti ons. User Di ct
A class for warning about keyword arguments that we use as overrides in a Builder call.
This class exists to handle the fact that a single Builder call can actually invoke multiple builders. This class only
emits the warnings once, no matter how many Builders are invoked.
_abc_i mpl =<_abc_data object>
cl ear () - None. Remove all items from D.
copy ()
classmethod f r onkeys (iterable, value=None)
get (k[,d]) - DIK] if kin D, else d. d defaults to None.
i tems () - a set-like object providing a view on D’s items

keys () - a set-like object providing a view on D’s keys

pop (K[, d]) - v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popi tem() - (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefaul t (k[,d]) - D.get(k,d), also set D[k]=d if k not in D

update ([, E], **F) - None. Update D from mapping/iterable E and F.

141

SCons Project APl Documentation

If E present and has a .keys() method, does: for k in E: D[k] = E[K] If E present and lacks .keys() method, does:
for (k, v) in E: D[K] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

val ues () - an object providing a view on D’s values
war n ()

class SCons. Bui | der. _Nul |
Bases: obj ect

SCons. Bui | der. _node_errors (builder, env, tlist, slist)
Validate that the lists of target and source nodes are legal for this builder and environment. Raise errors or issue
warnings as appropriate.

SCons. Bui | der. _nul |
alias of SCons. Bui | der. _Nul |

SCons. Bui | der.is_a_Buil der (obj)
“Returns True if the specified obj is one of our Builder classes.
The test is complicated a bit by the fact that CompositeBuilder is a proxy, not a subclass of BuilderBase.

SCons. Bui | der. mat ch_spl i t ext (path, suffixes=[])

SCons.CacheDir module
CacheDir support

class SCons. CacheDi r. CacheDi r (path)
Bases: obj ect

CacheDebug (fmt, target, cachefile)
_readconfi g (path)
Read the cache config.
If directory or config file do not exist, create. Take advantage of Py3 capability in os.makedirs() and in file open():

just try the operation and handle failure appropriately.
Omit the check for old cache format, assume that’s old enough there will be none of those left to worry about.

Parameters: path — path to the cache directory

cachepat h (node)

classmethod copy_from cache (env, src, dst)
classmethod copy_t o_cache (env, src, dst)
get _cachedir _csi g (node)

property hit _ratio

i s_enabl ed ()

is_readonly ()

property m sses

push (node)

push_if_forced (node)

retrieve (node)

142

SCons Project APl Documentation

This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

Note that there’'s a special trick here with the execute flag (one that's not normally done for other actions).
Basically if the user requested a no_exec (-n) build, then SCons.Action.execute_actions is set to 0 and when
any action is called, it does its showing but then just returns zero instead of actually calling the action execution
operation. The problem for caching is that if the file does NOT exist in cache then the CacheRetrieveString won't
return anything to show for the task, but the Action.__call___ won't call CacheRetrieveFunc; instead it just returns
zero, which makes the code below think that the file was successfully retrieved from the cache, therefore it
doesn’t do any subsequent building. However, the CacheRetrieveString didn't print anything because it didn’t
actually exist in the cache, and no more build actions will be performed, so the user just sees nothing. The fix is
to tell Action._ call__ to always execute the CacheRetrieveFunc and then have the latter explicitly check
SCons.Action.execute_actions itself.

SCons. CacheDi r. CachePushFunc (target, source, env)
SCons. CacheDi r. CacheRet ri eveFunc (target, source, env)

SCons. CacheDi r. CacheRetri eveStri ng (target, source, env)

SCons.Conftest module

Autoconf-like configuration support

The purpose of this module is to define how a check is to be performed.

A context class is used that defines functions for carrying out the tests, logging and messages. The following
methods and members must be present:

context.Display(msg)

Function called to print messages that are normally displayed for the user. Newlines are explicitly used. The text
should also be written to the logfile!

context.Log(msg)
Function called to write to a log file.
context.BuildProg(text, ext)

Function called to build a program, using “ext” for the file extension. Must return an empty string for success, an
error message for failure. For reliable test results building should be done just like an actual program would be
build, using the same command and arguments (including configure results so far).

context.CompileProg(text, ext)

Function called to compile a program, using “ext” for the file extension. Must return an empty string for success,
an error message for failure. For reliable test results compiling should be done just like an actual source file
would be compiled, using the same command and arguments (including configure results so far).

context.AppendLIBS(lib_name_list)

Append “lib_name_list” to the value of LIBS. “lib_namelist” is a list of strings. Return the value of LIBS before
changing it (any type can be used, it is passed to SetLIBS() later.)

context.PrependLIBS(lib_name_list)

Prepend “lib_name_list” to the value of LIBS. “lib_namelist” is a list of strings. Return the value of LIBS before
changing it (any type can be used, it is passed to SetLIBS() later.)

context.SetLIBS(value)

Set LIBS to “value”. The type of “value” is what AppendLIBS() returned. Return the value of LIBS before
changing it (any type can be used, it is passed to SetLIBS() later.)

context.headerfilename

Name of file to append configure results to, usually “confdefs.h”. The file must not exist or be empty when
starting. Empty or None to skip this (some tests will not work!).

context.config_h (may be missing).
If present, must be a string, which will be filled with the contents of a config_h file.
context.vardict

Dictionary holding variables used for the tests and stores results from the tests, used for the build commands.
Normally contains “CC”, “LIBS”, “CPPFLAGS", etc.

143

SCons Project APl Documentation

context.havedict

Dictionary holding results from the tests that are to be used inside a program. Names often start with “HAVE_".
These are zero (feature not present) or one (feature present). Other variables may have any value, e.g.,
“PERLVERSION” can be a number and “SYSTEMNAME” a string.

SCons. Conft est. CheckBui | der (context, text=None, language=None)
Configure check to see if the compiler works. Note that this uses the current value of compiler and linker flags,
make sure $CFLAGS, $CPPFLAGS and $LIBS are set correctly. “language” should be “C” or “C++" and is used to
select the compiler. Default is “C”. “text” may be used to specify the code to be build. Returns an empty string for
success, an error message for failure.

SCons. Conft est. CheckCC (context)
Configure check for a working C compiler.
This checks whether the C compiler, as defined in the $CC construction variable, can compile a C source file. It
uses the current $CCCOM value too, so that it can test against non working flags.

SCons. Conft est. CheckCXX (context)
Configure check for a working CXX compiler.
This checks whether the CXX compiler, as defined in the $CXX construction variable, can compile a CXX source
file. It uses the current $CXXCOM value too, so that it can test against non working flags.

SCons. Conft est. CheckDecl ar at i on (context, symbol, includes=None, language=None)
Checks whether symbol is declared.
Use the same test as autoconf, that is test whether the symbol is defined as a macro or can be used as an r-value.

Parameters:
« symbol — str the symbol to check

* includes — str Optional “header” can be defined to include a header file.

e language — str only C and C++ supported.
Returns: boolTrue if the check failed, False if succeeded.

Return type: status

SCons. Conft est. CheckFunc (context, function_name, header=None, language=None)
Configure check for a function “function_name”. “language” should be “C” or “C++” and is used to select the
compiler. Default is “C”. Optional “header” can be defined to define a function prototype, include a header file or
anything else that comes before main(). Sets HAVE_function_name in context.havedict according to the result.
Note that this uses the current value of compiler and linker flags, make sure $CFLAGS, $CPPFLAGS and $LIBS
are set correctly. Returns an empty string for success, an error message for failure.

SCons. Conft est. CheckHeader (context, header_name, header=None, language=None, include_quotes=None)
Configure check for a C or C++ header file “header_name”. Optional “header” can be defined to do something
before including the header file (unusual, supported for consistency). “language” should be “C” or “C++" and is
used to select the compiler. Default is “C”. Sets HAVE_header_name in context.havedict according to the result.
Note that this uses the current value of compiler and linker flags, make sure $CFLAGS and $CPPFLAGS are set
correctly. Returns an empty string for success, an error message for failure.

SCons. Conft est. CheckLi b (context, libs, func_name=None, header=None, extra_libs=None, call=None,

language=None, autoadd=1, append=True)
Configure check for a C or C++ libraries “libs”. Searches through the list of libraries, until one is found where the
test succeeds. Tests if “func_name” or “call” exists in the library. Note: if it exists in another library the test
succeeds anyway! Optional “header” can be defined to include a header file. If not given a default prototype for
“func_name” is added. Optional “extra_libs” is a list of library names to be added after “lib_name” in the build
command. To be used for libraries that “lib_name” depends on. Optional “call” replaces the call to “func_name” in
the test code. It must consist of complete C statements, including a trailing “;”. Both “func_name” and “call”
arguments are optional, and in that case, just linking against the libs is tested. “language” should be “C” or “C++”
and is used to select the compiler. Default is “C”. Note that this uses the current value of compiler and linker flags,
make sure $CFLAGS, $CPPFLAGS and $LIBS are set correctly. Returns an empty string for success, an error
message for failure.

SCons. Conft est. CheckPr og (context, prog_name)
Configure check for a specific program.
Check whether program prog_name exists in path. If it is found, returns the path for it, otherwise returns None.

SCons. Conft est . Check SHCC (context)

144

SCons Project APl Documentation

Configure check for a working shared C compiler.
This checks whether the C compiler, as defined in the $SHCC construction variable, can compile a C source file. It
uses the current $SHCCCOM value too, so that it can test against non working flags.

SCons. Conft est . Check SHCXX (context)
Configure check for a working shared CXX compiler.
This checks whether the CXX compiler, as defined in the $SHCXX construction variable, can compile a CXX
source file. It uses the current $SHCXXCOM value too, so that it can test against non working flags.

SCons. Conft est. CheckType (context, type name, fallback=None, header=None, language=None)
Configure check for a C or C++ type “type_name”. Optional “header” can be defined to include a header file.
“language” should be “C” or “C++" and is used to select the compiler. Default is “C". Sets HAVE_type_name in
context.havedict according to the result. Note that this uses the current value of compiler and linker flags, make
sure $CFLAGS, $CPPFLAGS and $LIBS are set correctly. Returns an empty string for success, an error message
for failure.

SCons. Conft est. CheckTypeSi ze (context, type_name, header=None, language=None, expect=None)
This check can be used to get the size of a given type, or to check whether the type is of expected size.

Parameters:
« type (-) — str the type to check

e includes (-) — sequence list of headers to include in the test code before testing the
type
e language (-) — str ‘C’ or ‘C++’

« expect (-) — int if given, will test wether the type has the given number of bytes. If not
given, will automatically find the size.

* Returns — statusintO if the check failed, or the found size of the type if the check
succeeded.

SCons. Conftest. Have (context, key, have, comment=None)
Store result of a test in context.havedict and context.headerfilename.

Parameters: i i i)
* key - is a "HAVE_abc” name. It is turned into all CAPITALS and non-alphanumerics are

replaced by an underscore.

« have - value as it should appear in the header file, include quotes when desired and
escape special characters!

« comment is the C comment to add above the line defining the symbol (the comment is
automatically put inside a /* */). If None, no comment is added.

The value of “have” can be:

1 - Feature is defined, add “#define key”.

* 0 - Feature is not defined, add “/* #undef key */”. Adding “undef” is what autoconf does. Not useful for the
compiler, but it shows that the test was done.

* number - Feature is defined to this number “#define key have”. Doesn’'t work for 0 or 1, use a string then.

« string - Feature is defined to this string “#define key have”.

SCons. Conftest. LogFail ed (context, text, msg)
Write to the log about a failed program. Add line numbers, so that error messages can be understood.

SCons. Conftest. YesNoResul t (context, ret, key, text, comment=None)
Handle the result of a test with a “yes” or “no” result.

Parameters: _)
* ret is the return value: empty if OK, error message when not.

* key is the name of the symbol to be defined (HAVE_foo).
« text is the source code of the program used for testing.

e comment is the C comment to add above the line defining the symbol (the comment is
automatically put inside a /* */). If None, no comment is added.

145

SCons Project APl Documentation

SCons. Conftest. check_enpty_ program(context, comp, text, language, use_shared=False)
Return 0 on success, 1 otherwise.

SCons. Conftest. _| ang2suffi x (lang)
Convert a language name to a suffix. When “lang” is empty or None C is assumed. Returns a tuple (lang, suffix,
None) when it works. For an unrecognized language returns (None, None, msg).

Where:

« lang = the unified language name
« suffix = the suffix, including the leading dot

* MSg = an error message

SCons.Debug module

Code for debugging SCons internal things.

Shouldn’t be needed by most users. Quick shortcuts:
from SCons.Debug import caller_trace caller_trace()

SCons. Debug. Tr ace (msg, tracefile=None, mode='w', tstamp=False)
Write a trace message.
Write messages when debugging which do not interfere with stdout. Useful in tests, which monitor stdout and
would break with unexpected output. Trace messages can go to the console (which is opened as a file), or to a
disk file; the tracefile argument persists across calls unless overridden.

Parameters:) . .))] .
« tracefile — file to write trace message to. If omitted, write to the previous trace file

(default: console).
* mode - file open mode (default: ‘w’)

 tstamp — write relative timestamps with trace. Outputs time since scons was started,
and time since last trace (default: False)

SCons. Debug. _dunp_one_cal | er (key, file, level=0)

SCons. Debug. cal | er _stack ()
return caller’s stack

SCons. Debug. cal | er _trace (back=0)
Trace caller stack and save info into global dicts, which are printed automatically at the end of SCons execution.

SCons. Debug. count Loggedl nst ances (cl asses, fil e=<_i 0. Text | OWN apper nane=' <st dout >'
node='w encodi ng='utf-8'>)
SCons. Debug. dunpLogged! nst ances (cl asses, fil e=<_i 0. Text| ON apper nane=' <st dout >'

nmode='w encodi ng="ut f-8">)

SCons. Debug. dunp_cal | er _counts (fil e=<_i 0. Text| ON apper nane='<stdout>" node="w

encodi ng=' utf-8'>)
SCons. Debug. f et chLoggedl nst ances (classes="")
SCons. Debug. f unc_short en (func_tuple)

SCons. Debug. | i st Loggedl nst ances (cl asses, fil e=<_i 0. Text| ON apper nane='<st dout >'

node='w encodi ng='utf-8'>)

SCons. Debug. | ogl nst anceCr eat i on (instance, name=None)
SCons. Debug. nenory ()

SCons. Debug. string to_cl asses (s)

SCons.Defaults module

Builders and other things for the local site.

146

SCons Project APl Documentation

Here’'s where we’'ll duplicate the functionality of autoconf until we move it into the installation procedure or use
something like gmconf.

The code that reads the registry to find MSVC components was borrowed from distutils.msvccompiler.

SCons. Def aul ts. Def aul t Envi ronment (*args, **kw)
Initial public entry point for creating the default construction Environment.
After creating the environment, we overwrite our name (DefaultEnvironment) with the _fetch_DefaultEnvironment()
function, which more efficiently returns the initialized default construction environment without checking for its
existence.
(This function still exists with its _default_check because someone else (cough Script/__init__.py cough) may keep
a reference to this function. So we can't use the fully functional idiom of having the name originally be a something
that only creates the construction environment and then overwrites the name.)

class SCons. Def aul t s. Nul | ChdCGener at or (cmd)
Bases: obj ect
This is a callable class that can be used in place of other command generators if you don't want them to do
anything.
The _ call__ method for this class simply returns the thing you instantiated it with.
Example usage: env[‘DO_NOTHING”] = NullCmdGenerator env[‘LINKCOM"] = “${DO_NOTHING(‘$LINK
$SOURCES $TARGET")}"

SCons. Def aul t s. Shar edFl agChecker (source, target, env)
SCons. Def aul t s. Shar edhj ect Enmi tt er (target, source, env)
SCons. Defaul ts. Stati cOoj ect Emi tter (target, source, env)

class SCons. Def aul ts. Vari abl e_Met hod_Cal | er (variable, method)
Bases: obj ect
A class for finding a construction variable on the stack and calling one of its methods.
We use this to support “construction variables” in our string eval()s that actually stand in for methods—specifically,
use of “RDirs” in call to _concat that should actually execute the “TARGET.RDirs” method. (We used to support
this by creating a little “build dictionary” that mapped RDirs to the method, but this got in the way of Memoizing
construction environments, because we had to create new environment objects to hold the variables.)

SCons. Defaults. __lib_either_version_flag (env, version_varl, version_var2, flags_var)
if $version_varl or $version_var2 is not empty, returns env[flags_var], otherwise returns None :param env: :param
version_varl: :param version_var2: :param flags_var: :return:

SCons. Defaul ts. __|i bversi onfl ags (env, version_var, flags_var)
if version_var is not empty, returns env[flags_var], otherwise returns None :param env: :param version_var:
:param flags_var: :return:

SCons. Defaul ts. _concat (prefix,itens_iter,suffix,env,f=<function <l anbda>>,tar get =None,
sour ce=None, af f ect _si gnat ur e=Tr ue)
Creates a new list from ‘items_iter’ by first interpolating each element in the list using the ‘env’ dictionary and then
calling f on the list, and finally calling _concat_ixes to concatenate ‘prefix’ and ‘suffix’ onto each element of the list.

SCons. Def aul t s. _concat _i xes (prefix, items_iter, suffix, env)
Creates a new list from ‘items_iter’ by concatenating the ‘prefix’ and ‘suffix’ arguments onto each element of the
list. A trailing space on ‘prefix’ or leading space on ‘suffix’ will cause them to be put into separate list elements
rather than being concatenated.

SCons. Def aul ts. _defines (prefi x, defs, suffix, env,target, source, c=<function
_concat _i xes>)
A wrapper around _concat_ixes that turns a list or string into a list of C preprocessor command-line definitions.

SCons. Defaul ts. _fetch_Def aul t Envi ronment (*args, **kw)
Returns the already-created default construction environment.

SCons. Def aul ts. _stri pi xes (prefix, itms, suffix, stripprefixes, stripsuffixes, env, c=None)
This is a wrapper around _concat()/_concat_ixes() that checks for the existence of prefixes or suffixes on list items
and strips them where it finds them. This is used by tools (like the GNU linker) that need to turn something like
‘libfoo.a’ into ‘-Ifoo’.

SCons. Def aul t s. chnod_f unc (dest, mode)

147

SCons Project APl Documentation

SCons. Def aul t s. chnod_st r f unc (dest, mode)

SCons. Def aul t s. copy_f unc (dest, src, symlinks=True)
If symlinks (is true), then a symbolic link will be shallow copied and recreated as a symbolic link; otherwise,
copying a symbolic link will be equivalent to copying the symbolic link’s final target regardless of symbolic link
depth.

SCons. Def aul t s. del et e_f unc (dest, must_exist=0)
SCons. Def aul t s. del et e_st r f unc (dest, must_exist=0)
SCons. Def aul t s. get _paths_str (dest)

SCons. Def aul t s. nkdi r _f unc (dest)

SCons. Def aul t s. nove_f unc (dest, src)

SCons. Def aul t s. processDef i nes (defs)
process defines, resolving strings, lists, dictionaries, into a list of strings

SCons. Def aul t s. t ouch_f unc (dest)

SCons.Environment module
Base class for construction Environments.
These are the primary objects used to communicate dependency and construction information to the build engine.

Keyword arguments supplied when the construction Environment is created are construction variables used to
initialize the Environment.

class SCons. Envi ronnent . Base (platform=None, tools=None, toolpath=None, variables=None,
parse_flags=None, **kw)
Bases: SCons. Envi ronnent . Subst i t uti onEnvi r onnent
Base class for “real” construction Environments.
These are the primary objects used to communicate dependency and construction information to the build engine.
Keyword arguments supplied when the construction Environment is created are construction variables used to
initialize the Environment.

Act i on (*args, **kw)

AddMet hod (function, name=None)
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.

AddPost Act i on (files, action)

AddPr eAct i on (files, action)

Al i as (target, source=[], action=None, **kw)

Al waysBui | d (*targets)

Append (**kw)
Append values to construction variables in an Environment.
The variable is created if it is not already present.

AppendENVPat h (name, newpath, envhame="ENV’, sep=""', delete_existing=0)
Append path elements to the path ‘name’ in the ‘ENV’ dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the
case where the env variable is a list instead of a string.
If delete_existing is 0, a newpath which is already in the path will not be moved to the end (it will be left where it

is).

AppendUni que (delete_existing=0, **kw)

148

SCons Project APl Documentation

Append values to existing construction variables in an Environment, if they're not already there. If
delete_existing is 1, removes existing values first, so values move to end.

Bui | der (**kw)
CacheDi r (path, custom_class=None)
d ean (targets, files)

Cl one (tools=[], toolpath=None, parse_flags=None, **kw)
Return a copy of a construction Environment.
The copy is like a Python “deep copy”-that is, independent copies are made recursively of each objects—except
that a reference is copied when an object is not deep-copyable (like a function). There are no references to any
mutable objects in the original Environment.

Command (target, source, action, **kw)
Builds the supplied target files from the supplied source files using the supplied action. Action may be any type
that the Builder constructor will accept for an action.

Conf i gur e (*args, **kw)
Deci der (function)

Depends (target, dependency)
Explicity specify that ‘target’s depend on ‘dependency’.

Det ect (progs)
Return the first available program from one or more possibilities.
Parameters: progs (str or list) — one or more command names to check for
Di cti onary (*args)
Return construction variables from an environment.

Parameters: *args (optional) — variable names to look up

Returns: If args omitted, the dictionary of all construction variables. If one arg, the corresponding
value is returned. If more than one arg, a list of values is returned.

Raises: KeyError —if any of args is not in the construction environment.
Di r (name, *args, **kw)

Dunp (key=None, format="pretty")
Return construction variables serialized to a string.

Parameters:]]))
« key (optional) — if None, format the whole dict of variables. Else format the value of

key (Default value = None)

e format (str, optional) — specify the format to serialize to. “pretty” generates a
pretty-printed string, “json” a JSON-formatted string. (Default value = “pretty”)

Ent ry (name, *args, **kw)
Envi ronment (**kw)

Execut e (action, *args, **kw)
Directly execute an action through an Environment

Fi | e (name, *args, **kw)

Fi ndFi | e (file, dirs)

149

SCons Project APl Documentation

Fi ndl nstal |l edFil es ()
returns the list of all targets of the Install and InstallAs Builder.

Fi ndl xes (paths, prefix, suffix)
Search a list of paths for something that matches the prefix and suffix.

Parameters:)
* paths — the list of paths or nodes.

« prefix — construction variable for the prefix.

« suffix — construction variable for the suffix.
Returns: the matched path or None

Fi ndSour ceFi | es (node="")
returns a list of all source files.

Fl at t en (sequence)
Get Bui | dPat h (files)
d ob (pattern, ondisk=True, source=False, strings=False, exclude=None)

| gnor e (target, dependency)
Ignore a dependency.

Li teral (string)
Local (*targets)

Mer geFl ags (args, unique=True)
Merge flags into construction variables.
Merges the flags from ar gs into this construction environent. If ar gs is not a dict, it is first converted to a
dictionary with flags distributed into appropriate construction variables. See Par seFl ags() .

Parameters:
« args — flags to merge

* uniqgue — merge flags rather than appending (default: True)

NoCache (*targets)
Tags a target so that it will not be cached

NoC ean (*targets)
Tags a target so that it will not be cleaned by -c

Overri de (overrides)
Produce a modified environment whose variables are overridden by the overrides dictionaries. “overrides” is a
dictionary that will override the variables of this environment.
This function is much more efficient than Clone() or creating a new Environment because it doesn't copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn’t even
create a wrapper object if there are no overrides.

Par seConf i g (command, function=None, unique=True)
Use the specified function to parse the output of the command in order to modify the current environment. The
‘command’ can be a string or a list of strings representing a command and its arguments. ‘Function’ is an
optional argument that takes the environment, the output of the command, and the unique flag. If no function is
specified, MergeFlags, which treats the output as the result of a typical ‘X-config’ command (i.e. gtk-config), will
merge the output into the appropriate variables.

Par seDepends (filename, must_exist=None, only_one=False)

Parse a mkdep-style file for explicit dependencies. This is completely abusable, and should be unnecessary in
the “normal” case of proper SCons configuration, but it may help make the transition from a Make hierarchy

150

SCons Project APl Documentation

easier for some people to swallow. It can also be genuinely useful when using a tool that can write a .d file, but
for which writing a scanner would be too complicated.

Par seFl ags (*flags)

Return a dict of parsed flags.

Parse f | ags and return a dict with the flags distributed into the appropriate construction variable names. The
flags are treated as a typical set of command-line flags for a GNU-like toolchain, such as might have been
generated by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in
this method - the choices are not expected to be portable to other toolchains.

If one of the f | ags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest
of the string is executed; the result of that evaluation is then added to the dict.

Pl at f or m(platform)
Pr eci ous (*targets)

Prepend (**kw)
Prepend values to construction variables in an Environment.
The variable is created if it is not already present.

Pr ependENVPat h (name, newpath, envhame="ENV', sep="", delete_existing=1)
Prepend path elements to the path ‘name’ in the ‘ENV’ dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the
case where the env variable is a list instead of a string.
If delete_existing is 0, a newpath which is already in the path will not be moved to the front (it will be left where it
is).

Pr ependUni que (delete_existing=0, **kw)
Prepend values to existing construction variables in an Environment, if they’re not already there. If
delete_existing is 1, removes existing values first, so values move to front.

Pseudo (*targets)

PyPackageDi r (modulename)

RenmoveMet hod (function)
Removes the specified function’s MethodWrapper from the added_methods list, so we don’t re-bind it when

making a clone.

Repl ace (**kw)
Replace existing construction variables in an Environment with new construction variables and/or values.

Repl acel xes (path, old_prefix, old_suffix, new_prefix, new_suffix)
Replace old_prefix with new_prefix and old_suffix with new_suffix.
env - Environment used to interpolate variables. path - the path that will be modified. old_prefix - construction
variable for the old prefix. old_suffix - construction variable for the old suffix. new_prefix - construction variable
for the new prefix. new_suffix - construction variable for the new suffix.

Reposi t ory (*dirs, **kw)

Requi r es (target, prerequisite)
Specify that ‘prerequisite’ must be built before ‘target’, (but ‘target’ does not actually depend on ‘prerequisite’
and need not be rebuilt if it changes).

SConsi gnFi | e (name=".sconsign', dom_module=None)

Scanner (*args, **kw)

Set Def aul t (**kw)

Si deEf f ect (side_effect, target)

151

SCons Project APl Documentation

Tell scons that side_effects are built as side effects of building targets.
Split (arg)

This function converts a string or list into a list of strings or Nodes. This makes things easier for users by
allowing files to be specified as a white-space separated list to be split.

The input rules are:

* A single string containing names separated by spaces. These will be split apart at the spaces.
* A single Node instance

+ A list containing either strings or Node instances. Any strings in the list are not split at spaces.
In all cases, the function returns a list of Nodes and strings.

Tool (tool, toolpath=None, **kwargs) - SCons.Tool.Tool
Val ue (value, built_value=None, nhame=None)
Vari ant Di r (variant_dir, src_dir, duplicate=1)

Wher el s (prog, path=None, pathext=None, reject=None)
Find prog in the path.

_canoni cal i ze (path)

Allow Dirs and strings beginning with # for top-relative.

Note this uses the current env’s fs (in self).
_changed_bui | d (dependency, target, prev_ni, repo_node=None)
_changed_cont ent (dependency, target, prev_ni, repo_node=None)
_changed_sour ce (dependency, target, prev_ni, repo_node=None)
_changed_ti mest anp_mat ch (dependency, target, prev_ni, repo_node=None)
_changed_ti mest anp_newer (dependency, target, prev_ni, repo_node=None)
_changed_ti mestanp_t hen_cont ent (dependency, target, prev_ni, repo_node=None)
_find_tool path_dir (tp)
_gsm()

_init_special ()
Initial the dispatch tables for special handling of special construction variables.

_updat e (other)
Private method to update an environment’s consvar dict directly.
Bypasses the normal checks that occur when users try to set items.
_updat e_onl ynew (other)
Private method to add new items to an environment'’s consvar dict.
Only adds items from other whose keys do not already appear in the existing dict; values from other are not
used for replacement. Bypasses the normal checks that occur when users try to set items.

arg2nodes (args, node_factory=<class 'SCons.Environment._Null'>, |ookup_Ilist=<class
' SCons. Envi ronment . _Nul |' >, **kw)

backt i ck (command)

get (key, default=None)

152

SCons Project APl Documentation

Emulates the get() method of dictionaries.
get _CacheDir ()

get _bui |l der (name)
Fetch the builder with the specified name from the environment.

get fact ory (factory, default="File")
Return a factory function for creating Nodes for this construction environment.

get _scanner (skey)
Find the appropriate scanner given a key (usually a file suffix).

get _src_sig type()
get _tgt _sig type()
gvars ()

itens ()
Emulates the items() method of dictionaries.

keys ()
Emulates the keys() method of dictionaries.

I vars ()

scanner _map_del et e (kw=None)
Delete the cached scanner map (if we need to).

set def aul t (key, default=None)
Emulates the setdefault() method of dictionaries.

subst (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

subst _kw (kw, raw=0, target=None, source=None)

subst | i st (string, raw=0, target=None, source=None, conv=None, executor=None)
Calls through to SCons.Subst.scons_subst_list(). See the documentation for that function.

subst _pat h (path, target=None, source=None)
Substitute a path list, turning EntryProxies into Nodes and leaving Nodes (and other objects) as-is.

subst _target source (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

val i dat e_CacheDi r _cl ass (custom_class=None)
Validate the passed custom CacheDir class, or if no args are passed, validate the custom CacheDir class from
the environment.

val ues ()
Emulates the values() method of dictionaries.

class SCons. Envi ronnent . Bui | der Di ct (dict, env)

153

SCons Project APl Documentation

Bases: col | ecti ons. User Di ct

This is a dictionary-like class used by an Environment to hold the Builders. We need to do this because every time
someone changes the Builders in the Environment’s BUILDERS dictionary, we must update the Environment’s
attributes.

_abc_i mpl =<_abc_data object>
cl ear () - None. Remove all items from D.

copy ()

classmethod f r onkeys (iterable, value=None)

get (k[,d]) - DIK] if kin D, else d. d defaults to None.

i tems () - a set-like object providing a view on D’s items
keys () —» a set-like object providing a view on D’s keys

pop (K[, d]) - v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popi tem() - (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefaul t (k[,d]) - D.get(k,d), also set D[k]=d if k not in D

update ([, E], **F) - None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[K] If E present and lacks .keys() method, does:
for (k, v) in E: D[K] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

val ues () - an object providing a view on D’s values

class SCons. Envi ronnent . Bui | der W apper (obj, method, name=None)
Bases: SCons. Uti | . Met hodW apper
A MethodWrapper subclass that that associates an environment with a Builder.
This mainly exists to wrap the _ call__ () function so that all calls to Builders can have their argument lists
massaged in the same way (treat a lone argument as the source, treat two arguments as target then source, make
sure both target and source are lists) without having to have cut-and-paste code to do it.
As a bit of obsessive backwards compatibility, we also intercept attempts to get or set the “env” or “builder”
attributes, which were the names we used before we put the common functionality into the MethodWrapper base
class. We'll keep this around for a while in case people shipped Tool modules that reached into the wrapper (like
the Tool/gt.py module does, or did). There shouldn’t be a lot attribute fetching or setting on these, so a little extra
work shouldn’t hurt.

cl one (new_object)
Returns an object that re-binds the underlying “method” to the specified new object.

SCons. Envi ronment . NoSubst i t ut i onPr oxy (subject)

An entry point for returning a proxy subclass instance that overrides the subst*() methods so they don’t actually
perform construction variable substitution. This is specifically intended to be the shim layer in between global
function calls (which don’t want construction variable substitution) and the DefaultEnvironment() (which would
substitute variables if left to its own devices).

We have to wrap this in a function that allows us to delay definition of the class until it's necessary, so that when it
subclasses Environment it will pick up whatever Environment subclass the wrapper interface might have assigned
to SCons.Environment.Environment.

class SCons. Envi ronment . Overri deEnvi r onment (subject, overrides=None)
Bases: SCons. Envi r onnent . Base
A proxy that overrides variables in a wrapped construction environment by returning values from an overrides
dictionary in preference to values from the underlying subject environment.

154

SCons Project APl Documentation

This is a lightweight (I hope) proxy that passes through most use of attributes to the underlying Environment.Base
class, but has just enough additional methods defined to act like a real construction environment with overridden
values. It can wrap either a Base construction environment, or another OverrideEnvironment, which can in turn
nest arbitrary OverrideEnvironments...

Note that we do not call the underlying base class (SubsitutionEnvironment) initialization, because we get most of
those from proxying the attributes of the subject construction environment. But because we subclass
SubstitutionEnvironment, this class also has inherited arg2nodes() and subst*() methods; those methods can't be
proxied because they need this object’s methods to fetch the values from the overrides dictionary.

Act i on (*args, **kw)
AddMet hod (function, name=None)

Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.

AddPost Act i on (files, action)

AddPr eAct i on (files, action)

Al'i as (target, source=[], action=None, **kw)

Al waysBui | d (*targets)

Append (**kw)
Append values to construction variables in an Environment.
The variable is created if it is not already present.

AppendENVPat h (name, newpath, envhame='"ENV', sep="', delete_existing=0)
Append path elements to the path ‘name’ in the ‘ENV’ dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the
case where the env variable is a list instead of a string.

If delete_existing is 0, a newpath which is already in the path will not be moved to the end (it will be left where it
is).

AppendUni que (delete_existing=0, **kw)
Append values to existing construction variables in an Environment, if they're not already there. If
delete_existing is 1, removes existing values first, so values move to end.

Bui | der (**kw)

CacheDi r (path, custom_class=None)

d ean (targets, files)

Cl one (tools=[], toolpath=None, parse_flags=None, **kw)
Return a copy of a construction Environment.
The copy is like a Python “deep copy”-that is, independent copies are made recursively of each objects—except
that a reference is copied when an object is not deep-copyable (like a function). There are no references to any
mutable objects in the original Environment.

Command (target, source, action, **kw)
Builds the supplied target files from the supplied source files using the supplied action. Action may be any type
that the Builder constructor will accept for an action.

Conf i gur e (*args, **kw)

Deci der (function)

Depends (target, dependency)
Explicity specify that ‘target’s depend on ‘dependency’.

155

SCons Project APl Documentation

156

Det ect (progs)
Return the first available program from one or more possibilities.

Parameters: progs (str or list) — one or more command names to check for

Di cti onary (*args)
Return construction variables from an environment.

Parameters: *args (optional) — variable names to look up

Returns: If args omitted, the dictionary of all construction variables. If one arg, the corresponding
value is returned. If more than one arg, a list of values is returned.

Raises: KeyError —if any of args is not in the construction environment.

Di r (name, *args, **kw)

Dunp (key=None, format="pretty")
Return construction variables serialized to a string.

Parameters:

« key (optional) — if None, format the whole dict of variables. Else format the value of

key (Default value = None)

e format (str, optional) — specify the format to serialize to. “pretty” generates a
pretty-printed string, “json” a JSON-formatted string. (Default value = “pretty”)

Ent ry (name, *args, **kw)
Envi ronment (**kw)

Execut e (action, *args, **kw)
Directly execute an action through an Environment

Fi | e (name, *args, **kw)
Fi ndFi | e (file, dirs)

Fi ndl nstal | edFil es ()
returns the list of all targets of the Install and InstallAs Builder.

Fi ndl xes (paths, prefix, suffix)
Search a list of paths for something that matches the prefix and suffix.

Parameters:)
* paths — the list of paths or nodes.

* prefix — construction variable for the prefix.

» suffix — construction variable for the suffix.
Returns: the matched path or None

Fi ndSour ceFi | es (node="")
returns a list of all source files.

Fl at t en (sequence)
Get Bui | dPat h (files)
d ob (pattern, ondisk=True, source=False, strings=False, exclude=None)

| gnor e (target, dependency)
Ignore a dependency.

Li t eral (string)

SCons Project APl Documentation

Local (*targets)

Mer geFl ags (args, unique=True)

Merge flags into construction variables.
Merges the flags from ar gs into this construction environent. If ar gs is not a dict, it is first converted to a
dictionary with flags distributed into appropriate construction variables. See Par seFl ags() .

Parameters:
- args — flags to merge

e unigue — merge flags rather than appending (default: True)

NoCache (*targets)

Tags a target so that it will not be cached

NoCl ean (*targets)

Tags a target so that it will not be cleaned by -c

Overri de (overrides)

Produce a modified environment whose variables are overridden by the overrides dictionaries. “overrides” is a
dictionary that will override the variables of this environment.

This function is much more efficient than Clone() or creating a new Environment because it doesn't copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn’t even
create a wrapper object if there are no overrides.

Par seConf i g (command, function=None, unique=True)

Use the specified function to parse the output of the command in order to modify the current environment. The
‘command’ can be a string or a list of strings representing a command and its arguments. ‘Function’ is an
optional argument that takes the environment, the output of the command, and the unique flag. If no function is
specified, MergeFlags, which treats the output as the result of a typical ‘X-config’ command (i.e. gtk-config), will
merge the output into the appropriate variables.

Par seDepends (filename, must_exist=None, only_one=False)

Parse a mkdep-style file for explicit dependencies. This is completely abusable, and should be unnecessary in
the “normal” case of proper SCons configuration, but it may help make the transition from a Make hierarchy
easier for some people to swallow. It can also be genuinely useful when using a tool that can write a .d file, but
for which writing a scanner would be too complicated.

Par seFl ags (*flags)

Return a dict of parsed flags.

Parse f | ags and return a dict with the flags distributed into the appropriate construction variable names. The
flags are treated as a typical set of command-line flags for a GNU-like toolchain, such as might have been
generated by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in
this method - the choices are not expected to be portable to other toolchains.

If one of the f | ags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest
of the string is executed; the result of that evaluation is then added to the dict.

Pl at f or m(platform)

Pr eci ous (*targets)

157

Pr epend (**kw)

Prepend values to construction variables in an Environment.
The variable is created if it is not already present.

Pr ependENVPat h (name, newpath, envname="ENV', sep="", delete_existing=1)

Prepend path elements to the path ‘name’ in the ‘ENV’ dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the
case where the env variable is a list instead of a string.

If delete_existing is 0, a newpath which is already in the path will not be moved to the front (it will be left where it
is).

SCons Project APl Documentation

Pr ependUni que (delete_existing=0, **kw)
Prepend values to existing construction variables in an Environment, if they’re not already there. If
delete_existing is 1, removes existing values first, so values move to front.

Pseudo (*targets)
PyPackageDi r (modulename)
RenmoveMet hod (function)
Removes the specified function’s MethodWrapper from the added_methods list, so we don’t re-bind it when

making a clone.

Repl ace (**kw)
Replace existing construction variables in an Environment with new construction variables and/or values.

Repl acel xes (path, old_prefix, old_suffix, new_prefix, new_suffix)
Replace old_prefix with new_prefix and old_suffix with new_suffix.
env - Environment used to interpolate variables. path - the path that will be modified. old_prefix - construction
variable for the old prefix. old_suffix - construction variable for the old suffix. new_prefix - construction variable
for the new prefix. new_suffix - construction variable for the new suffix.

Reposi t ory (*dirs, **kw)

Requi r es (target, prerequisite)
Specify that ‘prerequisite’ must be built before ‘target’, (but ‘target’ does not actually depend on ‘prerequisite’
and need not be rebuilt if it changes).

SConsi gnFi | e (name=".sconsign', dom_module=None)

Scanner (*args, **kw)

Set Def aul t (**kw)

Si deEf f ect (side_effect, target)
Tell scons that side_effects are built as side effects of building targets.

Split (arg)
This function converts a string or list into a list of strings or Nodes. This makes things easier for users by
allowing files to be specified as a white-space separated list to be split.

The input rules are:

* A single string containing names separated by spaces. These will be split apart at the spaces.
* A single Node instance

+ A list containing either strings or Node instances. Any strings in the list are not split at spaces.
In all cases, the function returns a list of Nodes and strings.

Tool (tool, toolpath=None, **kwargs) - SCons.Tool.Tool
Val ue (value, built_value=None, hame=None)
Vari ant Di r (variant_dir, src_dir, duplicate=1)

Wher el s (prog, path=None, pathext=None, reject=None)
Find prog in the path.

_canoni cal i ze (path)

Allow Dirs and strings beginning with # for top-relative.
Note this uses the current env’s fs (in self).

158

SCons Project APl Documentation

_changed_bui | d (dependency, target, prev_ni, repo_node=None)

_changed_cont ent (dependency, target, prev_ni, repo_node=None)

_changed_sour ce (dependency, target, prev_ni, repo_node=None)

_changed_ti mest anp_mat ch (dependency, target, prev_ni, repo_node=None)
_changed_ti mest anp_newer (dependency, target, prev_ni, repo_node=None)
_changed_ti mestanp_t hen_cont ent (dependency, target, prev_ni, repo_node=None)
_find_tool path_dir (tp)

_gsm()

_init_special ()
Initial the dispatch tables for special handling of special construction variables.

_updat e (other)
Private method to update an environment’s consvar dict directly.
Bypasses the normal checks that occur when users try to set items.
_updat e_onl ynew (other)
Private method to add new items to an environment’s consvar dict.
Only adds items from other whose keys do not already appear in the existing dict; values from other are not
used for replacement. Bypasses the normal checks that occur when users try to set items.

arg2nodes (args, node_factory=<class 'SCons.Environment._Null'>, |ookup_Ilist=<class
' SCons. Envi ronment. _Nul |' >, **kw)

backt i ck (command)

get (key, default=None)
Emulates the get() method of dictionaries.

get _CacheDir ()

get _bui |l der (name)
Fetch the builder with the specified name from the environment.

get factory (factory, default="File")
Return a factory function for creating Nodes for this construction environment.

get _scanner (skey)
Find the appropriate scanner given a key (usually a file suffix).

get _src_sig type()
get _tgt _sig type()
gvars ()

itens ()
Emulates the items() method of dictionaries.

keys ()
Emulates the keys() method of dictionaries.

I vars ()

159

SCons Project APl Documentation

scanner _map_del et e (kw=None)
Delete the cached scanner map (if we need to).

set def aul t (key, default=None)
Emulates the setdefault() method of dictionaries.

subst (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

subst _kw (kw, raw=0, target=None, source=None)

subst | i st (string, raw=0, target=None, source=None, conv=None, executor=None)
Calls through to SCons.Subst.scons_subst_list(). See the documentation for that function.

subst _pat h (path, target=None, source=None)
Substitute a path list, turning EntryProxies into Nodes and leaving Nodes (and other objects) as-is.

subst target source (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

val i dat e_CacheDi r _cl ass (custom_class=None)
Validate the passed custom CacheDir class, or if no args are passed, validate the custom CacheDir class from
the environment.

val ues ()
Emulates the values() method of dictionaries.

class SCons. Envi ronment . Substi t uti onEnvi ronment (**kw)
Bases: obj ect
Base class for different flavors of construction environments.
This class contains a minimal set of methods that handle construction variable expansion and conversion of strings
to Nodes, which may or may not be actually useful as a stand-alone class. Which methods ended up in this class
is pretty arbitrary right now. They're basically the ones which we've empirically determined are common to the
different construction environment subclasses, and most of the others that use or touch the underlying dictionary
of construction variables.
Eventually, this class should contain all the methods that we determine are necessary for a “minimal” interface to
the build engine. A full “native Python” SCons environment has gotten pretty heavyweight with all of the methods
and Tools and construction variables we've jammed in there, so it would be nice to have a lighter weight
alternative for interfaces that don't need all of the bells and whistles. (At some point, we'll also probably rename
this class “Base,” since that more reflects what we want this class to become, but because we've released
comments that tell people to subclass Environment.Base to create their own flavors of construction environment,
we’ll save that for a future refactoring when this class actually becomes useful.)

AddMet hod (function, name=None)
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.

Mer geFl ags (args, unique=True)
Merge flags into construction variables.
Merges the flags from ar gs into this construction environent. If ar gs is not a dict, it is first converted to a
dictionary with flags distributed into appropriate construction variables. See Par seFl ags() .

Parameters:
e args — flags to merge

e unigue — merge flags rather than appending (default: True)

160

SCons Project APl Documentation

Overri de (overrides)
Produce a modified environment whose variables are overridden by the overrides dictionaries. “overrides” is a
dictionary that will override the variables of this environment.
This function is much more efficient than Clone() or creating a new Environment because it doesn't copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn’t even
create a wrapper object if there are no overrides.

Par seFl ags (*flags)

Return a dict of parsed flags.

Parse f | ags and return a dict with the flags distributed into the appropriate construction variable names. The
flags are treated as a typical set of command-line flags for a GNU-like toolchain, such as might have been
generated by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in
this method - the choices are not expected to be portable to other toolchains.

If one of the f | ags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest
of the string is executed; the result of that evaluation is then added to the dict.

RenmoveMet hod (function)
Removes the specified function’s MethodWrapper from the added_methods list, so we don't re-bind it when
making a clone.

_init_special ()
Initial the dispatch tables for special handling of special construction variables.

arg2nodes (args, node_factory=<class 'SCons.Environment._Null'>, |ookup_Ilist=<class
' SCons. Envi ronment. _Nul |' >, **kw)

backt i ck (command)

get (key, default=None)
Emulates the get() method of dictionaries.

gvars ()

itens ()
Emulates the items() method of dictionaries.

keys ()
Emulates the keys() method of dictionaries.

I vars ()

set def aul t (key, default=None)
Emulates the setdefault() method of dictionaries.

subst (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

subst _kw (kw, raw=0, target=None, source=None)

subst | i st (string, raw=0, target=None, source=None, conv=None, executor=None)
Calls through to SCons.Subst.scons_subst_list(). See the documentation for that function.

subst _pat h (path, target=None, source=None)
Substitute a path list, turning EntryProxies into Nodes and leaving Nodes (and other objects) as-is.

subst target source (string, raw=0, target=None, source=None, conv=None, executor=None)

Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial

161

SCons Project APl Documentation

underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

val ues ()
Emulates the values() method of dictionaries.

class SCons. Envi ronment . _Nul |
Bases: obj ect
SCons. Envi ronment . _del _SCANNERS (env, key)
SCons. Envi ronment . _del et e_dupl i cat es (I, keep_last)
Delete duplicates from a sequence, keeping the first or last.
SCons. Envi ronnment . _nul |
alias of SCons. Envi ronment . _Nul |
SCons. Envi ronment . _set BUI LDERS (env, key, value)
SCons. Envi ronment . _set SCANNERS (env, key, value)
SCons. Envi ronment. _set _future_reserved (env, key, value)
SCons. Envi ronment . _set _reserved (env, key, value)
SCons. Envi ronment . al i as_bui | der (env, target, source)
SCons. Envi ronment . appl y_t ool s (env, tools, toolpath)
SCons. Envi ronment . copy_non_reser ved_keywor ds (dict)
SCons. Envi ronment . def aul t _copy_from cache (env, src, dst)
SCons. Envi ronment . def aul t _copy_t o_cache (env, src, dst)
SCons. Envi ronment . def aul t _deci de_sour ce (dependency, target, prev_ni, repo_node=None)
SCons. Envi ronment . def aul t _deci de_t ar get (dependency, target, prev_ni, repo_node=None)

SCons. Environnent . i s_val i d_constructi on_var (varstr)
Return if the specified string is a legitimate construction variable.

SCons.Errors module

SCons exception classes.

Used to handle internal and user errors in SCons.

exception SCons. Errors. BuildError (node=None, errstr="Unknown error', status=2, exitstatus=2,
filename=None, executor=None, action=None, command=None, exc_info=(None, None, None))

Bases: Excepti on
SCons Errors that can occur while building.

I nformati on about the cause of the build error

errstr
a description of the error message

st at us
the return code of the action that caused the build error. Must be set to a non-zero value even if the build error is
not due to an action returning a non-zero returned code.

exitstatus
SCons exit status due to this build error. Must be nonzero unless due to an explicit Exit() call. Not always the
same as status, since actions return a status code that should be respected, but SCons typically exits with 2
irrespective of the return value of the failed action.

filenane

162

SCons Project APl Documentation

The name of the file or directory that caused the build error. Set to None if no files are associated with this error.
This might be different from the target being built. For example, failure to create the directory in which the target
file will appear. It can be None if the error is not due to a particular flename.

exc_info
Info about exception that caused the build error. Set to (None, None, None) if this build error is not due to an
exception.

I nformati on about the what caused the build error

node
the error occurred while building this target node(s)

execut or
the executor that caused the build to fail (might be None if the build failures is not due to the executor failing)

action
the action that caused the build to fail (might be None if the build failures is not due to the an action failure)

conmmand
the command line for the action that caused the build to fail (might be None if the build failures is not due to the
an action failure)

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. Errors. Explicit Exit (node=None, status=None, *args)
Bases: Excepti on

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. Errors. I nternal Error
Bases: Excepti on

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

exception SCons. Errors. MSVCEr r or
Bases: OSErr or

ar gs
characters witten

errno
POSIX exception code

filenane
exception filename

fil enane2
second exception filename

strerror

163

SCons Project APl Documentation

exception strerror

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. Errors. SConsEnvi r onment Err or
Bases: Excepti on

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

exception SCons. Errors. St opError
Bases: Excepti on

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

exception SCons. Errors. User Error
Bases: Excepti on

ar gs
wi th_traceback ()

Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

SCons. Errors. convert _to_Buil dError (status, exc_info=None)
Convert a return code to a BuildError Exception.
The buildError.status we set here will normally be used as the exit status of the “scons” process.

Parameters:])
« status — can either be a return code or an Exception.

« exc_info (tuple, optional) — explicit exception information.

SCons.Executor module
Execute actions with specific lists of target and source Nodes.
SCons. Execut or . AddBat chExecut or (key, executor)
class SCons. Execut or . Bat ch (targets=[], sources=[])
Bases: obj ect
Remembers exact association between targets and sources of executor.
sour ces
targets
class SCons. Execut or . Execut or (action, env=None, overridelist=[{}], targets=[], sources=[], builder_kw={})
Bases: obj ect
A class for controlling instances of executing an action.
This largely exists to hold a single association of an action, environment, list of environment override dictionaries,
targets and sources for later processing as needed.
_changed_sources_|Ii st

_changed_targets_|ist

_do_execute

164

SCons Project APl Documentation

_execute_str

_get _changed_sour ces (*args, **kw)

_get _changed_t ar get s (*args, **kw)

_get _changes ()

_get _sour ce (*args, **kw)

_get _sour ces (*args, **kw)

_get _target (*args, **kw)

_get _targets (*args, **kw)

_get _unchanged_sour ces (*args, **kw)

_get _unchanged_t ar get s (*args, **kw)

_get _uni gnor ed_sour ces_key (node, ignore=())

_meno

_unchanged_sources_Ii st

_unchanged_targets_li st

action_list

add_bat ch (targets, sources)
Add pair of associated target and source to this Executor’s list. This is necessary for “batch” Builders that can be
called repeatedly to build up a list of matching target and source files that will be used in order to update multiple
target files at once from multiple corresponding source files, for tools like MSVC that support it.

add_post _acti on (action)

add_pre_acti on (action)

add_sour ces (sources)
Add source files to this Executor’s list. This is necessary for “multi” Builders that can be called repeatedly to build
up a source file list for a given target.

bat ches

bui | der _kw

cl eanup ()

env

get _action_list ()

get _action_side_effects ()
Returns all side effects for all batches of this Executor used by the underlying Action.

get _action_targets ()

get _all _children ()
Returns all unique children (dependencies) for all batches of this Executor.

165

SCons Project APl Documentation

166

The Taskmaster can recognize when it's already evaluated a Node, so we don't have to make this list unique for
its intended canonical use case, but we expect there to be a lot of redundancy (long lists of batched .cc files
#including the same .h files over and over), so removing the duplicates once up front should save the
Taskmaster a lot of work.

get _all _prerequisites ()
Returns all unique (order-only) prerequisites for all batches of this Executor.

get _all _sources ()
Returns all sources for all batches of this Executor.

get _all _targets ()
Returns all targets for all batches of this Executor.

get _build_env ()
Fetch or create the appropriate build Environment for this Executor.

get _buil d_scanner _pat h (scanner)
Fetch the scanner path for this executor’s targets and sources.

get _contents ()
Fetch the signature contents. This is the main reason this class exists, so we can compute this once and cache

it regardless of how many target or source Nodes there are.
Returns bytes

get _inplicit_deps ()
Return the executor’s implicit dependencies, i.e. the nodes of the commands to be executed.

get _kw (kw={})

get _lvars ()

get _sources ()

get _tinestanp ()
Fetch a time stamp for this Executor. We don’t have one, of course (only files do), but this is the interface used
by the timestamp module.

get _uni gnor ed_sour ces (node, ignore=())

| vars

nul lify ()

overrideli st

post _acti ons

pre_actions

prepare ()
Preparatory checks for whether this Executor can go ahead and (try to) build its targets.

scan (scanner, node_list)
Scan a list of this Executor’s files (targets or sources) for implicit dependencies and update all of the targets with
them. This essentially short-circuits an N*M scan of the sources for each individual target, which is a hell of a lot
more efficient.

scan_sour ces (scanner)

scan_t ar get s (scanner)

SCons Project APl Documentation
set _action_|ist (action)
SCons. Execut or . Get Bat chExecut or (key)
class SCons. Execut or. Nul | (*args, **kw)
Bases: obj ect
A null Executor, with a null build Environment, that does nothing when the rest of the methods call it.
This might be able to disappear when we refactor things to disassociate Builders from Nodes entirely, so we're not
going to worry about unit tests for this—at least for now.
_changed_sources_|Ii st
_changed_targets_list
_do_execute
_execute_str
neno

_mor ph ()
Morph this Null executor to a real Executor object.

_unchanged_sources_Ii st
_unchanged_targets_li st
action_list
add_post _acti on (action)
add_pre_acti on (action)

bat ches

bui | der _kw

cl eanup ()

env

get _action_list ()

get _action_side_effects ()
get _action_targets ()

get _all _children ()

get _all _prerequisites ()
get _all _sources ()

get _all _targets ()

get _build_env ()

get _buil d_scanner_path ()

get _contents ()

167

SCons Project APl Documentation

get _uni gnor ed_sour ces (*args, **kw)
| vars

overrideli st

post _acti ons

pre_actions

prepare ()

set _action_|ist (action)

class SCons. Execut or . Nul | Envi ronnent (*args, **kwargs)
Bases: SCons. Util . Nul |

SCons = <module 'SCons' from '/Users/bdbaddog/devel/scons/git/as_scons/SCons/__init__.py'>
_CacheDi r = <SCons.CacheDir.CacheDir object>
_CacheDi r _pat h = None
get _CacheDir ()
class SCons. Execut or. TSLi st (func)
Bases: col | ecti ons. User Li st
A class that implements $TARGETS or $SOURCES expansions by wrapping an executor Method. This class is
used in the Executor.lvars() to delay creation of NodeList objects until they’'re needed.
Note that we subclass collections.UserList purely so that the is_Sequence() function will identify an object of this
class as a list during variable expansion. We're not really using any collections.UserList methods in practice.

_abc_i nmpl =<_abc_data object>

append (item)
S.append(value) — append value to the end of the sequence

cl ear () - None —remove all items from S
copy ()
count (value) - integer — return number of occurrences of value

ext end (other)
S.extend(iterable) — extend sequence by appending elements from the iterable

i ndex (val ue[,start[,stop]]) — integer — return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

i nsert (i, item)
S.insert(index, value) — insert value before index

pop ([,i ndex]) - item —remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

renove (item)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() — reverse IN PLACE

168

SCons Project APl Documentation

sort (*args, **kwds)

class SCons. Execut or. TSObj ect (func)
Bases: obj ect
A class that implements $TARGET or $SOURCE expansions by wrapping an Executor method.

SCons. Execut or . execut e_acti on_l i st (obj, target, kw)
Actually execute the action list.

SCons. Execut or . execut e_acti ons_str (obj)
SCons. Execut or . execut e_not hi ng (obj, target, kw)
SCons. Execut or. execut e_nul | _str (obj)

SCons. Execut or. get _Nul | Envi ronnent ()
Use singleton pattern for Null Environments.

SCons. Execut or. rfil e (node)
A function to return the results of a Node’s rfile() method, if it exists, and the Node itself otherwise (if it's a Value
Node, e.g.).

SCons.Job module
Serial and Parallel classes to execute build tasks.

The Jobs class provides a higher level interface to start, stop, and wait on jobs.

class SCons. Job. I nterrupt St at e
Bases: obj ect

set ()

class SCons. Job. Jobs (num, taskmaster)
Bases: obj ect
An instance of this class initializes N jobs, and provides methods for starting, stopping, and waiting on all N jobs.

_reset_sig_handl er ()
Restore the signal handlers to their previous state (before the call to _setup_sig_handler().

_setup_sig_handl er ()
Setup an interrupt handler so that SCons can shutdown cleanly in various conditions:

a. SIGINT: Keyboard interrupt
b. SIGTERM: kill or system shutdown

c. SIGHUP: Controlling shell exiting) . _
We handle all of these cases by stopping the taskmaster. It turns out that it's very difficult to stop the build

process by throwing asynchronously an exception such as KeyboardInterrupt. For example, the python
Condition variables (threading.Condition) and queues do not seem to be asynchronous-exception-safe. It would
require adding a whole bunch of try/finally block and except Keyboardinterrupt all over the place.

Note also that we have to be careful to handle the case when SCons forks before executing another process. In
that case, we want the child to exit immediately.

run (post func=<functi on Jobs. <l anbda>>)
Run the jobs.
postfunc() will be invoked after the jobs has run. It will be invoked even if the jobs are interrupted by a keyboard
interrupt (well, in fact by a signal such as either SIGINT, SIGTERM or SIGHUP). The execution of postfunc() is
protected against keyboard interrupts and is guaranteed to run to completion.

were_interrupted ()
Returns whether the jobs were interrupted by a signal.

class SCons. Job. Par al | el (taskmaster, num, stack_size)

169

SCons Project APl Documentation

Bases: obj ect

This class is used to execute tasks in parallel, and is somewhat less efficient than Serial, but is appropriate for
parallel builds.

This class is thread safe.

start ()
Start the job. This will begin pulling tasks from the taskmaster and executing them, and return when there are no
more tasks. If a task fails to execute (i.e. execute() raises an exception), then the job will stop.

class SCons. Job. Seri al (taskmaster)
Bases: obj ect
This class is used to execute tasks in series, and is more efficient than Parallel, but is only appropriate for
non-parallel builds. Only one instance of this class should be in existence at a time.
This class is not thread safe.

start ()
Start the job. This will begin pulling tasks from the taskmaster and executing them, and return when there are no
more tasks. If a task fails to execute (i.e. execute() raises an exception), then the job will stop.
class SCons. Job. Thr eadPool (hum, stack_size, interrupted)
Bases: obj ect
This class is responsible for spawning and managing worker threads.

cl eanup ()
Shuts down the thread pool, giving each worker thread a chance to shut down gracefully.

get ()
Remove and return a result tuple from the results queue.

preparation_fail ed (task)

put (task)
Put task into request queue.

class SCons. Job. Wr ker (requestQueue, resultsQueue, interrupted)
Bases: t hr eadi ng. Thr ead
A worker thread waits on a task to be posted to its request queue, dequeues the task, executes it, and posts a
tuple including the task and a boolean indicating whether the task executed successfully.
_bootstrap ()

_bootstrap_i nner ()

_delete()
Remove current thread from the dict of currently running threads.

_exc_info()
exc_info() -> (type, value, traceback)
Return information about the most recent exception caught by an except clause in the current stack frame or in
an older stack frame.

_initialized=False

_reset _internal _I ocks (is_alive)

_set _ident ()

_set _tstate_ | ock ()

Set a lock object which will be released by the interpreter when the underlying thread state (see pystate.h) gets
deleted.

170

SCons Project APl Documentation

_stop ()

_wait_for_tstate_ | ock (block=True, timeout=- 1)

property daenon
A boolean value indicating whether this thread is a daemon thread.
This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from the
creating thread; the main thread is not a daemon thread and therefore all threads created in the main thread
default to daemon = False.
The entire Python program exits when only daemon threads are left.

get Nane ()

property i dent
Thread identifier of this thread or None if it has not been started.
This is a nonzero integer. See the get_ident() function. Thread identifiers may be recycled when a thread exits
and another thread is created. The identifier is available even after the thread has exited.

i sAlive ()
Return whether the thread is alive.
This method is deprecated, use is_alive() instead.

i sDaenon ()

is_alive()
Return whether the thread is alive.
This method returns True just before the run() method starts until just after the run() method terminates. The
module function enumerate() returns a list of all alive threads.

j oi n (timeout=None)
Wait until the thread terminates.
This blocks the calling thread until the thread whose join() method is called terminates — either normally or
through an unhandled exception or until the optional timeout occurs.
When the timeout argument is present and not None, it should be a floating point number specifying a timeout
for the operation in seconds (or fractions thereof). As join() always returns None, you must call is_alive() after
join() to decide whether a timeout happened — if the thread is still alive, the join() call timed out.
When the timeout argument is not present or None, the operation will block until the thread terminates.
A thread can be join()ed many times.
join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock. It is
also an error to join() a thread before it has been started and attempts to do so raises the same exception.

property name
A string used for identification purposes only.
It has no semantics. Multiple threads may be given the same name. The initial name is set by the constructor.

run ()
Method representing the thread'’s activity.
You may override this method in a subclass. The standard run() method invokes the callable object passed to
the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from the
args and kwargs arguments, respectively.

set Daenon (daemonic)
set Nane (name)
start ()
Start the thread’s activity.
It must be called at most once per thread object. It arranges for the object’'s run() method to be invoked in a

separate thread of control.
This method will raise a RuntimeError if called more than once on the same thread object.

171

SCons Project APl Documentation

SCons.Memoize module
Decorator-based memoizer to count caching stats.

A decorator-based implementation to count hits and misses of the computed values that various methods cache in
memory.

Use of this modules assumes that wrapped methods be coded to cache their values in a consistent way. In
particular, it requires that the class uses a dictionary named “_memo” to store the cached values.

Here is an example of wrapping a method that returns a computed value, with no input parameters:

@Cons. Menoi ze. Count Met hodCal |
def foo(self):

try: # Menoi zati on
return self._nmeno['foo'] # Menoi zati on
except KeyError: # Menoi zati on
pass # Menoi zati on

result = self.conmpute_foo_val ue()
self. nmeno['foo'] = result # Menoi zati on

return result

Here is an example of wrapping a method that will return different values based on one or more input arguments:

def _bar_ key(sel f, argunment): # Menoi zati on
return argunent # Menoi zati on

@Cons. Meni ze. Count Di ct Cal | (_bar _key)
def bar(self, argunment):

meno_key = argunent # Menoi zati on
try: # Menoi zati on
meno_dict = self. neno[' bar'] # Menoi zati on
except KeyError: # Menoi zati on
meno_dict = {} # Menoi zati on
self. nmemo['dict'] = nmeno_dict # Menoi zati on
el se: # Menoi zati on
try: # Menoi zati on
return neno_dict[meno_key] # Menoi zati on
except KeyError: # Menoi zati on
pass # Menoi zati on

result = self.conpute_bar_val ue(argunent)
meno_di ct [neno_key] = result # Menoi zati on

return result

Deciding what to cache is tricky, because different configurations can have radically different performance tradeoffs,
and because the tradeoffs involved are often so non-obvious. Consequently, deciding whether or not to cache a
given method will likely be more of an art than a science, but should still be based on available data from this
module. Here are some VERY GENERAL guidelines about deciding whether or not to cache return values from a
method that’s being called a lot:

— The first question to ask is, “Can we change the calling code

so this method isn't called so often?” Sometimes this can be done by changing the algorithm. Sometimes
the caller should be memoized, not the method you're looking at.

The memoized function should be timed with multiple configurations to make sure it doesn’t inadvertently slow
down some other configuration.

172

SCons Project APl Documentation

—When memoizing values based on a dictionary key composed of
input arguments, you don’t need to use all of the arguments if some of them don't affect the return values.

class SCons. Menoi ze. Count Di ct (cls_name, method name, keymaker)
Bases: SCons. Menpi ze. Count er
A counter class for memoized values stored in a dictionary, with keys based on the method’s input arguments.
A CountDict object is instantiated in a decorator for each of the class’s methods that memoizes its return value in a
dictionary, indexed by some key that can be computed from one or more of its input arguments.

count (*args, **kw)
Counts whether the computed key value is already present in the memoization dictionary (a hit) or not (a miss).

di splay ()

key ()

SCons. Menpi ze. Count Di ct Cal | (keyfunc)
Decorator for counting memoizer hits/misses while accessing dictionary values with a key-generating function.
Like CountMethodCall above, it wraps the given method fn and uses a CountDict object to keep track of the
caching statistics. The dict-key function keyfunc has to get passed in the decorator call and gets stored in the
CountDict instance. Wrapping gets enabled by calling EnableMemoization().

SCons. Menpi ze. Count Met hodCal | (fn)
Decorator for counting memoizer hits/misses while retrieving a simple value in a class method. It wraps the given
method fn and uses a CountValue object to keep track of the caching statistics. Wrapping gets enabled by calling
EnableMemoization().

class SCons. Menoi ze. Count Val ue (cls_name, method_name)
Bases: SCons. Menpi ze. Count er
A counter class for simple, atomic memoized values.
A CountValue object should be instantiated in a decorator for each of the class’s methods that memoizes its return
value by simply storing the return value in its _memo dictionary.

count (*args, **kw)
Counts whether the memoized value has already been set (a hit) or not (a miss).

di splay ()

key ()

class SCons. Menoi ze. Count er (cls_name, method_name)
Bases: obj ect
Base class for counting memoization hits and misses.
We expect that the initialization in a matching decorator will fill in the correct class name and method name that
represents the name of the function being counted.

di splay ()

key ()

SCons. Menpi ze. Dunp (titte=None)
Dump the hit/miss count for all the counters collected so far.

SCons. Menoi ze. Enabl eMenoi zati on ()

SCons.PathList module

Handle lists of directory paths.

These are the path lists that get set as CPPPATH, LIBPATH, etc.) with as much caching of data and efficiency as we
can, while still keeping the evaluation delayed so that we Do the Right Thing (almost) regardless of how the variable
is specified.

173

SCons Project APl Documentation

SCons. Pat hLi st . Pat hLi st (pathlist)
Returns the cached _PathList object for the specified pathlist, creating and caching a new object as necessary.

class SCons. Pat hLi st . _Pat hLi st (pathlist)
Bases: obj ect
An actual PathList object.

subst _pat h (env, target, source)
Performs construction variable substitution on a pre-digested PathList for a specific target and source.

SCons. Pat hLi st. node_conv (obj)
This is the “string conversion” routine that we have our substitutions use to return Nodes, not strings. This relies on
the fact that an EntryProxy object has a get() method that returns the underlying Node that it wraps, which is a bit
of architectural dependence that we might need to break or modify in the future in response to additional
requirements.

SCons.SConf module
Autoconf-like configuration support.

In other words, SConf allows to run tests on the build machine to detect capabilities of system and do some things
based on result: generate config files, header files for C/C++, update variables in environment.

Tests on the build system can detect if compiler sees header files, if libraries are installed, if some command line
options are supported etc.

SCons. SConf . CheckCC (context)

SCons. SConf . CheckCHeader (context, header, include_quotes=""")
Atest for a C header file.

SCons. SConf . Check CXX (context)

SCons. SConf . CheckCXXHeader (context, header, include_quotes="")
A test for a C++ header file.

class SCons. SConf . CheckCont ext (sconf)
Bases: obj ect

Provides a context for configure tests. Defines how a test writes to the screen and log file.
A typical test is just a callable with an instance of CheckContext as first argument:

def CheckCustom(context, ...):
context.Message(‘Checking my weird test ...) ret = myWeirdTestFunction(...) context.Result(ret)

Often, myWeirdTestFunction will be one of context.TryCompile/context. TryLink/context.TryRun. The results of
those are cached, for they are only rebuild, if the dependencies have changed.

AppendLI BS (lib_name_list)

Bui | dPr og (text, ext)

Conpi | ePr og (text, ext)

Conpi | eShar edbj ect (text, ext)

Di spl ay (msg)

Log (msg)

Message (text)
Inform about what we are doing right now, e.g. ‘Checking for SOMETHING ... *

Pr ependLI BS (lib_name_list)

Resul t (res)

174

SCons Project APl Documentation

Inform about the result of the test. If res is not a string, displays ‘yes’ or ‘no’ depending on whether res is
evaluated as true or false. The result is only displayed when self.did_show_result is not set.

RunPr og (text, ext)

Set LI BS (val)

TryActi on (*args, **kw)
TryBui | d (*Yargs, **kw)
TryConpi | e (*args, **kw)
TryLi nk (*args, **kw)

Tr yRun (*args, **kw)
SCons. SConf . CheckDecl ar at i on (context, declaration, includes=", language=None)
SCons. SConf . CheckFunc (context, function_name, header=None, language=None)

SCons. SConf . CheckHeader (context, header, include_quotes='<>", language=None)
A test for a C or C++ header file.

SCons. SConf . CheckLi b (context, library=None, symbol="main’, header=None, language=None, autoadd=1)
A test for a library. See also CheckLibWithHeader. Note that library may also be None to test whether the given
symbol compiles without flags.

SCons. SConf. CheckLi bW t hHeader (context, libs, header, language, call=None, autoadd=1)
Another (more sophisticated) test for a library. Checks, if library and header is available for language (may be ‘C’
or ‘CXX’"). Call maybe be a valid expression _with_ a trailing ‘;’. As in CheckLib, we support library=None, to test if
the call compiles without extra link flags.

SCons. SConf . CheckPr og (context, prog_name)
Simple check if a program exists in the path. Returns the path for the application, or None if not found.

SCons. SConf . Check SHCC (context)

SCons. SConf . Check SHCXX (context)

SCons. SConf . CheckType (context, type_name, includes=", language=None)

SCons. SConf. CheckTypeSi ze (context, type_name, includes=", language=None, expect=None)
exception SCons. SConf . Confi gur eCacheError (target)

Bases: SCons. SConf . SConf Er r or
Raised when a use explicitely requested the cache feature, but the test is run the first time.

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. SConf . Conf i gur eDr yRunErr or (target)
Bases: SCons. SConf . SConf Er r or
Raised when a file or directory needs to be updated during a Configure process, but the user requested a dry-run

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

SCons. SConf . Cr eat eConfi gHBui | der (env)
Called if necessary just before the building targets phase begins.

SCons. SConf. NeedConf i gHBui | der ()

175

SCons Project APl Documentation

SCons. SConf . SConf (*args, **kw)

class SCons. SConf . SConf Base (env, custom_tests={}, conf_dir="$CONFIGUREDIR',
log_file="$CONFIGURELOG', config_h=None, _depth=0)
Bases: obj ect
This is simply a class to represent a configure context. After creating a SConf object, you can call any tests. After
finished with your tests, be sure to call the Finish() method, which returns the modified environment. Some words
about caching: In most cases, it is not necessary to cache Test results explicitly. Instead, we use the scons
dependency checking mechanism. For example, if one wants to compile a test program (SConf.TryLink), the
compiler is only called, if the program dependencies have changed. However, if the program could not be
compiled in a former SConf run, we need to explicitly cache this error.

AddTest (test_name, test_instance)
Adds test_class to this SConf instance. It can be called with self.test_name(...)

AddTest s (tests)
Adds all the tests given in the tests dictionary to this SConf instance

Bui | dNodes (nodes)
Tries to build the given nodes immediately. Returns 1 on success, 0 on error.

Def i ne (name, value=None, comment=None)
Define a pre processor symbol name, with the optional given value in the current config header.
If value is None (default), then #define name is written. If value is not none, then #define name value is written.
comment is a string which will be put as a C comment in the header, to explain the meaning of the value
(appropriate C comments will be added automatically).

Fi ni sh ()
Call this method after finished with your tests: env = sconf.Finish()

class Test W apper (test, sconf)
Bases: obj ect
A wrapper around Tests (to ensure sanity)

TryAct i on (action, text=None, extension=")
Tries to execute the given action with optional source file contents <text> and optional source file extension
<extension>, Returns the status (0 : failed, 1 : ok) and the contents of the output file.

TryBui | d (builder, text=None, extension=")
Low level TryBuild implementation. Normally you don't need to call that - you can use TryCompile / TryLink /
TryRun instead

TryConpi | e (text, extension)
Compiles the program given in text to an env.Object, using extension as file extension (e.g. ‘.c’). Returns 1, if
compilation was successful, 0 otherwise. The target is saved in self.lastTarget (for further processing).

TryLi nk (text, extension)
Compiles the program given in text to an executable env.Program, using extension as file extension (e.g. ‘.c’).
Returns 1, if compilation was successful, 0 otherwise. The target is saved in self.lastTarget (for further
processing).

Tr yRun (text, extension)
Compiles and runs the program given in text, using extension as file extension (e.g. ‘.c’). Returns (1, outputStr)
on success, (0, ") otherwise. The target (a file containing the program’s stdout) is saved in self.lastTarget (for
further processing).

_createbDir (node)

_shut down ()
Private method. Reset to non-piped spawn

176

SCons Project APl Documentation

_startup ()
Private method. Set up logstream, and set the environment variables necessary for a piped build

pspawn_wr apper (sh, escape, cmd, args, env)
Wrapper function for handling piped spawns.
This looks to the calling interface (in Action.py) like a “normal” spawn, but associates the call with the PSPAWN
variable from the construction environment and with the streams to which we want the output logged. This gets
slid into the construction environment as the SPAWN variable so Action.py doesn’'t have to know or care
whether it's spawning a piped command or not.

class SCons. SConf . SConf Bui | dl nfo

177

Bases: SCons. Node. FS. Fi | eBui | dl nfo

Special build info for targets of configure tests. Additional members are result (did the builder succeed last time?)

and string, which contains messages of the original build phase.

bact

bactsi g

bdepends

bdependsi gs

bimplicit

bi nmpl i citsigs

bsour ces

bsour cesi gs

convert _from sconsi gn (dir, name)
Converts a newly-read FileBuildInfo object for in-SCons use
For normal up-to-date checking, we don’t have any conversion to perform—but we're leaving this method here to
make that clear.

convert _to_sconsign ()
Converts this FileBuildinfo object for writing to a .sconsign file
This replaces each Node in our various dependency lists with its usual string representation: relative to the
top-level SConstruct directory, or an absolute path if it's outside.

current _version_id=2

dependency_map

f or mat (names=0)

mer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

pr epar e_dependenci es ()
Prepares a FileBuildinfo object for explaining what changed
The bsources, bdepends and bimplicit lists have all been stored on disk as paths relative to the top-level
SConstruct directory. Convert the strings to actual Nodes (for use by the —debug=explain code and
—implicit-cache).

resul t

set _buil d_result (result, string)

SCons Project APl Documentation

string

class SCons. SConf . SConf Bui | dTask (tm, targets, top, node)
Bases: SCons. Taskmast er . Al waysTask
This is almost the same as SCons.Script.BuildTask. Handles SConfErrors correctly and knows about the current
cache_mode.

_abc_i mpl =<_abc_data object>

_exception_raise|)

Raises a pending exception that was recorded while getting a Task ready for execution.

_no_exception_to_raise()

col l ect _node_states ()

di spl ay (message)

Hook to allow the calling interface to display a message.

This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the

alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see

those messages.

di spl ay_cached_stri ng (bi)

Logs the original builder messages, given the SConfBuildInfo instance bi.

exc_cl ear ()

Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info()

Returns info about a recorded exception.

excepti on_set (exception=None)

Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execut e ()

Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

execut ed ()

Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.

This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_wi th_cal |l backs ()

Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.

This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

execut ed_wi t hout cal I backs ()

178

Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

SCons Project APl Documentation

fail _continue()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail _stop()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get _target ()
Fetch the target being built or updated by this task.

make ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what's necessary.

make ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons
-Cc” option.

make ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what's necessary.

needs_execut e ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):
needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute

post process ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_nessage (method, node, description="node")

exception SCons. SConf . SConf Err or (msg)
Bases: SCons. Errors. User Error

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

179

SCons Project APl Documentation

exception SCons. SConf . SConf War ni ng
Bases: SCons. War ni ngs. SConsWar ni ng

ar gs
wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.
SCons. SConf . Set Bui | dType (buildtype)

SCons. SConf . Set CacheMbde (mode)
Set the Configure cache mode. mode must be one of “auto”, “force”, or “cache”.

SCons. SConf . Set Pr ogr essDi spl ay (display)
Set the progress display to use (called from SCons.Script)

class SCons. SConf . St r eaner (orig)
Bases: obj ect
‘Sniffer’ for a file-like writable object. Similar to the unix tool tee.

f1ush ()

getval ue ()
Return everything written to orig since the Streamer was created.

write (str)

writelines (lines)
SCons. SConf. _creat eConfi gH (target, source, env)
SCons. SConf. _creat eSour ce (target, source, env)
SCons. SConf. _set conftest _node (node)
SCons. SConf . _stri ngConfi gH (target, source, env)
SCons. SConf. _stri ngSour ce (target, source, env)

SCons. SConf . cr eat el ncl udesFr onHeader s (headers, leavelLast, include_quotes="")

SCons.SConsign module

Operations on signature database files (.sconsign).

class SCons. SConsi gn. Base
Bases: obj ect
This is the controlling class for the signatures for the collection of entries associated with a specific directory. The
actual directory association will be maintained by a subclass that is specific to the underlying storage method. This
class provides a common set of methods for fetching and storing the individual bits of information that make up
signature entry.
do_not _set _entry (filename, obj)
do_not _st or e_i nf o (filename, node)

get _entry (flename)
Fetch the specified entry attribute.

mer ge ()

set _entry (flename, obj)
Set the entry.

st or e_i nf o (filename, node)

180

SCons Project APl Documentation

class SCons. SConsi gn. DB (dir)
Bases: SCons. SConsi gn. Base
A Base subclass that reads and writes signature information from a global .sconsign.db* file—the actual file suffix is
determined by the database module.
do_not _set _entry (filename, obj)
do_not _store_i nf o (filename, node)

get _entry (filename)
Fetch the specified entry attribute.

mer ge ()

set _entry (flename, obj)
Set the entry.

st ore_i nf o (filename, node)
write (sync=1)

class SCons. SConsi gn. Di r (fp=None, dir=None)
Bases: SCons. SConsi gn. Base

do_not _set _entry (filename, obj)
do_not _st ore_i nf o (filename, node)

get _entry (filename)
Fetch the specified entry attribute.

mer ge ()

set _entry (flename, obj)
Set the entry.

st ore_i nf o (filename, node)
class SCons. SConsi gn. Di r Fi | e (dir)
Bases: SCons. SConsi gn. Di r
Encapsulates reading and writing a per-directory .sconsign file.
do_not _set _entry (filename, obj)

do_not _st ore_i nf o (filename, node)

get _entry (filename)
Fetch the specified entry attribute.

mer ge ()

set _entry (flename, obj)
Set the entry.

st ore_i nf o (filename, node)
write (sync=1)
Write the .sconsign file to disk.

Try to write to a temporary file first, and rename it if we succeed. If we can’t write to the temporary file, it's
probably because the directory isn’t writable (and if so, how did we build anything in this directory, anyway?), so

181

SCons Project APl Documentation

try to write directly to the .sconsign file as a backup. If we can’t rename, try to copy the temporary contents back
to the .sconsign file. Either way, always try to remove the temporary file at the end.

SCons. SConsi gn. Fi | e (name, dbm_module=None)
Arrange for all signatures to be stored in a global .sconsign.db* file.

SCons. SConsi gn. ForDirectory
alias of SCons. SConsi gn. DB

SCons. SConsi gn. Get _Dat aBase (dir)

SCons. SConsi gn. Reset ()
Reset global state. Used by unit tests that end up using SConsign multiple times to get a clean slate for each test.

class SCons. SConsi gn. SConsi gnEntry
Bases: obj ect
Wrapper class for the generic entry in a .sconsign file. The Node subclass populates it with attributes as it pleases.
XXX As coded below, we do expect a ‘.binfo’ attribute to be added, but we’ll probably generalize this in the next
refactorings.
bi nf o
convert _from sconsi gn (dir, name)
convert _to_sconsign ()

current _version_id=2

ni nf o
SCons. SConsi gn. corrupt _dblite_warni ng (filename)
SCons. SConsign.wite ()

SCons.Subst module
SCons string substitution.
class SCons. Subst . CndSt ri ngHol der (cmd, literal=None)
Bases: col | ecti ons. User Stri ng
This is a special class used to hold strings generated by scons_subst() and scons_subst_list(). It defines a special
method escape(). When passed a function with an escape algorithm for a particular platform, it will return the
contained string with the proper escape sequences inserted.
_abc_i mpl =<_abc_data object>
capitalize()
casefol d ()
cent er (width, *args)
count (value) - integer — return number of occurrences of value
encode (encoding=None, errors=None)
endswi t h (suffix, start=0, end=9223372036854775807)
escape (escape_func, quot e_func=<functi on quote_spaces>)
Escape the string with the supplied function. The function is expected to take an arbitrary string, then return it

with all special characters escaped and ready for passing to the command interpreter.
After calling this function, the next call to str() will return the escaped string.

182

SCons Project APl Documentation

expandt abs (tabsize=8)
find (sub, start=0, end=9223372036854775807)
f or mat (*args, **kwds)

f or mat _map (mapping)

ndex (val ue[,start[,stop]]) - integer — return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

s literal ()

sal num()

sal pha ()

sascii ()

sdeci mal ()

sdigit ()

sidentifier ()

sl owner ()

snurreric ()

sprintable()

sspace ()

stitle()

supper ()

oi n (seq)

[u—

| j ust (width, *args)

| owner ()

| strip (chars=None)

maket r ans (y=None, z=None, /)
Return a translation table usable for str.translate().
If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters to
Unicode ordinals, strings or None. Character keys will be then converted to ordinals. If there are two arguments,
they must be strings of equal length, and in the resulting dictionary, each character in x will be mapped to the
character at the same position in y. If there is a third argument, it must be a string, whose characters will be
mapped to None in the result.

partition (sep)

r epl ace (old, new, maxsplit=- 1)

rfind (sub, start=0, end=9223372036854775807)

ri ndex (sub, start=0, end=9223372036854775807)

183

SCons Project APl Documentation

rj ust (width, *args)

rpartition (sep)

rsplit (sep=None, maxsplit=- 1)

rstrip (chars=None)

split (sep=None, maxsplit=- 1)

splitlines (keepends=False)

startswi t h (prefix, start=0, end=9223372036854775807)

strip (chars=None)

swapcase ()

title()

transl at e (*args)

upper ()

zfill (width)

class SCons. Subst . Li st Subber (env, mode, conv, gvars)

Bases: col | ecti ons. User Li st

A class to construct the results of a scons_subst_list() call.

Like StringSubber, this class binds a specific construction environment, mode, target and source with two methods

(substitute() and expand()) that handle the expansion.

In addition, however, this class is used to track the state of the result(s) we're gathering so we can do the

appropriate thing whenever we have to append another word to the result-start a new line, start a new word,

append to the current word, etc. We do this by setting the “append” attribute to the right method so that our

wrapper methods only need ever call ListSubber.append(), and the rest of the object takes care of doing the right

thing internally.

_abc_i mpl =<_abc_data object>

add_new wor d (x)

add_to_current _word (x)
Append the string x to the end of the current last word in the result. If that is not possible, then just add it as a
new word. Make sure the entire concatenated string inherits the object attributes of x (in particular, the escape

function) by wrapping it as CmdStringHolder.

append (item)
S.append(value) — append value to the end of the sequence

cl ear () - None —remove all items from S

close_strip(x)
Handle the “close strip” $) token.

copy ()
count (value) - integer — return number of occurrences of value

expand (s, Ivars, within_list)
Expand a single “token” as necessary, appending the expansion to the current result.

184

SCons Project APl Documentation

This handles expanding different types of things (strings, lists, callables) appropriately. It calls the wrapper
substitute() method to re-expand things as necessary, so that the results of expansions of side-by-side strings
still get re-evaluated separately, not smushed together.

expanded (s)
Determines if the string s requires further expansion.
Due to the implementation of ListSubber expand will call itself 2 additional times for an already expanded string.
This method is used to determine if a string is already fully expanded and if so exit the loop early to prevent
these recursive calls.

ext end (other)
S.extend(iterable) — extend sequence by appending elements from the iterable

i ndex (val ue[,start[,stop]]) - integer — return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

i nsert (i, item)
S.insert(index, value) — insert value before index

literal (x)
next _line()
Arrange for the next word to start a new line. This is like starting a new word, except that we have to append

another line to the result.

next _word ()
Arrange for the next word to start a new word.

open_strip (x)
Handle the “open strip” $(token.

pop ([,i ndex]) - item —remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

renove (item)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() — reverse IN PLACE

sort (*args, **kwds)
substi t ut e (args, Ivars, within_list)
Substitute expansions in an argument or list of arguments.

This serves as a wrapper for splitting up a string into separate tokens.

this word()
Arrange for the next word to append to the end of the current last word in the result.

class SCons. Subst . Li teral (Istr)
Bases: obj ect
A wrapper for a string. If you use this object wrapped around a string, then it will be interpreted as literal. When
passed to the command interpreter, all special characters will be escaped.
escape (escape_func)

for_signature()

is literal ()

185

SCons Project APl Documentation

class SCons. Subst. NLW apper (list, func)
Bases: obj ect
A wrapper class that delays turning a list of sources or targets into a NodeList until it's needed. The specified
function supplied when the object is initialized is responsible for turning raw nodes into proxies that implement the
special attributes like .abspath, .source, etc. This way, we avoid creating those proxies just “in case” someone is
going to use $TARGET or the like, and only go through the trouble if we really have to.
In practice, this might be a wash performance-wise, but it's a little cleaner conceptually...

_create_nodelist ()
_gen_nodelist ()
_return_nodelist ()

class SCons. Subst . Nul | NodelLi st (*args, **kwargs)
Bases: SCons. Util . Nul | Seq

_instance

SCons. Subst . Nul | NodesLi st
SCons. Subst . Set Al | owabl eExcept i ons (*excepts)

class SCons. Subst . Speci al Attr W apper (Istr, for_signature=None)
Bases: obj ect
This is a wrapper for what we call a ‘Node special attribute.” This is any of the attributes of a Node that we can
reference from Environment variable substitution, such as $TARGET.abspath or $SOURCES[1].filebase. We
implement the same methods as Literal so we can handle special characters, plus a for_signature method, such
that we can return some canonical string during signature calculation to avoid unnecessary rebuilds.

escape (escape_func)
for_signature()
is_literal ()

class SCons. Subst . St ri ngSubber (env, mode, conv, gvars)
Bases: obj ect
A class to construct the results of a scons_subst() call.
This binds a specific construction environment, mode, target and source with two methods (substitute() and
expand()) that handle the expansion.

expand (s, Ivars)
Expand a single “token” as necessary, returning an appropriate string containing the expansion.
This handles expanding different types of things (strings, lists, callables) appropriately. It calls the wrapper
substitute() method to re-expand things as necessary, so that the results of expansions of side-by-side strings
still get re-evaluated separately, not smushed together.

substi t ut e (args, Ivars)
Substitute expansions in an argument or list of arguments.
This serves as a wrapper for splitting up a string into separate tokens.

class SCons. Subst . Tar get _or _Sour ce (nl)
Bases: obj ect
A class that implements $TARGET or $SOURCE expansions by in turn wrapping a NLWrapper. This class
handles the different methods used to access an individual proxy Node, calling the NLWrapper to create a proxy
on demand.

class SCons. Subst . Target s_or_Sour ces (nl)
Bases: col | ecti ons. User Li st

186

SCons Project APl Documentation

A class that implements $TARGETS or $SOURCES expansions by in turn wrapping a NLWrapper. This class
handles the different methods used to access the list, calling the NLWrapper to create proxies on demand.

Note that we subclass collections.UserList purely so that the is_Sequence() function will identify an object of this
class as a list during variable expansion. We're not really using any collections.UserList methods in practice.

_abc_i mpl =<_abc_data object>

append (item)
S.append(value) — append value to the end of the sequence

cl ear () - None —remove all items from S

copy ()

count (value) - integer — return number of occurrences of value

ext end (other)
S.extend(iterable) — extend sequence by appending elements from the iterable

i ndex (val ue[,start[,stop]]) - integer — return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

i nsert (i, item)
S.insert(index, value) — insert value before index

pop ([,i ndex]) - item —remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

renove (item)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() — reverse IN PLACE

sort (*args, **kwds)
SCons. Subst. _renove | i st (list)
SCons. Subst. _rm |i st (list)

SCons. Subst . escape_l i st (mylist, escape_func)
Escape a list of arguments by running the specified escape_func on every object in the list that has an escape()
method.

SCons. Subst . quot e_spaces (arg)
Generic function for putting double quotes around any string that has white space in it.

SCons. Subst . rai se_excepti on (exception, target, s)

SCons. Subst . scons_subst (strSubst, env, mode=1, target=None, source=None, gvars={}, lvars={}, conv=None)
Expand a string or list containing construction variable substitutions.
This is the work-horse function for substitutions in file names and the like. The companion scons_subst_list()
function (below) handles separating command lines into lists of arguments, so see that function if that's what
you're looking for.

SCons. Subst. scons_subst _|i st (strSubst, env, mode=1, target=None, source=None, gvars={}, lvars={},
conv=None)
Substitute construction variables in a string (or list or other object) and separate the arguments into a command
list.
The companion scons_subst() function (above) handles basic substitutions within strings, so see that function
instead if that's what you're looking for.

SCons. Subst. scons_subst _once (strSubst, env, key)
Perform single (non-recursive) substitution of a single construction variable keyword.

187

SCons Project APl Documentation

This is used when setting a variable when copying or overriding values in an Environment. We want to capture
(expand) the old value before we override it, so people can do things like:

env2 = env.Clone(CCFLAGS = ‘$CCFLAGS -g")
We do this with some straightforward, brute-force code here...

SCons. Subst . subst _di ct (target, source)
Create a dictionary for substitution of special construction variables.
This translates the following special arguments:
target - the target (object or array of objects),
used to generate the TARGET and TARGETS construction variables

source - the source (object or array of objects),
used to generate the SOURCES and SOURCE construction variables

SCons.Taskmaster module
Generic Taskmaster module for the SCons build engine.

This module contains the primary interface(s) between a wrapping user interface and the SCons build engine. There
are two key classes here:

Taskmaster

This is the main engine for walking the dependency graph and calling things to decide what does or doesn't
need to be built.

Task
This is the base class for allowing a wrapping interface to decide what does or doesn’t actually need to be done.

The intention is for a wrapping interface to subclass this as appropriate for different types of behavior it may
need.

The canonical example is the SCons native Python interface, which has Task subclasses that handle its specific
behavior, like printing “foo’ is up to date” when a top-level target doesn’t need to be built, and handling the -c
option by removing targets as its “build” action. There is also a separate subclass for suppressing this output
when the -q option is used.

The Taskmaster instantiates a Task object for each (set of) target(s) that it decides need to be evaluated and/or
built.

class SCons. Taskmast er. Al waysTask (tm, targets, top, node)
Bases: SCons. Tasknast er . Task

_abc_i npl =<_abc_data object>

_exception_raise|)
Raises a pending exception that was recorded while getting a Task ready for execution.

_no_exception_to_raise()

di spl ay (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_cl ear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info()
Returns info about a recorded exception.

188

SCons Project APl Documentation

excepti on_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execut e ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

execut ed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_wi th_cal |l backs ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

execut ed_wi t hout cal I backs ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

fail _continue()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail _stop()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get _target ()
Fetch the target being built or updated by this task.

make ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what's necessary.

make ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons
-Cc” option.

make ready_current ()

Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what's necessary.

189

SCons Project APl Documentation

needs_execut e ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):
needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute

post process ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary

directories before the Action is actually called to build the targets.
trace_nessage (method, node, description="node")

class SCons. Taskmast er. Qut Of Dat eTask (tm, targets, top, node)
Bases: SCons. Tasknast er . Task

_abc_i npl =<_abc_data object>

_exception_raise|)
Raises a pending exception that was recorded while getting a Task ready for execution.

_no_exception_to _raise()

di spl ay (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info()
Returns info about a recorded exception.

excepti on_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

execut ed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

190

SCons Project APl Documentation

executed_wi th_cal | backs ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

execut ed_wi t hout cal I backs ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

fail _continue()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail _stop()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get _target ()
Fetch the target being built or updated by this task.

make ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what's necessary.

make ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons
-Cc” option.

make ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what's necessary.

needs_execut e ()
Returns True (indicating this Task should be executed) if this Task’s target state indicates it needs executing,
which has already been determined by an earlier up-to-date check.

post process ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_nessage (method, node, description="node")

191

SCons Project APl Documentation

class SCons. Taskmaster. St at s
Bases: obj ect
A simple class for holding statistics about the disposition of a Node by the Taskmaster. If we're collecting statistics,
each Node processed by the Taskmaster gets one of these attached, in which case the Taskmaster records its
decision each time it processes the Node. (Ideally, that’s just once per Node.)

class SCons. Taskmast er. Task (tm, targets, top, node)
Bases: abc. ABC
SCons build engine abstract task class.
This controls the interaction of the actual building of node and the rest of the engine.
This is expected to handle all of the normally-customizable aspects of controlling a build, so any given application
should be able to do what it wants by sub-classing this class and overriding methods as appropriate. If an
application needs to customize something by sub-classing Taskmaster (or some other build engine class), we
should first try to migrate that functionality into this class.
Note that it's generally a good idea for sub-classes to call these methods explicitly to update state, etc., rather than
roll their own interaction with Taskmaster from scratch.

_abc_i nmpl =<_abc_data object>

_exception_raise|)
Raises a pending exception that was recorded while getting a Task ready for execution.

_no_exception_to_raise()

di spl ay (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_cl ear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info()
Returns info about a recorded exception.

exception_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execut e ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

execut ed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_wi th_cal |l backs ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call

192

SCons Project APl Documentation

“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

execut ed_wi t hout cal I backs ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

fail _continue()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail _stop()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get _target ()
Fetch the target being built or updated by this task.

make ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what's necessary.

make ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons
-Cc” option.

make ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what's necessary.

abstract needs_execut e ()

post process ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_nessage (method, node, description="node")
class SCons. Taskmast er. Tasknmast er (targets=[], tasker=None, order=None, trace=None)
Bases: obj ect

The Taskmaster for walking the dependency DAG.

_find_next _ready_node ()
Finds the next node that is ready to be built.

193

SCons Project APl Documentation

This is the main guts of the DAG walk. We loop through the list of candidates, looking for something that has no
un-built children (i.e., that is a leaf Node or has dependencies that are all leaf Nodes or up-to-date). Candidate
Nodes are re-scanned (both the target Node itself and its sources, which are always scanned in the context of a
given target) to discover implicit dependencies. A Node that must wait for some children to be built will be put
back on the candidates list after the children have finished building. A Node that has been put back on the
candidates list in this way may have itself (or its sources) re-scanned, in order to handle generated header files
(e.g.) and the implicit dependencies therein.

Note that this method does not do any signature calculation or up-to-date check itself. All of that is handled by
the Task class. This is purely concerned with the dependency graph walk.

_val i date_pendi ng_children ()

cl

fi

194

Validate the content of the pending_children set. Assert if an internal error is found.

This function is used strictly for debugging the taskmaster by checking that no invariants are violated. It is not
used in normal operation.

The pending_children set is used to detect cycles in the dependency graph. We call a “pending child” a child that
is found in the “pending” state when checking the dependencies of its parent node.

A pending child can occur when the Taskmaster completes a loop through a cycle. For example, let's imagine a
graph made of three nodes (A, B and C) making a cycle. The evaluation starts at node A. The Taskmaster first
considers whether node A’s child B is up-to-date. Then, recursively, node B needs to check whether node C is
up-to-date. This leaves us with a dependency graph looking like:

Next candi dat e

Now, when the Taskmaster examines the Node C'’s child Node A, it finds that Node A is in the “pending” state.
Therefore, Node A is a pending child of node C.

Pending children indicate that the Taskmaster has potentially loop back through a cycle. We say potentially
because it could also occur when a DAG is evaluated in parallel. For example, consider the following graph:

Node A (Pending) --> Node B(Pending) --> Node C (Pending) --> ...
AN

S > Node D (NoState) -------- +
/
Next candi date /

The Taskmaster first evaluates the nodes A, B, and C and starts building some children of node C. Assuming,
that the maximum parallel level has not been reached, the Taskmaster will examine Node D. It will find that
Node C is a pending child of Node D.

In summary, evaluating a graph with a cycle will always involve a pending child at one point. A pending child
might indicate either a cycle or a diamond-shaped DAG. Only a fraction of the nodes ends-up being a “pending
child” of another node. This keeps the pending_children set small in practice.

We can differentiate between the two cases if we wait until the end of the build. At this point, all the pending
children nodes due to a diamond-shaped DAG will have been properly built (or will have failed to build). But, the
pending children involved in a cycle will still be in the pending state.

The taskmaster removes nodes from the pending_children set as soon as a pending_children node moves out
of the pending state. This also helps to keep the pending_children set small.

eanup ()
Check for dependency cycles.

nd_next candi date ()

Returns the next candidate Node for (potential) evaluation.

The candidate list (really a stack) initially consists of all of the top-level (command line) targets provided when
the Taskmaster was initialized. While we walk the DAG, visiting Nodes, all the children that haven't finished
processing get pushed on to the candidate list. Each child can then be popped and examined in turn for whether
their children are all up-to-date, in which case a Task will be created for their actual evaluation and potential
building.

SCons Project APl Documentation

Here is where we also allow candidate Nodes to alter the list of Nodes that should be examined. This is used, for
example, when invoking SCons in a source directory. A source directory Node can return its corresponding build
directory Node, essentially saying, “Hey, you really need to build this thing over here instead.”

next task ()
Returns the next task to be executed.
This simply asks for the next Node to be evaluated, and then wraps it in the specific Task subclass with which
we were initialized.

no_next candi dat e ()
Stops Taskmaster processing by not returning a next candidate.
Note that we have to clean-up the Taskmaster candidate list because the cycle detection depends on the fact all
nodes have been processed somehow.

stop ()
Stops the current build completely.

trace_nessage (message)
trace_node (node)

wi I | _not_buil d (nodes, node_func=<functi on Taskmast er. <l anhda>>)
Perform clean-up about nodes that will never be built. Invokes a user defined function on all of these nodes
(including all of their parents).

SCons. Tasknmast er. dunp_stats ()

SCons. Tasknmast er. fi nd_cycl e (stack, visited)

SCons.Util module
Various SCons utility functions.

SCons. Uti | . AddMet hod (obj, function, name=None)
Adds a method to an object.
Adds function to obj if obj is a class object. Adds function as a bound method if obj is an instance object. If obj
looks like an environment instance, use MethodWrapper to add it. If name is supplied it is used as the name of
function.
Although this works for any class object, the intent as a public API is to be used on Environment, to be able to add
a method to all construction environments; it is preferred to use env.AddMethod to add to an individual
environment.

>>> cl ass A:

>>> a = A()

>>> def f(self, x, y):
self.z =x +y

>>> AddMet hod(A, f, "add")
>>> a.add(2, 4)
>>> print(a.z)

6

>>> a.data = ['a'", 'b'", 'c', 'd, ‘e, "f']

>>> AddMet hod(a, |anbda self, i: self.data[i], "listlndex")
>>> print(a.listlndex(3))

d

SCons. Uti | . AddPat hl f Not Exi st s (env_dict, key, path, sep="")
Add a path element to a construction variable.

195

SC

ons Project API Documentation

key is looked up in env_dict, and path is added to it if it is not already present. env_dict[key] is assumed to be in
the format of a PATH variable: a list of paths separated by sep tokens. Example:

>>> env = {' PATH : '/bin:/usr/bin:/usr/local/bin'}
>>> AddPat hl f Not Exi st s(env, 'PATH , '/opt/bin')
>>> print(env[' PATH])

[opt/ bin:/bin:/usr/bin:/usr/local/bin

SCons. Uti | . AppendPat h (oldpath, newpath, sep="", delete_existing=True, canonicalize=None) - Union[list, str]

Appends newpath path elements to oldpath.

Will only add any particular path once (leaving the last one it encounters and ignoring the rest, to preserve path
order), and will os. pat h. nor npat h and os. pat h. nor ntase all paths to help assure this. This can also handle
the case where oldpath is a list instead of a string, in which case a list will be returned instead of a string. For
example:

>>> p = AppendPat h("/f oo/ bar:/foo", "/biz/boom/foo")
>>> print(p)
/ f oo/ bar: /bi z/ boom /f o0

If delete_existing is Fal se, then adding a path that exists will not move it to the end; it will stay where it is in the
list.

>>> p = AppendPat h("/foo/bar:/foo", "/biz/boom/foo", delete_existing=Fal se)
>>> print(p)
/fool/ bar:/foo:/biz/boom

If canonicalize is not None, it is applied to each element of newpath before use.

class SCons. Uti | . CLVar (initlist=None)

196

Bases: col | ecti ons. User Li st

A container for command-line construction variables.

Forces the use of a list of strings intended as command-line arguments. Like col | ecti ons. User Li st, but the
argument passed to the initializter will be processed by the Spl it () function, which includes special handling for
string types: they will be split into a list of words, not coereced directly to a list. The same happens if a string is
added to a CLVar, which allows doing the right thing with both Append() /Pr epend() methods, as well as with
pure Python addition, regardless of whether adding a list or a string to a construction variable.

Side effect: spaces will be stripped from individual string arguments. If you need spaces preserved, pass strings
containing spaces inside a list argument.

>>> u = UserList("--sonme --opts and args")

>>> print(len(u), repr(u))

2 -, "=, 's', 0, ', e, -t o, tp, T, s,) tal, !
>>> ¢ = CLVar("--sonme --opts and args")

>>> print(len(c), repr(c))

4 ['--some', '--opts', 'and', 'args']

>>> ¢ += " strips spaces "

>>> print(len(c), repr(c))

6 ['--some', '--opts', "and', 'args', 'strips', 'spaces']

_abc_i mpl =<_abc_data object>

append (item)
S.append(value) — append value to the end of the sequence

cl ear () - None —remove all items from S
copy ()
count (value) - integer — return number of occurrences of value

ext end (other)
S.extend(iterable) — extend sequence by appending elements from the iterable

SCons Project APl Documentation

i ndex (val ue[,start[,stop]]) - integer — return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

i nsert (i, item)
S.insert(index, value) — insert value before index

pop ([,i ndex]) - item —remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

renove (item)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() — reverse IN PLACE

sort (*args, **kwds)

class SCons. Uti | . Del egat e (attribute)
Bases: obj ect

A Python Descriptor class that delegates attribute fetches to an underlying wrapped subject of a Proxy. Typical
use:

cl ass Foo(Proxy):
_str__ = Delegate('__str__")

class SCons. Uti | . Di spl ayEngi ne
Bases: obj ect
A callable class used to display SCons messages.

print_it =True

set _node (mode)

SCons. Util .1 DX(n) - bool
Generate in index into strings from the tree legends.
These are always a choice between two, so bool works fine.

class SCons. Uti | . Logi cal Li nes (fileobj)
Bases: obj ect
Wrapper class for the logical_lines method.
Allows us to read all “logical” lines at once from a given file object.

readl i nes ()

SCons. Uti | . MD5col | ect (signatures)
Deprecated. Use hash_col | ect () instead.

SCons. Uti| . MD5fi |l esi gnat ur e (fname, chunksize=65536)
Deprecated. Use hash_fi |l e_si gnat ur e() instead.

SCons. Uti | . MD5si gnat ur e (s)
Deprecated. Use hash_si gnhat ur e() instead.

class SCons. Uti | . Met hodW apper (obj, method, name=None)
Bases: obj ect
A generic Wrapper class that associates a method with an object.
As part of creating this MethodWrapper object an attribute with the specified name (by default, the name of the
supplied method) is added to the underlying object. When that new “method” is called, our __cal | _ () method
adds the object as the first argument, simulating the Python behavior of supplying “self” on method calls.

197

SCons Project APl Documentation

We hang on to the name by which the method was added to the underlying base class so that we can provide a
method to “clone” ourselves onto a new underlying object being copied (without which we wouldn’t need to save
that info).

cl one (new_object)
Returns an object that re-binds the underlying “method” to the specified new object.

class SCons. Uti | . NodeLi st (initlist=None)

Bases: col | ecti ons. User Li st

A list of Nodes with special attribute retrieval.

This class is almost exactly like a regular list of Nodes (actually it can hold any object), with one important
difference. If you try to get an attribute from this list, it will return that attribute from every item in the list. For
example:

>>> soneli st = NodeList([' foo ', " bar '])
>>> sonelist.strip()

['foo', "bar']

_abc_i mpl =<_abc_data object>

append (item)
S.append(value) — append value to the end of the sequence

cl ear () - None —remove all items from S
copy ()
count (value) - integer — return number of occurrences of value

ext end (other)
S.extend(iterable) — extend sequence by appending elements from the iterable

i ndex (val ue[,start[,stop]]) — integer —return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

i nsert (i, item)
S.insert(index, value) — insert value before index

pop ([,i ndex]) - item —remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

renove (item)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() — reverse IN PLACE

sort (*args, **kwds)

class SCons. Uti |l . Nul I (*args, **kwargs)

Bases: obj ect
Null objects always and reliably “do nothing.”

class SCons. Uti | . Nul | Seq (*args, **kwargs)

Bases: SCons. Uti | . Nul |
A Null object that can also be iterated over.

SCons. Uti | . PrependPat h (oldpath, newpath, sep="", delete_existing=True, canonicalize=None) - Union[list,
str]

198

Prepends newpath path elements to oldpath.

SCons Project APl Documentation

Will only add any particular path once (leaving the first one it encounters and ignoring the rest, to preserve path
order), and will os. pat h. nor npat h and os. pat h. nor ntase all paths to help assure this. This can also handle
the case where oldpath is a list instead of a string, in which case a list will be returned instead of a string. For
example:

>>> p = PrependPat h("/foo/bar:/foo", "/biz/boom/foo")
>>> print(p)
/ bi z/ boom / f oo: / f oo/ bar

If delete_existing is Fal se, then adding a path that exists will not move it to the beginning; it will stay where it is in
the list.

>>> p = PrependPat h("/foo/bar:/foo", "/biz/boom/foo", delete existing=Fal se)
>>> print(p)
/ bi z/ boom / f oo/ bar: /f oo

If canonicalize is not None, it is applied to each element of newpath before use.

class SCons. Uti | . Proxy (subject)

Bases: obj ect
A simple generic Proxy class, forwarding all calls to subject.
This means you can take an object, let’s call it ‘obj_a, and wrap it in this Proxy class, with a statement like this:

proxy_obj = Proxy(obj_a)
Then, if in the future, you do something like this:
X = proxy_obj.varl

since the Proxy class does not have a var 1l attribute (but presumably objA does), the request actually is
equivalent to saying:

X = obj a.varl

Inherit from this class to create a Proxy.

With Python 3.5+ this does not work transparently for Pr oxy subclasses that use special .__* () method names,
because those names are now bound to the class, not the individual instances. You now need to know in advance
which special method names you want to pass on to the underlying Proxy object, and specifically delegate their
calls like this:

cl ass Foo(Proxy):
__str__ = Delegate('__str__")

get ()
Retrieve the entire wrapped object

SCons. Util . RegError

alias of SCons. Uti | . _NoError

SCons. Uti | . RegCet Val ue (root, key)
SCons. Uti | . RegOpenKeyEx (root, key)

class SCons. Uti | . Sel ect or

199

Bases: col | ecti ons. O der edDi ct

A callable ordered dictionary that maps file suffixes to dictionary values. We preserve the order in which items are
added so that get _suf fi x() calls always return the first suffix added.

cl ear () - None. Remove all items from od.

copy () — a shallow copy of od

f ronkeys (value=None)
Create a new ordered dictionary with keys from iterable and values set to value.

SCons Project APl Documentation

get (key, def aul t =None, /)
Return the value for key if key is in the dictionary, else default.

i tens () - a set-like object providing a view on D’s items
keys () - a set-like object providing a view on D’s keys

nmove_t o_end (key, last=True)
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.

pop (k[,d]) - v, remove specified key and return the corresponding
value. If key is not found, d is returned if given, otherwise KeyError is raised.

popi t em(last=True)
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.

set def aul t (key, default=None)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.

update ([, E], **F) - None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[K] = E[K] If E is present and lacks a .keys()
method, then does: for k, v in E: D[K] = v In either case, this is followed by: for k in F: D[K] = F[K]

val ues () » an object providing a view on D’s values

SCons. Util. Split (arg) — list
Returns a list of file names or other objects.
If arg is a string, it will be split on strings of white-space characters within the string. If arg is already a list, the list
will be returned untouched. If arg is any other type of object, it will be returned as a list containing just the object.

>>> print(Split(" this is a string "))

["this', "is', "a', 'string']
>>> print(Split(["stringlist", " preserving ", " spaces "]))
['stringlist', ' preserving ', ' spaces ']

class SCons. Uti | . Unbuf f er ed (file)
Bases: obj ect
A proxy that wraps a file object, flushing after every write.
Delegates everything else to the wrapped object.
write (arg)
writelines (arg)
class SCons. Uti | . Uni queli st (initlist=None)
Bases: col | ecti ons. User Li st
A list which maintains uniqueness.
Uniquing is lazy: rather than being assured on list changes, it is fixed up on access by those methods which need
to act on a unige list to be correct. That means things like “in” don’t have to eat the uniquing time.
__make_uni que ()
_abc_i mpl =<_abc_data object>

append (item)
S.append(value) — append value to the end of the sequence

cl ear () - None —remove all items from S

200

SCons Project APl Documentation

copy ()

count (value) - integer — return number of occurrences of value

ext end (other)
S.extend(iterable) — extend sequence by appending elements from the iterable

i ndex (val ue[,start[,stop]]) - integer — return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

i nsert (i, item)
S.insert(index, value) — insert value before index

pop ([,i ndex]) - item —remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

renove (item)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() — reverse IN PLACE

sort (*args, **kwds)

SCons. Uti | . Wer el s (file, path=None, pathext=None, reject=None) - Optional[str]
Return the path to an executable that matches file.
Searches the given path for file, respecting any filename extensions pathext (on the Windows platform only), and
returns the full path to the matching command. If no command is found, return None.
If path is not specified, os. envi r on[PATH] is used. If pathext is not specified, 0os. envi r on[PATHEXT] is used.
Will not select any path name or names in the optional reject list.

exception SCons. Uil ._NoError
Bases: Excepti on

ar gs
wi th_traceback ()

Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

SCons. Util. _get hash_object (hash_format)
Allocates a hash object using the requested hash format.

Parameters: hash_format — Hash format to use.
Returns: hashlib object.
SCons. Util. _sem _deepcopy_|ist (obj) - list
SCons. Util. _sem _deepcopy_t upl e (obj) - tuple

SCons. Uti|._show_nd5_war ni ng (function_name)
Shows a deprecation warning for various MD5 functions.

SCons. Uil . adjusti xes (fname, pre, suf, ensure_suffix=False) - str
Adjust filename prefixes and suffixes as needed.
Add prefix to fname if specified. Add suffix to fname if specified and if ensure_suffix is Tr ue

SCons. Uti|.case_sensitive_suffixes (sl,s2) - bool

SCons. Util.cnp (a, b) - bool
A cmp function because one is no longer available in python3.

SCons. Uti | . contai nsAll (s, pat) - bool
Check whether string s contains ALL of the items in pat.

SCons. Uti | . contai nsAny (s, pat) - bool

201

SCons Project APl Documentation

Check whether string s contains ANY of the items in pat.

SCons. Uti | . contai nsOnly (s, pat) — bool
Check whether string s contains ONLY items in pat.

SCons. Util . dictify (keys, values, result=None) - dict

SCons. Util.do_flatten (sequence,result,isinstance=<built-in function isinstance>,
StringTypes=(<class 'str'> <class 'collections.UserString' >), SequenceTypes=(<cl ass
"l'ist'> <class 'tuple' > <class 'collections.UserlList'>, <class

"col | ections. abc. Mappi ngVi ew >))

SCons. Util.flatten (obj,isinstance=<built-in function isinstance>, StringTypes=(<cl ass
"str'> <class 'collections.UserString' >), SequenceTypes=(<class 'list'>, <class
"tuple' > <class 'collections. UserlList'> <class 'collections.abc. Mappi ngVi ew >),
do_flatten=<function do_flatten>) - list
Flatten a sequence to a non-nested list.
Converts either a single scalar or a nested sequence to a non-nested list. Note that f | att en() considers strings
to be scalars instead of sequences like pure Python would.

SCons. Util.flatten_sequence (sequence,i sinstance=<built-in function isinstance>,
StringTypes=(<class 'str'> <class 'collections.UserString' >), SequenceTypes=(<cl ass
"l'ist'> <class 'tuple' > <class 'collections.UserlList'>, <class
‘col | ections. abc. Mappi ngVi ew >),do_flatten=<function do_flatten>) - list
Flatten a sequence to a non-nested list.
Same asfl atten(), but it does not handle the single scalar case. This is slightly more efficient when one knows
that the sequence to flatten can not be a scalar.

SCons. Util.get_env_bool (env, name, default=False) - bool
Convert a construction variable to bool.
If the value of name in env is ‘true’, ‘yes’, 'y’, ‘on’ (case insensitive) or anything convertible to int that yields
non-zero then return Tr ue; if ‘false’, ‘no’, ‘n’, ‘off’ (case insensitive) or a number that converts to integer zero return
Fal se. Otherwise, return default.

Parameters:]) o .
« env — construction environment, or any dict-like object

* name — name of the variable

« default — value to return if name not in env or cannot be converted (default: False)
Returns: the “truthiness” of name

SCons. Uti | . get_environnment _var (varstr) - Optional[str]
Return undecorated construction variable string.
Determine if varstr looks like a reference to a single environment variable, like “$FOQ” or “${FOO}". If so, return
that variable with no decorations, like “FOO”. If not, return None.

SCons. Uil .get _hash format ()
Retrieves the hash format or None if not overridden.
A return value of None does not guarantee that MD5 is being used; instead, it means that the default precedence
order documented in SCons. Uti | . set _hash_f ormat () is respected.

SCons. Util.get native_path (path) - str
Transform an absolute path into a native path for the system.
In Cygwin, this converts from a Cygwin path to a Windows path, without regard to whether path refers to an
existing file system object. For other platforms, path is unchanged.

SCons. Util.get _os_env_bool (name, default=False) - bool
Convert an environment variable to bool.
Conversion is the same as for get _env_bool ().

SCons. Uil . hash_col | ect (signatures, hash_format=None)
Collects a list of signatures into an aggregate signature.

Parameters:]))
* signatures — a list of signatures

« hash_format — Specify to override default hash format
Returns: the aggregate signature

202

SCons Project APl Documentation

SCons. Uil . hash_fil e_signature (fname, chunksize=65536, hash_format=None)
Generate the md5 signature of a file

Parameters:]
« fname — file to hash

* chunksize — chunk size to read

« hash_format — Specify to override default hash format
Returns: String of Hex digits representing the signature

SCons. Uti | . hash_si gnat ur e (s, hash_format=None)
Generate hash signature of a string

Parameters:))
« s — either string or bytes. Normally should be bytes

« hash_format — Specify to override default hash format
Returns: String of hex digits representing the signature

SCons. Util.is_Dict (obj,isinstance=<built-in function isinstance>, Di ct Types=(<cl ass
"dict'> <class 'collections.UserDict'>)) - bool

SCons. Util.is_List (obj,isinstance=<built-in function isinstance>, ListTypes=(<cl ass
"list'> <class 'collections.UserList'>)) - bool

SCons. Util.is_Scal ar (obj,isinstance=<built-in function isinstance>, StringTypes=(<cl ass
"str'> <class 'collections.UserString' >), SequenceTypes=(<class 'list'>, <class

"tuple' > <class 'collections. UserlList'> <class 'collections.abc. Mappi ngVi ew >)) - bool
SCons. Util.is_Sequence (obj,isinstance=<built-in function isinstance>,
SequenceTypes=(<class 'list'> <class 'tuple' > <class 'collections. UserlList'> <class

‘col | ections. abc. Mappi ngVi ew >)) - bool

SCons. Util.is_String(obj,isinstance=<built-in function isinstance>, StringTypes=(<cl ass
"str'> <class 'collections.UserString' >)) - bool

SCons. Util.is_Tuple(obj,isinstance=<built-in function isinstance>,tuple=<class
"tupl e >) > bool

SCons. Util .l ogical _lines (physical _lines,joiner=<built-in nethod join of str object>)

SCons. Uti | . nmake_path_rel ati ve (path) - str
Converts an absolute path name to a relative pathname.

SCons. Util.print_tine()
Hack to return a value from Main if can’t import Main.

SCons. Uti | . print_tree (root, child_func, prune=0, showtags=False, margin=[0], visited=None, lastChild=False,
singleLineDraw=False)

Print a tree of nodes.

This is like func:render_tree, except it prints lines directly instead of creating a string representation in memory, so

that huge trees can be handled.

Parameters:
* root — the root node of the tree

« child_func — the function called to get the children of a node
e prune — don't visit the same node twice
« showtags — print status information to the left of each node line

e margin — the format of the left margin to use for children of root. 1 results in a pipe, and
0 results in no pipe.

« visited — a dictionary of visited nodes in the current branch if prune” is 0, or in the
whole tree if prune is 1.

« singleLineDraw — use line-drawing characters rather than ASCII.

SCons. Util.render _tree (root, child_func, prune=0, margin=[0], visited=None)
Render a tree of nodes into an ASCII tree view.

203

SCons Project APl Documentation

Parameters:
* root — the root node of the tree

« child_func — the function called to get the children of a node
e prune — don't visit the same node twice

e margin — the format of the left margin to use for children of root. 1 results in a pipe, and
0 results in no pipe.

« visited — a dictionary of visited nodes in the current branch if prune is 0, or in the whole
tree if prune is 1.

SCons. Util . right nost _separat or (path, sep)
SCons. Uti | .sem _deepcopy (obj)
SCons. Util.sem _deepcopy_di ct (obj, exclude=None) - dict

SCons. Util.set _hash_format (hash_format)
Sets the default hash format used by SCons.
If hash_format is None or an empty string, the default is determined by this function.
Currently the default behavior is to use the first available format of the following options: MD5, SHA1, SHA256.

SCons. Util.silent_intern(x)
Perform sys. i nt ern on the passed argument and return the result. If the input is ineligible for interning the
original argument is returned and no exception is thrown.

SCons. Util.splitext (path) - tuple
Split path into a (root, ext) pair.
Same as 0s. pat h. spl i t ext but faster.

SCons. Util.to_String(obj,isinstance=<built-in function isinstance>, str=<class 'str'>,
User String=<class 'collections.UserString' > BaseStringTypes=<class 'str'>) - str
Return a string version of obj.

SCons. Util.to _String for_signature (obj,to _String for_subst=<function

to String for_subst> AttributeError=<class 'AttributeError'>) - str
Return a string version of obj for signature usage.
Like to_String for_subst() but has special handling for scons objects that have a for_si gnat ure()
method, and for dicts.

SCons. Util.to _String_for_subst (obj,isinstance=<built-in function isinstance>,
str=<class 'str'> BaseStringTypes=<class 'str'>, SequenceTypes=(<class 'list'>, <class
"tuple' > <class 'collections. UserlList'> <class 'collections.abc. Mappi ngVi ew >),
User String=<class 'collections.UserString' >) - str

Return a string version of obj for subst usage.

SCons. Util.to_bytes (s) » bytes
SCons. Util.to_str (s) - str

SCons. Uti | . uni que (seq)
Return a list of the elements in seq without duplicates, ignoring order.

>>> nylist = unique([1, 2, 3, 1, 2, 3])

>>> print(sorted(nylist))

[1, 2, 3]

>>> nylist = unique("abcabc")

>>> print(sorted(nylist))

["a'", '"b', "c']

>>> nylist = unique(([1, 2], [2, 3], [1, 2]))
>>> print(sorted(nylist))

[(r1, 2], [2, 3]]

For best speed, all sequence elements should be hashable. Then unique() will usually work in linear time.

If not possible, the sequence elements should enjoy a total ordering, and if list(s).sort() doesn'’t raise TypeError it's
assumed that they do enjoy a total ordering. Then unigue() will usually work in O(N*log2(N)) time.

If that's not possible either, the sequence elements must support equality-testing. Then unique() will usually work
in quadratic time.

204

SCons Project APl Documentation

SCons. Uti | . uni quer (seq, idfun=None)
SCons. Uti | . uni quer _hashabl es (seq)

SCons. Uti |l . updrive (path) - str
Make the drive letter (if any) upper case.
This is useful because Windows is inconsistent on the case of the drive letter, which can cause inconsistencies
when calculating command signatures.

SCons.Warnings module

The SCons warnings framework.

exception SCons. War ni ngs. CacheVer si on\War ni ng
Bases: SCons. War ni ngs. War ni ngOnBy Def aul t

args

wi t h_t raceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. War ni ngs. CacheW i t eEr r or WAr ni ng
Bases: SCons. War ni ngs. SCons\War ni ng

args

wi t h_t raceback ()
Exception.with_traceback(tb) — set self.__traceback __ to tb and return self.

exception SCons. War ni ngs. Cor r upt SConsi gn\War ni ng
Bases: SCons. War ni ngs. War ni ngOnBy Def aul t

args

wi t h_t raceback ()
Exception.with_traceback(tb) — set self.__traceback __ to tb and return self.

exception SCons. War ni ngs. DependencyWar ni ng
Bases: SCons. War ni ngs. SCons\War ni ng

args

wi t h_t raceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. War ni ngs. Depr ecat edDebugOpt i onsWar ni ng
Bases: SCons. War ni ngs. Mandat or yDepr ecat edWar ni ng

args

wi t h_t raceback ()
Exception.with_traceback(tb) — set self.__traceback __ to tb and return self.

exception SCons. War ni ngs. Depr ecat edM ssi ngSConscr i pt War ni ng
Bases: SCons. War ni ngs. Depr ecat edWar ni ng

args

wi t h_t raceback ()
Exception.with_traceback(tb) — set self.__traceback __ to tb and return self.

205

SCons Project APl Documentation

exception SCons. War ni ngs. Depr ecat edOpt i onsWar ni ng
Bases: SCons. War ni ngs. Mandat or yDepr ecat edWar ni ng

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. War ni ngs. Depr ecat edSour ceCodeWar ni ng
Bases: SCons. War ni ngs. Fut ur eDepr ecat edWar ni ng

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. War ni ngs. Depr ecat edWar ni ng
Bases: SCons. War ni ngs. SConsWar ni ng

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

exception SCons. War ni ngs. Devel oprent Ver si onWar ni ng
Bases: SCons. War ni ngs. War ni ngOnByDef aul t

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

exception SCons. War ni ngs. Dupl i cat eEnvi r onnent Vr ni ng
Bases: SCons. War ni ngs. War ni ngOnByDef aul t

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. War ni ngs. Fort r anCxxM xWar ni ng
Bases: SCons. War ni ngs. Li nkWar ni ng

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. War ni ngs. Fut ur eDepr ecat edWar ni ng
Bases: SCons. War ni ngs. SConsWar ni ng

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

exception SCons. War ni ngs. Fut ur eReser vedVari abl eVar ni ng
Bases: SCons. War ni ngs. War ni ngOnByDef aul t

args

206

SCons Project APl Documentation

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. Wr ni ngs. Li nkWar ni ng
Bases: SCons. War ni ngs. War ni ngOnByDef aul t

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. War ni ngs. Mandat or yDepr ecat edWar ni ng
Bases: SCons. War ni ngs. Depr ecat edWar ni ng

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. War ni ngs. M sl eadi ngKeywor dsWar ni ng
Bases: SCons. War ni ngs. WWar ni ngOnByDef aul t

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. War ni ngs. M ssi ngSConscr i pt r ni ng
Bases: SCons. War ni ngs. War ni ngOnByDef aul t

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. War ni ngs. NoObj ect Count War ni ng
Bases: SCons. War ni ngs. War ni ngOnByDef aul t

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. War ni ngs. NoPar al | el Support Vr ni ng
Bases: SCons. War ni ngs. War ni ngOnByDef aul t

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

exception SCons. War ni ngs. Pyt honVer si onWar ni ng
Bases: SCons. War ni ngs. Depr ecat edWar ni ng

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

exception SCons. War ni ngs. Reser vedVar i abl eWar ni ng
Bases: SCons. War ni ngs. War ni ngOnByDef aul t

207

SCons Project APl Documentation

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. War ni ngs. SConsWar ni ng
Bases: SCons. Errors. User Error

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

exception SCons. Wr ni ngs. St ackSi zeWar ni ng
Bases: SCons. War ni ngs. WWar ni ngOnByDef aul t

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

exception SCons. War ni ngs. Tar get Not Bui | t War ni ng
Bases: SCons. War ni ngs. SConsWar ni ng

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. War ni ngs. Taskmast er NeedsExecut eVr ni ng
Bases: SCons. War ni ngs. Depr ecat edWar ni ng

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

exception SCons. War ni ngs. Vi sual CM ssi ngWar ni ng
Bases: SCons. War ni ngs. War ni ngOnByDef aul t

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

exception SCons. War ni ngs. Vi sual St udi oM ssi ng\War ni ng
Bases: SCons. War ni ngs. SConsWar ni ng

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

exception SCons. War ni ngs. Vi sual Ver si onM smat ch
Bases: SCons. War ni ngs. War ni ngOnByDef aul t

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

208

SCons Project APl Documentation

exception SCons. War ni ngs. War ni ngOnByDef aul t
Bases: SCons. War ni ngs. SConsWar ni ng

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

SCons. War ni ngs. enabl eWar ni ngCl ass (clazz)
Enables all warnings of type clazz or derived from clazz.

SCons. WAr ni ngs. process_warn_stri ngs (arguments)
Process requests to enable/disable warnings.
The requests are strings passed to the —warn option or the SetOption(‘warn’) function.
An argument to this option should be of the form “warning-class” or “no-warning-class”. The warning class is
munged and has the suffix “Warning” added in order to get an actual class name from the classes above, which
we need to pass to the {enable,disable}WarningClass() functions.
For example, “deprecated” will enable the DeprecatedWarning class. “no-dependency” will disable the
DependencyWarning class.
As a special case, —warn=all and —warn=no-all will enable or disable (respectively) the base class of all SCons
warnings.

SCons. War ni ngs. suppr essWar ni ngd ass (clazz)
Suppresses all warnings of type clazz or derived from clazz.

SCons. WaAr ni ngs. war n (clazz, *args)
Issue a warning, accounting for SCons rules.
Check if warnings for this class are enabled. If warnings are treated as exceptions, raise exception. Use the global
warning-emitter _warningOut, which allows selecting different ways of presenting a traceback (see Script/Main.py)

SCons. War ni ngs. war ni ngAsExcept i on (flag=True)
Set global _warningAsExeption flag.

Parameters: flag — value to set warnings-as-exceptions to [default: True]
Returns: The previous value.

SCons.cpp module
SCons C Pre-Processor module

SCons. cpp. CPP_t o_Pyt hon (s)
Converts a C pre-processor expression into an equivalent Python expression that can be evaluated.

SCons. cpp. CPP_t o_Pyt hon_Ops_Sub (m)

SCons. cpp. C eanup_CPP_Expr essi ons (ts)

class SCons. cpp. DunmbPr ePr ocessor (*args, **kw)
Bases: SCons. cpp. PreProcessor
A preprocessor that ignores all #if/#elif/#else/#endif directives and just reports back all of the #include files (like the
classic SCons scanner did).
This is functionally equivalent to using a regular expression to find all of the #include lines, only slower. It exists
mainly as an example of how the main PreProcessor class can be sub-classed to tailor its behavior.

_do_if_el se_condition (condition)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.

_mat ch_t upl es (tuples)
_par se_t upl es (contents)
_process_t upl es (tuples, file=None)

al | _i ncl ude (1)

209

SCons Project APl Documentation

do_define (1)
Default handling of a #define line.

do_elif (t)
Default handling of a #elif line.

do_el se ()
Default handling of a #else line.

do_endi f (1)
Default handling of a #endif line.

do_if ()
Default handling of a #if line.

do_i f def ()
Default handling of a #ifdef line.

do_i f ndef (1)
Default handling of a #ifndef line.

do_inport (1)
Default handling of a #import line.

do_i ncl ude (t)
Default handling of a #include line.

do_i ncl ude_next ()
Default handling of a #include line.

do_not hi ng (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.

do_undef (t)
Default handling of a #undef line.

eval _expression ()
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor namespace we use to
track #define values.

finalize result (fname)

find_include file(t)
Finds the #include file for a given preprocessor tuple.

initialize_result (fname)
process_cont ent s (contents)
Pre-processes a file contents.
Is used by tests
process_fil e (file)
Pre-processes a file.
This is the main internal entry point.

read_fil e (file)

resol ve_i ncl ude (t)
Resolve a tuple-ized #include line.

210

SCons Project APl Documentation

This handles recursive expansion of values without “” or <> surrounding the name until an initial ” or < is found,
to handle #include FILE where FILE is a #define somewhere else.

restore ()
Pops the previous dispatch table off the stack and makes it the current one.

save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.

scons_current _file(t)

start _handl i ng_i ncl udes (t=None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.

stop_handl i ng_i ncl udes (t=None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.

t upl ei ze (contents)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’'s preprocessor directive (#if, #include, #define, etc., minus the initial
‘#). The remaining elements are specific to the type of directive, as pulled apart by the regular expression.

class SCons. cpp. Functi onEval uat or (name, args, expansion)
Bases: obj ect
Handles delayed evaluation of a #define function call.
class SCons. cpp. PreProcessor (current="", cpppath=(), dict={}, all=0, depth=- 1)
Bases: obj ect
The main workhorse class for handling C pre-processing.

_do_if_else_condition (condition)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.

_mat ch_t upl es (tuples)

_parse_t upl es (contents)
_process_t upl es (tuples, file=None)
al | _incl ude (1)

do_define (1)
Default handling of a #define line.

do_elif (t)
Default handling of a #elif line.

do_el se ()
Default handling of a #else line.

do_endi f (1)
Default handling of a #endif line.

do_if (t)
Default handling of a #if line.

do_i f def (1)

211

SCons Project APl Documentation

Default handling of a #ifdef line.

do_i f ndef (1)
Default handling of a #ifndef line.

do_inport (1)
Default handling of a #import line.

do_i ncl ude (t)
Default handling of a #include line.

do_i ncl ude_next ()
Default handling of a #include line.

do_not hi ng (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.

do_undef (t)
Default handling of a #undef line.

eval _expression ()
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor namespace we use to
track #define values.

finalize result (fname)

find_include file(t)
Finds the #include file for a given preprocessor tuple.

initialize_result (fname)

process_cont ent s (contents)
Pre-processes a file contents.
Is used by tests

process_fil e (file)
Pre-processes a file.
This is the main internal entry point.

read_fil e (file)

resol ve_i ncl ude (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without “” or <> surrounding the name until an initial ” or < is found,
to handle #include FILE where FILE is a #define somewhere else.

restore ()
Pops the previous dispatch table off the stack and makes it the current one.

save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.

scons_current _file(t)

start _handl i ng_i ncl udes (t=None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.

stop_handl i ng_i ncl udes (t=None)

212

SCons Project APl Documentation

Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.

t upl ei ze (contents)

Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’'s preprocessor directive (#if, #include, #define, etc., minus the initial
‘#). The remaining elements are specific to the type of directive, as pulled apart by the regular expression.

SCons.dblite module
dblite.py module contributed by Ralf W. Grosse-Kunstleve. Extended for Unicode by Steven Knight.

SCons. dblite. _exercise()

class SCons. dbl i te. dbl it e (fle_base_name, flag, mode)
Bases: obj ect
Squirrel away references to the functions in various modules that we’ll use when our __del__ () method calls our
sync() method during shutdown. We might get destroyed when Python is in the midst of tearing down the different
modules we import in an essentially arbitrary order, and some of the various modules’s global attributes may
already be wiped out from under us.

See the discussion at:

http://mail.python.org/pipermail/python-bugs-list/2003-March/016877.html

_check_writable()

_open (mode='r', buffering=- 1, encoding=None, errors=None, newline=None, closefd=True, opener=None)

213

Open file and return a stream. Raise OSError upon failure.

file is either a text or byte string giving the name (and the path if the file isn’t in the current working directory) of
the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed
when the returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ‘r which means open
for reading in text mode. Other common values are ‘w’ for writing (truncating the file if it already exists), ‘x’ for
creating and writing to a new file, and ‘a’ for appending (which on some Unix systems, means that all writes
append to the end of the file regardless of the current seek position). In text mode, if encoding is not specified
the encoding used is platform dependent: locale.getpreferredencoding(False) is called to get the current locale
encoding. (For reading and writing raw bytes use binary mode and leave encoding unspecified.) The available
modes are:

Character Meaning

r' open for reading (default)

‘W' open for writing, truncating the file first

X’ create a new file and open it for writing

‘a’ open for writing, appending to the end of the file if it exists
‘b’ binary mode

‘T text mode (default)

‘+’ open a disk file for updating (reading and writing)

‘v universal newline mode (deprecated)

The default mode is ‘rt’ (open for reading text). For binary random access, the mode ‘w+b’ opens and truncates
the file to O bytes, while ‘r+b’ opens the file without truncation. The ‘X’ mode implies ‘w’ and raises an
FileExistsError if the file already exists.

Python distinguishes between files opened in binary and text modes, even when the underlying operating
system doesn’t. Files opened in binary mode (appending ‘b’ to the mode argument) return contents as bytes
objects without any decoding. In text mode (the default, or when ‘t’ is appended to the mode argument), the
contents of the file are returned as strings, the bytes having been first decoded using a platform-dependent
encoding or using the specified encoding if given.

http://mail.python.org/pipermail/python-bugs-list/2003-March/016877.html

SCons Project APl Documentation

‘U’ mode is deprecated and will raise an exception in future versions of Python. It has no effect in Python 3. Use
newline to control universal newlines mode.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed in
binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size of a
fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as follows:

 Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io. DEFAULT_BUFFER_SIZE. On many
systems, the buffer will typically be 4096 or 8192 bytes long.

« “Interactive” text files (files for which isatty() returns True) use line buffering. Other text files use the policy

described above for binary files.]))
encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode.

The default encoding is platform dependent, but any encoding supported by Python can be passed. See the
codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding errors are to be handled—this argument should not be
used in binary mode. Pass ‘strict’ to raise a ValueError exception if there is an encoding error (the default of
None has the same effect), or pass ‘ignore’ to ignore errors. (Note that ignoring encoding errors can lead to data
loss.) See the documentation for codecs.register or run ‘help(codecs.Codec)’ for a list of the permitted encoding
error strings.

newline controls how universal newlines works (it only applies to text mode). It can be None, “, ‘'n’, ‘r’, and ‘rn’. It
works as follows:

« On input, if newline is None, universal newlines mode is enabled. Lines in the input can end in ‘n’, ‘'r’, or ‘rn’,
and these are translated into ‘n’ before being returned to the caller. If it is “, universal newline mode is
enabled, but line endings are returned to the caller untranslated. If it has any of the other legal values, input
lines are only terminated by the given string, and the line ending is returned to the caller untranslated.

« On output, if newline is None, any ‘n’ characters written are translated to the system default line separator,
os.linesep. If newline is " or ‘n’, no translation takes place. If newline is any of the other legal values, any ‘n’

characters written are translated to the given string. o .
If closefd is False, the underlying file descriptor will be kept open when the file is closed. This does not work

when a file name is given and must be True in that case.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os.open as
opener results in functionality similar to passing None).

open() returns a file object whose type depends on the mode, and through which the standard file operations
such as reading and writing are performed. When open() is used to open a file in a text mode (‘w’, ‘r', ‘wt’, ‘rt’,
etc.), it returns a TextlOWrapper. When used to open a file in a binary mode, the returned class varies: in read
binary mode, it returns a BufferedReader; in write binary and append binary modes, it returns a BufferedWriter,
and in read/write mode, it returns a BufferedRandom.

It is also possible to use a string or bytearray as a file for both reading and writing. For strings StringlO can be
used like a file opened in a text mode, and for bytes a ByteslO can be used like a file opened in a binary mode.

_os_chmod (mode, *, dir_fd=None, follow_symlinks=True)

214

Change the access permissions of a file.

path

Path to be modified. May always be specified as a str, bytes, or a path-like object. On some platforms,
path may also be specified as an open file descriptor. If this functionality is unavailable, using it raises
an exception.

mode
Operating-system mode bitfield.
dir_fd

If not None, it should be a file descriptor open to a directory, and path should be relative; path will then
be relative to that directory.

follow_symlinks

If False, and the last element of the path is a symbolic link, chmod will modify the symbolic link itself
instead of the file the link points to.

It is an error to use dir_fd or follow_symlinks when specifying path as

SCons Project APl Documentation

an open file descriptor.
dir_fd and follow_symlinks may not be implemented on your platform.
If they are unavailable, using them will raise a NotimplementedError.

_0s_chown (uid, gid, *, dir_fd=None, follow_symlinks=True)
Change the owner and group id of path to the numeric uid and gid.

path
Path to be examined; can be string, bytes, a path-like object, or open-file-descriptor int.

dir_fd
If not None, it should be a file descriptor open to a directory, and path should be relative; path will then
be relative to that directory.

follow_symlinks

If False, and the last element of the path is a symbolic link, stat will examine the symbolic link itself
instead of the file the link points to.

path may always be specified as a string. On some platforms, path may also be specified as an open file
descriptor.

If this functionality is unavailable, using it raises an exception.
If dir_fd is not None, it should be a file descriptor open to a directory,

and path should be relative; path will then be relative to that directory.
If follow_symlinks is False, and the last element of the path is a symbolic

link, chown will modify the symbolic link itself instead of the file the link points to.
It is an error to use dir_fd or follow_symlinks when specifying path as

an open file descriptor.
dir_fd and follow_symlinks may not be implemented on your platform.

If they are unavailable, using them will raise a NotimplementedError.

_0s_repl ace (dst, *, src_dir_fd=None, dst_dir_fd=None)
Rename a file or directory, overwriting the destination.

If either src_dir_fd or dst_dir_fd is not None, it should be afile

descriptor open to a directory, and the respective path string (src or dst) should be relative; the path will
then be relative to that directory.

src_dir_fd and dst_dir_fd, may not be implemented on your platform.
If they are unavailable, using them will raise a NotimplementedError.

static _pi ckl e_dunp (obj, file, protocol=None, *, fix_imports=True)
Write a pickled representation of obj to the open file object file.
This is equivalent to Pi ckl er (fil e, protocol). dunp(obj), butmay be more efficient.
The optional protocol argument tells the pickler to use the given protocol supported protocols are 0, 1, 2, 3 and
4. The default protocol is 3; a backward-incompatible protocol designed for Python 3.
Specifying a negative protocol version selects the highest protocol version supported. The higher the protocol
used, the more recent the version of Python needed to read the pickle produced.
The file argument must have a write() method that accepts a single bytes argument. It can thus be a file object
opened for binary writing, an io.ByteslO instance, or any other custom object that meets this interface.
If fix_imports is True and protocol is less than 3, pickle will try to map the new Python 3 names to the old module
names used in Python 2, so that the pickle data stream is readable with Python 2.

_pickle _protocol =4

_shutil _copyfil e (dst, *, follow_symlinks=True)
Copy data from src to dst.
If follow_symlinks is not set and src is a symbolic link, a new symlink will be created instead of copying the file it
points to.

time_tine()

215

SCons.compat package

time() -> floating point number
Return the current time in seconds since the Epoch. Fractions of a second may be present if the system clock
provides them.

cl ose ()
keys ()

sync ()
SCons. dbl i t e. open (file, flag=None, mode=438)

SCons.exitfuncs module
Register functions which are executed when SCons exits for any reason.

SCons. exi tfuncs. _run_exitfuncs ()
run any registered exit functions
_exithandlers is traversed in reverse order so functions are executed last in, first out.

SCons. exi t funcs. r egi st er (func, *targs, **kargs)
register a function to be executed upon normal program termination
func - function to be called at exit targs - optional arguments to pass to func kargs - optional keyword arguments to
pass to func

SCons.compat package

Module contents
SCons compatibility package for old Python versions

This subpackage holds modules that provide backwards-compatible implementations of various things from newer
Python versions that we cannot count on because SCons still supported older Pythons.

Other code will not generally reference things in this package through the SCons.compat namespace. The modules
included here add things to the builtins namespace or the global module list so that the rest of our code can use the
objects and names imported here regardless of Python version. As a result, if this module is used, it should violate
the normal convention for imports (standard library imports first, then program-specific imports, each ordered
aplhabetically) and needs to be listed first.

The rest of the things here will be in individual compatibility modules that are either: 1) suitably modified copies of the
future modules that we want to use; or 2) backwards compatible re-implementations of the specific portions of a
future module’s API that we want to use.

GENERAL WARNINGS: Implementations of functions in the SCons.compat modules are NOT guaranteed to be fully
compliant with these functions in later versions of Python. We are only concerned with adding functionality that we
actually use in SCons, so be wary if you lift this code for other uses. (That said, making these more nearly the same
as later, official versions is still a desirable goal, we just don't need to be obsessive about it.)

We name the compatibility modules with an initial *_scons_’ (for example, _scons_subprocess.py is our compatibility
module for subprocess) so that we can still try to import the real module name and fall back to our compatibility
module if we get an ImportError. The import_as() function defined below loads the module as the “real” name
(without the ‘_scons’), after which all of the “import {module}’ statements in the rest of our code will find our
pre-loaded compatibility module.

class SCons. conpat . NoSl ot sPyPy (name, bases, dct)
Bases: t ype
Metaclass for PyPy compatitbility.
PyPy does not work well with __slots__and __class___ assignment.

nTo ()
Return a type’s method resolution order.

SCons. compat . r enanme_nodul e (new, old)

216

SCons.Node package

Attempt to import the old module and load it under the new name. Used for purely cosmetic name changes in
Python 3.x.

SCons.Node package
Submodules

SCons.Node.Alias module
Alias nodes.

This creates a hash of global Aliases (dummy targets).

class SCons. Node. Al i as. Al i as (hame)
Bases: SCons. Node. Node

class Attrs
Bases: obj ect

shar ed

Bui | dl nfo
alias of SCons. Node. Al i as. Al i asBui | dl nfo

Deci der (function)

Cet Tag (key)
Return a user-defined tag.

Nodel nf o
alias of SCons. Node. Al i as. Al i asNodel nf o

Tag (key, value)
Add a user-defined tag.

_add_chi | d (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()

_children_reset ()

_func_exists

_func_get _contents

_func_is_derived

_func_rexists

_func_target fromsource

_get _scanner (env, initial_scanner, root_node_scanner, kw)
_nmeno

_specific_sources

_tags

217

SCons.Node package

add_dependency (depend)
Adds dependencies.

add_i gnor e (depend)
Adds dependencies to ignore.

add_prerequi sit e (prerequisite)
Adds prerequisites

add_sour ce (source)
Adds sources.

add_to_inplicit (deps)

add_t o_wai ti ng_parent s (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don'’t think you can
“clean up” this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wki d (wkid)
Add a node to the list of kids waiting to be evaluated

al | _chil dren (scan=1)
Return a list of all the node’s direct children.

alter _targets ()
Return a list of alternate targets for this Node.

al ways_buil d
attributes
bi nfo

build()
A “builder” for aliases.

bui | der
bui | der _set (builder)

built ()
Called just after this node is successfully built.

cached

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored Buildinfo, but the stored Buildinfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last _build

218

SCons.Node package

check_attri butes (name)
Simple API to check if the node.attributes for name has been set

chi I dren (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_ up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

cl ear _nenoi zed_val ues ()
convert ()

del _binfo ()
Delete the build info from this node.

depends

depends_set

di sanbi guat e (must_exist=None)
env

env_set (env, safe=0)

execut or

execut or _cl eanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

expl ain ()

for_signature()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

get _abspat h ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get _binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what's wanted.

219

SCons.Node package

get _build_env ()
Fetch the appropriate Environment to build this node.

get _buil d_scanner _pat h (scanner)
Fetch the appropriate scanner path for this node.

get _bui | der (default_builder=None)
Return the set builder, or a specified default value

get _cachedir_csig ()

get _contents ()
The contents of an alias is the concatenation of the content signatures of all its sources.

get _csig()
Generate a node’s content signature, the digested signature of its content.
node - the node cache - alternate node to use for the signature cache returns - the content signature

get _env ()
get _env_scanner (env, kw={})

get _execut or (create=1)
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.

get found_i ncl udes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get _inplicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get _ninfo()

get _source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get _state ()

get _stored_inplicit ()
Fetch the stored implicit dependencies

get _stored_info()

get _stri ng (for_signature)

This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get _subst _proxy ()

220

SCons.Node package

221

This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get _suffix()
get _target _scanner ()

has_bui | der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

i gnore

i gnor e_set

implicit

implicit_set

i ncl udes

is_conftest ()
Returns true if this node is an conftest node

is_derived|()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

i s_sconscript ()
Returns true if this node is an sconscript

i s_under (dir)

is up_to_date()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

l'i nked

make ready ()
Get a Node ready for evaluation.

SCons.Node package

222

This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

m ssing ()

mul ti ple_side_effect_has_buil der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

new_bi nfo ()
new_ni nfo ()
ni nfo
nocache
nocl ean

post process ()
Clean up anything we don'’t need to hang onto after we've been built.

pr eci ous

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites
pseudo

push_to_cache ()
Try to push a node into a cache

real ly_buil d (**kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

ref count

rel ease_target _info()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

SCons.Node package

renove ()
Remove this Node: no-op by default.

render _include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

reset _executor ()
Remove cached executor; forces recompute when needed.

retrieve_fromcache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

scan ()
Scan this node’s dependents for implicit dependencies.

scanner _key ()

sconsi gn ()
An Alias is not recorded in .sconsign files

sel ect _scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that's configured for the target.

set _al ways_bui | d (always_build=1)
Set the Node’s always_build value.

set _execut or (executor)
Set the action executor for this node.

set _explicit (is_explicit)

set _nocache (nocache=1)
Set the Node's nocache value.

set _nocl ean (noclean=1)
Set the Node’s noclean value.

set _preci ous (precious=1)
Set the Node’s precious value.

set _pseudo (pseudo=True)
Set the Node’s precious value.

set _specific_source (source)
set st at e (state)

si de_ef f ect

side_effects

sour ces

223

SCons.Node package

sources_set

state

store_info

str_for _display()
target _peers

visited ()
Called just after this node has been visited (with or without a build).

wai ting_parents
waiting s e
wki ds

class SCons. Node. Al i as. Al i asBui | dl nfo
Bases: SCons. Node. Bui | dI nf oBase

bact
bactsig
bdepends
bdependsi gs
binmplicit
bi nmplicitsigs
bsour ces
bsour cesi gs
current _version_id=2
mer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other

instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons. Node. Al i as. Al i asNaneSpace (**kwargs)
Bases: col | ecti ons. User Di ct

Al'i as (name, **kw)

_abc_i mpl =<_abc_data object>

cl ear () - None. Remove all items from D.

copy ()

classmethod f r onkeys (iterable, value=None)

get (k[,d]) - DIK] if kin D, else d. d defaults to None.

i tens () — a set-like object providing a view on D’s items

224

SCons.Node package

keys () - a set-like object providing a view on D’s keys
| ookup (hame, **kw)

pop (K[, d]) - v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popi tem() - (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefaul t (k[,d]) - D.get(k,d), also set D[k]=d if k not in D

update ([, E], **F) - None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[k] = E[K] If E present and lacks .keys() method, does:
for (k, v) in E: D[K] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

val ues () - an object providing a view on D’s values

class SCons. Node. Al i as. Al i asNodel nfo
Bases: SCons. Node. Nodel nf oBase

convert (node, val)

csig

current _version_id=2
field_list =[csig]

f or mat (field_list=None, names=0)

mer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

updat e (hode)

SCons.Node.FS module

File system nodes.

These Nodes represent the canonical external objects that people think of when they think of building software: files
and directories.

This holds a “default_fs” variable that should be initialized with an FS that can be used by scripts or modules looking
for the canonical default.

class SCons. Node. FS. Base (name, directory, fs)
Bases: SCons. Node. Node
A generic class for file system entries. This class is for when we don’t know yet whether the entry being looked up
is a file or a directory. Instances of this class can morph into either Dir or File objects by a later, more precise
lookup.
Note: this class does not define __cmp__ and __hash__ for efficiency reasons. SCons does a lot of comparing of
Node.FS.{Base,Entry,File,Dir} objects, so those operations must be as fast as possible, which means we want to
use Python’s built-in object identity comparisons.

class Attrs
Bases: obj ect

225

SCons.Node package

shar ed

Bui | dl nfo
alias of SCons. Node. Bui | dl nf oBase

Deci der (function)

Cet Tag (key)
Return a user-defined tag.

Nodel nf o
alias of SCons. Node. Nodel nf oBase

RDi r s (pathlist)
Search for a list of directories in the Repository list.

Rfi ndal | di r s (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindal I di rs_key (pathlist)
_abspath

_add_chi | d (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()
_children_reset ()
_func_exists
_func_get _contents
_func_is_derived
_func_rexists
_func_sconsi gn
_func_target fromsource
_get _scanner (env, initial_scanner, root_node_scanner, kw)
_get _str ()
_gl ob1 (pattern, ondisk=True, source=False, strings=False)
_labspath
_l ocal
neno

_path

226

SCons.Node package

_path_elenments
_proxy

_save_str ()
_specific_sources
_tags

_tpath

add_dependency (depend)
Adds dependencies.

add_i gnor e (depend)
Adds dependencies to ignore.

add_prerequi sit e (prerequisite)
Adds prerequisites

add_sour ce (source)
Adds sources.

add_to_inplicit (deps)

add_t o_wai ti ng_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don'’t think you can
“clean up” this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wki d (wkid)
Add a node to the list of kids waiting to be evaluated

al | _chil dren (scan=1)
Return a list of all the node’s direct children.

alter _targets ()
Return a list of alternate targets for this Node.

al ways_buil d

attributes

bi nf o

bui I d (**kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

bui | der

bui | der _set (builder)

built ()
Called just after this node is successfully built.

227

SCons.Node package

228

cached

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored Buildinfo, but the stored Buildinfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last _build

check_attri butes (name)
Simple API to check if the node.attributes for name has been set

chi | dren (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).
cl ear _nenoi zed_val ues ()

cwd

del _binfo ()
Delete the build info from this node.

depends

depends_set

dir

di sanbi guat e (must_exist=None)
duplicate

env

env_set (env, safe=0)

execut or

execut or _cl eanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

expl ain ()

SCons.Node package

for_signature()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs
Reference to parent Node.FS object

get _abspat h ()
Get the absolute path of the file.

get _binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what's wanted.

get _build_env ()
Fetch the appropriate Environment to build this node.

get _buil d_scanner _pat h (scanner)
Fetch the appropriate scanner path for this node.

get _bui | der (default_builder=None)
Return the set builder, or a specified default value

get _cachedir_csig()

get _contents ()
Fetch the contents of the entry.

get _csig()

get _dir ()

get _env ()

get _env_scanner (env, kw={})

get _execut or (create=1)
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.

get found_i ncl udes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get _inplicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get _internal _path ()

get | abspath ()
Get the absolute path of the file.

229

SCons.Node package

get _ninfo()

get _pat h (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get _path_el enents ()

get _relpath()
Get the path of the file relative to the root SConstruct file’s directory.

get _source_scanner (nhode)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get _state ()

get _stored_inplicit ()
Fetch the stored implicit dependencies

get _stored_info()

get _stri ng (for_signature)

This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get _subst _proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get _suffix()

get _target _scanner ()

get _tpath()

getmtine ()

getsi ze ()

has_bui | der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder

This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

230

SCons.Node package

231

i gnore

i gnor e_set
implicit
implicit_set
i ncl udes

is_conftest ()
Returns true if this node is an conftest node

is_derived|()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

i s_sconscript ()
Returns true if this node is an sconscript

i s_under (dir)

is_ up_to_date()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will
always get built.

isdir ()

isfile()

i slink()

l'i nked

I stat ()

make ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

nm ssing ()

mul tiple_side_effect_has_buil der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the

len__and _ bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls

and slowing things down immensely.

must _be_ sane (klass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

nane

SCons.Node package

new_bi nfo ()
new_ni nfo ()
ni nfo
nocache
nocl ean

post process ()
Clean up anything we don’t need to hang onto after we've been built.

pr eci ous

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites
pseudo

push_to_cache ()
Try to push a node into a cache

ref count

rel ease_target _info()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

renove ()
Remove this Node: no-op by default.

render _include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()

reset _executor ()
Remove cached executor; forces recompute when needed.

retrieve_fromcache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()

232

SCons.Node package

Does this node exist locally or in a repository?
rfile()

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbui | der

scan ()
Scan this node’s dependents for implicit dependencies.

scanner _key ()

sel ect _scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that's configured for the target.

set _al ways_bui | d (always_build=1)
Set the Node’s always_build value.

set _execut or (executor)
Set the action executor for this node.

set _explicit (is_explicit)
set _local ()

set _nocache (nocache=1)
Set the Node's nocache value.

set _nocl ean (noclean=1)
Set the Node’s noclean value.

set _preci ous (precious=1)
Set the Node’s precious value.

set _pseudo (pseudo=True)
Set the Node’s precious value.

set _specific_source (source)

set _src_buil der (builder)
Set the source code builder for this node.

set st at e (state)
si de_ef f ect
side_effects
sour ces
sources_set
src_buil der ()
Fetch the source code builder for this node.

If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

233

SCons.Node package

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for _display()

target _from source (prefix,suffix,splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target _peers

visited ()
Called just after this node has been visited (with or without a build).

wai ting_parents
waiting s e
wKki ds
class SCons. Node. FS. Di r (name, directory, fs)
Bases: SCons. Node. FS. Base

A class for directories in a file system.

class Attrs
Bases: obj ect

shar ed

Bui | dl nfo
alias of SCons. Node. FS. Di r Bui | dl nfo

Deci der (function)

Di r (name, create=True)
Looks up or creates a directory node named ‘name’ relative to this directory.

Entry (name)
Looks up or creates an entry hode named ‘name’ relative to this directory.

Fi | e (name)
Looks up or creates a file node named ‘name’ relative to this directory.

Cet Tag (key)
Return a user-defined tag.

Nodel nf o
alias of SCons. Node. FS. Di r Nodel nf o

RDi r s (pathlist)
Search for a list of directories in the Repository list.

Rfi ndal | di r s (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.

234

SCons.Node package

The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindal I di rs_key (pathlist)

__cl earReposi t or yCache (duplicate=None)
Called when we change the repository(ies) for a directory. This clears any cached information that is invalidated
by changing the repository.

__resetDupli cat e (node)

_abspath

_add_chi | d (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()
_children_reset ()

_create()
Create this directory, silently and without worrying about whether the builder is the default or not.

_func_exists

_func_get _contents

_func_is_derived

_func_rexists

_func_sconsi gn

_func_target fromsource

_get _scanner (env, initial_scanner, root_node_scanner, kw)

_get _str ()

_gl obl (pattern, ondisk=True, source=False, strings=False)
Globs for and returns a list of entry names matching a single pattern in this directory.
This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.
TODO: handle pattern with no wildcard

_labspath

_l ocal
neno

_mor ph ()
Turn a file system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.
Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don't use
signatures for calculating whether they're current.

_path

235

SCons.Node package

_path_elenments

_proxy

_rel _pat h_key (other)

_save_str ()

_sconsign

_specific_sources
_srcdir_find_fil e_key (filename)
_tags

_tpath

addReposi t ory (dir)

add_dependency (depend)
Adds dependencies.

add_i gnor e (depend)
Adds dependencies to ignore.

add_prerequi sit e (prerequisite)
Adds prerequisites

add_sour ce (source)
Adds sources.

add_to_inplicit (deps)

add_t o_wai ti ng_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don'’t think you can
“clean up” this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wki d (wkid)
Add a node to the list of kids waiting to be evaluated

al | _chil dren (scan=1)
Return a list of all the node’s direct children.

alter _targets ()
Return any corresponding targets in a variant directory.

al ways_buil d
attributes
bi nfo

bui | d (**kw)
A null “builder” for directories.

bui | der

236

SCons.Node package

bui | der _set (builder)

built ()
Called just after this node is successfully built.

cached

cachedir_csig

cachesig

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored Buildinfo, but the stored Buildinfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last _build

check_attri butes (name)
Simple API to check if the node.attributes for name has been set

chi | dren (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).
cl ear _nenoi zed_val ues ()
contentsig

cwd

del _binfo ()
Delete the build info from this node.

depends
depends_set

dir

di r _on_di sk (name)
di r nane

di sanbi guat e (must_exist=None)

237

SCons.Node package

di skcheck_mat ch ()

do_dupl i cat e (src)

duplicate

entries

entry_abspat h (hame)
entry_exi sts_on_di sk (name)

Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given

name could be found.

@see rentry_exists_on_disk
entry_| abspat h (name)
entry_pat h (name)
entry_tpath (name)
env
env_set (env, safe=0)

execut or

execut or _cl eanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

expl ain ()
file_on_di sk (name)

for_signature()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs

get Repositories ()
Returns a list of repositories for this directory.

get _abspat h ()
Get the absolute path of the file.

get _all _rdirs ()

get _binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what's wanted.

238

SCons.Node package

239

get _build_env ()
Fetch the appropriate Environment to build this node.

get _buil d_scanner _pat h (scanner)
Fetch the appropriate scanner path for this node.

get _bui | der (default_builder=None)
Return the set builder, or a specified default value

get _cachedir_csig ()

get _contents ()
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are
sorted.

get _csig()
Compute the content signature for Directory nodes. In general, this is not needed and the content signature is
not stored in the DirNodelnfo. However, if get_contents on a Dir node is called which has a child directory, the
child directory should return the hash of its contents.

get _dir ()
get _env ()
get _env_scanner (env, kw={})

get _execut or (create=1)
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.

get _found_i ncl udes (env, scanner, path)
Return this directory’s implicit dependencies.
We don'’t bother caching the results because the scan typically shouldn’'t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).

get _inplicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get _internal _path ()

get | abspath ()
Get the absolute path of the file.

get _ninfo()

get _pat h (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get _path_el enents ()

get _relpath()
Get the path of the file relative to the root SConstruct file’s directory.

get _source_scanner (nhode)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

SCons.Node package

get _state ()

get _stored_inplicit ()

Fetch the stored implicit dependencies

get _stored_info()

get _stri ng (for_signature)

This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get _subst _proxy ()

This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get _suffix()

get _target _scanner ()

get _text _contents ()

We already emit things in text, so just return the binary version.

get _tinestanp ()

Return the latest timestamp from among our children

get _tpath()

getmtine ()

getsi ze ()

gl ob (pathname, ondisk=True, source=False, strings=False, exclude=None)

Returns a list of Nodes (or strings) matching a specified pathname pattern.

Pathname patterns follow UNIX shell semantics: * matches any-length strings of any characters, ? matches any
character, and [] can enclose lists or ranges of characters. Matches do not span directory separators.

The matches take into account Repositories, returning local Nodes if a corresponding entry exists in a
Repository (either an in-memory Node or something on disk).

By defafult, the glob() function matches entries that exist on-disk, in addition to in-memory Nodes. Setting the
“ondisk” argument to False (or some other non-true value) causes the glob() function to only match in-memory
Nodes. The default behavior is to return both the on-disk and in-memory Nodes.

The “source” argument, when true, specifies that corresponding source Nodes must be returned if you're
globbing in a build directory (initialized with VariantDir()). The default behavior is to return Nodes local to the
VariantDir().

The “strings” argument, when true, returns the matches as strings, not Nodes. The strings are path names
relative to this directory.

The “exclude” argument, if not None, must be a pattern or a list of patterns following the same UNIX shell
semantics. Elements matching a least one pattern of this list will be excluded from the result.

The underlying algorithm is adapted from the glob.glob() function in the Python library (but heavily modified), and
uses fnmatch() under the covers.

has_bui | der ()

240

Return whether this Node has a builder or not.

SCons.Node package

241

In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_buil der ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

i gnore

i gnor e_set

implicit

implicit_set

i ncl udes

is_conftest ()
Returns true if this node is an conftest node

is_derived|()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

i s_sconscript ()
Returns true if this node is an sconscript

i s_under (dir)

is up_to_date()
If any child is not up-to-date, then this directory isn't, either.

isdir ()
isfile()
i slink()

I i nk (srcdir, duplicate)
Set this directory as the variant directory for the supplied source directory.

l'i nked
I stat ()
make ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a

Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

m ssing ()

SCons.Node package

242

mul ti ple_side_effect_has_buil der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

must _be_ sane (klass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

name

new_bi nfo ()
new_ni nfo ()

ni nf o

nocache

nocl ean

on_di sk_entries

post process ()
Clean up anything we don'’t need to hang onto after we've been built.

pr eci ous

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites
pseudo

push_to_cache ()
Try to push a node into a cache

rdir ()
ref count

rel _pat h (other)
Return a path to “other” relative to this directory.

rel ease_target _info()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

SCons.Node package

rel eased target _info

renove ()
Remove this Node: no-op by default.

render _include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()

rentry_exi sts_on_di sk (name)
Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk

repositories

reset _executor ()
Remove cached executor; forces recompute when needed.

retrieve_fromcache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

rfile()
root

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbui | der

scan ()
Scan this node’s dependents for implicit dependencies.

scanner _key ()
A directory does not get scanned.

scanner _pat hs

sconsi gn ()
Return the .sconsign file info for this directory.

sear ched

sel ect _scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that's configured for the target.

set _al ways_bui | d (always_build=1)
Set the Node’s always_build value.

set _execut or (executor)

243

SCons.Node package

Set the action executor for this node.
set _explicit (is_explicit)
set _local ()

set _nocache (nocache=1)
Set the Node's nocache value.

set _nocl ean (noclean=1)
Set the Node’'s noclean value.

set _preci ous (precious=1)
Set the Node’s precious value.

set _pseudo (pseudo=True)
Set the Node’s precious value.

set _specific_source (source)

set _src_buil der (builder)
Set the source code builder for this node.

set st at e (state)
si de_ef f ect
side_effects
sour ces
sour ces_set
src_buil der ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcdir
srcdi r_dupl i cat e (hame)
srcdir_find_fil e (filename)
srcdir_list ()

srcnode ()
Dir has a special need for srcnode()...if we have a srcdir attribute set, then that is our srcnode.

stat ()
state
store_info
str_for _display()
target _from source (prefix,suffix,splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.

Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

244

SCons.Node package

target _peers
up ()
variant _dirs

visited ()
Called just after this node has been visited (with or without a build).

wai ting_parents
waiting s e
wal k (func, arg)
Walk this directory tree by calling the specified function for each directory in the tree.

This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the
same arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)
Except that “dirname” will actually be the directory Node, not the string. The ‘. and *..” entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a
specific order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing
None is common).
wKki ds

class SCons. Node. FS. Di r Bui | dl nfo
Bases: SCons. Node. Bui | dI nf oBase

bact
bactsig
bdepends
bdependsi gs
bimplicit
bi nmplicitsigs
bsour ces
bsour cesi gs
current _version_id=2
mer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other

instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons. Node. FS. Di r Nodel nf o
Bases: SCons. Node. Nodel nf oBase

convert (node, val)
current _version_id=2
f or mat (field_list=None, names=0)

f s = None

245

SCons.Node package

nmer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
str_to_node (s)

updat e (hode)

class SCons. Node. FS. Di skChecker (type, do, ignore)
Bases: obj ect

set (list)

class SCons. Node. FS. Ent ry (name, directory, fs)
Bases: SCons. Node. FS. Base
This is the class for generic Node.FS entries—that is, things that could be a File or a Dir, but we're just not sure yet.
Consequently, the methods in this class really exist just to transform their associated object into the right class
when the time comes, and then call the same-named method in the transformed class.

class Attrs
Bases: obj ect

shar ed

Bui | dl nfo
alias of SCons. Node. Bui | dl nf oBase

Deci der (function)

Cet Tag (key)
Return a user-defined tag.

Nodel nf o
alias of SCons. Node. Nodel nf oBase

RDi r s (pathlist)
Search for a list of directories in the Repository list.

Rf i ndal | di r s (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindal I di rs_key (pathlist)
_abspath

_add_chi | d (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()
_children_reset ()
_func_exists

_func_get _contents

246

SCons.Node package

_func_is_derived

_func_rexists

_func_sconsi gn

_func_target fromsource

_get _scanner (env, initial_scanner, root_node_scanner, kw)
_get _str ()

_gl ob1l (pattern, ondisk=True, source=False, strings=False)
_labspath

_l ocal

_nmeno

_path

_path_elenments

_proxy

_save_str ()

_sconsign

_specific_sources

_tags

_tpath

add_dependency (depend)
Adds dependencies.

add_i gnor e (depend)
Adds dependencies to ignore.

add_prerequi sit e (prerequisite)
Adds prerequisites

add_sour ce (source)
Adds sources.

add_to_inplicit (deps)

add_t o_wai ti ng_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don'’t think you can
“clean up” this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wki d (wkid)
Add a node to the list of kids waiting to be evaluated

al | _chil dren (scan=1)

247

SCons.Node package

Return a list of all the node’s direct children.

alter _targets ()
Return a list of alternate targets for this Node.

al ways_buil d
attributes
bi nf o

bui I d (**kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

bui | der
bui | der _set (builder)

built ()
Called just after this node is successfully built.

cached
cachedir_csig
cachesig

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored Buildinfo, but the stored Buildinfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last _build

check_attri butes (name)
Simple API to check if the node.attributes for name has been set

chi I dren (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

cl ear _nenoi zed_val ues ()

248

SCons.Node package

contentsig
cwd

del _binfo ()
Delete the build info from this node.

depends

depends_set

dir

di r nane

di sanbi guat e (must_exist=None)

di skcheck_mat ch ()

duplicate
entries
env

env_set (env, safe=0)
execut or

execut or _cl eanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

expl ain ()

for_signature()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs

get _abspat h ()
Get the absolute path of the file.

get _binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what's wanted.

get _build_env ()
Fetch the appropriate Environment to build this node.

get _buil d_scanner _pat h (scanner)

249

SCons.Node package

Fetch the appropriate scanner path for this node.

get _bui | der (default_builder=None)
Return the set builder, or a specified default value

get _cachedir_csig ()

get _contents ()
Fetch the contents of the entry. Returns the exact binary contents of the file.

get _csig()

get _dir ()

get _env ()

get _env_scanner (env, kw={})

get _execut or (create=1)
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.

get found_i ncl udes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get _inplicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get _internal _path ()

get | abspath ()
Get the absolute path of the file.

get _ninfo()

get _pat h (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get _path_el enents ()

get _relpath()
Get the path of the file relative to the root SConstruct file’s directory.

get _source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get _state ()

get _stored_inplicit ()
Fetch the stored implicit dependencies

get _stored_info()

get _stri ng (for_signature)

250

SCons.Node package

251

This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get _subst _proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get _suffix()
get _target _scanner ()

get _text _contents ()
Fetch the decoded text contents of a Unicode encoded Entry.
Since this should return the text contents from the file system, we check to see into what sort of subclass we
should morph this Entry.

get _tpath()
getmtine ()
getsi ze ()

has_bui | der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len___and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

i gnore

i gnor e_set

implicit

implicit_set

i ncl udes

is_conftest ()
Returns true if this node is an conftest node

is_derived|()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

SCons.Node package

252

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

i s_sconscript ()
Returns true if this node is an sconscript

i s_under (dir)

is_ up_to_date()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will
always get built.

isdir ()

isfile()

i slink()

l'i nked

I stat ()

make ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

nm ssing ()

mul tiple_side_effect_has_buil der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the

len__and _ bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls

and slowing things down immensely.

must _be_ sane (klass)
Called to make sure a Node is a Dir. Since we're an Entry, we can morph into one.

nanme
new_bi nfo ()
new_ni nf o ()

ni nfo

nocache

nocl ean

on_di sk_entries

post process ()
Clean up anything we don’t need to hang onto after we've been built.

pr eci ous

prepare ()

SCons.Node package

253

Prepare for this Node to be built.

This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.

This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.

(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)

Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites
pseudo

push_to_cache ()
Try to push a node into a cache

ref count
rel _pat h (other)

rel ease_target _info()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

rel eased target _info

renove ()
Remove this Node: no-op by default.

render _include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()
repositories

reset _executor ()
Remove cached executor; forces recompute when needed.

retrieve_fromcache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

rfile()
We're a generic Entry, but the caller is actually looking for a File at this point, so morph into one.

root

rstr ()
A Node.FS.Base object’s string representation is its path name.

SCons.Node package

sbui | der

scan ()
Scan this node’s dependents for implicit dependencies.

scanner _key ()
scanner _pat hs
sear ched
sel ect _scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use

their own Scanner and don't select one the Scanner.Selector that's configured for the target.

set _al ways_bui | d (always_build=1)
Set the Node’s always_build value.

set _execut or (executor)
Set the action executor for this node.

set _explicit (is_explicit)
set _local ()

set _nocache (nocache=1)
Set the Node's nocache value.

set _nocl ean (noclean=1)
Set the Node’s noclean value.

set _preci ous (precious=1)
Set the Node’s precious value.

set _pseudo (pseudo=True)
Set the Node’s precious value.

set _specific_source (source)

set _src_buil der (builder)
Set the source code builder for this node.

set st at e (state)

si de_ef f ect

side_effects

sour ces

sources_set

src_buil der ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcnode ()

254

SCons.Node package

If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for _display()

target _from source (prefix,suffix,splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target _peers

variant _dirs

visited ()
Called just after this node has been visited (with or without a build).

wai ting_parents
waiting s e
wki ds

class SCons. Node. FS. Ent r yPr oxy (subject)
Bases: SCons. Uti | . Proxy

__get_abspath ()

__get_base_path ()
Return the file’s directory and file name, with the suffix stripped.

_get _dir ()
__get _file(
__get _filebase ()

__get_posix_path ()
Return the path with / as the path separator, regardless of platform.

__get _relpath()

__get _rsrcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node
if not linked.

__get_rsrcnode ()

__get _srcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node
if not linked.

__get_srcnode ()

_get_suffix()

255

SCons.Node package

__get_wi ndows_path ()
Return the path with as the path separator, regardless of platform.

di ct Speci al Attrs = {'abspath". <function EntryProxy.__get_abspath>, '‘base" <function
EntryProxy.__get_base_path>, 'dir': <function EntryProxy._ get_dir>, ‘file": <function EntryProxy.__get file>,
filebase': <function EntryProxy.__ get_filebase>, 'posix: <function EntryProxy._ get posix_path>, 'relpath"
<function EntryProxy.__get relpath>, ‘rsrcdir: <function EntryProxy.__get rsrcdir>, 'rsrcpath: <function
EntryProxy.__get_rsrcnode>, 'srcdir' <function EntryProxy.__get_srcdir>, 'srcpath': <function
EntryProxy.__get_srcnode>, 'suffix': <function EntryProxy.__get_suffix>, 'win32"; <function
EntryProxy. get windows_path>, 'windows": <function EntryProxy. get windows_path>}

get ()
Retrieve the entire wrapped object

exception SCons. Node. FS. Ent r yPr oxyAt t ri but eErr or (entry_proxy, attribute)
Bases: Attri but eError
An AttributeError subclass for recording and displaying the name of the underlying Entry involved in an
AttributeError exception.

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

class SCons. Node. FS. FS (path=None)
Bases: SCons. Node. FS. Local FS

Di r (name, directory=None, create=True)
Look up or create a Dir node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied
at construction time) if no directory is supplied.
This method will raise TypeError if a normal file is found at the specified path.

Ent ry (name, directory=None, create=1)
Look up or create a generic Entry node with the specified name. If the name is a relative path (begins with ./, ../,
or a file name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS
(supplied at construction time) if no directory is supplied.

Fi | e (hame, directory=None, create=1)
Look up or create a File node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied
at construction time) if no directory is supplied.
This method will raise TypeError if a directory is found at the specified path.

d ob (pathname, ondisk=True, source=True, strings=False, exclude=None, cwd=None)
Globs
This is mainly a shim layer

PyPackageDi r (modulename)
Locate the directory of a given python module name
For example scons might resolve to Windows: C:Python27Libsite-packagesscons-2.5.1 Linux: /usr/lib/scons
This can be useful when we want to determine a toolpath based on a python module name

Reposi t ory (*dirs)
Specify Repository directories to search.

Vari ant Di r (variant_dir, src_dir, duplicate=1)
Link the supplied variant directory to the source directory for purposes of building files.

_l ookup (p, directory, fsclass, create=1)
The generic entry point for Node lookup with user-supplied data.

256

SCons.Node package

257

This translates arbitrary input into a canonical Node.FS object of the specified fsclass. The general approach for
strings is to turn it into a fully normalized absolute path and then call the root directory’s lookup_abs() method for
the heavy lifting.
If the path name begins with ‘#, it is unconditionally interpreted relative to the top-level directory of this FS. ‘#' is
treated as a synonym for the top-level SConstruct directory, much like ‘~' is treated as a synonym for the user’s
home directory in a UNIX shell. So both ‘#foo’ and ‘#/foo’ refer to the ‘foo’ subdirectory underneath the top-level
SConstruct directory.
If the path name is relative, then the path is looked up relative to the specified directory, or the current directory
(self._cwd, typically the SConscript directory) if the specified directory is None.

chdi r (dir, change_os_dir=0)
Change the current working directory for lookups. If change_os_dir is true, we will also change the “real” cwd to
match.

chmod (path, mode)

copy (src, dst)

copy?2 (src, dst)

exi st s (path)

get _max_drift ()

get _root (drive)
Returns the root directory for the specified drive, creating it if necessary.

getcwd ()

get mt i me (path)

get si ze (path)

i sdir (path)

i sfile (path)

i slink (path)

I'i nk (src, dst)

I'istdir (path)

| st at (path)

makedi r s (path, mode=511, exist_ok=False)
mkdi r (path, mode=511)
open (path)

readl i nk (file)

r enane (old, new)

scandi r (path)

set _SConstruct _di r (dir)

set _max_drift (max_drift)

SCons.Node package

st at (path)

sym i nk (src, dst)

unl i nk (path)

variant _dir_target_clinb (orig, dir, tail)
Create targets in corresponding variant directories
Climb the directory tree, and look up path names relative to any linked variant directories we find.
Even though this loops and walks up the tree, we don’t memoize the return value because this is really only
used to process the command-line targets.

class SCons. Node. FS. Fi | e (hame, directory, fs)
Bases: SCons. Node. FS. Base
A class for files in a file system.

class Attrs
Bases: obj ect

shar ed

Bui | dl nfo
alias of SCons. Node. FS. Fi | eBui | dl nfo

Deci der (function)

Di r (name, create=True)
Create a directory node named ‘name’ relative to the directory of this file.

Di r s (pathlist)
Create a list of directories relative to the SConscript directory of this file.

Entry (name)
Create an entry node named ‘name’ relative to the directory of this file.

Fi | e (name)
Create a file node named ‘name’ relative to the directory of this file.

Cet Tag (key)
Return a user-defined tag.

Nodel nf o
alias of SCons. Node. FS. Fi | eNodel nf o

RDi r s (pathlist)
Search for a list of directories in the Repository list.

Rf i ndal | di r s (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindal I di rs_key (pathlist)
__dmap_cache ={}

__dmap_sig_cache={}

258

SCons.Node package

_abspath

_add_chi | d (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_add_strings_to_dependency_rmnap (dmap)
In the case comparing node objects isn't sufficient, we'll add the strings for the nodes to the dependency map
return;

_bui I d_dependency_nap (binfo)
Build mapping from file -> signature

Parameters:
« - self (self) —

e - buildinfo from node being considered (binfo) —
Returns: dictionary of file->signature mappings

_children_get ()

_children_reset ()

_createDir ()

_func_exists

_func_get _contents

_func_is_derived

_func_rexists

_func_sconsi gn

_func_target fromsource

_get _found_i ncl udes_key (env, scanner, path)

_get _previous_signatures (dmap)
Return a list of corresponding csigs from previous build in order of the nodeffiles in children.

Parameters:
« - self (self) —

e - Dictionary of file -> csig (dmap) —
Returns: List of csigs for provided list of children

_get _scanner (env, initial_scanner, root_node_scanner, kw)
_get _str ()
_gl ob1 (pattern, ondisk=True, source=False, strings=False)
_labspath
_l ocal

neno

_mor ph ()
Turn a file system node into a File object.

_path

259

SCons.Node package

_path_elenments
_proxy
_rmv_existing()
_save_str ()
_sconsign
_specific_sources
_tags

_tpath

add_dependency (depend)
Adds dependencies.

add_i gnor e (depend)
Adds dependencies to ignore.

add_prerequi sit e (prerequisite)
Adds prerequisites

add_sour ce (source)
Adds sources.

add_to_inplicit (deps)
add_t o_wai ti ng_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.

(Note that the returned values are intended to be used to increment a reference count, so don'’t think you can
“clean up” this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wki d (wkid)
Add a node to the list of kids waiting to be evaluated

al | _chil dren (scan=1)
Return a list of all the node’s direct children.

alter _targets ()
Return any corresponding targets in a variant directory.

al ways_buil d
attributes
bi nf o
bui I d (**kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread

unsafe stuff in built().

bui | der

260

SCons.Node package

261

bui | der _set (builder)

built ()
Called just after this File node is successfully built.
Just like for ‘release_target_info’ we try to release some more target node attributes in order to minimize the
overall memory consumption.
@see: release_target_info

cached
cachedir_csig
cachesig

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built.
For File nodes this is basically a wrapper around Node.changed(), but we allow the return value to get cached
after the reference to the Executor got released in release_target_info().
@see: Node.changed()

changed_cont ent (target, prev_ni, repo_node=None)
changed_since_last _build
changed_st at e (target, prev_ni, repo_node=None)

changed_ti mest anp_nmmat ch (target, prev_ni, repo_node=None)
Return True if the timestamps don’t match or if there is no previous timestamp :param target: :param prev_ni:
Information about the node from the previous build :return:

changed_ti mest anp_newer (target, prev_ni, repo_node=None)

changed_ti mest anp_t hen_cont ent (target, prev_ni, node=None)
Used when decider for file is Timestamp-MD5

NOTE: If the timestamp hasn’t changed this will skip md5’ing the
file and just copy the prev_ni provided. If the prev_ni is wrong. It will propagate it. See:
https://github.com/SCons/scons/issues/2980

Parameters:
« - dependency (self) —

* - target (target) —
* - The Nodelnfo object loaded from previous builds .sconsign (prev_ni) —

* - Node instance. Check this node for file existence/timestamp (node) — if
specified.
Returns: Boolean - Indicates if node(File) has changed.

check_attri butes (name)
Simple API to check if the node.attributes for name has been set

chi I dren (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are up_to _date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()

https://github.com/SCons/scons/issues/2980

SCons.Node package

Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

cl ear _nenoi zed_val ues ()

contentsig

convert _copy_attrs =[bsources', 'bimplicit, '‘bdepends', 'bact’, 'bactsig’, 'ninfo’]
convert _ol d_entry (old_entry)

convert _sig_attrs =[bsourcesigs', 'bimplicitsigs', '‘bdependsigs']

cwd

del _binfo ()
Delete the build info from this node.

depends

depends_set

dir

di r nane

di sanbi guat e (must_exist=None)
di skcheck_mat ch ()

do_dupl i cat e (src)

duplicate
entries
env

env_set (env, safe=0)
execut or

execut or _cl eanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

expl ain ()

find repo file()
For this node, find if there exists a corresponding file in one or more repositories :return: list of corresponding
files in repositories

find_src_builder ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need

262

SCons.Node package

263

to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs

get _abspat h ()
Get the absolute path of the file.

get _binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what's wanted.

get _build_env ()
Fetch the appropriate Environment to build this node.

get _buil d_scanner _pat h (scanner)
Fetch the appropriate scanner path for this node.

get _bui | der (default_builder=None)
Return the set builder, or a specified default value

get _cachedir_bsig()
Return the signature for a cached file, including its children.
It adds the path of the cached file to the cache signature, because multiple targets built by the same action will
all have the same build signature, and we have to differentiate them somehow.
Signature should normally be string of hex digits.

get _cachedir_csig()
Fetch a Node’s content signature for purposes of computing another Node’s cachesig.
This is a wrapper around the normal get _csig() method that handles the somewhat obscure case of using
CacheDir with the -n option. Any files that don’t exist would normally be “built” by fetching them from the cache,
but the normal get_csig() method will try to open up the local file, which doesn't exist because the -n option
meant we didn’t actually pull the file from cachedir. But since the file does actually exist in the cachedir, we can
use its contents for the csig.

get _content _hash () - str
Compute and return the hash for this file.

get _contents () - bytes
Return the contents of the file as bytes.

get _contents_sig ()
A helper method for get_cachedir_bsig.
It computes and returns the signature for this node’s contents.

get _csig () - str
Generate a node’s content signature.

get _dir ()
get _env ()
get _env_scanner (env, kw={})

get _execut or (create=1)
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.

get found_i ncl udes (env, scanner, path)

SCons.Node package

264

Return the included implicit dependencies in this file. Cache results so we only scan the file once per path
regardless of how many times this information is requested.

get _inplicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get _internal _path ()

get | abspath ()
Get the absolute path of the file.

get _max_drift_csig () - Optional[str]
Returns the content signature currently stored for this node if it's been unmodified longer than the max_drift
value, or the max_drift value is 0. Returns None otherwise.

get _ninfo()

get _pat h (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get _path_el enents ()

get _relpath()
Get the path of the file relative to the root SConstruct file’s directory.

get _size () - int

get _source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get _state ()

get _stored_inplicit ()
Fetch the stored implicit dependencies

get _stored_info()

get _stri ng (for_signature)

This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get _subst _proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get _suffix()

get _target _scanner ()

SCons.Node package

get _text _contents () - str
Return the contents of the file in text form.
This attempts to figure out what the encoding of the text is based upon the BOM bytes, and then decodes the
contents so that it's a valid python string.

get _tinestanp () - int
get _tpath()
getmtine ()

getsi ze ()

has_bui | der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

has_src_buil der ()
Return whether this Node has a source builder or not.
If this Node doesn’t have an explicit source code builder, this is where we figure out, on the fly, if there’s a
transparent source code builder for it.
Note that if we found a source builder, we also set the self.builder attribute, so that all of the methods that
actually build this file don’t have to do anything different.

hash_chunksi ze = 65536

i gnore

i gnor e_set

implicit

implicit_set

i ncl udes

is_conftest ()
Returns true if this node is an conftest node

is_derived|()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

i s_sconscript ()
Returns true if this node is an sconscript

265

SCons.Node package

i s_under (dir)

is_ up_to_date()
Check for whether the Node is current In all cases self is the target we're checking to see if it's up to date

isdir ()

isfile()

i slink()

l'i nked

I stat ()

make ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

nm ssing ()

mul tiple_side_effect_has_buil der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the

len__and _ bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls

and slowing things down immensely.

must _be_sane (klass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

name
new_bi nfo ()
new_ni nf o ()

ni nfo

nocache

nocl ean

on_di sk_entries

post process ()
Clean up anything we don’t need to hang onto after we've been built.

pr eci ous

prepare ()
Prepare for this file to be created.

prerequisites
pseudo

push_to_cache ()
Try to push the node into a cache

266

SCons.Node package

ref count
rel _pat h (other)

rel ease_target _info()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
We'd like to remove a lot more attributes like self.sources and self.sources_set, but they might get used in a next
build step. For example, during configuration the source files for a built E{*}.o file are used to figure out which
linker to use for the resulting Program (gcc vs. g++)! That's why we check for the ‘keep_targetinfo’ attribute,
config Nodes and the Interactive mode just don't allow an early release of most variables.
In the same manner, we can’t simply remove the self.attributes here. The smart linking relies on the shared flag,
and some parts of the java Tool use it to transport information about nodes...
@see: built() and Node.release_target_info()

rel eased target _info

renove ()
Remove this file.

render _include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()
repositories

reset _executor ()
Remove cached executor; forces recompute when needed.

retrieve_fromcache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

rfile()
root

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbui | der

scan ()
Scan this node’s dependents for implicit dependencies.

scanner _key ()
scanner _pat hs
sear ched

sel ect _scanner (scanner)
Selects a scanner for this Node.

267

SCons.Node package

This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that's configured for the target.

set _al ways_bui | d (always_build=1)
Set the Node’s always_build value.

set _execut or (executor)
Set the action executor for this node.

set _explicit (is_explicit)
set _local ()

set _nocache (nocache=1)
Set the Node’s nocache value.

set _nocl ean (noclean=1)
Set the Node’'s noclean value.

set _preci ous (precious=1)
Set the Node’s precious value.

set _pseudo (pseudo=True)
Set the Node’s precious value.

set _specific_source (source)

set _src_buil der (builder)
Set the source code builder for this node.

set st at e (state)

si de_ef f ect

side_effects

sour ces

sources_set

src_buil der ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for _display()

target _from source (prefix,suffix,splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.

268

SCons.Node package

Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target _peers
variant _dirs

visited ()
Called just after this node has been visited (with or without a build).

wai ting_parents
waiting s e
wKki ds
class SCons. Node. FS. Fi | eBui | dI nfo

Bases: SCons. Node. Bui | dl nf oBase
This is info loaded from sconsign.

Attributes unique to FileBuildInfo:
dependency_map : Caches file->csig mapping
for all dependencies. Currently this is only used when using MD5-timestamp decider. It's used to ensure

that we copy the correct csig from the previous build to be written to .sconsign when current build is done.
Previously the matching of csig to file was strictly by order they appeared in bdepends, bsources, or
bimplicit, and so a change in order or count of any of these could yield writing wrong csig, and then false
positive rebuilds
bact
bactsi g
bdepends
bdependsi gs
binplicit
bi nplicitsigs
bsour ces
bsour cesi gs
convert _from sconsi gn (dir, name)
Converts a newly-read FileBuildInfo object for in-SCons use
For normal up-to-date checking, we don’t have any conversion to perform—but we’re leaving this method here to
make that clear.
convert _to_sconsign ()
Converts this FileBuildInfo object for writing to a .sconsign file
This replaces each Node in our various dependency lists with its usual string representation: relative to the
top-level SConstruct directory, or an absolute path if it's outside.
current _version_id=2
dependency_map

f or mat (names=0)

mer ge (other)

269

SCons.Node package

Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

pr epar e_dependenci es ()
Prepares a FileBuildinfo object for explaining what changed
The bsources, bdepends and bimplicit lists have all been stored on disk as paths relative to the top-level
SConstruct directory. Convert the strings to actual Nodes (for use by the —debug=explain code and
—implicit-cache).

exception SCons. Node. FS. Fi | eBui | dI nf oFi | eToCsi gMappi ngErr or
Bases: Excepti on

args

wi th_traceback ()
Exception.with_traceback(tb) — set self.__traceback _ to tb and return self.

class SCons. Node. FS. Fi | eFi nder
Bases: obj ect

_find_fil e_key (filename, paths, verbose=None)

filedir_| ookup (p, fd=None)
A helper method for find_file() that looks up a directory for a file we're trying to find. This only creates the Dir
Node if it exists on-disk, since if the directory doesn’t exist we know we won't find any files in it... :-)
It would be more compact to just use this as a nested function with a default keyword argument (see the

commented-out version below), but that doesn’t work unless you have nested scopes, so we define it here just
so this work under Python 1.5.2.
find_fil e (filename, paths, verbose=None)
Find a node corresponding to either a derived file or a file that exists already.
Only the first file found is returned, and none is returned if no file is found.
filename: A filename to find paths: A list of directory path nodes to search in. Can be represented as a list, a
tuple, or a callable that is called with no arguments and returns the list or tuple.
returns The node created from the found file.

class SCons. Node. FS. Fi | eNodel nfo
Bases: SCons. Node. Nodel nf oBase

convert (node, val)

csig

current _version_id=2

field_ Iist =[csig, timestamp', 'size']

f or mat (field_list=None, names=0)

fs = None

mer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

si ze

str_to_node (s)

ti mestanp

270

SCons.Node package

updat e (hode)

SCons. Node. FS. Li nkFunc (target, source, env)

Relative paths cause problems with symbolic links, so we use absolute paths, which may be a problem for people
who want to move their soft-linked src-trees around. Those people should use the ‘hard-copy’ mode, softlinks
cannot be used for that; at least | have no idea how ...

class SCons. Node. FS. Local FS

Bases: obj ect

This class implements an abstraction layer for operations involving a local file system. Essentially, this wraps any
function in the os, os.path or shutil modules that we use to actually go do anything with or to the local file system.
Note that there’s a very good chance we’ll refactor this part of the architecture in some way as we really implement
the interface(s) for remote file system Nodes. For example, the right architecture might be to have this be a
subclass instead of a base class. Nevertheless, we're using this as a first step in that direction.

We're not using chdir() yet because the calling subclass method needs to use os.chdir() directly to avoid recursion.
Will we really need this one?

chmod (path, mode)

copy (src, dst)

copy?2 (src, dst)

exi st s (path)

get mt i me (path)

get si ze (path)

i sdir (path)

i sfil e (path)

i slink (path)

I'i nk (src, dst)

listdir (path)

| st at (path)

makedi r s (path, mode=511, exist_ok=False)

nkdi r (path, mode=511)

open (path)

readl i nk (file)

r enane (old, new)

scandi r (path)

st at (path)

sym i nk (src, dst)

unl i nk (path)

SCons. Node. FS. Local Stri ng (target, source, env)
SCons. Node. FS. Mkdi r Func (target, source, env)

271

SCons.Node package

class SCons. Node. FS. Root Di r (drive, fs)
Bases: SCons. Node. FS. Di r
A class for the root directory of a file system.
This is the same as a Dir class, except that the path separator (/' or ") is actually part of the name, so we don’t
need to add a separator when creating the path names of entries within this directory.

class Attrs
Bases: obj ect

shar ed

Bui | dl nfo
alias of SCons. Node. FS. Di r Bui | dl nfo

Deci der (function)

Di r (name, create=True)
Looks up or creates a directory node named ‘name’ relative to this directory.

Ent ry (name)
Looks up or creates an entry hode named ‘name’ relative to this directory.

Fi | e (name)
Looks up or creates a file node named ‘name’ relative to this directory.

Cet Tag (key)
Return a user-defined tag.

Nodel nf o
alias of SCons. Node. FS. Di r Nodel nf o

RDi r s (pathlist)
Search for a list of directories in the Repository list.

Rfi ndal | di r s (pathlist)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking
up the same path for each target in a given directory.

Tag (key, value)
Add a user-defined tag.

_Rfindal I di rs_key (pathlist)
_abspath

_add_chi | d (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()
_children_reset ()

_create()
Create this directory, silently and without worrying about whether the builder is the default or not.

_func_exists
_func_get _contents

_func_is_derived

272

SCons.Node package

_func_rexists

_func_sconsi gn

_func_target fromsource

_get _scanner (env, initial_scanner, root_node_scanner, kw)

_get _str ()

_gl obl (pattern, ondisk=True, source=False, strings=False)
Globs for and returns a list of entry names matching a single pattern in this directory.
This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.
TODO: handle pattern with no wildcard

_labspath

_l ocal

_l ookupDi ct

_| ookup_abs (p, klass, create=1)
Fast (?) lookup of a normalized absolute path.
This method is intended for use by internal lookups with already-normalized path data. For general-purpose
lookups, use the FS.Entry(), FS.Dir() or FS.File() methods.
The caller is responsible for making sure we're passed a normalized absolute path; we merely let Python's
dictionary look up and return the One True Node.FS object for the path.
If a Node for the specified “p” doesn't already exist, and “create” is specified, the Node may be created after
recursive invocation to find or create the parent directory or directories.
meno

_rr'?l:rahaofile system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.
Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don't use
signatures for calculating whether they’re current.

_path

_path_elenments

_proxy

_rel _pat h_key (other)

_save_str ()

_sconsign

_specific_sources

_srcdir_find_fil e_key (filename)

_tags

_tpath

abspat h

273

SCons.Node package

addReposi t ory (dir)

add_dependency (depend)
Adds dependencies.

add_i gnor e (depend)
Adds dependencies to ignore.

add_prerequi sit e (prerequisite)
Adds prerequisites

add_sour ce (source)
Adds sources.

add_to_inplicit (deps)

add_t o_wai ti ng_parent s (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don'’t think you can
“clean up” this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wki d (wkid)
Add a node to the list of kids waiting to be evaluated

al | _chil dren (scan=1)
Return a list of all the node’s direct children.

alter _targets ()
Return any corresponding targets in a variant directory.

al ways_buil d
attributes
bi nfo

bui | d (**kw)
A null “builder” for directories.

bui | der
bui | der _set (builder)

built ()
Called just after this node is successfully built.

cached
cachedir_csig
cachesig

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored Buildinfo, but the stored Buildinfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.

274

SCons.Node package

The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last _build

check_attri butes (name)
Simple API to check if the node.attributes for name has been set

chi | dren (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_ up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).
cl ear _nenoi zed_val ues ()
contentsig

cwd

del _binfo ()
Delete the build info from this node.

depends

depends_set

dir

di r _on_di sk (name)

di r nane

di sanbi guat e (must_exist=None)

di skcheck_mat ch ()

do_dupl i cat e (src)

duplicate

entries

entry_abspat h (hame)

entry_exi sts_on_di sk (name)
Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given
name could be found.
@see rentry_exists_on_disk

entry_| abspat h (name)

entry_pat h (name)

275

SCons.Node package

entry_tpath (name)
env

env_set (env, safe=0)
execut or

execut or _cl eanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

expl ain ()
file_on_di sk (name)

for_signature()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

fs
Reference to parent Node.FS object

get Repositories ()
Returns a list of repositories for this directory.

get _abspat h ()
Get the absolute path of the file.

get _all _rdirs ()

get _binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what's wanted.

get _build_env ()
Fetch the appropriate Environment to build this node.

get _buil d_scanner _pat h (scanner)
Fetch the appropriate scanner path for this node.

get _bui | der (default_builder=None)
Return the set builder, or a specified default value

get _cachedir_csig ()
get_contents ()

Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are
sorted.

get _csig()

276

SCons.Node package

277

Compute the content signature for Directory nodes. In general, this is not needed and the content signature is
not stored in the DirNodelnfo. However, if get_contents on a Dir node is called which has a child directory, the
child directory should return the hash of its contents.

get _dir ()
get _env ()
get _env_scanner (env, kw={})

get _execut or (create=1)
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.

get _found_i ncl udes (env, scanner, path)
Return this directory’s implicit dependencies.
We don'’t bother caching the results because the scan typically shouldn’'t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).

get _inplicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get _internal _path ()

get | abspath ()
Get the absolute path of the file.

get _ninfo()

get _pat h (dir=None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get _path_el enents ()

get _relpath()
Get the path of the file relative to the root SConstruct file’s directory.

get _source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get _state ()

get _stored_inplicit ()
Fetch the stored implicit dependencies

get _stored_info()

get _stri ng (for_signature)

This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

SCons.Node package

get _subst _proxy ()

This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get _suffix()

get _target _scanner ()

get _text _contents ()

We already emit things in text, so just return the binary version.

get _tinestanp ()

Return the latest timestamp from among our children

get _tpath()

getmtine ()

getsi ze ()

gl ob (pathname, ondisk=True, source=False, strings=False, exclude=None)

Returns a list of Nodes (or strings) matching a specified pathname pattern.

Pathname patterns follow UNIX shell semantics: * matches any-length strings of any characters, ? matches any
character, and [] can enclose lists or ranges of characters. Matches do not span directory separators.

The matches take into account Repositories, returning local Nodes if a corresponding entry exists in a
Repository (either an in-memory Node or something on disk).

By defafult, the glob() function matches entries that exist on-disk, in addition to in-memory Nodes. Setting the
“ondisk” argument to False (or some other non-true value) causes the glob() function to only match in-memory
Nodes. The default behavior is to return both the on-disk and in-memory Nodes.

The “source” argument, when true, specifies that corresponding source Nodes must be returned if you're
globbing in a build directory (initialized with VariantDir()). The default behavior is to return Nodes local to the
VariantDir().

The “strings” argument, when true, returns the matches as strings, not Nodes. The strings are path names
relative to this directory.

The “exclude” argument, if not None, must be a pattern or a list of patterns following the same UNIX shell
semantics. Elements matching a least one pattern of this list will be excluded from the result.

The underlying algorithm is adapted from the glob.glob() function in the Python library (but heavily modified), and
uses fnmatch() under the covers.

has_bui | der ()

Return whether this Node has a builder or not.

In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()

Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

i gnore

i gnor e_set

implicit

implicit_set

278

SCons.Node package

i ncl udes

is_conftest ()
Returns true if this node is an conftest node

is_derived|()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

i s_sconscript ()
Returns true if this node is an sconscript

i s_under (dir)

is_ up_to_date()
If any child is not up-to-date, then this directory isn't, either.

isdir ()
isfile()
i slink()

I i nk (srcdir, duplicate)
Set this directory as the variant directory for the supplied source directory.

l'i nked

I stat ()

make ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

nm ssing ()

mul tiple_side_effect_has_buil der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the

len__and _ bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls

and slowing things down immensely.

must _be_ sane (klass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

name
new_bi nfo ()
new_ni nf o ()

ni nfo

279

SCons.Node package

280

nocache

nocl ean

on_di sk_entries
pat h

post process ()
Clean up anything we don'’t need to hang onto after we've been built.

pr eci ous

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites
pseudo

push_to_cache ()
Try to push a node into a cache

rdir ()
ref count

rel _pat h (other)
Return a path to “other” relative to this directory.

rel ease_target _info()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

rel eased target _info

renove ()
Remove this Node: no-op by default.

render _include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

rentry ()

rentry_exi sts_on_di sk (name)
Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk

SCons.Node package

repositories

reset _executor ()
Remove cached executor; forces recompute when needed.

retrieve_fromcache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

rfile()
root

rstr ()
A Node.FS.Base object’s string representation is its path name.

sbui | der

scan ()
Scan this node’s dependents for implicit dependencies.

scanner _key ()
A directory does not get scanned.

scanner _pat hs

sconsi gn ()
Return the .sconsign file info for this directory.

sear ched

sel ect _scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that's configured for the target.

set _al ways_bui | d (always_build=1)
Set the Node’s always_build value.

set _execut or (executor)
Set the action executor for this node.

set _explicit (is_explicit)
set _local ()

set _nocache (nocache=1)
Set the Node's nocache value.

set _nocl ean (noclean=1)
Set the Node’s noclean value.

set _preci ous (precious=1)
Set the Node’s precious value.

set _pseudo (pseudo=True)

281

SCons.Node package

Set the Node’s precious value.
set _specific_source (source)

set _src_buil der (builder)
Set the source code builder for this node.

set st at e (state)
si de_ef f ect
side_effects
sour ces
sour ces_set
src_buil der ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcdir
srcdi r_dupl i cat e (hame)
srcdir_find_fil e (filename)
srcdir_list ()

srcnode ()
Dir has a special need for srcnode()...if we have a srcdir attribute set, then that is our srcnode.

stat ()

state

store_info

str_for _display()

target _from source (prefix,suffix,splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target _peers

up ()

variant _dirs

visited()
Called just after this node has been visited (with or without a build).

wai ting_parents
waiting s e

wal k (func, arg)
Walk this directory tree by calling the specified function for each directory in the tree.

282

SCons.Node package

This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the
same arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)

Except that “dirname” will actually be the directory Node, not the string. The ‘. and *..” entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a
specific order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing
None is common).

wki ds
SCons. Node. FS. Unl i nkFunc (target, source, env)

class SCons. Node. FS. _Nul |
Bases: obj ect

SCons. Node. FS. cl assEntry
alias of SCons. Node. FS. Entry

SCons.
SCons.
SCons.
SCons.
SCons.
SCons.
SCons.
SCons.

Node. FS. _copy_func (fs, src, dest)
Node. FS. _hardl i nk_func (fs, src, dst)

Node.
Node.
Node.
Node.
Node.
Node.

FS.
FS.
FS.
FS.
FS.
FS.

_my_norntase (X)

_ny_splitdrive (p)

_softlink_func (fs, src, dst)

di skcheck_types ()

do_di skcheck_mat ch (node, predicate, errorfmt)

find_fil e (flename, paths, verbose=None)

Find a node corresponding to either a derived file or a file that exists already.

Only the first file found is returned, and none is returned if no file is found.

filename: A filename to find paths: A list of directory path nodes to search in. Can be represented as a list, a tuple,
or a callable that is called with no arguments and returns the list or tuple.

returns The node created from the found file.

SCons.
SCons.
SCons.
SCons.
SCons.
SCons.

Node.
Node.
Node.
Node.
Node.
Node.

FS.
FS.
FS.
FS.
FS.
FS.

get _Mdi r Bui | der ()

get _default _fs ()

has_gl ob_mmagi c (s)

i gnor e_di skcheck_mat ch (node, predicate, errorfmt)
initialize do_splitdrive()

i nval i dat e_node_nenos (targets)

Invalidate the memoized values of all Nodes (files or directories) that are associated with the given entries. Has
been added to clear the cache of nodes affected by a direct execution of an action (e.g. Delete/Copy/Chmod).
Existing Node caches become inconsistent if the action is run through Execute(). The argument targets can be a
single Node object or filename, or a sequence of Nodes/filenames.

SCons. Node. FS. needs_nor npat h_mat ch (string, pos=0, endpos=9223372036854775807)
Matches zero or more characters at the beginning of the string.

SCons. Node. FS. save_stri ngs (val)

SCons. Node. FS. sconsi gn_di r (node)
Return the .sconsign file info for this directory, creating it first if necessary.

SCons. Node. FS. sconsi gn_none (node)
SCons. Node. FS. set _di skcheck (list)
SCons. Node. FS. set _dupl i cat e (duplicate)

283

SCons.Node package

SCons.Node.Python module

Python nodes.

class SCons. Node. Pyt hon. Val ue (value, built_value=None, name=None)
Bases: SCons. Node. Node
A class for Python variables, typically passed on the command line or generated by a script, but not from a file or
some other source.

class Attrs
Bases: obj ect

shar ed

Bui l dInfo
alias of SCons. Node. Pyt hon. Val ueBui | dI nfo

Deci der (function)

Cet Tag (key)
Return a user-defined tag.

Nodel nf o
alias of SCons. Node. Pyt hon. Val ueNodel nf o

Tag (key, value)
Add a user-defined tag.

_add_chi | d (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()
_children_reset ()
_func_exists

_func_get _contents
_func_is_derived
_func_rexists
_func_target fromsource
_get _scanner (env, initial_scanner, root_node_scanner, kw)
_nmeno

_specific_sources

_tags

add_dependency (depend)
Adds dependencies.

add_i gnor e (depend)
Adds dependencies to ignore.

add_prerequi sit e (prerequisite)
Adds prerequisites

284

SCons.Node package

add_sour ce (source)
Adds sources.

add_to_inplicit (deps)

add_t o_wai ti ng_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don'’t think you can
“clean up” this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wki d (wkid)
Add a node to the list of kids waiting to be evaluated

al | _chil dren (scan=1)
Return a list of all the node’s direct children.

alter _targets ()
Return a list of alternate targets for this Node.

al ways_buil d
attributes
bi nf o

bui I d (**kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

bui | der
bui | der _set (builder)

built ()
Called just after this node is successfully built.

cached

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored Buildinfo, but the stored Buildinfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last _build

check_attri butes (name)
Simple API to check if the node.attributes for name has been set

chi | dren (scan=1)

285

SCons.Node package

Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_ up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

cl ear _nenoi zed_val ues ()

del _binfo ()
Delete the build info from this node.

depends

depends_set

di sanbi guat e (must_exist=None)
env

env_set (env, safe=0)

execut or

execut or _cl eanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

expl ain()

for_signature()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

get _abspat h ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get _binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what's wanted.

get _build_env ()
Fetch the appropriate Environment to build this node.

get _buil d_scanner _pat h (scanner)
Fetch the appropriate scanner path for this node.

286

SCons.Node package

287

get _bui | der (default_builder=None)
Return the set builder, or a specified default value

get _cachedir_csig ()

get _contents () » bytes
Get contents for signature calculations.

get _csi g (calc=None)
Because we're a Python value node and don't have a real timestamp, we get to ignore the calculator and just
use the value contents.
Returns string. Ideally string of hex digits. (Not bytes)

get _env ()
get _env_scanner (env, kw={})

get _execut or (create=1)
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.

get _found_i ncl udes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get _inplicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get _ninfo()

get _source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get _state ()

get _stored_inplicit ()
Fetch the stored implicit dependencies

get _stored_info()

get _stri ng (for_signature)

This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get _subst _proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

SCons.Node package

get _suffix()
get _target _scanner ()

get _text _contents () - str
By the assumption that the node.built_value is a deterministic product of the sources, the contents of a Value
are the concatenation of all the contents of its sources. As the value need not be built when get_contents() is
called, we cannot use the actual node.built_value.

has_bui | der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len___and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder

This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

i gnore

i gnor e_set
implicit
implicit_set
i ncl udes

is_conftest ()
Returns true if this node is an conftest node

is_derived|()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

i s_sconscript ()
Returns true if this node is an sconscript

i s_under (dir)

is up_to_date()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

l'i nked
make ready ()
Get a Node ready for evaluation.

This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

288

SCons.Node package

289

m ssing ()

mul ti ple_side_effect_has_buil der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

new_bi nfo ()
new_ni nfo ()
ni nfo
nocache
nocl ean

post process ()
Clean up anything we don'’t need to hang onto after we've been built.

pr eci ous

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites
pseudo

push_to_cache ()
Try to push a node into a cache

read ()
Return the value. If necessary, the value is built.

ref count

rel ease_target _info()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

renove ()
Remove this Node: no-op by default.

render _include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

SCons.Node package

reset _executor ()
Remove cached executor; forces recompute when needed.

retrieve_fromcache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

scan ()
Scan this node’s dependents for implicit dependencies.

scanner _key ()

sel ect _scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that's configured for the target.

set _al ways_bui | d (always_build=1)
Set the Node’s always_build value.

set _execut or (executor)
Set the action executor for this node.

set _explicit (is_explicit)

set _nocache (nocache=1)
Set the Node's nocache value.

set _nocl ean (noclean=1)
Set the Node’s noclean value.

set _preci ous (precious=1)
Set the Node’s precious value.

set _pseudo (pseudo=True)
Set the Node’s precious value.

set _specific_source (source)
set st at e (state)

si de_ef f ect

side_effects

sour ces

sources_set

state

store_info

str_for _display()

target _peers

290

SCons.Node package

visited ()
Called just after this node has been visited (with or without a build).

wai ting_parents
waiting s e
wki ds

wr i t e (built_value)
Set the value of the node.

class SCons. Node. Pyt hon. Val ueBui | dl nfo
Bases: SCons. Node. Bui | dl nf oBase

bact
bactsi g
bdepends
bdependsi gs
bimplicit
bi nmpl i citsigs
bsour ces
bsour cesi gs
current _version_id=2
mer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other

instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons. Node. Pyt hon. Val ueNodel nf o
Bases: SCons. Node. Nodel nf oBase

convert (node, val)

csig

current _version_id=2

field_ Iist =[csig]

f or mat (field_list=None, names=0)

mer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

updat e (hode)

SCons. Node. Pyt hon. Val ueW t hMeno (value, built_value=None, name=None)
Memoized Value() node factory.

201

SCons.Node package

Module contents
The Node package for the SCons software construction utility.
This is, in many ways, the heart of SCons.

A Node is where we encapsulate all of the dependency information about any thing that SCons can build, or about
any thing which SCons can use to build some other thing. The canonical “thing,” of course, is a file, but a Node can
also represent something remote (like a web page) or something completely abstract (like an Alias).

Each specific type of “thing” is specifically represented by a subclass of the Node base class: Node.FS.File for files,
Node.Alias for aliases, etc. Dependency information is kept here in the base class, and information specific to
files/aliases/etc. is in the subclass. The goal, if we've done this correctly, is that any type of “thing” should be able to
depend on any other type of “thing.”

SCons. Node. Annot at e (hode)
class SCons. Node. Bui | dI nf oBase
Bases: obj ect
The generic base class for build information for a Node.
This is what gets stored in a .sconsign file for each target file. It contains a Nodelnfo instance for this node
(signature information that's specific to the type of Node) and direct attributes for the generic build stuff we have to
track: sources, explicit dependencies, implicit dependencies, and action information.
bact
bactsi g
bdepends
bdependsi gs
bimplicit
bi nplicitsigs
bsour ces
bsour cesi gs
current _version_id=2
nmer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
class SCons. Node. Node
Bases: obj ect

The base Node class, for entities that we know how to build, or use to build other Nodes.

class Attrs
Bases: obj ect

shar ed

Bui | dl nfo
alias of SCons. Node. Bui | dl nf oBase

Deci der (function)

Cet Tag (key)
Return a user-defined tag.

292

SCons.Node package

Nodel nf o
alias of SCons. Node. Nodel nf oBase

Tag (key, value)
Add a user-defined tag.

_add_chi | d (collection, set, child)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()
_children_reset ()
_func_exists

_func_get _contents
_func_is_derived
_func_rexists
_func_target fromsource
_get _scanner (env, initial_scanner, root_node_scanner, kw)
_nmeno

_specific_sources

_tags

add_dependency (depend)
Adds dependencies.

add_i gnor e (depend)
Adds dependencies to ignore.

add_prerequi sit e (prerequisite)
Adds prerequisites

add_sour ce (source)
Adds sources.

add_to_inplicit (deps)

add_t o_wai ti ng_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, 0 if not.
(Note that the returned values are intended to be used to increment a reference count, so don'’t think you can
“clean up” this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wki d (wkid)
Add a node to the list of kids waiting to be evaluated

al | _chil dren (scan=1)
Return a list of all the node’s direct children.

alter _targets ()
Return a list of alternate targets for this Node.

293

SCons.Node package

294

al ways_buil d
attributes
bi nfo

bui I d (**kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().

bui | der
bui | der _set (builder)

built ()
Called just after this node is successfully built.

cached

changed (node=None, allowcache=False)
Returns if the node is up-to-date with respect to the BuildInfo stored last time it was built. The default behavior is
to compare it against our own previously stored Buildinfo, but the stored Buildinfo from another Node (typically
one in a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as
we detected any difference, but we now rely on checking every dependency to make sure that any necessary
Node information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last _build

check_attri butes (name)
Simple API to check if the node.attributes for name has been set

chi | dren (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

cl ear _nenoi zed_val ues ()

del _binfo ()
Delete the build info from this node.

depends
depends_set

di sanbi guat e (must_exist=None)

SCons.Node package

env
env_set (env, safe=0)
execut or

execut or _cl eanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

expl ain ()

for_signature()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__() method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need
to return something that would actually work in a command line; it can return any kind of nonsense, so long as it
does not change.

get _abspat h ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get _binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns -
the build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what's wanted.

get _build_env ()
Fetch the appropriate Environment to build this node.

get _buil d_scanner _pat h (scanner)
Fetch the appropriate scanner path for this node.

get _bui | der (default_builder=None)
Return the set builder, or a specified default value

get _cachedir_csig()

get _contents ()
Fetch the contents of the entry.

get_csig()
get _env ()
get _env_scanner (env, kw={})

get _execut or (create=1)
Fetch the action executor for this node. Create one if there isn't already one, and requested to do so.

get _found_i ncl udes (env, scanner, path)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

295

SCons.Node package

296

get _inplicit_deps (env, initial_scanner, path_func, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get _ninfo()

get _source_scanner (nhode)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get _state ()

get _stored_inplicit ()
Fetch the stored implicit dependencies

get _stored_info()

get _stri ng (for_signature)

This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command
line, which determines if we should rebuild or not.

Such command generators should use this method in preference to str(Node) when converting a Node to a
string, passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get _subst _proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle
use is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself
has a tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this
method to return self if no new functionality is needed for Environment substitution.

get _suffix()

get _target _scanner ()

has_bui | der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len__and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

i gnore

i gnor e_set

implicit

implicit_set

i ncl udes

SCons.Node package

297

is_conftest ()
Returns true if this node is an conftest node

is_derived|()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and
should contribute their build signatures when they are used as source files to other derived files. For example:
source with source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

i s_sconscript ()
Returns true if this node is an sconscript

is_ up_to_date()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will
always get built.

l'i nked

make ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

m ssing ()

mul tiple_side_effect_has_buil der ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr __ for both the
__len___and __bool _ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls
and slowing things down immensely.

new_bi nfo ()
new_ni nf o ()
ni nfo
nocache
nocl ean

post process ()
Clean up anything we don’t need to hang onto after we've been built.

pr eci ous

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before
actually calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and
initializes the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the
targets built by a specific action.)

SCons.Node package

298

Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note
that subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites
pseudo

push_to_cache ()
Try to push a node into a cache

ref count

rel ease_target _info()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order
to minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that
much how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

renove ()
Remove this Node: no-op by default.

render _include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

reset _executor ()
Remove cached executor; forces recompute when needed.

retrieve_fromcache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in built().
Returns true if the node was successfully retrieved.

rexists ()
Does this node exist locally or in a repository?

scan ()
Scan this node’s dependents for implicit dependencies.

scanner _key ()

sel ect _scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that's configured for the target.

set _al ways_bui | d (always_build=1)
Set the Node’s always_build value.

set _execut or (executor)
Set the action executor for this node.

set _explicit (is_explicit)

set _nocache (nocache=1)
Set the Node's nocache value.

set _nocl ean (noclean=1)
Set the Node’s noclean value.

SCons.Node package

set _preci ous (precious=1)
Set the Node’s precious value.

set _pseudo (pseudo=True)
Set the Node’s precious value.

set _specific_source (source)
set st at e (state)

si de_ef f ect

side_effects

sour ces

sources_set

state

store_info

target _peers

visited ()
Called just after this node has been visited (with or without a build).

wai ting_parents

waiting s e

wKki ds

class SCons. Node. Nodel nf oBase

Bases: obj ect

The generic base class for signature information for a Node.

Node subclasses should subclass NodelnfoBase to provide their own logic for dealing with their own Node-specific

signature information.

convert (node, val)

current _version_id=2

f or mat (field_list=None, names=0)

mer ge (other)
Merge the fields of another object into this object. Already existing information is overwritten by the other
instance’s data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

updat e (hode)

class SCons. Node. NodelLi st (initlist=None)
Bases: col | ecti ons. User Li st

_abc_i mpl =<_abc_data object>

append (item)
S.append(value) — append value to the end of the sequence

cl ear () - None —remove all items from S

299

SCons.Node package

copy ()

count (value) - integer — return number of occurrences of value

ext end (other)
S.extend(iterable) — extend sequence by appending elements from the iterable

i ndex (val ue[,start[,stop]]) - integer — return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

i nsert (i, item)
S.insert(index, value) — insert value before index

pop ([,i ndex]) - item —remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

renove (item)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()

S.reverse() — reverse IN PLACE

sort (*args, **kwds)

class SCons. Node. WAl ker (node, kids_func=<function get_children>, cycle_func=<function
i gnore_cycl e>, eval _func=<functi on do_not hi ng>)
Bases: obj ect
An iterator for walking a Node tree.
This is depth-first, children are visited before the parent. The Walker object can be initialized with any node, and
returns the next node on the descent with each get next() call. get the children of a node instead of calling
‘children’. ‘cycle_func’ is an optional function that will be called when a cycle is detected.
This class does not get caught in node cycles caused, for example, by C header file include loops.

get _next ()
Return the next node for this walk of the tree.
This function is intentionally iterative, not recursive, to sidestep any issues of stack size limitations.

i s_done ()

SCons. Node. changed_si nce_| ast _bui | d_al i as (node, target, prev_ni, repo_node=None)

SCons. Node. changed_si nce_| ast _bui | d_ent ry (node, target, prev_ni, repo_node=None)

SCons. Node. changed_si nce_| ast _bui | d_node (node, target, prev_ni, repo_node=None)

Must be overridden in a specific subclass to return True if this Node (a dependency) has changed since the last
time it was used to build the specified target. prev_ni is this Node’s state (for example, its file timestamp, length,
maybe content signature) as of the last time the target was built.

Note that this method is called through the dependency, not the target, because a dependency Node must be able
to use its own logic to decide if it changed. For example, File Nodes need to obey if we're configured to use
timestamps, but Python Value Nodes never use timestamps and always use the content. If this method were
called through the target, then each Node’s implementation of this method would have to have more complicated

logic to handle all the different Node types on which it might depend.

SCons. Node. changed_si nce_| ast _bui | d_pyt hon (node, target, prev_ni, repo_node=None)

SCons. Node. changed_si nce_| ast _bui | d_st at e_changed (node, target, prev_ni, repo_node=None)
SCons. Node. cl assnane (obj)

SCons. Node. deci de_sour ce (node, target, prev_ni, repo_node=None)

SCons. Node. deci de_t ar get (node, target, prev_ni, repo_node=None)

SCons. Node. do_not hi ng (node, parent)

300

SCons.Platform package

SCons. Node. do_not hi ng_node (node)
SCons. Node. exi st s_al ways (node)
SCons. Node. exi st s_base (node)

SCons. Node. exi st s_ent ry (node)
Return if the Entry exists. Check the file system to see what we should turn into first. Assume a file if there’s no
directory.

SCons. Node. exi sts_fil e (node)
SCons. Node. exi st s_none (node)
SCons. Node. get _chi | dr en (node, parent)

SCons. Node. get _contents_dir (node)
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.

SCons. Node. get _contents_entry (node)
Fetch the contents of the entry. Returns the exact binary contents of the file.

SCons. Node. get _contents_fil e (node)
SCons. Node. get _cont ent s_none (node)
SCons. Node. i gnor e_cycl e (node, stack)

SCons. Node. i s_deri ved_node (node)
Returns true if this node is derived (i.e. built).

SCons. Node. i s_deri ved_none (node)

SCons. Node. rexi st s_base (node)

SCons. Node. rexi st s_node (node)

SCons. Node. rexi st s_none (node)

SCons. Node. store_info_fil e (node)

SCons. Node. st ore_i nf o_pass (node)

SCons. Node. t arget _from sour ce_base (node, prefix, suffix, splitext)

SCons. Node. t arget _from sour ce_none (node, prefix, suffix, splitext)

SCons.Platform package
Submodules

SCons.Platform.aix module
Platform-specific initialization for IBM AIX systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons. Pl at f or m ai x. gener at e (env)

SCons. Pl at f orm ai x. get _xI ¢ (env, xlc=None, packages=[])

SCons.Platform.cygwin module
Platform-specific initialization for Cygwin systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons. Pl at f orm cygwi n. gener at e (env)

301

SCons.Platform package

SCons.Platform.darwin module
Platform-specific initialization for Mac OS X systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons. Pl at f or m dar wi n. gener at e (env)

SCons.Platform.hpux module
Platform-specific initialization for HP-UX systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons. Pl at f or m hpux. gener at e (env)

SCons.Platform.irix module
Platform-specific initialization for SGI IRIX systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons. Pl atform i ri x. generat e (env)

SCons.Platform.mingw module

Platform-specific initialization for the MinGW system.

SCons.Platform.os2 module
Platform-specific initialization for OS/2 systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons. Pl at f or m 0s2. gener at e (env)

SCons.Platform.posix module
Platform-specific initialization for POSIX (Linux, UNIX, etc.) systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons. Pl at f or m posi x. escape (arg)
escape shell special characters

SCons. Pl at f or m posi x. exec_popen3 (I, env, stdout, stderr)

SCons. Pl at f or m posi x. exec_subprocess (I, env)

SCons. Pl at f or m posi x. gener at e (env)

SCons. Pl at f or m posi x. pi ped_env_spawn (sh, escape, cmd, args, env, stdout, stderr)

SCons. Pl at f or m posi x. subprocess_spawn (sh, escape, cmd, args, env)

SCons.Platform.sunos module
Platform-specific initialization for Sun systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons. Pl at f or m sunos. gener at e (env)

302

SCons.Platform package

SCons.Platform.virtualenv module
‘Platform” support for a Python virtualenv.

SCons. Pl atform vi rtual env. | nport Vi rtual env (env)
Copies virtualenv-related environment variables from OS environment to env[' ENV'] and prepends virtualenv’s
PATHtoenv[' ENV'][' PATH].

SCons. Pl atform vi rtual env. I sl nVirtual env (path)
Returns True, if path is under virtualenv’'s home directory. If not, or if we don’t use virtualenv, returns False.

SCons. Pl atform vi rtual env. Virtual env ()
Returns path to the virtualenv home if scons is executing within a virtualenv or None, if not.

SCons. Pl atform virtual env. _enabl e_virtual env_default ()
SCons. Platformvirtual env. _ignore_virtual env_default ()

SCons. Pl atform vi rtual env. _i nj ect _venv_pat h (env, path_list=None)
Modify environment such that SCons will take into account its virtualenv when running external tools.

SCons. Pl atform vi rtual env. _i nj ect_venv_vari abl es (env)

SCons. Pl atform vi rtual env. _i s_pat h_i n (path, base)
Returns true if path is located under the base directory.

SCons. Pl atform vi rtual env. _running_in_virtual env ()
Returns True if scons is executed within a virtualenv

SCons. Pl atf orm vi rtual env. sel ect _pat hs_i n_venv (path_list)
Returns a list of paths from path_list which are under virtualenv’s home directory.

SCons.Platform.win32 module

Platform-specific initialization for Win32 systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

class SCons. Pl at f orm wi n32. Ar chDef i ni ti on (arch, synonyms=[])
Bases: obj ect
Determine which windows CPU were running on. A class for defining architecture-specific settings and logic.

SCons. Pl at f orm wi n32. escape (X)
SCons. Pl at f orm wi n32. exec_spawn (I, env)
SCons. Pl at f or m wi n32. gener at e (env)

SCons. Pl at f orm wi n32. get _ar chi t ect ur e (arch=None)
Returns the definition for the specified architecture string.
If no string is specified, the system default is returned (as defined by the PROCESSOR_ARCHITEW6432 or
PROCESSOR_ARCHITECTURE environment variables).

SCons. Pl at form wi n32. get _program files_dir ()
Get the location of the program files directory

SCons. Pl at f orm wi n32. get _system r oot ()
SCons. Pl at f orm wi n32. pi ped_spawn (sh, escape, cmd, args, env, stdout, stderr)
SCons. Pl at f orm wi n32. spawn (sh, escape, cmd, args, env)

SCons. Pl at f orm wi n32. spawnve (mode, file, args, env)

Module contents
SCons platform selection.

Looks for modules that define a callable object that can modify a construction environment as appropriate for a given
platform.

303

SCons.Platform package

Note that we take a more simplistic view of “platform” than Python does. We're looking for a single string that
determines a set of tool-independent variables with which to initialize a construction environment. Consequently,
we’'ll examine both sys.platform and os.name (and anything else that might come in to play) in order to return some
specification which is unique enough for our purposes.

Note that because this subsystem just selects a callable that can modify a construction environment, it's possible for
people to define their own “platform specification” in an arbitrary callable function. No one needs to use or tie in to
this subsystem in order to roll their own platform definition.

SCons. Pl at f or m Def aul t Tool Li st (platform, env)
Select a default tool list for the specified platform.

SCons. Pl at f or m PI at f or m(name="'darwin’)
Select a canned Platform specification.

class SCons. Pl at f orm Pl at f or nSpec (name, generate)
Bases: obj ect

class SCons. Pl at f or m TenpFi | eMunge (cmd, cmdstr=None)
Bases: obj ect
Convert long command lines to use a temporary file.
You can set an Environment variable (usually TEMPFI LE) to this, then call it with a string argument, and it will
perform temporary file substitution on it. This is used to circumvent limitations on the length of command lines.
Example:

env[" TEMPFI LE"'] = TenpFi | eMunge
env["LI NKCOM'] = "${ TEMPFI LE(' $LI NK $TARGET $SOURCES', ' $LI NKCOMSTR)} "

By default, the name of the temporary file used begins with a prefix of ‘@’. This may be configured for other tool
chains by setting the TEMPFI LEPREFI X variable. Example:

env[" TEMPFI LEPREFI X"]
env[" TEMPFI LEPREFI X"]
env[" TEMPFI LEPREFI X"]

'-@ # diab conpil er
"-via' # armtool chain
v # (the enpty string) PC Lint

You can configure the extension of the temporary file through the TEMPFI LESUFFI X variable, which defaults to
“Ink’ (see comments in the code below). Example:

env[" TEMPFI LESUFFI X"'] = '.Int' # PC Lint

Entries in the temporary file are separated by the value of the TEMPFI LEARGIQ N variable, which defaults to an
OS-appropriate value.

A default argument escape function is SCons. Subst . quot e_spaces. If you need to apply extra operations on a
command argument before writing to a temporary file(fix Windows slashes, normalize paths, etc.), please set
TEMPFILEARGESCFUNC variable to a custom function. Example:

i mport sys
import re
from SCons. Subst i nport quote_spaces

W NPATHSEP_RE = re.conpile(r"\([*"'\]|$)")
def tenpfile_arg _esc_func(arg):
arg = quote_spaces(arg)
if sys.platform!= "wi n32":
return arg

GCC requires doubl e Wndows sl ashes, let's use UNI X separ at or
return W NPATHSEP_RE. sub(r"/m", arg)

env[" TEMPFI LEARGESCFUNC'] = tenpfil e_arg_esc_func

_print_cnd_str (target, source, env, cmdstr)

304

SCons.Scanner package

SCons. Pl atform pl atform default ()
Return the platform string for our execution environment.
The returned value should map to one of the SCons/Platform/*.py files. Since scons is architecture independent,
though, we don't care about the machine architecture.

SCons. Pl at f or m pl at f or m_nodul e (hame="darwin")
Return the imported module for the platform.
This looks for a module name that matches the specified argument. If the name is unspecified, we fetch the
appropriate default for our execution environment.

SCons.Scanner package
Submodules

SCons.Scanner.C module
Dependency scanner for C/C++ code.

SCons. Scanner . C. CCondi ti onal Scanner ()
Return an advanced conditional Scanner instance for scanning source files
Interprets C/C++ Preprocessor conditional syntax (#ifdef, #if, defined, #else, #elif, etc.).

SCons. Scanner . C. CScanner ()
Return a prototype Scanner instance for scanning source files that use the C pre-processor

class SCons. Scanner . C. SConsCPPCondi ti onal Scanner (*args, **kw)
Bases: SCons. cpp. PreProcessor
SCons-specific subclass of the cpp.py module’s processing.
We subclass this so that: 1) we can deal with files represented by Nodes, not strings; 2) we can keep track of the
files that are missing.

_do_if_else_condition (condition)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.

_mat ch_t upl es (tuples)

_parse_t upl es (contents)
_process_t upl es (tuples, file=None)
al | _i ncl ude (1)

do_define (1)
Default handling of a #define line.

do_elif (t)
Default handling of a #elif line.

do_el se ()
Default handling of a #else line.

do_endi f (1)
Default handling of a #endif line.

do_if ()
Default handling of a #if line.

do_i f def ()
Default handling of a #ifdef line.

305

SCons.Scanner package

306

do_i f ndef (1)
Default handling of a #ifndef line.

do_inport (1)
Default handling of a #import line.

do_i ncl ude (t)
Default handling of a #include line.

do_i ncl ude_next ()
Default handling of a #include line.

do_not hi ng (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.

do_undef (t)
Default handling of a #undef line.

eval _expression ()
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor namespace we use to
track #define values.

finalize result (fname)

find_include file(t)
Finds the #include file for a given preprocessor tuple.

initialize_result (fname)

process_cont ent s (contents)
Pre-processes a file contents.
Is used by tests

process_fil e (file)
Pre-processes a file.
This is the main internal entry point.

read_fil e (file)

resol ve_i ncl ude (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without “” or <> surrounding the name until an initial ” or < is found,
to handle #include FILE where FILE is a #define somewhere else.

restore ()
Pops the previous dispatch table off the stack and makes it the current one.

save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.

scons_current _file(t)

start _handl i ng_i ncl udes (t=None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.

stop_handl i ng_i ncl udes (t=None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.

SCons.Scanner package

This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.

t upl ei ze (contents)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’'s preprocessor directive (#if, #include, #define, etc., minus the initial
‘#). The remaining elements are specific to the type of directive, as pulled apart by the regular expression.

class SCons. Scanner . C. SConsCPPCondi ti onal Scanner W apper (name, variable)
Bases: obj ect
The SCons wrapper around a cpp.py scanner.
This is the actual glue between the calling conventions of generic SCons scanners, and the (subclass of) cpp.py
class that knows how to look for #include lines with reasonably real C-preprocessor-like evaluation of
#if/#ifdef/#else/#elif lines.

recur se_nodes (nodes)
sel ect (node)
class SCons. Scanner . C. SConsCPPScanner (*args, **kw)
Bases: SCons. cpp. PreProcessor
SCons-specific subclass of the cpp.py module’s processing.
We subclass this so that: 1) we can deal with files represented by Nodes, not strings; 2) we can keep track of the

files that are missing.

_do_if_else_condition (condition)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.

_mat ch_t upl es (tuples)

_parse_t upl es (contents)
_process_t upl es (tuples, file=None)
al | _incl ude (1)

do_define (1)
Default handling of a #define line.

do_elif (t)
Default handling of a #elif line.

do_el se ()
Default handling of a #else line.

do_endi f (1)
Default handling of a #endif line.

do_if ()
Default handling of a #if line.

do_i f def ()
Default handling of a #ifdef line.

do_i f ndef (1)
Default handling of a #ifndef line.

do_inport (1)
Default handling of a #import line.

do_i ncl ude (t)

307

SCons.Scanner package

Default handling of a #include line.

do_i ncl ude_next ()
Default handling of a #include line.

do_not hi ng (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.

do_undef (t)
Default handling of a #undef line.

eval _expression ()
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor namespace we use to
track #define values.

finalize result (fname)

find_include file(t)
Finds the #include file for a given preprocessor tuple.

initialize_result (fname)

process_cont ent s (contents)
Pre-processes a file contents.
Is used by tests

process_fil e (file)
Pre-processes a file.
This is the main internal entry point.

read_fil e (file)

resol ve_i ncl ude (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without “” or <> surrounding the name until an initial " or < is found,
to handle #include FILE where FILE is a #define somewhere else.

restore ()
Pops the previous dispatch table off the stack and makes it the current one.

save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.

scons_current _file(t)

start _handl i ng_i ncl udes (t=None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.

stop_handl i ng_i ncl udes (t=None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.

t upl ei ze (contents)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’'s preprocessor directive (#if, #include, #define, etc., minus the initial
‘#). The remaining elements are specific to the type of directive, as pulled apart by the regular expression.

308

SCons.Scanner package

class SCons. Scanner . C. SConsCPPScanner W apper (hame, variable)
Bases: obj ect
The SCons wrapper around a cpp.py scanner.
This is the actual glue between the calling conventions of generic SCons scanners, and the (subclass of) cpp.py
class that knows how to look for #include lines with reasonably real C-preprocessor-like evaluation of
#if/#ifdef/#else/#elif lines.

recur se_nodes (nodes)

sel ect (node)
SCons. Scanner . C. di cti fy_CPPDEFI NES (env)

SCons.Scanner.D module
Scanner for the Digital Mars “D” programming language.
Coded by Andy Friesen, 17 Nov 2003

class SCons. Scanner. D. D
Bases: SCons. Scanner . Cl assi c

_recurse_al |l _nodes (nodes)
_recurse_no_nodes (nodes)
add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

fi nd_i ncl ude (include, source_dir, path)
find_i ncl ude_nanes (node)

get _skeys (env=None)

pat h (env, dir=None, target=None, source=None)
scan (node, path=())

sel ect (node)

sort _key (include)

SCons. Scanner . D. DScanner ()
Return a prototype Scanner instance for scanning D source files

SCons.Scanner.Dir module
SCons. Scanner. Dir. Di r Ent ryScanner (**kw)
Return a prototype Scanner instance for “scanning” directory Nodes for their in-memory entries

SCons. Scanner. Di r. Di r Scanner (**kw)
Return a prototype Scanner instance for scanning directories for on-disk files

SCons. Scanner. Di r.do_not _scan (k)
SCons. Scanner. Di r.only_dirs (nodes)

SCons. Scanner. Di r. scan_i n_menory (node, env, path=())
“Scans” a Node.FS.Dir for its in-memory entries.

SCons. Scanner. Di r. scan_on_di sk (node, env, path=())

309

SCons.Scanner package

Scans a directory for on-disk files and directories therein.
Looking up the entries will add these to the in-memory Node tree representation of the file system, so all we have
to do is just that and then call the in-memory scanning function.

SCons.Scanner.Fortran module

Dependency scanner for Fortran code.

class SCons. Scanner . Fortran. F90Scanner (name, suffixes, path_variable, use_regex, incl_regex, def_regex,
*args, **kw)
Bases: SCons. Scanner . Cl assi ¢
A Classic Scanner subclass for Fortran source files which takes into account both USE and INCLUDE statements.
This scanner will work for both F77 and F90 (and beyond) compilers.
Currently, this scanner assumes that the include files do not contain USE statements. To enable the ability to deal
with USE statements in include files, add logic right after the module names are found to loop over each include
file, search for and locate each USE statement, and append each module name to the list of dependencies.
Caching the search results in a common dictionary somewhere so that the same include file is not searched
multiple times would be a smart thing to do.

_recurse_al |l _nodes (nodes)
_recurse_no_nodes (nodes)
add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

fi nd_i ncl ude (include, source_dir, path)
find_i ncl ude_nanes (node)

get _skeys (env=None)

pat h (env, dir=None, target=None, source=None)
scan (node, env, path=())

sel ect (node)

sort _key (include)

SCons. Scanner . Fortran. FortranScan (path_variable="FORTRANPATH")
Return a prototype Scanner instance for scanning source files for Fortran USE & INCLUDE statements

SCons.Scanner.IDL module
Dependency scanner for IDL (Interface Definition Language) files.

SCons. Scanner. | DL. | DLScan ()
Return a prototype Scanner instance for scanning IDL source files

SCons.Scanner.LaTeX module

Dependency scanner for LaTeX code.
class SCons. Scanner . LaTeX. Fi ndENVPat hDi r s (variable)
Bases: obj ect
A class to bind a specific E{*}PATH variable name to a function that will return all of the E{*}path directories.

class SCons. Scanner . LaTeX. LaTeX (hame, suffixes, graphics_extensions, *args, **kw)

310

SCons.Scanner package

Bases: SCons. Scanner . Base

Class for scanning LaTeX files for included files.

Unlike most scanners, which use regular expressions that just return the included file name, this returns a tuple
consisting of the keyword for the inclusion (“include”, “includegraphics”, “input”, or “bibliography”), and then the file
name itself. Based on a quick look at LaTeX documentation, it seems that we should append .tex suffix for the
“include” keywords, append .tex if there is no extension for the “input” keyword, and need to add .bib for the
“bibliography” keyword that does not accept extensions by itself.

Finally, if there is no extension for an “includegraphics” keyword latex will append .ps or .eps to find the file, while
pdftex may use .pdf, .jpg, .tif, .mps, or .png.

The actual subset and search order may be altered by DeclareGraphicsExtensions command. This complication is
ignored. The default order corresponds to experimentation with teTeX:

$ latex --version
pdf eTeX 3.141592-1.21a-2.2 (Web2C 7.5. 4)
kpat hsea version 3.5.4
The order is:

[.eps’, “.psT for latex ['.png’, .pdf, “.jpg’, ‘tif].
Another difference is that the search path is determined by the type of the file being searched: env[TEXINPUTS']
for “input” and “include” keywords env[TEXINPUTS'] for “includegraphics” keyword env[TEXINPUTS'] for
“Istinputlisting” keyword env['‘BIBINPUTS’] for “bibliography” keyword env['BSTINPUTS’] for “bibliographystyle”
keyword env['INDEXSTYLE’] for “makeindex” keyword, no scanning support needed just allows user to set it if
needed.
FIXME: also look for the class or style in document[class|style[{} FIXME: also look for the argument of
bibliographystyle{}

_|l at ex_nanes (include_type, filename)
_recurse_al |l _nodes (nodes)
_recurse_no_nodes (nodes)
add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

canoni cal _t ext (text)
Standardize an input TeX-file contents.

Currently:

* removes comments, unwrapping comment-wrapped lines.

env_vari abl es = [TEXINPUTS', 'BIBINPUTS', 'BSTINPUTS', INDEXSTYLE']

find_i ncl ude (include, source_dir, path)

get _skeys (env=None)

keywor d_pat hs = {‘addbibresource': 'BIBINPUTS', 'addglobalbib" 'BIBINPUTS', 'addsectionbib": 'BIBINPUTS',
'bibliography': 'BIBINPUTS', ‘'bibliographystyle’: 'BSTINPUTS', 'include": 'TEXINPUTS', ‘includegraphics"
TEXINPUTS', ‘input: 'TEXINPUTS', 'Istinputlisting: "'TEXINPUTS', 'makeindex": 'INDEXSTYLE', 'usepackage":
"TEXINPUTS"}

pat h (env, dir=None, target=None, source=None)

scan (node, subdir="")

scan_r ecur se (node, path=())

do a recursive scan of the top level target file This lets us search for included files based on the directory of the
main file just as latex does

311

SCons.Scanner package

sel ect (node)
sort _key (include)

two_arg_comands = ['import’, 'subimport’, includefrom’, 'subincludefrom’, ‘inputfrom’, 'subinputfrom’]

SCons. Scanner . LaTeX. LaTeXScanner ()
Return a prototype Scanner instance for scanning LaTeX source files when built with latex.

SCons. Scanner . LaTeX. PDFLaTeXScanner ()
Return a prototype Scanner instance for scanning LaTeX source files when built with pdflatex.

class SCons. Scanner . LaTeX. _Nul |
Bases: obj ect

SCons. Scanner. LaTeX. _nul |
alias of SCons. Scanner . LaTeX. _Nul |

SCons. Scanner . LaTeX. nodi fy_env_var (env, var, abspath)

SCons.Scanner.Prog module
Dependency scanner for program files.

SCons. Scanner . Prog. Progr anScanner (**kw)
Return a prototype Scanner instance for scanning executable files for static-lib dependencies

SCons. Scanner . Prog. _subst _|i bs (env, libs)
Substitute environment variables and split into list.

SCons. Scanner . Prog. scan (node, env, libpath=())
Scans program files for static-library dependencies.
It will search the LIBPATH environment variable for libraries specified in the LIBS variable, returning any files it
finds as dependencies.

SCons.Scanner.RC module
Dependency scanner for RC (Interface Definition Language) files.

SCons. Scanner . RC. RCScan ()
Return a prototype Scanner instance for scanning RC source files

SCons. Scanner. RC. no_t | b (nodes)
Filter out .tlb files as they are binary and shouldn’t be scanned.

SCons.Scanner.SWIG module
Dependency scanner for SWIG code.
SCons. Scanner . SW G SW GScanner ()

Module contents

The Scanner package for the SCons software construction utility.

class SCons. Scanner. Base (function, name=" NONE' , argunent =<cl ass ' SCons. Scanner._Null" >,
skeys=<cl ass ' SCons. Scanner. _Nul ' >, pat h_f uncti on=None, node_cl ass=<cl ass
' SCons. Node. FS. Base' >, node_f act or y=None, scan_check=None, r ecur si ve=None)

Bases: obj ect

Base class for dependency scanners.

This implements straightforward, single-pass scanning of a single file.

_recurse_al |l _nodes (nodes)

312

SCons.Scanner package

_recurse_no_nodes (nodes)
add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

get _skeys (env=None)
pat h (env, dir=None, target=None, source=None)
sel ect (node)
class SCons. Scanner . d assi ¢ (name, suffixes, path_variable, regex, *args, **kw)
Bases: SCons. Scanner . Current
A Scanner subclass to contain the common logic for classic CPP-style include scanning, but which can be
customized to use different regular expressions to find the includes.
Note that in order for this to work “out of the box” (without overriding the find_include() and sort_key() methods),
the regular expression passed to the constructor must return the name of the include file in group 0.
_recurse_al |l _nodes (nodes)
_recurse_no_nodes (nhodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

find_i ncl ude (include, source_dir, path)
find_i ncl ude_nanes (node)
get _skeys (env=None)
pat h (env, dir=None, target=None, source=None)
scan (node, path=())
sel ect (node)
sort _key (include)
class SCons. Scanner . C assi cCPP (name, suffixes, path_variable, regex, *args, **kw)
Bases: SCons. Scanner . Cl assi ¢
A Classic Scanner subclass which takes into account the type of bracketing used to include the file, and uses
classic CPP rules for searching for the files based on the bracketing.
Note that in order for this to work, the regular expression passed to the constructor must return the leading bracket
in group 0, and the contained filename in group 1.
_recurse_al |l _nodes (nodes)
_recurse_no_nodes (nodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

fi nd_i ncl ude (include, source_dir, path)

313

SCons.Scanner package

find_i ncl ude_nanes (node)
get _skeys (env=None)
pat h (env, dir=None, target=None, source=None)
scan (node, path=())
sel ect (node)
sort _key (include)

class SCons. Scanner . Current (*args, **kw)
Bases: SCons. Scanner . Base
A class for scanning files that are source files (have no builder) or are derived files and are current (which implies
that they exist, either locally or in a repository).
_recurse_al |l _nodes (nodes)
_recurse_no_nodes (nhodes)

add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

get _skeys (env=None)
pat h (env, dir=None, target=None, source=None)
sel ect (node)

class SCons. Scanner . Fi ndPat hDi r s (variable)
Bases: obj ect
Class to bind a specific E{*}PATH variable name to a function that will return all of the E{*}path directories.

SCons. Scanner . Scanner (function, *args, **kw)
Factory function to create a Scanner Object.
Creates the appropriate Scanner based on the type of “function”.
TODO: Deprecate this some day. We've moved the functionality inside the Base class and really don't need this
factory function any more. It was, however, used by some of our Tool modules, so the call probably ended up in
various people’s custom modules patterned on SCons code.

class SCons. Scanner . Sel ect or (dict, *args, **kw)
Bases: SCons. Scanner . Base
A class for selecting a more specific scanner based on the scanner_key() (suffix) for a specific Node.
TODO: This functionality has been moved into the inner workings of the Base class, and this class will be
deprecated at some point. (It was never exposed directly as part of the public interface, although it is used by the
Scanner() factory function that was used by various Tool modules and therefore was likely a template for custom
modules that may be out there.)
_recurse_al |l _nodes (nodes)
_recurse_no_nodes (nodes)
add_scanner (skey, scanner)

add_skey (skey)
Add a skey to the list of skeys

get _skeys (env=None)

314

SCons.Script package

pat h (env, dir=None, target=None, source=None)
sel ect (node)

class SCons. Scanner. _Nul |
Bases: obj ect

SCons. Scanner. nul |
alias of SCons. Scanner. _Nul |

SCons.Script package
Submodules

SCons.Script.Interactive module

SCons interactive mode.

class SCons. Scri pt. I nteractive. SConsl nteracti veCrd (**kw)
Bases: cnd. Cnd
build [TARGETS] Build the specified TARGETS and their dependencies. ‘b’ is a synonym. clean [TARGETS]
Clean (remove) the specified TARGETS and their dependencies. ‘c’ is a synonym. exit Exit SCons interactive
mode. help [COMMAND] Prints help for the specified COMMAND. ‘h’ and ‘?° are synonyms. shell
[COMMANDLINE] Execute COMMANDLINE in a subshell. ‘sh’ and ‘I are synonyms. version Prints SCons version
information.

_do_one_hel p (arg)
_doc_t o_hel p (obj)
_strip_initial_spaces (s)
cndl oop (intro=None)
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.
col ummi ze (list, displaywidth=80)
Display a list of strings as a compact set of columns.
Each column is only as wide as necessary. Columns are separated by two spaces (one was not legible enough).
conpl et e (text, state)
Return the next possible completion for ‘text’.
If a command has not been entered, then complete against command list. Otherwise try to call
complete_<command> to get list of completions.
conpl et e_hel p (*args)
conpl et edef aul t (*Yignored)
Method called to complete an input line when no command-specific complete_*() method is available.
By default, it returns an empty list.
conpl et enames (text, *ignored)
def aul t (argv)
Called on an input line when the command prefix is not recognized.

If this method is not overridden, it prints an error message and returns.

do_EOF (argv)

315

SCons.Script package

316

do_bui | d (argv)
build [TARGETS] Build the specified TARGETS and their dependencies. ‘b’ is a synonym.

do_cl ean (argv)
clean [TARGETS] Clean (remove) the specified TARGETS and their dependencies. ‘c’ is a synonym.

do_exit (argv)
exit Exit SCons interactive mode.

do_hel p (argv)
help [COMMAND] Prints help for the specified COMMAND. ‘h’ and ‘?’ are synonyms.

do_shel I (argv)
shell [COMMANDLINE] Execute COMMANDLINE in a subshell. ‘sh’ and ‘I" are synonyms.

do_versi on (argv)
version Prints SCons version information.

doc_header ='Documented commands (type help <topic>):'

doc_| eader =

enptyline()
Called when an empty line is entered in response to the prompt.
If this method is not overridden, it repeats the last nonempty command entered.

get _nanes ()

i dent char s = "abcdefghijkimnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 '

i ntro=None

lastcnd ="

ni sc_header ='Miscellaneous help topics:'

nohel p ="*** No help on %s'

onecnd (line)
Interpret the argument as though it had been typed in response to the prompt.
This may be overridden, but should not normally need to be; see the precmd() and postcmd() methods for useful
execution hooks. The return value is a flag indicating whether interpretation of commands by the interpreter
should stop.

par sel i ne (line)
Parse the line into a command name and a string containing the arguments. Returns a tuple containing

(command, args, line). ‘command’ and ‘args’ may be None if the line couldn’t be parsed.

post cnd (stop, line)
Hook method executed just after a command dispatch is finished.

post | oop ()
Hook method executed once when the cmdloop() method is about to return.

precnd (line)
Hook method executed just before the command line is interpreted, but after the input prompt is generated and
issued.

prel oop ()
Hook method executed once when the cmdloop() method is called.

SCons.Script package

print _topi cs (header, cmds, cmdlen, maxcol)

pronmpt ='(Cmd) "

ruler ='=
synonyns ={b" 'build’, 'c": ‘clean’, 'h": 'help, 'scons". 'build’, 'sh": 'shell’}
undoc_header ='Undocumented commands:'

use_rawi nput =1

SCons. Script.Interactive.interact (fs, parser, options, targets, target_top)

SCons.Script.Main module
The main() function used by the scons script.

Architecturally, this is the scons script, and will likely only be called from the external “scons” wrapper. Consequently,
anything here should not be, or be considered, part of the build engine. If it's something that we expect other
software to want to use, it should go in some other module. If it's specific to the “scons” script invocation, it goes
here.

SCons. Scri pt. Mai n. AddOpt i on (*args, **kw)

class SCons. Scri pt . Mai n. Bui | dTask (tm, targets, top, node)
Bases: SCons. Taskmast er. Qut Of Dat eTask
An SCons build task.

_abc_i mpl =<_abc_data object>

_exception_raise|()
Raises a pending exception that was recorded while getting a Task ready for execution.

_no_exception_to_raise|()

di spl ay (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

do_fail ed (status=2)

exc_cl ear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

excepti on_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execut e ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

execut ed ()

317

SCons.Script package

Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.

This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_wi th_cal |l backs ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

execut ed_wi t hout cal I backs ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

fail _continue()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail _stop()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get _target ()
Fetch the target being built or updated by this task.

make ready ()
Make a task ready for execution

make ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons
-Cc” option.

make ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what's necessary.

needs_execut e ()
Returns True (indicating this Task should be executed) if this Task’s target state indicates it needs executing,
which has already been determined by an earlier up-to-date check.

post process ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

318

SCons.Script package

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary

directories before the Action is actually called to build the targets.
trace_nessage (method, node, description="node")

class SCons. Scri pt . Mai n. O eanTask (tm, targets, top, node)
Bases: SCons. Taskmast er . Al waysTask
An SCons clean task.

_abc_i mpl =<_abc_data object>
_clean_targets (remove=True)

_exception_raise|)
Raises a pending exception that was recorded while getting a Task ready for execution.

_get files_to_clean)
_no_exception_to_raise()

di spl ay (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_cl ear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info()
Returns info about a recorded exception.

excepti on_set (exception=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execut e ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

execut ed ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the

Node’s callback methods.

executed_wi th_cal |l backs ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's

callback methods.

This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

execut ed_wi t hout cal | backs ()

Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

319

SCons.Script package

fail _continue()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail _stop()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fs_del et e (path, pathstr, remove=True)

get _target ()
Fetch the target being built or updated by this task.

make ready ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons
-Cc” option.

make ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons
-Cc” option.

make ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what's necessary.

needs_execut e ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):
needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute

post process ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

renove ()

show ()

trace_nessage (method, node, description="node")

320

SCons.Script package

class SCons. Scri pt. Mai n. Count St at's
Bases: SCons. Scri pt. Mai n. Stats

do_append (label)
do_not hi ng (*args, **kw)
do_print ()
enabl e (outfp)
class SCons. Scri pt. Mai n. FakeOpt i onPar ser
Bases: obj ect
A do-nothing option parser, used for the initial OptionsParser variable.
During normal SCons operation, the OptionsParser is created right away by the main() function. Certain tests

scripts however, can introspect on different Tool modules, the initialization of which can try to add a new, local
option to an otherwise uninitialized OptionsParser object. This allows that introspection to happen without blowing

up.

class FakeOpt i onVal ues
Bases: obj ect

add_| ocal _opti on (*args, **kw)

val ues = <SCons.Script.Main.FakeOptionParser.FakeOptionValues object>
SCons. Scri pt. Mai n. Get Bui | dFai | ures ()
SCons. Scri pt. Mai n. Get Opt i on (name)

class SCons. Scri pt. Mai n. Mentt at s
Bases: SCons. Scri pt. Mai n. Stats

do_append (label)
do_not hi ng (*args, **kw)
do_print ()

enabl e (outfp)
SCons. Scri pt . Mai n. Pri nt Hel p (file=None)
SCons. Scri pt. Mai n. Progr ess (*args, **kw)

class SCons. Scri pt . Mai n. Progr essor (obj, interval=1, file=None, overwrite=False)
Bases: obj ect

count =0

erase_previous ()

prev ="

repl ace_string (hode)

spi nner (node)

string (node)
target_string ='$TARGET

wite(s)

321

SCons.Script package

class SCons. Scri pt. Mai n. Quest i onTask (tm, targets, top, node)
Bases: SCons. Taskmast er . Al waysTask
An SCons task for the -q (question) option.

_abc_i mpl =<_abc_data object>

_exception_raise|)

Raises a pending exception that was recorded while getting a Task ready for execution.

_no_exception_to_raise()

di spl ay (message)

Hook to allow the calling interface to display a message.

This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the

alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see

those messages.

exc_cl ear ()

Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info()

Returns info about a recorded exception.

excepti on_set (exception=None)

Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execut e ()

Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread
unsafe stuff in prepare(), executed() or failed().

execut ed ()

Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.

This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

executed_wi th_cal | backs ()

Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.

This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target
was an actual built target or a source Node.

execut ed_wi t hout cal | backs ()

Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the
Node’s callback methods.

fail _continue()

Explicit continue-the-build failure.

This sets failure status on the target nodes and all of their dependent parent nodes.

Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail _stop()

322

SCons.Script package

Explicit stop-the-build failure.

This sets failure status on the target nodes and all of their dependent parent nodes.

Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get _target ()
Fetch the target being built or updated by this task.

make ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what's necessary.

make ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons
-Cc” option.

make ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what's necessary.

needs_execut e ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):
needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute

post process ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don’t care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_nessage (method, node, description="node")

exception SCons. Scri pt. Mai n. SConsPri nt Hel pExcepti on
Bases: Excepti on

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

SCons. Scri pt. Mai n. Set Opt i on (hame, value)

class SCons. Scri pt. Main. Stats
Bases: obj ect

do_not hi ng (*args, **kw)

323

SCons.Script package

enabl e (outfp)

class SCons. Scri pt. Mai n. TreePri nt er (derived=False, prune=False, status=False, sLineDraw=False)
Bases: obj ect

di spl ay ()
get _all _chil dren (node)

get _derived_chil dren (node)

SCons. Scri pt. Mai n. _SConst ruct _exi st s (dirname=", repositories=[], filelist=None)
This function checks that an SConstruct file exists in a directory. If so, it returns the path of the file. By default, it
checks the current directory.

SCons. Scri pt. Mai n. _bui | d_t arget s (fs, options, targets, target_top)
SCons. Scri pt. Mai n. _creat e_pat h (plist)
SCons. Scri pt. Mai n. _exec_nmmai n (parser, values)

SCons. Script. Main. _load_all_site_scons_dirs (topdir, verbose=False)
Load all of the predefined site_scons dir. Order is significant; we load them in order from most generic
(machine-wide) to most specific (topdir). The verbose argument is only for testing.

SCons. Scri pt. Main. _| oad_site_scons_dir (topdir, site_dir_name=None)
Load the site directory under topdir.
If a site dir name is supplied use it, else use default “site_scons” Prepend site dir to sys.path. If a “site_tools” subdir
exists, prepend to toolpath. Import “site_init.py” from site dir if it exists.

SCons. Scri pt . Mai n. _nmai n (parser)

SCons. Scri pt. Mai n. _scons_internal _error ()
Handle all errors but user errors. Print out a message telling the user what to do in this case and print a normal
trace.

SCons. Scri pt. Mai n. _scons_i nternal _war ni ng (e)
Slightly different from _scons_user_warning in that we use the current call stack rather than sys.exc_info() to get
our stack trace. This is used by the warnings framework to print warnings.

SCons. Scri pt. Mai n. _scons_syntax_error (e)
Handle syntax errors. Print out a message and show where the error occurred.

SCons. Scri pt. Mai n. _scons_user _error (e)
Handle user errors. Print out a message and a description of the error, along with the line humber and routine
where it occured. The file and line number will be the deepest stack frame that is not part of SCons itself.

SCons. Scri pt. Mai n. _scons_user _war ni ng (e)
Handle user warnings. Print out a message and a description of the warning, along with the line number and
routine where it occured. The file and line number will be the deepest stack frame that is not part of SCons itself.

SCons. Scri pt. Mai n. _set _debug_val ues (options)

SCons. Scri pt. Mai n. fi nd_deepest _user _framne (th)
Find the deepest stack frame that is not part of SCons.
Input is a “pre-processed” stack trace in the form returned by traceback.extract_tb() or traceback.extract_stack()

SCons. Scri pt. Mai n. nai n ()
SCons. Scri pt . Mai n. pat h_st ri ng (label, module)

SCons. Scri pt. Mai n. pyt hon_ver si on_depr ecat ed (version=sys.version_info(major=3, minor=7, micro=11,
releaselevel="final', serial=0))

SCons. Scri pt. Mai n. pyt hon_versi on_string ()

SCons. Scri pt. Mai n. pyt hon_ver si on_unsupport ed (version=sys.version_info(major=3, minor=7, micro=11,
releaselevel="final', serial=0))

SCons. Script. Main.revert _io()

324

SCons.Script package

SCons. Script.Main.test load all _site_scons_dirs (d)

SCons. Scri pt. Mai n. ver si on_st ri ng (label, module)

SCons.Script.SConsOptions module

SCons. Scri pt. SConsOpt i ons. Par ser (version)
Returns an options parser object initialized with the standard SCons options.

class SCons. Scri pt. SConsOpt i ons. SConsl ndent edHel pFor matt er (indent_increment=2,
max_help_position=24, width=None, short_first=1)
Bases: opt par se. | ndent edHel pFor mat t er

NO_DEFAULT_VALUE = 'none'

_format _text (text)
Format a paragraph of free-form text for inclusion in the help output at the current indentation level.

dedent ()

expand_def aul t (option)

format _descri pti on (description)

f ormat _epi | og (epilog)

f or mat _headi ng (heading)
This translates any heading of “options” or “Options” into “SCons Options.” Unfortunately, we have to do this
here, because those titles are hard-coded in the optparse calls.

f or mat _opt i on (option)

A copy of the normal optparse.IndentedHelpFormatter.format_option() method. This has been snarfed so we
can modify text wrapping to out liking:

—add our own regular expression that doesn’t break on hyphens
(so things like —no-print-directory don't get broken);
—wrap the list of options themselves when it’s too long

(the wrapper.fill(opts) call below);
— set the subsequent_indent when wrapping the help_text.

format _option_strings (option)
Return a comma-separated list of option strings & metavariables.

f or mat _usage (usage)

i ndent ()

set _long_opt _deliniter (delim)
set _parser (parser)

set _short_opt _deliniter (delim)
store_option_strings (parser)

class SCons. Scri pt . SConsOpt i ons. SConsOpt i on (*opts, **attrs)
Bases: opt par se. Opti on

ACTI ONS = ('store’, 'store_const', 'store_true', 'store_false', 'append', 'append_const', 'count’, ‘callback’, 'help’,
'version’)

325

SCons.Script package

ALWAYS_TYPED_ACTI ONS = (‘store’, ‘append’)

ATTRS = [action', 'type', 'dest', 'default’, 'nargs’, 'const’, 'choices'’, 'callback’, ‘callback args', 'callback kwargs',
'help’, 'metavar’]

CHECK_METHODS = [<function Option._check_action>, <function Option._check_type>, <function
Option._check _choice>, <function Option._check dest>, <function Option._check const>, <function
Option._check_nargs>, <function Option._check_callback>, <function SConsOption._check_nargs_optional>]
CONST_ACTI ONS = ('store_const', ‘append_const', 'store’, 'append’, ‘callback’)

STORE_ACTI ONS = ('store’, 'store_const', 'store_true', 'store_false', 'append’, ‘append_const', 'count’)

TYPED_ACTI ONS = ('store’, ‘append’, 'callback’)

TYPES = (‘string’, 'int’, 'long’, 'float’, 'complex’, ‘choice")

TYPE_CHECKER = {choice": <function check_choice>, '‘complex’ <function check_builtin>, ‘float: <function
check_builtin>, 'int": <function check_builtin>, 'long": <function check_builtin>}

_check_action ()
_check_cal | back ()
_check_choi ce ()
_check_const ()
_check_dest ()
_check_nargs ()
_check_nargs_optional ()
_check_opt _strings (opts)
_check_type ()
_set _attrs (attrs)
_set_opt _strings (opts)
check_val ue (opt, value)
convert _val ue (opt, value)
get_opt _string()
process (opt, value, values, parser)
t ake_act i on (action, dest, opt, value, values, parser)
t akes_val ue ()
class SCons. Scri pt . SConsOpt i ons. SConsOpt i onG oup (parser, title, description=None)
Bases: opt par se. Opti onG oup
A subclass for SCons-specific option groups.
The only difference between this and the base class is that we print the group’s help text flush left, underneath

their own title but lined up with the normal “SCons Options”.

_check_conflict (option)

326

SCons.Script package

_create_option_list ()
_create_option_mappi ngs ()
_share_opti on_mappi ngs (parser)

add_opti on (Option)
add_option(opt_str, ..., kwarg=val, ...)

add_opti ons (option_list)

destroy ()
see OptionParser.destroy().

format _descri pti on (formatter)
f or mat _hel p (formatter)
Format an option group’s help text, outdenting the title so it's flush with the “SCons Options” title we print at the
top.

format _opti on_hel p (formatter)

get _description()

get _opti on (opt_str)

has_opti on (opt_str)

renove_opti on (opt_str)

set _conflict_handl er (handler)

set _descri pti on (description)

set _titl e (title)
class SCons. Scri pt. SConsOpt i ons. SConsOpt i onPar ser (usage=None, option_Iist=None,
option_cl ass=<cl ass ' opt parse. Opti on' >, ver si on=None, conflict_handler="error',
descri pti on=None, f or mat t er =None, add_hel p_opt i on=Tr ue, pr og=None, epi | og=None)

Bases: opt par se. Opt i onPar ser

_add_hel p_option ()

_add_version_option ()

_check_conflict (option)

_create_option_list ()

_create_option_mappi ngs ()

_get_all _options ()

_get _args (args)

_init_parsing_state ()

mat ch| ong_opt (opt: string) - string

Determine which long option string ‘opt’ matches, ie. which one it is an unambiguous abbreviation for. Raises
BadOptionError if ‘opt’ doesn’t unambiguously match any long option string.

327

SCons.Script package

_popul ate_option_l i st (option_list, add_help=True)

_process_ar gs (largs, rargs, values)
_process_args(largs : [string],
rargs : [string], values : Values)
Process command-line arguments and populate ‘values’, consuming options and arguments from ‘rargs’. If

‘allow_interspersed_args’ is false, stop at the first non-option argument. If true, accumulate any interspersed
non-option arguments in ‘largs’.

process|l ong_opt (rargs, values)
SCons-specific processing of long options.
This is copied directly from the normal optparse._process_long_opt() method, except that, if configured to do so,
we catch the exception thrown when an unknown option is encountered and just stick it back on the “leftover”
arguments for later (re-)processing.

_process_short _opts (rargs, values)
_share_opti on_mappi ngs (parser)

add_| ocal _opti on (*args, **kw)
Adds a local option to the parser.
This is initiated by an AddOption() call to add a user-defined command-line option. We add the option to a
separate option group for the local options, creating the group if necessary.

add_opti on (Option)
add_option(opt_str, ..., kwarg=val, ...)

add_opti on_group (*args, **kwargs)
add_opti ons (option_list)

check_val ues (values: Values, args: [string])
-> (values : Values, args : [string])
Check that the supplied option values and leftover arguments are valid. Returns the option values and leftover
arguments (possibly adjusted, possibly completely new — whatever you like). Default implementation just returns
the passed-in values; subclasses may override as desired.

destroy ()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and all
objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser is
unusable.

di sabl e_interspersed_args ()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don't get confused.

enabl e_i nterspersed_args ()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments. This is
the default behavior. See also disable_interspersed_args() and the class documentation description of the
attribute allow_interspersed_args.

error (msg: string)
Print a usage message incorporating ‘msg’ to stderr and exit. If you override this in a subclass, it should not
return — it should either exit or raise an exception.

exi t (status=0, msg=None)

expand_prog_nane (s)

format _descri pti on (formatter)

328

SCons.Script package

329

f or mat _epi | og (formatter)

f or mat _hel p (formatter=None)
format _opti on_hel p (formatter=None)
get _default_val ues ()

get _description()

get _opti on (opt_str)

get _option_group (opt_str)
get _prog_nane ()

get _usage ()

get _version ()

has_opti on (opt_str)

par se_ar gs (args=None, values=None)
parse_args(args : [string] = sys.argv[1l:],
values : Values = None)

-> (values : Values, args : [string])

Parse the command-line options found in ‘args’ (default: sys.argv[1:]). Any errors result in a call to ‘error()’, which
by default prints the usage message to stderr and calls sys.exit() with an error message. On success returns a
pair (values, args) where ‘values’ is a Values instance (with all your option values) and ‘args’ is the list of
arguments left over after parsing options.

preserve_unknown_opti ons = False

print _hel p (file: file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default stdout).

print _usage (file: file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the
string “%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]). Does
nothing if self.usage is empty or not defined.

print_version (file: file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(), any
occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if self.version is
empty or undefined.

renove_opti on (opt_str)

reparse_|l ocal _options ()
Re-parse the leftover command-line options.
Parse options stored in self.largs, so that any value overridden on the command line is immediately available if
the user turns around and does a Get Opt i on() right away.
We mimic the processing of the single args in the original OptionParser _process_ar gs() , but here we allow
exact matches for long-opts only (no partial argument names!). Otherwise there could be problems in
add_| ocal _option() below. When called from there, we try to reparse the command-line arguments that

1. haven't been processed so far (self.largs), but

2. are possibl?/ not added to the list of options yet.)
So, when we only have a value for “—myargument” so far, a command-line argument of “—~myarg=test” would set

it, per the behaviour of _mat ch_| ong_opt (), which allows for partial matches of the option name, as long as

SCons.Script package

the common prefix appears to be unique. This would lead to further confusion, because we might want to add
another option “—myarg” later on (see issue #2929).

set _conflict_handl er (handler)

set _defaul t (dest, value)

set _defaul ts (**kwargs)

set _descri pti on (description)

set _process_default _val ues (process)
set _usage (usage)
standard_option_list =]]

class SCons. Scri pt . SConsOpt i ons. SConsVal ues (defaults)
Bases: opt par se. Val ues
Holder class for uniform access to SCons options, regardless of whether or not they can be set on the command
line or in the SConscript files (using the SetOption() function).
A SCons option value can originate three different ways:

1. set on the command line;
2. set in an SConscript file;

3. the default setting (from the the op.add_option() calls in the Parser() function, below).]
The command line always overrides a value set in a SConscript file, which in turn always overrides default

settings. Because we want to support user-specified options in the SConscript file itself, though, we may not know
about all of the options when the command line is first parsed, so we can't make all the necessary precedence
decisions at the time the option is configured.

The solution implemented in this class is to keep these different sets of settings separate (command line,
SConscript file, and default) and to override the __ getattr () method to check them in turn. This should allow the
rest of the code to just fetch values as attributes of an instance of this class, without having to worry about where
they came from.

Note that not all command line options are settable from SConscript files, and the ones that are must be explicitly
added to the “settable” list in this class, and optionally validated and coerced in the set_option() method.

_updat e (dict, mode)

_updat e_car ef ul (dict)
Update the option values from an arbitrary dictionary, but only use keys from dict that already have a
corresponding attribute in self. Any keys in dict without a corresponding attribute are silently ignored.

updat e| oose (dict)
Update the option values from an arbitrary dictionary, using all keys from the dictionary regardless of whether
they have a corresponding attribute in self or not.

ensur e_val ue (attr, value)

read_fil e (filename, mode="'careful’)

r ead_nodul e (modname, mode="careful’)

set _opti on (name, value)
Sets an option from an SConscript file.

Raises: UserError —invalid or malformed option (“error in your script”)

330

SCons.Script package

settable = [clean', ‘'diskcheck’, ‘'duplicate’, ‘'experimental’, ‘hash_chunksize', ‘hash_format', ‘help’,
‘implicit_cache', 'implicit_deps_changed', 'implicit_deps_unchanged', 'max_drift, 'md5_chunksize', 'no_exec',
'no_progress', 'num_jobs', 'random’, 'silent’, 'stack_size', 'warn', 'disable_execute_ninja’, 'disable_ninja']

SCons. Scri pt. SConsOpt i ons. di skcheck _convert (value)

SCons.Script.SConscript module
This module defines the Python API provided to SConscript files.

SCons. Scri pt. SConscri pt. Bui | dDef aul t A obal s ()
Create a dictionary containing all the default globals for SConstruct and SConscript files.

SCons. Scri pt. SConscri pt. Confi gur e (*args, **kw)

class SCons. Scri pt. SConscri pt. Def aul t Envi r onnment Cal | (method_name, subst=0)
Bases: obj ect
A class that implements “global function” calls of Environment methods by fetching the specified method from the
DefaultEnvironment's class. Note that this uses an intermediate proxy class instead of calling the
DefaultEnvironment method directly so that the proxy can override the subst() method and thereby prevent
expansion of construction variables (since from the user’s point of view this was called as a global function, with no
associated construction environment).

class SCons. Scri pt. SConscri pt . Fr ane (fs, exports, sconscript)
Bases: obj ect
A frame on the SConstruct/SConscript call stack

SCons. Scri pt. SConscri pt. Ret ur n (*vars, **kw)

class SCons. Scri pt. SConscri pt. SConsEnvi ronment (platform=None, tools=None, toolpath=None,
variables=None, parse_flags=None, **kw)
Bases: SCons. Envi r onnent . Base
An Environment subclass that contains all of the methods that are particular to the wrapper SCons interface and
which aren’t (or shouldn’t be) part of the build engine itself.
Note that not all of the methods of this class have corresponding global functions, there are some private methods.

Act i on (*args, **kw)

AddMet hod (function, name=None)
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.

AddPost Act i on (files, action)

AddPr eAct i on (files, action)

Al i as (target, source=[], action=None, **kw)

Al waysBui | d (*targets)

Append (**kw)
Append values to construction variables in an Environment.
The variable is created if it is not already present.

AppendENVPat h (name, newpath, envhame="ENV’, sep=""', delete_existing=0)
Append path elements to the path ‘name’ in the ‘ENV’ dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the
case where the env variable is a list instead of a string.
If delete_existing is 0, a newpath which is already in the path will not be moved to the end (it will be left where it

is).

AppendUni que (delete_existing=0, **kw)

331

SCons.Script package

Append values to existing construction variables in an Environment, if they're not already there. If
delete_existing is 1, removes existing values first, so values move to end.

Bui | der (**kw)
CacheDi r (path, custom_class=None)
d ean (targets, files)

Cl one (tools=[], toolpath=None, parse_flags=None, **kw)
Return a copy of a construction Environment.
The copy is like a Python “deep copy”-that is, independent copies are made recursively of each objects—except
that a reference is copied when an object is not deep-copyable (like a function). There are no references to any
mutable objects in the original Environment.

Command (target, source, action, **kw)
Builds the supplied target files from the supplied source files using the supplied action. Action may be any type
that the Builder constructor will accept for an action.

Conf i gur e (*args, **kw)
Deci der (function)
Def aul t (*targets)

Depends (target, dependency)
Explicity specify that ‘target’s depend on ‘dependency’.

Det ect (progs)
Return the first available program from one or more possibilities.
Parameters: progs (str or list) — one or more command names to check for
Di cti onary (*args)
Return construction variables from an environment.

Parameters: *args (optional) — variable names to look up

Returns: If args omitted, the dictionary of all construction variables. If one arg, the corresponding
value is returned. If more than one arg, a list of values is returned.

Raises: KeyError —if any of args is not in the construction environment.
Di r (name, *args, **kw)

Dunp (key=None, format="pretty")
Return construction variables serialized to a string.

Parameters:]]))
« key (optional) — if None, format the whole dict of variables. Else format the value of

key (Default value = None)

e format (str, optional) — specify the format to serialize to. “pretty” generates a
pretty-printed string, “json” a JSON-formatted string. (Default value = “pretty”)

Ensur ePyt honVer si on (major, minor)
Exit abnormally if the Python version is not late enough.

Ensur eSConsVer si on (major, minor, revision=0)
Exit abnormally if the SCons version is not late enough.

Ent ry (name, *args, **kw)

Envi ronment (**kw)

332

SCons.Script package

Execut e (action, *args, **kw)
Directly execute an action through an Environment
Exi t (value=0)
Export (*vars, **kw)
Fi | e (hame, *args, **kw)
Fi ndFi | e (file, dirs)

Fi ndl nstal | edFil es ()
returns the list of all targets of the Install and InstallAs Builder.

Fi ndl xes (paths, prefix, suffix)
Search a list of paths for something that matches the prefix and suffix.

Parameters:)
* paths — the list of paths or nodes.

« prefix — construction variable for the prefix.

« suffix — construction variable for the suffix.
Returns: the matched path or None

Fi ndSour ceFi | es (node="")
returns a list of all source files.

Fl at t en (sequence)

Get Bui | dPat h (files)

Get LaunchDir ()

Get Opt i on (name)

d ob (pattern, ondisk=True, source=False, strings=False, exclude=None)
Hel p (text, append=False)

| gnor e (target, dependency)
Ignore a dependency.

| mport (*vars)
Li teral (string)
Local (*targets)

Mer geFl ags (args, unique=True)
Merge flags into construction variables.
Merges the flags from ar gs into this construction environent. If ar gs is not a dict, it is first converted to a
dictionary with flags distributed into appropriate construction variables. See Par seFl ags() .

Parameters:
« args — flags to merge

* uniqgue — merge flags rather than appending (default: True)

NoCache (*targets)
Tags a target so that it will not be cached

Nod ean (*targets)
Tags a target so that it will not be cleaned by -c

333

SCons.Script package

Overri de (overrides)
Produce a modified environment whose variables are overridden by the overrides dictionaries. “overrides” is a
dictionary that will override the variables of this environment.
This function is much more efficient than Clone() or creating a new Environment because it doesn't copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn’t even
create a wrapper object if there are no overrides.

Par seConf i g (command, function=None, unique=True)
Use the specified function to parse the output of the command in order to modify the current environment. The
‘command’ can be a string or a list of strings representing a command and its arguments. ‘Function’ is an
optional argument that takes the environment, the output of the command, and the unique flag. If no function is
specified, MergeFlags, which treats the output as the result of a typical ‘X-config’ command (i.e. gtk-config), will
merge the output into the appropriate variables.

Par seDepends (filename, must_exist=None, only_one=False)
Parse a mkdep-style file for explicit dependencies. This is completely abusable, and should be unnecessary in
the “normal” case of proper SCons configuration, but it may help make the transition from a Make hierarchy
easier for some people to swallow. It can also be genuinely useful when using a tool that can write a .d file, but
for which writing a scanner would be too complicated.

Par seFl ags (*flags)

Return a dict of parsed flags.

Parse f | ags and return a dict with the flags distributed into the appropriate construction variable names. The
flags are treated as a typical set of command-line flags for a GNU-like toolchain, such as might have been
generated by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in
this method - the choices are not expected to be portable to other toolchains.

If one of the f | ags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest
of the string is executed; the result of that evaluation is then added to the dict.

Pl at f or m(platform)
Pr eci ous (*targets)

Prepend (**kw)
Prepend values to construction variables in an Environment.
The variable is created if it is not already present.

Pr ependENVPat h (name, newpath, envhame="ENV', sep="", delete_existing=1)
Prepend path elements to the path ‘name’ in the ‘ENV’ dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the
case where the env variable is a list instead of a string.
If delete_existing is 0, a newpath which is already in the path will not be moved to the front (it will be left where it
is).

Pr ependUni que (delete_existing=0, **kw)
Prepend values to existing construction variables in an Environment, if they’re not already there. If
delete_existing is 1, removes existing values first, so values move to front.

Pseudo (*targets)

PyPackageDi r (modulename)

RenmoveMet hod (function)
Removes the specified function’s MethodWrapper from the added_methods list, so we don’t re-bind it when

making a clone.

Repl ace (**kw)
Replace existing construction variables in an Environment with new construction variables and/or values.

Repl acel xes (path, old_prefix, old_suffix, new_prefix, new_suffix)
Replace old_prefix with new_prefix and old_suffix with new_suffix.

334

SCons.Script package

env - Environment used to interpolate variables. path - the path that will be modified. old_prefix - construction
variable for the old prefix. old_suffix - construction variable for the old suffix. new_prefix - construction variable
for the new prefix. new_suffix - construction variable for the new suffix.

Reposi t ory (*dirs, **kw)

Requi r es (target, prerequisite)
Specify that ‘prerequisite’ must be built before ‘target’, (but ‘target’ does not actually depend on ‘prerequisite’ and
need not be rebuilt if it changes).

SConscri pt (*Is, **kw)
Execute SCons configuration files.

Parameters: *Is (str or list) — configuration file(s) to execute.

Keyword N o : .
Arguments: » dirs (list) — execute SConscript in each listed directory.

* name (str) — execute script ‘name’ (used only with ‘dirs’).
» exports (list or dict) — locally export variables the called script(s) can import.

* variant_dir (str) — mirror sources needed for the build in a variant directory to allow
building in it.

» duplicate (bool) — physically duplicate sources instead of just adjusting paths of
derived files (used only with ‘variant_dir’) (default is True).

* must_exist (bool) — fail if a requested script is missing (default is False, default is
deprecated).
Returns: list of variables returned by the called script

Raises: UserError — a script is not found and such exceptions are enabled.

SConscri pt Chdi r (flag)

SConsi gnFi | e (name=".sconsign', dom_module=None)
Scanner (*args, **kw)

Set Def aul t (**kw)

Set Opt i on (name, value)

Si deEf f ect (side_effect, target)
Tell scons that side_effects are built as side effects of building targets.

Split (arg)

This function converts a string or list into a list of strings or Nodes. This makes things easier for users by
allowing files to be specified as a white-space separated list to be split.

The input rules are:

* A single string containing names separated by spaces. These will be split apart at the spaces.
* A single Node instance

+ A list containing either strings or Node instances. Any strings in the list are not split at spaces.
In all cases, the function returns a list of Nodes and strings.

Tool (tool, toolpath=None, **kwargs) - SCons.Tool.Tool
Val ue (value, built_value=None, nhame=None)
Vari ant Di r (variant_dir, src_dir, duplicate=1)

Wher el s (prog, path=None, pathext=None, reject=None)

335

SCons.Script package

Find prog in the path.
_canoni cal i ze (path)

Allow Dirs and strings beginning with # for top-relative.

Note this uses the current env’s fs (in self).
_changed_bui | d (dependency, target, prev_ni, repo_node=None)
_changed_cont ent (dependency, target, prev_ni, repo_node=None)
_changed_sour ce (dependency, target, prev_ni, repo_node=None)
_changed_ti mest anp_mat ch (dependency, target, prev_ni, repo_node=None)
_changed_ti mest anp_newer (dependency, target, prev_ni, repo_node=None)

_changed_ti mestanp_t hen_cont ent (dependency, target, prev_ni, repo_node=None)

_exceeds_ver si on (major, minor, v_major, v_minor)
Return 1 if ‘major’ and ‘minor’ are greater than the version in ‘v_major’ and ‘v_minor’, and O otherwise.

_find_tool path_dir (tp)

_get _SConscript_fil enanes (Is, kw)
Convert the parameters passed to SConscript() calls into a list of files and export variables. If the parameters are
invalid, throws SCons.Errors.UserError. Returns a tuple (I, €) where | is a list of SConscript filenames and e is a
list of exports.

_get _nmmj or _mi nor_revi si on (version_string)

Split a version string into major, minor and (optionally) revision parts.
This is complicated by the fact that a version string can be something like 3.2b1.

_gsm()

_init_special ()
Initial the dispatch tables for special handling of special construction variables.

_updat e (other)
Private method to update an environment’s consvar dict directly.
Bypasses the normal checks that occur when users try to set items.
_updat e_onl ynew (other)
Private method to add new items to an environment’s consvar dict.
Only adds items from other whose keys do not already appear in the existing dict; values from other are not
used for replacement. Bypasses the normal checks that occur when users try to set items.

arg2nodes (args, node_factory=<class 'SCons.Environment._Null'>, 1ookup_Ilist=<class
' SCons. Envi ronment . _Nul |' >, **kw)

backt i ck (command)

get (key, default=None)
Emulates the get() method of dictionaries.

get _CacheDir ()

get _bui |l der (name)
Fetch the builder with the specified name from the environment.

get fact ory (factory, default="File")
Return a factory function for creating Nodes for this construction environment.

336

SCons.Script package

get _scanner (skey)
Find the appropriate scanner given a key (usually a file suffix).

get _src_sig type()
get _tgt _sig type()
gvars ()

itens ()
Emulates the items() method of dictionaries.

keys ()
Emulates the keys() method of dictionaries.

I vars ()

scanner _map_del et e (kw=None)
Delete the cached scanner map (if we need to).

set def aul t (key, default=None)
Emulates the setdefault() method of dictionaries.

subst (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

subst _kw (kw, raw=0, target=None, source=None)

subst _|i st (string, raw=0, target=None, source=None, conv=None, executor=None)
Calls through to SCons.Subst.scons_subst_list(). See the documentation for that function.

subst _pat h (path, target=None, source=None)
Substitute a path list, turning EntryProxies into Nodes and leaving Nodes (and other objects) as-is.

subst target source (string, raw=0, target=None, source=None, conv=None, executor=None)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial
underscore or alphabetic character followed by any number of underscores or alphanumeric characters. The
construction variable names may be surrounded by curly braces to separate the name from trailing characters.

val i dat e_CacheDi r _cl ass (custom_class=None)
Validate the passed custom CacheDir class, or if no args are passed, validate the custom CacheDir class from
the environment.

val ues ()
Emulates the values() method of dictionaries.

exception SCons. Scri pt. SConscri pt. SConscri pt Return
Bases: Excepti on

args

wi th_traceback ()
Exception.with_traceback(tb) — set self. __traceback _ to tb and return self.

SCons. Scri pt. SConscri pt. SConscri pt _exception (fil e=<_i 0. Text| OV apper nane=' <stderr>'
nmode="w encodi ng="utf-8">)

337

SCons.Script package

Print an exception stack trace just for the SConscript file(s). This will show users who have Python errors where
the problem is, without cluttering the output with all of the internal calls leading up to where we exec the
SConscript.

SCons. Scri pt. SConscri pt. _SConscri pt (fs, *files, **kw)

SCons. Scri pt. SConscri pt. annot at e (nhode)
Annotate a node with the stack frame describing the SConscript file and line number that created it.

SCons. Scri pt. SConscri pt. conmput e_exports (exports)
Compute a dictionary of exports given one of the parameters to the Export() function or the exports argument to
SConscript().

SCons. Scri pt. SConscri pt. get_Def aul t Envi r onrent Pr oxy ()

SCons. Scri pt. SConscri pt.get_cal |l i ng_nanespaces ()
Return the locals and globals for the function that called into this module in the current call stack.

SCons. Scri pt. SConscri pt. handl e_m ssi ng_SConscri pt (f, must_exist=None)
Take appropriate action on missing file in SConscript() call.
Print a warning or raise an exception on missing file, unless missing is explicitly allowed by the must_exist value.
On first warning, print a deprecation message.

Parameters: o . o
« f (str) — path of missing configuration file

* must_exist (bool) — if true, falil. If false, but not None, allow the file to be missing. The
default is None, which means issue the warning. The default is deprecated.
Raises: UserError — if must_exist is true or if global SCons. Scri pt. _no_ni ssi ng_sconscri pt
is true.

Module contents
The main() function used by the scons script.

Architecturally, this is the scons script, and will likely only be called from the external “scons” wrapper. Consequently,
anything here should not be, or be considered, part of the build engine. If it's something that we expect other
software to want to use, it should go in some other module. If it's specific to the “scons” script invocation, it goes
here.

SCons. Scri pt . Hel pFuncti on (text, append=False)

class SCons. Scri pt. Tar get Li st (initlist=None)
Bases: col | ecti ons. User Li st

_abc_i mpl =<_abc_data object>
_add_Def aul t (list)

_clear ()

_do_not hi ng (*args, **kw)

append (item)
S.append(value) — append value to the end of the sequence

cl ear () - None —remove all items from S
copy ()
count (value) - integer — return number of occurrences of value

ext end (other)
S.extend(iterable) — extend sequence by appending elements from the iterable

338

SCons.Tool package

i ndex (val ue[,start[,stop]]) - integer — return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

i nsert (i, item)
S.insert(index, value) — insert value before index

pop ([,i ndex]) - item —remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

renove (item)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.

reverse ()
S.reverse() — reverse IN PLACE

sort
SCons.
SCons.
SCons.
SCons.
SCons.
SCons.
SCons.
SCons.

(*args, **kwds)

Scri pt. Vari abl es (files=None, args={})
Script._Add_Argunent s (alist)

Script. _Add_Target s (tlist)

Script. Get_Default_ Targets (d, fs)

Script._Set Default_Targets (env, tlist)

Script. _Set Default_Targets Has Been_Call ed (d, fs)
Script. _Set Default Targets Has Not Been_Call ed (d, fs)

Script.set _missing_sconscript_error (flag=1)

Set behavior on missing file in SConscript() call.

Returns: previous value

SCons.Tool package

Module contents
SCons.Tool

SCons tool selection.

This looks for modules that define a callable object that can modify a construction environment as appropriate for a
given tool (or tool chain).

Note that because this subsystem just selects a callable that can modify a construction environment, it's possible for
people to define their own “tool specification” in an arbitrary callable function. No one needs to use or tie in to this
subsystem in order to roll their own tool specifications.

SCons.

Tool . Creat eJar Bui | der (env)

The Jar builder expects a list of class files which it can package into a jar file.
The jar tool provides an interface for passing other types of java files such as .java, directories or swig interfaces
and will build them to class files in which it can package into the jar.

SCons.
SCons.
SCons.
SCons.
SCons.
SCons.

339

Tool . Creat eJavaC assDi r Bui | der (env)
Tool . Creat eJavad assFi | eBui | der (env)
Tool . Creat eJavaFi | eBui | der (env)

Tool . Cr eat eJavaHBui | der (env)

Tool . Fi ndAl | Tool s (tools, env)

Tool . Fi ndTool (tools, env)

SCons.Tool package

SCons. Tool . I nitializers (env)

class SCons. Tool . Tool (name, toolpath=None, **kwargs)
Bases: obj ect

_l oad_dott ed_nodul e_py2 (short_name, full_name, searchpaths=None)
_tool _nodul e ()

class SCons. Tool . Tool I ni ti alizer (env, tools, names)
Bases: obj ect
A class for delayed initialization of Tools modules.
Instances of this class associate a list of Tool modules with a list of Builder method names that will be added by
those Tool modules. As part of instantiating this object for a particular construction environment, we also add the
appropriate ToollnitializerMethod objects for the various Builder methods that we want to use to delay Tool
searches until necessary.

appl y_t ool s (env)
Searches the list of associated Tool modules for one that exists, and applies that to the construction
environment.

renove_net hods (env)
Removes the methods that were added by the tool initialization so we no longer copy and re-bind them when the
construction environment gets cloned.

class SCons. Tool . Tool I ni ti al i zer Met hod (name, initializer)
Bases: obj ect
This is added to a construction environment in place of a method(s) normally called for a Builder (env.Object,
env.StaticObject, etc.). When called, it has its associated Toollnitializer object search the specified list of tools and
apply the first one that exists to the construction environment. It then calls whatever builder was (presumably)
added to the construction environment in place of this particular instance.

get _bui | der (env)
Returns the appropriate real Builder for this method name after having the associated Toollnitializer object apply
the appropriate Tool module.

SCons. Tool . cr eat eCFi | eBui | der s (env)
This is a utility function that creates the CFile/CXXFile Builders in an Environment if they are not there already.
If they are there already, we return the existing ones.
This is a separate function because soooo many Tools use this functionality.
The return is a 2-tuple of (CFile, CXXFile)

SCons. Tool . cr eat eLoadabl eMbdul eBui | der (env, loadable_module_suffix='$_LDMODULESUFFIX")
This is a utility function that creates the LoadableModule Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

Parameters: loadable_module_suffix — The suffix specified for the loadable module builder

SCons. Tool . cr eat eCbj Bui | der s (env)
This is a utility function that creates the StaticObject and SharedObject Builders in an Environment if they are not
there already.
If they are there already, we return the existing ones.
This is a separate function because soooo many Tools use this functionality.
The return is a 2-tuple of (StaticObject, SharedObject)

SCons. Tool . cr eat eProgBui | der (env)
This is a utility function that creates the Program Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

SCons. Tool . cr eat eShar edLi bBui | der (env, shlib_suffix="$_SHLIBSUFFIX")
This is a utility function that creates the SharedLibrary Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

Parameters: shlib_suffix — The suffix specified for the shared library builder

340

SCons.Variables package

SCons. Tool . createStati cLi bBui | der (env)
This is a utility function that creates the StaticLibrary Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

SCons. Tool . fi nd_program pat h (env, key_program, default_paths=None)
Find the location of a tool using various means.
Mainly for windows where tools aren't all installed in /usr/bin, etc.

Parameters:))
* env — Current Construction Environment.
» key _program — Tool to locate.
» default_paths — List of additional paths this tool might be found in.
SCons. Tool . t ool _|i st (platform, env)

SCons.Variables package
Submodules

SCons.Variables.BoolVariable module

Option type for true/false Variables.

Usage example:

opts = Vari abl es()

opt s. Add(Bool Vari abl e(' enbedded', 'build for an enbedded systeni, 0))

i f env['enbedded'] ==

SCons. Vari abl es. Bool Vari abl e. Bool Vari abl e (key, help, default)
The input parameters describe a boolean option, thus they are returned with the correct converter and validator
appended. The ‘help’ text will by appended by ‘(yes|no) to show the valid valued. The result is usable for input to
opts.Add().

SCons. Vari abl es. Bool Vari abl e. _t ext 2bool (val)
Converts strings to True/False depending on the ‘truth’ expressed by the string. If the string can’'t be converted, the
original value will be returned.
See ‘' true_strings’ and ‘__ false_strings’ for values considered ‘true’ or ‘false respectively.
This is usable as ‘converter’ for SCons’ Variables.

SCons. Vari abl es. Bool Vari abl e. _val i dat or (key, val, env)
Validates the given value to be either ‘0’ or ‘1".
This is usable as ‘validator’ for SCons’ Variables.

SCons.Variables.EnumVariable module

Option type for enumeration Variables.

This file defines the option type for SCons allowing only specified input-values.
Usage example:

opts = Vari abl es()

opt s. Add(
EnunVvari abl e(
' debug',
' debug out put and synbol s',
'no’,
al | owed_val ues=("'yes', 'no', 'full'),
map={},

341

SCons.Variables package

i gnor ecase=2,

)

if env['debug'] == "full":

SCons. Vari abl es. Enunvar i abl e. Enumvar i abl e (key, help, default, allowed_values, map={}, ignorecase=0)
The input parameters describe an option with only certain values allowed. They are returned with an appropriate
converter and validator appended. The result is usable for input to Variables.Add().

‘key’ and ‘default’ are the values to be passed on to Variables.Add().

‘help’ will be appended by the allowed values automatically

‘allowed_values’ is a list of strings, which are allowed as values for this option.

The ‘map’-dictionary may be used for converting the input value into canonical values (e.g. for aliases).
‘ignorecase’ defines the behaviour of the validator:

If ignorecase == 0, the validator/converter are case-sensitive. If ignorecase == 1, the validator/converter are
case-insensitive. If ignorecase == 2, the validator/converter is case-insensitive and the converted value will
always be lower-case.
The ‘validator’ tests whether the value is in the list of allowed values. The ‘converter’ converts input values
according to the given ‘map’-dictionary (unmapped input values are returned unchanged).

SCons.Variables.ListVariable module
Option type for list Variables.
This file defines the option type for SCons implementing ‘lists’.

A ‘list’ option may either be ‘all’, ‘none’ or a list of names separated by comma. After the option has been processed,
the option value holds either the named list elements, all list elements or no list elements at all.

Usage example:

[ist_of libs = Split('x11l gl gt ical")

opts = Vari abl es()
opt s. Add(
Li st Vari abl e(
'shared',
"libraries to build as shared libraries',
"all',
el ems=list_of libs,

)

for Iibin list_of I|ibs:
if libin env[' shared]:
env. SharedCbj ect (.. .)
el se:
env. Oject(...)

SCons. Vari abl es. Li st Vari abl e. Li st Vari abl e (key, help, default, names, map={})
The input parameters describe a ‘package list' option, thus they are returned with the correct converter and
validator appended. The result is usable for input to opts.Add() .
A ‘package list’ option may either be ‘all’, ‘none’ or a list of package names (separated by space).

SCons. Vari abl es. Li st Vari abl e. _convert er (val, allowedElems, mapdict)

SCons.Variables.PackageVariable module
Option type for package Variables.

This file defines the option type for SCons implementing ‘package activation’.

342

SCons.Variables package

To be used whenever a ‘package’ may be enabled/disabled and the package path may be specified.
Usage example:

Examples:
x11=no (disables X11 support) x11=yes (will search for the package installation dir) x11=/usr/local/X11 (will
check this path for existence)

To replace autoconf's —with-xxx=yyy

opts = Variabl es()
opt s. Add(PackageVari abl e(' x11',
"use X11 installed here (yes = search sone pl aces',

‘yes'))

if env['x11'] == True:
dir = ... search X11 in sone standard pl aces ...
env['x11'] = dir
if env['x11l']:
build with x11 ...
SCons. Var i abl es. PackageVari abl e. PackageVari abl e (key, help, default, searchfunc=None)
The input parameters describe a ‘package list' option, thus they are returned with the correct converter and
validator appended. The result is usable for input to opts.Add() .
A ‘package list’ option may either be ‘all’, ‘none’ or a list of package names (separated by space).

SCons. Vari abl es. PackageVari abl e. _converter (val)

SCons. Vari abl es. PackageVari abl e. _val i dat or (key, val, env, searchfunc)

SCons.Variables.PathVariable module
Option type for path Variables.
This file defines an option type for SCons implementing path settings.

To be used whenever a user-specified path override should be allowed.

Arguments to PathVariable are:
option-name = name of this option on the command line (e.g. “prefix”) option-help = help string for option
option-dflt = default value for this option validator = [optional] validator for option value. Predefined are:

PathAccept — accepts any path setting; no validation PathlsDir — path must be an existing directory
PathisDirCreate — path must be a dir; will create PathlsFile — path must be a file PathExists — path must
exist (any type) [default]

The validator is a function that is called and which should return True or False to indicate if the path is valid. The
arguments to the validator function are: (key, val, env). The key is the name of the option, the val is the path
specified for the option, and the env is the env to which the Options have been added.

Usage example:

Exanpl es:
prefix=/usr/| ocal

Vari abl es()

opts

opts = Vari abl es()
opt s. Add(Pat hvari abl e(' qtdir",
"where the root of @ is installed',
gtdir, PathlsDir))
opt s. Add(Pat hvari abl e(' gt _i ncl udes',
"where the @ includes are installed',
"$qtdir/includes', PathlsDirCreate))
opts. Add(Pat hVari abl e(' qt _Iibraries',
"where the @ library is installed',
"$qtdir/lib'))

343

SCons.Variables package

Module contents

Add user-friendly customizable variables to an SCons build.

class SCons. Vari abl es. Vari abl es (files=None, args=None, is_global=True)
Bases: obj ect
Holds all the options, updates the environment with the variables, and renders the help text.
If is_global is True, this is a singleton, create only once.

Parameters:)]))]]] o
« files (optional) — List of option configuration files to load (backward compatibility). If a

single string is passed it is automatically placed in a file list (Default value = None)
« args (optional) — dictionary to override values set from files. (Default value = None)

 is_global (optional) — global instance? (Default value = True)

Add (key, help=", default=None, validator=None, converter=None, **kw)
Add an option.

Parameters:) .
 key — the name of the variable, or a list or tuple of arguments

* help — optional help text for the options (Default value = *")
« default — optional default value for option (Default value = None)

« validator — optional function called to validate the option’s value (Default value =
None)

 converter — optional function to be called to convert the option’s value before putting
it in the environment. (Default value = None)

» **kw — keyword args, unused.

AddVari abl es (*optlist)
Add a list of options.
Each list element is a tuple/list of arguments to be passed on to the underlying method for adding options.
Example:

opt . AddVar i abl es(
(' debug', '', 0),
('cCc, 'The C conpiler'),
(' VALI DATE', 'An option for testing validation', 'notset', validator, None),

For mat Var i abl eHel pText (env, key, help, default, actual, aliases=[])

Cener at eHel pText (env, sort=None)
Generate the help text for the options.

env - an environment that is used to get the current values
of the options.

cmp - Either a function as follows: The specific sort function should take two arguments and return -1, 0
orl

or a boolean to indicate if it should be sorted.

Save (filename, env)
Saves all the options in the given file. This file can then be used to load the options next run. This can be used to
create an option cache file.
filename - Name of the file to save into env - the environment get the option values from

UnknownVar i abl es ()
Returns any options in the specified arguments lists that were not known, declared options in this object.

344

Indices and Tables

Updat e (env, args=None)
Update an environment with the option variables.
env - the environment to update.
_do_add (key, help=", default=None, validator=None, converter=None)
f or mat ="\n%s: %s\n default: %s\n actual: %s\n'
f or mat _ ="'\n%s: %s\n default: %s\n actual: %s\n aliases: %s\n'

i nst ance = None

keys ()
Returns the keywords for the options

Indices and Tables

e geni ndex
* modi ndex

esearch

345

Index

__clearRepositoryCache()
method)

(SCons.Node.FS.Dir

__dmap_cache (SCons.Node.FS.File attribute)
__dmap_sig_cache (SCons.Node.FS.File attribute)
__get_abspath() (SCons.Node.FS.EntryProxy method)

__get_base_path() (SCons.Node.FS.EntryProxy

method)

__get_dir() (SCons.Node.FS.EntryProxy method)
__get _file() (SCons.Node.FS.EntryProxy method)
__get_filebase() (SCons.Node.FS.EntryProxy method)

__get_posix_path() (SCons.Node.FS.EntryProxy

method)

__get_relpath() (SCons.Node.FS.EntryProxy method)
__get_rsrcdir() (SCons.Node.FS.EntryProxy method)
__get_rsrcnode() (SCons.Node.FS.EntryProxy method)
__get_srcdir() (SCons.Node.FS.EntryProxy method)
__get_srcnode() (SCons.Node.FS.EntryProxy method)
__get_suffix() (SCons.Node.FS.EntryProxy method)

__get_windows_path() (SCons.Node.FS.EntryProxy

method)

__lib_either_version_flag() (in module SCons.Defaults)

__libversionflags() (in module SCons.Defaults)

__make_unique() (SCons.Util.UniqueList method)

__resetDuplicate() (SCons.Node.FS.Dir method)

_abc_impl (SCons.Builder.ListEmitter attribute)
(SCons.Builder.OverrideWarner attribute)
(SCons.Environment.BuilderDict attribute)
(SCons.Executor. TSList attribute)
(SCons.Node.Alias.AliasNameSpace attribute)
(SCons.Node.NodelList attribute)
(SCons.SConf.SConfBuildTask attribute)
(SCons.Script.Main.BuildTask attribute)
(SCons.Script.Main.CleanTask attribute)
(SCons.Script.Main.QuestionTask attribute)
(SCons.Script.TargetList attribute)
(SCons.Subst.CmdStringHolder attribute)
(SCons.Subst.ListSubber attribute)
(SCons.Subst.Targets_or_Sources attribute)

(SCons.Taskmaster.AlwaysTask attribute)
(SCons.Taskmaster.OutOfDateTask attribute)

(SCons.Taskmaster.Task attribute)
(SCons.Util.CLVar attribute)
(SCons.Util.NodeList attribute)
(SCons.Util.UniqueList attribute)
_abspath (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
_ActionAction (class in SCons.Action)
_actionAppend() (in module SCons.Action)
_Add_Arguments() (in module SCons.Script)
_add_child() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
_add_Default() (SCons.Script.TargetList method)

_add_help_option()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_add_strings_to_dependency_map()
(SCons.Node.FS.File method)

_Add_Targets() (in module SCons.Script)

_add_version_option()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_adjustixes() (SCons.Builder.BuilderBase method)
_bootstrap() (SCons.Job.Worker method)
_bootstrap_inner() (SCons.Job.Worker method)

build_dependency_map() (SCons.Node.FS.File

method)
_build_targets() (in module SCons.Script.Main)
_CacheDir (SCons.Executor.NullEnvironment attribute)

_CacheDir_path (SCons.Executor.NullEnvironment
attribute)

_callable_contents() (in module SCons.Action)
_canonicalize() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildTask._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList._abc_impl')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._add_child')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._add_child')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._add_child')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._add_child')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._add_child')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._add_child')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._add_child')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._canonicalize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._canonicalize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._canonicalize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._canonicalize')

_changed_build() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_changed_content()
method)

(SCons.Environment.Base

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_changed_source() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

changed_sources_list

_ (SCons.Executor.Executor
attribute)

(SCons.Executor.Null attribute)

changed_targets_list

_ (SCons.Executor.Executor
attribute)

(SCons.Executor.Null attribute)

_changed_timestamp_match()
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_changed_timestamp_newer()
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_changed_timestamp_then_content()
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_check_action()
(SCons.Script.SConsOptions.SConsOption method)

_check_callback()
(SCons.Script.SConsOptions.SConsOption method)

_check_choice()
(SCons.Script.SConsOptions.SConsOption method)

_check_conflict()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

_check_const()
(SCons.Script.SConsOptions.SConsOption method)

_check_dest()
(SCons.Script.SConsOptions.SConsOption method)

_check_empty program() (in module SCons.Conftest)

_check_nargs()
(SCons.Script.SConsOptions.SConsOption method)

_check_nargs_optional()
(SCons.Script.SConsOptions.SConsOption method)

_check_opt_strings()
(SCons.Script.SConsOptions.SConsOption method)

_check_type()
(SCons.Script.SConsOptions.SConsOption method)

_check_writable() (SCons.dblite.dblite method)
_children_get() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
_children_reset() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
_classEntry (in module SCons.Node.FS)

_clean_targets()
method)

(SCons.Script.Main.CleanTask

_clear() (SCons.Script.TargetList method)

_code_contents() (in module SCons.Action)

_concat() (in module SCons.Defaults)

_concat_ixes() (in module SCons.Defaults)

_converter() (in module SCons.Variables.ListVariable)
(in module SCons.Variables.PackageVariable)

_copy_func() (in module SCons.Node.FS)

_create() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

_create_nodelist() (SCons.Subst.NLWrapper method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_content')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_content')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_content')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_content')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._changed_sources_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._changed_targets_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_timestamp_match')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_timestamp_match')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_match')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_match')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_timestamp_newer')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_timestamp_newer')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_newer')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_newer')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_timestamp_then_content')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._changed_timestamp_then_content')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_then_content')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._changed_timestamp_then_content')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._check_conflict')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._check_conflict')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._children_get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._children_get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._children_get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._children_get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._children_get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._children_get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._children_get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._children_reset')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._children_reset')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._children_reset')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._children_reset')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._children_reset')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._children_reset')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._children_reset')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.PackageVariable._converter')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._create')

_create_nodes() (SCons.Builder.BuilderBase method)

_create_option_list()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

_create_option_mappings()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

_create_path() (in module SCons.Script.Main)
_createConfigH() (in module SCons.SConf)
_createDir() (SCons.Node.FS.File method)
(SCons.SConf.SConfBase method)
_createSource() (in module SCons.SConf)
_defines() (in module SCons.Defaults)
_del_SCANNERS() (in module SCons.Environment)
_delete() (SCons.Job.Worker method)
_delete_duplicates() (in module SCons.Environment)
_do_add() (SCons.Variables.Variables method)
_do_create_action() (in module SCons.Action)
_do_create_keywords() (in module SCons.Action)
_do_create_list_action() (in module SCons.Action)
_do_execute (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)

_do_if_else_condition()
(SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
_do_nothing() (SCons.Script.TargetList method)

_do_one_help()
(SCons.Script.Interactive.SConslnteractiveCmd
method)

_doc_to_help()
(SCons.Script.Interactive.SConslnteractiveCmd
method)

_dump_one_caller() (in module SCons.Debug)

enable_virtualenv_default() (in module

§Cons.Platform.virtualenv)
_exc_info() (SCons.Job.Worker method)

_exceeds_version()
(SCons.Script.SConscript. SConsEnvironment method)

_exception_raise() (SCons.SConf.SConfBuildTask

method)

(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)
_exec_main() (in module SCons.Script.Main)
_execute() (SCons.Builder.BuilderBase method)
_execute_str (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)
_exercise() (in module SCons.dblite)

_fetch_DefaultEnvironment() (in module

SCons.Defaults)
_find_file_key() (SCons.Node.FS.FileFinder method)

_find_next_ready node()
(SCons.Taskmaster.Taskmaster method)

_find_toolpath_dir() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_format_text() (SCons.Script.SConsOptions.SConsInde
ntedHelpFormatter method)

_func_exists (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

_func_get_contents (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

_func_is_derived (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._create_option_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._create_option_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._create_option_mappings')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._create_option_mappings')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase._createDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._do_execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor._do_if_else_condition')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._do_if_else_condition')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._do_if_else_condition')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner._do_if_else_condition')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask._exception_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask._exception_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask._exception_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask._exception_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask._exception_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task._exception_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._execute_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._find_toolpath_dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._find_toolpath_dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._find_toolpath_dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._find_toolpath_dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._func_exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._func_exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._func_exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._func_get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._func_get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._func_get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._func_is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_is_derived')

(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
_func_rexists (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
_func_sconsign (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

_func_target_from_source (SCons.Node.Alias.Alias

attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

_function_contents() (in module SCons.Action)

_gen_nodelist() (SCons.Subst.NLWrapper method)

_generate() (SCons.Action.CommandGeneratorAction
method)

(SCons.Action.LazyAction method)
_generate_cache() (SCons.Action.LazyAction method)

_get_all_options()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_get_args()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_get_changed_sources()
method)

(SCons.Executor.Executor

_get_changed_targets()
method)

(SCons.Executor.Executor

_get_changes() (SCons.Executor.Executor method)
_Get_Default_Targets() (in module SCons.Script)

_get files_to_clean()
method)

(SCons.Script.Main.CleanTask

_get_found_includes_key()
method)

(SCons.Node.FS.File

_get_hash_object() (in module SCons.Util)

_get_implicit_deps_heavyweight()
(SCons.Action.CommandAction method)

(SCons.Action.LazyAction method)

_get_implicit_deps_lightweight()
(SCons.Action.CommandAction method)

(SCons.Action.LazyAction method)

_get_major_minor_revision()
(SCons.Script.SConscript.SConsEnvironment method)

_get_previous_signatures() (SCons.Node.FS.File

method)

_get_scanner() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

_get_SConscript_filenames()
(SCons.Script.SConscript.SConsEnvironment method)

_get_sdict() (SCons.Builder.BuilderBase method)
_get_source() (SCons.Executor.Executor method)
_get_sources() (SCons.Executor.Executor method)

_get_src_builders_key() (SCons.Builder.BuilderBase

method)

_get_str() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

_get_target() (SCons.Executor.Executor method)

_get_targets() (SCons.Executor.Executor method)

_get_unchanged_sources() (SCons.Executor.Executor
method)

_get_unchanged_targets()
method)

(SCons.Executor.Executor

_get_unignored_sources_key()
(SCons.Executor.Executor method)

_glob1() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._func_is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._func_is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._func_rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._func_rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._func_rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._func_target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._func_target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._func_target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._func_target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._func_target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._func_target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._func_target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction._generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction._get_implicit_deps_heavyweight')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction._get_implicit_deps_lightweight')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._get_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._get_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._get_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._get_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._glob1')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._glob1')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._glob1')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._glob1')

_gsm() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_hardlink_func() (in module SCons.Node.FS)
_Have() (in module SCons.Conftest)

_ignore_virtualenv_default()
SCons.Platform.virtualenv)

(in module

_init_parsing_state()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_init_special() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_initialized (SCons.Job.Worker attribute)

_inject_venv_path() (in module
SCons.Platform.virtualenv)
inject_venv_variables() (in module

§Cons.Platform.virtualenv)

_instance (SCons.Subst.NullNodeList attribute)

_is_path_in() (in module SCons.Platform.virtualenv)

_labspath (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

_lang2suffix() (in module SCons.Conftest)

latex_names() (SCons.Scanner.LaTeX.LaTeX

method)

load_all_site_scons_dirs() (in module

SCons.Script.Main)

_load_dotted_module_py2() (SCons.Tool.Tool method)

_load_site_scons_dir() (in module SCons.Script.Main)

_local (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

_LogFailed() (in module SCons.Conftest)

_lookup() (SCons.Node.FS.FS method)

_lookup_abs() (SCons.Node.FS.RootDir method)

_lookupDict (SCons.Node.FS.RootDir attribute)
_main() (in module SCons.Script.Main)

_match_long_opt()
(SCons.Script.SConsOptions.SConsOptionParser
method)

__match_tuples()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
_memo (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)
(SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
_morph() (SCons.Executor.Null method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
_my_normcase() (in module SCons.Node.FS)
_my_splitdrive() (in module SCons.Node.FS)

_Nno_exception_to_raise()
(SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)
_node_errors() (in module SCons.Builder)
_NoError
_null (class in SCons.Action)
_Null (class in SCons.Builder)
(class in SCons.Environment)
(class in SCons.Node.FS)
(class in SCons.Scanner)
(class in SCons.Scanner.LaTeX)

_null (in module SCons.Builder)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._gsm')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._gsm')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._gsm')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._gsm')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._init_special')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._init_special')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment._init_special')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment._init_special')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._init_special')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._init_special')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor._match_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._match_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._match_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner._match_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._memo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._morph')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._morph')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._morph')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask._no_exception_to_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask._no_exception_to_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask._no_exception_to_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask._no_exception_to_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask._no_exception_to_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task._no_exception_to_raise')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment._Null')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS._Null')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner._Null')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX._Null')

(in module SCons.Environment)

(in module SCons.Scanner)

(in module SCons.Scanner.LaTeX)
_object_contents() (in module SCons.Action)
_object_instance_content() (in module SCons.Action)
_open() (SCons.dblite.dblite method)

_o0s_chmod() (SCons.dblite.dblite method)
_os_chown() (SCons.dblite.dblite method)
_os_replace() (SCons.dblite.dblite method)

_parse_tuples()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
_path (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
_path_elements (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
_PathList (class in SCons.PathList)
_pickle_dump() (SCons.dblite.dblite static method)
_pickle_protocol (SCons.dblite.dblite attribute)

_populate_option_list()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_print_cmd_str()
method)

(SCons.Platform.TempFileMunge

_process_args()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_process_long_opt()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_process_short_opts()
(SCons.Script.SConsOptions.SConsOptionParser
method)

_process_tuples()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
_proxy (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
_readconfig() (SCons.CacheDir.CacheDir method)
_recurse_all_nodes() (SCons.Scanner.Base method)
(SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.Current method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)
(SCons.Scanner.LaTeX.LaTeX method)
(SCons.Scanner.Selector method)
_recurse_no_nodes() (SCons.Scanner.Base method)
(SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.Current method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)
(SCons.Scanner.LaTeX.LaTeX method)
(SCons.Scanner.Selector method)
_rel_path_key() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
_remove_list() (in module SCons.Subst)
_reset_internal_locks() (SCons.Job.Worker method)
_reset_sig_handler() (SCons.Job.Jobs method)
_return_nodelist() (SCons.Subst.NLWrapper method)
_Rfindalldirs_key() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
_rm_list() (in module SCons.Subst)
_rmv_existing() (SCons.Node.FS.File method)
_run_exitfuncs() (in module SCons.exitfuncs)

_running_in_virtualenv()
SCons.Platform.virtualenv)

_save_str() (SCons.Node.FS.Base method)

(in module

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment._null')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner._null')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX._null')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor._parse_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._parse_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._parse_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner._parse_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._path_elements')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._path_elements')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._path_elements')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._path_elements')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor._process_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._process_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner._process_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner._process_tuples')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Classic._recurse_all_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP._recurse_all_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current._recurse_all_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D._recurse_all_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner._recurse_all_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX._recurse_all_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector._recurse_all_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Classic._recurse_no_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP._recurse_no_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current._recurse_no_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D._recurse_no_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner._recurse_no_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX._recurse_no_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector._recurse_no_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._rel_path_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._Rfindalldirs_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._Rfindalldirs_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._Rfindalldirs_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._Rfindalldirs_key')

(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
_scons_internal_error() (in module SCons.Script.Main)

_scons_internal_warning() (in module

SCons.Script.Main)
_scons_syntax_error() (in module SCons.Script.Main)
_scons_user_error() (in module SCons.Script.Main)
_scons_user_warning() (in module SCons.Script.Main)
_SConscript() (in module SCons.Script.SConscript)
_sconsign (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
_SConstruct_exists() (in module SCons.Script.Main)
_semi_deepcopy_list() (in module SCons.Util)
_semi_deepcopy_tuple() (in module SCons.Util)

_set_attrs() (SCons.Script.SConsOptions.SConsOption
method)

_set BUILDERS() (in module SCons.Environment)
_set_conftest_node() (in module SCons.SConf)
_set_debug_values() (in module SCons.Script.Main)
_Set_Default_Targets() (in module SCons.Script)

_Set_Default_Targets Has Been_Called() (in module
SCons.Script)

_Set_Default_Targets_Has_Not_Been_Called() (in
module SCons.Script)

_set_future_reserved() (in module SCons.Environment)
_set_ident() (SCons.Job.Worker method)

_set_opt_strings()
(SCons.Script.SConsOptions.SConsOption method)

_set_reserved() (in module SCons.Environment)
_set SCANNERS() (in module SCons.Environment)
_set_tstate _lock() (SCons.Job.Worker method)
_setup_sig_handler() (SCons.Job.Jobs method)

_share_option_mappings()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

_show_md5_warning() (in module SCons.Util)
_shutdown() (SCons.SConf.SConfBase method)
_shutil_copyfile() (SCons.dblite.dblite method)
_softlink_func() (in module SCons.Node.FS)

_specific_sources (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

_srcdir_find_file_key() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

_startup() (SCons.SConf.SConfBase method)

_stop() (SCons.Job.Worker method)

_string_from_cmd_list() (in module SCons.Action)

_stringConfigH() (in module SCons.SConf)

_stringSource() (in module SCons.SConf)

_strip_initial_spaces()
(SCons.Script.Interactive.SConslinteractiveCmd
method)

_stripixes() (in module SCons.Defaults)
_subproc() (in module SCons.Action)
_subst_libs() (in module SCons.Scanner.Prog)

_subst_src_suffixes_key() (SCons.Builder.BuilderBase
method)

_tags (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

_text2bool() (in module SCons.Variables.BoolVariable)

_time_time() (SCons.dblite.dblite method)

_tool_module() (SCons.Tool.Tool method)

_tpath (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

unchanged_sources_list

_ (SCons.Executor.Executor
attribute)

(SCons.Executor.Null attribute)

unchanged_targets_list

_ (SCons.Executor.Executor
attribute)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._save_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._save_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._save_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._save_str')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._share_option_mappings')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser._share_option_mappings')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._specific_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._specific_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._specific_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._specific_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._specific_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._specific_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._specific_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._srcdir_find_file_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base._tags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._tags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._tags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._tags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._tags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node._tags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value._tags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir._tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry._tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File._tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir._tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._unchanged_sources_list')

(SCons.Executor.Null attribute)
_update() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Script.SConsOptions.SConsValues
method)

_update_careful()
(SCons.Script.SConsOptions.SConsValues method)

_update_loose()
(SCons.Script.SConsOptions.SConsValues method)

_update_onlynew() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

_validate_pending_children()
(SCons.Taskmaster.Taskmaster method)

_validator() (in module SCons.Variables.BoolVariable)
(in module SCons.Variables.PackageVariable)
_wait_for_tstate_lock() (SCons.Job.Worker method)

_YesNoResult() (in module SCons.Conftest)

A

abspath (SCons.Node.FS.RootDir attribute)

action (SCons.Errors.BuildError attribute)

Action() (in module SCons.Action)
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

action_list (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)
ActionBase (class in SCons.Action)
ActionCaller (class in SCons.Action)
ActionFactory (class in SCons.Action)

ACTIONS (SCons.Script.SConsOptions.SConsOption
attribute)

Add() (SCons.Variables.Variables method)

add_action()
method)

(SCons.Builder.CompositeBuilder

(SCons.Builder.DictCmdGenerator method)
add_batch() (SCons.Executor.Executor method)

add_dependency() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
add_emitter() (SCons.Builder.BuilderBase method)
add_ignore() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

add_local_option()
(SCons.Script.Main.FakeOptionParser method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

add_new_word() (SCons.Subst.ListSubber method)

add_option()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

add_option_group()
(SCons.Script.SConsOptions.SConsOptionParser
method)

add_options()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

add_post_action() (SCons.Executor.Executor method)
(SCons.Executor.Null method)

add_pre_action() (SCons.Executor.Executor method)
(SCons.Executor.Null method)

add_prerequisite() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)
(SCons.Node.Python.Value method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null._unchanged_targets_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsValues._update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsValues._update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._update_onlynew')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment._update_onlynew')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._update_onlynew')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment._update_onlynew')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.PackageVariable._validator')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.action_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.add_action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_dependency')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_dependency')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_dependency')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_dependency')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_dependency')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_dependency')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_dependency')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_local_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_local_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_options')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.add_options')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.add_post_action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.add_pre_action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_prerequisite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_prerequisite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_prerequisite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_prerequisite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_prerequisite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_prerequisite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_prerequisite')

add_scanner() (SCons.Scanner.Base method)
(SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.Current method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)
(SCons.Scanner.LaTeX.LaTeX method)
(SCons.Scanner.Selector method)

add_skey() (SCons.Scanner.Base method)
(SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.Current method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)
(SCons.Scanner.LaTeX.LaTeX method)
(SCons.Scanner.Selector method)

add_source() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

add_sources() (SCons.Executor.Executor method)

add_src_builder() (SCons.Builder.BuilderBase method)

add_to_current_word() (SCons.Subst.ListSubber
method)

add_to_implicit() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

add_to_waiting_parents() (SCons.Node.Alias.Alias
method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)
(SCons.Node.Python.Value method)

add_to_waiting_s_e() (SCons.Node.Alias.Alias
method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
add_wkid() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
AddBatchExecutor() (in module SCons.Executor)
AddMethod() (in module SCons.Util)
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

AddOption() (in module SCons.Script.Main)
AddPathlfNotExists() (in module SCons.Util)
AddPostAction() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript. SConsEnvironment
method)

AddPreAction() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

addRepository() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

AddTest() (SCons.SConf.SConfBase method)

AddTests() (SCons.SConf.SConfBase method)

AddVariables() (SCons.Variables.Variables method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Classic.add_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.add_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current.add_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.add_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.add_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.add_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector.add_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Classic.add_skey')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.add_skey')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current.add_skey')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.add_skey')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.add_skey')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.add_skey')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector.add_skey')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_to_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_to_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_to_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_to_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_to_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_to_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_to_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_to_waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_to_waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_to_waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_to_waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_to_waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_to_waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_to_waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_to_waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_to_waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_to_waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_to_waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_to_waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_to_waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_to_waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.add_wkid')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.add_wkid')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.add_wkid')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.add_wkid')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.add_wkid')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.add_wkid')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.add_wkid')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.AddMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AddMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AddMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.AddMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.AddMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AddPostAction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AddPostAction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddPostAction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddPostAction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AddPreAction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AddPreAction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddPreAction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AddPreAction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.addRepository')

adjust_suffix() (SCons.Builder.BuilderBase method)
adjustixes() (in module SCons.Util)

Alias (class in SCons.Node.Alias)

Alias() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Script.SConscript.SConsEnvironment
method)

Alias.Attrs (class in SCons.Node.Alias)
alias_builder() (in module SCons.Environment)
AliasBuildInfo (class in SCons.Node.Alias)
AliasNameSpace (class in SCons.Node.Alias)
AliasNodelnfo (class in SCons.Node.Alias)
all_children() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
all_include() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
alter_targets() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
always_build (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

ALWAYS TYPED_ACTIONS
(SCons.Script.SConsOptions.SConsOption attribute)

AlwaysBuild() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

AlwaysTask (class in SCons.Taskmaster)
Annotate() (in module SCons.Node)

annotate() (in module SCons.Script.SConscript)
append() (SCons.Builder.ListEmitter method)
Append() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

append() (SCons.Executor.TSList method)
(SCons.Node.NodeList method)

Append() (SCons.Script.SConscript. SConsEnvironment
method)

append() (SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.UniqueList method)
AppendENVPath() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

AppendLIBS() (SCons.SConf.CheckContext method)
AppendPath() (in module SCons.Util)
AppendUnique() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript. SConsEnvironment
method)

apply_tools() (in module SCons.Environment)
(SCons.Tool.Toollnitializer method)

ArchDefinition (class in SCons.Platform.win32)

arg2nodes() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Alias')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Alias')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.Alias')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Alias')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Alias')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.all_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.all_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.all_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.all_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.alter_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.alter_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.alter_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.alter_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.alter_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.alter_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.alter_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AlwaysBuild')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AlwaysBuild')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AlwaysBuild')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AlwaysBuild')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AppendENVPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AppendENVPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AppendENVPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AppendENVPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AppendUnique')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.AppendUnique')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AppendUnique')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.AppendUnique')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Tool.ToolInitializer.apply_tools')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.arg2nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.arg2nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.arg2nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.arg2nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.arg2nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.arg2nodes')

args (SCons.Errors.BuildError attribute)
(SCons.Errors.ExplicitExit attribute)
(SCons.Errors.InternalError attribute)
(SCons.Errors.MSVCError attribute)
(SCons.Errors.SConsEnvironmentError attribute)
(SCons.Errors.StopError attribute)
(SCons.Errors.UserError attribute)
(SCons.Node.FS.EntryProxyAttributeError attribute)

(SCons.Node.FS.FileBuildinfoFileToCsigMappingError
attribute)

(SCons.SConf.ConfigureCacheError attribute)
(SCons.SConf.ConfigureDryRunError attribute)
(SCons.SConf.SConfError attribute)
(SCons.SConf.SConfWarning attribute)
(SCons.Script.Main.SConsPrintHelpException attribute)
(SCons.Script.SConscript.SConscriptReturn attribute)
(SCons.Util._NoError attribute)
(SCons.Warnings.CacheVersionWarning attribute)
(SCons.Warnings.CacheWriteErrorWarning attribute)
(SCons.Warnings.CorruptSConsignWarning attribute)
(SCons.Warnings.DependencyWarning attribute)

(SCons.Warnings.DeprecatedDebugOptionsWarning
attribute)

(SCons.Warnings.DeprecatedMissingSConscriptWarning

attribute)
(SCons.Warnings.DeprecatedOptionsWarning attribute)

(SCons.Warnings.DeprecatedSourceCodeWarning
attribute)

(SCons.Warnings.DeprecatedWarning attribute)

(SCons.Warnings.DevelopmentVersionWarning
attribute)

(SCons.Warnings.DuplicateEnvironmentWarning
attribute)

(SCons.Warnings.FortranCxxMixWarning attribute)
(SCons.Warnings.FutureDeprecatedWarning attribute)

(SCons.Warnings.FutureReservedVariableWarning
attribute)

(SCons.Warnings.LinkWarning attribute)
(SCons.Warnings.MandatoryDeprecatedWarning
attribute)

(SCons.Warnings.MisleadingKeywordsWarning
attribute)

(SCons.Warnings.MissingSConscriptWarning
attribute)

(SCons.Warnings.NoObjectCountWarning
attribute)

(SCons.Warnings.NoParallelSupportWarning
attribute)

(SCons.Warnings.PythonVersionWarning attribute)

(SCons.Warnings.ReservedVariableWarning
attribute)

(SCons.Warnings.SConsWarning attribute)
(SCons.Warnings.StackSizeWarning attribute)
(SCons.Warnings.TargetNotBuiltWarning attribute)

(SCons.Warnings.TaskmasterNeedsExecuteWarning
attribute)

(SCons.Warnings.VisualCMissingWarning attribute)

(SCons.Warnings.VisualStudioMissingWarning
attribute)

(SCons.Warnings.VisualVersionMismatch attribute)
(SCons.Warnings.WarningOnByDefault attribute)
attributes (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

ATTRS
attribute)

(SCons.Script.SConsOptions.SConsOption

B
backtick() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript. SConsEnvironment
method)

bact (SCons.Node.Alias.AliasBuildInfo attribute)
(SCons.Node.BuildinfoBase attribute)
(SCons.Node.FS.DirBuildInfo attribute)
(SCons.Node.FS.FileBuildinfo attribute)
(SCons.Node.Python.ValueBuildinfo attribute)
(SCons.SConf.SConfBuildInfo attribute)

bactsig (SCons.Node.Alias.AliasBuildInfo attribute)
(SCons.Node.BuildinfoBase attribute)
(SCons.Node.FS.DirBuildInfo attribute)

(SCons.Node.FS.FileBuildinfo attribute)
(SCons.Node.Python.ValueBuildinfo attribute)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Errors.ExplicitExit.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Errors.InternalError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Errors.MSVCError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Errors.SConsEnvironmentError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Errors.StopError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Errors.UserError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.EntryProxyAttributeError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfoFileToCsigMappingError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfoFileToCsigMappingError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.ConfigureCacheError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.ConfigureDryRunError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.SConsPrintHelpException.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConscriptReturn.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util._NoError.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.CacheVersionWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.CacheWriteErrorWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.CorruptSConsignWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DependencyWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedDebugOptionsWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedDebugOptionsWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedMissingSConscriptWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedMissingSConscriptWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedOptionsWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedSourceCodeWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedSourceCodeWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DevelopmentVersionWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DevelopmentVersionWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DuplicateEnvironmentWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DuplicateEnvironmentWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FortranCxxMixWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FutureDeprecatedWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FutureReservedVariableWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FutureReservedVariableWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.LinkWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MandatoryDeprecatedWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MandatoryDeprecatedWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MisleadingKeywordsWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MisleadingKeywordsWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MissingSConscriptWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MissingSConscriptWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.NoObjectCountWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.NoObjectCountWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.NoParallelSupportWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.NoParallelSupportWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.PythonVersionWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.ReservedVariableWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.ReservedVariableWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.SConsWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.StackSizeWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.TargetNotBuiltWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.TaskmasterNeedsExecuteWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.TaskmasterNeedsExecuteWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.VisualCMissingWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.VisualStudioMissingWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.VisualStudioMissingWarning.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.VisualVersionMismatch.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.WarningOnByDefault.args')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.backtick')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.backtick')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.backtick')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.backtick')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.backtick')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.backtick')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bact')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bact')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bact')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bact')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bact')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bactsig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bactsig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bactsig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bactsig')

(SCons.SConf.SConfBuildinfo attribute)

Base (class in SCons.Environment)
(class in SCons.Node.FS)
(class in SCons.Scanner)
(class in SCons.SConsign)

Base.Attrs (class in SCons.Node.FS)

Batch (class in SCons.Executor)

batch_key() (SCons.Action._ActionAction method)
(SCons.Action.ActionBase method)
(SCons.Action.CommandAction method)
(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)

batches (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)

bdepends (SCons.Node.Alias.AliasBuildinfo attribute)
(SCons.Node.BuildInfoBase attribute)
(SCons.Node.FS.DirBuildInfo attribute)
(SCons.Node.FS.FileBuildInfo attribute)
(SCons.Node.Python.ValueBuildinfo attribute)
(SCons.SConf.SConfBuildinfo attribute)

bdependsigs (SCons.Node.Alias.AliasBuildInfo

attribute)
(SCons.Node.BuildInfoBase attribute)
(SCons.Node.FS.DirBuildInfo attribute)
(SCons.Node.FS.FileBuildInfo attribute)
(SCons.Node.Python.ValueBuildinfo attribute)
(SCons.SConf.SConfBuildinfo attribute)

bimplicit (SCons.Node.Alias.AliasBuildInfo attribute)
(SCons.Node.BuildInfoBase attribute)
(SCons.Node.FS.DirBuildInfo attribute)
(SCons.Node.FS.FileBuildInfo attribute)
(SCons.Node.Python.ValueBuildinfo attribute)
(SCons.SConf.SConfBuildinfo attribute)

bimplicitsigs (SCons.Node.Alias.AliasBuildInfo

attribute)
(SCons.Node.BuildInfoBase attribute)
(SCons.Node.FS.DirBuildInfo attribute)
(SCons.Node.FS.FileBuildInfo attribute)
(SCons.Node.Python.ValueBuildinfo attribute)
(SCons.SConf.SConfBuildinfo attribute)

binfo (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
(SCons.SConsign.SConsignEntry attribute)

BoolVariable() (in
SCons.Variables.BoolVariable)

module

bsources (SCons.Node.Alias.AliasBuildInfo attribute)
(SCons.Node.BuildInfoBase attribute)
(SCons.Node.FS.DirBuildInfo attribute)
(SCons.Node.FS.FileBuildInfo attribute)
(SCons.Node.Python.ValueBuildinfo attribute)
(SCons.SConf.SConfBuildInfo attribute)

bsourcesigs (SCons.Node.Alias.AliasBuildInfo attribute)
(SCons.Node.BuildinfoBase attribute)
(SCons.Node.FS.DirBuildInfo attribute)
(SCons.Node.FS.FileBuildInfo attribute)
(SCons.Node.Python.ValueBuildinfo attribute)
(SCons.SConf.SConfBuildinfo attribute)

build() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

BuildDefaultGlobals() (in
SCons.Script.SConscript)

builder (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

Builder() (in module SCons.Builder)

module

(SCons.Environment.Base method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bactsig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Base')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Base')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.batches')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bdepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bdepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bdepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bdepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bdepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bdependsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bdependsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bdependsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bdependsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bdependsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bimplicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bimplicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bimplicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bimplicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bimplicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bimplicitsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bimplicitsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bimplicitsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bimplicitsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bimplicitsigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.SConsignEntry.binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bsources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bsources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bsources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bsources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bsources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.bsourcesigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.bsourcesigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.bsourcesigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.bsourcesigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.bsourcesigs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Builder')

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

builder_kw (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)
builder_set() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
BuilderBase (class in SCons.Builder)
BuilderDict (class in SCons.Environment)
BuildError
BuilderWrapper (class in SCons.Environment)
Buildinfo (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
BuildinfoBase (class in SCons.Node)
BuildNodes() (SCons.SConf.SConfBase method)
BuildProg() (SCons.SConf.CheckContext method)
BuildTask (class in SCons.Script.Main)
built() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

C
cached (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
CacheDebug() (SCons.CacheDir.CacheDir method)
CacheDir (class in SCons.CacheDir)
CacheDir() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

cachedir_csig (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
cachepath() (SCons.CacheDir.CacheDir method)
CachePushFunc() (in module SCons.CacheDir)
CacheRetrieveFunc() (in module SCons.CacheDir)
CacheRetrieveString() (in module SCons.CacheDir)
cachesig (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
CacheVersionWarning
CacheWriteErrorWarning
CallableSelector (class in SCons.Builder)
caller_stack() (in module SCons.Debug)
caller_trace() (in module SCons.Debug)

canonical_text()
method)

capitalize() (SCons.Subst.CmdStringHolder method)
case_sensitive_suffixes() (in module SCons.Util)
casefold() (SCons.Subst.CmdStringHolder method)
CConditionalScanner() (in module SCons.Scanner.C)
center() (SCons.Subst.CmdStringHolder method)
changed() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)

(SCons.Scanner.LaTeX.LaTeX

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.builder_kw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.builder_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.builder_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.builder_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.builder_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.builder_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.builder_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.builder_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.BuildInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.BuildInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.BuildInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.BuildInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.BuildInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.BuildInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.BuildInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.built')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.built')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.built')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.built')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.built')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.built')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.built')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.cached')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.cached')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.cached')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.cached')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.cached')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.cached')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.cached')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.cachesig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.cachesig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.cachesig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.changed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.changed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.changed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.changed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.changed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.changed')

(SCons.Node.Python.Value method) CheckCC() (in module SCons.Conftest)
changed_content() (SCons.Node.FS.File method) (in module SCons.SConf)
changed_since_last_build (SCons.Node.Alias.Alias CheckCHeader() (in module SCons.SConf)
attribute) CheckContext (class in SCons.SConf)

(SCons.Node.FS. Base attribute) CheckCXX() (in module SCons.Conftest)

(SCons.Node.FS.Dir attribute) (in module SCons.SConf)

(SCons.Node.FS.Entry attribute) CheckCXXHeader() (in module SCons.SConf)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)

CheckDeclaration() (in module SCons.Conftest)
(in module SCons.SConf)

CheckFunc() (in module SCons.Conftest)
(in module SCons.SConf)

CheckHeader() (in module SCons.Conftest)
(in module SCons.SConf)

changed_since_last_build_alias() (in module
SCons.Node)

changed_since_last_build_entry() (in module

SCons.Node) CheckLib() (in module SCons.Conftest)
changed_since_last_build_node() (in module (in module SCons.SConf)

SCons.Node) CheckLibwWithHeader() (in module SCons.SConf)
changed_since_last build_python() (in module

CheckProg() (in module SCons.Conftest)
(in module SCons.SConf)

SCons.Node)

changed_since_last build_state_changed() (in module

SCons.Node) CheckSHCC() (in module SCons.Conftest)
changed_state() (SCons.Node.FS.File method) (in module SCons.SConf)
changed_timestamp_match() (SCons.Node.FS.File CheckSHCXX() (in module SCons.Conftest)
method) (in module SCons.SConf)
ﬂ;ﬂgzg_ﬂmestamp_newero (SCons.Node.FS.File CheckType() (in module SCons.Conftest)

changed_timestamp_then_content() (in module SCons.SConf)

(SCons.Node.FS.File method) CheckTypeSize() (in module SCons.Conftest)
characters_written (SCons.Errors.MSVCError attribute) (in module SCons.SConf)
chdir() (SCons.Node.FS.FS method) children() (SCons.Node.Alias.Alias method)
check_attributes() (SCons.Node.Alias.Alias method) (SCons.Node.FS.Base method)
(SCons.Node.FS.Base method) (SCons.Node.FS.Dir method)
(SCons.Node.FS.Dir method) (SCons.Node.FS.Entry method)
(SCons.Node.FS.Entry method) (SCons.Node.FS.File method)
(SCons.Node.FS.File method) (SCons.Node.FS.RootDir method)
(SCons.Node.FS.RootDir method) (SCons.Node.Node method)
(SCons.Node.Node method) (SCons.Node.Python.Value method)
(SCons.Node.Python.Value method) children_are_up_to_date() (SCons.Node.Alias.Alias
CHECK_METHODS method)
(SCons.Script.SConsOptions.SConsOption attribute) (SCons.Node.FS.Base method)
check_value() (SCons.Node.FS.Dir method)

(SCons.Script.SConsOptions.SConsOption method) (SCons.Node.FS.Entry method)
check _values()

(SCons.Script.SConsOptions.SConsOptionParser (SCons.Node.FS.File method)
method) (SCons.Node.FS.RootDir method)

CheckBuilder() (in module SCons.Conftest) (SCons.Node.Node method)
(SCons.Node.Python.Value method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.changed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.changed_since_last_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.changed_since_last_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.changed_since_last_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.changed_since_last_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.changed_since_last_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.changed_since_last_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.changed_since_last_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.check_attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.check_attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.check_attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.check_attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.check_attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.check_attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.check_attributes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckCC')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckCXX')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckDeclaration')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckFunc')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckHeader')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckLib')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckProg')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckSHCC')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckSHCXX')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckType')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.CheckTypeSize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.children_are_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.children_are_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.children_are_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.children_are_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.children_are_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.children_are_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.children_are_up_to_date')

chmod() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
chmod_func() (in module SCons.Defaults)
chmod_strfunc() (in module SCons.Defaults)
Classic (class in SCons.Scanner)
ClassicCPP (class in SCons.Scanner)
classname() (in module SCons.Node)
Clean() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

CleanTask (class in SCons.Script.Main)
cleanup() (SCons.Executor.Executor method)
(SCons.Executor.Null method)
(SCons.Job.ThreadPool method)
(SCons.Taskmaster.Taskmaster method)
Cleanup_CPP_Expressions() (in module SCons.cpp)
clear() (SCons.Builder.CallableSelector method)
(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.ListEmitter method)
(SCons.Builder.OverrideWarner method)
(SCons.Environment.BuilderDict method)
(SCons.Executor.TSList method)
(SCons.Node.Alias.Alias method)
(SCons.Node.Alias.AliasNameSpace method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.NodeList method)
(SCons.Node.Python.Value method)
(SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.Selector method)
(SCons.Util.UniqueList method)

clear_memoized_values()
method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

(SCons.Node.Alias.Alias

Clone() (SCons.Environment.Base method)
clone() (SCons.Environment.BuilderWrapper method)

Clone() (SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

clone() (SCons.Util.MethodWrapper method)
close() (SCons.dblite.dblite method)
close_strip() (SCons.Subst.ListSubber method)
CLVar (class in SCons.Util)

cmdloop()
(SCons.Script.Interactive.SConslinteractiveCmd
method)

CmdsStringHolder (class in SCons.Subst)
cmp() (in module SCons.Util)

collect_node_states() (SCons.SConf.SConfBuildTask
method)

columnize()
(SCons.Script.Interactive.SConslinteractiveCmd
method)

command (SCons.Errors.BuildError attribute)
Command() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript. SConsEnvironment
method)

CommandAction (class in SCons.Action)
CommandGeneratorAction (class in SCons.Action)
CompileProg() (SCons.SConf.CheckContext method)

CompileSharedObject() (SCons.SConf.CheckContext
method)

complete()
(SCons.Script.Interactive.SConslinteractiveCmd
method)

complete_help()
(SCons.Script.Interactive.SConslinteractiveCmd
method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.chmod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Clean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Clean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Clean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Clean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Job.ThreadPool.cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Taskmaster.cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.ListEmitter.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.clear_memoized_values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.clear_memoized_values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.clear_memoized_values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.clear_memoized_values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.clear_memoized_values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.clear_memoized_values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.clear_memoized_values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Clone')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Clone')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Command')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Command')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Command')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Command')

completedefault()
(SCons.Script.Interactive.SConslnteractiveCmd
method)

completenames()
(SCons.Script.Interactive.SConslnteractiveCmd
method)

CompositeBuilder (class in SCons.Builder)

compute_exports() (in module

SCons.Script.SConscript)
Configure() (in module SCons.Script.SConscript)
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

ConfigureCacheError
ConfigureDryRunError

CONST_ACTIONS
(SCons.Script.SConsOptions.SConsOption attribute)

containsAll() (in module SCons.Util)

containsAny() (in module SCons.Util)

containsOnly() (in module SCons.Util)

contentsig (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

convert() (SCons.Node.Alias.Alias method)
(SCons.Node.Alias.AliasNodelnfo method)
(SCons.Node.FS.DirNodelnfo method)
(SCons.Node.FS.FileNodelnfo method)
(SCons.Node.NodelnfoBase method)
(SCons.Node.Python.ValueNodelnfo method)

convert_copy_attrs (SCons.Node.FS.File attribute)

convert_from_sconsign() (SCons.Node.FS.FileBuildinfo
method)

(SCons.SConf.SConfBuildinfo method)

(SCons.SConsign.SConsignEntry method)
convert_old_entry() (SCons.Node.FS.File method)
convert_sig_attrs (SCons.Node.FS.File attribute)
convert_to_BuildError() (in module SCons.Errors)

convert_to_sconsign() (SCons.Node.FS.FileBuildinfo

method)
(SCons.SConf.SConfBuildinfo method)
(SCons.SConsign.SConsignEntry method)

convert_value()
(SCons.Script.SConsOptions.SConsOption method)

copy() (SCons.Builder.CallableSelector method)
(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.ListEmitter method)
(SCons.Builder.OverrideWarner method)
(SCons.Environment.BuilderDict method)
(SCons.Executor.TSList method)
(SCons.Node.Alias.AliasNameSpace method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
(SCons.Node.NodeList method)
(SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.Selector method)
(SCons.Util.UniqueList method)

copy2() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)

copy_from_cache() (SCons.CacheDir.CacheDir class
method)

copy_func() (in module SCons.Defaults)

copy_nhon_reserved_keywords() (in module

SCons.Environment)

copy_to_cache()
method)

(SCons.CacheDir.CacheDir class

corrupt_dblite_warning() (in module SCons.SConsign)

CorruptSConsignWarning

count (SCons.Script.Main.Progressor attribute)

count() (SCons.Builder.ListEmitter method)
(SCons.Executor.TSList method)
(SCons.Memoize.CountDict method)
(SCons.Memoize.CountValue method)
(SCons.Node.NodeList method)
(SCons.Script.TargetList method)
(SCons.Subst.CmdStringHolder method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.UniqueList method)

CountDict (class in SCons.Memoize)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Configure')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Configure')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Configure')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Configure')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Configure')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.contentsig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.contentsig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.contentsig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNodeInfo.convert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.convert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.convert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.convert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.convert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.convert_from_sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.SConsignEntry.convert_from_sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.convert_to_sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.SConsignEntry.convert_to_sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.ListEmitter.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.copy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.copy2')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Memoize.CountDict.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Memoize.CountValue.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.count')

CountDictCall() (in module SCons.Memoize)
Counter (class in SCons.Memoize)
countLoggedInstances() (in module SCons.Debug)
CountMethodCall() (in module SCons.Memoize)
CountStats (class in SCons.Script.Main)
CountValue (class in SCons.Memoize)
CPP_to_Python() (in module SCons.cpp)
CPP_to_Python_Ops_Sub() (in module SCons.cpp)
createCFileBuilders() (in module SCons.Tool)
CreateConfigHBuilder() (in module SCons.SConf)

createlncludesFromHeaders() (in module

SCons.SConf)

CreateJarBuilder() (in module SCons.Tool)
CreateJavaClassDirBuilder() (in module SCons.Tool)
CreateJavaClassFileBuilder() (in module SCons.Tool)
CreateJavaFileBuilder() (in module SCons.Tool)
CreateJavaHBuilder() (in module SCons.Tool)

createLoadableModuleBuilder()
SCons.Tool)

(in module

createObjBuilders() (in module SCons.Tool)
createProgBuilder() (in module SCons.Tool)
createSharedLibBuilder() (in module SCons.Tool)
createStaticLibBuilder() (in module SCons.Tool)
CScanner() (in module SCons.Scanner.C)
csig (SCons.Node.Alias.AliasNodelnfo attribute)
(SCons.Node.FS.FileNodelnfo attribute)
(SCons.Node.Python.ValueNodelnfo attribute)
Current (class in SCons.Scanner)

current_version_id (SCons.Node.Alias.AliasBuildInfo

attribute)
(SCons.Node.Alias.AliasNodelnfo attribute)
(SCons.Node.BuildInfoBase attribute)
(SCons.Node.FS.DirBuildInfo attribute)
(SCons.Node.FS.DirNodelnfo attribute)
(SCons.Node.FS.FileBuildInfo attribute)
(SCons.Node.FS.FileNodelnfo attribute)
(SCons.Node.NodelnfoBase attribute)
(SCons.Node.Python.ValueBuildinfo attribute)
(SCons.Node.Python.ValueNodelnfo attribute)
(SCons.SConf.SConfBuildinfo attribute)
(SCons.SConsign.SConsignEntry attribute)

cwd (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

D

D (class in SCons.Scanner.D)

daemon() (SCons.Job.Worker property)

DB (class in SCons.SConsign)

dblite (class in SCons.dblite)

decide_source() (in module SCons.Node)
decide_target() (in module SCons.Node)
Decider() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

(SCons.Script.SConscript. SConsEnvironment
method)

dedent() (SCons.Script.SConsOptions.SConsindented
HelpFormatter method)

default()
(SCons.Script.Interactive.SConslinteractiveCmd
method)

Default() (SCons.Script.SConscript.SConsEnvironment
method)

default_copy_from_cache() (in module
SCons.Environment)
default_copy_to_cache() (in module
SCons.Environment)
default_decide_source() (in module
SCons.Environment)
default_decide_target() (in module

SCons.Environment)
default_exitstatfunc() (in module SCons.Action)
DefaultEnvironment() (in module SCons.Defaults)

DefaultEnvironmentCall
SCons.Script.SConscript)

(class in

DefaultToolList() (in module SCons.Platform)
Define() (SCons.SConf.SConfBase method)
del_binfo() (SCons.Node.Alias.Alias method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNodeInfo.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.SConsignEntry.current_version_id')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.cwd')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.cwd')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.cwd')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.cwd')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Decider')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Decider')

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

Delegate (class in SCons.Util)

delete_func() (in module SCons.Defaults)

delete_strfunc() (in module SCons.Defaults)

dependency_map (SCons.Node.FS.FileBuildInfo

attribute)
(SCons.SConf.SConfBuildinfo attribute)

DependencyWarning

depends (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

Depends() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

depends_set (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
DeprecatedDebugOptionsWarning
DeprecatedMissingSConscriptWarning
DeprecatedOptionsWarning
DeprecatedSourceCodeWarning
DeprecatedWarning

destroy()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

Detect() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

DevelopmentVersionWarning

DictCmdGenerator (class in SCons.Builder)
DictEmitter (class in SCons.Builder)

dictify() (in module SCons.Util)

dictify CPPDEFINES() (in module SCons.Scanner.C)
Dictionary() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

dictSpecialAttrs (SCons.Node.FS.EntryProxy attribute)

Dir (class in SCons.Node.FS)
(class in SCons.SConsign)

dir (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

Dir() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.FS.Dir method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.RootDir method)

(SCons.Script.SConscript. SConsEnvironment
method)

Dir.Attrs (class in SCons.Node.FS)

dir_on_disk() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

DirBuildInfo (class in SCons.Node.FS)

DirEntryScanner() (in module SCons.Scanner.Dir)

DirFile (class in SCons.SConsign)

dirname (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.del_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.del_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.del_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.del_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.del_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.del_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.del_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.dependency_map')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Depends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.depends_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.depends_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.depends_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.depends_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.depends_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.depends_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.depends_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.destroy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.destroy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Detect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Detect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Detect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Detect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Dictionary')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Dictionary')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dictionary')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dictionary')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.dir_on_disk')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.dirname')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.dirname')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.dirname')

DirNodelnfo (class in SCons.Node.FS)
Dirs() (SCons.Node.FS.File method)
DirScanner() (in module SCons.Scanner.Dir)

disable_interspersed_args()
(SCons.Script.SConsOptions.SConsOptionParser
method)

disambiguate() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

diskcheck_convert()
SCons.Script. SConsOptions)

diskcheck_match() (SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

diskcheck_types() (in module SCons.Node.FS)

DiskChecker (class in SCons.Node.FS)

(in module

display() (SCons.Memoize.CountDict method)
(SCons.Memoize.Counter method)
(SCons.Memoize.CountValue method)

Display() (SCons.SConf.CheckContext method)

display() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Script.Main.TreePrinter method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

display_cached_string()
(SCons.SConf.SConfBuildTask method)

DisplayEngine (class in SCons.Util)
do_append() (SCons.Script.Main.CountStats method)
(SCons.Script.Main.MemStats method)

do_build()
(SCons.Script.Interactive.SConslnteractiveCmd
method)

do_clean()
(SCons.Script.Interactive.SConslnteractiveCmd
method)

do_define() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
do_diskcheck_match() (in module SCons.Node.FS)
do_duplicate() (SCons.Node.FS.Dir method)

(SCons.Node.FS.File method)

(SCons.Node.FS.RootDir method)
do_elif() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
do_else() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
do_endif() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_EOF()
(SCons.Script.Interactive.SConslinteractiveCmd
method)

do_exit()
(SCons.Script.Interactive.SConslinteractiveCmd
method)

do_failed() (SCons.Script.Main.BuildTask method)
do_flatten() (in module SCons.Util)

do_help()
(SCons.Script.Interactive.SConslinteractiveCmd
method)

do_if() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
do_ifdef() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
do_ifndef() (SCons.cpp.DumbPreProcessor method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.disambiguate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.disambiguate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.disambiguate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.disambiguate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.disambiguate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.disambiguate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.disambiguate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.diskcheck_match')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.diskcheck_match')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.diskcheck_match')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Memoize.Counter.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Memoize.CountValue.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.TreePrinter.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.MemStats.do_append')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_define')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_define')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_define')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_define')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.do_duplicate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.do_duplicate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_elif')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_elif')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_elif')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_elif')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_else')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_else')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_else')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_else')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_endif')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_endif')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_endif')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_endif')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_if')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_if')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_if')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_if')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_ifdef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_ifdef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_ifdef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_ifdef')

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
do_import() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
do_include() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_include_next()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
do_not_scan() (in module SCons.Scanner.Dir)
do_not_set_entry() (SCons.SConsign.Base method)

(SCons.SConsign.DB method)

(SCons.SConsign.Dir method)

(SCons.SConsign.DirFile method)
do_not_store_info() (SCons.SConsign.Base method)

(SCons.SConsign.DB method)

(SCons.SConsign.Dir method)

(SCons.SConsign.DirFile method)
do_nothing() (in module SCons.Node)

(SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
(SCons.Script.Main.CountStats method)
(SCons.Script.Main.MemStats method)
(SCons.Script.Main.Stats method)
do_nothing_node() (in module SCons.Node)
do_print() (SCons.Script.Main.CountStats method)
(SCons.Script.Main.MemStats method)

do_shell()
(SCons.Script.Interactive.SConslnteractiveCmd
method)

do_undef() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

do_version()
(SCons.Script.Interactive.SConslinteractiveCmd
method)

doc_header
(SCons.Script.Interactive.SConslinteractiveCmd
attribute)

doc_leader
(SCons.Script.Interactive.SConslinteractiveCmd
attribute)

DScanner() (in module SCons.Scanner.D)

DumbPreProcessor (class in SCons.cpp)

Dump() (in module SCons.Memoize)
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

dump_caller_counts() (in module SCons.Debug)
dump_stats() (in module SCons.Taskmaster)
dumpLoggedinstances() (in module SCons.Debug)
duplicate (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

DuplicateEnvironmentWarning

E

EmitterProxy (class in SCons.Builder)

emptyline()
(SCons.Script.Interactive.SConslinteractiveCmd
method)

enable() (SCons.Script.Main.CountStats method)
(SCons.Script.Main.MemStats method)
(SCons.Script.Main.Stats method)

enable_interspersed_args()
(SCons.Script.SConsOptions.SConsOptionParser
method)

EnableMemoization() (in module SCons.Memoize)
enableWarningClass() (in module SCons.Warnings)
encode() (SCons.Subst.CmdStringHolder method)
endswith() (SCons.Subst.CmdStringHolder method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_ifndef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_ifndef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_ifndef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_ifndef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_import')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_import')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_import')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_import')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_include_next')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_include_next')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_include_next')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_include_next')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.do_not_set_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.do_not_set_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.do_not_set_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.do_not_store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.do_not_store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.do_not_store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.DumbPreProcessor.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CountStats.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.MemStats.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.Stats.do_nothing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.MemStats.do_print')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.do_undef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_undef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.do_undef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.do_undef')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Dump')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Dump')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Dump')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dump')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Dump')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.duplicate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.duplicate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.duplicate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.duplicate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.MemStats.enable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.Stats.enable')

ensure_value()
(SCons.Script.SConsOptions.SConsValues method)

EnsurePythonVersion()
(SCons.Script.SConscript. SConsEnvironment method)

EnsureSConsVersion()
(SCons.Script.SConscript. SConsEnvironment method)

entries (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

Entry (class in SCons.Node.FS)

Entry() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.FS.Dir method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.RootDir method)

(SCons.Script.SConscript.SConsEnvironment
method)

Entry.Attrs (class in SCons.Node.FS)
entry_abspath() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
entry_exists_on_disk() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
entry_labspath() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
entry_path() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
entry_tpath() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
EntryProxy (class in SCons.Node.FS)
EntryProxyAttributeError

EnumVariable() (in module

SCons.Variables.EnumVariable)

env (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)
(SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)
env_set() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
env_variables (SCons.Scanner.LaTeX.LaTeX attribute)
Environment() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

erase_previous()
method)

(SCons.Script.Main.Progressor

errno (SCons.Errors.MSVCError attribute)

error()
(SCons.Script.SConsOptions.SConsOptionParser
method)

errstr (SCons.Errors.BuildError attribute)
escape() (in module SCons.Platform.posix)
(in module SCons.Platform.win32)
(SCons.Subst.CmdStringHolder method)
(SCons.Subst.Literal method)
(SCons.Subst.SpecialAttrWrapper method)
escape_list() (in module SCons.Subst)

eval_expression()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

exc_clear() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

exc_info (SCons.Errors.BuildError attribute)

exc_info() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.entries')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.entries')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entries')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.Entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entry_abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entry_exists_on_disk')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entry_labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entry_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.entry_tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.env_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.env_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.env_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.env_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.env_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.env_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.env_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Environment')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Environment')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Environment')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Environment')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.win32.escape')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.escape')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Literal.escape')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.SpecialAttrWrapper.escape')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.eval_expression')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.eval_expression')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.eval_expression')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.eval_expression')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.exc_clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.exc_clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.exc_clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.exc_clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.exc_clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.exc_clear')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.exc_info')

(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

exception_set() (SCons.SConf.SConfBuildTask

method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

exec_popen3() (in module SCons.Platform.posix)

exec_spawn() (in module SCons.Platform.win32)

exec_subprocess() (in module SCons.Platform.posix)

execute() (SCons.Action.CommandAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)

Execute() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

execute() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)

Execute()
(SCons.Script.SConscript. SConsEnvironment method)

execute() (SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)
execute_action_list() (in module SCons.Executor)
execute_actions_str() (in module SCons.Executor)
execute_nothing() (in module SCons.Executor)
execute_null_str() (in module SCons.Executor)
executed() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)

(SCons.Taskmaster.Task method)

executed_with_callbacks()
(SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

executed_without_callbacks()
(SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)
Executor (class in SCons.Executor)
executor (SCons.Errors.BuildError attribute)
(SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
executor_cleanup() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
exists() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)

(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.exc_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.exc_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.exc_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.exc_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.exc_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.exception_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.exception_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.exception_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.exception_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.exception_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.exception_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.executed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.executed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.executed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.executed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.executed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.executed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.executed_with_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.executed_with_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.executed_with_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.executed_with_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.executed_with_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.executed_with_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.executed_without_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.executed_without_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.executed_without_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.executed_without_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.executed_without_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.executed_without_callbacks')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.executor_cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.executor_cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.executor_cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.executor_cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.executor_cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.executor_cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.executor_cleanup')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.exists')

(SCons.Node.Python.Value method)
exists_always() (in module SCons.Node)
exists_base() (in module SCons.Node)
exists_entry() (in module SCons.Node)
exists_file() (in module SCons.Node)
exists_none() (in module SCons.Node)

Exit() (SCons.Script.SConscript.SConsEnvironment
method)

exit() (SCons.Script.SConsOptions.SConsOptionParser
method)

exitstatus (SCons.Errors.BuildError attribute)
expand() (SCons.Subst.ListSubber method)
(SCons.Subst.StringSubber method)

expand_default() (SCons.Script.SConsOptions.SConsl
ndentedHelpFormatter method)

expand_prog_name()
(SCons.Script.SConsOptions.SConsOptionParser
method)

expanded() (SCons.Subst.ListSubber method)
expandtabs() (SCons.Subst.CmdStringHolder method)
explain() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
ExplicitExit

Export() (SCons.Script.SConscript. SConsEnvironment
method)

extend() (SCons.Builder.ListEmitter method)
(SCons.Executor.TSList method)
(SCons.Node.NodeList method)
(SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.UniqueList method)

F
F90Scanner (class in SCons.Scanner.Fortran)
fail_continue() (SCons.SConf.SConfBuildTask method)

(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

fail_stop() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

failed() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

FakeOptionParser (class in SCons.Script.Main)

FakeOptionParser.FakeOptionValues
SCons.Script.Main)

(class in

fetchLoggedInstances() (in module SCons.Debug)

field_list (SCons.Node.Alias.AliasNodelnfo attribute)
(SCons.Node.FS.FileNodelnfo attribute)
(SCons.Node.Python.ValueNodelnfo attribute)

File (class in SCons.Node.FS)

File() (in module SCons.SConsign)
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.FS.Dir method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.RootDir method)

(SCons.Script.SConscript.SConsEnvironment
method)

File.Attrs (class in SCons.Node.FS)
file_on_disk() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
FileBuildinfo (class in SCons.Node.FS)

FileBuildInfoFileToCsigMappingError

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.exists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.StringSubber.expand')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.explain')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.explain')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.explain')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.explain')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.explain')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.explain')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.explain')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.extend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.fail_continue')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.fail_continue')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.fail_continue')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.fail_continue')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.fail_continue')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.fail_continue')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.fail_stop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.fail_stop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.fail_stop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.fail_stop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.fail_stop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.fail_stop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.failed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.failed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.failed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.failed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.failed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.failed')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.field_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.field_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.File')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.file_on_disk')

filedir_lookup() (SCons.Node.FS.FileFinder method)

FileFinder (class in SCons.Node.FS)

filename (SCons.Errors.BuildError attribute)
(SCons.Errors.MSVCError attribute)

filename2 (SCons.Errors.MSVCError attribute)

FileNodelnfo (class in SCons.Node.FS)

finalize_result()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
find() (SCons.Subst.CmdStringHolder method)
find_cycle() (in module SCons.Taskmaster)

find_deepest_user_frame() (in module

SCons.Script.Main)

find_file() (in module SCons.Node.FS)
(SCons.Node.FS.FileFinder method)

find_include() (SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)
(SCons.Scanner.LaTeX.LaTeX method)

find_include_file()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
find_include_names() (SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)

find_next_candidate() (SCons.Taskmaster.Taskmaster
method)

find_program_path() (in module SCons.Tool)
find_repo_file() (SCons.Node.FS.File method)
find_src_builder() (SCons.Node.FS.File method)
FindAllTools() (in module SCons.Tool)
FindENVPathDirs (class in SCons.Scanner.LaTeX)
FindFile() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

FindInstalledFiles() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript. SConsEnvironment
method)

Findixes() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

FindPathDirs (class in SCons.Scanner)
FindSourceFiles() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

FindTool() (in module SCons.Tool)

Finish() (SCons.SConf.SConfBase method)
flatten() (in module SCons.Util)

Flatten() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

flatten_sequence() (in module SCons.Util)
flush() (SCons.SConf.Streamer method)
for_signature() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
(SCons.Subst.Literal method)
(SCons.Subst.SpecialAttrWrapper method)
ForDirectory (in module SCons.SConsign)
format (SCons.Variables.Variables attribute)
format() (SCons.Node.Alias.AliasNodelnfo method)
(SCons.Node.FS.DirNodelnfo method)
(SCons.Node.FS.FileBuildinfo method)
(SCons.Node.FS.FileNodelnfo method)
(SCons.Node.NodelnfoBase method)

(SCons.Node.Python.ValueNodelnfo method)
(SCons.SConf.SConfBuildinfo method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Errors.MSVCError.filename')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.finalize_result')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.finalize_result')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.finalize_result')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.finalize_result')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileFinder.find_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.find_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.find_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.find_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.find_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.find_include_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.find_include_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.find_include_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.find_include_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.find_include_names')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.find_include_names')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.find_include_names')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindFile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindFile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindFile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindFile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindInstalledFiles')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindInstalledFiles')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindInstalledFiles')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindInstalledFiles')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindIxes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindIxes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindIxes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindIxes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindSourceFiles')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.FindSourceFiles')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindSourceFiles')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.FindSourceFiles')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Flatten')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Flatten')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Flatten')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Flatten')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Literal.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.SpecialAttrWrapper.for_signature')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.format')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.format')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.format')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.format')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.format')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.format')

(SCons.Subst.CmdStringHolder method)
format_ (SCons.Variables.Variables attribute)

format_description() (SCons.Script.SConsOptions.SCo
nsindentedHelpFormatter method)

(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

format_epilog() (SCons.Script. SConsOptions.SConsind
entedHelpFormatter method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

format_heading() (SCons.Script.SConsOptions.SConsl
ndentedHelpFormatter method)

format_help()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

format_map() (SCons.Subst.CmdStringHolder method)

format_option() (SCons.Script.SConsOptions.SConsind
entedHelpFormatter method)

format_option_help()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

format_option_strings() (SCons.Script.SConsOptions.S
ConsindentedHelpFormatter method)

format_usage() (SCons.Script.SConsOptions.SConsind
entedHelpFormatter method)

FormatVariableHelpText() (SCons.Variables.Variables
method)

FortranCxxMixWarning

FortranScan() (in module SCons.Scanner.Fortran)

Frame (class in SCons.Script.SConscript)

fromkeys() (SCons.Builder.CallableSelector method)
(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.OverrideWarner class method)
(SCons.Environment.BuilderDict class method)

(SCons.Node.Alias.AliasNameSpace class
method)

(SCons.Util.Selector method)
FS (class in SCons.Node.FS)
fs (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.DirNodelnfo attribute)

(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.FileNodelnfo attribute)
(SCons.Node.FS.RootDir attribute)
fs_delete() (SCons.Script.Main.CleanTask method)
func_shorten() (in module SCons.Debug)

function_name()
method)

(SCons.Action.FunctionAction

FunctionAction (class in SCons.Action)
FunctionEvaluator (class in SCons.cpp)
FutureDeprecatedWarning

FutureReservedVariableWarning

G

generate() (in module SCons.Platform.aix)
(in module SCons.Platform.cygwin)
(in module SCons.Platform.darwin)
(in module SCons.Platform.hpux)
(in module SCons.Platform.irix)
(in module SCons.Platform.os2)
(in module SCons.Platform.posix)
(in module SCons.Platform.sunos)
(in module SCons.Platform.win32)

GenerateHelpText()
method)

(SCons.Variables.Variables

genstring() (SCons.Action._ActionAction method)
(SCons.Action.ActionBase method)
(SCons.Action.CommandAction method)
(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)

get() (SCons.Builder.CallableSelector method)
(SCons.Builder.CompositeBuilder method)
(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.OverrideWarner method)
(SCons.Environment.Base method)
(SCons.Environment.BuilderDict method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.format')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionGroup.format_description')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionGroup.format_description')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_description')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_description')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_epilog')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_epilog')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_help')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_help')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_option_help')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.format_option_help')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.fromkeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.fromkeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.fromkeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.fromkeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.fromkeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.fromkeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.fromkeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.fs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.fs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.fs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.fs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.fs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.fs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.cygwin.generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.darwin.generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.hpux.generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.irix.generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.os2.generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.posix.generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.sunos.generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Platform.win32.generate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.genstring')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.genstring')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.genstring')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.genstring')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.genstring')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.genstring')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.CompositeBuilder.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.get')

(SCons.Job.ThreadPool method)
(SCons.Node.Alias.AliasNameSpace method)
(SCons.Node.FS.EntryProxy method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Util.Proxy method)
(SCons.Util.Selector method)
get_abspath() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_action_list() (SCons.Executor.Executor method)
(SCons.Executor.Null method)

get_action_side_effects()
method)

(SCons.Executor.Null method)

(SCons.Executor.Executor

get_action_targets()
method)

(SCons.Executor.Null method)

(SCons.Executor.Executor

get_all_children() (SCons.Executor.Executor method)
(SCons.Executor.Null method)
(SCons.Script.Main.TreePrinter method)

get_all_prerequisites()
method)

(SCons.Executor.Null method)
get_all_rdirs() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

(SCons.Executor.Executor

get_all_sources() (SCons.Executor.Executor method)
(SCons.Executor.Null method)

get_all_targets() (SCons.Executor.Executor method)
(SCons.Executor.Null method)

get_architecture() (in module SCons.Platform.win32)

get_binfo() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)
(SCons.Node.Python.Value method)

get_build_env() (SCons.Executor.Executor method)
(SCons.Executor.Null method)
(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

get_build_scanner_path()
method)

(SCons.Executor.Executor

(SCons.Executor.Null method)
(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_builder() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

(SCons.Script.SConscript. SConsEnvironment
method)

(SCons.Tool.ToollnitializerMethod method)
get_CacheDir() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Executor.NullEnvironment method)

(SCons.Script.SConscript. SConsEnvironment
method)

get_cachedir_bsig() (SCons.Node.FS.File method)

get_cachedir_csig() (SCons.CacheDir.CacheDir

method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Job.ThreadPool.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.EntryProxy.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Proxy.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.get')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_abspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_action_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_action_side_effects')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_action_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.TreePrinter.get_all_children')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_all_prerequisites')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_all_rdirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_all_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_all_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_build_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_build_scanner_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Tool.ToolInitializerMethod.get_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.NullEnvironment.get_CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_CacheDir')

(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

get_calling_namespaces() (in module

SCons.Script.SConscript)
get_children() (in module SCons.Node)
get_content_hash() (SCons.Node.FS.File method)
get_contents() (SCons.Action._ActionAction method)
(SCons.Action.ActionBase method)
(SCons.Action.ActionCaller method)
(SCons.Action.CommandAction method)
(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)
(SCons.Executor.Executor method)
(SCons.Executor.Null method)
(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_contents_dir() (in module SCons.Node)
get_contents_entry() (in module SCons.Node)
get_contents_file() (in module SCons.Node)
get_contents_none() (in module SCons.Node)
get_contents_sig() (SCons.Node.FS.File method)
get_csig() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

(SCons.Node.Node method)
(SCons.Node.Python.Value method)

Get_DataBase() (in module SCons.SConsign)
get_default_ ENV() (in module SCons.Action)
get_default_fs() (in module SCons.Node.FS)

get_default_values()
(SCons.Script.SConsOptions.SConsOptionParser
method)

get_DefaultEnvironmentProxy() (in module

SCons.Script.SConscript)

get_derived_children() (SCons.Script.Main.TreePrinter
method)

get_description()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

get_dir() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
get_entry() (SCons.SConsign.Base method)
(SCons.SConsign.DB method)
(SCons.SConsign.Dir method)
(SCons.SConsign.DirFile method)
get_env() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_env_bool() (in module SCons.Util)
get_env_scanner() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_environment_var() (in module SCons.Util)
get_executor() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_cachedir_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionCaller.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Executor.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_csig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.get_description')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.get_description')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.get_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.get_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.get_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_env')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_env_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_env_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_env_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_env_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_env_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_env_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_env_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_executor')

(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_factory() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

get_found_includes() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

get_hash_format() (in module SCons.Util)

get_implicit_deps()
method)

(SCons.Action.CommandAction

(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)
(SCons.Executor.Executor method)
(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_internal_path() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
get_kw() (SCons.Executor.Executor method)
get_labspath() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
get_Ivars() (SCons.Executor.Executor method)
get_max_drift() (SCons.Node.FS.FS method)
get_max_drift_csig() (SCons.Node.FS.File method)
get_MkdirBuilder() (in module SCons.Node.FS)
get_name() (SCons.Builder.BuilderBase method)

get_names()
(SCons.Script.Interactive.SConslinteractiveCmd
method)

get_native_path() (in module SCons.Util)
get_next() (SCons.Node.Walker method)
get_ninfo() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_NullEnvironment() (in module SCons.Executor)

get_opt_string()
(SCons.Script.SConsOptions.SConsOption method)

get_option()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

get_option_group()
(SCons.Script.SConsOptions.SConsOptionParser
method)

get_os_env_bool() (in module SCons.Util)
get_parent_class() (SCons.Action.LazyAction method)
get_path() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
get_path_elements() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
get_paths_str() (in module SCons.Defaults)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_factory')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_factory')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_factory')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_factory')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_found_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_found_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_found_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_found_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_found_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_found_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_found_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Executor.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_implicit_deps')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_internal_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_internal_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_internal_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_internal_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_labspath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.get_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.get_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_path_elements')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_path_elements')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_path_elements')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_path_elements')

get_prefix() (SCons.Builder.BuilderBase method)

get_presig() (SCons.Action.CommandAction method)
(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)

get_prog_name()
(SCons.Script.SConsOptions.SConsOptionParser
method)

get_program_files_dir()
SCons.Platform.win32)

get_relpath() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

get_root() (SCons.Node.FS.FS method)

(in module

get_scanner() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

get_size() (SCons.Node.FS.File method)

get_skeys() (SCons.Scanner.Base method)
(SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.Current method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)
(SCons.Scanner.LaTeX.LaTeX method)
(SCons.Scanner.Selector method)

get_source_scanner() (SCons.Node.Alias.Alias

method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

get_sources() (SCons.Executor.Executor method)

get_src_builders() (SCons.Builder.BuilderBase method)

get_src_sig_type() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

get_src_suffix() (SCons.Builder.BuilderBase method)
get_state() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_stored_implicit() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_stored_info() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_string() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
get_subst_proxy() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.get_presig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.get_presig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.get_presig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.get_presig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_relpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_relpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_relpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_relpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Classic.get_skeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.get_skeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current.get_skeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.get_skeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.get_skeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.get_skeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector.get_skeys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_source_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_source_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_source_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_source_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_source_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_source_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_source_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_src_sig_type')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_src_sig_type')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_src_sig_type')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_src_sig_type')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_stored_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_stored_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_stored_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_stored_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_stored_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_stored_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_stored_implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_stored_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_stored_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_stored_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_stored_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_stored_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_stored_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_stored_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_string')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_string')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_string')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_string')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_string')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_string')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_string')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_subst_proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_subst_proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_subst_proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_subst_proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_subst_proxy')

(SCons.Node.Node method)
(SCons.Node.Python.Value method)

get_suffix() (SCons.Builder.BuilderBase method)
(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

get_system_root() (in module SCons.Platform.win32)

get_target() (SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

get_target scanner() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

get_targets() (SCons.Action._ActionAction method)
(SCons.Action.ActionBase method)
(SCons.Action.CommandAction method)
(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)

get_text contents() (SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Python.Value method)

get _tgt sig_type() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

get_timestamp() (SCons.Executor.Executor method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

get_tpath() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

get_unignored_sources()
method)

(SCons.Executor.Executor

(SCons.Executor.Null method)

get_usage()
(SCons.Script.SConsOptions.SConsOptionParser
method)

get_varlist() (SCons.Action._ActionAction method)
(SCons.Action.ActionBase method)
(SCons.Action.CommandAction method)
(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)

get_version()
(SCons.Script.SConsOptions.SConsOptionParser
method)

get_xlc() (in module SCons.Platform.aix)
GetBatchExecutor() (in module SCons.Executor)
GetBuildFailures() (in module SCons.Script.Main)
GetBuildPath() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript. SConsEnvironment
method)

getcwd() (SCons.Node.FS.FS method)

GetLaunchDir()
(SCons.Script.SConscript.SConsEnvironment method)

getmtime() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
(SCons.Node.FS.RootDir method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_subst_proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_subst_proxy')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.get_suffix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_suffix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_suffix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_suffix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_suffix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_suffix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_suffix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_suffix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.get_target')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.get_target')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.get_target')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.get_target')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.get_target')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.get_target')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.get_target_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_target_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_target_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_target_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_target_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.get_target_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_target_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.get_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.get_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.get_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.get_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.get_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.get_targets')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_text_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_text_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_text_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.get_text_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_tgt_sig_type')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.get_tgt_sig_type')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_tgt_sig_type')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.get_tgt_sig_type')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_timestamp')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_timestamp')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_timestamp')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.get_tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.get_tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.get_tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.get_tpath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.get_unignored_sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.get_varlist')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.get_varlist')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.get_varlist')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.get_varlist')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.get_varlist')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.get_varlist')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.GetBuildPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.GetBuildPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.GetBuildPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.GetBuildPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.getmtime')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.getmtime')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.getmtime')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.getmtime')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.getmtime')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.getmtime')

getName() (SCons.Job.Worker method)
GetOption() (in module SCons.Script.Main)

(SCons.Script.SConscript.SConsEnvironment
method)

getRepositories() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
getsize() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
(SCons.Node.FS.RootDir method)
GetTag() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
getvalue() (SCons.SConf.Streamer method)
Glob() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

glob() (SCons.Node.FS.Dir method)
Glob() (SCons.Node.FS.FS method)
glob() (SCons.Node.FS.RootDir method)

Glob()
method)

(SCons.Script.SConscript. SConsEnvironment

gvars() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

H

handle_missing_SConscript()
SCons.Script.SConscript)

has_builder() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)

(in module

(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
has_explicit_builder() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
has_glob_magic() (in module SCons.Node.FS)

has_option()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

has_src_builder() (SCons.Node.FS.File method)
hash_chunksize (SCons.Node.FS.File attribute)
hash_collect() (in module SCons.Util)
hash_file_signature() (in module SCons.Util)

hash_signature() (in module SCons.Util)

Help()
method)

(SCons.Script.SConscript. SConsEnvironment

HelpFunction() (in module SCons.Script)
hit_ratio() (SCons.CacheDir.CacheDir property)

I
ident() (SCons.Job.Worker property)

identchars
(SCons.Script.Interactive.SConslinteractiveCmd
attribute)

IDLScan() (in module SCons.Scanner.IDL)

IDX() (in module SCons.Util)

ignore (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.GetOption')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.GetOption')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.getRepositories')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.getsize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.getsize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.getsize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.getsize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.getsize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.getsize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.GetTag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.GetTag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.GetTag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.GetTag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.GetTag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.GetTag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.GetTag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Glob')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Glob')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.gvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.gvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.gvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.gvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.gvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.gvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.has_explicit_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.has_explicit_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.has_explicit_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.has_explicit_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.has_explicit_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.has_explicit_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.has_explicit_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.has_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.has_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.ignore')

Ignore() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

ignore_cycle() (in module SCons.Node)
ignore_diskcheck _match() (in module SCons.Node.FS)
ignore_set (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
implicit (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
implicit_set (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

Import() (SCons.Script.SConscript.SConsEnvironment
method)

ImportVirtualenv() (in module

SCons.Platform.virtualenv)

includes (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

indent() (SCons.Script.SConsOptions.SConsIndentedH
elpFormatter method)

index() (SCons.Builder.ListEmitter method)
(SCons.Executor.TSList method)
(SCons.Node.NodeList method)
(SCons.Script.TargetList method)
(SCons.Subst.CmdStringHolder method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.UniqueList method)

initialize_do_splitdrive() (in module SCons.Node.FS)

initialize_result()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

Initializers() (in module SCons.Tool)

insert() (SCons.Builder.ListEmitter method)
(SCons.Executor.TSList method)
(SCons.Node.NodeList method)
(SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.UniqueList method)

instance (SCons.Variables.Variables attribute)

interact() (in module SCons.Script.Interactive)

InternalError

InterruptState (class in SCons.Job)

intro (SCons.Script.Interactive.SConslinteractiveCmd
attribute)

invalidate_node_memos() (in module SCons.Node.FS)

is_a_Builder() (in module SCons.Builder)

is_alive() (SCons.Job.Worker method)

is_conftest() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Ignore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.ignore_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.ignore_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.ignore_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.ignore_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.ignore_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.ignore_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.ignore_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.implicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.implicit_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.implicit_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.implicit_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.implicit_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.implicit_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.implicit_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.implicit_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.index')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.initialize_result')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.initialize_result')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.initialize_result')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.initialize_result')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.insert')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_conftest')

(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

is_derived() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)

(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
is_Sequence() (in module SCons.Util)
is_String() (in module SCons.Util)
is_Tuple() (in module SCons.Util)
is_under() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
is_derived_node() (in module SCons.Node)
is_derived_none() (in module SCons.Node)
is_Dict() (in module SCons.Util)
is_done() (SCons.Node.Walker method)
is_enabled() (SCons.CacheDir.CacheDir method)
is_explicit (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Python.Value method)

is_up_to_date() (SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

(SCons.Node.Node attribute) is_valid_construction_var() (in module
SCons.Environment)

isAlive() (SCons.Job.Worker method)

isalnum() (SCons.Subst.CmdStringHolder method)

isalpha() (SCons.Subst.CmdStringHolder method)

isascii() (SCons.Subst.CmdStringHolder method)

isDaemon() (SCons.Job.Worker method)

isdecimal() (SCons.Subst.CmdStringHolder method)

isdigit() (SCons.Subst.CmdStringHolder method)

isdir() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
(SCons.Node.FS.RootDir method)

isfile() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)

(SCons.Node.Python.Value attribute)
is_List() (in module SCons.Util)
is_literal() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
(SCons.Subst.CmdStringHolder method)
(SCons.Subst.Literal method)
(SCons.Subst.SpecialAttrWrapper method)
is_readonly() (SCons.CacheDir.CacheDir method)
is_Scalar() (in module SCons.Util)
is_sconscript() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_derived')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Literal.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.SpecialAttrWrapper.is_literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_sconscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_sconscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_sconscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_sconscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_sconscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_sconscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_sconscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_under')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_under')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_under')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_under')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_under')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_under')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.is_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.is_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.is_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.is_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.is_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.is_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.is_up_to_date')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.isdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.isdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.isdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.isdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.isdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.isdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.isfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.isfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.isfile')

(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
(SCons.Node.FS.RootDir method)

isidentifier() (SCons.Subst.CmdStringHolder method)

IsIinVirtualenv() (in module SCons.Platform.virtualenv)

islink() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
(SCons.Node.FS.RootDir method)

islower() (SCons.Subst.CmdStringHolder method)

isnumeric() (SCons.Subst.CmdStringHolder method)

isprintable() (SCons.Subst.CmdStringHolder method)

isspace() (SCons.Subst.CmdStringHolder method)
istitle() (SCons.Subst.CmdStringHolder method)
isupper() (SCons.Subst.CmdStringHolder method)
items() (SCons.Builder.CallableSelector method)
(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.OverrideWarner method)
(SCons.Environment.Base method)
(SCons.Environment.BuilderDict method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Util.Selector method)

J

Jobs (class in SCons.Job)

join() (SCons.Job.Worker method)
(SCons.Subst.CmdStringHolder method)

K

key() (SCons.Memoize.CountDict method)
(SCons.Memoize.Counter method)
(SCons.Memoize.CountValue method)

keys() (SCons.Builder.CallableSelector method)

(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.OverrideWarner method)
(SCons.dblite.dblite method)
(SCons.Environment.Base method)
(SCons.Environment.BuilderDict method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Util.Selector method)
(SCons.Variables.Variables method)

keyword_paths
attribute)

L

lastcmd
(SCons.Script.Interactive.SConslinteractiveCmd
attribute)

LaTeX (class in SCons.Scanner.LaTeX)
LaTeXScanner() (in module SCons.Scanner.LaTeX)
LazyAction (class in SCons.Action)
link() (SCons.Node.FS.Dir method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
(SCons.Node.FS.RootDir method)
linked (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
LinkFunc() (in module SCons.Node.FS)
LinkWarning
ListAction (class in SCons.Action)
listdir() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
ListEmitter (class in SCons.Builder)

listLoggedInstances() (in module SCons.Debug)

(SCons.Scanner.LaTeX.LaTeX

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.isfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.isfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.isfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.islink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.islink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.islink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.islink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.islink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.islink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.items')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.CmdStringHolder.join')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Memoize.Counter.key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Memoize.CountValue.key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.dblite.dblite.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Variables.Variables.keys')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.link')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.link')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.link')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.linked')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.linked')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.linked')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.linked')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.linked')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.linked')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.linked')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.listdir')

ListSubber (class in SCons.Subst)

Listvariable() (in module SCons.Variables.ListVariable)
Literal (class in SCons.Subst)

Literal() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

literal() (SCons.Subst.ListSubber method)
ljust() (SCons.Subst.CmdStringHolder method)
Local() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

LocalFS (class in SCons.Node.FS)

LocalString() (in module SCons.Node.FS)

Log() (SCons.SConf.CheckContext method)

logical_lines() (in module SCons.Util)

LogicalLines (class in SCons.Util)

loginstanceCreation() (in module SCons.Debug)

lookup() (SCons.Node.Alias.AliasNameSpace method)

lower() (SCons.Subst.CmdStringHolder method)

Istat() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
(SCons.Node.FS.RootDir method)

Istrip() (SCons.Subst.CmdStringHolder method)

Ivars (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)

Ivars() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

M
main() (in module SCons.Script.Main)

make_path_relative() (in module SCons.Util)

make_ready() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
(SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

make_ready_all() (SCons.SConf.SConfBuildTask

method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

make_ready_current() (SCons.SConf.SConfBuildTask
method)

(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

makedirs() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)

maketrans() (SCons.Subst.CmdStringHolder method)

MandatoryDeprecatedWarning

match_splitext() (in module SCons.Builder)

MD5collect() (in module SCons.Util)

MD5filesignature() (in module SCons.Util)

MD5signature() (in module SCons.Util)

memory() (in module SCons.Debug)

MemStats (class in SCons.Script.Main)

merge() (SCons.Node.Alias.AliasBuildinfo method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Literal')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.lstat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.lstat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.lstat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.lstat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.lstat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.lstat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.lvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.lvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.lvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.lvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.lvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.lvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.lvars')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildTask.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.make_ready')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.make_ready_all')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.make_ready_all')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.make_ready_all')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.make_ready_all')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.make_ready_all')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.make_ready_all')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.make_ready_current')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.make_ready_current')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.make_ready_current')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.make_ready_current')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.make_ready_current')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.make_ready_current')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.makedirs')

(SCons.Node.Alias.AliasNodelnfo method)
(SCons.Node.BuildInfoBase method)
(SCons.Node.FS.DirBuildIinfo method)
(SCons.Node.FS.DirNodelnfo method)
(SCons.Node.FS.FileBuildinfo method)
(SCons.Node.FS.FileNodelnfo method)
(SCons.Node.NodelnfoBase method)
(SCons.Node.Python.ValueBuildinfo method)
(SCons.Node.Python.ValueNodelnfo method)
(SCons.SConf.SConfBuildinfo method)
(SCons.SConsign.Base method)
(SCons.SConsign.DB method)
(SCons.SConsign.Dir method)
(SCons.SConsign.DirFile method)
MergeFlags() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

Message() (SCons.SConf.CheckContext method)
MethodWrapper (class in SCons.Util)

misc_header
(SCons.Script.Interactive.SConslnteractiveCmd
attribute)

MisleadingKeywordsWarning

misses() (SCons.CacheDir.CacheDir property)

missing() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)

SCons.Action
SCons.Builder
SCons.CacheDir
SCons.compat
SCons.Conftest
SCons.cpp
SCons.dblite
SCons.Debug
SCons.Defaults
SCons.Environment
SCons.Errors
SCons.Executor
SCons.exitfuncs
SCons.Job
SCons.Memoize
SCons.Node
SCons.Node.Alias
SCons.Node.FS
SCons.Node.Python
SCons.PathList
SCons.Platform
SCons.Platform.aix
SCons.Platform.cygwin
SCons.Platform.darwin
SCons.Platform.hpux
SCons.Platform.irix
SCons.Platform.mingw
SCons.Platform.os2

SCons.Platform.posix

(SCons.Node.FS.Entry method) SCons.Platform.sunos

(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

SCons.Platform.virtualenv
SCons.Platform.win32
SCons.Scanner
SCons.Scanner.C

MissingSConscriptWarning SCons.Scanner.D

mkdir() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)

SCons.Scanner.Dir
SCons.Scanner.Fortran

mkdir_func() (in module SCons.Defaults) SCons.Scanner.IDL

MkdirFunc() (in module SCons.Node.FS) SCons.Scanner.LaTex

modify_env_var() (in module SCons.Scanner.LaTeX) SCons.Scanner.Prog
module SCons.Scanner.RC

SCons SCons.Scanner.SWIG

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNodeInfo.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.BuildInfoBase.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirBuildInfo.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfo.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueBuildInfo.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Base.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.merge')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.MergeFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.MergeFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.MergeFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.MergeFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.MergeFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.MergeFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.missing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.missing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.missing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.missing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.missing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.missing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.missing')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.mkdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.compat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.cpp')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.dblite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Debug')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Defaults')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Environment')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Errors')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.exitfuncs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Job')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Memoize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Node')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Node.Alias')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Node.FS')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Node.Python')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.PathList')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.aix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.cygwin')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.darwin')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.hpux')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.irix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.mingw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.os2')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.posix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.sunos')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.virtualenv')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.win32')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.C')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.D')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Fortran')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.IDL')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.LaTeX')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Prog')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.RC')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.SWIG')

SCons.SConf
SCons.SConsign
SCons.Script
SCons.Script.Interactive
SCons.Script.Main
SCons.Script.SConscript
SCons.Script.SConsOptions
SCons.Subst
SCons.Taskmaster
SCons.Tool
SCons.Util
SCons.Variables
SCons.Variables.BoolVariable
SCons.Variables.EnumVariable
SCons.Variables.ListVariable
SCons.Variables.PackageVariable
SCons.Variables.PathVariable
SCons.Warnings

move_func() (in module SCons.Defaults)

move_to_end()
method)

(SCons.Builder.CallableSelector

(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Util.Selector method)
mro() (SCons.compat.NoSlotsPyPy method)
MSVCError

multiple_side_effect_has_builder()
(SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
must_be_same() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

N

name (SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
name() (SCons.Job.Worker property)
NeedConfigHBuilder() (in module SCons.SConf)

needs_execute() (SCons.SConf.SConfBuildTask

method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)
needs_normpath_match() (in module SCons.Node.FS)
new_binfo() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
new_ninfo() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
next_line() (SCons.Subst.ListSubber method)
next_task() (SCons.Taskmaster.Taskmaster method)
next_word() (SCons.Subst.ListSubber method)
ninfo (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)
(SCons.SConsign.SConsignEntry attribute)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.SConf')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.SConsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script.Interactive')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script.Main')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script.SConscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script.SConsOptions')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Taskmaster')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Tool')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Util')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.BoolVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.EnumVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.ListVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.PackageVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.PathVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Warnings')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.move_to_end')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.move_to_end')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.move_to_end')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.multiple_side_effect_has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.multiple_side_effect_has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.multiple_side_effect_has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.multiple_side_effect_has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.multiple_side_effect_has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.multiple_side_effect_has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.multiple_side_effect_has_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.must_be_same')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.must_be_same')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.must_be_same')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.must_be_same')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.name')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.name')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.name')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.name')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.needs_execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.needs_execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.needs_execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.needs_execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.needs_execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.needs_execute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.new_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.new_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.new_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.new_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.new_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.new_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.new_binfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.new_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.new_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.new_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.new_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.new_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.new_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.new_ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.ninfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.SConsignEntry.ninfo')

NLWrapper (class in SCons.Subst)

no_batch_key() (SCons.Action._ActionAction method)
(SCons.Action.ActionBase method)
(SCons.Action.CommandAction method)
(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)

NO_DEFAULT_VALUE (SCons.Script.SConsOptions.S
ConsindentedHelpFormatter attribute)

no_next_candidate()
method)

no_tlb() (in module SCons.Scanner.RC)

(SCons.Taskmaster.Taskmaster

nocache (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

NoCache() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

noclean (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

NoClean() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

Node (class in SCons.Node)

node (SCons.Errors.BuildError attribute)
Node.Attrs (class in SCons.Node)
node_conv() (in module SCons.PathList)
Nodelnfo (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
NodelnfoBase (class in SCons.Node)
NodelList (class in SCons.Node)
(class in SCons.Util)

nohelp (SCons.Script.Interactive.SConsinteractiveCmd
attribute)

NoObjectCountWarning
NoParallelSupportWarning
NoSlotsPyPy (class in SCons.compat)
NoSubstitutionProxy() (in module SCons.Environment)
Null (class in SCons.Executor)

(class in SCons.Util)
NullCmdGenerator (class in SCons.Defaults)
NullEnvironment (class in SCons.Executor)
nullify() (SCons.Executor.Executor method)
NullNodeList (class in SCons.Subst)
NullNodesList (in module SCons.Subst)
NullSeq (class in SCons.Util)

@)

on_disk_entries (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

onecmd()
(SCons.Script.Interactive.SConslinteractiveCmd
method)

only_dirs() (in module SCons.Scanner.Dir)

open() (in module SCons.dblite)
(SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)

open_strip() (SCons.Subst.ListSubber method)

OutOfDateTask (class in SCons.Taskmaster)

Override() (SCons.Environment.Base method)
(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.no_batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.no_batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.no_batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.no_batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.no_batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.no_batch_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.NoCache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.NoCache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.NoCache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.NoCache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.NoClean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.NoClean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.NoClean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.NoClean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.NodeInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.NodeInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.NodeInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.NodeInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.NodeInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.NodeInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.NodeInfo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Null')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.on_disk_entries')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.on_disk_entries')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.on_disk_entries')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.open')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.open')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Override')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Override')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.Override')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.Override')

(SCons.Script.SConscript.SConsEnvironment
method)

OverrideEnvironment (class in SCons.Environment)
overridelist (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)

OverrideWarner (class in SCons.Builder)

P

PackageVariable() (in
SCons.Variables.PackageVariable)

module

Parallel (class in SCons.Job)

parse_args()
(SCons.Script.SConsOptions.SConsOptionParser
method)

ParseConfig() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

ParseDepends() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

ParseFlags() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

parseline()
(SCons.Script.Interactive.SConslnteractiveCmd
method)

Parser() (in module SCons.Script.SConsOptions)

partition() (SCons.Subst.CmdStringHolder method)

path (SCons.Node.FS.RootDir attribute)

path() (SCons.Scanner.Base method)
(SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.Current method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)
(SCons.Scanner.LaTeX.LaTeX method)
(SCons.Scanner.Selector method)

path_string() (in module SCons.Script.Main)

PathList() (in module SCons.PathList)

PDFLaTeXScanner() (in
SCons.Scanner.LaTeX)

module

piped_env_spawn() (in module SCons.Platform.posix)

piped_spawn() (in module SCons.Platform.win32)

Platform() (in module SCons.Platform)
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

platform_default() (in module SCons.Platform)

platform_module() (in module SCons.Platform)

PlatformSpec (class in SCons.Platform)

pop() (SCons.Builder.CallableSelector method)
(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.ListEmitter method)
(SCons.Builder.OverrideWarner method)
(SCons.Environment.BuilderDict method)
(SCons.Executor.TSList method)
(SCons.Node.Alias.AliasNameSpace method)
(SCons.Node.NodeList method)
(SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.Selector method)
(SCons.Util.UniqueList method)

popitem() (SCons.Builder.CallableSelector method)
(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.OverrideWarner method)
(SCons.Environment.BuilderDict method)
(SCons.Node.Alias.AliasNameSpace method)
(SCons.Util.Selector method)

post_actions (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)

postcmd()
(SCons.Script.Interactive.SConslinteractiveCmd
method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Override')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Override')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.overridelist')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ParseConfig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ParseConfig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseConfig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseConfig')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ParseDepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ParseDepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseDepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseDepends')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ParseFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ParseFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.ParseFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.ParseFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ParseFlags')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Classic.path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current.path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector.path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Platform')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Platform')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Platform')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Platform')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Platform')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.ListEmitter.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.pop')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.popitem')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.popitem')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.popitem')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.popitem')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.popitem')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.popitem')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.post_actions')

postloop()
(SCons.Script.Interactive.SConslnteractiveCmd
method)

postprocess() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
(SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

pre_actions (SCons.Executor.Executor attribute)
(SCons.Executor.Null attribute)

precious (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

Precious() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

precmd()
(SCons.Script.Interactive.SConslnteractiveCmd
method)

preloop()
(SCons.Script.Interactive.SConslnteractiveCmd

method)

preparation_failed() (SCons.Job.ThreadPool method)

prepare() (SCons.Executor.Executor method)
(SCons.Executor.Null method)
(SCons.Node.Alias.Alias method)

(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
(SCons.SConf.SConfBuildTask method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)

prepare_dependencies() (SCons.Node.FS.FileBuildinfo
method)

(SCons.SConf.SConfBuildinfo method)
Prepend() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

PrependENVPath() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

PrependLIBS() (SCons.SConf.CheckContext method)
PrependPath() (in module SCons.Util)
PrependUnique() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

PreProcessor (class in SCons.cpp)

prerequisites (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

preserve_unknown_options
(SCons.Script.SConsOptions.SConsOptionParser
attribute)

presub_lines() (SCons.Action._ActionAction method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildTask.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.postprocess')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.pre_actions')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildTask.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.prepare')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBuildInfo.prepare_dependencies')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Prepend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Prepend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Prepend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Prepend')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.PrependENVPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.PrependENVPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PrependENVPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PrependENVPath')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.PrependUnique')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.PrependUnique')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PrependUnique')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PrependUnique')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.prerequisites')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.prerequisites')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.prerequisites')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.prerequisites')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.prerequisites')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.prerequisites')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.prerequisites')

(SCons.Action.ActionBase method)
(SCons.Action.CommandAction method)
(SCons.Action.CommandGeneratorAction method)
(SCons.Action.FunctionAction method)
(SCons.Action.LazyAction method)
(SCons.Action.ListAction method)

prev (SCons.Script.Main.Progressor attribute)

print_cmd_line() (SCons.Action._ActionAction method)
(SCons.Action.CommandAction method)
(SCons.Action.FunctionAction method)

(SCons.Action.LazyAction method)

print_help()
(SCons.Script.SConsOptions.SConsOptionParser
method)

print_it (SCons.Util.DisplayEngine attribute)
print_time() (in module SCons.Util)

print_topics()
(SCons.Script.Interactive.SConslnteractiveCmd
method)

print_tree() (in module SCons.Util)

print_usage()
(SCons.Script.SConsOptions.SConsOptionParser
method)

print_version()
(SCons.Script.SConsOptions.SConsOptionParser
method)

PrintHelp() (in module SCons.Script.Main)
process() (SCons.Action.CommandAction method)
(SCons.Action.LazyAction method)

(SCons.Script.SConsOptions.SConsOption
method)

process_contents()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
process_file() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
process_warn_strings() (in module SCons.Warnings)
processDefines() (in module SCons.Defaults)
ProgramScanner() (in module SCons.Scanner.Prog)

Progress() (in module SCons.Script.Main)

Progressor (class in SCons.Script.Main)

prompt (SCons.Script.Interactive.SConsinteractiveCmd
attribute)

Proxy (class in SCons.Util)

pseudo (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

Pseudo() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

pspawn_wrapper() (SCons.SConf.SConfBase method)

push() (SCons.CacheDir.CacheDir method)

push_if forced() (SCons.CacheDir.CacheDir method)

push_to_cache() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

put() (SCons.Job.ThreadPool method)

PyPackageDir() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.FS.FS method)

(SCons.Script.SConscript. SConsEnvironment
method)

python_version_deprecated() (in module

SCons.Script.Main)
python_version_string() (in module SCons.Script.Main)

python_version_unsupported() (in module

SCons.Script.Main)
PythonVersionWarning

Q

QuestionTask (class in SCons.Script.Main)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ActionBase.presub_lines')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.presub_lines')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandGeneratorAction.presub_lines')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.presub_lines')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.presub_lines')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.ListAction.presub_lines')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.print_cmd_line')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.print_cmd_line')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.print_cmd_line')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.process')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOption.process')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOption.process')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.process_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.process_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.process_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.process_contents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.process_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.process_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.process_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.process_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.push_to_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.push_to_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.push_to_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.push_to_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.push_to_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.push_to_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.push_to_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.PyPackageDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.PyPackageDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.PyPackageDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PyPackageDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.PyPackageDir')

quote_spaces() (in module SCons.Subst)

R
raise_exception() (in module SCons.Subst)
RCScan() (in module SCons.Scanner.RC)
rdir() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
RDirs() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
read() (SCons.Node.Python.Value method)
read_file() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

(SCons.Script.SConsOptions.SConsValues
method)

read_module()
(SCons.Script.SConsOptions.SConsValues method)

readlines() (SCons.Util.LogicalLines method)

readlink() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)

really_build() (SCons.Node.Alias.Alias method)

recurse_nodes() (SCons.Scanner.C.SConsCPPConditi
onalScannerWrapper method)

(SCons.Scanner.C.SConsCPPScannerWrapper
method)

ref_count (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
RegError (in module SCons.Util)
RegGetValue() (in module SCons.Util)
register() (in module SCons.exitfuncs)
RegOpenKeyEx() (in module SCons.Util)
rel_path() (SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
release_target_info() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
released_target_info (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
remove() (SCons.Builder.ListEmitter method)
(SCons.Executor.TSList method)
(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.NodeList method)
(SCons.Node.Python.Value method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.UniqueList method)
remove_methods() (SCons.Tool.Toollnitializer method)

remove_option()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

RemoveMethod() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.RDirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.RDirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.RDirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.RDirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.read_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.read_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.read_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.read_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsValues.read_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsValues.read_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.readlink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScannerWrapper.recurse_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScannerWrapper.recurse_nodes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.ref_count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.ref_count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.ref_count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.ref_count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.ref_count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.ref_count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.ref_count')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.rel_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.rel_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rel_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.release_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.release_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.release_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.release_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.release_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.release_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.release_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.released_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.released_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.released_target_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.remove')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.remove_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.remove_option')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.RemoveMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.RemoveMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.RemoveMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.RemoveMethod')

(SCons.Script.SConscript.SConsEnvironment
method)

rename() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
rename_module() (in module SCons.compat)

render_include_tree() (SCons.Node.Alias.Alias

method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
render_tree() (in module SCons.Util)
rentry() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
rentry_exists_on_disk() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

reparse_local_options()
(SCons.Script.SConsOptions.SConsOptionParser
method)

Replace() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

replace() (SCons.Subst.CmdStringHolder method)

replace_string()
method)

(SCons.Script.Main.Progressor

Replacelxes() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

repositories (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

Repository() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.FS.FS method)

(SCons.Script.SConscript. SConsEnvironment
method)

Requires() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

ReservedVariableWarning

Reset() (in module SCons.SConsign)

reset_executor() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

resolve_include()
method)

(SCons.cpp.DumbPreProcessor

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
restore() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
result (SCons.SConf.SConfBuildInfo attribute)
Result() (SCons.SConf.CheckContext method)
retrieve() (SCons.CacheDir.CacheDir method)

retrieve_from_cache() (SCons.Node.Alias.Alias

method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

Return() (in module SCons.Script.SConscript)

reverse() (SCons.Builder.ListEmitter method)
(SCons.Executor.TSList method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.RemoveMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.RemoveMethod')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.rename')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.render_include_tree')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.render_include_tree')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.render_include_tree')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.render_include_tree')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.render_include_tree')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.render_include_tree')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.render_include_tree')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.rentry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.rentry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.rentry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rentry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rentry_exists_on_disk')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Replace')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Replace')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Replace')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Replace')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ReplaceIxes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.ReplaceIxes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ReplaceIxes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.ReplaceIxes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.repositories')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.repositories')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.repositories')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Repository')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Repository')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.Repository')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Repository')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Repository')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Requires')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Requires')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Requires')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Requires')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.reset_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.reset_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.reset_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.reset_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.reset_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.reset_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.reset_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.resolve_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.resolve_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.resolve_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.resolve_include')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.restore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.restore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.restore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.restore')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.retrieve_from_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.retrieve_from_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.retrieve_from_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.retrieve_from_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.retrieve_from_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.retrieve_from_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.retrieve_from_cache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.reverse')

(SCons.Node.NodeList method)
(SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.UniqueList method)
revert_io() (in module SCons.Script.Main)
rexists() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
rexists_base() (in module SCons.Node)
rexists_node() (in module SCons.Node)
rexists_none() (in module SCons.Node)
rfile() (in module SCons.Action)
(in module SCons.Executor)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
rfind() (SCons.Subst.CmdStringHolder method)
Rfindalldirs() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
rightmost_separator() (in module SCons.Util)
rindex() (SCons.Subst.CmdStringHolder method)
rjust() (SCons.Subst.CmdStringHolder method)
root (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
RootDir (class in SCons.Node.FS)
RootDir.Attrs (class in SCons.Node.FS)
rpartition() (SCons.Subst.CmdStringHolder method)

rsplit() (SCons.Subst.CmdStringHolder method)

rstr() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

rstrip() (SCons.Subst.CmdStringHolder method)

ruler (SCons.Script.Interactive.SConslinteractiveCmd

attribute)

run() (SCons.Job.Jobs method)
(SCons.Job.Worker method)

RunProg() (SCons.SConf.CheckContext method)

S

save() (SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner

method)
(SCons.Scanner.C.SConsCPPScanner method)
Save() (SCons.Variables.Variables method)
save_strings() (in module SCons.Node.FS)
sbuilder (SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
scan() (in module SCons.Scanner.Prog)
(SCons.Executor.Executor method)
(SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
(SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)
(SCons.Scanner.LaTeX.LaTeX method)
scan_in_memory() (in module SCons.Scanner.Dir)

scan_on_disk() (in module SCons.Scanner.Dir)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.reverse')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.reverse')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.reverse')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.reverse')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.reverse')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.reverse')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.reverse')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.rexists')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.rfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.rfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.rfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.rfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.rfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rfile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Rfindalldirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.Rfindalldirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Rfindalldirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Rfindalldirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.root')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.root')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.root')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.rstr')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.rstr')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.rstr')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.rstr')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Job.Worker.run')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.save')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.save')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.save')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.save')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.sbuilder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.sbuilder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.sbuilder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.sbuilder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Executor.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Classic.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.scan')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.scan')

scan_recurse()
method)

scan_sources() (SCons.Executor.Executor method)

scan_targets() (SCons.Executor.Executor method)

scandir() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)

Scanner() (in module SCons.Scanner)
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

scanner_key() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

scanner_map_delete()
method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

scanner_paths (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

SConf() (in module SCons.SConf)

SConfBase (class in SCons.SConf)

SConfBase.TestWrapper (class in SCons.SConf)

SConfBuildinfo (class in SCons.SConf)

SConfBuildTask (class in SCons.SConf)

SConfError

SConfWarning
SCons
module

SCons (SCons.Executor.NullEnvironment attribute)

SCons.Action
module

SCons.Builder
module

SCons.CacheDir

(SCons.Scanner.LaTeX.LaTeX

(SCons.Environment.Base

module
SCons.compat
module
SCons.Conftest
module
SCons.cpp
module
SCons.dblite
module
SCons.Debug
module
SCons.Defaults
module
SCons.Environment
module
SCons.Errors
module
SCons.Executor
module
SCons.exitfuncs
module
SCons.Job
module
SCons.Memoize
module
SCons.Node
module
SCons.Node.Alias
module
SCons.Node.FS
module
SCons.Node.Python
module
SCons.PathList
module
SCons.Platform
module
SCons.Platform.aix
module
SCons.Platform.cygwin
module
SCons.Platform.darwin
module
SCons.Platform.hpux
module
SCons.Platform.irix
module
SCons.Platform.mingw

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.scandir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.scanner_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.scanner_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.scanner_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.scanner_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.scanner_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.scanner_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.scanner_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.scanner_map_delete')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.scanner_map_delete')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.scanner_map_delete')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.scanner_map_delete')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.scanner_paths')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.scanner_paths')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.scanner_paths')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Action')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.CacheDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.compat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Conftest')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.cpp')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.dblite')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Debug')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Defaults')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Environment')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Errors')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.exitfuncs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Job')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Memoize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Node')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Node.Alias')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Node.FS')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Node.Python')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.PathList')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.aix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.cygwin')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.darwin')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.hpux')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.irix')

module
SCons.Platform.os2
module
SCons.Platform.posix
module
SCons.Platform.sunos
module
SCons.Platform.virtualenv
module
SCons.Platform.win32
module
SCons.Scanner
module
SCons.Scanner.C
module
SCons.Scanner.D
module
SCons.Scanner.Dir
module
SCons.Scanner.Fortran
module
SCons.Scanner.IDL
module
SCons.Scanner.LaTeX
module
SCons.Scanner.Prog
module
SCons.Scanner.RC
module
SCons.Scanner.SWIG
module
SCons.SConf
module
SCons.SConsign
module
SCons.Script
module
SCons.Script.Interactive
module
SCons.Script.Main
module
SCons.Script.SConscript
module
SCons.Script.SConsOptions
module
SCons.Subst
module
SCons.Taskmaster

module
SCons.Tool
module
SCons.Util
module
SCons.Variables
module
SCons.Variables.BoolVariable
module
SCons.Variables.EnumVariable
module

SCons.Variables.ListVariable
module

SCons.Variables.PackageVariable
module

SCons.Variables.PathVariable
module

SCons.Warnings
module

scons_current_file() (SCons.cpp.DumbPreProcessor
method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
scons_subst() (in module SCons.Subst)
scons_subst_list() (in module SCons.Subst)
scons_subst_once() (in module SCons.Subst)

SConsCPPConditionalScanner (class in
SCons.Scanner.C)

SConsCPPConditionalScannerWrapper (class in
SCons.Scanner.C)

SConsCPPScanner (class in SCons.Scanner.C)

SConsCPPScannerWrapper (class in
SCons.Scanner.C)

SConscript()
(SCons.Script.SConscript.SConsEnvironment method)

SConscript_exception() (in module
SCons.Script.SConscript)

SConscriptChdir()
(SCons.Script.SConscript.SConsEnvironment method)

SConscriptReturn

SConsEnvironment (class in SCons.Script.SConscript)

SConsEnvironmentError

sconsign() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.mingw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.os2')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.posix')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.sunos')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.virtualenv')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Platform.win32')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.C')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.D')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Dir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Fortran')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.IDL')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.LaTeX')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.Prog')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.RC')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Scanner.SWIG')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.SConf')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.SConsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script.Interactive')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script.Main')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script.SConscript')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Script.SConsOptions')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Taskmaster')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Tool')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Util')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.BoolVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.EnumVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.ListVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.PackageVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Variables.PathVariable')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#module-SCons.Warnings')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.scons_current_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.scons_current_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.scons_current_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.scons_current_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.sconsign')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.sconsign')

sconsign_dir() (in module SCons.Node.FS)
sconsign_none() (in module SCons.Node.FS)
SConsignEntry (class in SCons.SConsign)
SConsignFile() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment

method)
(SCons.Script.SConscript.SConsEnvironment
method)

SConsIndentedHelpFormatter (class in

SCons.Script.SConsOptions)

SConsinteractiveCmd (class in

SCons.Script.Interactive)

SConsOption (class in SCons.Script. SConsOptions)

SConsOptionGroup (class in
SCons.Script. SConsOptions)
SConsOptionParser (class in

SCons.Script. SConsOptions)

SConsPrintHelpException

SConsValues (class in SCons.Script.SConsOptions)

SConsWarning

searched (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

select() (SCons.Scanner.Base method)

(SCons.Scanner.C.SConsCPPConditionalScannerWrapper

method)
(SCons.Scanner.C.SConsCPPScannerWrapper method)
(SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.Current method)

(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)
(SCons.Scanner.LaTeX.LaTeX method)
(SCons.Scanner.Selector method)

select_paths_in_venv()
SCons.Platform.virtualenv)

(in module

select_scanner() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

Selector (class in SCons.Scanner)
(class in SCons.Util)

semi_deepcopy() (in module SCons.Util)

semi_deepcopy_dict() (in module SCons.Util)

Serial (class in SCons.Job)

set() (SCons.Job.InterruptState method)
(SCons.Node.FS.DiskChecker method)

set_action_list() (SCons.Executor.Executor method)
(SCons.Executor.Null method)

set_always_build() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

set_build_result() (SCons.SConf.SConfBuildIinfo

method)

set_conflict_handler()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

set_default()
(SCons.Script.SConsOptions.SConsOptionParser
method)

set_defaults()
(SCons.Script.SConsOptions.SConsOptionParser
method)

set_description()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

(SCons.Script.SConsOptions.SConsOptionParser
method)

set_diskcheck() (in module SCons.Node.FS)
set_duplicate() (in module SCons.Node.FS)
set_entry() (SCons.SConsign.Base method)
(SCons.SConsign.DB method)
(SCons.SConsign.Dir method)
(SCons.SConsign.DirFile method)
set_executor() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.SConsignFile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.SConsignFile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SConsignFile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SConsignFile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.searched')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.searched')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.searched')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScannerWrapper.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScannerWrapper.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScannerWrapper.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Classic.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Current.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Selector.select')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.select_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.select_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.select_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.select_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.select_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.select_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.select_scanner')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DiskChecker.set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.Null.set_action_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_always_build')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.set_conflict_handler')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.set_conflict_handler')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.set_description')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConsOptions.SConsOptionParser.set_description')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.set_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.set_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.set_entry')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_executor')

(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
set_explicit() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
set_hash_format() (in module SCons.Util)
set_local() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

set_long_opt_delimiter() (SCons.Script.SConsOptions.
SConsindentedHelpFormatter method)

set_max_drift() (SCons.Node.FS.FS method)

set_missing_sconscript_error() (in module

SCons.Script)

set_mode() (SCons.Util.DisplayEngine method)

set_nocache() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

set_noclean() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

set_option()
(SCons.Script.SConsOptions.SConsValues method)

set_parser() (SCons.Script.SConsOptions.SConslIndent
edHelpFormatter method)

set_precious() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

set_process_default_values()
(SCons.Script.SConsOptions.SConsOptionParser
method)

set_pseudo() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

set_SConstruct_dir() (SCons.Node.FS.FS method)

set_short_opt_delimiter() (SCons.Script.SConsOptions.
SConsindentedHelpFormatter method)

set_specific_source() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
set_src_builder() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
set_src_suffix() (SCons.Builder.BuilderBase method)
set_state() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_executor')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_explicit')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_local')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_nocache')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_noclean')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_precious')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_pseudo')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_specific_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_specific_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_specific_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_specific_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_specific_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_specific_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_specific_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_src_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_src_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_src_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_src_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.set_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.set_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.set_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.set_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.set_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.set_state')

(SCons.Node.Python.Value method)
set_suffix() (SCons.Builder.BuilderBase method)

set_title()
(SCons.Script.SConsOptions.SConsOptionGroup
method)

set_usage()
(SCons.Script.SConsOptions.SConsOptionParser
method)

SetAllowableExceptions() (in module SCons.Subst)
SetBuildType() (in module SCons.SConf)
SetCacheMode() (in module SCons.SConf)
setDaemon() (SCons.Job.Worker method)
setdefault() (SCons.Builder.CallableSelector method)
(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.OverrideWarner method)
SetDefault() (SCons.Environment.Base method)
setdefault() (SCons.Environment.Base method)
(SCons.Environment.BuilderDict method)

SetDefault() (SCons.Environment.OverrideEnvironment
method)

setdefault() (SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Node.Alias.AliasNameSpace method)

SetDefault()
(SCons.Script.SConscript. SConsEnvironment method)

setdefault()
(SCons.Script.SConscript. SConsEnvironment method)

(SCons.Util.Selector method)
SetLIBS() (SCons.SConf.CheckContext method)
setName() (SCons.Job.Worker method)
SetOption() (in module SCons.Script.Main)

(SCons.Script.SConscript.SConsEnvironment
method)

SetProgressDisplay() (in module SCons.SConf)

settable
attribute)

shared (SCons.Node.Alias.Alias.Attrs attribute)
(SCons.Node.FS.Base.Attrs attribute)
(SCons.Node.FS.Dir.Attrs attribute)
(SCons.Node.FS.Entry.Attrs attribute)
(SCons.Node.FS.File.Attrs attribute)

(SCons.Node.FS.RootDir.Attrs attribute)
(SCons.Node.Node.Attrs attribute)

(SCons.Script.SConsOptions.SConsValues

(SCons.Node.Python.Value.Attrs attribute)
SharedFlagChecker() (in module SCons.Defaults)
SharedObjectEmitter() (in module SCons.Defaults)
show() (SCons.Script.Main.CleanTask method)
side_effect (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)
side_effects (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)
SideEffect() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

silent_intern() (in module SCons.Util)

size (SCons.Node.FS.FileNodelnfo attribute)

sort() (SCons.Builder.ListEmitter method)
(SCons.Executor.TSList method)
(SCons.Node.NodeList method)
(SCons.Script.TargetList method)
(SCons.Subst.ListSubber method)
(SCons.Subst.Targets_or_Sources method)
(SCons.Util.CLVar method)
(SCons.Util.NodeList method)
(SCons.Util.UniqueList method)

sort_key() (SCons.Scanner.Classic method)
(SCons.Scanner.ClassicCPP method)
(SCons.Scanner.D.D method)
(SCons.Scanner.Fortran.F90Scanner method)
(SCons.Scanner.LaTeX.LaTeX method)

sources (SCons.Executor.Batch attribute)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.set_state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.setdefault')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.setdefault')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.setdefault')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.setdefault')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.setdefault')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.setdefault')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.setdefault')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.setdefault')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SetOption')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SetOption')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.Attrs.shared')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Attrs.shared')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.Attrs.shared')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Attrs.shared')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Attrs.shared')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.Attrs.shared')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.Attrs.shared')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.side_effect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.side_effect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.side_effect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.side_effect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.side_effect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.side_effect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.side_effect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.side_effects')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.side_effects')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.side_effects')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.side_effects')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.side_effects')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.side_effects')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.side_effects')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.SideEffect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.SideEffect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SideEffect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.SideEffect')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Executor.TSList.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeList.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.TargetList.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.ListSubber.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.Targets_or_Sources.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.CLVar.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.NodeList.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.UniqueList.sort')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.ClassicCPP.sort_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.D.D.sort_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.Fortran.F90Scanner.sort_key')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.LaTeX.LaTeX.sort_key')

(SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
sources_set (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
spawn() (in module SCons.Platform.win32)
spawnve() (in module SCons.Platform.win32)
SpecialAttrWrapper (class in SCons.Subst)
spinner() (SCons.Script.Main.Progressor method)
Split() (in module SCons.Util)
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

split() (SCons.Subst.CmdStringHolder method)
splitext() (in module SCons.Util)
(SCons.Builder.BuilderBase method)
splitlines() (SCons.Subst.CmdStringHolder method)
src_builder() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)

src_builder_sources() (SCons.Builder.BuilderBase

method)

src_suffixes() (SCons.Builder.BuilderBase method)
(SCons.Builder.DictCmdGenerator method)

srcdir (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

srcdir_duplicate() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
srcdir_find_file() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
srcdir_list() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)
srcnode() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
StackSizeWarning

standard_option_list
(SCons.Script.SConsOptions.SConsOptionParser
attribute)

start() (SCons.Job.Parallel method)
(SCons.Job.Serial method)
(SCons.Job.Worker method)

start_handling_includes()
(SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
startswith() (SCons.Subst.CmdStringHolder method)
stat() (SCons.Node.FS.Base method)

(SCons.Node.FS.Dir method)

(SCons.Node.FS.Entry method)

(SCons.Node.FS.File method)

(SCons.Node.FS.FS method)

(SCons.Node.FS.LocalFS method)

(SCons.Node.FS.RootDir method)
state (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)

(SCons.Node.FS.Dir attribute)

(SCons.Node.FS.Entry attribute)

(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)
StaticObjectEmitter() (in module SCons.Defaults)
Stats (class in SCons.Script.Main)

(class in SCons.Taskmaster)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.Alias.sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.sources')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.sources_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.sources_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.sources_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.sources_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.sources_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.sources_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.sources_set')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.Split')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Split')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Split')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Split')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Split')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.BuilderBase.splitext')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.src_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.src_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.src_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.src_builder')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.src_suffixes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.srcdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.srcdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.srcdir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.srcdir_duplicate')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.srcdir_find_file')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.srcdir_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.srcnode')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.srcnode')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.srcnode')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.srcnode')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Job.Serial.start')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Job.Worker.start')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.start_handling_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.start_handling_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.start_handling_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.start_handling_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.stat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.stat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.stat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.stat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.stat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.stat')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.state')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Stats')

status (SCons.Errors.BuildError attribute)
stop() (SCons.Taskmaster.Taskmaster method)

stop_handling_includes()
(SCons.cpp.DumbPreProcessor method)

(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)
StopError

STORE_ACTIONS
(SCons.Script.SConsOptions.SConsOption attribute)

store_info (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)
store_info() (SCons.SConsign.Base method)
(SCons.SConsign.DB method)
(SCons.SConsign.Dir method)
(SCons.SConsign.DirFile method)
store_info_file() (in module SCons.Node)
store_info_pass() (in module SCons.Node)

store_option_strings() (SCons.Script.SConsOptions.SC
onsindentedHelpFormatter method)

str_for_display() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Python.Value method)

str_to_node() (SCons.Node.Alias.AliasNodelnfo

method)
(SCons.Node.FS.DirNodelnfo method)
(SCons.Node.FS.FileNodelnfo method)
(SCons.Node.Python.ValueNodelnfo method)
Streamer (class in SCons.SConf)
strerror (SCons.Errors.MSVCError attribute)
strfunction() (SCons.Action.ActionCaller method)

(SCons.Action.CommandAction method)
(SCons.Action.FunctionAction method)

(SCons.Action.LazyAction method)
string (SCons.SConf.SConfBuildInfo attribute)
string() (SCons.Script.Main.Progressor method)
string_to_classes() (in module SCons.Debug)
StringSubber (class in SCons.Subst)
strip() (SCons.Subst.CmdStringHolder method)
subprocess_spawn() (in module SCons.Platform.posix)
subst() (SCons.Action.ActionCaller method)
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

subst_args() (SCons.Action.ActionCaller method)

subst_dict() (in module SCons.Subst)

subst_kw() (SCons.Action.ActionCaller method)
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

subst_list() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

subst_path() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.PathList._PathList method)

(SCons.Script.SConscript.SConsEnvironment
method)

subst_src_suffixes()
method)

(SCons.Builder.BuilderBase

subst_target_source()
method)

(SCons.Environment.Base

(SCons.Environment.OverrideEnvironment
method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.stop_handling_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.stop_handling_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.stop_handling_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.stop_handling_includes')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.Dir.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.store_info')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.str_for_display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.str_for_display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.str_for_display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.str_for_display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.str_for_display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.str_for_display')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.str_to_node')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.str_to_node')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.str_to_node')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.CommandAction.strfunction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.FunctionAction.strfunction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Action.LazyAction.strfunction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.subst_kw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_kw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_kw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_kw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_kw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_kw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_kw')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_list')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.PathList._PathList.subst_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_path')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_target_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.subst_target_source')

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

substitute() (SCons.Subst.ListSubber method)
(SCons.Subst.StringSubber method)
SubstitutionEnvironment (class in SCons.Environment)
suppressWarningClass() (in module SCons.Warnings)
swapcase() (SCons.Subst.CmdStringHolder method)
SWIGScanner() (in module SCons.Scanner.SWIG)
symlink() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)
sync() (SCons.dblite.dblite method)

synonyms
(SCons.Script.Interactive.SConslnteractiveCmd
attribute)

T

Tag() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)

take_action()
(SCons.Script.SConsOptions.SConsOption method)

takes_value()
(SCons.Script.SConsOptions.SConsOption method)

target_from_source() (SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
target_from_source_base() (in module SCons.Node)
target_from_source_none() (in module SCons.Node)
Target_or_Source (class in SCons.Subst)
target_peers (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)

(SCons.Node.Python.Value attribute)
target_string (SCons.Script.Main.Progressor attribute)
TargetList (class in SCons.Script)
TargetNotBuiltWarning
targets (SCons.Executor.Batch attribute)
Targets_or_Sources (class in SCons.Subst)
Task (class in SCons.Taskmaster)
Taskmaster (class in SCons.Taskmaster)
TaskmasterNeedsExecuteWarning
TempFileMunge (class in SCons.Platform)

test_load_all_site_scons_dirs() (in module

SCons.Script.Main)

this_word() (SCons.Subst.ListSubber method)
ThreadPool (class in SCons.Job)

timestamp (SCons.Node.FS.FileNodelnfo attribute)
title() (SCons.Subst.CmdStringHolder method)
to_bytes() (in module SCons.Util)

to_str() (in module SCons.Util)

to_String() (in module SCons.Util)
to_String_for_signature() (in module SCons.Util)
to_String_for_subst() (in module SCons.Util)
Tool (class in SCons.Tool)

Tool() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript.SConsEnvironment
method)

tool_list() (in module SCons.Tool)
Toollnitializer (class in SCons.Tool)
ToollnitializerMethod (class in SCons.Tool)
touch_func() (in module SCons.Defaults)
Trace() (in module SCons.Debug)

trace_message() (SCons.SConf.SConfBuildTask

method)
(SCons.Script.Main.BuildTask method)
(SCons.Script.Main.CleanTask method)
(SCons.Script.Main.QuestionTask method)
(SCons.Taskmaster.AlwaysTask method)
(SCons.Taskmaster.OutOfDateTask method)
(SCons.Taskmaster.Task method)
(SCons.Taskmaster.Taskmaster method)

trace_node() (SCons.Taskmaster.Taskmaster method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_target_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.subst_target_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_target_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.subst_target_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Subst.StringSubber.substitute')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.symlink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.Tag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.Tag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.Tag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.Tag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.Tag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.Tag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.Tag')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.target_from_source')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.target_peers')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.target_peers')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.target_peers')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.target_peers')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.target_peers')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.target_peers')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.target_peers')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Tool')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Tool')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Tool')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Tool')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.BuildTask.trace_message')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.CleanTask.trace_message')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.QuestionTask.trace_message')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.AlwaysTask.trace_message')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.OutOfDateTask.trace_message')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Task.trace_message')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Taskmaster.Taskmaster.trace_message')

translate() (SCons.Subst.CmdStringHolder method)

TreePrinter (class in SCons.Script.Main)

TryAction() (SCons.SConf.CheckContext method)
(SCons.SConf.SConfBase method)

TryBuild() (SCons.SConf.CheckContext method)
(SCons.SConf.SConfBase method)

TryCompile() (SCons.SConf.CheckContext method)
(SCons.SConf.SConfBase method)

TryLink() (SCons.SConf.CheckContext method)
(SCons.SConf.SConfBase method)

TryRun() (SCons.SConf.CheckContext method)
(SCons.SConf.SConfBase method)

TSList (class in SCons.Executor)

TSObject (class in SCons.Executor)

tupleize() (SCons.cpp.DumbPreProcessor method)
(SCons.cpp.PreProcessor method)

(SCons.Scanner.C.SConsCPPConditionalScanner
method)

(SCons.Scanner.C.SConsCPPScanner method)

two_arg_commands (SCons.Scanner.LaTeX.LaTeX

attribute)

TYPE_CHECKER
(SCons.Script.SConsOptions.SConsOption attribute)

TYPED_ACTIONS
(SCons.Script.SConsOptions.SConsOption attribute)

TYPES
attribute)

(SCons.Script.SConsOptions.SConsOption

U
Unbuffered (class in SCons.Util)

undoc_header
(SCons.Script.Interactive.SConslnteractiveCmd
attribute)

unique() (in module SCons.Util)
UniquelList (class in SCons.Util)
uniquer() (in module SCons.Util)
uniquer_hashables() (in module SCons.Util)

UnknownVariables()
method)

unlink() (SCons.Node.FS.FS method)
(SCons.Node.FS.LocalFS method)

UnlinkFunc() (in module SCons.Node.FS)

up() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

(SCons.Variables.Variables

update() (SCons.Builder.CallableSelector method)

(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.OverrideWarner method)
(SCons.Environment.BuilderDict method)
(SCons.Node.Alias.AliasNameSpace method)
(SCons.Node.Alias.AliasNodelnfo method)
(SCons.Node.FS.DirNodelnfo method)
(SCons.Node.FS.FileNodelnfo method)
(SCons.Node.NodelnfoBase method)
(SCons.Node.Python.ValueNodelnfo method)
(SCons.Util.Selector method)

Update() (SCons.Variables.Variables method)

updrive() (in module SCons.Util)

upper() (SCons.Subst.CmdStringHolder method)

use_rawinput
(SCons.Script.Interactive.SConslinteractiveCmd
attribute)

UserError

Vv

validate_CacheDir_class()
method)

(SCons.Environment.Base

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript. SConsEnvironment
method)

Value (class in SCons.Node.Python)
Value() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Script.SConscript. SConsEnvironment
method)

Value.Attrs (class in SCons.Node.Python)

ValueBuildinfo (class in SCons.Node.Python)

ValueNodelnfo (class in SCons.Node.Python)

values (SCons.Script.Main.FakeOptionParser attribute)

values() (SCons.Builder.CallableSelector method)
(SCons.Builder.DictCmdGenerator method)
(SCons.Builder.DictEmitter method)
(SCons.Builder.OverrideWarner method)
(SCons.Environment.Base method)
(SCons.Environment.BuilderDict method)

(SCons.Environment.OverrideEnvironment
method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase.TryAction')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase.TryBuild')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase.TryCompile')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase.TryLink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfBase.TryRun')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.cpp.PreProcessor.tupleize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.tupleize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPConditionalScanner.tupleize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Scanner.C.SConsCPPScanner.tupleize')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.LocalFS.unlink')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.up')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNodeInfo.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.DirNodeInfo.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileNodeInfo.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.NodeInfoBase.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.ValueNodeInfo.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.update')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.validate_CacheDir_class')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.validate_CacheDir_class')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.validate_CacheDir_class')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.validate_CacheDir_class')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Value')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.Value')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Value')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.Value')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictCmdGenerator.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.DictEmitter.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.BuilderDict.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.values')

(SCons.Environment.SubstitutionEnvironment
method)

(SCons.Node.Alias.AliasNameSpace method)

(SCons.Script.SConscript.SConsEnvironment
method)

(SCons.Util.Selector method)
ValueWithMemo() (in module SCons.Node.Python)
Variable_Method_Caller (class in SCons.Defaults)
Variables (class in SCons.Variables)

Variables() (in module SCons.Script)

variant_dir_target_climb()
method)

variant_dirs (SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

VariantDir() (SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment
method)

(SCons.Node.FS.FS method)

(SCons.Script.SConscript.SConsEnvironment
method)

version_string() (in module SCons.Script.Main)
Virtualenv() (in module SCons.Platform.virtualenv)
visited() (SCons.Node.Alias.Alias method)
(SCons.Node.FS.Base method)
(SCons.Node.FS.Dir method)
(SCons.Node.FS.Entry method)
(SCons.Node.FS.File method)
(SCons.Node.FS.RootDir method)
(SCons.Node.Node method)
(SCons.Node.Python.Value method)
VisualCMissingWarning
VisualStudioMissingWarning

VisualVersionMismatch

W

waiting_parents (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)

(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)

(SCons.Node.FS.FS

(SCons.Node.Python.Value attribute)

waiting_s_e (SCons.Node.Alias.Alias attribute)
(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)
(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

walk() (SCons.Node.FS.Dir method)
(SCons.Node.FS.RootDir method)

Walker (class in SCons.Node)

warn() (in module SCons.Warnings)
(SCons.Builder.OverrideWarner method)

warningAsException() (in module SCons.Warnings)

WarningOnByDefault

were_interrupted() (SCons.Job.Jobs method)

Wherels() (in module SCons.Util)
(SCons.Environment.Base method)

(SCons.Environment.OverrideEnvironment

method)
(SCons.Script.SConscript.SConsEnvironment
method)
will_not_build() (SCons.Taskmaster.Taskmaster
method)

with_traceback() (SCons.Errors.BuildError method)
(SCons.Errors.ExplicitExit method)
(SCons.Errors.InternalError method)
(SCons.Errors.MSVCError method)
(SCons.Errors.SConsEnvironmentError method)
(SCons.Errors.StopError method)
(SCons.Errors.UserError method)
(SCons.Node.FS.EntryProxyAttributeError method)

(SCons.Node.FS.FileBuildinfoFileToCsigMappingError

method)

(SCons.SConf.ConfigureCacheError method)
(SCons.SConf.ConfigureDryRunError method)
(SCons.SConf.SConfError method)
(SCons.SConf.SConfWarning method)

(SCons.Script.Main.SConsPrintHelpException
method)

(SCons.Script.SConscript.SConscriptReturn method)
(SCons.Util._NoError method)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.SubstitutionEnvironment.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Alias.AliasNameSpace.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Selector.values')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.variant_dirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.variant_dirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.variant_dirs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.VariantDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.VariantDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FS.VariantDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.VariantDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.VariantDir')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.visited')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.visited')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.visited')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.visited')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.visited')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.visited')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.visited')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.waiting_parents')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.waiting_s_e')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.walk')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Builder.OverrideWarner.warn')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.Base.WhereIs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.WhereIs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Environment.OverrideEnvironment.WhereIs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.WhereIs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConsEnvironment.WhereIs')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Errors.ExplicitExit.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Errors.InternalError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Errors.MSVCError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Errors.SConsEnvironmentError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Errors.StopError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Errors.UserError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.EntryProxyAttributeError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfoFileToCsigMappingError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.FileBuildInfoFileToCsigMappingError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.ConfigureCacheError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.ConfigureDryRunError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfError.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.SConfWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.SConsPrintHelpException.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.SConsPrintHelpException.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.SConscript.SConscriptReturn.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util._NoError.with_traceback')

(SCons.Warnings.CacheVersionWarning method) Worker (class in SCons.Job)

(SCons.Warnings.CacheWriteErrorWarning method) write() (in module SCons.SConsign)
(SCons.Warnings.CorruptSConsignWarning method) (SCons.Node.Python.Value method)
(SCons.Warnings.DependencyWarning method) (SCons.SConf.Streamer method)
(SCons.Warnings.DeprecatedDebugOptionsWarning (SCons.SConsign.DB method)
method)

(SCons.SConsign.DirFile method)
(SCons.Warnings.DeprecatedMissingSConscriptWarning

method) (SCons.Script.Main.Progressor method)

(SCons.Warnings.DeprecatedOptionsWarning method) (SCons. Util.Unbuffered method)
(SCons.Warnings.DeprecatedSourceCodeWarning writelines() (SCons.SConf.Streamer method)
metho ons.Util.Unbuffered metho

hod) (scC Util.Unbuffered hod)
(SCons.Warnings.DeprecatedWarning method)
(SCons.Warnings.DevelopmentVersionWarning method)
(SCons.Warnings.DuplicateEnvironmentWarning 2fill() (SCons. Subst.CmdStringHolder method)
method)
(SCons.Warnings.FortranCxxMixWarning method)
(SCons.Warnings.FutureDeprecatedWarning method)

(SCons.Warnings.FutureReservedVariableWarning
method)

(SCons.Warnings.LinkWarning method)

(SCons.Warnings.MandatoryDeprecatedWarning
method)

(SCons.Warnings.MisleadingKeywordsWarning method)
(SCons.Warnings.MissingSConscriptWarning method)
(SCons.Warnings.NoObjectCountWarning method)
(SCons.Warnings.NoParallelSupportWarning method)
(SCons.Warnings.PythonVersionWarning method)
(SCons.Warnings.ReservedVariableWarning method)
(SCons.Warnings.SConsWarning method)
(SCons.Warnings.StackSizeWarning method)
(SCons.Warnings.TargetNotBuiltWarning method)

(SCons.Warnings.TaskmasterNeedsExecuteWarning
method)

(SCons.Warnings.VisualCMissingWarning method)

(SCons.Warnings.VisualStudioMissingWarning method)

(SCons.Warnings.VisualVersionMismatch method)

(SCons.Warnings.WarningOnByDefault method)

wkids (SCons.Node.Alias.Alias attribute)

(SCons.Node.FS.Base attribute)
(SCons.Node.FS.Dir attribute)
(SCons.Node.FS.Entry attribute)
(SCons.Node.FS.File attribute)
(SCons.Node.FS.RootDir attribute)

(SCons.Node.Node attribute)
(SCons.Node.Python.Value attribute)

file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.CacheVersionWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.CacheWriteErrorWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.CorruptSConsignWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DependencyWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedDebugOptionsWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedDebugOptionsWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedMissingSConscriptWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedMissingSConscriptWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedOptionsWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedSourceCodeWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedSourceCodeWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DeprecatedWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DevelopmentVersionWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DuplicateEnvironmentWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.DuplicateEnvironmentWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FortranCxxMixWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FutureDeprecatedWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FutureReservedVariableWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.FutureReservedVariableWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.LinkWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MandatoryDeprecatedWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MandatoryDeprecatedWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MisleadingKeywordsWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.MissingSConscriptWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.NoObjectCountWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.NoParallelSupportWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.PythonVersionWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.ReservedVariableWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.SConsWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.StackSizeWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.TargetNotBuiltWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.TaskmasterNeedsExecuteWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.TaskmasterNeedsExecuteWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.VisualCMissingWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.VisualStudioMissingWarning.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.VisualVersionMismatch.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Warnings.WarningOnByDefault.with_traceback')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Base.wkids')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Dir.wkids')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.Entry.wkids')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.File.wkids')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.FS.RootDir.wkids')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Node.wkids')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.wkids')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Node.Python.Value.write')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConf.Streamer.write')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DB.write')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.SConsign.DirFile.write')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Script.Main.Progressor.write')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Unbuffered.write')
file:///Users/bdbaddog/devel/scons/git/as_scons/doc/('','#SCons.Util.Unbuffered.writelines')

Python Module Index

S|

SCons

SCons.Action
SCons.Builder
SCons.CacheDir
SCons.compat
SCons.Conftest
SCons.cpp
SCons.dblite
SCons.Debug
SCons.Defaults
SCons.Environment
SCons.Errors
SCons.Executor
SCons.exitfuncs
SCons.Job
SCons.Memoize
SCons.Node
SCons.Node.Alias
SCons.Node.FS
SCons.Node.Python
SCons.PathList
SCons.Platform
SCons.Platform.aix
SCons.Platform.cygwin
SCons.Platform.darwin
SCons.Platform.hpux
SCons.Platform.irix
SCons.Platform.mingw
SCons.Platform.os2
SCons.Platform.posix
SCons.Platform.sunos
SCons.Platform.virtualenv
SCons.Platform.win32
SCons.Scanner
SCons.Scanner.C
SCons.Scanner.D
SCons.Scanner.Dir

SCons.Scanner.Fortran

SCons.Scanner.IDL
SCons.Scanner.LaTeX
SCons.Scanner.Prog
SCons.Scanner.RC
SCons.Scanner.SWIG
SCons.SConf
SCons.SConsign
SCons.Script
SCons.Script.Interactive
SCons.Script.Main
SCons.Script.SConscript
SCons.Script.SConsOptions
SCons.Subst
SCons.Taskmaster
SCons.Tool

SCons.Util

SCons.Variables
SCons.Variables.BoolVariable
SCons.Variables.EnumVariable
SCons.Variables.ListVariable
SCons.Variables.PackageVariable
SCons.Variables.PathVariable

SCons.Warnings

	SCons Project API Documentation
	SCons package
	Module contents
	Subpackages
	SCons.Node package
	Submodules
	SCons.Node.Alias module
	SCons.Node.FS module
	SCons.Node.Python module
	Module contents

	SCons.Platform package
	Submodules
	SCons.Platform.aix module
	SCons.Platform.cygwin module
	SCons.Platform.darwin module
	SCons.Platform.hpux module
	SCons.Platform.irix module
	SCons.Platform.mingw module
	SCons.Platform.os2 module
	SCons.Platform.posix module
	SCons.Platform.sunos module
	SCons.Platform.virtualenv module
	SCons.Platform.win32 module
	Module contents

	SCons.Scanner package
	Submodules
	SCons.Scanner.C module
	SCons.Scanner.D module
	SCons.Scanner.Dir module
	SCons.Scanner.Fortran module
	SCons.Scanner.IDL module
	SCons.Scanner.LaTeX module
	SCons.Scanner.Prog module
	SCons.Scanner.RC module
	SCons.Scanner.SWIG module
	Module contents

	SCons.Script package
	Submodules
	SCons.Script.Interactive module
	SCons.Script.Main module
	SCons.Script.SConsOptions module
	SCons.Script.SConscript module
	Module contents

	SCons.Tool package
	Module contents

	SCons.Variables package
	Submodules
	SCons.Variables.BoolVariable module
	SCons.Variables.EnumVariable module
	SCons.Variables.ListVariable module
	SCons.Variables.PackageVariable module
	SCons.Variables.PathVariable module
	Module contents

	SCons.compat package
	Module contents

	Submodules
	SCons.Action module
	SCons.Builder module
	SCons.CacheDir module
	SCons.Conftest module
	SCons.Debug module
	SCons.Defaults module
	SCons.Environment module
	SCons.Errors module
	SCons.Executor module
	SCons.Job module
	SCons.Memoize module
	SCons.PathList module
	SCons.SConf module
	SCons.SConsign module
	SCons.Subst module
	SCons.Taskmaster module
	SCons.Util module
	SCons.Warnings module
	SCons.cpp module
	SCons.dblite module
	SCons.exitfuncs module

	SCons.compat package
	Module contents

	SCons.Node package
	Submodules
	SCons.Node.Alias module
	SCons.Node.FS module
	SCons.Node.Python module
	Module contents

	SCons.Platform package
	Submodules
	SCons.Platform.aix module
	SCons.Platform.cygwin module
	SCons.Platform.darwin module
	SCons.Platform.hpux module
	SCons.Platform.irix module
	SCons.Platform.mingw module
	SCons.Platform.os2 module
	SCons.Platform.posix module
	SCons.Platform.sunos module
	SCons.Platform.virtualenv module
	SCons.Platform.win32 module
	Module contents

	SCons.Scanner package
	Submodules
	SCons.Scanner.C module
	SCons.Scanner.D module
	SCons.Scanner.Dir module
	SCons.Scanner.Fortran module
	SCons.Scanner.IDL module
	SCons.Scanner.LaTeX module
	SCons.Scanner.Prog module
	SCons.Scanner.RC module
	SCons.Scanner.SWIG module
	Module contents

	SCons.Script package
	Submodules
	SCons.Script.Interactive module
	SCons.Script.Main module
	SCons.Script.SConsOptions module
	SCons.Script.SConscript module
	Module contents

	SCons.Tool package
	Module contents

	SCons.Variables package
	Submodules
	SCons.Variables.BoolVariable module
	SCons.Variables.EnumVariable module
	SCons.Variables.ListVariable module
	SCons.Variables.PackageVariable module
	SCons.Variables.PathVariable module
	Module contents

	Indices and Tables
	Index
	Python Module Index

