SCons API Docs

version 4.5

SCons Project

March 06, 2023

Contents SCons.Scanner.Java 73

module
SCons API Documentation 1 SCons.Scanner.LaTeX 73
module
SCons package 1
SCons.Scanner.Prog 75
Module contents 1 module
Subpackages 1 SCons.Scanner.RC 75
SCons.Node package 1 module
Submodules 1 SCons.Scanner.SWIG 75
module
SCons.Node.Alias module 1
Module contents 75
SCons.Node.FS module 7
SCons.Script package 79
SCons.Node.Python 51
module Submodules 79
Module contents 57 SCons.Script.Interactive 79
module
SCons.Platform package 65
SCons.Script.Main 80
Submodules 65 module
SCons.Platform.aix 65 SCons.Script.SConsOptions 87
module module
SCons.Platform.cygwin 65 SCons.Script.SConscript 92
module module
SCons.Platform.darwin 65 Module contents 98
module
SCons.Taskmaster package 99
SCons.Platform.hpux 65
module Submodules 99
SCons.Platform.irix 65 SCons.Taskmaster.Job 99
module module
SCons.Platform.mingw 66 Module contents 103
module SCons.Tool package 109
SCons.Platform.os2 66 Module contents 109
module
SCons.Variables package 111
SCons.Platform.posix 66 P g
module Submodules 111
SCons.Platform.sunos 66 SCons.Variables.BoolVariable 111
module module
SCons.Platform.virtualenv 66 SCons.Variables.EnumVariable 111
module module
SCons.Platform.win32 67 SCons.Variables.ListVariable 112
module module
Module contents 67 SCons.Variables.PackageVariable 113
module
SCons.Scanner package 68
bmodul SCons.Variables.PathVariable 113
Submodules 68 module
SCons.Scanner.C module 68 Module contents 114
SCons.Scanner.D module 71 SCons.compat package 116
SCons.Scanner.Dir 72 Module contents 116
module
Submodules 116
SCons.Scanner.Fortran 72
module SCons.Action module 116
SCons.Scanner.IDL 73 SCons.Builder module 122
module

SCons.CacheDir module 127

SCons.Conftest module
SCons.Debug module
SCons.Defaults module
SCons.Environment module
SCons.Errors module
SCons.Executor module
SCons.Memoize module
SCons.PathList module
SCons.SConf module
SCons.SConsign module
SCons.Subst module
SCons.Util module
SCons.Warnings module
SCons.cpp module
SCons.dblite module

SCons.exitfuncs module

SCons.compat package

Module contents

SCons.Node package

Submodules
SCons.Node.Alias module
SCons.Node.FS module
SCons.Node.Python module

Module contents

SCons.Platform package

Submodules
SCons.Platform.aix module
SCons.Platform.cygwin module
SCons.Platform.darwin module
SCons.Platform.hpux module
SCons.Platform.irix module
SCons.Platform.mingw module
SCons.Platform.os2 module
SCons.Platform.posix module

SCons.Platform.sunos module

SCons.Platform.virtualenv module

SCons.Platform.win32 module

Module contents

SCons.Scanner package

Submodules
SCons.Scanner.C module
SCons.Scanner.D module

SCons.Scanner.Dir module

127
131
131
133
145
146
150
151
152
157
158
162
169
173
175
179
179
179
179
179
179
186
230
236
244
244
244
244
244
244
244
244
245
245
245
245
245
246
247
247
247
250
251

SCons.Scanner.Fortran module
SCons.Scanner.IDL module
SCons.Scanner.Java module
SCons.Scanner.LaTeX module
SCons.Scanner.Prog module
SCons.Scanner.RC module
SCons.Scanner.SWIG module

Module contents

SCons.Script package

Submodules
SCons.Script.Interactive module

SCons.Script.Main module

SCons.Script.SConsOptions module

SCons.Script.SConscript module

Module contents

SCons.Taskmaster package

Submodules
SCons.Taskmaster.Job module

Module contents

SCons.Tool package

Module contents

SCons.Variables package

Submodules

SCons.Variables.BoolVariable
module

SCons.Variables.EnumVariable
module

SCons.Variables.ListVariable
module

SCons.Variables.PackageVariable

module

SCons.Variables.PathVariable
module

Module contents

Indices and Tables

Python Module Index

251
252
252
252
254
254
254
254
258
258
258
259
266
271
277
278
278
278
282
288
288
290
290
290

290

291

292

292

293
295
297
357

SCons API Documentation

SCons APl Documentation

Attention!

This is the internal APl Documentation for SCons. The documentation is automatically generated for each
release from the source code using the Sphinx tool. Missing information is due to shortcomings in the docstrings
in the code, which are by no means complete (contributions welcomed!).

The target audience is developers working on SCons itself: what is “Public API” is not clearly deliniated here.
The interfaces available for use in SCons configuration scripts, which have a consistency guarantee, are those
documented in the SCons Reference Manual.

SCons package
Module contents
Subpackages
SCons.Node package

Submodules

SCons.Node.Alias module
Alias nodes.

This creates a hash of global Aliases (dummy targets).
class SCons.Node.Alias.Alias (nane)
Bases: SCons.Node.Node
class Attrs
Bases: object
shared
BuildInfo
alias of SCons.Node.Alias.AliasBuildInfo
Decider (f unct i on)
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of SCons.Node.Alias.AliasNodelnfo
Tag (key, val ue)
Add a user-defined tag.
_add_child (col | ection, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get ()
_children_reset ()
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_target_from_source
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_memo

https://www.sphinx-doc.org
https://scons.org/doc/production/HTML/scons-man.html

SCons API Documentation

_specific_sources

_tags

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (pr er equi si te)
Adds prerequisites

add_source (sour ce)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

binfo

build ()
A “builder” for aliases.

builder

builder_set (bui | der)

built ()
Called just after this node is successfully built.

cached

changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

SCons API Documentation

convert ()

del_binfo ()
Delete the build info from this node.

depends

depends_set

disambiguate (must _exi st =None)

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

get_abspath ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’'s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
The contents of an alias is the concatenation of the content signatures of all its sources.

get_csig ()
Generate a node’s content signature, the digested signature of its content.
node - the node cache - alternate node to use for the signature cache returns - the content signature

get_env ()

get_env_scanner (env, kw={})

get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_ninfo ()

get_source_scanner (node)

SCons API Documentation

Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

is_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

SCons API Documentation

linked
make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.
missing ()
multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
new_binfo ()
new_ninfo ()
ninfo
nocache
noclean
postprocess ()
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache ()
Try to push a node into a cache
really_build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
ref _count
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache

SCons API Documentation

This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
sconsign ()
An Alias is not recorded in .sconsign files
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_state (st at e)
side_effect
side_effects
sources
sources_set
state
store_info
str_for_display ()
target_peers
visited ()
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
wkids
class SCons.Node.Alias.AliasBuildInfo
Bases: SCons.Node.BuildinfoBase
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
bact
bactsig
bdepends
bdependsigs
bimplicit
bimplicitsigs

SCons API Documentation

bsources

bsourcesigs

current_version_id = 2

merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons.Node.Alias.AliasNameSpace (di ct =None, / , ** kwar gs)

Bases: collections.UserDict

Alias (nane, ** kw)

_abc_impl = <_abc._abc_data object>

clear () - None. Remove all items from D.

copy ()

classmethod fromkeys (i t er abl e, val ue=None)

get (k[, d]) - D[K] if kin D, else d. d defaults to None.

items () —» a set-like object providing a view on D's items

keys () — a set-like object providing a view on D's keys

lookup (name, ** kw)

pop (k[, d]) - v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.

popitem () - (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault (k[, d]) - D.get(k,d), also set D[k]=d if k not in D

update ([, E], **F) - None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[K] = E[K] If E present and lacks .keys() method, does: for
(k, v) in E: D[K] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values () - an object providing a view on D's values

class SCons.Node.Alias.AliasNodelnfo

Bases: SCons.Node.NodelnfoBase

__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (state)
Restore the attributes from a pickled state.

convert (node, val)

csig

current_version_id = 2

field_list = [‘csig']

format (fi el d_| i st =None, nanes=0)

merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

update (node)

SCons.Node.FS module
File system nodes.

These Nodes represent the canonical external objects that people think of when they think of building software: files
and directories.

This holds a “default_fs” variable that should be initialized with an FS that can be used by scripts or modules looking for
the canonical default.
class SCons.Node.FS.Base (nanme, di rectory, fs)
Bases: SCons.Node.Node
A generic class for file system entries. This class is for when we don’t know yet whether the entry being looked up is
a file or a directory. Instances of this class can morph into either Dir or File objects by a later, more precise lookup.

SCons API Documentation

Note: this class does not define __cmp__ and __hash__ for efficiency reasons. SCons does a lot of comparing of

Node.FS.{Base,Entry,File,Dir} objects, so those operations must be as fast as possible, which means we want to use

Python’s built-in object identity comparisons.

class Attrs
Bases: object
shared

BuildInfo
alias of SCons.Node.BuildInfoBase

Decider (f uncti on)

GetTag (key)
Return a user-defined tag.

Nodelnfo
alias of SCons.Node.NodelnfoBase

RDirs (pat hl i st)
Search for a list of directories in the Repository list.

Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.

Tag (key, val ue)
Add a user-defined tag.

_Rfindalldirs_key (pat hl i st)

__Qetattr__(attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr__is
only called as fallback when the requested attribute can't be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)
less than operator used by sorting on py3

_str__()
A Node.FS.Base object’s string representation is its path name.

_abspath

_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()

_children_reset ()

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_sconsign

_func_target_from_source

_get_scanner (env, i nitial _scanner,root_node_scanner, kw)

_get_str ()

_globl (pat t er n, ondi sk=True, sour ce=False, st ri ngs=False)

_labspath

_local

_memo

_path

_path_elements

_proxy

_save_str ()

_specific_sources

SCons API Documentation

_tags
_tpath
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)
add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node)
add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated
all_children (scan=1)
Return a list of all the node’s direct children.
alter_targets ()
Return a list of alternate targets for this Node.
always_build
attributes
binfo
build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

builder
builder_set (bui | der)
built ()
Called just after this node is successfully built.
cached

changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

SCons API Documentation

10

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

disambiguate (must _exi st =None)

duplicate

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

fs
Reference to parent Node.FS object

get_abspath ()
Get the absolute path of the file.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
Fetch the contents of the entry.

get_csig ()

get_dir ()

get_env ()

get_env_scanner (env, kw={})

get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

SCons API Documentation

11

get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_internal_path ()

get_labspath ()
Get the absolute path of the file.

get_ninfo ()

get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_tpath ()

getmtime ()

getsize ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

SCons API Documentation

12

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

is_up_to_date ()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will always
get built.

isdir ()

isfile ()

islink ()

linked

Istat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

must_be_same (kl ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

postprocess ()
Clean up anything we don’t need to hang onto after we've been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites

pseudo

push_to_cache ()

SCons API Documentation

13

Try to push a node into a cache
ref _count
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_local ()
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_src_builder (bui | der)
Set the source code builder for this node.
set_state (st at e)
side_effect
side_effects
sources
sources_set

SCons API Documentation

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for_display ()

target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

class SCons.Node.FS.Dir (nane, directory, fs)

Bases: SCons.Node.FS.Base

A class for directories in a file system.

class Attrs
Bases: object
shared

BuildInfo
alias of SCons.Node.FS.DirBuildinfo

Decider (f unct i on)

Dir (nane, cr eat e=True)
Looks up or creates a directory node named ‘name’ relative to this directory.

Entry (nane)
Looks up or creates an entry node named ‘name’ relative to this directory.

File (nane)
Looks up or creates a file node named ‘name’ relative to this directory.

GetTag (key)
Return a user-defined tag.

Nodelnfo
alias of SCons.Node.FS.DirNodelnfo

RDirs (pat hl i st)
Search for a list of directories in the Repository list.

Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.

Tag (key, val ue)
Add a user-defined tag.

_Rfindalldirs_key (pat hl i st)

__clearRepositoryCache (dupl i cat e=None)
Called when we change the repository(ies) for a directory. This clears any cached information that is invalidated by
changing the repository.

__Qetattr__ (attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and

14

SCons API Documentation

15

SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr _is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.
_ It (ot her)
less than operator used by sorting on py3
__resetDuplicate (node)
_str__()
A Node.FS.Base object’s string representation is its path name.
_abspath
_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get ()
_children_reset ()
_create ()
Create this directory, silently and without worrying about whether the builder is the default or not.
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_sconsign
_func_target_from_source
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_get_str ()
_globl (pat t er n, ondi sk=True, sour ce=False, st ri ngs=False)
Globs for and returns a list of entry names matching a single pattern in this directory.
This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.
TODO: handle pattern with no wildcard. Python’s glob.glob uses a separate _glob0 function to do this.
_labspath
_local
_memo
_morph ()
Turn a file system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.
Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don’t use
signatures for calculating whether they’re current.
_path
_path_elements
_proxy
_rel_path_key (ot her)
_save_str ()
_sconsign
_specific_sources
_srcdir_find_file_key (fi | enane)
_tags
_tpath
addRepository (di r)
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)

SCons API Documentation

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return any corresponding targets in a variant directory.

always_build

attributes

binfo

build (* * kw)
A null “builder” for directories.

builder

builder_set (bui | der)

built ()
Called just after this node is successfully built.

cached

cachedir_csig

cachesig

changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dir_on_disk (nane)

dirname

16

SCons API Documentation

17

disambiguate (must _exi st =None)

diskcheck_match ()

do_duplicate (sr c)

duplicate

entries

entry_abspath (nane)

entry_exists_on_disk (nhane)
Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given
name could be found.
@see rentry_exists_on_disk

entry_labspath (nane)

entry_path (nane)

entry_tpath (nane)

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

file_on_disk (namne)

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

fs
Reference to parent Node.FS object

getRepositories ()
Returns a list of repositories for this directory.

get_abspath () - str
Get the absolute path of the file.

get_all_rdirs ()

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.

get_csig ()
Compute the content signature for Directory nodes. In general, this is not needed and the content signature is not
stored in the DirNodelnfo. However, if get_contents on a Dir node is called which has a child directory, the child
directory should return the hash of its contents.

get_dir ()

SCons API Documentation

18

get_env ()

get_env_scanner (env, kw={})

get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, pat h)
Return this directory’s implicit dependencies.
We don't bother caching the results because the scan typically shouldn’t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).

get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_internal_path ()

get_labspath () - str
Get the absolute path of the file.

get_ninfo ()

get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text _contents ()
We already emit things in text, so just return the binary version.

get_timestamp () - int
Return the latest timestamp from among our children

get_tpath ()

getmtime ()

getsize ()

glob (pat hnane, ondi sk=True, sour ce=False, st ri ngs=False, excl ude=None) - list
Returns a list of Nodes (or strings) matching a pathname pattern.

SCons API Documentation

19

Pathname patterns follow POSIX shell syntax:

* mat ches everyt hi ng

? mat ches any singl e character

[seq] matches any character in seq (ranges all owed)
[!seq] matches any char not in seq

The wildcard characters can be escaped by enclosing in brackets. A leading dot is not matched by a wildcard, and
needs to be explicitly included in the pattern to be matched. Matches also do not span directory separators.

The matches take into account Repositories, returning a local Node if a corresponding entry exists in a Repository
(either an in-memory Node or something on disk).

The underlying algorithm is adapted from a rather old version of glob.glob() function in the Python standard library
(heavily modified), and uses fnmatch.fnmatch() under the covers.

This is the internal implementation of the external Glob API.

Parameters:
» pattern — pathname pattern to match.

» ondisk — if false, restricts matches to in-memory Nodes. By defafult, matches entries
that exist on-disk in addition to in-memory Nodes.

* source — if true, corresponding source Nodes are returned if globbing in a variant
directory. The default behavior is to return Nodes local to the variant directory.

 strings — if true, returns the matches as strings instead of Nodes. The strings are path
names relative to this directory.

» exclude — if not None, must be a pattern or a list of patterns following the same POSIX
shell semantics. Elements matching at least one pattern from exclude will be excluded
from the result.

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ...”). When the builder attribute is examined directly, it ends up calling __getattr _ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build signhatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

SCons API Documentation

20

is_up_to_date ()
If any child is not up-to-date, then this directory isn't, either.

isdir ()

isfile ()

islink ()

link (srcdi r, duplicate)
Set this directory as the variant directory for the supplied source directory.

linked

Istat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

must_be_same (k| ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

on_disk_entries

postprocess ()
Clean up anything we don’t need to hang onto after we've been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

rdir ()

ref _count

rel_path (ot her)
Return a path to “other” relative to this directory.

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.

SCons API Documentation

@see: built() and File.release_target_info()
released_target_info
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
rentry_exists_on_disk (namne)
Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk
repositories
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
root
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
A directory does not get scanned.
scanner_paths
sconsign ()
Return the .sconsign file info for this directory.
searched
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_local ()
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_src_builder (bui | der)
Set the source code builder for this node.

21

SCons API Documentation

set_state (st at e)

side_effect

side_effects

sources

sources_set

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcdir_duplicate (namne)

srcdir_find_file (fi | enane)

sredir_list ()

srcnode ()
Dir has a special need for srcnode()...if we have a srcdir attribute set, then that is our srcnode.

stat ()

state

store_info

str_for_display ()

target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

up ()

variant_dirs

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

walk (f unc, ar g)
Walk this directory tree by calling the specified function for each directory in the tree.
This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the same
arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)

Except that “dirname” will actually be the directory Node, not the string. The ‘" and ‘..’ entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a specific
order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing None is
common).

wkids

class SCons.Node.FS.DirBuildinfo

Bases: SCons.Node.BuildinfoBase

__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (state)
Restore the attributes from a pickled state.

bact

bactsig

bdepends

bdependsigs

bimplicit

bimplicitsigs

bsources

bsourcesigs

22

SCons API Documentation

current_version_id = 2
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
class SCons.Node.FS.DirNodelnfo
Bases: SCons.Node.NodelnfoBase
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state. The version is discarded.
convert (node, val)
current_version_id = 2
format (fi el d_| i st =None, nanes=0)
fs = None
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
str_to_node (s)
update (node)
class SCons.Node.FS.DiskChecker (di sk_check_t ype, do_check_function,ignore_check_function)
Bases: object
Implement disk check variation.
This Class will hold functions to determine what this particular disk checking implementation should do when enabled
or disabled.
enable (di sk_check_type |ist)
If the current object’s disk_check_type matches any in the list passed :param disk_check_type_list: List of disk
checks to enable :return:
class SCons.Node.FS.Entry (nane, di rectory, fs)
Bases: SCons.Node.FS.Base
This is the class for generic Node.FS entries—that is, things that could be a File or a Dir, but we're just not sure yet.
Consequently, the methods in this class really exist just to transform their associated object into the right class when
the time comes, and then call the same-named method in the transformed class.
class Attrs
Bases: object
shared
BuildInfo
alias of SCons.Node.BuildInfoBase
Decider (f uncti on)
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of SCons.Node.NodelnfoBase
RDirs (pat hl i st)
Search for a list of directories in the Repository list.
Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.
Tag (key, val ue)
Add a user-defined tag.
_Rfindalldirs_key (pat hl i st)
__Qetattr__ (attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to

23

SCons API Documentation

be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr _is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)
less than operator used by sorting on py3

_str__()
A Node.FS.Base object’s string representation is its path name.

_abspath

_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()

_children_reset ()

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_sconsign

_func_target_from_source

_get_scanner (env, i nitial _scanner,root_node_scanner, kw)

_get_str ()

_globl (pat t er n, ondi sk=True, sour ce=False, st ri ngs=False)

_labspath

_local

_memo

_path

_path_elements

_proxy

_save_str ()

_sconsign

_specific_sources

_tags

_tpath

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (pr er equi si te)
Adds prerequisites

add_source (sour ce)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

24

SCons API Documentation

25

binfo

build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

builder

builder_set (bui | der)

built ()
Called just after this node is successfully built.

cached

cachedir_csig

cachesig

changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored BuildIinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dirname

disambiguate (must _exi st =None)

diskcheck_match ()

duplicate

entries

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()

SCons API Documentation

26

Does this node exists?
explain ()
for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.
fs
Reference to parent Node.FS object
get_abspath ()
Get the absolute path of the file.
get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’'s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_csig ()
get_contents ()
Fetch the contents of the entry. Returns the exact binary contents of the file.
get_csig ()
get_dir ()
get_env ()
get_env_scanner (env, kw={})
get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath ()
Get the absolute path of the file.
get_ninfo ()
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.
get_path_elements ()
get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.
get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

SCons API Documentation

27

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text _contents ()
Fetch the decoded text contents of a Unicode encoded Entry.
Since this should return the text contents from the file system, we check to see into what sort of subclass we
should morph this Entry.

get_tpath ()

getmtime ()

getsize ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

is_up_to_date ()

SCons API Documentation

28

Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will always
get built.

isdir ()

isfile ()

islink ()

linked

Istat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

must_be_same (kl ass)
Called to make sure a Node is a Dir. Since we’re an Entry, we can morph into one.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

on_disk_entries

postprocess ()
Clean up anything we don’t need to hang onto after we've been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites

pseudo

push_to_cache ()
Try to push a node into a cache

ref _count

rel_path (ot her)

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()

released_target_info

remove ()
Remove this Node: no-op by default.

SCons API Documentation

29

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
repositories
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
We’'re a generic Entry, but the caller is actually looking for a File at this point, so morph into one.
root
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
scanner_paths
searched
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_local ()
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_src_builder (bui | der)
Set the source code builder for this node.
set_state (st at e)
side_effect
side_effects
sources
sources_set
src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcdir
srcnode ()

SCons API Documentation

If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.
stat ()
state
store_info
str_for_display ()
target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.
target_peers
variant_dirs
visited ()
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
wkids
class SCons.Node.FS.EntryProxy (subj ect)
Bases: SCons.Util.Proxy
__get_abspath ()
__get_base_path ()
Return the file’s directory and file name, with the suffix stripped.
__get dir ()
__get file ()
__get filebase ()
__get_posix_path ()
Return the path with / as the path separator, regardless of platform.
__get_relpath ()
__get_rsrcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node if
not linked.
__get_rsrcnode ()
__get_srcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node if
not linked.
__get_srcnode ()
__get_suffix ()
__get_windows_path ()
Return the path with as the path separator, regardless of platform.
dictSpecialAttrs = {'abspath’: <function EntryProxy.__get_abspath>, 'base’: <function
EntryProxy.__get base_path>, 'dir': <function EntryProxy.__get_dir>, file": <function EntryProxy. _get file>,
'filebase'": <function EntryProxy.__get_filebase>, 'posix’: <function EntryProxy.__get posix_path>, 'relpath': <function
EntryProxy.__get_relpath>, 'rsrcdir': <function EntryProxy.__get_rsrcdir>, 'rsrcpath’: <function
EntryProxy.__get_rsrcnode>, 'srcdir': <function EntryProxy.__get_srcdir>, 'srcpath’: <function
EntryProxy.__get_srcnode>, 'suffix': <function EntryProxy.__get_suffix>, 'win32": <function
EntryProxy.__get windows_path>, 'windows": <function EntryProxy. _get_windows_path>}
get ()
Retrieve the entire wrapped object
exception SCons.Node.FS.EntryProxyAttributeError (entry_proxy, attri bute)
Bases: AttributeError
An AttributeError subclass for recording and displaying the name of the underlying Entry involved in an AttributeError
exception.
args
name
attribute name
obj
object

30

SCons API Documentation

with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.

class SCons.Node.FS.FS (pat h=None)

31

Bases: SCons.Node.FS.LocalFS

Dir (nan®e, di r ect or y=None, cr eat e=True)
Look up or create a Dir node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied at
construction time) if no directory is supplied.
This method will raise TypeError if a normal file is found at the specified path.

Entry (name, di r ect or y=None, cr eat e=1)
Look up or create a generic Entry node with the specified name. If the name is a relative path (begins with ./, ../, or
a file name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS
(supplied at construction time) if no directory is supplied.

File (name, di r ect or y=None, cr eat e=1)
Look up or create a File node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied at
construction time) if no directory is supplied.
This method will raise TypeError if a directory is found at the specified path.

Glob (pat hnane, ondi sk=True, sour ce=True, st ri ngs=False, excl ude=None, cwd=None)
Globs
This is mainly a shim layer

PyPackageDir (nodul enane)
Locate the directory of a given python module name
For example scons might resolve to Windows: C:Python27Libsite-packagesscons-2.5.1 Linux: /usr/lib/scons
This can be useful when we want to determine a toolpath based on a python module name

Repository (*di r s)
Specify Repository directories to search.

VariantDir (vari ant _dir,src_dir,duplicate=1)
Link the supplied variant directory to the source directory for purposes of building files.

_lookup (p, directory, fscl ass, creat e=1)
The generic entry point for Node lookup with user-supplied data.
This translates arbitrary input into a canonical Node.FS object of the specified fsclass. The general approach for
strings is to turn it into a fully normalized absolute path and then call the root directory’s lookup_abs() method for
the heavy lifting.
If the path name begins with ‘#, it is unconditionally interpreted relative to the top-level directory of this FS. ‘#' is
treated as a synonym for the top-level SConstruct directory, much like ‘~’ is treated as a synonym for the user’s
home directory in a UNIX shell. So both ‘#foo’ and ‘#/foo’ refer to the ‘foo’ subdirectory underneath the top-level
SConstruct directory.
If the path name is relative, then the path is looked up relative to the specified directory, or the current directory
(self._cwd, typically the SConscript directory) if the specified directory is None.

chdir (di r, change_os_di r =False)
Change the current working directory for lookups. If change_os_dir is true, we will also change the “real” cwd to
match.

chmod (pat h, node)

copy (src, dst)

copy2 (src, dst)

exists (pat h)

get_max_drift ()

get_root (dri ve)
Returns the root directory for the specified drive, creating it if necessary.

getcwd ()

getmtime (pat h)

getsize (pat h)

isdir (pat h)

isfile (pat h)

islink (pat h)

SCons API Documentation

link (src, dst)

listdir (pat h)

Istat (pat h)

makedirs (pat h, rode=511, exi st _ok=False)

mkdir (pat h, node=511)

open (pat h)

readlink (fi | e)

rename (ol d, new)

scandir (pat h)

set_SConstruct_dir (di r)

set_max_drift (max_drift)

stat (pat h)

symlink (src, dst)

unlink (pat h)

variant_dir_target_climb (ori g, dir,tail)
Create targets in corresponding variant directories
Climb the directory tree, and look up path names relative to any linked variant directories we find.
Even though this loops and walks up the tree, we don’'t memoize the return value because this is really only used
to process the command-line targets.

class SCons.Node.FS.File (nane, di rectory, fs)

Bases: SCons.Node.FS.Base

A class for files in a file system.

class Attrs
Bases: object
shared

BuildInfo
alias of SCons.Node.FS.FileBuildInfo

Decider (f unct i on)

Dir (nane, cr eat e=True)
Create a directory node named ‘name’ relative to the directory of this file.

Dirs (pat hl i st)
Create a list of directories relative to the SConscript directory of this file.

Entry (nane)
Create an entry node named ‘name’ relative to the directory of this file.

File (nane)
Create a file node named ‘name’ relative to the directory of this file.

GetTag (key)
Return a user-defined tag.

Nodelnfo
alias of SCons.Node.FS.FileNodelnfo

RDirs (pat hl i st)
Search for a list of directories in the Repository list.

Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.

Tag (key, val ue)
Add a user-defined tag.

_Rfindalldirs_key (pat hl i st)

__dmap_cache = {}

__dmap_sig_cache = {}

__Qetattr__ (attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and

32

SCons API Documentation

SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr _is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)
less than operator used by sorting on py3

_str__()
A Node.FS.Base object’s string representation is its path name.

_abspath

_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_add_strings_to_dependency_map (dmap)
In the case comparing node objects isn't sufficient, we’ll add the strings for the nodes to the dependency map
‘return:

_build_dependency_map (bi nf 0)
Build mapping from file -> signature

Parameters:
* self (self-) —

» considered (binfo - buildinfo from node being) —
Returns: dictionary of file->signature mappings

_children_get ()
_children_reset ()
_createDir ()
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_sconsign
_func_target_from_source
_get_found_includes_key (env, scanner, pat h)
_get_previous_signatures (dmap)
Return a list of corresponding csigs from previous build in order of the node/files in children.

Parameters:
* self (self-) —

 csig (dmap - Dictionary of file ->) —
Returns: List of csigs for provided list of children
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_get_str ()
_globl (pat t er n, ondi sk=True, sour ce=False, st ri ngs=False)
_labspath
_local
_memo
_morph ()
Turn a file system node into a File object.
_path
_path_elements
_proxy
_rmv_existing ()
_save_str ()
_sconsign
_specific_sources
_tags
_tpath
add_dependency (depend)
Adds dependencies.

33

SCons API Documentation

34

add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)
add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node)
add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated
all_children (scan=1)
Return a list of all the node’s direct children.
alter_targets ()
Return any corresponding targets in a variant directory.
always_build
attributes
binfo
build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
builder
builder_set (bui | der)
built ()
Called just after this File node is successfully built.
Just like for ‘release_target_info’ we try to release some more target node attributes in order to minimize the overall
memory consumption.
@see: release_target_info
cached
cachedir_csig
cachesig
changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built.
For File nodes this is basically a wrapper around Node.changed(), but we allow the return value to get cached after
the reference to the Executor got released in release_target_info().
@see: Node.changed()
changed_content (t ar get, prev_ni , r epo_node=None)
changed_since_last_build
changed_state (t ar get, prev_ni, repo_node=None)
changed_timestamp_match (t ar get, prev_ni, r epo_node=None)
Return True if the timestamps don’'t match or if there is no previous timestamp :param target: :param prev_ni:
Information about the node from the previous build :return:
changed_timestamp_newer (t ar get, prev_ni , r epo_node=None)
changed_timestamp_then_content (t ar get , pr ev_ni , node=None)
Used when decider for file is Timestamp-MD5

NOTE: If the timestamp hasn’t changed this will skip md5’ing the

file and just copy the prev_ni provided. If the prev_ni is wrong. It will propagate it. See:
https://github.com/SCons/scons/issues/2980

https://github.com/SCons/scons/issues/2980

SCons API Documentation

35

Parameters:
« dependency (self -) —

* target (target -) —
» .sconsign (prev_ni - The Nodelnfo object loaded from previous builds) —

» existence/timestamp (node - Node instance. Check this node for file) — if specified.
Returns: Boolean - Indicates if node(File) has changed.

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

convert_copy_attrs = [‘bsources', 'bimplicit', 'bdepends’, 'bact’, 'bactsig’, 'ninfo’]

convert_old_entry (ol d_entry)

convert_sig_attrs = ['bsourcesigs', 'bimplicitsigs’, 'bdependsigs’]

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dirname

disambiguate (must _exi st =None)

diskcheck_match ()

do_duplicate (sr c)

duplicate

entries

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

find_repo_file ()
For this node, find if there exists a corresponding file in one or more repositories :return: list of corresponding files
in repositories

find_src_builder ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

fs
Reference to parent Node.FS object

SCons API Documentation

36

get_abspath ()
Get the absolute path of the file.
get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_bsig ()
Return the signature for a cached file, including its children.
It adds the path of the cached file to the cache signature, because multiple targets built by the same action will all
have the same build signature, and we have to differentiate them somehow.
Signature should normally be string of hex digits.
get_cachedir_csig ()
Fetch a Node’s content signature for purposes of computing another Node’s cachesig.
This is a wrapper around the normal get csig() method that handles the somewhat obscure case of using
CacheDir with the -n option. Any files that don’t exist would normally be “built” by fetching them from the cache, but
the normal get_csig() method will try to open up the local file, which doesn’t exist because the -n option meant we
didn’'t actually pull the file from cachedir. But since the file does actually exist in the cachedir, we can use its
contents for the csig.
get_content_hash () - str
Compute and return the hash for this file.
get_contents () - bytes
Return the contents of the file as bytes.
get_contents_sig ()
A helper method for get_cachedir_bsig.
It computes and returns the signature for this node’s contents.
get_csig () — str
Generate a node’s content signature.
get_dir ()
get_env ()
get_env_scanner (env, kw={})
get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return the included implicit dependencies in this file. Cache results so we only scan the file once per path
regardless of how many times this information is requested.
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath ()
Get the absolute path of the file.
get_max_drift_csig () - Optional[str]
Returns the content signature currently stored for this node if it's been unmodified longer than the max_drift value,
or the max_drift value is 0. Returns None otherwise.
get_ninfo ()
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

SCons API Documentation

37

get_path_elements ()

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_size () - int

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text contents () — str
Return the contents of the file in text form.
This attempts to figure out what the encoding of the text is based upon the BOM bytes, and then decodes the
contents so that it's a valid python string.

get_timestamp () - int

get_tpath ()

getmtime ()

getsize ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

has_src_builder ()
Return whether this Node has a source builder or not.
If this Node doesn’t have an explicit source code builder, this is where we figure out, on the fly, if there’'s a
transparent source code builder for it.
Note that if we found a source builder, we also set the self.builder attribute, so that all of the methods that actually
build this file don’t have to do anything different.

hash_chunksize = 65536

ignore

ignore_set

SCons API Documentation

38

implicit
implicit_set
includes
is_conftest ()
Returns true if this node is an conftest node
is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.
is_explicit
is_literal ()
Always pass the string representation of a Node to the command interpreter literally.
is_sconscript ()
Returns true if this node is an sconscript
is_under (di r)
is_up_to_date ()
Check for whether the Node is current In all cases self is the target we're checking to see if it's up to date
isdir ()
isfile ()
islink ()
linked
Istat ()
make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.
missing ()
multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
must_be_same (kl ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.
name
new_binfo ()
new_ninfo ()
ninfo
nocache
noclean
on_disk_entries
postprocess ()
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare ()
Prepare for this file to be created.
prerequisites
pseudo
push_to_cache ()
Try to push the node into a cache
ref _count
rel_path (ot her)
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.

SCons API Documentation

39

This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
We'd like to remove a lot more attributes like self.sources and self.sources_set, but they might get used in a next
build step. For example, during configuration the source files for a built E{*}.o file are used to figure out which linker
to use for the resulting Program (gcc vs. g++)! That's why we check for the ‘keep_targetinfo’ attribute, config Nodes
and the Interactive mode just don't allow an early release of most variables.
In the same manner, we can't simply remove the self.attributes here. The smart linking relies on the shared flag,
and some parts of the java Tool use it to transport information about nodes...
@see: built() and Node.release_target_info()
released_target_info
remove ()
Remove this file.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
repositories
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
root
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
scanner_paths
searched
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_local ()
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_src_builder (bui | der)
Set the source code builder for this node.

SCons API Documentation

set_state (st at e)

side_effect

side_effects

sources

sources_set

src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for_display ()

target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

variant_dirs

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

class SCons.Node.FS.FileBuildinfo

40

Bases: SCons.Node.BuildInfoBase
This is info loaded from sconsign.

Attributes unique to FileBuildInfo:
dependency_map : Caches file->csig mapping

for all dependencies. Currently this is only used when using MD5-timestamp decider. It's used to ensure that
we copy the correct csig from the previous build to be written to .sconsign when current build is done.
Previously the matching of csig to file was strictly by order they appeared in bdepends, bsources, or
bimplicit, and so a change in order or count of any of these could yield writing wrong csig, and then false
positive rebuilds
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict_’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
bact
bactsig
bdepends
bdependsigs
bimplicit
bimplicitsigs
bsources
bsourcesigs
convert_from_sconsign (di r, nane)
Converts a newly-read FileBuildInfo object for in-SCons use
For normal up-to-date checking, we don’t have any conversion to perform—but we're leaving this method here to
make that clear.

SCons API Documentation

convert_to_sconsign ()
Converts this FileBuildInfo object for writing to a .sconsign file
This replaces each Node in our various dependency lists with its usual string representation: relative to the
top-level SConstruct directory, or an absolute path if it's outside.
current_version_id = 2
dependency_map
format (nanmes=0)
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
prepare_dependencies ()
Prepares a FileBuildinfo object for explaining what changed
The bsources, bdepends and bimplicit lists have all been stored on disk as paths relative to the top-level
SConstruct directory. Convert the strings to actual Nodes (for use by the —debug=explain code and
—implicit-cache).
exception SCons.Node.FS.FileBuildinfoFileToCsigMappingError
Bases: Exception
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
class SCons.Node.FS.FileFinder
Bases: object
_find_file_key (fi | enane, pat hs, ver bose=None)
filedir_lookup (p, f d=None)
A helper method for find_file() that looks up a directory for a file we're trying to find. This only creates the Dir Node
if it exists on-disk, since if the directory doesn’t exist we know we won't find any files in it... :-)
It would be more compact to just use this as a nested function with a default keyword argument (see the
commented-out version below), but that doesn’t work unless you have nested scopes, so we define it here just so
this work under Python 1.5.2.
find_file (fi | ename, pat hs, ver bose=None)
Find a node corresponding to either a derived file or a file that exists already.
Only the first file found is returned, and none is returned if no file is found.
filename: A filename to find paths: A list of directory path nodes to search in. Can be represented as a list, a tuple,
or a callable that is called with no arguments and returns the list or tuple.
returns The node created from the found file.
class SCons.Node.FS.FileNodelnfo
Bases: SCons.Node.NodelnfoBase
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
convert (node, val)
csig
current_version_id = 2
field_list = ['csig', 'timestamp’, 'size’]
format (fi el d_| i st =None, nanes=0)
fs = None
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
size
str_to_node (s)
timestamp
update (node)

41

SCons API Documentation

SCons.Node.FS.LinkFunc (t ar get , sour ce, env)

Relative paths cause problems with symbolic links, so we use absolute paths, which may be a problem for people
who want to move their soft-linked src-trees around. Those people should use the ‘hard-copy’ mode, softlinks cannot
be used for that; at least | have no idea how ...

class SCons.Node.FS.LocalFS

Bases: object

This class implements an abstraction layer for operations involving a local file system. Essentially, this wraps any
function in the os, os.path or shutil modules that we use to actually go do anything with or to the local file system.
Note that there’s a very good chance we’ll refactor this part of the architecture in some way as we really implement
the interface(s) for remote file system Nodes. For example, the right architecture might be to have this be a subclass
instead of a base class. Nevertheless, we're using this as a first step in that direction.

We’'re not using chdir() yet because the calling subclass method needs to use os.chdir() directly to avoid recursion.
Will we really need this one?

chmod (pat h, node)

copy (src, dst)

copy2 (src, dst)

exists (pat h)

getmtime (pat h)

getsize (pat h)

isdir (pat h)

isfile (pat h)

islink (pat h)

link (src, dst)

listdir (pat h)

Istat (pat h)

makedirs (pat h, rode=511, exi st _ok=False)

mkdir (pat h, node=511)

open (pat h)

readlink (fi | e)

rename (ol d, new)

scandir (pat h)

stat (pat h)

symlink (src, dst)

unlink (pat h)

SCons.Node.FS.LocalString (t ar get , sour ce, env)
SCons.Node.FS.MkdirFunc (t ar get , sour ce, env)
class SCons.Node.FS.RootDir (dri ve, f s)

42

Bases: SCons.Node.FS.Dir
A class for the root directory of a file system.
This is the same as a Dir class, except that the path separator (*/' or “) is actually part of the name, so we don’t need
to add a separator when creating the path names of entries within this directory.
class Attrs

Bases: object

shared
BuildInfo

alias of SCons.Node.FS.DirBuildinfo
Decider (f uncti on)
Dir (nane, cr eat e=True)

Looks up or creates a directory node named ‘name’ relative to this directory.
Entry (nane)

Looks up or creates an entry node named ‘name’ relative to this directory.
File (nane)

Looks up or creates a file node named ‘name’ relative to this directory.
GetTag (key)

Return a user-defined tag.
Nodelnfo

SCons API Documentation

43

alias of SCons.Node.FS.DirNodelnfo

RDirs (pat hl i st)

Search for a list of directories in the Repository list.

Rfindalldirs (pat hl i st)

Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.

Tag (key, val ue)

Add a user-defined tag.

Rfindalldirs_key (pat hl i st)

getattr __ (attr)

Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr _is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)

less than operator used by sorting on py3

abspath

add_child (col | ecti on, set, chi | d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

children_get ()

children_reset ()

create ()
Create this directory, silently and without worrying about whether the builder is the default or not.

func_exists

func_get_contents

func_is_derived

func_rexists

func_sconsign

func_target_from_source

get_scanner (env, i nitial _scanner,root_node_scanner, kw)

get_str ()

globl (patt er n, ondi sk=True, sour ce=False, stri ngs=False)
Globs for and returns a list of entry names matching a single pattern in this directory.

This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.

TODO: handle pattern with no wildcard. Python’s glob.glob uses a separate _glob0 function to do this.

labspath

local

lookupDict

lookup_abs (p, kl ass, cr eat e=True)
Fast (?) lookup of a normalized absolute path.

This method is intended for use by internal lookups with already-normalized path data. For general-purpose
lookups, use the FS.Entry(), FS.Dir() or FS.File() methods.

The caller is responsible for making sure we’re passed a normalized absolute path; we merely let Python’s
dictionary look up and return the One True Node.FS object for the path.
If a Node for the specified “p” doesn’t already exist, and “create” is specified, the Node may be created after
recursive invocation to find or create the parent directory or directories.

memo

morph ()

Turn a file system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.

SCons API Documentation

44

Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don’t use
signatures for calculating whether they’re current.

_path

_path_elements

_proxy

_rel_path_key (ot her)

_save_str ()

_sconsign

_specific_sources

_srcdir_find_file_key (fi | enane)

_tags

_tpath

abspath

addRepository (di r)

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (pr er equi si te)
Adds prerequisites

add_source (sour ce)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return any corresponding targets in a variant directory.

always_build

attributes

binfo

build (* * kw)
A null “builder” for directories.

builder

builder_set (bui | der)

built ()
Called just after this node is successfully built.

cached

cachedir_csig

cachesig

changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().

SCons API Documentation

@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dir_on_disk (nane)

dirname

disambiguate (must _exi st =None)

diskcheck_match ()

do_duplicate (sr c)

duplicate

entries

entry_abspath (nane)

entry_exists_on_disk (nane)
Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given
name could be found.
@see rentry_exists_on_disk

entry_labspath (nane)

entry_path (nane)

entry_tpath (nane)

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

file_on_disk (namne)

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

fs
Reference to parent Node.FS object

getRepositories ()
Returns a list of repositories for this directory.

45

SCons API Documentation

46

get_abspath () - str
Get the absolute path of the file.
get_all_rdirs ()
get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_csig ()
get_contents ()
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.
get_csig ()
Compute the content signature for Directory nodes. In general, this is not needed and the content signature is not
stored in the DirNodelnfo. However, if get_contents on a Dir node is called which has a child directory, the child
directory should return the hash of its contents.
get_dir ()
get_env ()
get_env_scanner (env, kw={})
get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return this directory’s implicit dependencies.
We don't bother caching the results because the scan typically shouldn’t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath () - str
Get the absolute path of the file.
get_ninfo ()
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.
get_path_elements ()
get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.
get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.
get_state ()
get_stored_implicit ()
Fetch the stored implicit dependencies
get_stored_info ()
get_string (f or _si gnat ure)

SCons API Documentation

47

This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text _contents ()
We already emit things in text, so just return the binary version.

get_timestamp () - int
Return the latest timestamp from among our children

get_tpath ()

getmtime ()

getsize ()

glob (pat hnane, ondi sk=True, sour ce=False, st ri ngs=False, excl ude=None) - list
Returns a list of Nodes (or strings) matching a pathname pattern.
Pathname patterns follow POSIX shell syntax:

* mat ches everyt hi ng

? mat ches any singl e character

[seq] matches any character in seq (ranges all owed)
[!seq] matches any char not in seq

The wildcard characters can be escaped by enclosing in brackets. A leading dot is not matched by a wildcard, and
needs to be explicitly included in the pattern to be matched. Matches also do not span directory separators.

The matches take into account Repositories, returning a local Node if a corresponding entry exists in a Repository
(either an in-memory Node or something on disk).

The underlying algorithm is adapted from a rather old version of glob.glob() function in the Python standard library
(heavily modified), and uses fnmatch.fnmatch() under the covers.

This is the internal implementation of the external Glob API.

Parameters:
» pattern — pathname pattern to match.

» ondisk — if false, restricts matches to in-memory Nodes. By defafult, matches entries
that exist on-disk in addition to in-memory Nodes.

* source — if true, corresponding source Nodes are returned if globbing in a variant
directory. The default behavior is to return Nodes local to the variant directory.

 strings — if true, returns the matches as strings instead of Nodes. The strings are path
names relative to this directory.

» exclude — if not None, must be a pattern or a list of patterns following the same POSIX
shell semantics. Elements matching at least one pattern from exclude will be excluded
from the result.

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ...”). When the builder attribute is examined directly, it ends up calling __getattr _ for both the

SCons API Documentation

48

__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

is_up_to_date ()
If any child is not up-to-date, then this directory isn't, either.

isdir ()

isfile ()

islink ()

link (srcdi r, dupl i cate)
Set this directory as the variant directory for the supplied source directory.

linked

Istat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

must_be_same (kl ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

on_disk_entries

path

postprocess ()
Clean up anything we don’t need to hang onto after we've been built.

SCons API Documentation

49

precious
prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache ()
Try to push a node into a cache
rdir ()
ref _count
rel_path (ot her)
Return a path to “other” relative to this directory.
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
released_target_info
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
rentry_exists_on_disk (namne)
Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk
repositories
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
root
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
A directory does not get scanned.

SCons API Documentation

50

scanner_paths
sconsign ()
Return the .sconsign file info for this directory.
searched
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_local ()
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_src_builder (bui | der)
Set the source code builder for this node.
set_state (st at e)
side_effect
side_effects
sources
sources_set
src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcdir
srcdir_duplicate (namne)
srcdir_find_file (fi | enane)
sredir_list ()
srcnode ()
Dir has a special need for srcnode()...if we have a srcdir attribute set, then that is our srcnode.
stat ()
state
store_info
str_for_display ()
target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.
target_peers
up ()
variant_dirs
visited ()
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
walk (f unc, ar g)

SCons API Documentation

Walk this directory tree by calling the specified function for each directory in the tree.
This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the same
arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)
Except that “dirname” will actually be the directory Node, not the string. The ‘" and ‘.. entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a specific
order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing None is
common).
wkids
SCons.Node.FS.UnlinkFunc (t ar get , sour ce, env)
class SCons.Node.FS. Null
Bases: object
SCons.Node.FS._classEntry
alias of SCons.Node.FS.Entry
SCons.Node.FS._copy_func (f s, src, dest)
SCons.Node.FS._hardlink_func (f s, src, dst)
SCons.Node.FS._my_normcase (x)
SCons.Node.FS._my_splitdrive (p)
SCons.Node.FS._softlink_func (f s, src, dst)
SCons.Node.FS.diskcheck_types ()
SCons.Node.FS.do_diskcheck _match (node, predi cat e, errorfnt)
SCons.Node.FS.find_file (fi | ename, pat hs, ver bose=None)
Find a node corresponding to either a derived file or a file that exists already.
Only the first file found is returned, and none is returned if no file is found.
filename: A filename to find paths: A list of directory path nodes to search in. Can be represented as a list, a tuple, or
a callable that is called with no arguments and returns the list or tuple.
returns The node created from the found file.
SCons.Node.FS.get_MkdirBuilder ()
SCons.Node.FS.get_default_fs ()
SCons.Node.FS.has_glob_magic (s)
SCons.Node.FS.ignore_diskcheck_match (node, predi cate, errorfnt)
SCons.Node.FS.initialize_do_splitdrive ()
SCons.Node.FS.invalidate_node_memos (t ar get s)
Invalidate the memoized values of all Nodes (files or directories) that are associated with the given entries. Has been
added to clear the cache of nodes affected by a direct execution of an action (e.g. Delete/Copy/Chmod). Existing
Node caches become inconsistent if the action is run through Execute(). The argument targets can be a single Node
object or filename, or a sequence of Nodes/filenames.
SCons.Node.FS.needs_normpath_match (st ri ng, pos=0, endpos=9223372036854775807)
Matches zero or more characters at the beginning of the string.
SCons.Node.FS.save_strings (val)
SCons.Node.FS.sconsign_dir (node)
Return the .sconsign file info for this directory, creating it first if necessary.
SCons.Node.FS.sconsign_none (node)
SCons.Node.FS.set_diskcheck (enabl ed_checker s)
SCons.Node.FS.set_duplicate (dupl i cat e)

SCons.Node.Python module

Python nodes.
class SCons.Node.Python.Value (val ue, bui I t _val ue=None, name=None)
Bases: SCons.Node.Node
A Node class for values represented by Python expressions.
Values are typically passed on the command line or generated by a script, but not from a file or some other source.
Changed in version 4.0: the name parameter was added.
class Attrs
Bases: object

51

SCons API Documentation

shared
BuildInfo
alias of SCons.Node.Python.ValueBuildinfo
Decider (f uncti on)
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of SCons.Node.Python.ValueNodelnfo
Tag (key, val ue)
Add a user-defined tag.
_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get ()
_children_reset ()
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_target_from_source
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_memo
_specific_sources
_tags
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)
add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node)
add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated
all_children (scan=1)
Return a list of all the node’s direct children.
alter_targets ()
Return a list of alternate targets for this Node.
always_build
attributes
binfo
build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
builder
builder_set (bui | der)
built ()
Called just after this node is successfully built.

52

SCons API Documentation

53

cached
changed (node=None, al | oncache=False)

Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.

Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.

The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().

@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build
check_attributes (nane)

Simple API to check if the node.attributes for name has been set

children (scan=1)

Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()

Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()

Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()
del_binfo ()

Delete the build info from this node.

depends

depends_set

disambiguate (must _exi st =None)
env

env_set (env, saf e=0)

executor

executor_cleanup ()

Let the executor clean up any cached information.

exists ()

Does this node exists?

explain ()
for_signature ()

Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

get_abspath ()

Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get_binfo ()

Fetch a node’s build information.

node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature

This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’'s wanted.

get_build_env ()

Fetch the appropriate Environment to build this node.

SCons API Documentation

54

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents () — bytes
Get contents for signature calculations.

get_csig (cal c=None)
Because we're a Python value node and don'’t have a real timestamp, we get to ignore the calculator and just use
the value contents.
Returns string. Ideally string of hex digits. (Not bytes)

get_env ()

get_env_scanner (env, kw={})

get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_ninfo ()

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text contents () — str
By the assumption that the node.built_value is a deterministic product of the sources, the contents of a Value are
the concatenation of all the contents of its sources. As the value need not be built when get_contents() is called,
we cannot use the actual node.built_value.

has_builder ()
Return whether this Node has a builder or not.

SCons API Documentation

55

In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

is_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

linked

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

postprocess ()
Clean up anything we don’t need to hang onto after we've been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the Buildinfo structure that will hold the information about how this node is, uh, built.

SCons API Documentation

56

(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache ()
Try to push a node into a cache
read ()
Return the value. If necessary, the value is built.
ref _count
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_state (st at e)
side_effect
side_effects
sources

SCons API Documentation

sources_set
state
store_info
str_for_display ()
target_peers
visited ()
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
wkids
write (bui I t _val ue)
Set the value of the node.
class SCons.Node.Python.ValueBuildinfo
Bases: SCons.Node.BuildinfoBase
__getstate__ ()

Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all

instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
bact
bactsig
bdepends
bdependsigs
bimplicit
bimplicitsigs
bsources
bsourcesigs
current_version_id = 2
merge (ot her)

Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s

data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
class SCons.Node.Python.ValueNodelnfo
Bases: SCons.Node.NodelnfoBase
__getstate__ ()

Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all

instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
convert (node, val)
csig
current_version_id = 2
field_list = ['csig']
format (fi el d_| i st =None, nanes=0)
merge (ot her)

Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s

data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
str_to_node (s)
update (node)
SCons.Node.Python.ValueWithMemo (val ue, bui | t _val ue=None, nane=None)
Memoized Value node factory.
Changed in version 4.0: the name parameter was added.

Module contents

The Node package for the SCons software construction utility.

57

SCons API Documentation

This is, in many ways, the heart of SCons.

A Node is where we encapsulate all of the dependency information about any thing that SCons can build, or about any
thing which SCons can use to build some other thing. The canonical “thing,” of course, is a file, but a Node can also
represent something remote (like a web page) or something completely abstract (like an Alias).

Each specific type of “thing” is specifically represented by a subclass of the Node base class: Node.FS.File for files,
Node.Alias for aliases, etc. Dependency information is kept here in the base class, and information specific to
files/aliases/etc. is in the subclass. The goal, if we've done this correctly, is that any type of “thing” should be able to
depend on any other type of “thing.”
SCons.Node.Annotate (node)
class SCons.Node.BuildinfoBase
Bases: object
The generic base class for build information for a Node.
This is what gets stored in a .sconsign file for each target file. It contains a Nodelnfo instance for this node (signature
information that's specific to the type of Node) and direct attributes for the generic build stuff we have to track:
sources, explicit dependencies, implicit dependencies, and action information.
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
bact
bactsig
bdepends
bdependsigs
bimplicit
bimplicitsigs
bsources
bsourcesigs
current_version_id = 2
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
class SCons.Node.Node
Bases: object
The base Node class, for entities that we know how to build, or use to build other Nodes.
class Attrs
Bases: object
shared
BuildInfo
alias of SCons.Node.BuildInfoBase
Decider (f uncti on)
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of SCons.Node.NodelnfoBase
Tag (key, val ue)
Add a user-defined tag.
_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get ()
_children_reset ()
_func_exists
_func_get_contents
_func_is_derived

58

SCons API Documentation

59

_func_rexists
_func_target_from_source
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_memo
_specific_sources
_tags
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)
add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node)
add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated
all_children (scan=1)
Return a list of all the node’s direct children.
alter_targets ()
Return a list of alternate targets for this Node.
always_build
attributes
binfo
build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

builder
builder_set (bui | der)
built ()
Called just after this node is successfully built.
cached

changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

SCons API Documentation

60

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).
clear_memoized_values ()
del_binfo ()
Delete the build info from this node.
depends
depends_set
disambiguate (must _exi st =None)
env
env_set (env, saf e=0)
executor
executor_cleanup ()
Let the executor clean up any cached information.
exists ()
Does this node exists?
explain ()
for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.
get_abspath ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.
get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_csig ()
get_contents ()
Fetch the contents of the entry.
get_csig ()
get_env ()
get_env_scanner (env, kw={})
get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})

SCons API Documentation

61

Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_ninfo ()

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

SCons API Documentation

62

is_up_to_date ()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will always
get built.
linked
make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.
missing ()
multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
new_binfo ()
new_ninfo ()
ninfo
nocache
noclean
postprocess ()
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the Buildinfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache ()
Try to push a node into a cache
ref _count
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.

SCons API Documentation

rexists ()
Does this node exist locally or in a repository?
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_state (st at e)
side_effect
side_effects
sources
sources_set
state
store_info
target_peers
visited ()
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
wkids

class SCons.Node.NodelnfoBase

Bases: object

The generic base class for signature information for a Node.

Node subclasses should subclass NodelnfoBase to provide their own logic for dealing with their own Node-specific

signature information.

__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (state)
Restore the attributes from a pickled state. The version is discarded.

convert (node, val)

current_version_id = 2

format (fi el d_| i st =None, nanes=0)

merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

update (node)

class SCons.Node.NodelList (i ni t1i st =None)

63

Bases: collections.UserList

SCons API Documentation

_abc_impl = <_abc._abc_data object>
append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t en)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
class SCons.Node.Walker (node, ki ds_f unc=<functi on get _chil dren>, cycl e_func=<function
i gnore_cycl e>, eval _func=<function do_not hi ng>)
Bases: object
An iterator for walking a Node tree.
This is depth-first, children are visited before the parent. The Walker object can be initialized with any node, and
returns the next node on the descent with each get_next() call. get the children of a node instead of calling ‘children’.
‘cycle_func’ is an optional function that will be called when a cycle is detected.
This class does not get caught in node cycles caused, for example, by C header file include loops.
get_next ()
Return the next node for this walk of the tree.
This function is intentionally iterative, not recursive, to sidestep any issues of stack size limitations.
is_done ()
SCons.Node.changed_since_last_build_alias (node, t ar get , prev_ni , repo_node=None)
SCons.Node.changed_since_last_build_entry (node, t ar get, prev_ni , r epo_node=None)
SCons.Node.changed_since_last _build_node (node, t ar get, prev_ni , r epo_node=None)
Must be overridden in a specific subclass to return True if this Node (a dependency) has changed since the last time
it was used to build the specified target. prev_ni is this Node’s state (for example, its file timestamp, length, maybe
content signature) as of the last time the target was built.
Note that this method is called through the dependency, not the target, because a dependency Node must be able to
use its own logic to decide if it changed. For example, File Nodes need to obey if we're configured to use timestamps,
but Python Value Nodes never use timestamps and always use the content. If this method were called through the
target, then each Node’s implementation of this method would have to have more complicated logic to handle all the
different Node types on which it might depend.
SCons.Node.changed_since_last_build_python (node, t ar get, prev_ni , repo_node=None)
SCons.Node.changed_since_last build_state_changed (node, t ar get , prev_ni , repo_node=None)
SCons.Node.classname (obj)
SCons.Node.decide_source (node, t ar get, prev_ni , repo_node=None)
SCons.Node.decide_target (node, t ar get, prev_ni , repo_node=None)
SCons.Node.do_nothing (node, par ent)
SCons.Node.do_nothing_node (node)
SCons.Node.exists_always (node)
SCons.Node.exists_base (node)
SCons.Node.exists_entry (node)
Return if the Entry exists. Check the file system to see what we should turn into first. Assume a file if there’s no
directory.
SCons.Node.exists_file (node)

64

SCons API Documentation

SCons.Node.exists_none (node)
SCons.Node.get_children (node, par ent)
SCons.Node.get_contents_dir (node)
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.
SCons.Node.get_contents_entry (node)
Fetch the contents of the entry. Returns the exact binary contents of the file.
SCons.Node.get_contents_file (node)
SCons.Node.get_contents_none (node)
SCons.Node.ignore_cycle (node, st ack)
SCons.Node.is_derived_node (node)
Returns true if this node is derived (i.e. built).
SCons.Node.is_derived_none (node)
SCons.Node.rexists_base (node)
SCons.Node.rexists_node (node)
SCons.Node.rexists_none (node)
SCons.Node.store_info_file (node)
SCons.Node.store_info_pass (node)
SCons.Node.target_from_source_base (node, prefi x, suf fi x, splitext)
SCons.Node.target_from_source_none (node, prefi x, suffi x, splitext)

SCons.Platform package
Submodules

SCons.Platform.aix module
Platform-specific initialization for IBM AIX systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.aix.generate (env)

SCons.Platform.aix.get_xIc (env, xI c=None, packages=[])

SCons.Platform.cygwin module

Platform-specific initialization for Cygwin systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.cygwin.generate (env)

SCons.Platform.darwin module

Platform-specific initialization for Mac OS X systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.

SCons.Platform.darwin.generate (env)

SCons.Platform.hpux module

Platform-specific initialization for HP-UX systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
SCons.Platform.hpux.generate (env)

SCons.Platform.irix module

Platform-specific initialization for SGI IRIX systems.

65

SCons API Documentation

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
SCons.Platform.irix.generate (env)

SCons.Platform.mingw module

Platform-specific initialization for the MinGW system.

SCons.Platform.os2 module
Platform-specific initialization for OS/2 systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
SCons.Platform.os2.generate (env)

SCons.Platform.posix module
Platform-specific initialization for POSIX (Linux, UNIX, etc.) systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
SCons.Platform.posix.escape (ar g)
escape shell special characters
SCons.Platform.posix.exec_popen3 (I , env, st dout , st derr)
SCons.Platform.posix.exec_subprocess (I , env)
SCons.Platform.posix.generate (env)
SCons.Platform.posix.piped_env_spawn (sh, escape, cnd, ar gs, env, st dout , st derr)
SCons.Platform.posix.subprocess_spawn (sh, escape, cnd, ar gs, env)

SCons.Platform.sunos module
Platform-specific initialization for Sun systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
SCons.Platform.sunos.generate (env)

SCons.Platform.virtualenv module

‘Platform” support for a Python virtualenv.

SCons.Platform.virtualenv.ImportVirtualenv (env)
Copies virtualenv-related environment variables from OS environment to env[' ENV' | and prepends virtualenv’s
PATHtoenv[' ENV'][' PATH].

SCons.Platform.virtualenv.lsInVirtualenv (pat h)

Returns True, if path is under virtualenv’'s home directory. If not, or if we don’t use virtualenv, returns False.
SCons.Platform.virtualenv.Virtualenv ()

Returns path to the virtualenv home if scons is executing within a virtualenv or None, if not.
SCons.Platform.virtualenv._enable_virtualenv_default ()
SCons.Platform.virtualenv._ignore_virtualenv_default ()

SCons.Platform.virtualenv._inject_venv_path (env, pat h_| i st =None)

Modify environment such that SCons will take into account its virtualenv when running external tools.
SCons.Platform.virtualenv._inject_venv_variables (env)

SCons.Platform.virtualenv._is_path_in (pat h, base)

Returns true if path is located under the base directory.
SCons.Platform.virtualenv._running_in_virtualenv ()

Returns True if scons is executed within a virtualenv
SCons.Platform.virtualenv.select_paths_in_venv (pat h_I i st)

Returns a list of paths from path_list which are under virtualenv’'s home directory.

66

SCons API Documentation

SCons.Platform.win32 module
Platform-specific initialization for Win32 systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
class SCons.Platform.win32.ArchDefinition (ar ch, synonymnms=[])
Bases: object
Determine which windows CPU were running on. A class for defining architecture-specific settings and logic.
SCons.Platform.win32.escape (x)
SCons.Platform.win32.exec_spawn (I , env)
SCons.Platform.win32.generate (env)
SCons.Platform.win32.get_architecture (ar ch=None)
Returns the definition for the specified architecture string.
If no string is specified, the system default is returned (as defined by the PROCESSOR_ARCHITEW6432 or
PROCESSOR_ARCHITECTURE environment variables).
SCons.Platform.win32.get_program_files_dir ()
Get the location of the program files directory
SCons.Platform.win32.get_system_root ()
SCons.Platform.win32.piped_spawn (sh, escape, cnd, ar gs, env, st dout , st derr)
SCons.Platform.win32.spawn (sh, escape, cnd, ar gs, env)
SCons.Platform.win32.spawnve (node, fi |l e, ar gs, env)

Module contents
SCons platform selection.

Looks for modules that define a callable object that can modify a construction environment as appropriate for a given
platform.

Note that we take a more simplistic view of “platform” than Python does. We're looking for a single string that
determines a set of tool-independent variables with which to initialize a construction environment. Consequently, we’ll
examine both sys.platform and os.name (and anything else that might come in to play) in order to return some
specification which is unique enough for our purposes.

Note that because this subsystem just selects a callable that can modify a construction environment, it's possible for
people to define their own “platform specification” in an arbitrary callable function. No one needs to use or tie in to this
subsystem in order to roll their own platform definition.
SCons.Platform.DefaultToolList (pl at f or m env)
Select a default tool list for the specified platform.
SCons.Platform.Platform (hame="darwin’)
Select a canned Platform specification.
class SCons.Platform.PlatformSpec (name, gener at e)
Bases: object
class SCons.Platform. TempFileMunge (cnd, cndst r =None)
Bases: object
Convert long command lines to use a temporary file.
You can set an Environment variable (usually TEMPFI LE) to this, then call it with a string argument, and it will
perform temporary file substitution on it. This is used to circumvent limitations on the length of command lines.
Example:

env[" TEMPFI LE"] = TenpFi | eMunge
env["LINKCOM'] = "${ TEMPFI LE("' $LI NK $TARGET $SOURCES' , ' $LI NKCOMBTR) }"

By default, the name of the temporary file used begins with a prefix of ‘@’. This may be configured for other tool
chains by setting the TEMPFI LEPREFI X variable. Example:

67

SCons API Documentation

env[" TEMPFI LEPREFI X"]
env[" TEMPFI LEPREFI X"]
env[" TEMPFI LEPREFI X"]

'-@ # diab conpiler
"-via' # armtool chain
v # (the enpty string) PC Lint

You can configure the extension of the temporary file through the TEMPFI LESUFFI X variable, which defaults to “.Ink’
(see comments in the code below). Example:

env[" TEMPFI LESUFFI X"] = '.Int' # PC Lint

Entries in the temporary file are separated by the value of the TEMPFI LEARGIQO N variable, which defaults to an
OS-appropriate value.

A default argument escape function is SCons. Subst . quot e_spaces. If you need to apply extra operations on a
command argument before writing to a temporary file(fix Windows slashes, normalize paths, etc.), please set
TEMPFILEARGESCFUNC variable to a custom function. Example:

i nport sys
i nport re
from SCons. Subst inport quote_spaces

W NPATHSEP_RE = re.conpile(r"\([*""'\]|$)")

def tenpfile_arg_esc_func(arg):
arg = quote_spaces(arg)
if sys.platform!= "w n32":
return arg
GCC requires doubl e Wndows slashes, let's use UNl X separ at or
return WNPATHSEP_RE. sub(r"/m", arg)

env[" TEMPFI LEARGESCFUNC'] = tenpfile_arg_esc_func

_print_cmd_str (t ar get , sour ce, env, cndst r)
SCons.Platform.platform_default ()
Return the platform string for our execution environment.
The returned value should map to one of the SCons/Platform/*.py files. Since scons is architecture independent,
though, we don’t care about the machine architecture.
SCons.Platform.platform_module (nane='darwin")
Return the imported module for the platform.
This looks for a module name that matches the specified argument. If the name is unspecified, we fetch the
appropriate default for our execution environment.

SCons.Scanner package
Submodules

SCons.Scanner.C module

Dependency scanner for C/C++ code.
SCons.Scanner.C.CConditionalScanner ()

Return an advanced conditional Scanner instance for scanning source files

Interprets C/C++ Preprocessor conditional syntax (#ifdef, #if, defined, #else, #elif, etc.).
SCons.Scanner.C.CScanner ()

Return a prototype Scanner instance for scanning source files that use the C pre-processor
class SCons.Scanner.C.SConsCPPConditionalScanner (* ar gs, * * kwar gs)

68

SCons API Documentation

Bases: SCons.cpp.PreProcessor
SCons-specific subclass of the cpp.py module’s processing.
We subclass this so that: 1) we can deal with files represented by Nodes, not strings; 2) we can keep track of the files
that are missing.
_call__(file)
Pre-processes a file.
This is the main public entry point.
_do_if_else_condition (condi ti on)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.
_match_tuples (t upl es)
_parse_tuples (cont ent s)
_process_tuples (t upl es, fi | e=None)
all_include (t)
do_define (t)
Default handling of a #define line.
do_elif (t)
Default handling of a #elif line.
do_else (t)
Default handling of a #else line.
do_endif (t)
Default handling of a #endif line.
do_if (t)
Default handling of a #if line.
do_ifdef (t)
Default handling of a #ifdef line.
do_ifndef (t)
Default handling of a #ifndef line.
do_import (t)
Default handling of a #import line.
do_include (t)
Default handling of a #include line.
do_include_next (t)
Default handling of a #include line.
do_nothing (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.
do_undef (t)
Default handling of a #undef line.
eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor nhamespace we use to
track #define values.
finalize_result (f nane)
find_include_file (t)
Finds the #include file for a given preprocessor tuple.
initialize_result (f nane)
process_contents (cont ent s)
Pre-processes a file contents.
Is used by tests
process_file (fi |l e)
Pre-processes a file.
This is the main internal entry point.
read_file (fil e)
resolve_include (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without *” or <> surrounding the name until an initial ” or < is found, to
handle #include FILE where FILE is a #define somewhere else.

69

SCons API Documentation

restore ()
Pops the previous dispatch table off the stack and makes it the current one.
save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.
scons_current_file (t)
start_handling_includes (t =None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.
stop_handling_includes (t =None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.
tupleize (cont ent s)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’s preprocessor directive (#if, #include, #define, etc., minus the initial ‘#).
The remaining elements are specific to the type of directive, as pulled apart by the regular expression.
class SCons.Scanner.C.SConsCPPConditionalScannerWrapper (nane, vari abl e)
Bases: object
The SCons wrapper around a cpp.py scanner.
This is the actual glue between the calling conventions of generic SCons scanners, and the (subclass of) cpp.py
class that knows how to look for #include lines with reasonably real C-preprocessor-like evaluation of
#if/#ifdef/#else/#elif lines.
recurse_nodes (hodes)
select (node)
class SCons.Scanner.C.SConsCPPScanner (* ar gs, * * kwar gs)
Bases: SCons.cpp.PreProcessor
SCons-specific subclass of the cpp.py module’s processing.
We subclass this so that: 1) we can deal with files represented by Nodes, not strings; 2) we can keep track of the files
that are missing.
_call__(file)
Pre-processes a file.
This is the main public entry point.
_do_if_else_condition (condi ti on)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.
_match_tuples (t upl es)
_parse_tuples (cont ent s)
_process_tuples (t upl es, fi | e=None)
all_include (t)
do_define (t)
Default handling of a #define line.
do_elif (t)
Default handling of a #elif line.
do_else (t)
Default handling of a #else line.
do_endif (t)
Default handling of a #endif line.
do_if (t)
Default handling of a #if line.
do_ifdef (t)
Default handling of a #ifdef line.
do_ifndef (t)
Default handling of a #ifndef line.
do_import (t)
Default handling of a #import line.
do_include (t)

70

SCons API Documentation

Default handling of a #include line.
do_include_next (t)
Default handling of a #include line.
do_nothing (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.
do_undef (t)
Default handling of a #undef line.
eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor namespace we use to
track #define values.
finalize_result (f name)
find_include_file (t)
Finds the #include file for a given preprocessor tuple.
initialize_result (f nane)
process_contents (cont ent s)
Pre-processes a file contents.
Is used by tests
process_file (fi |l e)
Pre-processes a file.
This is the main internal entry point.
read_file (fil e)
resolve_include (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without *” or <> surrounding the name until an initial ” or < is found, to
handle #include FILE where FILE is a #define somewhere else.
restore ()
Pops the previous dispatch table off the stack and makes it the current one.
save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.
scons_current_file (t)
start_handling_includes (t =None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.
stop_handling_includes (t =None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.
tupleize (cont ent s)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’s preprocessor directive (#if, #include, #define, etc., minus the initial ‘#).
The remaining elements are specific to the type of directive, as pulled apart by the regular expression.

class SCons.Scanner.C.SConsCPPScannerWrapper (namne, vari abl e)

Bases: object

The SCons wrapper around a cpp.py scanner.

This is the actual glue between the calling conventions of generic SCons scanners, and the (subclass of) cpp.py
class that knows how to look for #include lines with reasonably real C-preprocessor-like evaluation of
#if/#ifdef/#else/#elif lines.

recurse_nodes (hodes)

select (node)

SCons.Scanner.C.dictify CPPDEFINES (env) - dict

Returns CPPDEFINES converted to a dict.

SCons.Scanner.D module

Scanner for the Digital Mars “D” programming language.

71

SCons API Documentation

Coded by Andy Friesen, 17 Nov 2003
class SCons.Scanner.D.D
Bases: SCons.Scanner.Classic
__call__ (node, env, pat h=()) - list
Scans a single object.

Parameters:)]
» node — the node that will be passed to the scanner function

» env — the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner)
add_skey (skey)
Add a skey to the list of skeys
find_include (i ncl ude, source_di r, pat h)
find_include_names (node)
get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
scan (node, pat h=())
select (node)
static sort_key (i ncl ude)
SCons.Scanner.D.DScanner ()
Return a prototype Scanner instance for scanning D source files

SCons.Scanner.Dir module

SCons.Scanner.Dir.DirEntryScanner (* * kwar gs)
Return a prototype Scanner instance for “scanning” directory Nodes for their in-memory entries
SCons.Scanner.Dir.DirScanner (* * kwar gs)
Return a prototype Scanner instance for scanning directories for on-disk files
SCons.Scanner.Dir.do_not_scan (k)
SCons.Scanner.Dir.only_dirs (nodes)
SCons.Scanner.Dir.scan_in_memory (node, env, pat h=())
“Scans” a Node.FS.Dir for its in-memory entries.
SCons.Scanner.Dir.scan_on_disk (node, env, pat h=())
Scans a directory for on-disk files and directories therein.
Looking up the entries will add these to the in-memory Node tree representation of the file system, so all we have to
do is just that and then call the in-memory scanning function.

SCons.Scanner.Fortran module

Dependency scanner for Fortran code.

class SCons.Scanner.Fortran.F90Scanner (nane, suf fi xes, pat h_vari abl e, use_r egex, i ncl _r egex,

def _regex, *args, **kwar gs)
Bases: SCons.Scanner.Classic
A Classic Scanner subclass for Fortran source files which takes into account both USE and INCLUDE statements.
This scanner will work for both F77 and F90 (and beyond) compilers.
Currently, this scanner assumes that the include files do not contain USE statements. To enable the ability to deal
with USE statements in include files, add logic right after the module names are found to loop over each include file,
search for and locate each USE statement, and append each module name to the list of dependencies. Caching the
search results in a common dictionary somewhere so that the same include file is not searched multiple times would
be a smart thing to do.
__call__ (node, env, pat h=()) - list

Scans a single object.

72

SCons API Documentation

Parameters:)]
» node — the node that will be passed to the scanner function

» env — the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner)
add_skey (skey)
Add a skey to the list of skeys
static find_include (i ncl ude, source_di r, pat h)
find_include_names (node)
get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
scan (node, env, pat h=())
select (node)
static sort_key (i ncl ude)
SCons.Scanner.Fortran.FortranScan (pat h_vari abl e='"FORTRANPATH')
Return a prototype Scanner instance for scanning source files for Fortran USE & INCLUDE statements

SCons.Scanner.|DL module

Dependency scanner for IDL (Interface Definition Language) files.
SCons.Scanner.IDL.IDLScan ()
Return a prototype Scanner instance for scanning IDL source files

SCons.Scanner.Java module

SCons.Scanner.Java.JavaScanner ()
Scanner for .java files.
New in version 4.4.

SCons.Scanner.Java._collect_classes (cl assl i st, di rnane, fil es)

SCons.Scanner.Java._subst_paths (env, pat hs) - list
Return a list of substituted path elements.
If paths is a string, it is split on the search-path separator. Otherwise, substitution is done on string-valued list
elements but they are not split.
Note helps support behavior like pulling in the external CLASSPATH and setting it directly into JAVACLASSPATH,
however splitting on os. pat hsep makes the interpretation system-specific (this is warned about in the manpage
entry for JAVACLASSPATH).

SCons.Scanner.Java.scan (node, env, | i bpat h=()) - list
Scan for files both on JAVACLASSPATH and JAVAPROCESSORPATH.

JAVACLASSPATH/JAVAPROCESSORPATH path can contain:

« Explicit paths to JAR/Zip files
« Wildcards (*)
« Directories which contain classes in an unnamed package

 Parent directories of the root package for classes in a named I:E)a_ckage))
Class path entries that are neither directories nor archives (.zip or JAR files) nor the asterisk (*) wildcard character

are ignored.
SCons.Scanner.LaTeX module

Dependency scanner for LaTeX code.
class SCons.Scanner.LaTeX.FindENVPathDirs (var i abl e)
Bases: object

73

SCons API Documentation

A class to bind a specific E{*}PATH variable name to a function that will return all of the E{*}path directories.

class SCons.Scanner.LaTeX.LaTeX (name, suf fi xes, gr aphi cs_ext ensi ons, *ar gs, **kwar gs)

74

Bases: SCons.Scanner.ScannerBase

Class for scanning LaTeX files for included files.

Unlike most scanners, which use regular expressions that just return the included file name, this returns a tuple
consisting of the keyword for the inclusion (“include”, “includegraphics”, “input”, or “bibliography”), and then the file
name itself. Based on a quick look at LaTeX documentation, it seems that we should append .tex suffix for the
“include” keywords, append .tex if there is no extension for the “input” keyword, and need to add .bib for the
“bibliography” keyword that does not accept extensions by itself.

Finally, if there is no extension for an “includegraphics” keyword latex will append .ps or .eps to find the file, while
pdftex may use .pdf, .jpg, .tif, .mps, or .png.

The actual subset and search order may be altered by DeclareGraphicsExtensions command. This complication is
ignored. The default order corresponds to experimentation with teTeX:

$ latex --version
pdf eTeX 3.141592-1.21a-2.2 (Wb2C 7.5. 4)
kpat hsea version 3.5.4

The order is:
[.eps’, ‘.ps’] for latex ['.png’, “.pdf, “.jpg’, ‘tif].

Another difference is that the search path is determined by the type of the file being searched: env[TEXINPUTS’] for
“input” and “include” keywords env['TEXINPUTS’] for “includegraphics” keyword env[TEXINPUTS’] for
“Istinputlisting” keyword env['‘BIBINPUTS’] for “bibliography” keyword env['BSTINPUTS’] for “bibliographystyle”
keyword env['INDEXSTYLE'] for “makeindex” keyword, no scanning support needed just allows user to set it if
needed.
FIXME: also look for the class or style in document[class|style{} FIXME: also look for the argument of
bibliographystyle{}
__call__ (node, env, pat h=()) - list

Scans a single object.

Parameters:))
» node — the node that will be passed to the scanner function

» env — the environment that will be passed to the scanner function.

e path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

_latex_names (i ncl ude_t ype, fil enane)
static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner)
add_skey (skey)

Add a skey to the list of skeys
canonical_text (t ext)

Standardize an input TeX-file contents.

Currently:

_ * removes comments, unwr?\Fngn comment-wrapped lines.
env_variables = [TEXINPUTS', 'BIBINPUTS', 'BSTINPUTS', 'INDEXSTYLE']

find_include (i ncl ude, source_di r, pat h)

get_skeys (env=None)

keyword_paths = {'addbibresource": 'BIBINPUTS', 'addglobalbib’: 'BIBINPUTS', 'addsectionbib": 'BIBINPUTS',
‘bibliography': 'BIBINPUTS', 'bibliographystyle': 'BSTINPUTS', 'include: "TEXINPUTS', 'includegraphics":
TEXINPUTS', 'input’: 'TEXINPUTS', 'Istinputlisting”: ' TEXINPUTS', 'makeindex’: 'INDEXSTYLE', 'usepackage":
TEXINPUTS'}

path (env, di r =None, t ar get =None, sour ce=None)

scan (node, subdi r =""

SCons API Documentation

scan_recurse (node, pat h=())
do a recursive scan of the top level target file This lets us search for included files based on the directory of the
main file just as latex does
select (node)
sort_key (i ncl ude)
two_arg_commands = [import’, 'subimport’, ‘includefrom’, 'subincludefrom’, ‘inputfrom’, 'subinputfrom’]
SCons.Scanner.LaTeX.LaTeXScanner ()
Return a prototype Scanner instance for scanning LaTeX source files when built with latex.
SCons.Scanner.LaTeX.PDFLaTeXScanner ()
Return a prototype Scanner instance for scanning LaTeX source files when built with pdflatex.
class SCons.Scanner.LaTeX._Null
Bases: object
SCons.Scanner.LaTeX._null
alias of SCons.Scanner.LaTeX._Null
SCons.Scanner.LaTeX.modify_env_var (env, var, abspat h)

SCons.Scanner.Prog module

Dependency scanner for program files.
SCons.Scanner.Prog.ProgramScanner (* * kwar gs)
Return a prototype Scanner instance for scanning executable files for static-lib dependencies
SCons.Scanner.Prog._subst_libs (env, | i bs)
Substitute environment variables and split into list.
SCons.Scanner.Prog.scan (node, env, | i bpat h=())
Scans program files for static-library dependencies.
It will search the LIBPATH environment variable for libraries specified in the LIBS variable, returning any files it finds
as dependencies.

SCons.Scanner.RC module

Dependency scanner for RC (Interface Definition Language) files.
SCons.Scanner.RC.RCScan ()

Return a prototype Scanner instance for scanning RC source files
SCons.Scanner.RC.no_tlb (nodes)

Filter out .tIb files as they are binary and shouldn’t be scanned.

SCons.Scanner.SWIG module

Dependency scanner for SWIG code.
SCons.Scanner.SWIG.SWIGScanner ()

Module contents

The Scanner package for the SCons software construction utility.
SCons.Scanner.Base
alias of SCons.Scanner.ScannerBase
class SCons.Scanner.Classic (nane, suf f i xes, pat h_vari abl e, regex, *ar gs, **kwar gs)
Bases: SCons.Scanner.Current
A Scanner subclass to contain the common logic for classic CPP-style include scanning, but which can be
customized to use different regular expressions to find the includes.
Note that in order for this to work “out of the box” (without overriding the find_include() and sort_key1() methods), the
regular expression passed to the constructor must return the name of the include file in group 0.
__call__ (node, env, pat h=()) - list
Scans a single object.

75

SCons API Documentation

Parameters:)]
» node — the node that will be passed to the scanner function

» env — the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner)
add_skey (skey)

Add a skey to the list of skeys
static find_include (i ncl ude, source_di r, pat h)
find_include_names (node)
get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
scan (node, pat h=())
select (node)
static sort_key (i ncl ude)

class SCons.Scanner.ClassicCPP (nane, suf fi xes, pat h_vari abl e, regex, *ar gs, **kwar gs)

Bases: SCons.Scanner.Classic
A Classic Scanner subclass which takes into account the type of bracketing used to include the file, and uses classic
CPP rules for searching for the files based on the bracketing.
Note that in order for this to work, the regular expression passed to the constructor must return the leading bracket in
group 0, and the contained filename in group 1.
__call__ (node, env, pat h=()) - list

Scans a single object.

Parameters:)]
» node — the node that will be passed to the scanner function

» env — the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner)
add_skey (skey)
Add a skey to the list of skeys
find_include (i ncl ude, source_di r, pat h)
find_include_names (node)
get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
scan (node, pat h=())
select (node)
sort_key (i ncl ude)
class SCons.Scanner.Current (*ar gs, * * kwar gs)
Bases: SCons.Scanner.ScannerBase
A class for scanning files that are source files (have no builder) or are derived files and are current (which implies that
they exist, either locally or in a repository).
__call__ (node, env, pat h=()) - list
Scans a single object.

Parameters:)]
» node — the node that will be passed to the scanner function

» env —the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function

76

SCons API Documentation

Returns: A list of direct dependency nodes for the specified node.

static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner)
add_skey (skey)
Add a skey to the list of skeys
get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
select (node)
class SCons.Scanner.FindPathDirs (vari abl e)
Bases: object
Class to bind a specific E{*}PATH variable name to a function that will return all of the E{*}path directories.
SCons.Scanner.Scanner (f uncti on, *ar gs, **kwar gs)
Factory function to create a Scanner Object.
Creates the appropriate Scanner based on the type of “function”.
TODO: Deprecate this some day. We've moved the functionality inside the ScannerBase class and really don’t need
this factory function any more. It was, however, used by some of our Tool modules, so the call probably ended up in
various people’s custom modules patterned on SCons code.
class SCons.Scanner.ScannerBase (f uncti on, name=' NONE' , ar gunent =<cl ass ' SCons. Scanner. Nul | ' >,
skeys=<cl ass ' SCons. Scanner. Null'>, path_functi on=None, node_cl ass=<cl ass
' SCons. Node. FS. Base' >, node_f act or y=None, scan_check=None, r ecur si ve=None)
Bases: object
Base class for dependency scanners.
Implements straightforward, single-pass scanning of a single file.
A Scanner is usually set up with a scanner function (and optionally a path function), but can also be a kind of
dispatcher which passes control to other Scanners.
A scanner function takes three arguments: a Node to scan for dependecies, the construction environment to use, and
an optional tuple of paths (as generated by the optional path function). It must return a list containing the Nodes for all
the direct dependencies of the file.
The optional path function is called to return paths that can be searched for implicit dependency files. It takes five
arguments: a construction environment, a Node for the directory containing the SConscript file that defined the
primary target, a list of target nodes, a list of source nodes, and the optional argument for this instance.
Examples:

s = Scanner (ny_scanner _functi on)
s = Scanner (function=nmy_scanner _function)
s = Scanner (functi on=nmy_scanner _function, argunent='fo0")

77

SCons API Documentation

Parameters: .]] .]]
 function — either a scanner function taking two or three arguments and returning a list of

File Nodes; or a mapping of keys to other Scanner objects.
« name — an optional name for identifying this scanner object (defaults to “NONE").
e argument — an optional argument that will be passed to both function and path_function.

« skeys — an optional list argument that can be used to determine if this scanner can be
used for a given Node. In the case of File nodes, for example, the skeys would be file
suffixes.

e path_function — an optional function which returns a tuple of the directories that can be
searched for implicit dependency files. May also return a callable which is called with no
args and returns the tuple (supporting Bindable class).

« node_class — optional class of Nodes which this scan will return. If not specified, defaults
to SCons.Node.FS.Base. If node_class is None, then this scanner will not enforce any
Node conversion and will return the raw results from function.

« node_factory — optional factory function to be called to translate the raw results returned
by function into the expected node_class objects.

« scan_check — optional function to be called to first check whether this node really needs
to be scanned.

 recursive — optional specifier of whether this scanner should be invoked recursively on all
of the implicit dependencies it returns (for example #include lines in C source files, which
may refer to header files which should themselves be scanned). May be a callable, which
will be called to filter the list of nodes found to select a subset for recursive scanning (the
canonical example being only recursively scanning subdirectories within a directory). The
default is to not do recursive scanning.

__call__ (node, env, pat h=()) - list
Scans a single object.

Parameters:))
» node — the node that will be passed to the scanner function

» env —the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner)
add_skey (skey)
Add a skey to the list of skeys
get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
select (node)
class SCons.Scanner.Selector (mappi ng, *ar gs, **kwar gs)
Bases: SCons.Scanner.ScannerBase
A class for selecting a more specific scanner based on the scanner_key() (suffix) for a specific Node.
TODO: This functionality has been moved into the inner workings of the ScannerBase class, and this class will be
deprecated at some point. (It was never exposed directly as part of the public interface, although it is used by the
Scanner() factory function that was used by various Tool modules and therefore was likely a template for custom
modules that may be out there.)
static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner)
add_skey (skey)
Add a skey to the list of skeys

78

SCons API Documentation

get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
select (node)

class SCons.Scanner. Null

Bases: object

SCons.Scanner._null

alias of SCons.Scanner._Null

SCons.Script package

Submodules

SCons.Script.Interactive module

SCons interactive mode.
class SCons.Script.Interactive.SConsinteractiveCmd (* * kw)

79

Bases: cmd.Cmd

build [TARGETS] Build the specified TARGETS and their dependencies. ‘b’ is a synonym. clean [TARGETS] Clean
(remove) the specified TARGETS and their dependencies. ‘c’ is a synonym. exit Exit SCons interactive mode. help
[COMMAND] Prints help for the specified COMMAND. ‘h’ and ‘?’ are synonyms. shell [COMMANDLINE] Execute
COMMANDLINE in a subshell. ‘sh’ and ‘I" are synonyms. version Prints SCons version information.

_do_one_help (ar g)
_doc_to_help (obj)
_strip_initial_spaces (s)

cmdloop (i nt r o=None)
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.
columnize (li st, di spl ayw dt h=80)
Display a list of strings as a compact set of columns.
Each column is only as wide as necessary. Columns are separated by two spaces (one was not legible enough).
complete (t ext, st ate)
Return the next possible completion for ‘text’.
If a command has not been entered, then complete against command list. Otherwise try to call
complete_<command> to get list of completions.
complete_help (*ar gs)
completedefault (*i gnor ed)
Method called to complete an input line when no command-specific complete_*() method is available.
By default, it returns an empty list.
completenames (t ext, *i gnor ed)
default (ar gv)
Called on an input line when the command prefix is not recognized.
If this method is not overridden, it prints an error message and returns.
do_EOF (ar gv)
do_build (ar gv)
build [TARGETS] Build the specified TARGETS and their dependencies. ‘b’ is a synonym.
do_clean (ar gv)
clean [TARGETS] Clean (remove) the specified TARGETS and their dependencies. ‘c’ is a synonym.
do_exit (ar gv)
exit Exit SCons interactive mode.
do_help (ar gv)
help [COMMAND] Prints help for the specified COMMAND. ‘h’ and ?’ are synonyms.
do_shell (ar gv)
shell [COMMANDLINE] Execute COMMANDLINE in a subshell. ‘sh’ and ‘I" are synonyms.
do_version (ar gv)
version Prints SCons version information.
doc_header = 'Documented commands (type help <topic>):'
doc_leader = "

SCons API Documentation

emptyline ()
Called when an empty line is entered in response to the prompt.
If this method is not overridden, it repeats the last nonempty command entered.

get_names ()

identchars = 'abcdefghijkimnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_'

intro = None

lastemd = "

misc_header = 'Miscellaneous help topics:'

nohelp = "*** No help on %s'

onecmd (I i ne)
Interpret the argument as though it had been typed in response to the prompt.
This may be overridden, but should not normally need to be; see the precmd() and postcmd() methods for useful
execution hooks. The return value is a flag indicating whether interpretation of commands by the interpreter should
stop.

parseline (I i ne)
Parse the line into a command name and a string containing the arguments. Returns a tuple containing (command,
args, line). ‘command’ and ‘args’ may be None if the line couldn’t be parsed.

postcmd (st op, | i ne)
Hook method executed just after a command dispatch is finished.

postloop ()
Hook method executed once when the cmdloop() method is about to return.

precmd (I i ne)
Hook method executed just before the command line is interpreted, but after the input prompt is generated and
issued.

preloop ()
Hook method executed once when the cmdloop() method is called.

print_topics (header, cnds, cndl en, maxcol)

prompt = '(Cmd) "’

ruler = '='

synonyms = {'b": 'build’, 'c": 'clean’, 'h": 'help’, 'scons": 'build’, 'sh': 'shell’}

undoc_header = 'Undocumented commands:'

use_rawinput = 1

SCons.Script.Interactive.interact (f s, par ser, opti ons,targets,target _top)

SCons.Script.Main module

The main() function used by the scons script.

Architecturally, this is the scons script, and will likely only be called from the external “scons” wrapper. Consequently,
anything here should not be, or be considered, part of the build engine. If it's something that we expect other software
to want to use, it should go in some other module. If it's specific to the “scons” script invocation, it goes here.
SCons.Script.Main.AddOption (* ar gs, * * kw)

class SCons.Script.Main.BuildTask (t m t ar get s, t op, node)

80

Bases: SCons.Taskmaster.OutOfDateTask

An SCons build task.

LOGGER = None

_abc_impl = <_abc._abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_ho_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

do_failed (st at us=2)

SCons API Documentation

81

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (except i on=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Make a task ready for execution

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute ()

SCons API Documentation

Returns True (indicating this Task should be executed) if this Task’s target state indicates it needs executing,
which has already been determined by an earlier up-to-date check.

postprocess ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (hode, descri pt i on="node’)

class SCons.Script.Main.CleanTask (t m t ar get s, t op, node)

Bases: SCons.Taskmaster.AlwaysTask

An SCons clean task.

LOGGER = None

_abc_impl = <_abc._abc_data object>

_clean_targets (r enove=True)

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_get_files_to_clean ()

_ho_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (except i on=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.

82

SCons API Documentation

Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().
fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().
failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().
fs_delete (pat h, pat hstr, remove=True)
get_target ()
Fetch the target being built or updated by this task.
make_ready ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.
make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.
make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.
needs_execute ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute
postprocess ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.
prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.
remove ()
show ()
trace_message (hode, descri pti on="node")

class SCons.Script.Main.CountStats

Bases: SCons.Script.Main.Stats
do_append (I abel)
do_nothing (*ar gs, **kw)
do_print ()

enable (out f p)

class SCons.Script.Main.FakeOptionParser

83

Bases: object

A do-nothing option parser, used for the initial OptionsParser variable.

During normal SCons operation, the OptionsParser is created right away by the main() function. Certain tests scripts
however, can introspect on different Tool modules, the initialization of which can try to add a new, local option to an
otherwise uninitialized OptionsParser object. This allows that introspection to happen without blowing up.

SCons API Documentation

class FakeOptionValues
Bases: object
add_local_option (*ar gs, **kw)
values = <SCons.Script.Main.FakeOptionParser.FakeOptionValues object>
SCons.Script.Main.GetBuildFailures ()
SCons.Script.Main.GetOption (namne)
class SCons.Script.Main.MemStats
Bases: SCons.Script.Main.Stats
do_append (I abel)
do_nothing (*ar gs, * * kw)
do_print ()
enable (out f p)
SCons.Script.Main.PrintHelp (f i | e=None)
SCons.Script.Main.Progress (* ar gs, * * kw)
class SCons.Script.Main.Progressor (obj , i nt erval =1, fi | e=None, over wr i t e=False)
Bases: object

count = 0
erase_previous ()
prev = "

replace_string (node)

spinner (node)

string (node)

target_string = '$TARGET

write (S)

class SCons.Script.Main.QuestionTask (t m t ar get s, t op, node)

Bases: SCons.Taskmaster.AlwaysTask

An SCons task for the -q (question) option.

LOGGER = None

_abc_impl = <_abc._abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_ho_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (except i on=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call

84

SCons API Documentation

“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute
postprocess ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.
prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.
trace_message (hode, descri pt i on="node")

exception SCons.Script.Main.SConsPrintHelpException

85

SCons API Documentation

Bases: Exception
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
SCons.Script.Main.SetOption (nane, val ue)
class SCons.Script.Main.Stats
Bases: object
do_nothing (*ar gs, * * kw)
enable (out f p)
class SCons.Script.Main.TreePrinter (der i ved=False, pr une=False, st at us=False, sLi neDr aw=False)
Bases: object
display (t)
get_all_children (node)
get_derived_children (node)
SCons.Script.Main.ValidateOptions (t hr ow_except i on=False) - None
Validate options passed to SCons on the command line.
If you call this after you set all your command line options with AddOption(), it will verify that all command line options
are valid. So if you added an option —xyz and you call SCons with —xyy you can cause SCons to issue an error
message and exit by calling this function.

Parameters: throw_exception (bool) — (Optional) Should this function raise an error if there’s an invalid
option on the command line, or issue a message and exit with error status.

Raises: SConsBadOptionError — If throw_exception is True and there are invalid options on
command line.

New in version 4.5.0.
SCons.Script.Main._SConstruct_exists (di r name=",reposi tori es=[],fil el i st =None)
This function checks that an SConstruct file exists in a directory. If so, it returns the path of the file. By default, it
checks the current directory.
SCons.Script.Main._build_targets (f s, opti ons, target s, target _t op)
SCons.Script.Main._create_path (pl i st)
SCons.Script.Main._exec_main (par ser, val ues)
SCons.Script.Main._load_all_site_scons_dirs (t opdi r, ver bose=False)
Load all of the predefined site_scons dir. Order is significant; we load them in order from most generic
(machine-wide) to most specific (topdir). The verbose argument is only for testing.
SCons.Script.Main._load_site_scons_dir (t opdi r, si t e_di r _name=None)
Load the site directory under topdir.
If a site dir name is supplied use it, else use default “site_scons” Prepend site dir to sys.path. If a “site_tools” subdir
exists, prepend to toolpath. Import “site_init.py” from site dir if it exists.
SCons.Script.Main._main (par ser)
SCons.Script.Main._scons_internal_error ()
Handle all errors but user errors. Print out a message telling the user what to do in this case and print a normal trace.
SCons.Script.Main._scons_internal_warning (e)
Slightly different from _scons_user_warning in that we use the current call stack rather than sys.exc_info() to get our
stack trace. This is used by the warnings framework to print warnings.
SCons.Script.Main._scons_syntax_error (e)
Handle syntax errors. Print out a message and show where the error occurred.
SCons.Script.Main._scons_user_error (e)
Handle user errors. Print out a message and a description of the error, along with the line number and routine where
it occured. The file and line number will be the deepest stack frame that is not part of SCons itself.
SCons.Script.Main._scons_user_warning (€)
Handle user warnings. Print out a message and a description of the warning, along with the line number and routine
where it occured. The file and line number will be the deepest stack frame that is not part of SCons itself.
SCons.Script.Main._set_debug_values (opt i ons)
SCons.Script.Main.find_deepest_user_frame (t b)
Find the deepest stack frame that is not part of SCons.
Input is a “pre-processed” stack trace in the form returned by traceback.extract_tb() or traceback.extract_stack()

86

SCons API Documentation

SCons.Script.Main.main ()

SCons.Script.Main.path_string (I abel , rodul e)

SCons.Script.Main.python_version_deprecated (ver si on=sys.version_info(major=3, minor=10, micro=10,
releaselevel="final', serial=0))

SCons.Script.Main.python_version_string ()

SCons.Script.Main.python_version_unsupported (ver si on=sys.version_info(major=3, minor=10, micro=10,
releaselevel="final', serial=0))

SCons.Script.Main.revert_io ()

SCons.Script.Main.test_load_all_site_scons_dirs (d)

SCons.Script.Main.version_string (I abel , nodul e)

SCons.Script.SConsOptions module

SCons.Script.SConsOptions.Parser (ver si on)
Returns a parser object initialized with the standard SCons options.
Add options in the order we want them to show up in the -H help text, basically alphabetical. Each
op. add_opt i on() call should have a consistent format:

op. add_option("-L", "--1ong-option-nane",
nargs=1, type="string",
dest ="l ong_opti on_nane", default='foo',
action="cal | back”, call back=opt | ong_opti on,
hel p="hel p text goes here",
met avar =" VAR")

Even though the optparse module constructs reasonable default destination names from the long option names,
we’re going to be explicit about each one for easier readability and so this code will at least show up when grepping
the source for option attribute names, or otherwise browsing the source code.

exception SCons.Script.SConsOptions.SConsBadOptionError (opt _st r, par ser =None)
Bases: optparse.BadOptionError
Exception used to indicate that invalid command line options were specified

Variables:]) N) o)
e opt_str (str) — The offending option specified on command line which is not recognized

» parser (OptionParser) — The active argument parser
args
with_traceback ()
Exception.with_traceback(tb) — set self. __traceback__ to tb and return self.
class SCons.Script.SConsOptions.SConsindentedHelpFormatter (i ndent _i ncr enent =2,
max_hel p_posi ti on=24, wi dt h=None, short _first=1)
Bases: optparse.IndentedHelpFormatter
NO_DEFAULT_VALUE = 'none'
_format_text (t ext)
Format a paragraph of free-form text for inclusion in the help output at the current indentation level.
dedent ()
expand_default (opt i on)
format_description (descri pti on)
format_epilog (epi | 0Q)
format_heading (headi ng)
Translates heading to “SCons Options”
Heading of “Options” changed to “SCons Options.” Unfortunately, we have to do this here, because those titles are
hard-coded in the optparse calls.
format_option (opt i on)
Customized option formatter.
A copy of the normal opt parse. | ndent edHel pFormatter. format_opti on() method. This has been
snarfed so we can modify text wrapping to our liking:

87

SCons API Documentation

« add our own regular expression that doesn’'t break on hyphens (so things like - -no-print-directory
don't get broken).

< wrap the list of options themselves when it's too long (the wr apper . fil | (opts) call below).

* set the subsequent_indent when wrapping the help_text.
The help for each option consists of two parts:

« the opt strings and metavars e.g. (“-x”, or “-fFILENAME, —file=FILENAME")

« the user-supplied help string e.g. (“turn on expert mode”, “read data from FILENAME”)
If possible, we write both of these on the same line:

- X turn on expert node

But if the opt string list is too long, we put the help string on a second line, indented to the same column it would
start in if it fit on the first line:

-f FI LENAME, --fil e=FI LENAME
read data from FI LENAMVE

format_option_strings (opt i on)
Return a comma-separated list of option strings & metavariables.
format_usage (usage)
Formats the usage message.
indent ()
set_long_opt_delimiter (del i m
set_parser (par ser)
set_short_opt_delimiter (del i m)
store_option_strings (par ser)

class SCons.Script.SConsOptions.SConsOption (*opt s, **attrs)

88

Bases: optparse.Option

ACTIONS = ('store', 'store_const', 'store_true', 'store_false', '‘append’, 'append_const', ‘count’, 'callback’, 'help',
‘version’)

ALWAYS_TYPED_ACTIONS = ('store', ‘append’)

ATTRS = ['action’, 'type', 'dest’, 'default’, 'nargs’, ‘const’, 'choices', 'callback’, 'callback_args', 'callback_kwargs',
‘help’, 'metavar

CHECK_METHODS = [<function Option._check_action>, <function Option._check_type>, <function
Option._check_choice>, <function Option._check_dest>, <function Option._check_const>, <function
Option._check_nargs>, <function Option._check_callback>, <function SConsOption._check_nargs_optional>]
CONST_ACTIONS = ('store_const', 'append_const', 'store', ‘append', ‘callback’)

STORE_ACTIONS (‘'store’, 'store_const', 'store_true', 'store_false', '‘append’, ‘append_const', 'count’)
TYPED_ACTIONS = (‘store’, 'append', ‘callback’)

TYPES = (‘string, 'int’, 'long’, 'float’, ‘complex’, ‘choice’)

TYPE_CHECKER = {'choice" <function check_choice>, '‘complex': <function check_builtin>, 'float": <function
check_builtin>, 'int": <function check_builtin>, 'long': <function check_builtin>}

_check_action ()

_check_callback ()

_check_choice ()

_check_const ()

_check_dest ()

_check_nargs ()

_check_nargs_optional ()

_check_opt_strings (opt s)

_check_type ()

_set _attrs (attrs)

_set_opt_strings (opt s)

SCons API Documentation

check_value (opt , val ue)

convert_value (opt, val ue)

get_opt_string ()

process (opt, val ue, val ues, par ser)

take_action (acti on, dest, opt, val ue, val ues, par ser)
takes_value ()

class SCons.Script.SConsOptions.SConsOptionGroup (par ser,titl e, descri pti on=None)

Bases: optparse.OptionGroup

A subclass for SCons-specific option groups.

The only difference between this and the base class is that we print the group’s help text flush left, underneath their
own title but lined up with the normal “SCons Options”.

_check_conflict (opt i on)

_create_option_list ()

_create_option_mappings ()

_share_option_mappings (par ser)

add_option (Opt i on)

add_option (opt _str, ..., kwarg=val,...) - None
add_options (opti on_li st)
destroy ()

see OptionParser.destroy().
format_description (f or mat t er)
format_help (f or mat t er)

Format an option group’s help text.

The title is dedented so it's flush with the “SCons Options” title we print at the top.
format_option_help (f or mat t er)
get_description ()
get_option (opt _str)
has_option (opt _str)
remove_option (opt _str)
set_conflict_handler (handl er)
set_description (descri pti on)
set title (title)

class SCons.Script.SConsOptions.SConsOptionParser (usage=None, opti on_I i st =None,
option_cl ass=<cl ass ' opt parse. Opti on' >, ver si on=None, conflict_handl er="error',
descri pti on=None, f or mat t er =None, add_hel p_opti on=Tr ue, pr og=None, epi | og=None)

89

Bases: optparse.OptionParser

_add_help_option ()

_add_version_option ()

_check_conflict (opt i on)

_create_option_list ()

_create_option_mappings ()

_get_all_options ()

_get_args (ar gs)

_init_parsing_state ()

_match_long_opt (opt: string) - string
Determine which long option string ‘opt’ matches, ie. which one it is an unambiguous abbreviation for. Raises
BadOptionError if ‘opt’ doesn’t unambiguously match any long option string.

_populate_option_list (opti on_l i st, add_hel p=True)

_process_args (I ar gs, r ar gs, val ues)
_process_args(largs : [string],

rargs : [string], values : Values)

Process command-line arguments and populate ‘values’, consuming options and arguments from ‘rargs’. If
‘allow_interspersed_args’ is false, stop at the first non-option argument. If true, accumulate any interspersed
non-option arguments in ‘largs’.

_process_long_opt (r ar gs, val ues)

SCons API Documentation

90

SCons-specific processing of long options.
This is copied directly from the normal opt par se. _process_I| ong_opt () method, except that, if configured to
do so, we catch the exception thrown when an unknown option is encountered and just stick it back on the
“leftover” arguments for later (re-)processing. This is because we may see the option definition later, while
processing SConscript files.

_process_short_opts (r ar gs, val ues)

_share_option_mappings (par ser)

add_local_option (*ar gs, **kw)
Adds a local option to the parser.
This is initiated by an AddOption() call to add a user-defined command-line option. We add the option to a separate
option group for the local options, creating the group if necessary.

add_option (Opt i on)

add_option (opt _str, ..., kwarg=val,...) -~ None

add_option_group (* ar gs, * *kwar gs)

add_options (opti on_Ili st)

check_values (val ues: Val ues,args: [string])
-> (values : Values, args : [string])
Check that the supplied option values and leftover arguments are valid. Returns the option values and leftover
arguments (possibly adjusted, possibly completely new — whatever you like). Default implementation just returns
the passed-in values; subclasses may override as desired.

destroy ()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and all
objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser is unusable.

disable_interspersed_args ()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don't get confused.

enable_interspersed_args ()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments. This is
the default behavior. See also disable_interspersed_args() and the class documentation description of the attribute
allow_interspersed_args.

error (M Q)
overridden OptionValueError exception handler

exit (st at us=0, nsg=None)

expand_prog_name (S)

format_description (f or mat t er)

format_epilog (f or mat t er)

format_help (f or mat t er =None)

format_option_help (f or mat t er =None)

get_default_values ()

get_description ()

get_option (opt _str)

get_option_group (opt _str)

get_prog_name ()

get_usage ()

get_version ()

has_option (opt _str)

parse_args (ar gs=None, val ues=None)
parse_args(args : [string] = sys.argv[11],

values : Values = None)

-> (values : Values, args : [string])
Parse the command-line options found in ‘args’ (default: sys.argv[1:]). Any errors result in a call to ‘error()’, which
by default prints the usage message to stderr and calls sys.exit() with an error message. On success returns a pair
(values, args) where ‘values’ is a Values instance (with all your option values) and ‘args’ is the list of arguments left
over after parsing options.

preserve_unknown_options = False

SCons API Documentation

print_help (file: file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default stdout).

print_usage (file: file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the string
“%%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]). Does nothing if
self.usage is empty or not defined.

print_version (fil e: file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(), any
occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if self.version is
empty or undefined.

raise_exception_on_error = False

remove_option (opt _str)

reparse_local_options ()
Re-parse the leftover command-line options.
Parse options stored in self.largs, so that any value overridden on the command line is immediately available if the
user turns around and does a GetOption() right away.
We mimic the processing of the single args in the original OptionParser _process_args(), but here we allow exact
matches for long-opts only (no partial argument names!). Otherwise there could be problems in add_local_option()
below. When called from there, we try to reparse the command-line arguments that

1. haven't been processed so far (self.largs), but

2. are possibly not added to the list of options yet.) _
So, when we only have a value for “—myargument” so far, a command-line argument of “—myarg=test” would set it,

per the behaviour of _match_long_opt(), which allows for partial matches of the option name, as long as the
common prefix appears to be unique. This would lead to further confusion, because we might want to add another
option “—myarg” later on (see issue #2929).

set_conflict_handler (handl er)

set_default (dest , val ue)

set_defaults (* * kwar gs)

set_description (descri pti on)

set_process_default_values (pr ocess)

set_usage (usage)

standard_option_list = []

class SCons.Script.SConsOptions.SConsValues (def aul t s)

91

Bases: optparse.Values

Holder class for uniform access to SCons options, regardless of whether they can be set on the command line or in
the SConscript files (using the SetOption() function).

A SCons option value can originate three different ways:

1. set on the command line;
2. setin an SConscript file;

3. the default setting (from the the op.add_option() calls in the Parser() function, below).)
The command line always overrides a value set'in a SConscript file, which in turn always overrides default settings.

Because we want to support user-specified options in the SConscript file itself, though, we may not know about all of
the options when the command line is first parsed, so we can’t make all the necessary precedence decisions at the
time the option is configured.
The solution implemented in this class is to keep these different sets of settings separate (command line, SConscript
file, and default) and to override the __ getattr () method to check them in turn. This should allow the rest of the
code to just fetch values as attributes of an instance of this class, without having to worry about where they came
from.
Note that not all command line options are settable from SConscript files, and the ones that are must be explicitly
added to the “settable” list in this class, and optionally validated and coerced in the set_option() method.
__Qetattr__ (attr)
Fetches an options value, checking first for explicit settings from the command line (which are direct attributes),
then the SConscript file settings, then the default values.

SCons API Documentation

_update (di ct, node)
_update_careful (di ct)
Update the option values from an arbitrary dictionary, but only use keys from dict that already have a
corresponding attribute in self. Any keys in dict without a corresponding attribute are silently ignored.
_update_loose (di ct)
Update the option values from an arbitrary dictionary, using all keys from the dictionary regardless of whether they
have a corresponding attribute in self or not.
ensure_value (attr, val ue)
read_file (fi | enanme, node="careful’)
read_module (modnane, node="careful’)
set_option (nane, val ue)
Sets an option from an SConscript file.

Raises: UserError —invalid or malformed option (“error in your script”)
settable = ['clean’, 'diskcheck’, 'duplicate’, 'experimental’, 'hash_chunksize', 'hash_format', 'help’, ‘implicit_cache’,
'implicit_deps_changed', 'implicit_deps_unchanged’, 'max_drift', 'md5_chunksize', 'no_exec', 'no_progress',
'num_jobs', 'random’, 'silent’, 'stack_size', 'warn’, 'disable_execute_ninja’, 'disable_ninja’, 'skip_ninja_regen']
SCons.Script.SConsOptions.diskcheck convert (val ue)

SCons.Script.SConscript module

This module defines the Python API provided to SConscript files.
SCons.Script.SConscript.BuildDefaultGlobals ()
Create a dictionary containing all the default globals for SConstruct and SConscript files.
SCons.Script.SConscript.Configure (* ar gs, * * kw)
class SCons.Script.SConscript.DefaultEnvironmentCall (met hod_nane, subst =0)
Bases: object
A class that implements “global function” calls of Environment methods by fetching the specified method from the
DefaultEnvironment'’s class. Note that this uses an intermediate proxy class instead of calling the DefaultEnvironment
method directly so that the proxy can override the subst() method and thereby prevent expansion of construction
variables (since from the user’s point of view this was called as a global function, with no associated construction
environment).
class SCons.Script.SConscript.Frame (f s, export s, sconscri pt)
Bases: object
A frame on the SConstruct/SConscript call stack
SCons.Script.SConscript.Return (*var s, ** kw)
class SCons.Script.SConscript.SConsEnvironment (pl at f or m=None, t ool s=None, t ool pat h=None,
vari abl es=None, par se_f | ags=None, ** kw)
Bases: SCons.Environment.Base
An Environment subclass that contains all of the methods that are particular to the wrapper SCons interface and
which aren’t (or shouldn't be) part of the build engine itself.
Note that not all of the methods of this class have corresponding global functions, there are some private methods.
Action (*ar gs, ** kw)
AddMethod (f unct i on, nane=None)
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.
AddPostAction (fi | es, acti on)
AddPreAction (fi | es, acti on)
Alias (t ar get , sour ce=[], act i on=None, **kw)
AlwaysBuild (*t ar get s)
Append (* * kw)
Append values to construction variables in an Environment.
The variable is created if it is not already present.
AppendENVPath (nane, newpat h, envnane='"ENV', sep="', del et e_exi sti ng=False)
Append path elements to the path name in the envname dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the case
where the env variable is a list instead of a string.

92

SCons API Documentation

93

If delete_existing is False, a newpath element already in the path will not be moved to the end (it will be left where
it is).

AppendUnique (del et e_exi st i ng=False, ** kw)
Append values to existing construction variables in an Environment, if they’re not already there. If delete_existing is
True, removes existing values first, so values move to end.

Builder (* * kw)

CacheDir (pat h, cust om _cl ass=None)

Clean (targets,files)

Clone (t ool s=[], t ool pat h=None, par se_f | ags=None, * * kw)
Return a copy of a construction Environment.
The copy is like a Python “deep copy”-that is, independent copies are made recursively of each objects—except
that a reference is copied when an object is not deep-copyable (like a function). There are no references to any
mutable objects in the original Environment.

Command (t ar get , sour ce, acti on, **kw)
Builds the supplied target files from the supplied source files using the supplied action. Action may be any type that
the Builder constructor will accept for an action.

Configure (*ar gs, * * kw)

Decider (f uncti on)

Default (*t ar get s)

Depends (t ar get , dependency)
Explicity specify that ‘target’s depend on ‘dependency’.

Detect (pr ogs)
Return the first available program from one or more possibilities.

Parameters: progs (str or list) — one or more command names to check for

Dictionary (*ar gs)
Return construction variables from an environment.

Parameters: *args (optional) — variable names to look up

Returns: If args omitted, the dictionary of all construction variables. If one arg, the corresponding
value is returned. If more than one arg, a list of values is returned.

Raises: KeyError —if any of args is not in the construction environment.
Dir (nane, *ar gs, **kw)
Dump (key=None, f or mat ='pretty’)
Return construction variables serialized to a string.

Parameters: .)] }
» key (optional) — if None, format the whole dict of variables. Else format the value of key

(Default value = None)

- format (str, optional) — specify the format to serialize to. “pretty” generates a
pretty-printed string, “json” a JSON-formatted string. (Default value = “pretty”)

static EnsurePythonVersion (maj or, nmi nor)

Exit abnormally if the Python version is not late enough.
static EnsureSConsVersion (maj or, m nor, revi si on=0)

Exit abnormally if the SCons version is not late enough.
Entry (name, *ar gs, ** kw)
Environment (* * kw)
Execute (acti on, *ar gs, **kw)

Directly execute an action through an Environment
static Exit (val ue=0)
Export (*var s, **kw)
File (nane, *ar gs, **kw)
FindFile (fi l e, di rs)
FindInstalledFiles ()

returns the list of all targets of the Install and InstallAs Builder.
FindIxes (pat hs, prefi x, suf fi x)

SCons API Documentation

Search a list of paths for something that matches the prefix and suffix.

Parameters: .
» paths — the list of paths or nodes.

 prefix — construction variable for the prefix.

« suffix — construction variable for the suffix.
Returns: the matched path or None
FindSourceFiles (node="") - list
Return a list of all source files.
Flatten (sequence)
GetBuildPath (fi | es)
static GetLaunchDir ()
GetOption (nane)
Glob (pat t er n, ondi sk=True, sour ce=False, st ri ngs=False, excl ude=None)
Help (t ext , append=False)
Ignore (t ar get , dependency)
Ignore a dependency.
Import (*vars)
Literal (st ri ng)
Local (*t ar get s)
MergeFlags (ar gs, uni que=True) - None
Merge flags into construction variables.
Merges the flags from args into this construction environent. If args is not a dict, it is first converted to one with
flags distributed into appropriate construction variables. See ParseFlags().

Parameters:
» args — flags to merge
* unique — merge flags rather than appending (default: True). When merging, path
variables are retained from the front, other construction variables from the end.
NoCache (*t ar get s)
Tags a target so that it will not be cached
NoClean (*t ar get s)
Tags a target so that it will not be cleaned by -c
Override (overri des)
Produce a modified environment whose variables are overridden by the overrides dictionaries. “overrides” is a
dictionary that will override the variables of this environment.
This function is much more efficient than Clone() or creating a new Environment because it doesn’'t copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn’t even create
a wrapper object if there are no overrides.
ParseConfig (command, f unct i on=None, uni que=True)
Parse the result of running a command to update construction vars.
Use f unct i on to parse the output of running command in order to modify the current environment.

Parameters: .]]] .
» command — a string or a list of strings representing a command and its arguments.

 function — called to process the result of conmand, which will be passed as ar gs. If
function is omitted or None, MergeFlags() is used. Takes 3 args
(env, args, unique)

» unique — whether no duplicate values are allowed (default true)

ParseDepends (fi | enane, nust _exi st =None, onl y_one=False)
Parse a mkdep-style file for explicit dependencies. This is completely abusable, and should be unnecessary in the
“normal” case of proper SCons configuration, but it may help make the transition from a Make hierarchy easier for
some people to swallow. It can also be genuinely useful when using a tool that can write a .d file, but for which
writing a scanner would be too complicated.

ParseFlags (*f | ags) — dict
Return a dict of parsed flags.

94

SCons API Documentation

Parse f | ags and return a dict with the flags distributed into the appropriate construction variable names. The flags
are treated as a typical set of command-line flags for a GNU-style toolchain, such as might have been generated
by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in this method -
the choices are not expected to be portable to other toolchains.
If one of the f | ags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest of
the string is executed; the result of that evaluation is then added to the dict.

Platform (pl at f orm)

Precious (*t ar get s)

Prepend (* * kw)
Prepend values to construction variables in an Environment.
The variable is created if it is not already present.

PrependENVPath (name, newpat h, envnane='ENV', sep="', del et e_exi st i nhg=True)
Prepend path elements to the path name in the envname dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the case
where the env variable is a list instead of a string.
If delete_existing is False, a newpath component already in the path will not be moved to the front (it will be left
where it is).

PrependUnique (del et e_exi st i ng=False, * * kw)
Prepend values to existing construction variables in an Environment, if they’re not already there. If delete_existing
is True, removes existing values first, so values move to front.

Pseudo (*t ar get s)

PyPackageDir (nodul enane)

RemoveMethod (f unct i on)
Removes the specified function’s MethodWrapper from the added_methods list, so we don’t re-bind it when
making a clone.

Replace (* * kw)
Replace existing construction variables in an Environment with new construction variables and/or values.

Replacelxes (pat h, ol d_prefix, ol d_suffix, new_prefix, new_suffix)
Replace old_prefix with new_prefix and old_suffix with new_suffix.
env - Environment used to interpolate variables. path - the path that will be modified. old_prefix - construction
variable for the old prefix. old_suffix - construction variable for the old suffix. new_prefix - construction variable for
the new prefix. new_suffix - construction variable for the new suffix.

Repository (*di r s, **kw)

Requires (t ar get , prerequi site)
Specify that ‘prerequisite’ must be built before ‘target’, (but ‘target’ does not actually depend on ‘prerequisite’ and
need not be rebuilt if it changes).

SConscript (*1 s, ** kw)
Execute SCons configuration files.

Parameters: *Is (str or list) — configuration file(s) to execute.

Keyword o . _ _
Arguments: « dirs (list) — execute SConscript in each listed directory.

* name (str) — execute script ‘name’ (used only with ‘dirs’).

» exports (list or dict) — locally export variables the called script(s) can import.

 variant_dir (str) — mirror sources needed for the build in a variant directory to allow
building in it.

» duplicate (bool) — physically duplicate sources instead of just adjusting paths of
derived files (used only with ‘variant_dir’) (default is True).

» must_exist (bool) — fail if a requested script is missing (default is False, default is
deprecated).
Returns: list of variables returned by the called script

Raises: UserError — a script is not found and such exceptions are enabled.

static SConscriptChdir (f| ag: bool) -~ None
SConsignFile (nane=".sconsign’, dom nodul e=None)

95

SCons API Documentation

Scanner (*ar gs, **kw)

SetDefault (* * kw)

SetOption (nane, val ue)

SideEffect (si de_ef fect, target)
Tell scons that side_effects are built as side effects of building targets.

Split (ar g)
This function converts a string or list into a list of strings or Nodes. This makes things easier for users by allowing
files to be specified as a white-space separated list to be split.

The input rules are:

A single string containing names separated by spaces. These will be split apart at the spaces.
» A single Node instance

+ Alist containing either strings or Node instances. Any strings in the list are not split at spaces.
In all cases, the function returns a list of Nodes and strings.

Tool (t ool , t ool pat h=None, **kwar gs) — SCons.Tool.Tool
Find and run tool module tool.
Changed in version 4.2: returns the tool module rather than None.
Value (val ue, bui I t _val ue=None, nane=None)
Return a Value (Python expression) node.
Changed in version 4.0: the name parameter was added.
VariantDir (vari ant _dir,src_dir,duplicate=1)
Wherels (pr og, pat h=None, pat hext =None, r ej ect =None)
Find prog in the path.
_canonicalize (pat h)
Allow Dirs and strings beginning with # for top-relative.
Note this uses the current env’s fs (in self).
_changed_build (dependency, t arget, prev_ni, repo_node=None)
_changed_content (dependency, t arget, prev_ni , repo_node=None)
_changed_source (dependency, t arget, prev_ni ,repo_node=None)
_changed_timestamp_match (dependency, t ar get, prev_ni ,repo_node=None)
_changed_timestamp_newer (dependency, t ar get, prev_ni , repo_node=None)
_changed_timestamp_then_content (dependency, t ar get, prev_ni, repo_node=None)
_find_toolpath_dir (t p)
_get_SConscript_filenames (I s, kw)
Convert the parameters passed to SConscript() calls into a list of files and export variables. If the parameters are
invalid, throws SCons.Errors.UserError. Returns a tuple (I, €) where | is a list of SConscript filenames and e is a list
of exports.
static _get_major_minor_revision (ver si on_st ri ng)
Split a version string into major, minor and (optionally) revision parts.
This is complicated by the fact that a version string can be something like 3.2b1.
_gsm ()
_init_special ()
Initial the dispatch tables for special handling of special construction variables.
_update (ot her)
Private method to update an environment’s consvar dict directly.
Bypasses the normal checks that occur when users try to set items.
_update_onlynew (ot her)
Private method to add new items to an environment’s consvar dict.
Only adds items from other whose keys do not already appear in the existing dict; values from other are not used
for replacement. Bypasses the normal checks that occur when users try to set items.
arg2nodes (ar gs, node_f act ory=<cl ass ' SCons. Envi ronnment. _Nul | ' >, | ookup_li st =<cl ass
' SCons. Envi ronment . _Nul | ' >, **kw)
backtick (cormand) - str
Emulate command substitution.

96

SCons API Documentation

Provides behavior conceptually like POSIX Shell notation for running a command in backquotes (backticks) by
running command and returning the resulting output string.

This is not really a public API any longer, it is provided for the use of ParseFlags() (which supports it using a syntax
of lcommand) and ParseConfig().

Raises: OSError — if the external command returned non-zero exit status.

get (key, def aul t =None)
Emulates the get() method of dictionaries.
get_CacheDir ()
get_builder (nane)
Fetch the builder with the specified name from the environment.
get _factory (f act ory, def aul t ='File")
Return a factory function for creating Nodes for this construction environment.
get_scanner (skey)
Find the appropriate scanner given a key (usually a file suffix).
get_src_sig_type ()
get _tgt_sig_type ()
gvars ()
items ()
Emulates the items() method of dictionaries.
keys ()
Emulates the keys() method of dictionaries.
Ivars ()
scanner_map_delete (kw=None)
Delete the cached scanner map (if we need to).
setdefault (key, def aul t =None)
Emulates the setdefault() method of dictionaries.
subst (st ri ng, raw=0, t ar get =None, sour ce=None, conv=None, execut or =None, over ri des=False)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.
subst_kw (kw, r aw=0, t ar get =None, sour ce=None)
subst_list (st ri ng, raw=0, t ar get =None, sour ce=None, conv=None, execut or =None, over ri des=False)
Calls through to SCons.Subst.scons_subst_list(). See the documentation for that function.
subst_path (pat h, t ar get =None, sour ce=None)
Substitute a path list, turning EntryProxies into Nodes and leaving Nodes (and other objects) as-is.
subst_target_source (st ri ng, raw=0, t ar get =None, sour ce=None, conv=None, execut or =None,
overri des=False)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.
validate_CacheDir_class (cust om cl ass=None)
Validate the passed custom CacheDir class, or if no args are passed, validate the custom CacheDir class from the
environment.
values ()
Emulates the values() method of dictionaries.
exception SCons.Script.SConscript.SConscriptReturn
Bases: Exception
args
with_traceback ()
Exception.with_traceback(tb) — set self. _traceback _ to tb and return self.
SCons.Script.SConscript.SConscript_exception (fi | e=<_i 0. Text | ON apper name=' <stderr>' node="w
encodi ng=" utf-8'>)

97

SCons API Documentation

Print an exception stack trace just for the SConscript file(s). This will show users who have Python errors where the
problem is, without cluttering the output with all of the internal calls leading up to where we exec the SConscript.
SCons.Script.SConscript._SConscript (f s, *fi | es, **kw)
SCons.Script.SConscript.annotate (node)
Annotate a node with the stack frame describing the SConscript file and line number that created it.
SCons.Script.SConscript.compute_exports (export s)
Compute a dictionary of exports given one of the parameters to the Export() function or the exports argument to
SConscript().
SCons.Script.SConscript.get_DefaultEnvironmentProxy ()
SCons.Script.SConscript.get_calling_namespaces ()
Return the locals and globals for the function that called into this module in the current call stack.
SCons.Script.SConscript.handle_missing_SConscript (f , nust _exi st =None)
Take appropriate action on missing file in SConscript() call.
Print a warning or raise an exception on missing file, unless missing is explicitly allowed by the must_exist value. On
first warning, print a deprecation message.

Parameters: o] o
« f (str) — path of missing configuration file

e must_exist (bool) — if true, fail. If false, but not None, allow the file to be missing. The
default is None, which means issue the warning. The default is deprecated.
Raises: UserError —if must_exist is true or if global SCons.Script._no_missing_sconscript is true.

Module contents
The main() function used by the scons script.

Architecturally, this is the scons script, and will likely only be called from the external “scons” wrapper. Consequently,
anything here should not be, or be considered, part of the build engine. If it's something that we expect other software
to want to use, it should go in some other module. If it's specific to the “scons” script invocation, it goes here.
SCons.Script.HelpFunction (t ext , append=False)
class SCons.Script.TargetList (i ni t1i st =None)
Bases: collections.UserList
_abc_impl = <_abc._abc_data object>
_add_Default (I'i st)
_clear ()
_do_nothing (*ar gs, **kw)
append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t en)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
SCons.Script.Variables (f i | es=None, ar gs={})
SCons.Script._Add_Arguments (al i st)

98

SCons API Documentation

SCons.Script._Add_Targets (t I i st)
SCons.Script._Get_Default_Targets (d, f s)
SCons.Script._Set_Default_Targets (env, t1i st)
SCons.Script._Set_Default_Targets_Has_Been_Called (d, f s)
SCons.Script._Set_Default_Targets_Has_Not Been_Called (d, f s)
SCons.Script.set_missing_sconscript_error (f | ag=1)

Set behavior on missing file in SConscript() call.

Returns: previous value

SCons.Taskmaster package
Submodules

SCons. Taskmaster.Job module
Serial and Parallel classes to execute build tasks.

The Jobs class provides a higher level interface to start, stop, and wait on jobs.
class SCons.Taskmaster.Job.InterruptState
Bases: object
set ()
class SCons.Taskmaster.Job.Jobs (num t asknmast er)
Bases: object
An instance of this class initializes N jobs, and provides methods for starting, stopping, and waiting on all N jobs.
_reset_sig_handler ()
Restore the signal handlers to their previous state (before the call to _setup_sig_handler().
_setup_sig_handler ()
Setup an interrupt handler so that SCons can shutdown cleanly in various conditions:

a. SIGINT: Keyboard interrupt
b. SIGTERM: kill or system shutdown

c. SIGHUP: Controlling shell exiting) -]
We handle all of these cases by stopping the taskmaster. It turns out that it's very difficult to stop the build process

by throwing asynchronously an exception such as KeyboardInterrupt. For example, the python Condition variables
(threading.Condition) and queues do not seem to be asynchronous-exception-safe. It would require adding a
whole bunch of try/finally block and except Keyboardinterrupt all over the place.
Note also that we have to be careful to handle the case when SCons forks before executing another process. In
that case, we want the child to exit immediately.

run (post f unc=<f uncti on Jobs. <l anbda>>)
Run the jobs.
postfunc() will be invoked after the jobs has run. It will be invoked even if the jobs are interrupted by a keyboard
interrupt (well, in fact by a signal such as either SIGINT, SIGTERM or SIGHUP). The execution of postfunc() is
protected against keyboard interrupts and is guaranteed to run to completion.

were_interrupted ()
Returns whether the jobs were interrupted by a signal.

class SCons.Taskmaster.Job.LegacyParallel (t askmast er, num st ack_si ze)

Bases: object

This class is used to execute tasks in parallel, and is somewhat less efficient than Serial, but is appropriate for

parallel builds.

This class is thread safe.

start ()
Start the job. This will begin pulling tasks from the taskmaster and executing them, and return when there are no
more tasks. If a task fails to execute (i.e. execute() raises an exception), then the job will stop.

class SCons.Taskmaster.Job.NewParallel (t asknmast er, num st ack_si ze)
Bases: object

99

SCons API Documentation

class State (val ue)

Bases: enum.Enum
An enumeration.
COMPLETED = 3

READY = 0
SEARCHING =1
STALLED = 2

class Worker (owner)

100

Bases: threading.Thread
_bootstrap ()
_bootstrap_inner ()
_delete ()
Remove current thread from the dict of currently running threads.
_initialized = False
_reset_internal_locks (i s_al i ve)
_set_ident ()
_set_native_id ()
_set_tstate_lock ()
Set a lock object which will be released by the interpreter when the underlying thread state (see pystate.h) gets
deleted.
_stop ()
_wait_for_tstate_lock (bl ock=True, ti meout =- 1)
property daemon
A boolean value indicating whether this thread is a daemon thread.
This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from the
creating thread; the main thread is not a daemon thread and therefore all threads created in the main thread
default to daemon = False.
The entire Python program exits when only daemon threads are left.
getName ()
Return a string used for identification purposes only.
This method is deprecated, use the name attribute instead.
property ident
Thread identifier of this thread or None if it has not been started.
This is a nonzero integer. See the get_ident() function. Thread identifiers may be recycled when a thread exits
and another thread is created. The identifier is available even after the thread has exited.
isDaemon ()
Return whether this thread is a daemon.
This method is deprecated, use the daemon attribute instead.
is_alive ()
Return whether the thread is alive.
This method returns True just before the run() method starts until just after the run() method terminates. See also
the module function enumerate().
join (t i meout =None)
Wait until the thread terminates.
This blocks the calling thread until the thread whose join() method is called terminates — either normally or
through an unhandled exception or until the optional timeout occurs.
When the timeout argument is present and not None, it should be a floating point number specifying a timeout for
the operation in seconds (or fractions thereof). As join() always returns None, you must call is_alive() after join()
to decide whether a timeout happened — if the thread is still alive, the join() call timed out.
When the timeout argument is not present or None, the operation will block until the thread terminates.
A thread can be join()ed many times.
join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock. It is
also an error to join() a thread before it has been started and attempts to do so raises the same exception.
property name
A string used for identification purposes only.
It has no semantics. Multiple threads may be given the same name. The initial name is set by the constructor.

SCons API Documentation

property native_id
Native integral thread ID of this thread, or None if it has not been started.
This is a non-negative integer. See the get_native_id() function. This represents the Thread ID as reported by
the kernel.
run ()
Method representing the thread’s activity.
You may override this method in a subclass. The standard run() method invokes the callable object passed to
the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from the
args and kwargs arguments, respectively.
setDaemon (daenoni c)
Set whether this thread is a daemon.
This method is deprecated, use the .daemon property instead.
setName (nane)
Set the name string for this thread.
This method is deprecated, use the name attribute instead.
start ()
Start the thread’s activity.
It must be called at most once per thread object. It arranges for the object’'s run() method to be invoked in a
separate thread of control.
This method will raise a RuntimeError if called more than once on the same thread object.
_adjust_stack_size ()
_restore_stack_size (prev_si ze)
_setup_logging ()
_start_workers ()
_work ()
start ()
trace_message (nessage)
class SCons.Taskmaster.Job.Serial (t askmast er)
Bases: object
This class is used to execute tasks in series, and is more efficient than Parallel, but is only appropriate for
non-parallel builds. Only one instance of this class should be in existence at a time.
This class is not thread safe.
start ()
Start the job. This will begin pulling tasks from the taskmaster and executing them, and return when there are no
more tasks. If a task fails to execute (i.e. execute() raises an exception), then the job will stop.
class SCons.Taskmaster.Job.ThreadPool (hum st ack_si ze, i nt er r upt ed)
Bases: object
This class is responsible for spawning and managing worker threads.
cleanup ()
Shuts down the thread pool, giving each worker thread a chance to shut down gracefully.
get ()
Remove and return a result tuple from the results queue.
preparation_failed (t ask)
put (t ask)
Put task into request queue.
class SCons.Taskmaster.Job.Worker (r equest Queue, r esul t sQueue, i nt er r upt ed)
Bases: threading.Thread
A worker thread waits on a task to be posted to its request queue, dequeues the task, executes it, and posts a tuple
including the task and a boolean indicating whether the task executed successfully.
_bootstrap ()
_bootstrap_inner ()
_delete ()
Remove current thread from the dict of currently running threads.
_initialized = False
_reset_internal_locks (i s_al i ve)
_set_ident ()

101

SCons API Documentation

_set_native_id ()
_set_tstate lock ()
Set a lock object which will be released by the interpreter when the underlying thread state (see pystate.h) gets
deleted.
_stop ()
_wait_for_tstate lock (bl ock=True, ti meout =- 1)
property daemon
A boolean value indicating whether this thread is a daemon thread.
This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from the
creating thread; the main thread is not a daemon thread and therefore all threads created in the main thread
default to daemon = False.
The entire Python program exits when only daemon threads are left.
getName ()
Return a string used for identification purposes only.
This method is deprecated, use the name attribute instead.
property ident
Thread identifier of this thread or None if it has not been started.
This is a nonzero integer. See the get_ident() function. Thread identifiers may be recycled when a thread exits and
another thread is created. The identifier is available even after the thread has exited.
isDaemon ()
Return whether this thread is a daemon.
This method is deprecated, use the daemon attribute instead.
is_alive ()
Return whether the thread is alive.
This method returns True just before the run() method starts until just after the run() method terminates. See also
the module function enumerate().
join (t i meout =None)
Wait until the thread terminates.
This blocks the calling thread until the thread whose join() method is called terminates — either normally or through
an unhandled exception or until the optional timeout occurs.
When the timeout argument is present and not None, it should be a floating point number specifying a timeout for
the operation in seconds (or fractions thereof). As join() always returns None, you must call is_alive() after join() to
decide whether a timeout happened — if the thread is still alive, the join() call timed out.
When the timeout argument is not present or None, the operation will block until the thread terminates.
A thread can be join()ed many times.
join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock. It is
also an error to join() a thread before it has been started and attempts to do so raises the same exception.
property name
A string used for identification purposes only.
It has no semantics. Multiple threads may be given the same name. The initial name is set by the constructor.
property native_id
Native integral thread ID of this thread, or None if it has not been started.
This is a non-negative integer. See the get_native_id() function. This represents the Thread ID as reported by the
kernel.
run ()
Method representing the thread’s activity.
You may override this method in a subclass. The standard run() method invokes the callable object passed to the
object’s constructor as the target argument, if any, with sequential and keyword arguments taken from the args and
kwargs arguments, respectively.
setDaemon (daenoni ¢)
Set whether this thread is a daemon.
This method is deprecated, use the .daemon property instead.
setName (namne)
Set the name string for this thread.
This method is deprecated, use the name attribute instead.
start ()

102

SCons API Documentation

Start the thread’s activity.

It must be called at most once per thread object. It arranges for the object’s run() method to be invoked in a
separate thread of control.

This method will raise a RuntimeError if called more than once on the same thread object.

Module contents
Generic Taskmaster module for the SCons build engine.

This module contains the primary interface(s) between a wrapping user interface and the SCons build engine. There
are two key classes here:

Taskmaster

This is the main engine for walking the dependency graph and calling things to decide what does or doesn’t need
to be built.

Task

This is the base class for allowing a wrapping interface to decide what does or doesn’t actually need to be done.
The intention is for a wrapping interface to subclass this as appropriate for different types of behavior it may need.

The canonical example is the SCons native Python interface, which has Task subclasses that handle its specific
behavior, like printing “foo’ is up to date” when a top-level target doesn’t need to be built, and handling the -c
option by removing targets as its “build” action. There is also a separate subclass for suppressing this output when
the -q option is used.

The Taskmaster instantiates a Task object for each (set of) target(s) that it decides need to be evaluated and/or
built.
class SCons.Taskmaster.AlwaysTask (t mt ar get s, t op, node)

Bases: SCons.Taskmaster.Task

LOGGER = None

_abc_impl = <_abc._abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_Nno_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (except i on=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

103

SCons API Documentation

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute

postprocess ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (hode, descri pt i on="node")

class SCons.Taskmaster.OutOfDateTask (t m t ar get s, t op, node)
Bases: SCons.Taskmaster.Task
LOGGER = None

104

SCons API Documentation

_abc_impl = <_abc._abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_ho_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (except i on=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()

105

SCons API Documentation

Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.
make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.
make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.
needs_execute ()
Returns True (indicating this Task should be executed) if this Task’s target state indicates it needs executing,
which has already been determined by an earlier up-to-date check.
postprocess ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.
prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.
trace_message (hode, descri pt i on="node’)
class SCons.Taskmaster.Stats
Bases: object
A simple class for holding statistics about the disposition of a Node by the Taskmaster. If we're collecting statistics,
each Node processed by the Taskmaster gets one of these attached, in which case the Taskmaster records its
decision each time it processes the Node. (Ideally, that’s just once per Node.)
class SCons.Taskmaster.Task (t mt argets, t op, node)
Bases: abc.ABC
SCons build engine abstract task class.
This controls the interaction of the actual building of node and the rest of the engine.
This is expected to handle all of the normally-customizable aspects of controlling a build, so any given application
should be able to do what it wants by sub-classing this class and overriding methods as appropriate. If an application
needs to customize something by sub-classing Taskmaster (or some other build engine class), we should first try to
migrate that functionality into this class.
Note that it's generally a good idea for sub-classes to call these methods explicitly to update state, etc., rather than
roll their own interaction with Taskmaster from scratch.
LOGGER = None
_abc_impl = <_abc._abc_data object>
_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.
_ho_exception_to_raise ()
display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.
exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.
exc_info ()
Returns info about a recorded exception.
exception_set (except i on=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

106

SCons API Documentation

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

abstract needs_execute ()

postprocess ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.

107

SCons API Documentation

This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (nhode, descri pt i on="node’)

class SCons.Taskmaster.Taskmaster (t ar get s=[], t asker =None, or der =None, t r ace=None)

108

Bases: object
The Taskmaster for walking the dependency DAG.
_find_next_ready_node ()

Finds the next node that is ready to be built.

This is the main guts of the DAG walk. We loop through the list of candidates, looking for something that has no
un-built children (i.e., that is a leaf Node or has dependencies that are all leaf Nodes or up-to-date). Candidate
Nodes are re-scanned (both the target Node itself and its sources, which are always scanned in the context of a
given target) to discover implicit dependencies. A Node that must wait for some children to be built will be put back
on the candidates list after the children have finished building. A Node that has been put back on the candidates
list in this way may have itself (or its sources) re-scanned, in order to handle generated header files (e.g.) and the
implicit dependencies therein.

Note that this method does not do any signature calculation or up-to-date check itself. All of that is handled by the
Task class. This is purely concerned with the dependency graph walk.

_validate_pending_children ()

Validate the content of the pending_children set. Assert if an internal error is found.

This function is used strictly for debugging the taskmaster by checking that no invariants are violated. It is not used
in normal operation.

The pending_children set is used to detect cycles in the dependency graph. We call a “pending child” a child that is
found in the “pending” state when checking the dependencies of its parent node.

A pending child can occur when the Taskmaster completes a loop through a cycle. For example, let's imagine a
graph made of three nodes (A, B and C) making a cycle. The evaluation starts at node A. The Taskmaster first
considers whether node A’s child B is up-to-date. Then, recursively, node B needs to check whether node C is
up-to-date. This leaves us with a dependency graph looking like:

Next candi date

Now, when the Taskmaster examines the Node C’s child Node A, it finds that Node A is in the “pending” state.
Therefore, Node A is a pending child of node C.

Pending children indicate that the Taskmaster has potentially loop back through a cycle. We say potentially
because it could also occur when a DAG is evaluated in parallel. For example, consider the following graph:

Node A (Pending) --> Node B(Pending) --> Node C (Pending) --> ...
N

e > Node D (NoState) -------- i
/
Next candi date /

The Taskmaster first evaluates the nodes A, B, and C and starts building some children of node C. Assuming, that
the maximum parallel level has not been reached, the Taskmaster will examine Node D. It will find that Node C is a
pending child of Node D.

In summary, evaluating a graph with a cycle will always involve a pending child at one point. A pending child might
indicate either a cycle or a diamond-shaped DAG. Only a fraction of the nodes ends-up being a “pending child” of
another node. This keeps the pending_children set small in practice.

We can differentiate between the two cases if we wait until the end of the build. At this point, all the pending
children nodes due to a diamond-shaped DAG will have been properly built (or will have failed to build). But, the
pending children involved in a cycle will still be in the pending state.

SCons API Documentation

The taskmaster removes nodes from the pending_children set as soon as a pending_children node moves out of
the pending state. This also helps to keep the pending_children set small.

cleanup ()
Check for dependency cycles.

configure_trace (t r ace=None)
This handles the command line option —taskmastertrace= It can be: - : output to stdout <filename> : output to a file
False/None : Do not trace

find_next_candidate ()
Returns the next candidate Node for (potential) evaluation.
The candidate list (really a stack) initially consists of all of the top-level (command line) targets provided when the
Taskmaster was initialized. While we walk the DAG, visiting Nodes, all the children that haven't finished processing
get pushed on to the candidate list. Each child can then be popped and examined in turn for whether their children
are all up-to-date, in which case a Task will be created for their actual evaluation and potential building.
Here is where we also allow candidate Nodes to alter the list of Nodes that should be examined. This is used, for
example, when invoking SCons in a source directory. A source directory Node can return its corresponding build
directory Node, essentially saying, “Hey, you really need to build this thing over here instead.”

next_task ()
Returns the next task to be executed.
This simply asks for the next Node to be evaluated, and then wraps it in the specific Task subclass with which we
were initialized.

no_next_candidate ()
Stops Taskmaster processing by not returning a next candidate.
Note that we have to clean-up the Taskmaster candidate list because the cycle detection depends on the fact all
nodes have been processed somehow.

stop ()
Stops the current build completely.

tm_trace_node (node)

will_not_build (nodes, node_f unc=<functi on Taskmast er. <l anbda>>)
Perform clean-up about nodes that will never be built. Invokes a user defined function on all of these nodes
(including all of their parents).

SCons.Taskmaster.dump_stats ()
SCons.Taskmaster.find_cycle (st ack, vi si t ed)

SCons.Tool package

Module contents
SCons tool selection.

Looks for modules that define a callable object that can modify a construction environment as appropriate for a given
tool (or tool chain).

Note that because this subsystem just selects a callable that can modify a construction environment, it's possible for
people to define their own “tool specification” in an arbitrary callable function. No one needs to use or tie in to this
subsystem in order to roll their own tool specifications.
SCons.Tool.CreateJarBuilder (env)
The Jar builder expects a list of class files which it can package into a jar file.
The jar tool provides an interface for passing other types of java files such as .java, directories or swig interfaces and
will build them to class files in which it can package into the jar.
SCons.Tool.CreateJavaClassDirBuilder (env)
SCons.Tool.CreateJavaClassFileBuilder (env)
SCons.Tool.CreateJavaFileBuilder (env)
SCons.Tool.CreateJavaHBuilder (env)
SCons.Tool.FindAllTools (t ool s, env)
SCons.Tool.FindTool (t ool s, env)
SCons.Tool.Initializers (env)
class SCons.Tool.Tool (nane, t ool pat h=None, * * kwar gs)
Bases: object

109

SCons API Documentation

_tool_module ()
Try to load a tool module.
This will hunt in the toolpath for both a Python file (toolname.py) and a Python module (toolname directory), then
try the regular import machinery, then fallback to try a zipfile.
class SCons.Tool.Toollnitializer (env, t ool s, nanes)
Bases: object
A class for delayed initialization of Tools modules.
Instances of this class associate a list of Tool modules with a list of Builder method names that will be added by those
Tool modules. As part of instantiating this object for a particular construction environment, we also add the
appropriate ToollnitializerMethod objects for the various Builder methods that we want to use to delay Tool searches
until necessary.
apply_tools (env)
Searches the list of associated Tool modules for one that exists, and applies that to the construction environment.
remove_methods (env)
Removes the methods that were added by the tool initialization so we no longer copy and re-bind them when the
construction environment gets cloned.
class SCons.Tool.ToollnitializerMethod (nane, i niti ali zer)
Bases: object
This is added to a construction environment in place of a method(s) normally called for a Builder (env.Object,
env.StaticObject, etc.). When called, it has its associated Toollnitializer object search the specified list of tools and
apply the first one that exists to the construction environment. It then calls whatever builder was (presumably) added
to the construction environment in place of this particular instance.
__call__ (env, *args, **kw)
get_builder (env)
Returns the appropriate real Builder for this method name after having the associated Toollnitializer object apply
the appropriate Tool module.
SCons.Tool.createCFileBuilders (env)
This is a utility function that creates the CFile/CXXFile Builders in an Environment if they are not there already.
If they are there already, we return the existing ones.
This is a separate function because soooo many Tools use this functionality.
The return is a 2-tuple of (CFile, CXXFile)
SCons.Tool.createLoadableModuleBuilder (env, | oadabl e_nmodul e_suf fi x='$_LDMODULESUFFIX')
This is a utility function that creates the LoadableModule Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

Parameters: loadable_module_suffix — The suffix specified for the loadable module builder

SCons.Tool.createObjBuilders (env)

This is a utility function that creates the StaticObject and SharedObject Builders in an Environment if they are not
there already.

If they are there already, we return the existing ones.

This is a separate function because soooo many Tools use this functionality.

The return is a 2-tuple of (StaticObject, SharedObject)

SCons.Tool.createProgBuilder (env)

This is a utility function that creates the Program Builder in an Environment if it is not there already.

If it is already there, we return the existing one.

SCons.Tool.createSharedLibBuilder (env, shl i b_suf fi x="$ _SHLIBSUFFIX")

This is a utility function that creates the SharedLibrary Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

Parameters: shlib_suffix — The suffix specified for the shared library builder

SCons.Tool.createStaticLibBuilder (env)

This is a utility function that creates the StaticLibrary Builder in an Environment if it is not there already.

If it is already there, we return the existing one.

SCons.Tool.find_program_path (env, key _pr ogr am def aul t _pat hs=None, add_pat h=False) - Optional[str]
Find the location of a tool using various means.

Mainly for windows where tools aren’t all installed in /usr/bin, etc.

110

SCons API Documentation

Parameters: . .
 env — Current Construction Environment.

e key_program — Tool to locate.
« default_paths — List of additional paths this tool might be found in.
e add_path — If true, add path found if it was from default_paths.
SCons.Tool.tool_list (pl at f or m env)
SCons.Variables package
Submodules

SCons.Variables.Bool Variable module
Variable type for true/false Variables.

Usage example:

opts = Vari abl es()
opt s. Add(Bool Vari abl e(' enbedded', 'build for an enbedded systeni, Fal se))

i f env['enbedded']:

SCons.Variables.BoolVariable.BoolVariable (key, hel p, def aul t) - Tuple[str, str, str, Callable, Callable]
Return a tuple describing a boolean SCons Variable.
The input parameters describe a boolean option. Returns a tuple including the correct converter and validator. The
help text will have (yes| no) automatically appended to show the valid values. The result is usable as input to Add().
SCons.Variables.BoolVariable._text2bool (val : str) — bool
Convert boolean-like string to boolean.
If val looks like it expresses a bool-like value, based on the TRUE_STRINGS and FALSE_STRINGS tuples, return
the appropriate value.
This is usable as a converter function for SCons Variables.

Raises: ValueError — if val cannot be converted to boolean.

SCons.Variables.BoolVariable._validator (key, val , env) — None
Validate that the value of key in env is a boolean.
Parmaeter val is not used in the check.
Usable as a validator function for SCons Variables.

Raises:]))
» KeyError —if key is not set in env

* UserError —if the value of key is not Tr ue or Fal se.

SCons.Variables.EnumV ariable module
Variable type for enumeration Variables.
Enumeration variables allow selection of one from a specified set of values.

Usage example:

opts = Vari abl es()
opt s. Add(
EnunVari abl e(
' debug’,
hel p=' debug out put and synbol s',
def aul t =" no'

111

SCons API Documentation

al | oned_val ues=("'yes', 'no', 'full'),
map={},

i gnor ecase=2,

)
if env['debug'] == "full":

SCons.Variables.EnumVariable.EnumVariable (key, hel p, def aul t, al | owed_val ues, map={}, i gnor ecase=0) -
Tuple[str, str, str, Callable, Callable]

Return a tuple describing an enumaration SCons Variable.

The input parameters describe an option with only certain values allowed. Returns A tuple including an appropriate

converter and validator. The result is usable as input to Add().

key and default are passed directly on to Add().

help is the descriptive part of the help text, and will have the allowed values automatically appended.

allowed_values is a list of strings, which are the allowed values for this option.

The map-dictionary may be used for converting the input value into canonical values (e.g. for aliases).

The value of ignorecase defines the behaviour of the validator:

« 0: the validator/converter are case-sensitive.
« 1: the validator/converter are case-insensitive.

+ 2: the validator/converter is case-insensitive and the converted value will always be lower-case.)
The validator tests whether the value is in the list of allowed values. The converter converts input values according to

the given map-dictionary (unmapped input values are returned unchanged).
SCons.Variables.ListVariable module
Variable type for list Variables.

A ‘list’ option may either be ‘all’, ‘none’ or a list of names separated by comma. After the option has been processed,
the option value holds either the named list elements, all list elements or no list elements at all.

Usage example:
list_of libs = Split('x11 gl qt ical")

opts = Vari abl es()

opt s. Add(
Li st Vari abl e(
"shared',
hel p="libraries to build as shared libraries',

default="all",
el ens=list_of |ibs,

)

for libin list _of |ibs:
if libin env['shared]:
env. SharedObj ect(...)
el se:
env. ject(...)

SCons.Variables.ListVariable.ListVariable (key, hel p, def aul t , nanes, map={}) —» Tuple[str, str, str, None,
Callable]

112

SCons API Documentation

Return a tuple describing a list SCons Variable.

The input parameters describe a ‘list’ option. Returns a tuple including the correct converter and validator. The result

is usable for input to Add().

help will have text appended indicating the legal values (not including any extra names from map).

map can be used to map alternative names to the ones in names - that is, a form of alias.

A ‘list’ option may either be ‘all’, ‘none’ or a list of names (separated by commas).
SCons.Variables.ListVariable._converter (val , al | onedE!l ens, mapdi ct) -
SCons.Variables.ListVariable. ListVariable

SCons.Variables.PackageV ariable module
Variable type for package Variables.
To be used whenever a ‘package’ may be enabled/disabled and the package path may be specified.
Given these options
x11l=no (di sabl es X11 support)

x1ll=yes (will search for the package installation dir)
x11=/usr/local / X11 (will check this path for existence)

Can be used as a replacement for autoconf’s - - wi t h- xxx=yyy

opts = Vari abl es()

opt s. Add(
PackageVari abl e(
key='x11",

hel p="use X11 installed here (yes = search sone pl aces)"',
defaul t =" yes'

)

)

if env['x1l'] == True:
dir = ... # search X11 in sone standard pl aces ...
env['x11'] = dir

if env['x1l']:

build with x11 ...

SCons.Variables.PackageVariable.PackageVariable (key, hel p, def aul t , sear chf unc=None) - Tuple[str, str,
str, Callable, Callable]
Return a tuple describing a package list SCons Variable.
The input parameters describe a ‘package list’ option. Returns a tuple including the correct converter and validator
appended. The result is usable as input to Add() .
A ‘package list’ option may either be ‘all’, ‘none’ or a pathname string. This information is appended to help.
SCons.Variables.PackageVariable._converter (val)
SCons.Variables.PackageVariable._validator (key, val , env, sear chf unc) - None

SCons.Variables.PathV ariable module
Variable type for path Variables.

To be used whenever a user-specified path override setting should be allowed.
Arguments to PathVariable are:

« key - name of this option on the command line (e.g. “prefix”)

* help - help string for option

113

SCons API Documentation

« default - default value for this option

« validator - [optional] validator for option value. Predefined are:

« PathAccept - accepts any path setting; no validation
 PathisDir - path must be an existing directory

« PathisDirCreate - path must be a dir; will create
 PathisFile - path must be a file

« PathExists - path must exist (any type) [default]
The validator is a function that is called and which should return True or False to indicate if the path is valid. The
arguments to the validator function are: (key, val, env). key is the name of the option, val is the path specified for
the option, and env is the environment to which the Options have been added.

Usage example:

opts = Variabl es()
opt s. Add(
Pat hVvari abl e(
‘qtdir',
hel p="where the root of @ is installed',
defaul t=qtdir,
val i dat or =Pat hl sDi r,

)

)
opt s. Add(
Pat hVvari abl e(
‘gt _i ncl udes',
hel p="where the @ includes are installed',
defaul t="$qtdir/includes',
val i dat or =Pat hl sDi r Cr eat e,

)
)
opt s. Add(
Pat hVvari abl e(
‘gt _libraries',
hel p="where the @ library is installed',
default="$qtdir/lib",
)
)

Module contents

Adds user-friendly customizable variables to an SCons build.

class SCons.Variables.Variables (f i | es=None, ar gs=None, i s_gl obal =True)
Bases: object
Holds all the options, updates the environment with the variables, and renders the help text.
If is_global is true, this is a singleton, create only once.

Parameters: .)] .] .] o
- files (optional) — List of option configuration files to load (backward compatibility). If a

single string is passed it is automatically placed in a file list (Default value = None)
 args (optional) — dictionary to override values set from files. (Default value = None)

* is_global (optional) — global instance? (Default value = True)
Add (key, *ar gs, **kwar gs) - None

114

SCons API Documentation

Adds an option.

Parameters: .]
» key — the name of the variable, or a 5-tuple (or list). If a tuple, and there are no
additional arguments, the tuple is unpacked into the four named kwargs from below. If a
tuple and there are additional arguments, the first word of the tuple is taken as the key,
and the remainder as aliases.
» *args — optional positional arguments, corresponding to the four named kwargs below.
Keyword)
Arguments: * help — help text for the options (Default value = *”)

» default — default value for option (Default value = None)
« validator — function called to validate the option’s value (Default value = None)

» converter — function to be called to convert the option’s value before putting it in the
environment. (Default value = None)

» **kwargs — arbitrary keyword arguments used by the variable itself.
AddVariables (*opt | i st) — None
Adds a list of options.
Each list element is a tuple/list of arguments to be passed on to the underlying method for adding options.
Example:

opt . AddVar i abl es(
(' debug', ", 0),
(*CC, "The C conpiler'),
(' VALI DATE', "An option for testing validation', 'notset’', validator, None),

FormatVariableHelpText (env, key, hel p, def aul t, act ual , al i ases=None) - str
GenerateHelpText (env, sort =None) - str
Generates the help text for the options.

Parameters:)))
* env — an environment that is used to get the current values of the options.

» sort — Either a comparison function used for sorting (must take two arguments and
return -1, 0 or 1) or a boolean to indicate if it should be sorted.
Save (fi |l enane, env) - None
Save the options to a file.
Saves all the options which have non-default settings to the given file as Python expressions. This file can then be
used to load the options for a subsequent run. This can be used to create an option cache file.

Parameters:) i)
» filename — Name of the file to save into

« env — the environment get the option values from
UnknownVariables () - dict
Returns unknown variables.
Identifies options that were not known, declared options in this object.
Update (env, ar gs=None) - None
Updates an environment with the option variables.

Parameters:)
» env — the environment to update.

» args (optional) — a dictionary of keys and values to update in env. If omitted, uses the
variables from the commandline.
_do_add (key, hel p=", def aul t =None, val i dat or =None, convert er =None, * * kwar gs) — None
aliasfmt = "\n%s: %s\n default: %s\n actual: %s\n aliases: %s\n'
fmt = '\n%s: %s\n default: %s\n actual: %s\n'

115

SCons API Documentation

instance = None
keys () — list
Returns the keywords for the options.

SCons.compat package

Module contents
SCons compatibility package for old Python versions

This subpackage holds modules that provide backwards-compatible implementations of various things from newer
Python versions that we cannot count on because SCons still supported older Pythons.

Other code will not generally reference things in this package through the SCons.compat namespace. The modules
included here add things to the builtins namespace or the global module list so that the rest of our code can use the
objects and names imported here regardless of Python version. As a result, if this module is used, it should violate the
normal convention for imports (standard library imports first, then program-specific imports, each ordered
aplhabetically) and needs to be listed first.

The rest of the things here will be in individual compatibility modules that are either: 1) suitably modified copies of the
future modules that we want to use; or 2) backwards compatible re-implementations of the specific portions of a future
module’s API that we want to use.

GENERAL WARNINGS: Implementations of functions in the SCons.compat modules are NOT guaranteed to be fully
compliant with these functions in later versions of Python. We are only concerned with adding functionality that we
actually use in SCons, so be wary if you lift this code for other uses. (That said, making these more nearly the same as
later, official versions is still a desirable goal, we just don’t need to be obsessive about it.)

We name the compatibility modules with an initial *_scons_’ (for example, _scons_subprocess.py is our compatibility
module for subprocess) so that we can still try to import the real module name and fall back to our compatibility module
if we get an ImportError. The import_as() function defined below loads the module as the “real” name (without the
‘_scons’), after which all of the “import {module}” statements in the rest of our code will find our pre-loaded compatibility
module.
class SCons.compat.NoSlotsPyPy (nane, bases, dct)

Bases: type

Metaclass for PyPy compatitbility.

PyPy does not work well with __slots___and __class__ assignment.

mro ()

Return a type’s method resolution order.

SCons.compat.rename_module (new, ol d)

Attempt to import the old module and load it under the new name. Used for purely cosmetic name changes in Python

3.X.

Submodules

SCons.Action module
SCons Actions.

Information about executing any sort of action that can build one or more target Nodes (typically files) from one or more
source Nodes (also typically files) given a specific Environment.

The base class here is ActionBase. The base class supplies just a few utility methods and some generic methods for
displaying information about an Action in response to the various commands that control printing.

A second-level base class is _ActionAction. This extends ActionBase by providing the methods that can be used to
show and perform an action. True Action objects will subclass _ActionAction; Action factory class objects will subclass
ActionBase.

The heavy lifting is handled by subclasses for the different types of actions we might execute:

CommandAction CommandGeneratorAction FunctionAction ListAction

116

SCons API Documentation

The subclasses supply the following public interface methods used by other modules:

cal(

THE public interface, “calling” an Action object executes the command or Python function. This also takes care
of printing a pre-substitution command for debugging purposes.

get_contents()

Fetches the “contents” of an Action for signature calculation plus the varlist. This is what gets checksummed to
decide if a target needs to be rebuilt because its action changed.

genstring()

Returns a string representation of the Action without command substitution, but allows a
CommandGeneratorAction to generate the right action based on the specified target, source and env. This is
used by the Signature subsystem (through the Executor) to obtain an (imprecise) representation of the Action
operation for informative purposes.

Subclasses also supply the following methods for internal use within this module:

str()
Returns a string approximation of the Action; no variable substitution is performed.
execute()

The internal method that really, truly, actually handles the execution of a command or Python function. This is
used so thatthe __ call__ () methods can take care of displaying any pre-substitution representations, and then
execute an action without worrying about the specific Actions involved.

get_presig()
Fetches the “contents” of a subclass for signature calculation. The varlist is added to this to produce the
Action’s contents. TODO(?): Change this to always return bytes and not str?

strfunction()

Returns a substituted string representation of the Action. This is used by the _ActionAction.show() command
to display the command/function that will be executed to generate the target(s).

There is a related independent ActionCaller class that looks like a regular Action, and which serves as a wrapper for
arbitrary functions that we want to let the user specify the arguments to now, but actually execute later (when an
out-of-date check determines that it's needed to be executed, for example). Objects of this class are returned by an
ActionFactory class that provides a __call__ () method as a convenient way for wrapping up the functions.
SCons.Action.Action (act , *ar gs, ** kw)

A factory for action objects.
class SCons.Action.ActionBase

Bases: object
Base class for all types of action objects that can be held by other objects (Builders, Executors, etc.) This provides

the common methods for manipulating and combining those actions.
batch_key (env, t ar get , sour ce)

genstring (t ar get , sour ce, env)

get_contents (t ar get , sour ce, env)

get_targets (env, execut or)

Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.

get_varlist (t ar get , sour ce, env, execut or =None)

no_batch_key (env, t ar get , sour ce)

presub_lines (env)
class SCons.Action.ActionCaller (par ent , ar gs, kw)

Bases: object

A class for delaying calling an Action function with specific (positional and keyword) arguments until the Action is
actually executed.

This class looks to the rest of the world like a normal Action object, but what it's really doing is hanging on to the
arguments until we have a target, source and env to use for the expansion.

get_contents (t ar get , sour ce, env)

strfunction (t ar get , sour ce, env)

117

SCons API Documentation

subst (s, t ar get , sour ce, env)
subst_args (t ar get , sour ce, env)
subst_kw (t ar get , sour ce, env)
class SCons.Action.ActionFactory (act f unc, st rfunc, convert =<functi on Acti onFactory. <l anbda>>)
Bases: object
A factory class that will wrap up an arbitrary function as an SCons-executable Action object.
The real heavy lifting here is done by the ActionCaller class. We just collect the (positional and keyword) arguments
that we're called with and give them to the ActionCaller object we create, so it can hang onto them until it needs
them.
class SCons.Action.CommandAction (cnd, * * kw)
Bases: SCons.Action._ActionAction
Class for command-execution actions.
_get_implicit_deps_heavyweight (t ar get , sour ce, env, execut or,i cd_i nt)
Heavyweight dependency scanning involves scanning more than just the first entry in an action string. The exact
behavior depends on the value of icd_int. Only files are taken as implicit dependencies; directories are ignored.
If icd_int is an integer value, it specifies the number of entries to scan for implicit dependencies. Action strings are
also scanned after a &&. So for example, if icd_int=2 and the action string is “cd <some_dir> && $PYTHON
$SCRIPT_PATH <another_path>", the implicit dependencies would be the path to the python binary and the path
to the script.
If icd_int is None, all entries are scanned for implicit dependencies.
_get_implicit_deps_lightweight (t ar get , sour ce, env, execut or)
Lightweight dependency scanning involves only scanning the first entry in an action string, even if it contains &&.
batch_key (env, t ar get , sour ce)
execute (t ar get , sour ce, env, execut or =None)
Execute a command action.
This will handle lists of commands as well as individual commands, because construction variable substitution may
turn a single “command” into a list. This means that this class can actually handle lists of commands, even though
that’s not how we use it externally.
genstring (t ar get , sour ce, env)
get_contents (t ar get, sour ce, env)
get_implicit_deps (t ar get , sour ce, env, execut or =None)
Return the implicit dependencies of this action’s command line.
get_presig (t ar get , sour ce, env, execut or =None)
Return the signature contents of this action’s command line.
This strips $(-$) and everything in between the string, since those parts don't affect signatures.
get_targets (env, execut or)
Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.
get varlist (t ar get , sour ce, env, execut or =None)
no_batch_key (env, t ar get , sour ce)
presub_lines (env)
print_cmd_line (s, t ar get, sour ce, env)
In python 3, and in some of our tests, sys.stdout is a String io object, and it takes unicode strings only This code
assumes s is a regular string.
process (t ar get , sour ce, env, execut or =None, over ri des=False)
strfunction (t ar get , sour ce, env, execut or =None, over ri des=False)
class SCons.Action.CommandGeneratorAction (gener at or , kw)
Bases: SCons.Action.ActionBase
Class for command-generator actions.
_Qgenerate (t ar get , sour ce, env, f or _si gnat ur e, execut or =None)
batch_key (env, t ar get , sour ce)
genstring (t ar get , sour ce, env, execut or =None)
get_contents (t ar get, sour ce, env)
get_implicit_deps (t ar get , sour ce, env, execut or =None)
get_presig (t ar get , sour ce, env, execut or =None)
Return the signature contents of this action’s command line.
This strips $(-$) and everything in between the string, since those parts don't affect signatures.

118

SCons API Documentation

get_targets (env, execut or)
Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.
get varlist (t ar get , sour ce, env, execut or =None)
no_batch_key (env, t ar get , sour ce)
presub_lines (env)
class SCons.Action.FunctionAction (execf uncti on, kw)
Bases: SCons.Action._ActionAction
Class for Python function actions.
batch_key (env, t ar get , sour ce)
execute (t ar get , sour ce, env, execut or =None)
function_name ()
genstring (t ar get , sour ce, env)
get_contents (t ar get, sour ce, env)
get_implicit_deps (t ar get , sour ce, env)
get_presig (t ar get , sour ce, env)
Return the signature contents of this callable action.
get_targets (env, execut or)
Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.
get varlist (t ar get , sour ce, env, execut or =None)
no_batch_key (env, t ar get , sour ce)
presub_lines (env)
print_cmd_line (s, t ar get, sour ce, env)
In python 3, and in some of our tests, sys.stdout is a String io object, and it takes unicode strings only This code
assumes s is a regular string.
strfunction (t ar get , sour ce, env, execut or =None)
class SCons.Action.LazyAction (var , kw)
Bases: SCons.Action.CommandGeneratorAction, SCons.Action.CommandAction
A LazyAction is a kind of hybrid generator and command action for strings of the form “$VAR”. These strings normally
expand to other strings (think “$CCCOM” to “$CC -c -0 $TARGET $SOURCE”), but we also want to be able to
replace them with functions in the construction environment. Consequently, we want lazy evaluation and creation of
an Action in the case of the function, but that’s overkill in the more normal case of expansion to other strings.
So we do this with a subclass that’s both a generator and a command action. The overridden methods all do a quick
check of the construction variable, and if it's a string we just call the corresponding CommandAction method to do the
heavy lifting. If not, then we call the same-named CommandGeneratorAction method. The
CommandGeneratorAction methods work by using the overridden _generate() method, that is, our own way of
handling “generation” of an action based on what'’s in the construction variable.
_Qgenerate (t ar get , sour ce, env, f or _si gnat ur e, execut or =None)
_generate_cache (env)
_get_implicit_deps_heavyweight (t ar get , sour ce, env, execut or,i cd_i nt)
Heavyweight dependency scanning involves scanning more than just the first entry in an action string. The exact
behavior depends on the value of icd_int. Only files are taken as implicit dependencies; directories are ignored.
If icd_int is an integer value, it specifies the number of entries to scan for implicit dependencies. Action strings are
also scanned after a &&. So for example, if icd_int=2 and the action string is “cd <some_dir> && $PYTHON
$SCRIPT_PATH <another_path>", the implicit dependencies would be the path to the python binary and the path
to the script.
If icd_int is None, all entries are scanned for implicit dependencies.
_get_implicit_deps_lightweight (t ar get , sour ce, env, execut or)
Lightweight dependency scanning involves only scanning the first entry in an action string, even if it contains &&.
batch_key (env, t ar get , sour ce)
execute (t ar get , sour ce, env, execut or =None)
Execute a command action.
This will handle lists of commands as well as individual commands, because construction variable substitution may
turn a single “command” into a list. This means that this class can actually handle lists of commands, even though
that's not how we use it externally.
genstring (t ar get , sour ce, env, execut or =None)
get_contents (t ar get, sour ce, env)

119

SCons API Documentation

get_implicit_deps (t ar get , sour ce, env, execut or =None)
Return the implicit dependencies of this action’s command line.
get_parent_class (env)
get_presig (t ar get , sour ce, env)
Return the signature contents of this action’s command line.
This strips $(-$) and everything in between the string, since those parts don't affect signatures.
get_targets (env, execut or)
Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.
get varlist (t ar get , sour ce, env, execut or =None)
no_batch_key (env, t ar get , sour ce)
presub_lines (env)
print_cmd_line (s, t ar get, sour ce, env)
In python 3, and in some of our tests, sys.stdout is a String io object, and it takes unicode strings only This code
assumes s is a regular string.
process (t ar get , sour ce, env, execut or =None, over ri des=False)
strfunction (t ar get , sour ce, env, execut or =None, over ri des=False)
class SCons.Action.ListAction (acti onl i st)
Bases: SCons.Action.ActionBase
Class for lists of other actions.
batch_key (env, t ar get , sour ce)
genstring (t ar get , sour ce, env)
get_contents (t ar get, sour ce, env)
get_implicit_deps (t ar get , sour ce, env)
get_presig (t ar get , sour ce, env)
Return the signature contents of this action list.
Simple concatenation of the signatures of the elements.
get_targets (env, execut or)
Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.
get varlist (t ar get , sour ce, env, execut or =None)
no_batch_key (env, t ar get , sour ce)
presub_lines (env)
class SCons.Action._ActionAction (crdst r =<cl ass ' SCons. Action. _nul | ' >, strfuncti on=<cl ass
' SCons. Action. _null'> varlist=(), presub=<class ' SCons. Acti on._null"'>, chdi r=None,
exi t st at f unc=None, bat ch_key=None, t ar get s=' $TARGETS' , ** kw)
Bases: SCons.Action.ActionBase
Base class for actions that create output objects.
batch_key (env, t ar get , sour ce)
genstring (t ar get , sour ce, env)
get_contents (t ar get , sour ce, env)
get_targets (env, execut or)
Returns the type of targets (STARGETS, $CHANGED_TARGETS) used by this action.
get varlist (t ar get , sour ce, env, execut or =None)
no_batch_key (env, t ar get , sour ce)
presub_lines (env)
print_cmd_line (s, t ar get, sour ce, env)
In python 3, and in some of our tests, sys.stdout is a String io object, and it takes unicode strings only This code
assumes s is a regular string.
SCons.Action._actionAppend (act 1, act 2)
SCons.Action._callable_contents (obj)
Return the signature contents of a callable Python object.
SCons.Action._code_contents (code, docst ri ng=None)
Return the signature contents of a code object.
By providing direct access to the code object of the function, Python makes this extremely easy. Hooray!
Unfortunately, older versions of Python include line number indications in the compiled byte code. Boo! So we
remove the line number byte codes to prevent recompilations from moving a Python function.

See:

120

SCons API Documentation

« https://docs.python.org/2/library/inspect.html

= http://python-reference.readthedocs.io/en/latest/docs/code/index.html
For info on what each co_ variable provides

The signature is as follows (should be byte/chars): co_argcount, len(co_varnames), len(co_cellvars),
len(co_freevars), (comma separated signature for each object in co_consts), (comma separated signature for each
object in co_names), (The bytecode with line number bytecodes removed from co_code)
co_argcount - Returns the number of positional arguments (including arguments with default values). co_varnames -
Returns a tuple containing the names of the local variables (starting with the argument names). co_cellvars - Returns
a tuple containing the names of local variables that are referenced by nested functions. co_freevars - Returns a tuple
containing the names of free variables. (?) co_consts - Returns a tuple containing the literals used by the bytecode.
co_names - Returns a tuple containing the names used by the bytecode. co_code - Returns a string representing the
sequence of bytecode instructions.

SCons.Action._do_create_action (act , kw)
This is the actual “implementation” for the Action factory method, below. This handles the fact that passing lists to
Action() itself has different semantics than passing lists as elements of lists.
The former will create a ListAction, the latter will create a CommandAction by converting the inner list elements to
strings.

SCons.Action._do_create_keywords (ar gs, kw)
This converts any arguments after the action argument into their equivalent keywords and adds them to the kw
argument.

SCons.Action._do_create_list_action (act , kw)
A factory for list actions. Convert the input list into Actions and then wrap them in a ListAction.

SCons.Action._function_contents (f unc)
The signature is as follows (should be byte/chars): < _code_contents (see above) from func.__code__ > ,(comma
separated _object_contents for function argument defaults) ,(comma separated _object _contents for any closure
contents)

See also: https://docs.python.org/3/reference/datamodel.html

» func.__code__ - The code object representing the compiled function body.

» func.__defaults__ - A tuple containing default argument values for those arguments that have defaults, or
None if no arguments have a default value

« func.__closure__ - None or a tuple of cells that contain bindings for the function’s free variables.
Returns: Signature contents of a function. (in bytes)

class SCons.Action._null

Bases: object
SCons.Action._object_contents (obj)

Return the signature contents of any Python object.

We have to handle the case where object contains a code object since it can be pickled directly.
SCons.Action._object_instance_content (obj)

Returns consistant content for a action class or an instance thereof

Parameters:)) . .
« obj Should be either and action class or an instance thereof

Returns: bytearray or bytes representing the obj suitable for generating a signature from.

SCons.Action._resolve_shell_env (env, t ar get , sour ce)
Returns a resolved execution environment.
First get the execution environment. Then if SHELL_ENV_GENERATORS is set and is iterable, call each function to
allow it to alter the created execution environment, passing each the returned execution environment from the
previous call.
New in version 4.4.
SCons.Action._string_from_cmd_list (cnd_1 i st)
Takes a list of command line arguments and returns a pretty representation for printing.
SCons.Action._subproc (scons_env, cnd, er r or ='ignore’, * * kw)
Wrapper for subprocess which pulls from construction env.

121

https://docs.python.org/2/library/inspect.html
http://python-reference.readthedocs.io/en/latest/docs/code/index.html
https://docs.python.org/3/reference/datamodel.html

SCons API Documentation

Use for calls to subprocess which need to interpolate values from an SCons construction environment into the
environment passed to subprocess. Adds an an error-handling argument. Adds ability to specify std{in,out,err} with
“devnull’” tag.

SCons.Action.default_exitstatfunc (s)

SCons.Action.get_default ENV (env)
Returns an execution environment.
If there is one in env, just use it, else return the Default Environment, insantiated if necessary.
A fiddlin’ little function that has an i nport SCons. Envi r onnent which cannot be moved to the top level without
creating an import loop. Since this import creates a local variable named SCons, it blocks access to the global
variable, so we move it here to prevent complaints about local variables being used uninitialized.

SCons.Action.rfile (n)

SCons.Builder module
SCons.Builder
Builder object subsystem.

A Builder object is a callable that encapsulates information about how to execute actions to create a target Node (file)
from source Nodes (files), and how to create those dependencies for tracking.

The main entry point here is the Builder() factory method. This provides a procedural interface that creates the right
underlying Builder object based on the keyword arguments supplied and the types of the arguments.

The goal is for this external interface to be simple enough that the vast majority of users can create new Builders as
necessary to support building new types of files in their configurations, without having to dive any deeper into this
subsystem.

The base class here is BuilderBase. This is a concrete base class which does, in fact, represent the Builder objects that
we (or users) create.

There is also a proxy that looks like a Builder:
CompositeBuilder

This proxies for a Builder with an action that is actually a dictionary that knows how to map file suffixes to a
specific action. This is so that we can invoke different actions (compilers, compile options) for different flavors
of source files.

Builders and their proxies have the following public interface methods used by other modules:

e cal_(
THE public interface. Calling a Builder object (with the use of internal helper methods) sets up the target
and source dependencies, appropriate mapping to a specific action, and the environment manipulation
necessary for overridden construction variable. This also takes care of warning about possible mistakes
in keyword arguments.

e add_emitter()
Adds an emitter for a specific file suffix, used by some Tool modules to specify that (for example) a yacc
invocation on a .y can create a .h and a .c file.

« add_action()

Adds an action for a specific file suffix, heavily used by Tool modules to add their specific action(s) for
turning a source file into an object file to the global static and shared object file Builders.

There are the following methods for internal use within this module:

e _execute()

The internal method that handles the heavily lifting when a Builder is called. This is used so that the
__call__() methods can set up warning about possible mistakes in keyword-argument overrides, and
then execute all of the steps necessary so that the warnings only occur once.

122

SCons API Documentation

get_name()

Returns the Builder's name within a specific Environment, primarily used to try to return helpful
information in error messages.

adjust_suffix()

get_prefix()

get_suffix()

get_src_suffix()
* set_src_suffix()

Miscellaneous stuff for handling the prefix and suffix manipulation we use in turning source file names

~into target file names.
SCons.Builder.Builder (* * kw)

A factory for builder objects.
class SCons.Builder.BuilderBase (acti on=None, prefi x=""',suffix="",src_suffix="",
target factory=None, source_factory=None, target _scanner =None, sour ce_scanner =None,
em tter=None, nul ti =0, env=None, si ngl e_sour ce=0, nane=None, chdi r =<cl ass
' SCons. Builder. Null'>is_ explicit=1,src_buil der=None, ensure_suffix=Fal se, **overri des)
Bases: object
Base class for Builders, objects that create output nodes (files) from input nodes (files).
_adjustixes (fi | es, pre, suf, ensur e_suf fi x=False)
_create_nodes (env, t ar get =None, sour ce=None)
Create and return lists of target and source nodes.
_execute (env, t ar get, sour ce, over war n={}, execut or _kw={})
_get_sdict (env)
Returns a dictionary mapping all of the source suffixes of all src_builders of this Builder to the underlying Builder
that should be called first.
This dictionary is used for each target specified, so we save a lot of extra computation by memoizing it for each
construction environment.
Note that this is re-computed each time, not cached, because there might be changes to one of our source
Builders (or one of their source Builders, and so on, and so on...) that we can’t “see.”
The underlying methods we call cache their computed values, though, so we hope repeatedly aggregating them
into a dictionary like this won’t be too big a hit. We may need to look for a better way to do this if performance data
show this has turned into a significant bottleneck.
_get_src_builders_key (env)
_subst_src_suffixes_key (env)
add_emitter (suffi x,em tter)
Add a suffix-emitter mapping to this Builder.
This assumes that emitter has been initialized with an appropriate dictionary type, and will throw a TypeError if not,
so the caller is responsible for knowing that this is an appropriate method to call for the Builder in question.
add_src_builder (bui | der)
Add a new Builder to the list of src_builders.
This requires wiping out cached values so that the computed lists of source suffixes get re-calculated.
adjust_suffix (suf f)
get_name (env)
Attempts to get the name of the Builder.
Look at the BUILDERS variable of env, expecting it to be a dictionary containing this Builder, and return the key of
the dictionary. If there’s no key, then return a directly-configured name (if there is one) or the name of the class (by
default).
get_prefix (env, sour ces=[])
get_src_builders (env)
Returns the list of source Builders for this Builder.
This exists mainly to look up Builders referenced as strings in the ‘BUILDER’ variable of the construction
environment and cache the result.
get_src_suffix (env)

123

SCons API Documentation

Get the first src_suffix in the list of src_suffixes.
get_suffix (env, sour ces=[])
set_src_suffix (src_suf fi x)
set_suffix (suf fi x)
splitext (pat h, env=None)
src_builder_sources (env, sour ce, over war n={})
src_suffixes (env)
Returns the list of source suffixes for all src_builders of this Builder.
This is essentially a recursive descent of the src_builder “tree.” (This value isn’'t cached because there may be
changes in a src_builder many levels deep that we can't see.)
subst_src_suffixes (env)
The suffix list may contain construction variable expansions, so we have to evaluate the individual strings. To avoid
doing this over and over, we memoize the results for each construction environment.
class SCons.Builder.CallableSelector
Bases: SCons.Util.Selector
A callable dictionary that will, in turn, call the value it finds if it can.
clear () - None. Remove all items from od.
copy () - a shallow copy of od
fromkeys (val ue=None)
Create a new ordered dictionary with keys from iterable and values set to value.
get (key, def aul t =None, /)
Return the value for key if key is in the dictionary, else default.
items () —» a set-like object providing a view on D's items
keys () — a set-like object providing a view on D's keys
move_to_end (key, | ast =True)
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
pop (key[, def aul t]) - v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem (I ast =True)
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
setdefault (key, def aul t =None)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
update ([, E], **F) - None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[K] If E is present and lacks a .keys()
method, then does: for k, v in E: D[K] = v In either case, this is followed by: for k in F: D[K] = F[K]
values () - an object providing a view on D's values
class SCons.Builder.CompositeBuilder (bui | der, cndgen)
Bases: SCons.Util.Proxy
A Builder Proxy whose main purpose is to always have a DictCmdGenerator as its action, and to provide access to
the DictCmdGenerator’s add_action() method.
__Qgetattr__ (nane)
Retrieve an attribute from the wrapped object.

Raises: AttributeError — if attribute name doesn'’t exist.

add_action (suf fi x, acti on)
get ()
Retrieve the entire wrapped object
class SCons.Builder.DictCmdGenerator (mappi ng=None, sour ce_ext _nmat ch=True)
Bases: SCons.Util.Selector
This is a callable class that can be used as a command generator function. It holds on to a dictionary mapping file
suffixes to Actions. It uses that dictionary to return the proper action based on the file suffix of the source file.
add_action (suf fi x, acti on)
Add a suffix-action pair to the mapping.

124

SCons API Documentation

clear () - None. Remove all items from od.
copy () —» a shallow copy of od
fromkeys (val ue=None)
Create a new ordered dictionary with keys from iterable and values set to value.
get (key, def aul t =None, /)
Return the value for key if key is in the dictionary, else default.
items () —» a set-like object providing a view on D's items
keys () — a set-like object providing a view on D's keys
move_to_end (key, | ast =True)
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
pop (key[, def aul t]) - v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem (I ast =True)
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
setdefault (key, def aul t =None)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
src_suffixes ()
update ([, E], **F) - None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[K] If E is present and lacks a .keys()
method, then does: for k, v in E: D[K] = v In either case, this is followed by: for k in F: D[K] = F[K]
values () - an object providing a view on D's values
class SCons.Builder.DictEmitter
Bases: SCons.Util.Selector
A callable dictionary that maps file suffixes to emitters. When called, it finds the right emitter in its dictionary for the
suffix of the first source file, and calls that emitter to get the right lists of targets and sources to return. If there’s no
emitter for the suffix in its dictionary, the original target and source are returned.
clear () - None. Remove all items from od.
copy () —» a shallow copy of od
fromkeys (val ue=None)
Create a new ordered dictionary with keys from iterable and values set to value.
get (key, def aul t =None, /)
Return the value for key if key is in the dictionary, else default.
items () —» a set-like object providing a view on D's items
keys () — a set-like object providing a view on D's keys
move_to_end (key, | ast =True)
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
pop (key[, def aul t]) - v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem (I ast =True)
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
setdefault (key, def aul t =None)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
update ([, E], **F) - None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[K] If E is present and lacks a .keys()
method, then does: for k, v in E: D[K] = v In either case, this is followed by: for k in F: D[K] = F[K]
values () - an object providing a view on D's values
class SCons.Builder.EmitterProxy (var)
Bases: object

125

SCons API Documentation

This is a callable class that can act as a Builder emitter. It holds on to a string that is a key into an Environment
dictionary, and will look there at actual build time to see if it holds a callable. If so, we will call that as the actual
emitter.
class SCons.Builder.ListEmitter (i ni t1i st =None)
Bases: collections.UserList
A callable list of emitters that calls each in sequence, returning the result.
_abc_impl = <_abc._abc_data object>
append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t em)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
class SCons.Builder.OverrideWarner (mappi ng)
Bases: collections.UserDict
A class for warning about keyword arguments that we use as overrides in a Builder call.
This class exists to handle the fact that a single Builder call can actually invoke multiple builders. This class only
emits the warnings once, no matter how many Builders are invoked.
_abc_impl = <_abc._abc_data object>
clear () - None. Remove all items from D.
copy ()
classmethod fromkeys (i t er abl e, val ue=None)
get (k[, d]) — D[K] if kin D, else d. d defaults to None.
items () —» a set-like object providing a view on D's items
keys () — a set-like object providing a view on D's keys
pop (k[, d]) - v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.
popitem () - (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.
setdefault (k[, d]) - D.get(k,d), also set D[k]=d if k not in D
update ([, E], **F) - None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[K] = E[K] If E present and lacks .keys() method, does: for
(k, v) in E: D[K] = v In either case, this is followed by: for k, v in F.items(): D[k] = v
values () - an object providing a view on D's values
warn ()
class SCons.Builder. Null
Bases: object
SCons.Builder._node_errors (bui | der, env,tlist,slist)
Validate that the lists of target and source nodes are legal for this builder and environment. Raise errors or issue
warnings as appropriate.
SCons.Builder._null
alias of SCons.Builder._Null
SCons.Builder.is_a_Builder (obj)

126

SCons API Documentation

“Returns True if the specified obj is one of our Builder classes.
The test is complicated a bit by the fact that CompositeBuilder is a proxy, not a subclass of BuilderBase.

SCons.Builder.match_splitext (pat h, suf fi xes=[])

SCons.CacheDir module

CacheDir support
class SCons.CacheDir.CacheDir (pat h)

Bases: object
CacheDebug (f nt , t ar get, cachefil e)

_readconfig (pat h)

Read the cache config.

If directory or config file do not exist, create. Take advantage of Py3 capability in os.makedirs() and in file open():
just try the operation and handle failure appropriately.

Omit the check for old cache format, assume that’s old enough there will be none of those left to worry about.

Parameters: path — path to the cache directory

cachepath (node) - tuple

Return where to cache a file.
Given a Node, obtain the configured cache directory and the path to the cached file, which is generated from the
node’s build signature. If caching is not enabled for the None, return a tuple of None.

classmethod copy_from_cache (env, src, dst) - str

Copy a file from cache.

classmethod copy_to_cache (env, src, dst) — str

Copy a file to cache.
Just use the FS copy2 (“with metadata”) method, except do an additional check and if necessary a chmod to
ensure the cachefile is writeable, to forestall permission problems if the cache entry is later updated.

get_cachedir_csig (node)

property hit_ratio: float
is_enabled () - bool
is_readonly () —» bool
property misses: int
push (node)

push_if forced (node)
retrieve (node)

This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

Note that there’s a special trick here with the execute flag (one that's not normally done for other actions). Basically
if the user requested a no_exec (-n) build, then SCons.Action.execute_actions is set to 0 and when any action is
called, it does its showing but then just returns zero instead of actually calling the action execution operation. The
problem for caching is that if the file does NOT exist in cache then the CacheRetrieveString won't return anything
to show for the task, but the Action.__call___ won'’t call CacheRetrieveFunc; instead it just returns zero, which
makes the code below think that the file was successfully retrieved from the cache, therefore it doesn’'t do any
subsequent building. However, the CacheRetrieveString didn’t print anything because it didn’t actually exist in the
cache, and no more build actions will be performed, so the user just sees nothing. The fix is to tell Action.__call__
to always execute the CacheRetrieveFunc and then have the latter explicitly check SCons.Action.execute_actions
itself.

SCons.CacheDir.CachePushFunc (t ar get , sour ce, env)
SCons.CacheDir.CacheRetrieveFunc (t ar get , sour ce, env)
SCons.CacheDir.CacheRetrieveString (t ar get , sour ce, env)

SCons.Conftest module

Autoconf-like configuration support

The purpose of this module is to define how a check is to be performed.

127

SCons API Documentation

A context class is used that defines functions for carrying out the tests, logging and messages. The following methods
and members must be present:

context.Display(msg)

Function called to print messages that are normally displayed for the user. Newlines are explicitly used. The text
should also be written to the logfile!

context.Log(msg)
Function called to write to a log file.
context.BuildProg(text, ext)

Function called to build a program, using “ext” for the file extension. Must return an empty string for success, an
error message for failure. For reliable test results building should be done just like an actual program would be
build, using the same command and arguments (including configure results so far).

context.CompileProg(text, ext)

Function called to compile a program, using “ext” for the file extension. Must return an empty string for success, an
error message for failure. For reliable test results compiling should be done just like an actual source file would be
compiled, using the same command and arguments (including configure results so far).

context.AppendLIBS(lib_name_list)

Append “lib_name_list” to the value of LIBS. “lib_namelist” is a list of strings. Return the value of LIBS before
changing it (any type can be used, it is passed to SetLIBS() later.)

context.PrependLIBS(lib_name_list)

Prepend “lib_name_list” to the value of LIBS. “lib_namelist” is a list of strings. Return the value of LIBS before
changing it (any type can be used, it is passed to SetLIBS() later.)

context.SetLIBS(value)

Set LIBS to “value”. The type of “value” is what AppendLIBS() returned. Return the value of LIBS before changing it
(any type can be used, it is passed to SetLIBS() later.)

context.headerfilename

Name of file to append configure results to, usually “confdefs.h”. The file must not exist or be empty when starting.
Empty or None to skip this (some tests will not work!).

context.config_h (may be missing).
If present, must be a string, which will be filled with the contents of a config_h file.
context.vardict

Dictionary holding variables used for the tests and stores results from the tests, used for the build commands.
Normally contains “CC”, “LIBS”, “CPPFLAGS", etc.

context.havedict

Dictionary holding results from the tests that are to be used inside a program. Names often start with “HAVE_".
These are zero (feature not present) or one (feature present). Other variables may have any value, e.g.,
“PERLVERSION” can be a number and “SYSTEMNAME” a string.
SCons.Conftest.CheckBuilder (cont ext , t ext =None, | anguage=None)
Configure check to see if the compiler works. Note that this uses the current value of compiler and linker flags, make
sure $CFLAGS, $CPPFLAGS and $LIBS are set correctly. “language” should be “C” or “C++" and is used to select
the compiler. Default is “C”. “text” may be used to specify the code to be build. Returns an empty string for success,
an error message for failure.
SCons.Conftest.CheckCC (cont ext)
Configure check for a working C compiler.
This checks whether the C compiler, as defined in the $CC construction variable, can compile a C source file. It uses
the current $CCCOM value too, so that it can test against non working flags.
SCons.Conftest.CheckCXX (cont ext)
Configure check for a working CXX compiler.
This checks whether the CXX compiler, as defined in the $CXX construction variable, can compile a CXX source file.
It uses the current $CXXCOM value too, so that it can test against non working flags.
SCons.Conftest.CheckDeclaration (cont ext , synbol , i ncl udes=None, | anguage=None)

128

SCons API Documentation

Checks whether symbol is declared.
Use the same test as autoconf, that is test whether the symbol is defined as a macro or can be used as an r-value.

Parameters:
e symbol — str the symbol to check

« includes — str Optional “header” can be defined to include a header file.

« language — str only C and C++ supported.
Returns: boolTrue if the check failed, False if succeeded.

Return type: status

SCons.Conftest.CheckFunc (cont ext, f uncti on_nane, header =None, | anguage=None)
Configure check for a function “function_name”. “language” should be “C” or “C++" and is used to select the compiler.
Default is “C”. Optional “header” can be defined to define a function prototype, include a header file or anything else
that comes before main(). Sets HAVE_function_name in context.havedict according to the result. Note that this uses
the current value of compiler and linker flags, make sure $CFLAGS, $CPPFLAGS and $LIBS are set correctly.
Returns an empty string for success, an error message for failure.

SCons.Conftest.CheckHeader (cont ext , header _nane, header =None, | anguage=None,

i ncl ude_quot es=None)
Configure check for a C or C++ header file “header_name”. Optional “header” can be defined to do something before
including the header file (unusual, supported for consistency). “language” should be “C” or “C++" and is used to
select the compiler. Default is “C”. Sets HAVE_header_name in context.havedict according to the result. Note that
this uses the current value of compiler and linker flags, make sure $CFLAGS and $CPPFLAGS are set correctly.
Returns an empty string for success, an error message for failure.

SCons.Conftest.CheckLib (cont ext , | i bs, f unc_nane=None, header =None, extra_| i bs=None, cal | =None,

| anguage=None, aut oadd=1, append=True, uni que=False)
Configure check for a C or C++ libraries “libs”. Searches through the list of libraries, until one is found where the test
succeeds. Tests if “func_name” or “call” exists in the library. Note: if it exists in another library the test succeeds
anyway! Optional “header” can be defined to include a header file. If not given a default prototype for “func_name” is
added. Optional “extra_libs” is a list of library names to be added after “lib_name” in the build command. To be used
for libraries that “lib_name” depends on. Optional “call” replaces the call to “func_name” in the test code. It must
consist of complete C statements, including a trailing “;”. Both “func_name” and “call” arguments are optional, and in
that case, just linking against the libs is tested. “language” should be “C” or “C++" and is used to select the compiler.
Default is “C”. Note that this uses the current value of compiler and linker flags, make sure $CFLAGS, $CPPFLAGS
and $LIBS are set correctly. Returns an empty string for success, an error message for failure.

SCons.Conftest.CheckMember (cont ext , aggr egat e_nenber , header =None, | anguage=None)
Configure check for a C or C++ member “aggregate_member”. Optional “header” can be defined to include a header
file. “language” should be “C” or “C++” and is used to select the compiler. Default is “C”. Note that this uses the
current value of compiler and linker flags, make sure $CFLAGS, $CPPFLAGS and $LIBS are set correctly.

Parameters:
* aggregate_member — str the member to check. For example, ‘struct tm.tm_gmtoff’.

 includes — str Optional “header” can be defined to include a header file.

» language — str only C and C++ supported.

Returns the status (O or False = Passed, True/non-zero = Failed).
SCons.Conftest.CheckProg (cont ext , pr og_nane)

Configure check for a specific program.

Check whether program prog_name exists in path. If it is found, returns the path for it, otherwise returns None.
SCons.Conftest.CheckSHCC (cont ext)

Configure check for a working shared C compiler.

This checks whether the C compiler, as defined in the $SHCC construction variable, can compile a C source file. It

uses the current $SHCCCOM value too, so that it can test against non working flags.
SCons.Conftest.CheckSHCXX (cont ext)

Configure check for a working shared CXX compiler.

This checks whether the CXX compiler, as defined in the $SHCXX construction variable, can compile a CXX source

file. It uses the current $SHCXXCOM value too, so that it can test against non working flags.
SCons.Conftest.CheckType (cont ext , t ype_nane, f al | back=None, header =None, | anguage=None)

129

SCons API Documentation

Configure check for a C or C++ type “type_name”. Optional “header” can be defined to include a header file.
“language” should be “C” or “C++” and is used to select the compiler. Default is “C”. Sets HAVE_type name in
context.havedict according to the result. Note that this uses the current value of compiler and linker flags, make sure
$CFLAGS, $CPPFLAGS and $LIBS are set correctly. Returns an empty string for success, an error message for
failure.

SCons.Conftest.CheckTypeSize (cont ext , t ype_nane, header =None, | anguage=None, expect =None)
This check can be used to get the size of a given type, or to check whether the type is of expected size.

Parameters:
* type (-) — str the type to check

« includes (-) — sequence list of headers to include in the test code before testing the type
 language (-) — str ‘C’ or ‘C++’

e expect (-) — int if given, will test wether the type has the given number of bytes. If not
given, will automatically find the size.

* Returns — statusintO if the check failed, or the found size of the type if the check
succeeded.
SCons.Conftest._Have (cont ext , key, have, comrent =None)
Store result of a test in context.havedict and context.headerfilename.

Parameters:)) _)
* key - is a "HAVE_abc” name. It is turned into all CAPITALS and non-alphanumerics are

replaced by an underscore.

* have - value as it should appear in the header file, include quotes when desired and
escape special characters!

« comment is the C comment to add above the line defining the symbol (the comment is
automatically put inside a /* */). If None, no comment is added.

The value of “have” can be:

e 1 - Feature is defined, add “#define key”.

« 0 - Feature is not defined, add “/* #undef key */”. Adding “undef” is what autoconf does. Not useful for the
compiler, but it shows that the test was done.

« number - Feature is defined to this number “#define key have”. Doesn’t work for 0 or 1, use a string then.

* string - Feature is defined to this strina “#define key have”.
SCons.Conftest._LogFailed (cont ext , t ext, nsQ)

Write to the log about a failed program. Add line numbers, so that error messages can be understood.
SCons.Conftest._YesNoResult (cont ext , r et , key, t ext, conment =None)
Handle the result of a test with a “yes” or “no” result.

Parameters:))
« retis the return value: empty if OK, error message when not.

« key is the name of the symbol to be defined (HAVE_foo).
« text is the source code of the program used for testing.

e comment is the C comment to add above the line defining the symbol (the comment is
automatically put inside a /* */). If None, no comment is added.
SCons.Conftest._check _empty program (cont ext, conp, t ext, | anguage, use_shar ed=False)
Return 0 on success, 1 otherwise.
SCons.Conftest._lang2suffix (I ang)
Convert a language name to a suffix. When “lang” is empty or None C is assumed. Returns a tuple (lang, suffix,
None) when it works. For an unrecognized language returns (None, None, msg).

Where:

« lang = the unified language name

130

SCons API Documentation

« suffix = the suffix, including the leading dot

* msg = an error message

SCons.Debug module
Code for debugging SCons internal things.
Shouldn’t be needed by most users. Quick shortcuts:

from SCons.Debug import caller_trace caller_trace()

SCons.Debug.Trace (nmsg, t racef i | e=None, node='w', t st anp=False)
Write a trace message.
Write messages when debugging which do not interfere with stdout. Useful in tests, which monitor stdout and would
break with unexpected output. Trace messages can go to the console (which is opened as a file), or to a disk file; the
tracefile argument persists across calls unless overridden.

Parameters:) .] .]] .
« tracefile — file to write trace message to. If omitted, write to the previous trace file (default:

console).
« mode — file open mode (default: ‘w’)

« tstamp — write relative timestamps with trace. Outputs time since scons was started, and
time since last trace (default: False)
SCons.Debug._dump_one_caller (key, fil e, | evel =0)
SCons.Debug.caller_stack ()

return caller’s stack
SCons.Debug.caller_trace (back=0)

Trace caller stack and save info into global dicts, which are printed automatically at the end of SCons execution.
SCons.Debug.countLoggedinstances (cl asses, fil e=<_i 0. Text | OV apper nanme=' <stdout>' nobde="'w
encodi ng=' utf-8'>)

SCons.Debug.dumplLoggedinstances (cl asses, fil e=<_i 0. Text | ON apper nane=' <stdout>' node="w
encodi ng=' utf-8'>)

SCons.Debug.dump_caller_counts (fi | e=<_i 0. Text | ON apper nanme=' <stdout>' node="w

encodi ng=' utf-8'>)

SCons.Debug.fetchLoggedinstances (cl asses="")

SCons.Debug.func_shorten (f unc_t upl e)

SCons.Debug.listLoggedinstances (cl asses, fil e=<_i 0. Text | OV apper nanme=' <stdout>' nobde='w
encodi ng='utf-8'>)

SCons.Debug.loglnstanceCreation (i nst ance, nane=None)

SCons.Debug.memory ()

SCons.Debug.string_to_classes (s)

SCons.Defaults module
Builders and other things for the local site.

Here’s where we’ll duplicate the functionality of autoconf until we move it into the installation procedure or use
something like gmcontf.

The code that reads the registry to find MSVC components was borrowed from distutils.msvccompiler.
SCons.Defaults.DefaultEnvironment (* ar gs, * * kw)
Initial public entry point for creating the default construction Environment.
After creating the environment, we overwrite our name (DefaultEnvironment) with the _fetch_DefaultEnvironment()
function, which more efficiently returns the initialized default construction environment without checking for its
existence.
(This function still exists with its _default_check because someone else (cough Script/__init__.py cough) may keep a
reference to this function. So we can'’t use the fully functional idiom of having the name originally be a something that
only creates the construction environment and then overwrites the name.)
class SCons.Defaults.NullCmdGenerator (cd)

131

SCons API Documentation

Bases: object
This is a callable class that can be used in place of other command generators if you don’t want them to do anything.
The __call__ method for this class simply returns the thing you instantiated it with.
Example usage: env[‘DO_NOTHING”] = NullCmdGenerator env[‘LINKCOM"] = “${DO_NOTHING(‘$LINK
$SOURCES $TARGET)}”
SCons.Defaults.SharedFlagChecker (sour ce, t ar get , env)
SCons.Defaults.SharedObjectEmitter (t ar get , sour ce, env)
SCons.Defaults.StaticObjectEmitter (t ar get , sour ce, env)
class SCons.Defaults.Variable_Method_Caller (var i abl e, met hod)
Bases: object
A class for finding a construction variable on the stack and calling one of its methods.
We use this to support “construction variables” in our string eval()s that actually stand in for methods—specifically, use
of “RDirs” in call to _concat that should actually execute the “TARGET.RDirs” method. (We used to support this by
creating a little “build dictionary” that mapped RDirs to the method, but this got in the way of Memoizing construction
environments, because we had to create new environment objects to hold the variables.)
SCons.Defaults.__lib_either_version_flag (env, ver si on_var 1, versi on_var 2, fl ags_var)
if $version_varl or $version_var2 is not empty, returns env[flags_var], otherwise returns None :param env: :param
version_varl: :param version_var2: :param flags_var: :return:
SCons.Defaults.__libversionflags (env, ver si on_var, fl ags_var)
if version_var is not empty, returns env[flags_var], otherwise returns None :param env: :param version_var: :param
flags_var: :return:
SCons.Defaults._concat (prefi x,itens_iter,suffix, env,f=<function <l anbda>>,t ar get =None,
sour ce=None, af f ect _si gnat ur e=Tr ue)
Creates a new list from ‘items_iter’ by first interpolating each element in the list using the ‘env’ dictionary and then
calling f on the list, and finally calling _concat_ixes to concatenate ‘prefix’ and ‘suffix’ onto each element of the list.
SCons.Defaults._concat_ixes (prefi x,itenms_iter,suffix, env)
Creates a new list from ‘items_iter’ by concatenating the ‘prefix’ and ‘suffix’ arguments onto each element of the list.
A trailing space on ‘prefix’ or leading space on ‘suffix’ will cause them to be put into separate list elements rather than
being concatenated.
SCons.Defaults._defines (pr ef i x, def s, suf fi x, env, t ar get =None, sour ce=None, c=<f uncti on
_concat _i xes>)
A wrapper around _concat_ixes() that turns a list or string into a list of C preprocessor command-line definitions.
SCons.Defaults._fetch_DefaultEnvironment (* ar gs, * * kw)
Returns the already-created default construction environment.
SCons.Defaults._stripixes (prefi x,itms, suffix, stripprefixes,stripsuffixes, env,c=None)
This is a wrapper around _concat()/_concat_ixes() that checks for the existence of prefixes or suffixes on list items
and strips them where it finds them. This is used by tools (like the GNU linker) that need to turn something like
‘libfoo.a’ into ‘-Ifoo’.
SCons.Defaults.chmod_func (dest , nrode) — None
Implementation of the Chmod action function.
mode can be either an integer (normally expressed in octal mode, as in 00755) or a string following the syntax of the
POSIX chmod command (for example “ugo+w”). The latter must be converted, since the underlying Python only
takes the numeric form.
SCons.Defaults.chmod_strfunc (dest , node) - str
strfunction for the Chmod action function.
SCons.Defaults.copy_func (dest, src, sym i nks=True) - int
Implementation of the Copy action function.
Copies src to dest. If src is a list, dest must be a directory, or not exist (will be created).
Since Python shutil methods, which know nothing about SCons Nodes, will be called to perform the actual copying,
args are converted to strings first.
If symlinks evaluates true, then a symbolic link will be shallow copied and recreated as a symbolic link; otherwise,
copying a symbolic link will be equivalent to copying the symbolic link’s final target regardless of symbolic link depth.
SCons.Defaults.copy_strfunc (dest , src, sym i nks=True) - str
strfunction for the Copy action function.
SCons.Defaults.delete_func (dest , must _exi st =False) - None
Implementation of the Delete action function.

132

SCons API Documentation

Lets the Python os.unlink() raise an error if dest does not exist, unless must_exist evaluates false (the default).
SCons.Defaults.delete_strfunc (dest , nust _exi st =False) - str
strfunction for the Delete action function.
SCons.Defaults.get_paths_str (dest) — str
Generates a string from dest for use in a strfunction.
If dest is a list, manually converts each elem to a string.
SCons.Defaults.mkdir_func (dest) -~ None
Implementation of the Mkdir action function.
SCons.Defaults.move_func (dest , src) - None
Implementation of the Move action function.
SCons.Defaults.processDefines (def s) — List[str]
Return list of strings for preprocessor defines from defs.
Resolves the different forms CPPDEFI NES can be assembled in: if the Append/Prepend routines are used beyond a
initial setting it will be a deque, but if written to only once (Environment initializer, or direct write) it can be a multitude
of types.
Any prefix/suffix is handled elsewhere (usually _concat_ixes()).
Changed in version 4.5.0: Bare tuples are now treated the same as tuple-in-sequence, assumed to describe a valued
macro. Bare strings are now split on space. A dictionary is no longer sorted before handling.
SCons.Defaults.touch_func (dest) -~ None
Implementation of the Touch action function.

SCons.Environment module
Base class for construction Environments.
These are the primary objects used to communicate dependency and construction information to the build engine.

Keyword arguments supplied when the construction Environment is created are construction variables used to initialize
the Environment.
class SCons.Environment.Base (pl at f or m=None, t ool s=None, t ool pat h=None, vari abl es=None,
parse_fl ags=None, **kw)
Bases: SCons.Environment.SubstitutionEnvironment
Base class for “real” construction Environments.
These are the primary objects used to communicate dependency and construction information to the build engine.
Keyword arguments supplied when the construction Environment is created are construction variables used to
initialize the Environment.
Action (*ar gs, ** kw)
AddMethod (f unct i on, nanme=None)
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.
AddPostAction (fi | es, acti on)
AddPreAction (fi | es, acti on)
Alias (t ar get , sour ce=[], act i on=None, **kw)
AlwaysBuild (*t ar get s)
Append (* * kw)
Append values to construction variables in an Environment.
The variable is created if it is not already present.
AppendENVPath (nane, newpat h, envnane='"ENV', sep="', del et e_exi sti ng=False)
Append path elements to the path name in the envname dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the case
where the env variable is a list instead of a string.
If delete_existing is False, a newpath element already in the path will not be moved to the end (it will be left where
it is).
AppendUnique (del et e_exi sti ng=False, ** kw)
Append values to existing construction variables in an Environment, if they’re not already there. If delete_existing is
True, removes existing values first, so values move to end.
Builder (* * kw)

133

SCons API Documentation

134

CacheDir (pat h, cust om _cl ass=None)

Clean (targets,files)

Clone (t ool s=[], t ool pat h=None, par se_f | ags=None, * * kw)
Return a copy of a construction Environment.
The copy is like a Python “deep copy”-that is, independent copies are made recursively of each objects—except
that a reference is copied when an object is not deep-copyable (like a function). There are no references to any
mutable objects in the original Environment.

Command (t ar get , sour ce, acti on, **kw)
Builds the supplied target files from the supplied source files using the supplied action. Action may be any type that
the Builder constructor will accept for an action.

Configure (*ar gs, ** kw)

Decider (f uncti on)

Depends (t ar get , dependency)
Explicity specify that ‘target’s depend on ‘dependency’.

Detect (pr ogs)
Return the first available program from one or more possibilities.

Parameters: progs (str or list) — one or more command names to check for

Dictionary (*ar gs)
Return construction variables from an environment.

Parameters: *args (optional) — variable names to look up

Returns: If args omitted, the dictionary of all construction variables. If one arg, the corresponding
value is returned. If more than one arg, a list of values is returned.

Raises: KeyError —if any of args is not in the construction environment.
Dir (nan®e, *ar gs, **kw)
Dump (key=None, f or mat ='pretty’)
Return construction variables serialized to a string.

Parameters: .)] }
» key (optional) — if None, format the whole dict of variables. Else format the value of key

(Default value = None)

- format (str, optional) — specify the format to serialize to. “pretty” generates a
pretty-printed string, “json” a JISON-formatted string. (Default value = “pretty”)

Entry (name, *ar gs, ** kw)
Environment (* * kw)
Execute (acti on, *ar gs, **kw)

Directly execute an action through an Environment
File (nane, *ar gs, **kw)
FindFile (fi l e, di rs)
FindInstalledFiles ()

returns the list of all targets of the Install and InstallAs Builder.
FindIxes (pat hs, prefi x, suf fi x)

Search a list of paths for something that matches the prefix and suffix.

Parameters: _
» paths — the list of paths or nodes.

 prefix — construction variable for the prefix.

* suffix — construction variable for the suffix.

Returns: the matched path or None
FindSourceFiles (node="") - list

Return a list of all source files.
Flatten (sequence)
GetBuildPath (fi | es)
Glob (pat t er n, ondi sk=True, sour ce=False, st ri ngs=False, excl ude=None)
Ignore (t ar get , dependency)

SCons API Documentation

Ignore a dependency.
Literal (st ri nQg)
Local (*t ar get s)
MergeFlags (ar gs, uni que=True) - None
Merge flags into construction variables.
Merges the flags from args into this construction environent. If args is not a dict, it is first converted to one with
flags distributed into appropriate construction variables. See ParseFlags().

Parameters:
» args — flags to merge
» unique — merge flags rather than appending (default: True). When merging, path
variables are retained from the front, other construction variables from the end.
NoCache (*t ar get s)
Tags a target so that it will not be cached
NoClean (*t ar get s)
Tags a target so that it will not be cleaned by -c
Override (overri des)
Produce a modified environment whose variables are overridden by the overrides dictionaries. “overrides” is a
dictionary that will override the variables of this environment.
This function is much more efficient than Clone() or creating a new Environment because it doesn't copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn't even create
a wrapper object if there are no overrides.
ParseConfig (command, f unct i on=None, uni que=True)
Parse the result of running a command to update construction vars.
Use f unct i on to parse the output of running comand in order to modify the current environment.

Parameters: _))) _
« command — a string or a list of strings representing a command and its arguments.

» function — called to process the result of command, which will be passed as ar gs. If
function is omitted or None, MergeFlags() is used. Takes 3 args
(env, args, unique)

* unique — whether no duplicate values are allowed (default true)

ParseDepends (f i | ename, nust _exi st =None, onl y_one=False)
Parse a mkdep-style file for explicit dependencies. This is completely abusable, and should be unnecessary in the
“normal” case of proper SCons configuration, but it may help make the transition from a Make hierarchy easier for
some people to swallow. It can also be genuinely useful when using a tool that can write a .d file, but for which
writing a scanner would be too complicated.

ParseFlags (*f | ags) — dict
Return a dict of parsed flags.
Parse f | ags and return a dict with the flags distributed into the appropriate construction variable names. The flags
are treated as a typical set of command-line flags for a GNU-style toolchain, such as might have been generated
by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in this method -
the choices are not expected to be portable to other toolchains.
If one of the f | ags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest of
the string is executed; the result of that evaluation is then added to the dict.

Platform (pl at f orm

Precious (*t ar get s)

Prepend (* * kw)
Prepend values to construction variables in an Environment.
The variable is created if it is not already present.

PrependENVPath (name, newpat h, envnane='ENV', sep="', del et e_exi st i nhg=True)
Prepend path elements to the path name in the envname dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the case
where the env variable is a list instead of a string.
If delete_existing is False, a newpath component already in the path will not be moved to the front (it will be left
where it is).

135

SCons API Documentation

PrependUnique (del et e_exi st i ng=False, * * kw)
Prepend values to existing construction variables in an Environment, if they’re not already there. If delete_existing
is True, removes existing values first, so values move to front.

Pseudo (*t ar get s)

PyPackageDir (nodul enane)

RemoveMethod (f uncti on)
Removes the specified function’s MethodWrapper from the added_methods list, so we don’t re-bind it when
making a clone.

Replace (* * kw)
Replace existing construction variables in an Environment with new construction variables and/or values.

Replacelxes (pat h, ol d_prefix, ol d_suffix, new_prefix, new_suffix)
Replace old_prefix with new_prefix and old_suffix with new_suffix.
env - Environment used to interpolate variables. path - the path that will be modified. old_prefix - construction
variable for the old prefix. old_suffix - construction variable for the old suffix. new_prefix - construction variable for
the new prefix. new_suffix - construction variable for the new suffix.

Repository (*di r s, **kw)

Requires (t ar get , prerequi site)
Specify that ‘prerequisite’ must be built before ‘target’, (but ‘target’ does not actually depend on ‘prerequisite’ and
need not be rebuilt if it changes).

SConsignFile (nane=".sconsign’, dom nodul e=None)

Scanner (*ar gs, **kw)

SetDefault (* * kw)

SideEffect (si de_ef fect, target)
Tell scons that side_effects are built as side effects of building targets.

Split (ar g)
This function converts a string or list into a list of strings or Nodes. This makes things easier for users by allowing
files to be specified as a white-space separated list to be split.

The input rules are:

A single string containing names separated by spaces. These will be split apart at the spaces.
» A single Node instance

+ Alist containing either strings or Node instances. Any strings in the list are not split at spaces.
In all cases, the function returns a list of Nodes and strings.

Tool (t ool , t ool pat h=None, **kwar gs) — SCons.Tool.Tool

Find and run tool module tool.

Changed in version 4.2: returns the tool module rather than None.
Value (val ue, bui I t _val ue=None, nane=None)

Return a Value (Python expression) node.

Changed in version 4.0: the name parameter was added.
VariantDir (vari ant _dir,src_dir,duplicate=1)
Wherels (pr og, pat h=None, pat hext =None, r ej ect =None)

Find prog in the path.
_canonicalize (pat h)

Allow Dirs and strings beginning with # for top-relative.

Note this uses the current env’s fs (in self).
_changed_build (dependency, t arget, prev_ni, repo_node=None)
_changed_content (dependency, t ar get, prev_ni, repo_node=None)
_changed_source (dependency, t arget, prev_ni ,repo_node=None)
_changed_timestamp_match (dependency, t ar get, prev_ni , repo_node=None)
_changed_timestamp_newer (dependency, t ar get, prev_ni , repo_node=None)
_changed_timestamp_then_content (dependency, t ar get, prev_ni, repo_node=None)
_find_toolpath_dir (t p)
_gsm ()
_init_special ()

Initial the dispatch tables for special handling of special construction variables.

136

SCons API Documentation

_update (ot her)
Private method to update an environment’s consvar dict directly.
Bypasses the normal checks that occur when users try to set items.
_update_onlynew (ot her)
Private method to add new items to an environment’s consvar dict.
Only adds items from other whose keys do not already appear in the existing dict; values from other are not used
for replacement. Bypasses the normal checks that occur when users try to set items.
arg2nodes (ar gs, node_f act ory=<cl ass ' SCons. Envi ronnment. _Nul | ' >, | ookup_l i st =<cl ass
' SCons. Envi ronment . _Nul | ' >, **kw)
backtick (command) - str
Emulate command substitution.
Provides behavior conceptually like POSIX Shell notation for running a command in backquotes (backticks) by
running command and returning the resulting output string.
This is not really a public API any longer, it is provided for the use of ParseFlags() (which supports it using a syntax
of lcommand) and ParseConfig().

Raises: OSError — if the external command returned non-zero exit status.

get (key, def aul t =None)
Emulates the get() method of dictionaries.

get_CacheDir ()

get_builder (nane)
Fetch the builder with the specified name from the environment.

get _factory (f act ory, def aul t ='File")
Return a factory function for creating Nodes for this construction environment.

get_scanner (skey)
Find the appropriate scanner given a key (usually a file suffix).

get_src_sig_type ()

get _tgt sig_type ()

gvars ()

items ()
Emulates the items() method of dictionaries.

keys ()
Emulates the keys() method of dictionaries.

Ivars ()

scanner_map_delete (kw=None)
Delete the cached scanner map (if we need to).

setdefault (key, def aul t =None)
Emulates the setdefault() method of dictionaries.

subst (st ri ng, raw=0, t ar get =None, sour ce=None, conv=None, execut or =None, overri des=False)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.

subst_kw (kw, r aw=0, t ar get =None, sour ce=None)

subst_list (st ri ng, raw=0, t ar get =None, sour ce=None, conv=None, execut or =None, over ri des=False)
Calls through to SCons.Subst.scons_subst_list(). See the documentation for that function.

subst_path (pat h, t ar get =None, sour ce=None)
Substitute a path list, turning EntryProxies into Nodes and leaving Nodes (and other objects) as-is.

subst_target_source (st ri ng, raw=0, t ar get =None, sour ce=None, conv=None, execut or =None,

overri des=False)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.

validate_CacheDir_class (cust om cl ass=None)

137

SCons API Documentation

Validate the passed custom CacheDir class, or if no args are passed, validate the custom CacheDir class from the
environment.
values ()
Emulates the values() method of dictionaries.
class SCons.Environment.BuilderDict (mappi ng, env)
Bases: collections.UserDict
This is a dictionary-like class used by an Environment to hold the Builders. We need to do this because every time
someone changes the Builders in the Environment’s BUILDERS dictionary, we must update the Environment's
attributes.
_abc_impl = <_abc._abc_data object>
clear () - None. Remove all items from D.
copy ()
classmethod fromkeys (i t er abl e, val ue=None)
get (k[, d]) - D[K] if kin D, else d. d defaults to None.
items () —» a set-like object providing a view on D's items
keys () — a set-like object providing a view on D's keys
pop (k[, d]) - v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.
popitem () - (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.
setdefault (k[, d]) - D.get(k,d), also set D[k]=d if k not in D
update ([, E], **F) - None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[K] = E[K] If E present and lacks .keys() method, does: for
(k, v) in E: D[K] = v In either case, this is followed by: for k, v in F.items(): D[k] = v
values () - an object providing a view on D's values
class SCons.Environment.BuilderWrapper (obj , net hod, nane=None)
Bases: SCons.Util.envs.MethodWrapper
A MethodWrapper subclass that that associates an environment with a Builder.
This mainly exists to wrap the __call__ () function so that all calls to Builders can have their argument lists massaged
in the same way (treat a lone argument as the source, treat two arguments as target then source, make sure both
target and source are lists) without having to have cut-and-paste code to do it.
As a bit of obsessive backwards compatibility, we also intercept attempts to get or set the “env” or “builder” attributes,
which were the names we used before we put the common functionality into the MethodWrapper base class. We'll
keep this around for a while in case people shipped Tool modules that reached into the wrapper (like the Tool/gt.py
module does, or did). There shouldn’t be a lot attribute fetching or setting on these, so a little extra work shouldn’t
hurt.
clone (new_obj ect)
Returns an object that re-binds the underlying “method” to the specified new object.
SCons.Environment.NoSubstitutionProxy (subj ect)
An entry point for returning a proxy subclass instance that overrides the subst*() methods so they don’t actually
perform construction variable substitution. This is specifically intended to be the shim layer in between global function
calls (which don’t want construction variable substitution) and the DefaultEnvironment() (which would substitute
variables if left to its own devices).
We have to wrap this in a function that allows us to delay definition of the class until it's necessary, so that when it
subclasses Environment it will pick up whatever Environment subclass the wrapper interface might have assigned to
SCons.Environment.Environment.
class SCons.Environment.OverrideEnvironment (subj ect , over ri des=None)
Bases: SCons.Environment.Base
A proxy that overrides variables in a wrapped construction environment by returning values from an overrides
dictionary in preference to values from the underlying subject environment.
This is a lightweight (I hope) proxy that passes through most use of attributes to the underlying Environment.Base
class, but has just enough additional methods defined to act like a real construction environment with overridden
values. It can wrap either a Base construction environment, or another OverrideEnvironment, which can in turn nest
arbitrary OverrideEnvironments...
Note that we do not call the underlying base class (SubsitutionEnvironment) initialization, because we get most of
those from proxying the attributes of the subject construction environment. But because we subclass

138

SCons API Documentation

SubstitutionEnvironment, this class also has inherited arg2nodes() and subst*() methods; those methods can’t be

proxied because they need this object’s methods to fetch the values from the overrides dictionary.

Action (*ar gs, ** kw)

AddMethod (f unct i on, name=None)
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.

AddPostAction (fi | es, acti on)

AddPreAction (fi | es, acti on)

Alias (t ar get , sour ce=[], act i on=None, ** kw)

AlwaysBuild (*t ar get s)

Append (* * kw)
Append values to construction variables in an Environment.
The variable is created if it is not already present.

AppendENVPath (nane, newpat h, envhame="ENV’, sep="", del et e_exi sti ng=False)
Append path elements to the path name in the envname dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the case
where the env variable is a list instead of a string.
If delete_existing is False, a newpath element already in the path will not be moved to the end (it will be left where
it is).

AppendUnique (del et e_exi st i ng=False, ** kw)
Append values to existing construction variables in an Environment, if they’re not already there. If delete_existing is
True, removes existing values first, so values move to end.

Builder (* * kw)

CacheDir (pat h, cust om _cl ass=None)

Clean (t argets,files)

Clone (t ool s=[], t ool pat h=None, par se_f | ags=None, * * kw)
Return a copy of a construction Environment.
The copy is like a Python “deep copy”-that is, independent copies are made recursively of each objects—except
that a reference is copied when an object is not deep-copyable (like a function). There are no references to any
mutable objects in the original Environment.

Command (t ar get , sour ce, acti on, **kw)
Builds the supplied target files from the supplied source files using the supplied action. Action may be any type that
the Builder constructor will accept for an action.

Configure (*ar gs, * * kw)

Decider (f uncti on)

Depends (t ar get , dependency)
Explicity specify that ‘target’s depend on ‘dependency’.

Detect (pr ogs)
Return the first available program from one or more possibilities.

Parameters: progs (str or list) — one or more command names to check for
Dictionary (*ar gs)
Return construction variables from an environment.
Parameters: *args (optional) — variable names to look up

Returns: If args omitted, the dictionary of all construction variables. If one arg, the corresponding
value is returned. If more than one arg, a list of values is returned.

Raises: KeyError —if any of args is not in the construction environment.
Dir (nane, *ar gs, **kw)
Dump (key=None, f or mat ='pretty’)
Return construction variables serialized to a string.

139

SCons API Documentation

Parameters: .)] }
» key (optional) — if None, format the whole dict of variables. Else format the value of key

(Default value = None)

- format (str, optional) — specify the format to serialize to. “pretty” generates a
pretty-printed string, “json” a JSON-formatted string. (Default value = “pretty”)

Entry (name, *ar gs, ** kw)
Environment (* * kw)
Execute (acti on, *ar gs, **kw)

Directly execute an action through an Environment
File (nane, *ar gs, **kw)
FindFile (fi l e, di rs)
FindInstalledFiles ()

returns the list of all targets of the Install and InstallAs Builder.
FindIxes (pat hs, prefi x, suf fi x)

Search a list of paths for something that matches the prefix and suffix.

Parameters: _
» paths — the list of paths or nodes.

 prefix — construction variable for the prefix.

* suffix — construction variable for the suffix.
Returns: the matched path or None
FindSourceFiles (node="") - list
Return a list of all source files.
Flatten (sequence)
GetBuildPath (fi | es)
Glob (pat t er n, ondi sk=True, sour ce=False, st ri ngs=False, excl ude=None)
Ignore (t ar get , dependency)
Ignore a dependency.
Literal (st ri ng)
Local (*t ar get s)
MergeFlags (ar gs, uni que=True) — None
Merge flags into construction variables.
Merges the flags from args into this construction environent. If args is not a dict, it is first converted to one with
flags distributed into appropriate construction variables. See ParseFlags().

Parameters:
» args — flags to merge
e unique — merge flags rather than appending (default: True). When merging, path
variables are retained from the front, other construction variables from the end.
NoCache (*t ar get s)
Tags a target so that it will not be cached
NoClean (*t ar get s)
Tags a target so that it will not be cleaned by -c
Override (overri des)
Produce a modified environment whose variables are overridden by the overrides dictionaries. “overrides” is a
dictionary that will override the variables of this environment.
This function is much more efficient than Clone() or creating a new Environment because it doesn’'t copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn't even create
a wrapper object if there are no overrides.
ParseConfig (command, f unct i on=None, uni que=True)
Parse the result of running a command to update construction vars.
Use f unct i on to parse the output of running command in order to modify the current environment.

140

SCons API Documentation

Parameters: .]]] .
» command — a string or a list of strings representing a command and its arguments.

 function — called to process the result of conmand, which will be passed as ar gs. If
function is omitted or None, MergeFlags() is used. Takes 3 args
(env, args, unique)

» unique — whether no duplicate values are allowed (default true)

ParseDepends (f i | ename, nust _exi st =None, onl y_one=False)
Parse a mkdep-style file for explicit dependencies. This is completely abusable, and should be unnecessary in the
“normal” case of proper SCons configuration, but it may help make the transition from a Make hierarchy easier for
some people to swallow. It can also be genuinely useful when using a tool that can write a .d file, but for which
writing a scanner would be too complicated.

ParseFlags (*f | ags) — dict
Return a dict of parsed flags.
Parse f | ags and return a dict with the flags distributed into the appropriate construction variable names. The flags
are treated as a typical set of command-line flags for a GNU-style toolchain, such as might have been generated
by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in this method -
the choices are not expected to be portable to other toolchains.
If one of the f | ags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest of
the string is executed; the result of that evaluation is then added to the dict.

Platform (pl at f orm

Precious (*t ar get s)

Prepend (* * kw)
Prepend values to construction variables in an Environment.
The variable is created if it is not already present.

PrependENVPath (nane, newpat h, envnane='ENV', sep="', del et e_exi st i ng=True)
Prepend path elements to the path name in the envname dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the case
where the env variable is a list instead of a string.
If delete_existing is False, a newpath component already in the path will not be moved to the front (it will be left
where it is).

PrependUnique (del et e_exi sti ng=False, ** kw)
Prepend values to existing construction variables in an Environment, if they’re not already there. If delete_existing
is True, removes existing values first, so values move to front.

Pseudo (*t ar get s)

PyPackageDir (hodul enane)

RemoveMethod (f uncti on)
Removes the specified function’'s MethodWrapper from the added_methods list, so we don't re-bind it when
making a clone.

Replace (* * kw)
Replace existing construction variables in an Environment with new construction variables and/or values.

Replacelxes (pat h, ol d_prefix, ol d_suffix, new prefix, new suffix)
Replace old_prefix with new_prefix and old_suffix with new_suffix.
env - Environment used to interpolate variables. path - the path that will be modified. old_prefix - construction
variable for the old prefix. old_suffix - construction variable for the old suffix. new_prefix - construction variable for
the new prefix. new_suffix - construction variable for the new suffix.

Repository (*di rs, **kw)

Requires (t ar get , prerequi site)
Specify that ‘prerequisite’ must be built before ‘target’, (but ‘target’ does not actually depend on ‘prerequisite’ and
need not be rebuilt if it changes).

SConsignFile (hane=".sconsign', dom nodul e=None)

Scanner (*ar gs, **kw)

SetDefault (* * kw)

SideEffect (si de_ef fect, target)
Tell scons that side_effects are built as side effects of building targets.

Split (ar g)

141

SCons API Documentation

This function converts a string or list into a list of strings or Nodes. This makes things easier for users by allowing
files to be specified as a white-space separated list to be split.

The input rules are:

A single string containing names separated by spaces. These will be split apart at the spaces.
» A single Node instance

+ Alist containing either strings or Node instances. Any strings in the list are not split at spaces.
In all cases, the function returns a list of Nodes and strings.

Tool (t ool , t ool pat h=None, * *kwar gs) — SCons.Tool.Tool
Find and run tool module tool.
Changed in version 4.2: returns the tool module rather than None.
Value (val ue, bui I t _val ue=None, nane=None)
Return a Value (Python expression) node.
Changed in version 4.0: the name parameter was added.
VariantDir (vari ant _dir,src_dir,duplicate=1)
Wherels (pr og, pat h=None, pat hext =None, r ej ect =None)
Find prog in the path.
_canonicalize (pat h)
Allow Dirs and strings beginning with # for top-relative.
Note this uses the current env’s fs (in self).
_changed_build (dependency, t arget, prev_ni, repo_node=None)
_changed_content (dependency, t arget, prev_ni , repo_node=None)
_changed_source (dependency, t arget, prev_ni ,repo_node=None)
_changed_timestamp_match (dependency, t ar get, prev_ni , repo_node=None)
_changed_timestamp_newer (dependency, t ar get, prev_ni , repo_node=None)
_changed_timestamp_then_content (dependency, t ar get, prev_ni, repo_node=None)
_find_toolpath_dir (t p)
_gsm ()
_init_special ()
Initial the dispatch tables for special handling of special construction variables.
_update (ot her)
Private method to update an environment’s consvar dict directly.
Bypasses the normal checks that occur when users try to set items.
_update_onlynew (ot her)
Update a dict with new keys.
Unlike the .update method, if the key is already present, it is not replaced.
arg2nodes (ar gs, node_f act ory=<cl ass ' SCons. Envi ronnment. _Nul | ' >, | ookup_li st =<cl ass
' SCons. Envi ronment . _Nul | ' >, **kw)
backtick (comrmand) - str
Emulate command substitution.
Provides behavior conceptually like POSIX Shell notation for running a command in backquotes (backticks) by
running conmmand and returning the resulting output string.
This is not really a public API any longer, it is provided for the use of ParseFlags() (which supports it using a syntax
of lcommand) and ParseConfig().

Raises: OSError — if the external command returned non-zero exit status.

get (key, def aul t =None)
Emulates the get() method of dictionaries.
get_CacheDir ()
get_builder (nane)
Fetch the builder with the specified name from the environment.
get factory (f act ory, def aul t ='File")
Return a factory function for creating Nodes for this construction environment.
get_scanner (skey)
Find the appropriate scanner given a key (usually a file suffix).

142

SCons API Documentation

get_src_sig_type ()
get_tgt_sig_type ()
gvars ()
items ()
Emulates the items() method of dictionaries.
keys ()
Emulates the keys() method of dictionaries.
Ivars ()
scanner_map_delete (kw=None)
Delete the cached scanner map (if we need to).
setdefault (key, def aul t =None)
Emulates the setdefault() method of dictionaries.
subst (st ri ng, raw=0, t ar get =None, sour ce=None, conv=None, execut or =None, over ri des=False)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.
subst_kw (kw, r aw=0, t ar get =None, sour ce=None)
subst_list (st ri ng, r aw=0, t ar get =None, sour ce=None, conv=None, execut or =None, over r i des=False)
Calls through to SCons.Subst.scons_subst_list(). See the documentation for that function.
subst_path (pat h, t ar get =None, sour ce=None)
Substitute a path list, turning EntryProxies into Nodes and leaving Nodes (and other objects) as-is.
subst_target_source (stri ng, r aw=0, t ar get =None, sour ce=None, conv=None, execut or =None,
overri des=False)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.
validate_CacheDir_class (cust om _cl ass=None)
Validate the passed custom CacheDir class, or if no args are passed, validate the custom CacheDir class from the
environment.
values ()
Emulates the values() method of dictionaries.
class SCons.Environment.SubstitutionEnvironment (* * kw)
Bases: object
Base class for different flavors of construction environments.
This class contains a minimal set of methods that handle construction variable expansion and conversion of strings to
Nodes, which may or may not be actually useful as a stand-alone class. Which methods ended up in this class is
pretty arbitrary right now. They’re basically the ones which we’ve empirically determined are common to the different
construction environment subclasses, and most of the others that use or touch the underlying dictionary of
construction variables.
Eventually, this class should contain all the methods that we determine are necessary for a “minimal” interface to the
build engine. A full “native Python” SCons environment has gotten pretty heavyweight with all of the methods and
Tools and construction variables we’ve jammed in there, so it would be nice to have a lighter weight alternative for
interfaces that don't need all of the bells and whistles. (At some point, we’ll also probably rename this class “Base,”
since that more reflects what we want this class to become, but because we've released comments that tell people to
subclass Environment.Base to create their own flavors of construction environment, we’ll save that for a future
refactoring when this class actually becomes useful.)
AddMethod (f unct i on, name=None)
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.
MergeFlags (ar gs, uni que=True) — None
Merge flags into construction variables.
Merges the flags from args into this construction environent. If args is not a dict, it is first converted to one with
flags distributed into appropriate construction variables. See ParseFlags().

143

SCons API Documentation

Parameters:
» args — flags to merge
» unique — merge flags rather than appending (default: True). When merging, path
variables are retained from the front, other construction variables from the end.

Override (overri des)
Produce a modified environment whose variables are overridden by the overrides dictionaries. “overrides” is a
dictionary that will override the variables of this environment.
This function is much more efficient than Clone() or creating a new Environment because it doesn't copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn't even create
a wrapper object if there are no overrides.

ParseFlags (*f | ags) — dict
Return a dict of parsed flags.
Parse f | ags and return a dict with the flags distributed into the appropriate construction variable names. The flags
are treated as a typical set of command-line flags for a GNU-style toolchain, such as might have been generated
by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in this method -
the choices are not expected to be portable to other toolchains.
If one of the f | ags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest of
the string is executed; the result of that evaluation is then added to the dict.

RemoveMethod (f uncti on)
Removes the specified function’s MethodWrapper from the added_methods list, so we don't re-bind it when
making a clone.

_init_special ()
Initial the dispatch tables for special handling of special construction variables.

arg2nodes (ar gs, node_f act ory=<cl ass ' SCons. Envi ronnment. Nul | ' >, 1 ookup_li st=<cl ass

' SCons. Envi ronment . _Nul | ' >, **kw)

backtick (command) — str
Emulate command substitution.
Provides behavior conceptually like POSIX Shell notation for running a command in backquotes (backticks) by
running conmand and returning the resulting output string.
This is not really a public API any longer, it is provided for the use of ParseFlags() (which supports it using a syntax
of lcommand) and ParseConfig().

Raises: OSError — if the external command returned non-zero exit status.

get (key, def aul t =None)
Emulates the get() method of dictionaries.

gvars ()

items ()
Emulates the items() method of dictionaries.

keys ()
Emulates the keys() method of dictionaries.

Ivars ()

setdefault (key, def aul t =None)
Emulates the setdefault() method of dictionaries.

subst (st ri ng, raw=0, t ar get =None, sour ce=None, conv=None, execut or =None, over ri des=False)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.

subst_kw (kw, r aw=0, t ar get =None, sour ce=None)

subst_list (st ri ng, r aw=0, t ar get =None, sour ce=None, conv=None, execut or =None, over r i des=False)
Calls through to SCons.Subst.scons_subst_list(). See the documentation for that function.

subst_path (pat h, t ar get =None, sour ce=None)
Substitute a path list, turning EntryProxies into Nodes and leaving Nodes (and other objects) as-is.

subst_target_source (stri ng, r aw=0, t ar get =None, sour ce=None, conv=None, execut or =None,

overri des=False)

144

SCons API Documentation

Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.

values ()
Emulates the values() method of dictionaries.
class SCons.Environment._Null
Bases: object

SCons.Environment._add_cppdefines (env_di ct: dict, val, prepend: bool

False, del et e_exi sting: bool = False) - None

Adds to CPPDEFI NES, using the rules for C preprocessor macros.

= False, uni que: bool =

This is split out from regular construction variable addition because these entries can express either a macro with a
replacement value or one without. A macro with replacement value can be supplied as val in three ways: as a
combined string " nane=val ue"; as a tuple (nane, val ue), or as an entry in a dictionary { "nane": val ue}. A

list argument with multiple macros can also be given.

Additions can be unconditional (duplicates allowed) or uniquing (no dupes).

Note if a replacement value is supplied, unique requires a full match to decide uniqueness - both the macro name

and the replacement. The inner _is_in() is used to figure that out.

Parameters:

< env_dict — the dictionary containing the CPPDEFI NES to be modified.

« val — the value to add, can be string, sequence or dict
e prepend — whether to put val in front or back.

e unique — whether to add val if it already exists.

« delete_existing — if unique is true, add val after removing previous.

New in version 4.5.0.
SCons.Environment._del SCANNERS (env, key)
SCons.Environment._delete_duplicates (I , keep_I| ast)

Delete duplicates from a sequence, keeping the first or last.
SCons.Environment._null

alias of SCons.Environment._Null
SCons.Environment._set BUILDERS (env, key, val ue)
SCons.Environment._set SCANNERS (env, key, val ue)
SCons.Environment._set_future_reserved (env, key, val ue)
SCons.Environment._set_reserved (env, key, val ue)
SCons.Environment.alias_builder (env, t ar get , sour ce)
SCons.Environment.apply_tools (env, t ool s, t ool pat h)
SCons.Environment.copy_non_reserved_keywords (di ct)
SCons.Environment.default_copy_from_cache (env, src, dst)
SCons.Environment.default_copy to cache (env, src, dst)

SCons.Environment.default_decide_source (dependency, t arget, prev_ni , repo_node=None)
SCons.Environment.default_decide_target (dependency, t ar get, prev_ni, repo_node=None)

SCons.Environment.is_valid_construction_var (var str)

Return if the specified string is a legitimate construction variable.

SCons.Errors module
SCons exception classes.

Used to handle internal and user errors in SCons.

exception SCons.Errors.BuildError (hode=None, er r st r ='Unknown error’, st at us=2, exi t st at us=2,
fil enane=None, execut or =None, act i on=None, conmand=None, exc_i nf o=(None, None, None))

Bases: Exception
SCons Errors that can occur while building.

A BuildError exception contains information both about the erorr itself, and what caused the error.

145

SCons API Documentation

Variables:) o)
* node — (cause) the error occurred while building this target node(s)

« errstr — (info) a description of the error message

 status — (info) the return code of the action that caused the build error. Must be set to a
non-zero value even if the build error is not due to an action returning a non-zero returned
code.

 exitstatus — (info) SCons exit status due to this build error. Must be nonzero unless due
to an explicit Exit() call. Not always the same as st at us, since actions return a status
code that should be respected, but SCons typically exits with 2 irrespective of the return
value of the failed action.

« filename — (info) The name of the file or directory that caused the build error. Set to None
if no files are associated with this error. This might be different from the target being built.
For example, failure to create the directory in which the target file will appear. It can be
None if the error is not due to a particular filename.

e executor — (cause) the executor that caused the build to fail (might be None if the build
failures is not due to the executor failing)

« action — (cause) the action that caused the build to fail (might be None if the build failures
is not due to the an action failure)

« command — (cause) the command line for the action that caused the build to fail (might
be None if the build failures is not due to the an action failure)

e exc_info — (info) Info about exception that caused the build error. Set to
(None, None, None) if this build error is not due to an exception.
exception SCons.Errors.ExplicitExit (hnode=None, st at us=None, *ar gs)
Bases: Exception
exception SCons.Errors.InternalError
Bases: Exception
exception SCons.Errors.MSVCError
Bases: OSError
exception SCons.Errors.SConsEnvironmentError
Bases: Exception
exception SCons.Errors.StopError
Bases: Exception
exception SCons.Errors.UserError
Bases: Exception
SCons.Errors.convert_to_BuildError (st at us, exc_i nf o=None)
Convert a return code to a BuildError Exception.
The buildError.status we set here will normally be used as the exit status of the “scons” process.

Parameters: _)
 status — can either be a return code or an Exception.

« exc_info (tuple, optional) — explicit exception information.

SCons.Executor module

Execute actions with specific lists of target and source Nodes.
SCons.Executor.AddBatchExecutor (key, execut or)
class SCons.Executor.Batch (t ar get s=[], sour ces=[])
Bases: object
Remembers exact association between targets and sources of executor.
sources
targets
class SCons.Executor.Executor (act i on, env=None, overri del i st =[{}], t ar get s=[], sour ces=[],
bui | der _kw={})

146

SCons API Documentation

Bases: object

A class for controlling instances of executing an action.

This largely exists to hold a single association of an action, environment, list of environment override dictionaries,

targets and sources for later processing as needed.

_changed_sources_list

_changed_targets_list

_do_execute

_execute_str

_get_changed_sources (*ar gs, **kw)

_get_changed_targets (*ar gs, ** kw)

_get_changes ()

_get_source (*ar gs, **kw)

_get_sources (*ar gs, **kw)

_get_target (*ar gs, **kw)

_get_targets (*ar gs, * *kw)

_get_unchanged_sources (*ar gs, ** kw)

_get_unchanged_targets (*ar gs, ** kw)

_get_unignored_sources_key (node, i gnor e=())

_memo

_unchanged_sources_list

_unchanged_targets_list

action_list

add_batch (t ar get s, sour ces)
Add pair of associated target and source to this Executor’s list. This is necessary for “batch” Builders that can be
called repeatedly to build up a list of matching target and source files that will be used in order to update multiple
target files at once from multiple corresponding source files, for tools like MSVC that support it.

add_post_action (act i on)

add_pre_action (act i on)

add_sources (sour ces)
Add source files to this Executor’s list. This is necessary for “multi” Builders that can be called repeatedly to build
up a source file list for a given target.

batches

builder_kw

cleanup ()

env

get_action_list ()

get_action_side_effects ()
Returns all side effects for all batches of this Executor used by the underlying Action.

get_action_targets ()

get_all_children ()
Returns all unique children (dependencies) for all batches of this Executor.
The Taskmaster can recognize when it's already evaluated a Node, so we don’t have to make this list unique for its
intended canonical use case, but we expect there to be a lot of redundancy (long lists of batched .cc files
#including the same .h files over and over), so removing the duplicates once up front should save the Taskmaster
a lot of work.

get_all_prerequisites ()
Returns all unique (order-only) prerequisites for all batches of this Executor.

get_all_sources ()
Returns all sources for all batches of this Executor.

get_all_targets ()
Returns all targets for all batches of this Executor.

get_build_env ()
Fetch or create the appropriate build Environment for this Executor.

get_build_scanner_path (scanner)
Fetch the scanner path for this executor’s targets and sources.

get_contents ()

147

SCons API Documentation

Fetch the signature contents. This is the main reason this class exists, so we can compute this once and cache it
regardless of how many target or source Nodes there are.
Returns bytes

get_implicit_deps ()
Return the executor’s implicit dependencies, i.e. the nodes of the commands to be executed.

get_kw (kw={})

get_lIvars ()

get_sources ()

get_timestamp ()
Fetch a time stamp for this Executor. We don’t have one, of course (only files do), but this is the interface used by
the timestamp module.

get_unignored_sources (node, i gnor e=())

Ivars

nullify ()

overridelist

post_actions

pre_actions

prepare ()
Preparatory checks for whether this Executor can go ahead and (try to) build its targets.

scan (scanner, node_|ist)
Scan a list of this Executor’s files (targets or sources) for implicit dependencies and update all of the targets with
them. This essentially short-circuits an N*M scan of the sources for each individual target, which is a hell of a lot
more efficient.

scan_sources (scanner)

scan_targets (scanner)

set_action_list (act i on)

SCons.Executor.GetBatchExecutor (key)
class SCons.Executor.Null (*ar gs, * * kw)

Bases: object

A null Executor, with a null build Environment, that does nothing when the rest of the methods call it.

This might be able to disappear when we refactor things to disassociate Builders from Nodes entirely, so we're not

going to worry about unit tests for this—at least for now.

_changed_sources_list

_changed_targets_list

_do_execute

_execute_str

_memo

_morph ()
Morph this Null executor to a real Executor object.

_unchanged_sources_list

_unchanged_targets_list

action_list

add_post_action (act i on)

add_pre_action (act i on)

batches

builder_kw

cleanup ()

env

get_action_list ()

get_action_side_effects ()

get_action_targets ()

get_all_children ()

get_all_prerequisites ()

get_all_sources ()

get_all_targets ()

get_build_env ()

148

SCons API Documentation

get_build_scanner_path ()
get_contents ()
get_unignored_sources (* ar gs, **kw)
Ivars
overridelist
post_actions
pre_actions
prepare ()
set_action_list (act i on)
class SCons.Executor.NullEnvironment (* ar gs, * * kwar gs)
Bases: SCons.Util.types.Null
SCons = <module 'SCons' from '/Users/bdbaddog/devel/scons/git/as_scons/SCons/__init__.py™>
_CacheDir = <SCons.CacheDir.CacheDir object>
_CacheDir_path = None
get_CacheDir ()
class SCons.Executor.TSList (f unc)
Bases: collections.UserList
A class that implements $TARGETS or $SOURCES expansions by wrapping an executor Method. This class is used
in the Executor.lvars() to delay creation of NodeList objects until they’re needed.
Note that we subclass collections.UserList purely so that the is_Sequence() function will identify an object of this
class as a list during variable expansion. We're not really using any collections.UserList methods in practice.
_abc_impl = <_abc._abc_data object>
append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t em)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
class SCons.Executor.TSObject (f unc)
Bases: object
A class that implements $TARGET or $SOURCE expansions by wrapping an Executor method.
SCons.Executor.execute_action_list (obj , t ar get , kw)
Actually execute the action list.
SCons.Executor.execute_actions_str (obj)
SCons.Executor.execute_nothing (obj , t ar get , kw)
SCons.Executor.execute _null_str (obj)
SCons.Executor.get_NullEnvironment ()
Use singleton pattern for Null Environments.
SCons.Executor.rfile (node)
A function to return the results of a Node’s rfile() method, if it exists, and the Node itself otherwise (if it's a Value
Node, e.g.).

149

SCons API Documentation

SCons.Memoize module
Decorator-based memoizer to count caching stats.

A decorator-based implementation to count hits and misses of the computed values that various methods cache in
memory.

Use of this modules assumes that wrapped methods be coded to cache their values in a consistent way. In particular, it
requires that the class uses a dictionary named “_memo” to store the cached values.

Here is an example of wrapping a method that returns a computed value, with no input parameters:

@Cons. Menpi ze. Count Met hodCal |
def foo(self):

try: # Menpi zation
return self. _meno[' foo'] # Menpi zation

except KeyError: # Menpi zation
pass # Menpi zation

result = self.conpute_foo_val ue()

self. nmemo['foo'] = result # Menpi zation

return result
Here is an example of wrapping a method that will return different values based on one or more input arguments:

def _bar_key(self, argument): # Menpi zati on
return argunent # Menpi zati on

@Cons. Menoi ze. Count Di ct Cal | (_bar _key)
def bar(self, argument):

meno_key = argunent # Menpi zati on
try: # Menpi zati on
meno_dict = self._meno[' bar'] # Menpi zati on
except KeyError: # Menpi zati on
meno_dict = {} # Menpi zati on
self. nmeno['dict'] = menp_dict # Menpi zati on
el se: # Menoi zati on
try: # Menpi zati on
return nmeno_di ct[meno_key] # Menpi zati on
except KeyError: # Menpi zati on
pass # Menpi zati on

result = self.conpute_bar_val ue(argunent)
meno_di ct[meno_key] = result # Menpi zati on

return result

Deciding what to cache is tricky, because different configurations can have radically different performance tradeoffs,
and because the tradeoffs involved are often so non-obvious. Consequently, deciding whether or not to cache a given
method will likely be more of an art than a science, but should still be based on available data from this module. Here
are some VERY GENERAL guidelines about deciding whether or not to cache return values from a method that’'s being
called a lot:

150

SCons API Documentation

— The first question to ask is, “Can we change the calling code

so this method isn't called so often?” Sometimes this can be done by changing the algorithm. Sometimes the
caller should be memoized, not the method you're looking at.

The memoized function should be timed with multiple configurations to make sure it doesn't inadvertently slow
down some other configuration.

—When memoizing values based on a dictionary key composed of

input arguments, you don’t need to use all of the arguments if some of them don't affect the return values.
class SCons.Memoize.CountDict (cl s_nane, net hod_nane, keymaker)
Bases: SCons.Memoize.Counter
A counter class for memoized values stored in a dictionary, with keys based on the method’s input arguments.
A CountDict object is instantiated in a decorator for each of the class’s methods that memoizes its return value in a
dictionary, indexed by some key that can be computed from one or more of its input arguments.
count (*ar gs, ** kw)
Counts whether the computed key value is already present in the memoization dictionary (a hit) or not (a miss).
display ()
key ()
SCons.Memoize.CountDictCall (keyf unc)
Decorator for counting memoizer hits/misses while accessing dictionary values with a key-generating function. Like
CountMethodCall above, it wraps the given method fn and uses a CountDict object to keep track of the caching
statistics. The dict-key function keyfunc has to get passed in the decorator call and gets stored in the CountDict
instance. Wrapping gets enabled by calling EnableMemoization().
SCons.Memoize.CountMethodCall (f n)
Decorator for counting memoizer hits/misses while retrieving a simple value in a class method. It wraps the given
method fn and uses a CountValue object to keep track of the caching statistics. Wrapping gets enabled by calling
EnableMemoization().
class SCons.Memoize.CountValue (cl s_name, net hod_nane)
Bases: SCons.Memoize.Counter
A counter class for simple, atomic memoized values.
A CountValue object should be instantiated in a decorator for each of the class’s methods that memoizes its return
value by simply storing the return value in its _memo dictionary.
count (*ar gs, ** kw)
Counts whether the memoized value has already been set (a hit) or not (a miss).
display ()
key ()
class SCons.Memoize.Counter (cl s_nane, net hod_nane)
Bases: object
Base class for counting memoization hits and misses.
We expect that the initialization in a matching decorator will fill in the correct class name and method name that
represents the name of the function being counted.
display ()
key ()
SCons.Memoize.Dump (t i t | e=None)
Dump the hit/miss count for all the counters collected so far.
SCons.Memoize.EnableMemoization ()

SCons.PathList module
Handle lists of directory paths.

These are the path lists that get set as CPPPATH, LIBPATH, etc.) with as much caching of data and efficiency as we
can, while still keeping the evaluation delayed so that we Do the Right Thing (almost) regardless of how the variable is
specified.
SCons.PathList.PathList (pat hl i st)

Returns the cached _PathList object for the specified pathlist, creating and caching a new object as necessary.
class SCons.PathList. PathList (pat hl i st)

151

SCons API Documentation

Bases: object

An actual PathList object.

subst_path (env, t ar get , sour ce)

Performs construction variable substitution on a pre-digested PathList for a specific target and source.

SCons.PathList.node_conv (obj)

This is the “string conversion” routine that we have our substitutions use to return Nodes, not strings. This relies on

the fact that an EntryProxy object has a get() method that returns the underlying Node that it wraps, which is a bit of

architectural dependence that we might need to break or modify in the future in response to additional requirements.

SCons.SConf module
Autoconf-like configuration support.

In other words, SConf allows to run tests on the build machine to detect capabilities of system and do some things
based on result: generate config files, header files for C/C++, update variables in environment.

Tests on the build system can detect if compiler sees header files, if libraries are installed, if some command line
options are supported etc.
SCons.SConf.CheckCC (cont ext)
SCons.SConf.CheckCHeader (cont ext , header, i ncl ude_quot es="")
A test for a C header file.
SCons.SConf.CheckCXX (cont ext)
SCons.SConf.CheckCXXHeader (cont ext , header, i ncl ude_quot es="")
A test for a C++ header file.
class SCons.SConf.CheckContext (sconf)
Bases: object
Provides a context for configure tests. Defines how a test writes to the screen and log file.
A typical test is just a callable with an instance of CheckContext as first argument:

def CheckCustom(context, ...):

context.Message(‘Checking my weird test ... ‘) ret = myWeirdTestFunction(...) context.Result(ret)
Often, myWeirdTestFunction will be one of context. TryCompile/context. TryLink/context. TryRun. The results of those
are cached, for they are only rebuild, if the dependencies have changed.
AppendLIBS (I i b_name_li st, uni que=False)
BuildProg (t ext , ext)
CompileProg (t ext , ext)
CompileSharedObject (t ext , ext)
Display (msQ)
Log (msg)
Message (t ext)
Inform about what we are doing right now, e.g. ‘Checking for SOMETHING ... *
PrependLIBS (I i b_nane_I i st, uni que=False)
Result (r es)
Inform about the result of the test. If res is not a string, displays ‘yes’ or ‘no’ depending on whether res is evaluated
as true or false. The result is only displayed when self.did_show_result is not set.
RunProg (t ext , ext)
SetLIBS (val)
TryAction (* ar gs, ** kw)
TryBuild (*ar gs, ** kw)
TryCompile (*ar gs, **kw)
TryLink (*ar gs, ** kw)
TryRun (*ar gs, ** kw)
SCons.SConf.CheckDeclaration (cont ext , decl arati on, i ncl udes=", | anguage=None)
SCons.SConf.CheckFunc (cont ext , f unct i on_nane, header =None, | anguage=None)
SCons.SConf.CheckHeader (cont ext , header, i ncl ude_quot es='<>", | anguage=None)
A test for a C or C++ header file.
SCons.SConf.CheckLib (cont ext, | i br ar y=None, synbol ='main’, header =None, | anguage=None,
aut oadd=True, append=True, uni que=False) - bool

152

SCons API Documentation

A test for a library. See also CheckLibWithHeader. Note that library may also be None to test whether the given
symbol compiles without flags.
SCons.SConf.CheckLibWithHeader (cont ext , | i bs, header, | anguage, cal | =None, aut oadd=True,
append=True, uni que=False) - bool
Another (more sophisticated) test for a library. Checks, if library and header is available for language (may be ‘C’ or
‘CXX’). Call maybe be a valid expression _with_ a trailing ‘;’. As in CheckLib, we support library=None, to test if the
call compiles without extra link flags.
SCons.SConf.CheckMember (cont ext , aggr egat e_nenber , header =None, | anguage=None)
Returns the status (False : failed, True : ok).
SCons.SConf.CheckProg (cont ext , pr og_nane)
Simple check if a program exists in the path. Returns the path for the application, or None if not found.
SCons.SConf.CheckSHCC (cont ext)
SCons.SConf.CheckSHCXX (cont ext)
SCons.SConf.CheckType (cont ext , t ype_nane, i ncl udes=", | anguage=None)
SCons.SConf.CheckTypeSize (cont ext , t ype_nane, i ncl udes=", | anguage=None, expect =None)
exception SCons.SConf.ConfigureCacheError (t ar get)
Bases: SCons.SConf.SConfError
Raised when a use explicitely requested the cache feature, but the test is run the first time.
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.SConf.ConfigureDryRunError (t ar get)
Bases: SCons.SConf.SConfError
Raised when a file or directory needs to be updated during a Configure process, but the user requested a dry-run
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
SCons.SConf.CreateConfigHBuilder (env)
Called if necessary just before the building targets phase begins.
SCons.SConf.NeedConfigHBuilder ()
SCons.SConf.SConf (*ar gs, * * kw)
class SCons.SConf.SConfBase (env, cust om t est s={}, conf _di r ='$CONFIGUREDIR',
| og_fil e="$CONFIGURELOG', confi g_h=None, _dept h=0)
Bases: object
This is simply a class to represent a configure context. After creating a SConf object, you can call any tests. After
finished with your tests, be sure to call the Finish() method, which returns the modified environment. Some words
about caching: In most cases, it is not necessary to cache Test results explicitly. Instead, we use the scons
dependency checking mechanism. For example, if one wants to compile a test program (SConf.TryLink), the
compiler is only called, if the program dependencies have changed. However, if the program could not be compiled in
a former SConf run, we need to explicitly cache this error.
AddTest (t est _nane, t est _i nst ance)
Adds test_class to this SConf instance. It can be called with self.test_name(...)
AddTests (t est s)
Adds all the tests given in the tests dictionary to this SConf instance
BuildNodes (nodes)
Tries to build the given nodes immediately. Returns 1 on success, 0 on error.
Define (nane, val ue=None, conmrent =None)
Define a pre processor symbol name, with the optional given value in the current config header.
If value is None (default), then #define name is written. If value is not none, then #define name value is written.
comment is a string which will be put as a C comment in the header, to explain the meaning of the value
(appropriate C comments will be added automatically).
Finish ()
Call this method after finished with your tests: env = sconf.Finish()
class TestWrapper (t est, sconf)
Bases: object
A wrapper around Tests (to ensure sanity)

153

SCons API Documentation

TryAction (act i on, t ext =None, ext ensi on=")
Tries to execute the given action with optional source file contents <text> and optional source file extension
<extension>, Returns the status (0 : failed, 1 : ok) and the contents of the output file.

TryBuild (bui | der, t ext =None, ext ensi on=")
Low level TryBuild implementation. Normally you don’'t need to call that - you can use TryCompile / TryLink /
TryRun instead

TryCompile (t ext , ext ensi on)
Compiles the program given in text to an env.Object, using extension as file extension (e.g. ‘.c’). Returns 1, if
compilation was successful, O otherwise. The target is saved in self.lastTarget (for further processing).

TryLink (t ext , ext ensi on)
Compiles the program given in text to an executable env.Program, using extension as file extension (e.g. ‘.c)).
Returns 1, if compilation was successful, 0 otherwise. The target is saved in self.lastTarget (for further processing).

TryRun (t ext , ext ensi on)
Compiles and runs the program given in text, using extension as file extension (e.g. ‘.c’). Returns (1, outputStr) on
success, (0, ”) otherwise. The target (a file containing the program’s stdout) is saved in self.lastTarget (for further
processing).

_createDir (node)

_shutdown ()
Private method. Reset to non-piped spawn

_startup ()
Private method. Set up logstream, and set the environment variables necessary for a piped build

pspawn_wrapper (sh, escape, cnd, ar gs, env)
Wrapper function for handling piped spawns.
This looks to the calling interface (in Action.py) like a “normal” spawn, but associates the call with the PSPAWN
variable from the construction environment and with the streams to which we want the output logged. This gets slid
into the construction environment as the SPAWN variable so Action.py doesn’'t have to know or care whether it's
spawning a piped command or not.

class SCons.SConf.SConfBuildinfo

Bases: SCons.Node.FS.FileBuildinfo

Special build info for targets of configure tests. Additional members are result (did the builder succeed last time?) and

string, which contains messages of the original build phase.

__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (state)
Restore the attributes from a pickled state.

bact

bactsig

bdepends

bdependsigs

bimplicit

bimplicitsigs

bsources

bsourcesigs

convert_from_sconsign (di r, nane)
Converts a newly-read FileBuildInfo object for in-SCons use
For normal up-to-date checking, we don’t have any conversion to perform—but we're leaving this method here to
make that clear.

convert_to_sconsign ()
Converts this FileBuildinfo object for writing to a .sconsign file
This replaces each Node in our various dependency lists with its usual string representation: relative to the
top-level SConstruct directory, or an absolute path if it's outside.

current_version_id = 2

dependency_map

format (nanmes=0)

154

SCons API Documentation

merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

prepare_dependencies ()
Prepares a FileBuildinfo object for explaining what changed
The bsources, bdepends and bimplicit lists have all been stored on disk as paths relative to the top-level
SConstruct directory. Convert the strings to actual Nodes (for use by the —debug=explain code and
—implicit-cache).

result

set_build_result (resul t, stri ng)

string

class SCons.SConf.SConfBuildTask (t m t ar get s, t op, node)

Bases: SCons.Taskmaster.AlwaysTask

This is almost the same as SCons.Script.BuildTask. Handles SConfErrors correctly and knows about the current

cache_mode.

LOGGER = None

_abc_impl = <_abc._abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_ho_exception_to_raise ()

collect_node_states ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

display_cached_string (bi)
Logs the original builder messages, given the SConfBuildInfo instance bi.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (except i on=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node's
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks ()

155

SCons API Documentation

Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.
fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().
fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().
failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().
get_target ()
Fetch the target being built or updated by this task.
make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.
make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.
make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.
needs_execute ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute
non_sconf _nodes = {}
postprocess ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.
prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.
trace_message (hode, descri pti on="node")
exception SCons.SConf.SConfError (msQ)
Bases: SCons.Errors.UserError
args
with_traceback ()
Exception.with_traceback(tb) — set self. _traceback __ to tb and return self.
exception SCons.SConf.SConfWarning
Bases: SCons.Warnings.SConsWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self. _traceback _ to tb and return self.

156

SCons API Documentation

SCons.SConf.SetBuildType (bui | dt ype)
SCons.SConf.SetCacheMode (nmode)

Set the Configure cache mode. mode must be one of “auto”, “force”, or “cache”.
SCons.SConf.SetProgressDisplay (di spl ay)

Set the progress display to use (called from SCons.Script)
class SCons.SConf.Streamer (ori g)

Bases: object

‘Sniffer’ for a file-like writable object. Similar to the unix tool tee.

flush ()

getvalue ()

Return everything written to orig since the Streamer was created.

write (st r)

writelines (I i nes)
SCons.SConf._createConfigH (t ar get , sour ce, env)
SCons.SConf._createSource (t ar get , sour ce, env)
SCons.SConf._set conftest node (node)
SCons.SConf._stringConfigH (t ar get , sour ce, env)
SCons.SConf._stringSource (t ar get , sour ce, env)
SCons.SConf.createlncludesFromHeaders (header s, | eavelast, i ncl ude_quot es="")

SCons.SConsign module

Operations on signature database files (.sconsign).
class SCons.SConsign.Base
Bases: object
This is the controlling class for the signatures for the collection of entries associated with a specific directory. The
actual directory association will be maintained by a subclass that is specific to the underlying storage method. This
class provides a common set of methods for fetching and storing the individual bits of information that make up
signature entry.
do_not_set_entry (fi | enane, obj)
do_not_store_info (fi | enane, node)
get_entry (fi | enane)
Fetch the specified entry attribute.
merge ()
set_entry (fi | enane, obj)
Set the entry.
store_info (fi | enane, node)
class SCons.SConsign.DB (di r)
Bases: SCons.SConsign.Base
A Base subclass that reads and writes signature information from a global .sconsign.db* file—the actual file suffix is
determined by the database module.
do_not_set_entry (fi | enane, obj)
do_not_store_info (fi | enane, node)
get_entry (fi | enane)
Fetch the specified entry attribute.
merge ()
set_entry (fi | enane, obj)
Set the entry.
store_info (fi | enane, node)
write (sync=1)
class SCons.SConsign.Dir (f p=None, di r =None)
Bases: SCons.SConsign.Base
do_not_set_entry (fi | enane, obj)
do_not_store_info (fi | enane, node)
get_entry (fi | enane)
Fetch the specified entry attribute.

157

SCons API Documentation

merge ()
set_entry (fi | enane, obj)
Set the entry.
store_info (fi | enane, node)
class SCons.SConsign.DirFile (di r)
Bases: SCons.SConsign.Dir
Encapsulates reading and writing a per-directory .sconsign file.
do_not_set_entry (fi | enane, obj)
do_not_store_info (fi | enane, node)
get_entry (fi | enane)
Fetch the specified entry attribute.
merge ()
set_entry (fi | enane, obj)
Set the entry.
store_info (fi | enane, node)
write (sync=1)
Write the .sconsign file to disk.
Try to write to a temporary file first, and rename it if we succeed. If we can’t write to the temporary file, it's probably
because the directory isn't writable (and if so, how did we build anything in this directory, anyway?), so try to write
directly to the .sconsign file as a backup. If we can’t rename, try to copy the temporary contents back to the
.sconsign file. Either way, always try to remove the temporary file at the end.
SCons.SConsign.File (nane, dbm nodul e=None)
Arrange for all signatures to be stored in a global .sconsign.db* file.
SCons.SConsign.ForDirectory
alias of SCons.SConsign.DB
SCons.SConsign.Get_DataBase (di r)
SCons.SConsign.Reset ()
Reset global state. Used by unit tests that end up using SConsign multiple times to get a clean slate for each test.
class SCons.SConsign.SConsignEntry
Bases: object
Wrapper class for the generic entry in a .sconsign file. The Node subclass populates it with attributes as it pleases.
XXX As coded below, we do expect a ‘.binfo’ attribute to be added, but we’ll probably generalize this in the next
refactorings.
binfo
convert_from_sconsign (di r, nane)
convert_to_sconsign ()
current_version_id = 2
ninfo
SCons.SConsign.corrupt_dblite_warning (f i | enane)
SCons.SConsign.current_sconsign_filename ()
SCons.SConsign.write ()

SCons.Subst module

SCons string substitution.
class SCons.Subst.CmdStringHolder (cnd, | i t er al =None)
Bases: collections.UserString
This is a special class used to hold strings generated by scons_subst() and scons_subst_list(). It defines a special
method escape(). When passed a function with an escape algorithm for a particular platform, it will return the
contained string with the proper escape sequences inserted.
_abc_impl = <_abc._abc_data object>
capitalize ()
casefold ()
center (Wi dt h, *ar gs)
count (val ue) — integer -- return number of occurrences of value
encode (encodi ng='utf-8', er r or s='strict’)

158

SCons API Documentation

endswith (suf fi x, st art =0, end=9223372036854775807)

escape (escape_func, quot e_func=<functi on quote_spaces>)
Escape the string with the supplied function. The function is expected to take an arbitrary string, then return it with
all special characters escaped and ready for passing to the command interpreter.
After calling this function, the next call to str() will return the escaped string.

expandtabs (t absi ze=8)

find (sub, st art =0, end=9223372036854775807)

format (* ar gs, * * kwds)

format_map (mappi ng)

index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

is_literal ()

isalnum ()

isalpha ()

isascii ()

isdecimal ()

isdigit ()

isidentifier ()

islower ()

isnumeric ()

isprintable ()

isspace ()

istitle ()

isupper ()

join (seq)

ljust (Wi dt h, *ar gs)

lower ()

Istrip (char s=None)

maketrans ()
Return a translation table usable for str.translate().
If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters to Unicode
ordinals, strings or None. Character keys will be then converted to ordinals. If there are two arguments, they must
be strings of equal length, and in the resulting dictionary, each character in x will be mapped to the character at the
same position in y. If there is a third argument, it must be a string, whose characters will be mapped to None in the
result.

partition (sep)

removeprefix (prefix, /)

removesuffix (suf fi x, /)

replace (ol d, new, maxsplit=-1)

rfind (sub, st art =0, end=9223372036854775807)

rindex (sub, st art =0, end=9223372036854775807)

rjust (wi dt h, *ar gs)

rpartition (sep)

rsplit (sep=None, maxspl it =-1)

rstrip (char s=None)

split (sep=None, maxspl it =-1)

splitines (keepends=False)

startswith (pr efi x, st art =0, end=9223372036854775807)

strip (char s=None)

swapcase ()

title ()

translate (* ar gs)

upper ()

Zfill (Wi dt h)

class SCons.Subst.ListSubber (env, node, conv, gvar s)

159

SCons API Documentation

Bases: collections.UserList
A class to construct the results of a scons_subst_list() call.
Like StringSubber, this class binds a specific construction environment, mode, target and source with two methods
(substitute() and expand()) that handle the expansion.
In addition, however, this class is used to track the state of the result(s) we’re gathering so we can do the appropriate
thing whenever we have to append another word to the result-start a new line, start a new word, append to the
current word, etc. We do this by setting the “append” attribute to the right method so that our wrapper methods only
need ever call ListSubber.append(), and the rest of the object takes care of doing the right thing internally.
_abc_impl = <_abc._abc_data object>
add_new_word (x)
add_to_current_word (x)
Append the string x to the end of the current last word in the result. If that is not possible, then just add it as a new
word. Make sure the entire concatenated string inherits the object attributes of x (in particular, the escape function)
by wrapping it as CmdStringHolder.
append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
close_strip (x)
Handle the “close strip” $) token.
copy ()
count (val ue) - integer -- return number of occurrences of value
expand (s, vars,within_list)
Expand a single “token” as necessary, appending the expansion to the current result.
This handles expanding different types of things (strings, lists, callables) appropriately. It calls the wrapper
substitute() method to re-expand things as necessary, so that the results of expansions of side-by-side strings still
get re-evaluated separately, not smushed together.
expanded (s)
Determines if the string s requires further expansion.
Due to the implementation of ListSubber expand will call itself 2 additional times for an already expanded string.
This method is used to determine if a string is already fully expanded and if so exit the loop early to prevent these
recursive calls.
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
literal (x)
next_line ()
Arrange for the next word to start a new line. This is like starting a new word, except that we have to append
another line to the result.
next_word ()
Arrange for the next word to start a new word.
open_strip (x)
Handle the “open strip” $(token.
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t en)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
substitute (args, | vars,wi thin_list)
Substitute expansions in an argument or list of arguments.
This serves as a wrapper for splitting up a string into separate tokens.

160

SCons API Documentation

this_word ()
Arrange for the next word to append to the end of the current last word in the result.
class SCons.Subst.Literal (I str)
Bases: object
A wrapper for a string. If you use this object wrapped around a string, then it will be interpreted as literal. When
passed to the command interpreter, all special characters will be escaped.
escape (escape_f unc)
for_signature ()
is_literal ()
class SCons.Subst.NLWrapper (I i st , f unc)
Bases: object
A wrapper class that delays turning a list of sources or targets into a NodeList until it's needed. The specified function
supplied when the object is initialized is responsible for turning raw nodes into proxies that implement the special
attributes like .abspath, .source, etc. This way, we avoid creating those proxies just “in case” someone is going to use
$TARGET or the like, and only go through the trouble if we really have to.
In practice, this might be a wash performance-wise, but it's a little cleaner conceptually...
_create_nodelist ()
_gen_nodelist ()
_return_nodelist ()
class SCons.Subst.NullNodelList (* ar gs, * * kwar gs)
Bases: SCons.Util.types.NullSeq
_instance
SCons.Subst.SetAllowableExceptions (* except s)
class SCons.Subst.SpecialAttrWrapper (I str, f or _si gnat ur e=None)
Bases: object
This is a wrapper for what we call a ‘Node special attribute.” This is any of the attributes of a Node that we can
reference from Environment variable substitution, such as $TARGET.abspath or $SOURCES[1].filebase. We
implement the same methods as Literal so we can handle special characters, plus a for_signature method, such that
we can return some canonical string during signature calculation to avoid unnecessary rebuilds.
escape (escape_f unc)
for_signature ()
is_literal ()
class SCons.Subst.StringSubber (env, node, conv, gvar s)
Bases: object
A class to construct the results of a scons_subst() call.
This binds a specific construction environment, mode, target and source with two methods (substitute() and
expand()) that handle the expansion.
expand (s, | vars)
Expand a single “token” as necessary, returning an appropriate string containing the expansion.
This handles expanding different types of things (strings, lists, callables) appropriately. It calls the wrapper
substitute() method to re-expand things as necessary, so that the results of expansions of side-by-side strings still
get re-evaluated separately, not smushed together.
substitute (ar gs, | var s)
Substitute expansions in an argument or list of arguments.
This serves as a wrapper for splitting up a string into separate tokens.
class SCons.Subst.Target_or_Source (nl)
Bases: object
A class that implements $TARGET or $SOURCE expansions by in turn wrapping a NLWrapper. This class handles
the different methods used to access an individual proxy Node, calling the NLWrapper to create a proxy on demand.
class SCons.Subst.Targets_or_Sources (nl)
Bases: collections.UserList
A class that implements $TARGETS or $SOURCES expansions by in turn wrapping a NLWrapper. This class
handles the different methods used to access the list, calling the NLWrapper to create proxies on demand.
Note that we subclass collections.UserList purely so that the is_Sequence() function will identify an object of this
class as a list during variable expansion. We're not really using any collections.UserList methods in practice.
_abc_impl = <_abc._abc_data object>

161

SCons API Documentation

append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t en)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
SCons.Subst._remove_list (1 i st)
SCons.Subst._rm_list (Ii st)
SCons.Subst.escape_list (myl i st , escape_f unc)
Escape a list of arguments by running the specified escape_func on every object in the list that has an escape()
method.
SCons.Subst.quote_spaces (ar g)
Generic function for putting double quotes around any string that has white space in it.
SCons.Subst.raise_exception (excepti on, t arget, s)
SCons.Subst.scons_subst (st r Subst , env, node=1, t ar get =None, sour ce=None, gvar s={}, | var s={},
conv=None, overri des=False)
Expand a string or list containing construction variable substitutions.
This is the work-horse function for substitutions in file names and the like. The companion scons_subst_list() function
(below) handles separating command lines into lists of arguments, so see that function if that's what you're looking
for.
SCons.Subst.scons_subst_list (st r Subst , env, node=1, t ar get =None, sour ce=None, gvar s={}, | var s={},
conv=None, overri des=False)
Substitute construction variables in a string (or list or other object) and separate the arguments into a command list.
The companion scons_subst() function (above) handles basic substitutions within strings, so see that function
instead if that’s what you're looking for.
SCons.Subst.scons_subst_once (st r Subst , env, key)
Perform single (non-recursive) substitution of a single construction variable keyword.
This is used when setting a variable when copying or overriding values in an Environment. We want to capture
(expand) the old value before we override it, so people can do things like:

env2 = env.Clone(CCFLAGS = ‘$CCFLAGS -g’)
We do this with some straightforward, brute-force code here...
SCons.Subst.subst_dict (t ar get , sour ce)
Create a dictionary for substitution of special construction variables.
This translates the following special arguments:

target - the target (object or array of objects),

used to generate the TARGET and TARGETS construction variables
source - the source (object or array of objects),

used to generate the SOURCES and SOURCE construction variables

SCons.Util module

SCons utility functions

162

SCons API Documentation

This package contains routines for use by other parts of SCons.
class SCons.Util.CLVar (i nitli st =None)
Bases: collections.UserList
A container for command-line construction variables.
Forces the use of a list of strings intended as command-line arguments. Like collections.UserList, but the argument
passed to the initializter will be processed by the Split() function, which includes special handling for string types: they
will be split into a list of words, not coereced directly to a list. The same happens if a string is added to a CLVar,
which allows doing the right thing with both Append()/Prepend() methods, as well as with pure Python addition,
regardless of whether adding a list or a string to a construction variable.
Side effect: spaces will be stripped from individual string arguments. If you need spaces preserved, pass strings
containing spaces inside a list argument.

>>> u = UserList("--sone --opts and args")
>>> print(len(u), repr(u))

2 0-, -, s, e, ', e, e,) o, tp, e, s,) tat, T,
>>> ¢ = CLVar("--sonme --opts and args")

>>> print(len(c), repr(c))

4 ['--sone', '--opts', 'and', 'args']

>>> ¢ += " strips spaces
>>> print(len(c), repr(c))
6 ['--some', '--opts', "and', 'args', 'strips', 'spaces']

_abc_impl = <_abc._abc_data object>
append (i tem)
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) — integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,iten)
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t en)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, ** kwds)
class SCons.Util.Delegate (attri but e)
Bases: object
A Python Descriptor class that delegates attribute fetches to an underlying wrapped subject of a Proxy. Typical use:

cl ass Foo(Proxy):
_str__ = Delegate(' __str__")

class SCons.Util.DispatchingFormatter (f ormatters, default _formatter)
Bases: logging.Formatter
converter ()

localtime([seconds]) -> (tm_year,tm_mon,tm_mday,tm_hour,tm_min,
tm_sec,tm_wday,tm_yday,tm_isdst)

163

SCons API Documentation

Convert seconds since the Epoch to a time tuple expressing local time. When ‘seconds’ is not passed in, convert
the current time instead.
default_msec_format = '%s,%03d'
default_time_format = '%Y-%m-%d %H:%M:%S'
format (r ecor d)
Format the specified record as text.
The record’s attribute dictionary is used as the operand to a string formatting operation which yields the returned
string. Before formatting the dictionary, a couple of preparatory steps are carried out. The message attribute of the
record is computed using LogRecord.getMessage(). If the formatting string uses the time (as determined by a call
to usesTime(), formatTime() is called to format the event time. If there is exception information, it is formatted using
formatException() and appended to the message.
formatException (ei)
Format and return the specified exception information as a string.
This default implementation just uses traceback.print_exception()
formatMessage (r ecor d)
formatStack (st ack_i nf o)
This method is provided as an extension point for specialized formatting of stack information.
The input data is a string as returned from a call to traceback.print_stack(), but with the last trailing newline
removed.
The base implementation just returns the value passed in.
formatTime (r ecor d, dat ef nt =None)
Return the creation time of the specified LogRecord as formatted text.
This method should be called from format() by a formatter which wants to make use of a formatted time. This
method can be overridden in formatters to provide for any specific requirement, but the basic behaviour is as
follows: if datefmt (a string) is specified, it is used with time.strftime() to format the creation time of the record.
Otherwise, an ISO8601-like (or RFC 3339-like) format is used. The resulting string is returned. This function uses a
user-configurable function to convert the creation time to a tuple. By default, time.localtime() is used; to change this
for a particular formatter instance, set the ‘converter’ attribute to a function with the same signature as
time.localtime() or time.gmtime(). To change it for all formatters, for example if you want all logging times to be
shown in GMT, set the ‘converter’ attribute in the Formatter class.
usesTime ()
Check if the format uses the creation time of the record.
class SCons.Util.DisplayEngine
Bases: object
A callable class used to display SCons messages.
print_it = True
set_mode (mode)
SCons.Util.IDX (n) - bool
Generate in index into strings from the tree legends.
These are always a choice between two, so bool works fine.
class SCons.Util.LogicalLines (fi | eobj)
Bases: object
Wrapper class for the logical_lines method.
Allows us to read all “logical” lines at once from a given file object.
readlines ()
class SCons.Util.NodeList (i ni t1 i st =None)
Bases: collections.UserList
A list of Nodes with special attribute retrieval.
Unlike an ordinary list, access to a member’s attribute returns a NodeList containing the same attribute for each
member. Although this can hold any object, it is intended for use when processing Nodes, where fetching an attribute
of each member is very commone, for example getting the content signature of each node. The term “attribute” here
includes the string representation.

164

SCons API Documentation

>>> sonelLi st = NodeList([' foo ', ' bar '])
>>> sonelist.strip()
['foo', 'bar']

__getattr__ (nanme) - SCons.Util.NodeList
Returns a NodeList of name from each member.
__getitem__ (i ndex)
Returns one item, forces a NodelList if index is a slice.
_abc_impl = <_abc._abc_data object>
append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) — integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t en)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, ** kwds)
class SCons.Util.Proxy (subj ect)
Bases: object
A simple generic Proxy class, forwarding all calls to subject.
This means you can take an object, let's call it ‘obj_a, and wrap it in this Proxy class, with a statement like this:

proxy_obj = Proxy(obj_a)
Then, if in the future, you do something like this:
X = proxy_obj.varl

since the Proxy class does not have a varl attribute (but presumably objA does), the request actually is equivalent to
saying:

X = obj _a.varl

Inherit from this class to create a Proxy.

With Python 3.5+ this does not work transparently for Proxy subclasses that use special .__* () method names,
because those names are now bound to the class, not the individual instances. You now need to know in advance
which special method names you want to pass on to the underlying Proxy object, and specifically delegate their calls
like this:

cl ass Foo(Proxy):
_str__ = Delegate('__str__")

__Qgetattr__ (nane)

165

SCons API Documentation

Retrieve an attribute from the wrapped object.

Raises: AttributeError — if attribute name doesn’t exist.

get ()
Retrieve the entire wrapped object
SCons.Util.RegError
alias of SCons.Util._NoError
SCons.Util.RegGetValue (r oot , key)
SCons.Util.RegOpenKeyEX (r oot , key)
class SCons.Util.Selector
Bases: collections.OrderedDict
A callable ordered dictionary that maps file suffixes to dictionary values. We preserve the order in which items are
added so that get_suffix() calls always return the first suffix added.
clear () -~ None. Remove all items from od.
copy () - a shallow copy of od
fromkeys (val ue=None)
Create a new ordered dictionary with keys from iterable and values set to value.
get (key, def aul t =None, /)
Return the value for key if key is in the dictionary, else default.
items () - a set-like object providing a view on D's items
keys () — a set-like object providing a view on D's keys
move_to_end (key, | ast =True)
Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
pop (key|[, def aul t]) - v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem (I ast =True)
Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
setdefault (key, def aul t =None)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
update ([, E], **F) -~ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[K] = E[K] If E is present and lacks a .keys()
method, then does: for k, v in E: D[K] = v In either case, this is followed by: for k in F: D[K] = F[K]
values () —» an object providing a view on D's values
SCons.Util.Split (ar g) — list
Returns a list of file names or other objects.
If arg is a string, it will be split on strings of white-space characters within the string. If arg is already a list, the list will
be returned untouched. If arg is any other type of object, it will be returned as a list containing just the object.

>>> print(Split(" this is a string "))

["this', "is', "a', 'string']
>>> print(Split(["stringlist", " preserving ", " spaces "]))
["stringlist', ' preserving ', ' spaces ']

class SCons.Util.Unbuffered (fi | e)
Bases: object
A proxy that wraps a file object, flushing after every write.
Delegates everything else to the wrapped object.
write (ar g)
writelines (ar g)
class SCons.Util.UniqueList (i ni t1i st =None)
Bases: collections.UserList
A list which maintains uniqueness.

166

SCons API Documentation

Uniquing is lazy: rather than being assured on list changes, it is fixed up on access by those methods which need to
act on a unique list to be correct. That means things like “in” don’t have to eat the uniquing time.
__make_unique ()
_abc_impl = <_abc._abc_data object>
append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t en)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
SCons.Util.Wherels (fi | e, pat h=None, pat hext =None, r ej ect =None) - Optional[str]
Return the path to an executable that matches file.
Searches the given path for file, respecting any filename extensions pathext (on the Windows platform only), and
returns the full path to the matching command. If no command is found, return None.
If path is not specified, os.environ[PATH] is used. If pathext is not specified, os.environ[PATHEXT] is used. Will not
select any path name or names in the optional reject list.
exception SCons.Util._NoError
Bases: Exception
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
SCons.Util._semi_deepcopy_list (obj) - list
SCons.Util._semi_deepcopy_tuple (obj) - tuple
SCons.Util.adjustixes (f nane, pr e, suf , ensur e_suf f i x=False) - str
Adjust filename prefixes and suffixes as needed.
Add prefix to fname if specified. Add suffix to fname if specified and if ensure_suffix is Tr ue
SCons.Util.case_sensitive_suffixes (s1, s2) - bool
SCons.Util.cmp (a, b) — bool
A cmp function because one is no longer available in python3.
SCons.Util.containsAll (s, pat) - bool
Check whether string s contains ALL of the items in pat.
SCons.Util.containsAny (s, pat) - bool
Check whether string s contains ANY of the items in pat.
SCons.Util.containsOnly (s, pat) - bool
Check whether string s contains ONLY items in pat.
SCons.Util.dictify (keys, val ues, r esul t =None) - dict
SCons.Util.do_flatten (sequence, resul t,i si nstance=<built-in function isinstance>,
StringTypes=(<class 'str'> <class 'collections.UserString' >), SequenceTypes=(<cl ass
"list'> <class '"tuple' > <class 'collections.deque' > <class 'collections.UserList'>,
<cl ass 'coll ections. abc. Mappi ngVi ew >))
SCons.Util.flatten (obj , i si nst ance=<built-in function isinstance>, StringTypes=(<class 'str'>,
<class 'collections.UserString' >), SequenceTypes=(<class 'list'> <class 'tuple'> <class

167

SCons API Documentation

' col | ections. deque' >, <cl ass 'collections. UserList'>, <cl ass
‘col | ections. abc. Mappi ngVi ew >),do_fl atten=<function do_flatten>) - list
Flatten a sequence to a non-nested list.
Converts either a single scalar or a nested sequence to a non-nested list. Note that flatten() considers strings to be
scalars instead of sequences like pure Python would.
SCons.Util.flatten_sequence (sequence, i si nst ance=<built-in function isinstance>,
StringTypes=(<class 'str'> <class 'collections.UserString' >), SequenceTypes=(<cl ass
"list'> <class '"tuple'> <class 'collections.deque' > <class 'collections.UserList'>,
<cl ass 'collections. abc. Mappi ngView >),do_fl atten=<function do_flatten>) - list
Flatten a sequence to a non-nested list.
Same as flatten(), but it does not handle the single scalar case. This is slightly more efficient when one knows that
the sequence to flatten can not be a scalar.
SCons.Util.get_native_path (pat h) — str
Transform an absolute path into a native path for the system.
In Cygwin, this converts from a Cygwin path to a Windows path, without regard to whether path refers to an existing
file system object. For other platforms, path is unchanged.
SCons.Util.logical_lines (physi cal _lines,joiner=<built-in nethod join of str object>)
SCons.Util.make_path_relative (pat h) — str
Converts an absolute path name to a relative pathname.
SCons.Util.print_time ()
Hack to return a value from Main if can’t import Main.
SCons.Util.print_tree (r oot , chi | d_f unc, pr une=0, show ags=False, mar gi n=[0], vi si t ed=None, | ast Chi | d:
bool = False, si ngl eLi neDraw. bool = False) -~ None
Print a tree of nodes.
This is like func:render_tree, except it prints lines directly instead of creating a string representation in memory, so
that huge trees can be handled.

Parameters:
* root — the root node of the tree

 child_func — the function called to get the children of a node
e prune — don't visit the same node twice
« showtags — print status information to the left of each node line

« margin — the format of the left margin to use for children of root. 1 results in a pipe, and 0
results in no pipe.

« visited — a dictionary of visited nodes in the current branch if prune is 0, or in the whole
tree if prune is 1.

* lastChild — this is the last leaf of a branch

 singleLineDraw — use line-drawing characters rather than ASCII.
SCons.Util.render_tree (root, chi | d_f unc, prune=0, mar gi n=[0], vi si t ed=None) - str
Render a tree of nodes into an ASCII tree view.

Parameters:
* root — the root node of the tree

« child_func — the function called to get the children of a node
e prune — don't visit the same node twice

* margin — the format of the left margin to use for children of root. 1 results in a pipe, and 0
results in no pipe.

* visited — a dictionary of visited nodes in the current branch if prune is 0, or in the whole
tree if prune is 1.
SCons.Util.rightmost_separator (pat h, sep)
SCons.Util.sanitize_shell_env (executi on_env: dict) - dict
Sanitize all values in execution_env

168

SCons API Documentation

The execution environment (typically comes from (env['ENV’]) is propagated to the shell, and may need to be
cleaned first.

Parameters: .])
e execution_env — The shell environment variables to be propagated

« shell. (to the spawned) —
Returns: sanitized dictionary of env variables (similar to what you'd get from os.environ)

SCons.Util.semi_deepcopy (obj)
SCons.Util.semi_deepcopy_dict (obj , excl ude=None) - dict
SCons.Util.silent_intern (x)
Perform sys.intern on the passed argument and return the result. If the input is ineligible for interning the original
argument is returned and no exception is thrown.
SCons.Util.splitext (pat h) - tuple
Split path into a (root, ext) pair.
Same as os.path.splitext but faster.
SCons.Util.unique (seq)
Return a list of the elements in seq without duplicates, ignoring order.

>>> nylist = unique([1, 2, 3, 1, 2, 3])

>>> print(sorted(mnmylist))

[1, 2, 3]

>>> nyl i st = uni que("abcabc")

>>> print(sorted(nylist))

[a', '"b'", 'c']

>>> nylist = unique(([1, 2], [2, 3], [1, 2]))
>>> print(sorted(nylist))

[(r1, 21, [2, 3]]

For best speed, all sequence elements should be hashable. Then unique() will usually work in linear time.
If not possible, the sequence elements should enjoy a total ordering, and if list(s).sort() doesn'’t raise TypeError it's
assumed that they do enjoy a total ordering. Then unique() will usually work in O(N*log2(N)) time.
If that's not possible either, the sequence elements must support equality-testing. Then unique() will usually work in
quadratic time.

SCons.Util.uniquer_hashables (seq)

SCons.Util.updrive (pat h) - str
Make the drive letter (if any) upper case.
This is useful because Windows is inconsistent on the case of the drive letter, which can cause inconsistencies when
calculating command signatures.

SCons.Util.wait_for_process_to_die (pi d)
Wait for specified process to die, or alternatively kill it NOTE: This function operates best with psutil pypi package
TODO: Add timeout which raises exception

SCons.Warnings module

The SCons warnings framework.
exception SCons.Warnings.CacheCleanupErrorWarning
Bases: SCons.Warnings.SConsWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self. __traceback__ to tb and return self.
exception SCons.Warnings.CacheVersionWarning
Bases: SCons.Warnings.WarningOnByDefault
args
with_traceback ()
Exception.with_traceback(tb) — set self. __traceback__ to tb and return self.
exception SCons.Warnings.CacheWriteErrorWarning

169

SCons API Documentation

Bases: SCons.Warnings.SConsWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.CorruptSConsignWarning
Bases: SCons.Warnings.WarningOnByDefault
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.DependencyWarning
Bases: SCons.Warnings.SConsWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.DeprecatedDebugOptionsWarning
Bases: SCons.Warnings.MandatoryDeprecatedWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.DeprecatedMissingSConscriptWarning
Bases: SCons.Warnings.DeprecatedWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.DeprecatedOptionsWarning
Bases: SCons.Warnings.MandatoryDeprecatedWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.DeprecatedSourceCodeWarning
Bases: SCons.Warnings.FutureDeprecatedWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.DeprecatedWarning
Bases: SCons.Warnings.SConsWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.DevelopmentVersionWarning
Bases: SCons.Warnings.WarningOnByDefault
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.DuplicateEnvironmentWarning
Bases: SCons.Warnings.WarningOnByDefault
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.FortranCxxMixWarning
Bases: SCons.Warnings.LinkWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.FutureDeprecatedWarning
Bases: SCons.Warnings.SConsWarning

170

SCons API Documentation

args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.FutureReservedVariableWarning
Bases: SCons.Warnings.WarningOnByDefault
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.LinkWarning
Bases: SCons.Warnings.WarningOnByDefault
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.MandatoryDeprecatedWarning
Bases: SCons.Warnings.DeprecatedWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.MisleadingKeywordsWarning
Bases: SCons.Warnings.WarningOnByDefault
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.MissingSConscriptWarning
Bases: SCons.Warnings.WarningOnByDefault
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.NoObjectCountWarning
Bases: SCons.Warnings.WarningOnByDefault
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.NoParallelSupportWarning
Bases: SCons.Warnings.WarningOnByDefault
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.PythonVersionWarning
Bases: SCons.Warnings.DeprecatedWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.ReservedVariableWarning
Bases: SCons.Warnings.WarningOnByDefault
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.SConsWarning
Bases: SCons.Errors.UserError
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.StackSizeWarning
Bases: SCons.Warnings.WarningOnByDefault
args

171

SCons API Documentation

with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.TargetNotBuiltWarning
Bases: SCons.Warnings.SConsWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.TaskmasterNeedsExecuteWarning
Bases: SCons.Warnings.DeprecatedWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.ToolQtDeprecatedWarning
Bases: SCons.Warnings.DeprecatedWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.VisualCMissingWarning
Bases: SCons.Warnings.WarningOnByDefault
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.VisualStudioMissingWarning
Bases: SCons.Warnings.SConsWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.VisualVersionMismatch
Bases: SCons.Warnings.WarningOnByDefault
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
exception SCons.Warnings.WarningOnByDefault
Bases: SCons.Warnings.SConsWarning
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
SCons.Warnings.enableWarningClass (cl azz)
Enables all warnings of type clazz or derived from clazz.
SCons.Warnings.process_warn_strings (ar gunent s)
Process requests to enable/disable warnings.
The requests are strings passed to the —warn option or the SetOption(‘warn’) function.

An argument to this option should be of the form “warning-class” or “no-warning-class”. The warning class is munged
and has the suffix “Warning” added in order to get an actual class name from the classes above, which we need to

pass to the {enable,disable}WarningClass() functions.

For example, “deprecated” will enable the DeprecatedWarning class. “no-dependency” will disable the

DependencyWarning class.

As a special case, —warn=all and —warn=no-all will enable or disable (respectively) the base class of all SCons

warnings.
SCons.Warnings.suppressWarningClass (cl azz)
Suppresses all warnings of type clazz or derived from clazz.
SCons.Warnings.warn (cl azz, *ar gs)
Issue a warning, accounting for SCons rules.

Check if warnings for this class are enabled. If warnings are treated as exceptions, raise exception. Use the global

warning-emitter _warningOut, which allows selecting different ways of presenting a traceback (see Script/Main.py)
SCons.Warnings.warningAsException (f | ag=True)

172

SCons API Documentation

Set global _warningAsExeption flag.

Parameters: flag — value to set warnings-as-exceptions to [default: True]
Returns: The previous value.

SCons.cpp module

SCons C Pre-Processor module
SCons.cpp.CPP_to_Python (s)
Converts a C pre-processor expression into an equivalent Python expression that can be evaluated.
SCons.cpp.CPP_to_Python_Ops_Sub (m
SCons.cpp.Cleanup_CPP_Expressions (t s)
class SCons.cpp.DumbPreProcessor (* ar gs, ** kw)
Bases: SCons.cpp.PreProcessor
A preprocessor that ignores all #if/#elif/#else/#endif directives and just reports back all of the #include files (like the
classic SCons scanner did).
This is functionally equivalent to using a regular expression to find all of the #include lines, only slower. It exists
mainly as an example of how the main PreProcessor class can be sub-classed to tailor its behavior.
_call__(file)
Pre-processes a file.
This is the main public entry point.
_do_if else_condition (condi ti on)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.
_match_tuples (t upl es)
_parse_tuples (cont ent s)
_process_tuples (t upl es, fi | e=None)
all_include (t)
do_define (t)
Default handling of a #define line.
do_elif (t)
Default handling of a #elif line.
do_else (t)
Default handling of a #else line.
do_endif (t)
Default handling of a #endif line.
do_if (t)
Default handling of a #if line.
do_ifdef (t)
Default handling of a #ifdef line.
do_ifndef (t)
Default handling of a #ifndef line.
do_import (t)
Default handling of a #import line.
do_include (t)
Default handling of a #include line.
do_include_next (t)
Default handling of a #include line.
do_nothing (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.
do_undef (t)
Default handling of a #undef line.
eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor nhamespace we use to
track #define values.
finalize_result (f nane)

173

SCons API Documentation

find_include_file (t)
Finds the #include file for a given preprocessor tuple.
initialize_result (f nane)
process_contents (cont ent s)
Pre-processes a file contents.
Is used by tests
process_file (fil e)
Pre-processes a file.
This is the main internal entry point.
read_file (fil e)
resolve_include (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without *” or <> surrounding the name until an initial ” or < is found, to
handle #include FILE where FILE is a #define somewhere else.
restore ()
Pops the previous dispatch table off the stack and makes it the current one.
save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.
scons_current_file (t)
start_handling_includes (t =None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.
stop_handling_includes (t =None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.
tupleize (cont ent s)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’s preprocessor directive (#if, #include, #define, etc., minus the initial ‘#).
The remaining elements are specific to the type of directive, as pulled apart by the regular expression.
class SCons.cpp.FunctionEvaluator (nane, ar gs, expansi on)
Bases: object
Handles delayed evaluation of a #define function call.
__call__ (*val ues)
Evaluates the expansion of a #define macro function called with the specified values.
class SCons.cpp.PreProcessor (current ="', cpppat h=(), di ct ={}, al | =0, dept h=- 1)
Bases: object
The main workhorse class for handling C pre-processing.
_call__(file)
Pre-processes a file.
This is the main public entry point.
_do_if_else_condition (condi ti on)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.
_match_tuples (t upl es)
_parse_tuples (cont ent s)
_process_tuples (t upl es, fi | e=None)
all_include (t)
do_define (t)
Default handling of a #define line.

do_elif (t)

Default handling of a #elif line.
do_else (t)

Default handling of a #else line.
do_endif (t)

Default handling of a #endif line.

174

SCons API Documentation

do_if (t)
Default handling of a #if line.
do_ifdef (t)
Default handling of a #ifdef line.
do_ifndef (t)
Default handling of a #ifndef line.
do_import (t)
Default handling of a #import line.
do_include (t)
Default handling of a #include line.
do_include_next (t)
Default handling of a #include line.
do_nothing (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.
do_undef (t)
Default handling of a #undef line.
eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor nhamespace we use to
track #define values.
finalize_result (f nane)
find_include_file (t)
Finds the #include file for a given preprocessor tuple.
initialize_result (f nane)
process_contents (cont ent s)
Pre-processes a file contents.
Is used by tests
process_file (fil e)
Pre-processes a file.
This is the main internal entry point.
read_file (fil e)
resolve_include (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without *” or <> surrounding the name until an initial ” or < is found, to
handle #include FILE where FILE is a #define somewhere else.
restore ()
Pops the previous dispatch table off the stack and makes it the current one.
save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.
scons_current_file (t)
start_handling_includes (t =None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.
stop_handling_includes (t =None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.
tupleize (cont ent s)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’s preprocessor directive (#if, #include, #define, etc., minus the initial ‘#).
The remaining elements are specific to the type of directive, as pulled apart by the regular expression.

SCons.dblite module
dblite.py module contributed by Ralf W. Grosse-Kunstleve. Extended for Unicode by Steven Knight.

175

SCons API Documentation

SCons.dblite._exercise ()
class SCons.dblite.dblite (fi | e_base_nane, f| ag, node)

Bases: object
Squirrel away references to the functions in various modules that we’ll use when our __del__ () method calls our

sync() method during shutdown. We might get destroyed when Python is in the midst of tearing down the different

modules we import in an essentially arbitrary order, and some of the various modules’s global attributes may already
be wiped out from under us.

See the discussion at:

http://mail.python.org/pipermail/python-bugs-list/2003-March/016877.html

_check_writable ()
_open (mode="r", buf f eri ng=- 1, encodi ng=None, er r or s=None, new i ne=None, cl osef d=True,
opener =None)

176

Open file and return a stream. Raise OSError upon failure.

file is either a text or byte string giving the name (and the path if the file isn't in the current working directory) of the
file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed when
the returned 1/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ‘r’ which means open for
reading in text mode. Other common values are ‘w’ for writing (truncating the file if it already exists), ‘X’ for creating
and writing to a new file, and ‘a’ for appending (which on some Unix systems, means that all writes append to the
end of the file regardless of the current seek position). In text mode, if encoding is not specified the encoding used
is platform dependent: locale.getpreferredencoding(False) is called to get the current locale encoding. (For reading
and writing raw bytes use binary mode and leave encoding unspecified.) The available modes are:

Character Meaning

r open for reading (default)

‘W’ open for writing, truncating the file first

X’ create a new file and open it for writing

‘a’ open for writing, appending to the end of the file if it exists
‘b’ binary mode

‘t text mode (default)

+’ open a disk file for updating (reading and writing)

‘U universal newline mode (deprecated)

The default mode is ‘rt’ (open for reading text). For binary random access, the mode ‘w+b’ opens and truncates the
file to O bytes, while ‘r+b’ opens the file without truncation. The ‘X’ mode implies ‘w’ and raises an FileExistsError if
the file already exists.

Python distinguishes between files opened in binary and text modes, even when the underlying operating system
doesn’t. Files opened in binary mode (appending ‘b’ to the mode argument) return contents as bytes objects
without any decoding. In text mode (the default, or when ‘t’ is appended to the mode argument), the contents of the
file are returned as strings, the bytes having been first decoded using a platform-dependent encoding or using the
specified encoding if given.

‘U’ mode is deprecated and will raise an exception in future versions of Python. It has no effect in Python 3. Use
newline to control universal newlines mode.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed in binary
mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size of a fixed-size
chunk buffer. When no buffering argument is given, the default buffering policy works as follows:

e Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on i0.DEFAULT _BUFFER_SIZE. On many
systems, the buffer will typically be 4096 or 8192 bytes long.

« “Interactive” text files (files for which isatty() returns True) use line buffering. Other text files use the policy
described above for binary files.

http://mail.python.org/pipermail/python-bugs-list/2003-March/016877.html

SCons API Documentation

encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode.
The default encoding is platform dependent, but any encoding supported by Python can be passed. See the
codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding errors are to be handled—this argument should not be used
in binary mode. Pass ‘strict’ to raise a ValueError exception if there is an encoding error (the default of None has
the same effect), or pass ‘ignore’ to ignore errors. (Note that ignoring encoding errors can lead to data loss.) See
the documentation for codecs.register or run ‘help(codecs.Codec)’ for a list of the permitted encoding error strings.
newline controls how universal newlines works (it only applies to text mode). It can be None, “, ‘n’, 'r’, and ‘rn’. It
works as follows:

< On input, if newline is None, universal newlines mode is enabled. Lines in the input can end in ‘n’, ‘r’, or ‘rn’,
and these are translated into ‘n’ before being returned to the caller. If it is , universal newline mode is
enabled, but line endings are returned to the caller untranslated. If it has any of the other legal values, input
lines are only terminated by the given string, and the line ending is returned to the caller untranslated.

< On output, if newline is None, any ‘n’ characters written are translated to the system default line separator,
os.linesep. If newline is “ or ‘n’, no translation takes place. If newline is any of the other legal values, any ‘n’

characters written are translated to the given strin% o)
If closefd is False, the underlying file descriptor will be kept open when the file is closed. This does not work when

a file name is given and must be True in that case.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os.open as
opener results in functionality similar to passing None).

open() returns a file object whose type depends on the mode, and through which the standard file operations such
as reading and writing are performed. When open() is used to open a file in a text mode (‘w’, ‘r’, ‘wt’, ‘rt’, etc.), it
returns a TextlOWrapper. When used to open a file in a binary mode, the returned class varies: in read binary
mode, it returns a BufferedReader; in write binary and append binary modes, it returns a BufferedWriter, and in
read/write mode, it returns a BufferedRandom.

It is also possible to use a string or bytearray as a file for both reading and writing. For strings StringlO can be used
like a file opened in a text mode, and for bytes a ByteslO can be used like a file opened in a binary mode.

_o0s_chmod (mode, *, di r _f d=None, f ol | ow_sym i nks=True)

Change the access permissions of a file.

path

Path to be modified. May always be specified as a str, bytes, or a path-like object. On some platforms,
path may also be specified as an open file descriptor. If this functionality is unavailable, using it raises an
exception.

mode
Operating-system mode bitfield.
dir_fd

If not None, it should be a file descriptor open to a directory, and path should be relative; path will then be
relative to that directory.

follow_symlinks

If False, and the last element of the path is a symbolic link, chmod will modify the symbolic link itself
instead of the file the link points to.

It is an error to use dir_fd or follow_symlinks when specifying path as
an open file descriptor.

dir_fd and follow_symlinks may not be implemented on your platform.
If they are unavailable, using them will raise a NotimplementedError.

_os_chown (ui d, gi d, *, di r _f d=None, f ol | ow_synl i nks=True)

177

Change the owner and group id of path to the numeric uid and gid.

path
Path to be examined; can be string, bytes, a path-like object, or open-file-descriptor int.

SCons API Documentation

dir_fd

If not None, it should be a file descriptor open to a directory, and path should be relative; path will then be
relative to that directory.

follow_symlinks

If False, and the last element of the path is a symbolic link, stat will examine the symbolic link itself
instead of the file the link points to.

path may always be specified as a string. On some platforms, path may also be specified as an open file
descriptor.

If this functionality is unavailable, using it raises an exception.
If dir_fd is not None, it should be a file descriptor open to a directory,
and path should be relative; path will then be relative to that directory.
If follow_symlinks is False, and the last element of the path is a symbolic
link, chown will modify the symbolic link itself instead of the file the link points to.

It is an error to use dir_fd or follow_symlinks when specifying path as
an open file descriptor.

dir_fd and follow_symlinks may not be implemented on your platform.

If they are unavailable, using them will raise a NotimplementedError.
_o0s_replace (dst, *, src_dir_fd=None, dst _di r _f d=None)
Rename a file or directory, overwriting the destination.

If either src_dir_fd or dst_dir_fd is not None, it should be afile

descriptor open to a directory, and the respective path string (src or dst) should be relative; the path will then
be relative to that directory.

src_dir_fd and dst_dir_fd, may not be implemented on your platform.

If they are unavailable, using them will raise a NotimplementedError.

static _pickle_dump (obj ,fil e, prot ocol =None, *, fi x_i nport s=True, buf f er _cal | back=None)
Write a pickled representation of obj to the open file object file.
This is equivalent to Pi ckl er (fil e, protocol). dunp(obj), but may be more efficient.
The optional protocol argument tells the pickler to use the given protocol; supported protocols are 0, 1, 2, 3, 4 and
5. The default protocol is 4. It was introduced in Python 3.4, and is incompatible with previous versions.
Specifying a negative protocol version selects the highest protocol version supported. The higher the protocol
used, the more recent the version of Python needed to read the pickle produced.
The file argument must have a write() method that accepts a single bytes argument. It can thus be a file object
opened for binary writing, an io.ByteslO instance, or any other custom object that meets this interface.
If fix_imports is True and protocol is less than 3, pickle will try to map the new Python 3 names to the old module
names used in Python 2, so that the pickle data stream is readable with Python 2.
If buffer_callback is None (the default), buffer views are serialized into file as part of the pickle stream. It is an error
if buffer_callback is not None and protocol is None or smaller than 5.

_pickle_protocol = 4

_shutil_copyfile (dst , *, f ol | ow_symnl i nks=True)
Copy data from src to dst in the most efficient way possible.
If follow_symlinks is not set and src is a symbolic link, a new symlink will be created instead of copying the file it
points to.

_time_time ()
time() -> floating point number
Return the current time in seconds since the Epoch. Fractions of a second may be present if the system clock
provides them.

close ()

keys ()

sync ()

SCons.dblite.open (fi | e, f| ag=None, node=438)

178

SCons.compat package

SCons.exitfuncs module

Register functions which are executed when SCons exits for any reason.
SCons.exitfuncs._run_exitfuncs ()
run any registered exit functions
_exithandlers is traversed in reverse order so functions are executed last in, first out.
SCons.exitfuncs.register (f unc, *t ar gs, * *kar gs)
register a function to be executed upon normal program termination
func - function to be called at exit targs - optional arguments to pass to func kargs - optional keyword arguments to
pass to func

SCons.compat package

Module contents
SCons compatibility package for old Python versions

This subpackage holds modules that provide backwards-compatible implementations of various things from newer
Python versions that we cannot count on because SCons still supported older Pythons.

Other code will not generally reference things in this package through the SCons.compat namespace. The modules
included here add things to the builtins namespace or the global module list so that the rest of our code can use the
objects and names imported here regardless of Python version. As a result, if this module is used, it should violate the
normal convention for imports (standard library imports first, then program-specific imports, each ordered
aplhabetically) and needs to be listed first.

The rest of the things here will be in individual compatibility modules that are either: 1) suitably modified copies of the
future modules that we want to use; or 2) backwards compatible re-implementations of the specific portions of a future
module’s API that we want to use.

GENERAL WARNINGS: Implementations of functions in the SCons.compat modules are NOT guaranteed to be fully
compliant with these functions in later versions of Python. We are only concerned with adding functionality that we
actually use in SCons, so be wary if you lift this code for other uses. (That said, making these more nearly the same as
later, official versions is still a desirable goal, we just don’t need to be obsessive about it.)

We name the compatibility modules with an initial *_scons_’ (for example, _scons_subprocess.py is our compatibility
module for subprocess) so that we can still try to import the real module nhame and fall back to our compatibility module
if we get an ImportError. The import_as() function defined below loads the module as the “real” name (without the
‘_scons’), after which all of the “import {module}” statements in the rest of our code will find our pre-loaded compatibility
module.
class SCons.compat.NoSlotsPyPy (nane, bases, dct)

Bases: type

Metaclass for PyPy compatitbility.

PyPy does not work well with __slots___and __class__ assignment.

mro ()

Return a type’s method resolution order.

SCons.compat.rename_module (new, ol d)

Attempt to import the old module and load it under the new name. Used for purely cosmetic name changes in Python

3.X.

SCons.Node package
Submodules

SCons.Node.Alias module
Alias nodes.

This creates a hash of global Aliases (dummy targets).

179

SCons.compat package

class SCons.Node.Alias.Alias (nane)
Bases: SCons.Node.Node
class Attrs
Bases: object
shared
BuildInfo
alias of SCons.Node.Alias.AliasBuildinfo
Decider (f uncti on)
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of SCons.Node.Alias.AliasNodelnfo
Tag (key, val ue)
Add a user-defined tag.
_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get ()
_children_reset ()
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_target_from_source
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_memo
_specific_sources
_tags
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)
add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node)
add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated
all_children (scan=1)
Return a list of all the node’s direct children.
alter_targets ()
Return a list of alternate targets for this Node.
always_build
attributes
binfo
build ()
A “builder” for aliases.
builder
builder_set (bui | der)
built ()
Called just after this node is successfully built.

180

SCons.compat package

cached

changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

convert ()

del_binfo ()
Delete the build info from this node.

depends

depends_set

disambiguate (must _exi st =None)

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

get_abspath ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’'s wanted.

get_build_env ()

181

SCons.compat package

Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
The contents of an alias is the concatenation of the content signatures of all its sources.

get_csig ()
Generate a node’s content signature, the digested signature of its content.
node - the node cache - alternate node to use for the signature cache returns - the content signature

get_env ()

get_env_scanner (env, kw={})

get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_ninfo ()

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()

182

SCons.compat package

183

Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

is_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

linked

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

postprocess ()
Clean up anything we don’t need to hang onto after we've been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the Buildinfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.

prerequisites

SCons.compat package

pseudo
push_to_cache ()
Try to push a node into a cache
really_build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
ref _count
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
sconsign ()
An Alias is not recorded in .sconsign files
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_state (st at e)
side_effect
side_effects

184

SCons.compat package

sources
sources_set
state
store_info
str_for_display ()
target_peers
visited ()
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
wkids
class SCons.Node.Alias.AliasBuildinfo
Bases: SCons.Node.BuildinfoBase
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
bact
bactsig
bdepends
bdependsigs
bimplicit
bimplicitsigs
bsources
bsourcesigs
current_version_id = 2
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
class SCons.Node.Alias.AliasNameSpace (di ct =None, / , ** kwar gs)
Bases: collections.UserDict
Alias (nane, ** kw)
_abc_impl = <_abc._abc_data object>
clear () - None. Remove all items from D.
copy ()
classmethod fromkeys (i t er abl e, val ue=None)
get (K[, d]) — D[K] if kin D, else d. d defaults to None.
items () —» a set-like object providing a view on D's items
keys () — a set-like object providing a view on D's keys
lookup (name, ** kw)
pop (k[, d]) - v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.
popitem () - (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.
setdefault (k[, d]) - D.get(k,d), also set D[k]=d if k not in D
update ([, E], **F) - None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[K] = E[K] If E present and lacks .keys() method, does: for
(k, v) in E: D[K] = v In either case, this is followed by: for k, v in F.items(): D[k] = v
values () - an object providing a view on D's values
class SCons.Node.Alias.AliasNodelnfo
Bases: SCons.Node.NodelnfoBase
__getstate__ ()

185

SCons.compat package

Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (state)
Restore the attributes from a pickled state.

convert (node, val)

csig

current_version_id = 2

field_list = ['csig']

format (fi el d_| i st =None, nanes=0)

merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

update (node)

SCons.Node.FS module

File system nodes.

These Nodes represent the canonical external objects that people think of when they think of building software: files
and directories.

This holds a “default_fs” variable that should be initialized with an FS that can be used by scripts or modules looking for
the canonical default.
class SCons.Node.FS.Base (nane, directory, fs)
Bases: SCons.Node.Node
A generic class for file system entries. This class is for when we don’t know yet whether the entry being looked up is
a file or a directory. Instances of this class can morph into either Dir or File objects by a later, more precise lookup.
Note: this class does not define __cmp___ and __hash__ for efficiency reasons. SCons does a lot of comparing of
Node.FS.{Base,Entry,File,Dir} objects, so those operations must be as fast as possible, which means we want to use
Python’s built-in object identity comparisons.
class Attrs
Bases: object
shared
BuildInfo
alias of SCons.Node.BuildInfoBase
Decider (f uncti on)
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of SCons.Node.NodelnfoBase
RDirs (pat hl i st)
Search for a list of directories in the Repository list.
Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.
Tag (key, val ue)
Add a user-defined tag.
_Rfindalldirs_key (pat hl i st)
__getattr__(attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __ getattr _is

186

SCons.compat package

only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.
_ It (ot her)
less than operator used by sorting on py3
_str__()
A Node.FS.Base object’s string representation is its path name.
_abspath
_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get ()
_children_reset ()
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_sconsign
_func_target_from_source
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_get_str ()
_globl (pat t er n, ondi sk=True, sour ce=False, st ri ngs=False)
_labspath
_local
_memo
_path
_path_elements
_proxy
_save_str ()
_specific_sources
_tags
_tpath
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)
add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node)
add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated
all_children (scan=1)
Return a list of all the node’s direct children.
alter_targets ()
Return a list of alternate targets for this Node.
always_build
attributes
binfo
build (* * kw)
Actually build the node.

187

SCons.compat package

This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.

This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

builder
builder_set (bui | der)
built ()

Called just after this node is successfully built.

cached
changed (node=None, al | oncache=False)

Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.

Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.

The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().

@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build
check_attributes (nane)

Simple API to check if the node.attributes for name has been set

children (scan=1)

Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()

Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()

Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()
cwd

del_binfo ()

Delete the build info from this node.

depends

depends_set

dir

disambiguate (must _exi st =None)
duplicate

env
env_set (env, saf e=0)
executor
executor_cleanup ()

Let the executor clean up any cached information.

exists ()

Does this node exists?

explain ()

for_signature ()

188

Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

SCons.compat package

fs
Reference to parent Node.FS object
get_abspath ()
Get the absolute path of the file.
get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_csig ()
get_contents ()
Fetch the contents of the entry.
get_csig ()
get_dir ()
get_env ()
get_env_scanner (env, kw={})
get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath ()
Get the absolute path of the file.
get_ninfo ()
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.
get_path_elements ()
get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.
get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.
get_state ()
get_stored_implicit ()
Fetch the stored implicit dependencies
get_stored_info ()
get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.

189

SCons.compat package

190

Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_tpath ()

getmtime ()

getsize ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

is_up_to_date ()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will always
get built.

isdir ()

isfile ()

islink ()

linked

Istat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()

SCons.compat package

Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
must_be_same (kl ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.
name
new_binfo ()
new_ninfo ()
ninfo
nocache
noclean
postprocess ()
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache ()
Try to push a node into a cache
ref _count
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder

191

SCons.compat package

scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_local ()
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_src_builder (bui | der)
Set the source code builder for this node.
set_state (st at e)
side_effect
side_effects
sources
sources_set
src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.
stat ()
state
store_info
str_for_display ()
target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.
target_peers
visited ()
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
wkids
class SCons.Node.FS.Dir (hane, directory, fs)
Bases: SCons.Node.FS.Base
A class for directories in a file system.
class Attrs
Bases: object
shared
BuildInfo

192

SCons.compat package

alias of SCons.Node.FS.DirBuildinfo

Decider (f unct i on)

Dir (nane, cr eat e=True)
Looks up or creates a directory node named ‘name’ relative to this directory.

Entry (nane)
Looks up or creates an entry node named ‘name’ relative to this directory.

File (nane)
Looks up or creates a file node named ‘name’ relative to this directory.

GetTag (key)
Return a user-defined tag.

Nodelnfo
alias of SCons.Node.FS.DirNodelnfo

RDirs (pat hl i st)
Search for a list of directories in the Repository list.

Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.

Tag (key, val ue)
Add a user-defined tag.

_Rfindalldirs_key (pat hl i st)

__clearRepositoryCache (dupl i cat e=None)
Called when we change the repository(ies) for a directory. This clears any cached information that is invalidated by
changing the repository.

__Qetattr__(attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr _is
only called as fallback when the requested attribute can't be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)
less than operator used by sorting on py3

__resetDuplicate (node)

_str__()
A Node.FS.Base object’s string representation is its path name.

_abspath

_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()

_children_reset ()

_create ()
Create this directory, silently and without worrying about whether the builder is the default or not.

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_sconsign

_func_target_from_source

_get_scanner (env, i nitial _scanner,root_node_scanner, kw)

_get_str ()

_globl (pat t er n, ondi sk=True, sour ce=False, st ri ngs=False)
Globs for and returns a list of entry names matching a single pattern in this directory.
This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.

193

SCons.compat package

TODO: handle pattern with no wildcard. Python’s glob.glob uses a separate _glob0 function to do this.
_labspath
_local
_memo
_morph ()
Turn a file system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.
Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don’t use
signatures for calculating whether they’re current.
_path
_path_elements
_proxy
_rel_path_key (ot her)
_save_str ()
_sconsign
_specific_sources
_srcdir_find_file_key (fi | enane)
_tags
_tpath
addRepository (di r)
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)
add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node)
add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated
all_children (scan=1)
Return a list of all the node’s direct children.
alter_targets ()
Return any corresponding targets in a variant directory.
always_build
attributes
binfo
build (* * kw)
A null “builder” for directories.
builder
builder_set (bui | der)
built ()
Called just after this node is successfully built.
cached
cachedir_csig
cachesig
changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.

194

SCons.compat package

Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dir_on_disk (nane)

dirname

disambiguate (must _exi st =None)

diskcheck_match ()

do_duplicate (sr c)

duplicate

entries

entry_abspath (nane)

entry_exists_on_disk (nhane)
Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given
name could be found.
@see rentry_exists_on_disk

entry_labspath (nane)

entry_path (nane)

entry_tpath (nane)

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

file_on_disk (namne)

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to

195

SCons.compat package

return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.
fs
Reference to parent Node.FS object
getRepositories ()
Returns a list of repositories for this directory.
get_abspath () - str
Get the absolute path of the file.
get_all_rdirs ()
get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_csig ()
get_contents ()
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.
get_csig ()
Compute the content signature for Directory nodes. In general, this is not needed and the content signature is not
stored in the DirNodelnfo. However, if get_contents on a Dir node is called which has a child directory, the child
directory should return the hash of its contents.
get_dir ()
get_env ()
get_env_scanner (env, kw={})
get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return this directory’s implicit dependencies.
We don't bother caching the results because the scan typically shouldn’t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath () - str
Get the absolute path of the file.
get_ninfo ()
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.
get_path_elements ()
get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.
get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

196

SCons.compat package

197

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text _contents ()
We already emit things in text, so just return the binary version.

get_timestamp () - int
Return the latest timestamp from among our children

get_tpath ()

getmtime ()

getsize ()

glob (pat hnane, ondi sk=True, sour ce=False, st ri ngs=False, excl ude=None) - list
Returns a list of Nodes (or strings) matching a pathname pattern.
Pathname patterns follow POSIX shell syntax:

* mat ches everyt hi ng

? mat ches any singl e character

[seq] matches any character in seq (ranges all owed)
[!seq] matches any char not in seq

The wildcard characters can be escaped by enclosing in brackets. A leading dot is not matched by a wildcard, and
needs to be explicitly included in the pattern to be matched. Matches also do not span directory separators.

The matches take into account Repositories, returning a local Node if a corresponding entry exists in a Repository
(either an in-memory Node or something on disk).

The underlying algorithm is adapted from a rather old version of glob.glob() function in the Python standard library
(heavily modified), and uses fnmatch.fnmatch() under the covers.

This is the internal implementation of the external Glob API.

SCons.compat package

Parameters:
e pattern — pathname pattern to match.

» ondisk — if false, restricts matches to in-memory Nodes. By defafult, matches entries
that exist on-disk in addition to in-memory Nodes.

e source — if true, corresponding source Nodes are returned if globbing in a variant
directory. The default behavior is to return Nodes local to the variant directory.

 strings — if true, returns the matches as strings instead of Nodes. The strings are path
names relative to this directory.

» exclude — if not None, must be a pattern or a list of patterns following the same POSIX
shell semantics. Elements matching at least one pattern from exclude will be excluded
from the result.

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr _ for both the
__len__and _ bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build signatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

is_up_to_date ()
If any child is not up-to-date, then this directory isn't, either.

isdir ()

isfile ()

islink ()

link (srcdi r, duplicate)
Set this directory as the variant directory for the supplied source directory.

linked

Istat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()

198

SCons.compat package

199

Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
must_be_same (kl ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.
name
new_binfo ()
new_ninfo ()
ninfo
nocache
noclean
on_disk_entries
postprocess ()
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache ()
Try to push a node into a cache
rdir ()
ref _count
rel_path (ot her)
Return a path to “other” relative to this directory.
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
released_target_info
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
rentry_exists_on_disk (namne)
Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk
repositories
reset_executor ()
Remove cached executor; forces recompute when needed.

SCons.compat package

retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
root
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
A directory does not get scanned.
scanner_paths
sconsign ()
Return the .sconsign file info for this directory.
searched
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_local ()
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_src_builder (bui | der)
Set the source code builder for this node.
set_state (st at e)
side_effect
side_effects
sources
sources_set
src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcdir
srcdir_duplicate (namne)
srcdir_find_file (fi | enane)
sredir_list ()
srcnode ()
Dir has a special need for srcnode()...if we have a srcdir attribute set, then that is our srcnode.

200

SCons.compat package

stat ()

state

store_info

str_for_display ()

target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

up ()

variant_dirs

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

walk (f unc, ar g)
Walk this directory tree by calling the specified function for each directory in the tree.
This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the same
arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)

Except that “dirname” will actually be the directory Node, not the string. The ‘" and ‘..’ entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a specific
order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing None is
common).

wkids

class SCons.Node.FS.DirBuildinfo

Bases: SCons.Node.BuildinfoBase

__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (state)
Restore the attributes from a pickled state.

bact

bactsig

bdepends

bdependsigs

bimplicit

bimplicitsigs

bsources

bsourcesigs

current_version_id = 2

merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons.Node.FS.DirNodelnfo

Bases: SCons.Node.NodelnfoBase

__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (state)
Restore the attributes from a pickled state. The version is discarded.

convert (node, val)

current_version_id = 2

format (fi el d_I i st =None, nanes=0)

201

SCons.compat package

fs = None

merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

update (node)

class SCons.Node.FS.DiskChecker (di sk_check_t ype, do_check_function,ignore_check_function)

Bases: object

Implement disk check variation.

This Class will hold functions to determine what this particular disk checking implementation should do when enabled

or disabled.

enable (di sk_check_type |ist)
If the current object’s disk_check_type matches any in the list passed :param disk_check_type_list: List of disk
checks to enable :return:

class SCons.Node.FS.Entry (nane, directory, fs)

Bases: SCons.Node.FS.Base

This is the class for generic Node.FS entries—that is, things that could be a File or a Dir, but we're just not sure yet.

Consequently, the methods in this class really exist just to transform their associated object into the right class when

the time comes, and then call the same-named method in the transformed class.

class Attrs
Bases: object
shared

BuildInfo
alias of SCons.Node.BuildInfoBase

Decider (f uncti on)

GetTag (key)
Return a user-defined tag.

Nodelnfo
alias of SCons.Node.NodelnfoBase

RDirs (pat hl i st)
Search for a list of directories in the Repository list.

Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.

Tag (key, val ue)
Add a user-defined tag.

_Rfindalldirs_key (pat hl i st)

__Qetattr__(attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr __is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)
less than operator used by sorting on py3

_str__()
A Node.FS.Base object’s string representation is its path name.

_abspath

_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()

_children_reset ()

_func_exists

202

SCons.compat package

_func_get_contents
_func_is_derived
_func_rexists
_func_sconsign
_func_target_from_source
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_get_str ()
_globl (pat t er n, ondi sk=True, sour ce=False, st ri ngs=False)
_labspath
_local
_memo
_path
_path_elements
_proxy
_save_str ()
_sconsign
_specific_sources
_tags
_tpath
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)
add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node)
add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated
all_children (scan=1)
Return a list of all the node’s direct children.
alter_targets ()
Return a list of alternate targets for this Node.
always_build
attributes
binfo
build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
builder
builder_set (bui | der)
built ()
Called just after this node is successfully built.
cached
cachedir_csig
cachesig
changed (node=None, al | oncache=False)

203

SCons.compat package

Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.

Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.

The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().

@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build
check_attributes (nane)

Simple API to check if the node.attributes for name has been set

children (scan=1)

Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()

Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()

Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()
contentsig

cwd

del_binfo ()

Delete the build info from this node.

depends

depends_set

dir

dirname

disambiguate (must _exi st =None)
diskcheck_match ()
duplicate

entries

env

env_set (env, saf e=0)
executor
executor_cleanup ()

Let the executor clean up any cached information.

exists ()

Does this node exists?

explain ()
for_signature ()

fs

Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

Reference to parent Node.FS object

get_abspath ()

Get the absolute path of the file.

get_binfo ()

204

Fetch a node’s build information.

SCons.compat package

node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’'s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_csig ()
get_contents ()
Fetch the contents of the entry. Returns the exact binary contents of the file.
get_csig ()
get_dir ()
get_env ()
get_env_scanner (env, kw={})
get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath ()
Get the absolute path of the file.
get_ninfo ()
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.
get_path_elements ()
get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.
get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.
get_state ()
get_stored_implicit ()
Fetch the stored implicit dependencies
get_stored_info ()
get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.
get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use

205

SCons.compat package

206

is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text _contents ()
Fetch the decoded text contents of a Unicode encoded Entry.
Since this should return the text contents from the file system, we check to see into what sort of subclass we
should morph this Entry.

get_tpath ()

getmtime ()

getsize ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

is_up_to_date ()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will always
get built.

isdir ()

isfile ()

islink ()

linked

Istat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.

SCons.compat package

207

In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
must_be_same (kl ass)
Called to make sure a Node is a Dir. Since we’re an Entry, we can morph into one.
name
new_binfo ()
new_ninfo ()
ninfo
nocache
noclean
on_disk_entries
postprocess ()
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache ()
Try to push a node into a cache
ref _count
rel_path (ot her)
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
released_target_info
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
repositories
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()

SCons.compat package

We’'re a generic Entry, but the caller is actually looking for a File at this point, so morph into one.
root
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
scanner_paths
searched
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_local ()
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_src_builder (bui | der)
Set the source code builder for this node.
set_state (st at e)
side_effect
side_effects
sources
sources_set
src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcdir
srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.
stat ()
state
store_info
str_for_display ()
target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.
target_peers
variant_dirs
visited ()
Called just after this node has been visited (with or without a build).
waiting_parents

208

SCons.compat package

waiting_s_e
wkids
class SCons.Node.FS.EntryProxy (subj ect)
Bases: SCons.Util.Proxy
__get_abspath ()
__get_base_path ()
Return the file’s directory and file name, with the suffix stripped.
__get dir ()
__get file ()
__get filebase ()
__get_posix_path ()
Return the path with / as the path separator, regardless of platform.
__get_relpath ()
__get_rsrcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node if
not linked.
__get_rsrcnode ()
__get_srcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node if
not linked.
__get_srcnode ()
__get_suffix ()
__get_windows_path ()
Return the path with as the path separator, regardless of platform.
dictSpecialAttrs = {'abspath’: <function EntryProxy.__get_abspath>, 'base’: <function
EntryProxy.__get base_path>, 'dir': <function EntryProxy.__get_dir>, file": <function EntryProxy. _get file>,
'filebase": <function EntryProxy.__get_filebase>, 'posix’: <function EntryProxy.__get posix_path>, 'relpath': <function
EntryProxy.__get_relpath>, 'rsrcdir': <function EntryProxy.__get_rsrcdir>, 'rsrcpath': <function
EntryProxy.__get_rsrcnode>, 'srcdir': <function EntryProxy.__get_srcdir>, 'srcpath’: <function
EntryProxy.__get_srcnode>, 'suffix': <function EntryProxy.__get_suffix>, 'win32": <function
EntryProxy.__get windows_path>, 'windows': <function EntryProxy. _get_windows_path>}
get ()
Retrieve the entire wrapped object
exception SCons.Node.FS.EntryProxyAttributeError (entry_proxy, attri bute)
Bases: AttributeError
An AttributeError subclass for recording and displaying the name of the underlying Entry involved in an AttributeError
exception.
args
name
attribute name
obj
object
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
class SCons.Node.FS.FS (pat h=None)
Bases: SCons.Node.FS.LocalFS
Dir (nan®e, di r ect or y=None, cr eat e=True)
Look up or create a Dir node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied at
construction time) if no directory is supplied.
This method will raise TypeError if a normal file is found at the specified path.
Entry (name, di r ect or y=None, cr eat e=1)
Look up or create a generic Entry node with the specified name. If the name is a relative path (begins with ./, ../, or
a file name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS
(supplied at construction time) if no directory is supplied.
File (name, di r ect or y=None, cr eat e=1)

209

SCons.compat package

Look up or create a File node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied at
construction time) if no directory is supplied.
This method will raise TypeError if a directory is found at the specified path.

Glob (pat hnane, ondi sk=True, sour ce=True, st ri ngs=False, excl ude=None, cwd=None)
Globs
This is mainly a shim layer

PyPackageDir (nodul enane)
Locate the directory of a given python module name
For example scons might resolve to Windows: C:Python27Libsite-packagesscons-2.5.1 Linux: /usr/lib/scons
This can be useful when we want to determine a toolpath based on a python module name

Repository (*di r s)
Specify Repository directories to search.

VariantDir (vari ant _dir,src_dir,duplicate=1)
Link the supplied variant directory to the source directory for purposes of building files.

_lookup (p, directory, fscl ass, creat e=1)
The generic entry point for Node lookup with user-supplied data.
This translates arbitrary input into a canonical Node.FS object of the specified fsclass. The general approach for
strings is to turn it into a fully normalized absolute path and then call the root directory’s lookup_abs() method for
the heavy lifting.
If the path name begins with ‘#, it is unconditionally interpreted relative to the top-level directory of this FS. ‘#' is
treated as a synonym for the top-level SConstruct directory, much like ‘~’ is treated as a synonym for the user’s
home directory in a UNIX shell. So both ‘#foo’ and ‘#/foo’ refer to the ‘foo’ subdirectory underneath the top-level
SConstruct directory.
If the path name is relative, then the path is looked up relative to the specified directory, or the current directory
(self._cwd, typically the SConscript directory) if the specified directory is None.

chdir (di r, change_os_di r =False)
Change the current working directory for lookups. If change_os_dir is true, we will also change the “real” cwd to
match.

chmod (pat h, node)

copy (src, dst)

copy2 (src, dst)

exists (pat h)

get_max_drift ()

get_root (dri ve)
Returns the root directory for the specified drive, creating it if necessary.

getcwd ()

getmtime (pat h)

getsize (pat h)

isdir (pat h)

isfile (pat h)

islink (pat h)

link (src, dst)

listdir (pat h)

Istat (pat h)

makedirs (pat h, rode=511, exi st _ok=False)

mkdir (pat h, node=511)

open (pat h)

readlink (fi | e)

rename (ol d, new)

scandir (pat h)

set_SConstruct_dir (di r)

set_max_drift (max_drift)

stat (pat h)

symlink (src, dst)

unlink (pat h)

210

SCons.compat package

variant_dir_target_climb (ori g, dir,tail)
Create targets in corresponding variant directories
Climb the directory tree, and look up path names relative to any linked variant directories we find.
Even though this loops and walks up the tree, we don’'t memoize the return value because this is really only used
to process the command-line targets.

class SCons.Node.FS.File (nane, di rectory, fs)

Bases: SCons.Node.FS.Base

A class for files in a file system.

class Attrs
Bases: object
shared

BuildInfo
alias of SCons.Node.FS.FileBuildInfo

Decider (f uncti on)

Dir (nane, cr eat e=True)
Create a directory node named ‘name’ relative to the directory of this file.

Dirs (pat hl i st)
Create a list of directories relative to the SConscript directory of this file.

Entry (nane)
Create an entry node named ‘name’ relative to the directory of this file.

File (nane)
Create a file node named ‘name’ relative to the directory of this file.

GetTag (key)
Return a user-defined tag.

Nodelnfo
alias of SCons.Node.FS.FileNodelnfo

RDirs (pat hl i st)
Search for a list of directories in the Repository list.

Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.

Tag (key, val ue)
Add a user-defined tag.

_Rfindalldirs_key (pat hl i st)

__dmap_cache = {}

__dmap_sig_cache = {}

__Qetattr__(attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr __is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)
less than operator used by sorting on py3

_str__()
A Node.FS.Base object’s string representation is its path name.

_abspath

_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_add_strings_to_dependency_map (dmap)
In the case comparing node objects isn't sufficient, we’ll add the strings for the nodes to the dependency map
‘return:

_build_dependency_map (bi nf 0)

211

SCons.compat package

Build mapping from file -> signature

Parameters:
* self (self-) —

» considered (binfo - buildinfo from node being) —
Returns: dictionary of file->signature mappings

_children_get ()
_children_reset ()
_createDir ()
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_sconsign
_func_target_from_source
_get_found_includes_key (env, scanner, pat h)
_get_previous_signatures (dmap)
Return a list of corresponding csigs from previous build in order of the node/files in children.

Parameters:
* self (self-) —

 csig (dmap - Dictionary of file ->) —
Returns: List of csigs for provided list of children
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_get_str ()
_globl (pat t er n, ondi sk=True, sour ce=False, st ri ngs=False)
_labspath
_local
_memo
_morph ()
Turn a file system node into a File object.
_path
_path_elements
_proxy
_rmv_existing ()
_save_str ()
_sconsign
_specific_sources
_tags
_tpath
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)
add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node)
add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated

212

SCons.compat package

all_children (scan=1)
Return a list of all the node’s direct children.
alter_targets ()
Return any corresponding targets in a variant directory.
always_build
attributes
binfo
build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
builder
builder_set (bui | der)
built ()
Called just after this File node is successfully built.
Just like for ‘release_target_info’ we try to release some more target node attributes in order to minimize the overall
memory consumption.
@see: release_target_info
cached
cachedir_csig
cachesig
changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built.
For File nodes this is basically a wrapper around Node.changed(), but we allow the return value to get cached after
the reference to the Executor got released in release_target_info().
@see: Node.changed()
changed_content (t ar get, prev_ni , r epo_node=None)
changed_since_last_build
changed_state (t ar get, prev_ni, repo_node=None)
changed_timestamp_match (t ar get, prev_ni, r epo_node=None)
Return True if the timestamps don’t match or if there is no previous timestamp :param target: :param prev_ni:
Information about the node from the previous build :return:
changed_timestamp_newer (t ar get, prev_ni, r epo_node=None)
changed_timestamp_then_content (t ar get , pr ev_ni , node=None)
Used when decider for file is Timestamp-MD5

NOTE: If the timestamp hasn’t changed this will skip md5’ing the

file and just copy the prev_ni provided. If the prev_ni is wrong. It will propagate it. See:
https://github.com/SCons/scons/issues/2980

Parameters:
» dependency (self -) —

* target (target -) —
» .sconsign (prev_ni - The Nodelnfo object loaded from previous builds) —

» existence/timestamp (node - Node instance. Check this node for file) — if specified.
Returns: Boolean - Indicates if node(File) has changed.

check_attributes (nane)
Simple API to check if the node.attributes for name has been set
children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.
children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.

213

https://github.com/SCons/scons/issues/2980

SCons.compat package

The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

convert_copy_attrs = [‘bsources', 'bimplicit', 'bdepends’, 'bact’, 'bactsig’, 'ninfo’]

convert_old_entry (ol d_entry)

convert_sig_attrs = ['bsourcesigs', 'bimplicitsigs’, 'bdependsigs’]

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dirname

disambiguate (must _exi st =None)

diskcheck_match ()

do_duplicate (sr c)

duplicate

entries

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

find_repo_file ()
For this node, find if there exists a corresponding file in one or more repositories :return: list of corresponding files
in repositories

find_src_builder ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

fs
Reference to parent Node.FS object

get_abspath ()
Get the absolute path of the file.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value

214

SCons.compat package

get_cachedir_bsig ()
Return the signature for a cached file, including its children.
It adds the path of the cached file to the cache signature, because multiple targets built by the same action will all
have the same build signature, and we have to differentiate them somehow.
Signature should normally be string of hex digits.
get_cachedir_csig ()
Fetch a Node’s content signature for purposes of computing another Node’s cachesig.
This is a wrapper around the normal get csig() method that handles the somewhat obscure case of using
CacheDir with the -n option. Any files that don’t exist would normally be “built” by fetching them from the cache, but
the normal get_csig() method will try to open up the local file, which doesn’t exist because the -n option meant we
didn’'t actually pull the file from cachedir. But since the file does actually exist in the cachedir, we can use its
contents for the csig.
get_content_hash () - str
Compute and return the hash for this file.
get_contents () - bytes
Return the contents of the file as bytes.
get_contents_sig ()
A helper method for get_cachedir_bsig.
It computes and returns the signature for this node’s contents.
get_csig () — str
Generate a node’s content signature.
get_dir ()
get_env ()
get_env_scanner (env, kw={})
get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return the included implicit dependencies in this file. Cache results so we only scan the file once per path
regardless of how many times this information is requested.
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath ()
Get the absolute path of the file.
get_max_drift_csig () - Optional[str]
Returns the content signature currently stored for this node if it's been unmodified longer than the max_drift value,
or the max_drift value is 0. Returns None otherwise.
get_ninfo ()
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.
get_path_elements ()
get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.
get_size () - int
get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.
get_state ()
get_stored_implicit ()
Fetch the stored implicit dependencies
get_stored_info ()
get_string (f or _si gnat ure)

215

SCons.compat package

216

This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text contents () — str
Return the contents of the file in text form.
This attempts to figure out what the encoding of the text is based upon the BOM bytes, and then decodes the
contents so that it's a valid python string.

get_timestamp () - int

get_tpath ()

getmtime ()

getsize ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

has_src_builder ()
Return whether this Node has a source builder or not.
If this Node doesn’t have an explicit source code builder, this is where we figure out, on the fly, if there’'s a
transparent source code builder for it.
Note that if we found a source builder, we also set the self.builder attribute, so that all of the methods that actually
build this file don’t have to do anything different.

hash_chunksize = 65536

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()

SCons.compat package

217

Returns true if this node is an sconscript

is_under (di r)

is_up_to_date ()
Check for whether the Node is current In all cases self is the target we're checking to see if it's up to date

isdir ()

isfile ()

islink ()

linked

Istat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

must_be_same (k| ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

on_disk_entries

postprocess ()
Clean up anything we don’t need to hang onto after we've been built.

precious

prepare ()
Prepare for this file to be created.

prerequisites

pseudo

push_to_cache ()
Try to push the node into a cache

ref _count

rel_path (ot her)

release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
We'd like to remove a lot more attributes like self.sources and self.sources_set, but they might get used in a next
build step. For example, during configuration the source files for a built E{*}.o file are used to figure out which linker
to use for the resulting Program (gcc vs. g++)! That's why we check for the ‘keep_targetinfo’ attribute, config Nodes
and the Interactive mode just don't allow an early release of most variables.
In the same manner, we can't simply remove the self.attributes here. The smart linking relies on the shared flag,
and some parts of the java Tool use it to transport information about nodes...
@see: built() and Node.release_target_info()

released_target_info

remove ()
Remove this file.

render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.

SCons.compat package

rentry ()
repositories
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
root
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
scanner_paths
searched
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_local ()
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_src_builder (bui | der)
Set the source code builder for this node.
set_state (st at e)
side_effect
side_effects
sources
sources_set
src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcdir
srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.
stat ()
state

218

SCons.compat package

store_info

str_for_display ()

target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

variant_dirs

visited ()
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

class SCons.Node.FS.FileBuildinfo
Bases: SCons.Node.BuildinfoBase
This is info loaded from sconsign.

Attributes unique to FileBuildInfo:
dependency_map : Caches file->csig mapping

for all dependencies. Currently this is only used when using MD5-timestamp decider. It's used to ensure that
we copy the correct csig from the previous build to be written to .sconsign when current build is done.
Previously the matching of csig to file was strictly by order they appeared in bdepends, bsources, or
bimplicit, and so a change in order or count of any of these could yield writing wrong csig, and then false
positive rebuilds
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict_’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
bact
bactsig
bdepends
bdependsigs
bimplicit
bimplicitsigs
bsources
bsourcesigs
convert_from_sconsign (di r, nane)
Converts a newly-read FileBuildInfo object for in-SCons use
For normal up-to-date checking, we don’t have any conversion to perform—but we'’re leaving this method here to
make that clear.
convert_to_sconsign ()
Converts this FileBuildInfo object for writing to a .sconsign file
This replaces each Node in our various dependency lists with its usual string representation: relative to the
top-level SConstruct directory, or an absolute path if it's outside.
current_version_id = 2
dependency_map
format (names=0)
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’slot is added, it should be updated instead of replaced.
prepare_dependencies ()
Prepares a FileBuildinfo object for explaining what changed

219

SCons.compat package

The bsources, bdepends and bimplicit lists have all been stored on disk as paths relative to the top-level
SConstruct directory. Convert the strings to actual Nodes (for use by the —debug=explain code and
—implicit-cache).
exception SCons.Node.FS.FileBuildinfoFileToCsigMappingError
Bases: Exception
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
class SCons.Node.FS.FileFinder
Bases: object
_find_file_key (fi | enan®e, pat hs, ver bose=None)
filedir_lookup (p, f d=None)
A helper method for find_file() that looks up a directory for a file we're trying to find. This only creates the Dir Node
if it exists on-disk, since if the directory doesn’t exist we know we won't find any files in it... :-)
It would be more compact to just use this as a nested function with a default keyword argument (see the
commented-out version below), but that doesn’t work unless you have nested scopes, so we define it here just so
this work under Python 1.5.2.
find_file (fi | ename, pat hs, ver bose=None)
Find a node corresponding to either a derived file or a file that exists already.
Only the first file found is returned, and none is returned if no file is found.
filename: A filename to find paths: A list of directory path nodes to search in. Can be represented as a list, a tuple,
or a callable that is called with no arguments and returns the list or tuple.
returns The node created from the found file.
class SCons.Node.FS.FileNodelnfo
Bases: SCons.Node.NodelnfoBase
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
convert (node, val)
csig
current_version_id = 2
field_list = ['csig', 'timestamp’, 'size’]
format (fi el d_| i st =None, nanes=0)
fs = None
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
size
str_to_node (s)
timestamp
update (node)
SCons.Node.FS.LinkFunc (t ar get , sour ce, env)
Relative paths cause problems with symbolic links, so we use absolute paths, which may be a problem for people
who want to move their soft-linked src-trees around. Those people should use the ‘hard-copy’ mode, softlinks cannot
be used for that; at least | have no idea how ...
class SCons.Node.FS.LocalFS
Bases: object
This class implements an abstraction layer for operations involving a local file system. Essentially, this wraps any
function in the os, os.path or shutil modules that we use to actually go do anything with or to the local file system.
Note that there’s a very good chance we’ll refactor this part of the architecture in some way as we really implement
the interface(s) for remote file system Nodes. For example, the right architecture might be to have this be a subclass
instead of a base class. Nevertheless, we're using this as a first step in that direction.

220

SCons.compat package

We’'re not using chdir() yet because the calling subclass method needs to use os.chdir() directly to avoid recursion.
Will we really need this one?
chmod (pat h, node)
copy (src, dst)
copy2 (src, dst)
exists (pat h)
getmtime (pat h)
getsize (pat h)
isdir (pat h)
isfile (pat h)
islink (pat h)
link (src, dst)
listdir (pat h)
Istat (pat h)
makedirs (pat h, nrode=511, exi st _ok=False)
mkdir (pat h, node=511)
open (pat h)
readlink (fi | e)
rename (ol d, new)
scandir (pat h)
stat (pat h)
symlink (src, dst)
unlink (pat h)
SCons.Node.FS.LocalString (t ar get , sour ce, env)
SCons.Node.FS.MkdirFunc (t ar get , sour ce, env)
class SCons.Node.FS.RootDir (dri ve, f s)
Bases: SCons.Node.FS.Dir
A class for the root directory of a file system.
This is the same as a Dir class, except that the path separator (*/ or “) is actually part of the name, so we don’t need
to add a separator when creating the path names of entries within this directory.
class Attrs
Bases: object
shared
BuildInfo
alias of SCons.Node.FS.DirBuildinfo
Decider (f unct i on)
Dir (nan®e, cr eat e=True)
Looks up or creates a directory node named ‘name’ relative to this directory.
Entry (nane)
Looks up or creates an entry node named ‘name’ relative to this directory.
File (nane)
Looks up or creates a file node named ‘name’ relative to this directory.
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of SCons.Node.FS.DirNodelnfo
RDirs (pat hl i st)
Search for a list of directories in the Repository list.
Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.
Tag (key, val ue)
Add a user-defined tag.
_Rfindalldirs_key (pat hl i st)
__Qetattr__ (attr)

221

SCons.compat package

Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr _is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)

less than operator used by sorting on py3
abspath
add_child (col | ecti on, set, chi | d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
children_get ()
children_reset ()
create ()
Create this directory, silently and without worrying about whether the builder is the default or not.
func_exists
func_get_contents
func_is_derived
func_rexists
func_sconsign
func_target_from_source
get_scanner (env, i ni ti al _scanner,root_node_scanner, kw)
get_str ()
globl (patt er n, ondi sk=True, sour ce=False, stri ngs=False)
Globs for and returns a list of entry names matching a single pattern in this directory.
This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.
TODO: handle pattern with no wildcard. Python’s glob.glob uses a separate _glob0 function to do this.
labspath
local

lookupDict
lookup_abs (p, kl ass, cr eat e=True)

Fast (?) lookup of a normalized absolute path.

This method is intended for use by internal lookups with already-normalized path data. For general-purpose
lookups, use the FS.Entry(), FS.Dir() or FS.File() methods.

The caller is responsible for making sure we’re passed a normalized absolute path; we merely let Python’s
dictionary look up and return the One True Node.FS object for the path.

If a Node for the specified “p” doesn’t already exist, and “create” is specified, the Node may be created after
recursive invocation to find or create the parent directory or directories.
memo

morph ()

Turn a file system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.

Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don’t use
signatures for calculating whether they’re current.

path

path_elements

_proxy

222

rel_path_key (ot her)

save_str ()

sconsign

specific_sources
srcdir_find_file_key (fi | enane)
tags

tpath

SCons.compat package

223

abspath
addRepository (di r)
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)
add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node)
add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated
all_children (scan=1)
Return a list of all the node’s direct children.
alter_targets ()
Return any corresponding targets in a variant directory.
always_build
attributes
binfo
build (* * kw)
A null “builder” for directories.
builder
builder_set (bui | der)
built ()
Called just after this node is successfully built.
cached
cachedir_csig
cachesig
changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()
changed_since_last_build
check_attributes (nane)
Simple API to check if the node.attributes for name has been set
children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.
children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
clear ()

SCons.compat package

Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

contentsig

cwd

del_binfo ()
Delete the build info from this node.

depends

depends_set

dir

dir_on_disk (nane)

dirname

disambiguate (must _exi st =None)

diskcheck_match ()

do_duplicate (sr c)

duplicate

entries

entry_abspath (nane)

entry_exists_on_disk (nane)
Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given
name could be found.
@see rentry_exists_on_disk

entry_labspath (nane)

entry_path (nane)

entry_tpath (nane)

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

file_on_disk (namne)

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

fs
Reference to parent Node.FS object

getRepositories ()
Returns a list of repositories for this directory.

get_abspath () - str
Get the absolute path of the file.

get_all_rdirs ()

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’'s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

224

SCons.compat package

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_csig ()
get_contents ()
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.
get_csig ()
Compute the content signature for Directory nodes. In general, this is not needed and the content signature is not
stored in the DirNodelnfo. However, if get_contents on a Dir node is called which has a child directory, the child
directory should return the hash of its contents.
get_dir ()
get_env ()
get_env_scanner (env, kw={})
get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return this directory’s implicit dependencies.
We don't bother caching the results because the scan typically shouldn’t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath () - str
Get the absolute path of the file.
get_ninfo ()
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.
get_path_elements ()
get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.
get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.
get_state ()
get_stored_implicit ()
Fetch the stored implicit dependencies
get_stored_info ()
get_string (f or _si gnat ure)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.
get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a

225

SCons.compat package

tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()
get_target_scanner ()
get_text _contents ()

We already emit things in text, so just return the binary version.

get_timestamp () - int

Return the latest timestamp from among our children

get_tpath ()

getmtime ()

getsize ()

glob (pat hnane, ondi sk=True, sour ce=False, st ri ngs=False, excl ude=None) - list

226

Returns a list of Nodes (or strings) matching a pathname pattern.
Pathname patterns follow POSIX shell syntax:

* mat ches everyt hi ng

? mat ches any singl e character

[seq] matches any character in seq (ranges all owed)
[!seq] matches any char not in seq

The wildcard characters can be escaped by enclosing in brackets. A leading dot is not matched by a wildcard, and
needs to be explicitly included in the pattern to be matched. Matches also do not span directory separators.

The matches take into account Repositories, returning a local Node if a corresponding entry exists in a Repository
(either an in-memory Node or something on disk).

The underlying algorithm is adapted from a rather old version of glob.glob() function in the Python standard library
(heavily modified), and uses fnmatch.fnmatch() under the covers.

This is the internal implementation of the external Glob API.

Parameters:
» pattern — pathname pattern to match.

» ondisk — if false, restricts matches to in-memory Nodes. By defafult, matches entries
that exist on-disk in addition to in-memory Nodes.

* source — if true, corresponding source Nodes are returned if globbing in a variant
directory. The default behavior is to return Nodes local to the variant directory.

 strings — if true, returns the matches as strings instead of Nodes. The strings are path
names relative to this directory.

» exclude — if not None, must be a pattern or a list of patterns following the same POSIX
shell semantics. Elements matching at least one pattern from exclude will be excluded
from the result.

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ...”). When the builder attribute is examined directly, it ends up calling __getattr _ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

SCons.compat package

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_under (di r)

is_up_to_date ()
If any child is not up-to-date, then this directory isn't, either.

isdir ()

isfile ()

islink ()

link (srcdi r, duplicate)
Set this directory as the variant directory for the supplied source directory.

linked

Istat ()

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

must_be_same (kl ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

on_disk_entries

path

postprocess ()
Clean up anything we don’t need to hang onto after we've been built.

precious

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the Buildinfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.

227

SCons.compat package

prerequisites
pseudo
push_to_cache ()
Try to push a node into a cache
rdir ()
ref _count
rel_path (ot her)
Return a path to “other” relative to this directory.
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
released_target_info
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
rentry_exists_on_disk (namne)
Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk
repositories
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
root
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
A directory does not get scanned.
scanner_paths
sconsign ()
Return the .sconsign file info for this directory.
searched
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)

228

SCons.compat package

Set the action executor for this node.
set_explicit (i s_explicit)
set_local ()
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_src_builder (bui | der)
Set the source code builder for this node.
set_state (st at e)
side_effect
side_effects
sources
sources_set
src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcdir
srcdir_duplicate (namne)
srcdir_find_file (fi | enane)
sredir_list ()
srcnode ()
Dir has a special need for srcnode()...if we have a srcdir attribute set, then that is our srcnode.
stat ()
state
store_info
str_for_display ()
target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.
target_peers
up ()
variant_dirs
visited ()
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
walk (f unc, ar g)
Walk this directory tree by calling the specified function for each directory in the tree.
This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the same
arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)
Except that “dirname” will actually be the directory Node, not the string. The ‘" and ‘.. entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a specific
order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing None is
common).
wkids
SCons.Node.FS.UnlinkFunc (t ar get , sour ce, env)
class SCons.Node.FS. Null

229

SCons.compat package

Bases: object

SCons.Node.FS._classEntry
alias of SCons.Node.FS.Entry

SCons.Node.FS._copy_func (f s, src, dest)

SCons.Node.FS._hardlink_func (f s, src, dst)

SCons.Node.FS._my_normcase (x)

SCons.Node.FS._my_splitdrive (p)

SCons.Node.FS._softlink_func (f s, src, dst)

SCons.Node.FS.diskcheck_types ()

SCons.Node.FS.do_diskcheck _match (node, predi cate, errorfnt)

SCons.Node.FS.find_file (f i | ename, pat hs, ver bose=None)
Find a node corresponding to either a derived file or a file that exists already.
Only the first file found is returned, and none is returned if no file is found.
filename: A filename to find paths: A list of directory path nodes to search in. Can be represented as a list, a tuple, or
a callable that is called with no arguments and returns the list or tuple.
returns The node created from the found file.

SCons.Node.FS.get_MkdirBuilder ()

SCons.Node.FS.get_default_fs ()

SCons.Node.FS.has_glob_magic (s)

SCons.Node.FS.ignore_diskcheck_match (node, predi cate, errorfnt)

SCons.Node.FS.initialize_do_splitdrive ()

SCons.Node.FS.invalidate_node_memos (t ar get s)
Invalidate the memoized values of all Nodes (files or directories) that are associated with the given entries. Has been
added to clear the cache of nodes affected by a direct execution of an action (e.g. Delete/Copy/Chmod). Existing
Node caches become inconsistent if the action is run through Execute(). The argument targets can be a single Node
object or filename, or a sequence of Nodes/filenames.

SCons.Node.FS.needs_normpath_match (st ri ng, pos=0, endpos=9223372036854775807)
Matches zero or more characters at the beginning of the string.

SCons.Node.FS.save_strings (val)

SCons.Node.FS.sconsign_dir (node)
Return the .sconsign file info for this directory, creating it first if necessary.

SCons.Node.FS.sconsign_none (node)

SCons.Node.FS.set_diskcheck (enabl ed_checker s)

SCons.Node.FS.set_duplicate (dupl i cat e)

SCons.Node.Python module

Python nodes.
class SCons.Node.Python.Value (val ue, bui I t _val ue=None, nanme=None)
Bases: SCons.Node.Node
A Node class for values represented by Python expressions.
Values are typically passed on the command line or generated by a script, but not from a file or some other source.
Changed in version 4.0: the name parameter was added.
class Attrs
Bases: object
shared
BuildInfo
alias of SCons.Node.Python.ValueBuildInfo
Decider (f uncti on)
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of SCons.Node.Python.ValueNodelnfo
Tag (key, val ue)
Add a user-defined tag.
_add_child (col | ecti on, set, chil d)

230

SCons.compat package

Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
children_get ()
children_reset ()
func_exists
func_get_contents
func_is_derived
func_rexists
func_target_from_source
get_scanner (env, i nitial _scanner,root_node_scanner, kw)
memo

231

specific_sources
tags
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps)
add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node)
add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated
all_children (scan=1)
Return a list of all the node’s direct children.
alter_targets ()
Return a list of alternate targets for this Node.
always_build
attributes
binfo
build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

builder
builder_set (bui | der)
built ()
Called just after this node is successfully built.
cached

changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().

SCons.compat package

@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

del_binfo ()
Delete the build info from this node.

depends

depends_set

disambiguate (must _exi st =None)

env

env_set (env, saf e=0)

executor

executor_cleanup ()
Let the executor clean up any cached information.

exists ()
Does this node exists?

explain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

get_abspath ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents () — bytes
Get contents for signature calculations.

get_csig (cal c=None)
Because we're a Python value node and don'’t have a real timestamp, we get to ignore the calculator and just use
the value contents.
Returns string. Ideally string of hex digits. (Not bytes)

232

SCons.compat package

get_env ()

get_env_scanner (env, kw={})

get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.

get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_ninfo ()

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text contents () — str
By the assumption that the node.built_value is a deterministic product of the sources, the contents of a Value are
the concatenation of all the contents of its sources. As the value need not be built when get_contents() is called,
we cannot use the actual node.built_value.

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

233

SCons.compat package

234

includes
is_conftest ()
Returns true if this node is an conftest node
is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.
is_explicit
is_literal ()
Always pass the string representation of a Node to the command interpreter literally.
is_sconscript ()
Returns true if this node is an sconscript
is_under (di r)
is_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.
linked
make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.
missing ()
multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
new_binfo ()
new_ninfo ()
ninfo
nocache
noclean
postprocess ()
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the Buildinfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache ()
Try to push a node into a cache
read ()
Return the value. If necessary, the value is built.
ref _count
release_target_info ()

SCons.compat package

Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.
set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_state (st at e)
side_effect
side_effects
sources
sources_set
state
store_info
str_for_display ()
target_peers
visited ()
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
wkids
write (bui I t _val ue)
Set the value of the node.

235

SCons.compat package

class SCons.Node.Python.ValueBuildinfo
Bases: SCons.Node.BuildinfoBase
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
bact
bactsig
bdepends
bdependsigs
bimplicit
bimplicitsigs
bsources
bsourcesigs
current_version_id = 2
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
class SCons.Node.Python.ValueNodelnfo
Bases: SCons.Node.NodelnfoBase
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
convert (node, val)
csig
current_version_id = 2
field_list = ['csig']
format (fi el d_I i st =None, nanes=0)
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
str_to_node (s)
update (node)
SCons.Node.Python.ValueWithMemo (val ue, bui | t _val ue=None, nane=None)
Memoized Value node factory.
Changed in version 4.0: the name parameter was added.

Module contents
The Node package for the SCons software construction utility.
This is, in many ways, the heart of SCons.

A Node is where we encapsulate all of the dependency information about any thing that SCons can build, or about any
thing which SCons can use to build some other thing. The canonical “thing,” of course, is a file, but a Node can also
represent something remote (like a web page) or something completely abstract (like an Alias).

Each specific type of “thing” is specifically represented by a subclass of the Node base class: Node.FS.File for files,
Node.Alias for aliases, etc. Dependency information is kept here in the base class, and information specific to
files/aliases/etc. is in the subclass. The goal, if we've done this correctly, is that any type of “thing” should be able to
depend on any other type of “thing.”

SCons.Node.Annotate (node)

class SCons.Node.BuildInfoBase

236

SCons.compat package

Bases: object
The generic base class for build information for a Node.
This is what gets stored in a .sconsign file for each target file. It contains a Nodelnfo instance for this node (signature
information that's specific to the type of Node) and direct attributes for the generic build stuff we have to track:
sources, explicit dependencies, implicit dependencies, and action information.
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state.
bact
bactsig
bdepends
bdependsigs
bimplicit
bimplicitsigs
bsources
bsourcesigs
current_version_id = 2
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
class SCons.Node.Node
Bases: object
The base Node class, for entities that we know how to build, or use to build other Nodes.
class Attrs
Bases: object
shared
BuildInfo
alias of SCons.Node.BuildInfoBase
Decider (f uncti on)
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of SCons.Node.NodelnfoBase
Tag (key, val ue)
Add a user-defined tag.
_add_child (col | ecti on, set, chil d)
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get ()
_children_reset ()
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_target_from_source
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_memo
_specific_sources
_tags
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si te)

237

SCons.compat package

Adds prerequisites

add_source (sour ce)
Adds sources.

add_to_implicit (deps)

add_to_waiting_parents (node)
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)

add_to_waiting_s_e (node)

add_wkid (wki d)
Add a node to the list of kids waiting to be evaluated

all_children (scan=1)
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

binfo

build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

builder
builder_set (bui | der)
built ()
Called just after this node is successfully built.
cached

changed (node=None, al | oncache=False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan=1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date ()
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear ()
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values ()

del_binfo ()
Delete the build info from this node.

depends

238

SCons.compat package

depends_set
disambiguate (must _exi st =None)
env
env_set (env, saf e=0)
executor
executor_cleanup ()
Let the executor clean up any cached information.
exists ()
Does this node exists?
explain ()
for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.
get_abspath ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.
get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’'s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_csig ()
get_contents ()
Fetch the contents of the entry.
get_csig ()
get_env ()
get_env_scanner (env, kw={})
get_executor (cr eat e=1)
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_ninfo ()
get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.
get_state ()
get_stored_implicit ()

239

SCons.compat package

240

Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

has_builder ()
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder ()
Return whether this Node has an explicit builder
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest ()
Returns true if this node is an conftest node

is_derived ()
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal ()
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript ()
Returns true if this node is an sconscript

is_up_to_date ()
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will always
get built.

linked

make_ready ()
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing ()

multiple_side_effect_has_builder ()
Return whether this Node has a builder or not.

SCons.compat package

In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
new_binfo ()
new_ninfo ()
ninfo
nocache
noclean
postprocess ()
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the Buildinfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache ()
Try to push a node into a cache
ref _count
release_target_info ()
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
reset_executor ()
Remove cached executor; forces recompute when needed.
retrieve_from_cache ()
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
scan ()
Scan this node’s dependents for implicit dependencies.
scanner_key ()
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_bui | d=1)
Set the Node’s always_build value.

241

SCons.compat package

set_executor (execut or)
Set the action executor for this node.
set_explicit (i s_explicit)
set_nocache (nocache=1)
Set the Node’s nocache value.
set_noclean (nocl ean=1)
Set the Node’s noclean value.
set_precious (pr eci ous=1)
Set the Node’s precious value.
set_pseudo (pseudo=True)
Set the Node’s precious value.
set_specific_source (sour ce)
set_state (st at e)
side_effect
side_effects
sources
sources_set
state
store_info
target_peers
visited ()
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
wkids
class SCons.Node.NodelnfoBase
Bases: object
The generic base class for signature information for a Node.
Node subclasses should subclass NodelnfoBase to provide their own logic for dealing with their own Node-specific
signature information.
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (state)
Restore the attributes from a pickled state. The version is discarded.
convert (node, val)
current_version_id = 2
format (fi el d_| i st =None, nanes=0)
merge (ot her)
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
update (node)
class SCons.Node.NodeList (i ni t1i st =None)
Bases: collections.UserList
_abc_impl = <_abc._abc_data object>
append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.

242

SCons.compat package

insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t en)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
class SCons.Node.Walker (node, ki ds_f unc=<functi on get_chil dren>, cycl e_func=<function
i gnore_cycl e>, eval _func=<function do_not hi ng>)
Bases: object
An iterator for walking a Node tree.
This is depth-first, children are visited before the parent. The Walker object can be initialized with any node, and
returns the next node on the descent with each get_next() call. get the children of a node instead of calling ‘children’.
‘cycle_func’ is an optional function that will be called when a cycle is detected.
This class does not get caught in node cycles caused, for example, by C header file include loops.
get_next ()
Return the next node for this walk of the tree.
This function is intentionally iterative, not recursive, to sidestep any issues of stack size limitations.
is_done ()
SCons.Node.changed_since_last _build_alias (node, t ar get, prev_ni , repo_node=None)
SCons.Node.changed_since_last_build_entry (node, t ar get, prev_ni , r epo_node=None)
SCons.Node.changed_since_last_build_node (node, t ar get, prev_ni , r epo_node=None)
Must be overridden in a specific subclass to return True if this Node (a dependency) has changed since the last time
it was used to build the specified target. prev_ni is this Node’s state (for example, its file timestamp, length, maybe
content signature) as of the last time the target was built.
Note that this method is called through the dependency, not the target, because a dependency Node must be able to
use its own logic to decide if it changed. For example, File Nodes need to obey if we're configured to use timestamps,
but Python Value Nodes never use timestamps and always use the content. If this method were called through the
target, then each Node’s implementation of this method would have to have more complicated logic to handle all the
different Node types on which it might depend.
SCons.Node.changed_since_last_build_python (node, t ar get, prev_ni , repo_node=None)
SCons.Node.changed_since_last build_state_changed (node, t ar get, prev_ni , repo_node=None)
SCons.Node.classname (obj)
SCons.Node.decide_source (node, t ar get, prev_ni , repo_node=None)
SCons.Node.decide_target (node, t ar get, prev_ni , repo_node=None)
SCons.Node.do_nothing (node, par ent)
SCons.Node.do_nothing_node (node)
SCons.Node.exists_always (node)
SCons.Node.exists_base (node)
SCons.Node.exists_entry (node)
Return if the Entry exists. Check the file system to see what we should turn into first. Assume a file if there’s no
directory.
SCons.Node.exists_file (node)
SCons.Node.exists_none (node)
SCons.Node.get_children (node, par ent)
SCons.Node.get_contents_dir (node)
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.
SCons.Node.get_contents_entry (node)
Fetch the contents of the entry. Returns the exact binary contents of the file.
SCons.Node.get_contents_file (node)
SCons.Node.get_contents_none (node)
SCons.Node.ignore_cycle (node, st ack)
SCons.Node.is_derived_node (node)
Returns true if this node is derived (i.e. built).

243

SCons.Platform package

SCons.Node.is_derived_none (node)
SCons.Node.rexists_base (node)
SCons.Node.rexists_node (node)
SCons.Node.rexists_none (node)
SCons.Node.store_info_file (node)
SCons.Node.store_info_pass (node)

SCons.Node.target_from_source_base (node, prefi x, suf fi x, splitext)
SCons.Node.target_from_source_none (node, prefi x, suffi x, splitext)

SCons.Platform package
Submodules

SCons.Platform.aix module

Platform-specific initialization for IBM AIX systems.

There normally shouldn’t be any need to import this module directly.

SCons.Platform.Platform() selection method.
SCons.Platform.aix.generate (env)
SCons.Platform.aix.get_xIc (env, xI c=None, packages=[])
SCons.Platform.cygwin module

Platform-specific initialization for Cygwin systems.

There normally shouldn’t be any need to import this module directly.

SCons.Platform.Platform() selection method.
SCons.Platform.cygwin.generate (env)

SCons.Platform.darwin module

Platform-specific initialization for Mac OS X systems.

There normally shouldn’t be any need to import this module directly.

SCons.Platform.Platform() selection method.
SCons.Platform.darwin.generate (env)

SCons.Platform.hpux module

Platform-specific initialization for HP-UX systems.

There normally shouldn’t be any need to import this module directly.

SCons.Platform.Platform() selection method.
SCons.Platform.hpux.generate (env)

SCons.Platform.irix module

Platform-specific initialization for SGI IRIX systems.

There normally shouldn’t be any need to import this module directly.

SCons.Platform.Platform() selection method.
SCons.Platform.irix.generate (env)

SCons.Platform.mingw module

Platform-specific initialization for the MinGW system.

244

It will usually be imported through the generic

It will usually be imported through the generic

It will usually be imported through the generic

It will usually be imported through the generic

It will usually be imported through the generic

SCons.Platform package

SCons.Platform.os2 module
Platform-specific initialization for OS/2 systems.

There normally shouldn’'t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
SCons.Platform.os2.generate (env)

SCons.Platform.posix module
Platform-specific initialization for POSIX (Linux, UNIX, etc.) systems.

There normally shouldn’t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
SCons.Platform.posix.escape (ar g)
escape shell special characters
SCons.Platform.posix.exec_popen3 (I , env, st dout , st derr)
SCons.Platform.posix.exec_subprocess (I , env)
SCons.Platform.posix.generate (env)
SCons.Platform.posix.piped_env_spawn (sh, escape, cnd, ar gs, env, st dout , st derr)
SCons.Platform.posix.subprocess_spawn (sh, escape, cnd, ar gs, env)

SCons.Platform.sunos module
Platform-specific initialization for Sun systems.

There normally shouldn’'t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
SCons.Platform.sunos.generate (env)

SCons.Platform.virtualenv module

‘Platform” support for a Python virtualenv.

SCons.Platform.virtualenv.ImportVirtualenv (env)
Copies virtualenv-related environment variables from OS environment to env[' ENV' | and prepends virtualenv’s
PATHtoenv[' ENV'][' PATH].

SCons.Platform.virtualenv.lsInVirtualenv (pat h)

Returns True, if path is under virtualenv’'s home directory. If not, or if we don’t use virtualenv, returns False.
SCons.Platform.virtualenv.Virtualenv ()

Returns path to the virtualenv home if scons is executing within a virtualenv or None, if not.
SCons.Platform.virtualenv._enable_virtualenv_default ()
SCons.Platform.virtualenv._ignore_virtualenv_default ()

SCons.Platform.virtualenv._inject_venv_path (env, pat h_| i st =None)

Modify environment such that SCons will take into account its virtualenv when running external tools.
SCons.Platform.virtualenv._inject_venv_variables (env)

SCons.Platform.virtualenv._is_path_in (pat h, base)

Returns true if path is located under the base directory.
SCons.Platform.virtualenv._running_in_virtualenv ()

Returns True if scons is executed within a virtualenv
SCons.Platform.virtualenv.select_paths_in_venv (pat h_I i st)

Returns a list of paths from path_list which are under virtualenv’'s home directory.

SCons.Platform.win32 module

Platform-specific initialization for Win32 systems.

There normally shouldn’'t be any need to import this module directly. It will usually be imported through the generic
SCons.Platform.Platform() selection method.
class SCons.Platform.win32.ArchDefinition (ar ch, synonyns=[])

245

SCons.Platform package

Bases: object
Determine which windows CPU were running on. A class for defining architecture-specific settings and logic.
SCons.Platform.win32.escape (x)
SCons.Platform.win32.exec_spawn (I , env)
SCons.Platform.win32.generate (env)
SCons.Platform.win32.get_architecture (ar ch=None)
Returns the definition for the specified architecture string.
If no string is specified, the system default is returned (as defined by the PROCESSOR_ARCHITEW6432 or
PROCESSOR_ARCHITECTURE environment variables).
SCons.Platform.win32.get_program_files_dir ()
Get the location of the program files directory
SCons.Platform.win32.get_system_root ()
SCons.Platform.win32.piped_spawn (sh, escape, cnd, ar gs, env, st dout , st derr)
SCons.Platform.win32.spawn (sh, escape, cnd, ar gs, env)
SCons.Platform.win32.spawnve (node, fi |l e, ar gs, env)

Module contents
SCons platform selection.

Looks for modules that define a callable object that can modify a construction environment as appropriate for a given
platform.

Note that we take a more simplistic view of “platform” than Python does. We're looking for a single string that
determines a set of tool-independent variables with which to initialize a construction environment. Consequently, we’ll
examine both sys.platform and os.name (and anything else that might come in to play) in order to return some
specification which is unique enough for our purposes.

Note that because this subsystem just selects a callable that can modify a construction environment, it's possible for
people to define their own “platform specification” in an arbitrary callable function. No one needs to use or tie in to this
subsystem in order to roll their own platform definition.
SCons.Platform.DefaultToolList (pl at f or m env)
Select a default tool list for the specified platform.
SCons.Platform.Platform (hame="'darwin")
Select a canned Platform specification.
class SCons.Platform.PlatformSpec (hane, gener at e)
Bases: object
class SCons.Platform. TempFileMunge (cnd, cndst r =None)
Bases: object
Convert long command lines to use a temporary file.
You can set an Environment variable (usually TEMPFI LE) to this, then call it with a string argument, and it will
perform temporary file substitution on it. This is used to circumvent limitations on the length of command lines.
Example:

env[" TEMPFI LE"] = TenpFi | eMinge
env[" LI NKCOM'] = "${ TEMPFI LE(' $LI NK $TARGET $SOURCES', "' $LI NKCOVSTR)} "

By default, the name of the temporary file used begins with a prefix of ‘@’. This may be configured for other tool
chains by setting the TEMPFI LEPREFI X variable. Example:

env[" TEMPFI LEPREFI X"]
env[" TEMPFI LEPREFI X"]
env[" TEMPFI LEPREFI X"]

'-@ # diab conpiler
"-via' # armtool chain
v # (the enpty string) PC Lint

You can configure the extension of the temporary file through the TEMPFI LESUFFI X variable, which defaults to ‘.Ink’
(see comments in the code below). Example:

246

SCons.Scanner package

env[" TEMPFI LESUFFI X'] = '.Int’ # PC Lint

Entries in the temporary file are separated by the value of the TEMPFI LEARGIO N variable, which defaults to an
OS-appropriate value.

A default argument escape function is SCons. Subst . quot e_spaces. If you need to apply extra operations on a
command argument before writing to a temporary file(fix Windows slashes, normalize paths, etc.), please set
TEMPFILEARGESCFUNC variable to a custom function. Example:

i mport sys
i mport re
from SCons. Subst i nmport quote_spaces

W NPATHSEP_RE = re.conpile(r"\([*""'\]]|$)")

def tenpfile_arg esc _func(arg):
arg = quote_spaces(arg)
if sys.platform!= "w n32":
return arg
GCC requires double Wndows slashes, let's use UN X separ at or
return W NPATHSEP_RE. sub(r"/m", arg)

env[" TEMPFI LEARGESCFUNC'] = tenpfile_arg_esc_func

_print_cmd_str (t ar get , sour ce, env, cndst r)
SCons.Platform.platform_default ()
Return the platform string for our execution environment.
The returned value should map to one of the SCons/Platform/*.py files. Since scons is architecture independent,
though, we don’t care about the machine architecture.
SCons.Platform.platform_module (name='darwin’)
Return the imported module for the platform.
This looks for a module name that matches the specified argument. If the name is unspecified, we fetch the
appropriate default for our execution environment.

SCons.Scanner package
Submodules

SCons.Scanner.C module

Dependency scanner for C/C++ code.
SCons.Scanner.C.CConditionalScanner ()

Return an advanced conditional Scanner instance for scanning source files

Interprets C/C++ Preprocessor conditional syntax (#ifdef, #if, defined, #else, #elif, etc.).
SCons.Scanner.C.CScanner ()

Return a prototype Scanner instance for scanning source files that use the C pre-processor
class SCons.Scanner.C.SConsCPPConditionalScanner (* ar gs, * * kwar gs)

Bases: SCons.cpp.PreProcessor

SCons-specific subclass of the cpp.py module’s processing.

We subclass this so that: 1) we can deal with files represented by Nodes, not strings; 2) we can keep track of the files

that are missing.

_call__(file)

Pre-processes a file.

247

SCons.Scanner package

This is the main public entry point.
_do_if_else_condition (condi ti on)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.
_match_tuples (t upl es)
_parse_tuples (cont ent s)
_process_tuples (t upl es, fi | e=None)
all_include (t)
do_define (t)
Default handling of a #define line.
do_elif (t)
Default handling of a #elif line.
do_else (t)
Default handling of a #else line.
do_endif (t)
Default handling of a #endif line.
do_if (t)
Default handling of a #if line.
do_ifdef (t)
Default handling of a #ifdef line.
do_ifndef (t)
Default handling of a #ifndef line.
do_import (t)
Default handling of a #import line.
do_include (t)
Default handling of a #include line.
do_include_next (t)
Default handling of a #include line.
do_nothing (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.
do_undef (t)
Default handling of a #undef line.
eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor nhamespace we use to
track #define values.
finalize_result (f nane)
find_include_file (t)
Finds the #include file for a given preprocessor tuple.
initialize_result (f nane)
process_contents (cont ent s)
Pre-processes a file contents.
Is used by tests
process_file (fil e)
Pre-processes a file.
This is the main internal entry point.
read_file (fil e)
resolve_include (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without *” or <> surrounding the name until an initial ” or < is found, to
handle #include FILE where FILE is a #define somewhere else.
restore ()
Pops the previous dispatch table off the stack and makes it the current one.
save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.
scons_current_file (t)
start_handling_includes (t =None)

248

SCons.Scanner package

Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.
stop_handling_includes (t =None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.
tupleize (cont ent s)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’s preprocessor directive (#if, #include, #define, etc., minus the initial ‘#).
The remaining elements are specific to the type of directive, as pulled apart by the regular expression.
class SCons.Scanner.C.SConsCPPConditionalScannerWrapper (nane, vari abl e)
Bases: object
The SCons wrapper around a cpp.py scanner.
This is the actual glue between the calling conventions of generic SCons scanners, and the (subclass of) cpp.py
class that knows how to look for #include lines with reasonably real C-preprocessor-like evaluation of
#if/#ifdef/#else/#elif lines.
recurse_nodes (hodes)
select (node)
class SCons.Scanner.C.SConsCPPScanner (* ar gs, * * kwar gs)
Bases: SCons.cpp.PreProcessor
SCons-specific subclass of the cpp.py module’s processing.
We subclass this so that: 1) we can deal with files represented by Nodes, not strings; 2) we can keep track of the files
that are missing.
_call__(file)
Pre-processes a file.
This is the main public entry point.
_do_if_else_condition (condi ti on)
Common logic for evaluating the conditions on #if, #ifdef and #ifndef lines.
_match_tuples (t upl es)
_parse_tuples (cont ent s)
_process_tuples (t upl es, fi | e=None)
all_include (t)
do_define (t)
Default handling of a #define line.
do_elif (t)
Default handling of a #elif line.
do_else (t)
Default handling of a #else line.
do_endif (t)
Default handling of a #endif line.
do_if (t)
Default handling of a #if line.
do_ifdef (t)
Default handling of a #ifdef line.
do_ifndef (t)
Default handling of a #ifndef line.
do_import (t)
Default handling of a #import line.
do_include (t)
Default handling of a #include line.
do_include_next (t)
Default handling of a #include line.
do_nothing (t)
Null method for when we explicitly want the action for a specific preprocessor directive to do nothing.
do_undef (t)

249

SCons.Scanner package

Default handling of a #undef line.
eval_expression (t)
Evaluates a C preprocessor expression.
This is done by converting it to a Python equivalent and eval()ing it in the C preprocessor nhamespace we use to
track #define values.
finalize_result (f name)
find_include_file (t)
Finds the #include file for a given preprocessor tuple.
initialize_result (f nane)
process_contents (cont ent s)
Pre-processes a file contents.
Is used by tests
process_file (fi |l e)
Pre-processes a file.
This is the main internal entry point.
read_file (fil e)
resolve_include (t)
Resolve a tuple-ized #include line.
This handles recursive expansion of values without *” or <> surrounding the name until an initial ” or < is found, to
handle #include FILE where FILE is a #define somewhere else.
restore ()
Pops the previous dispatch table off the stack and makes it the current one.
save ()
Pushes the current dispatch table on the stack and re-initializes the current dispatch table to the default.
scons_current_file (t)
start_handling_includes (t =None)
Causes the PreProcessor object to start processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates True, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated False.
stop_handling_includes (t =None)
Causes the PreProcessor object to stop processing #import, #include and #include_next lines.
This method will be called when a #if, #ifdef, #ifndef or #elif evaluates False, or when we reach the #else in a #if,
#ifdef, #ifndef or #elif block where a condition already evaluated True.
tupleize (cont ent s)
Turns the contents of a file into a list of easily-processed tuples describing the CPP lines in the file.
The first element of each tuple is the line’s preprocessor directive (#if, #include, #define, etc., minus the initial ‘#).
The remaining elements are specific to the type of directive, as pulled apart by the regular expression.
class SCons.Scanner.C.SConsCPPScannerWrapper (namne, vari abl e)
Bases: object
The SCons wrapper around a cpp.py scanner.
This is the actual glue between the calling conventions of generic SCons scanners, and the (subclass of) cpp.py
class that knows how to look for #include lines with reasonably real C-preprocessor-like evaluation of
#if/#ifdef/#else/#elif lines.
recurse_nodes (hodes)
select (node)
SCons.Scanner.C.dictify CPPDEFINES (env) - dict
Returns CPPDEFINES converted to a dict.

SCons.Scanner.D module
Scanner for the Digital Mars “D” programming language.

Coded by Andy Friesen, 17 Nov 2003
class SCons.Scanner.D.D
Bases: SCons.Scanner.Classic
__call__ (node, env, pat h=()) - list
Scans a single object.

250

SCons.Scanner package

Parameters:)]
» node — the node that will be passed to the scanner function

» env — the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner)
add_skey (skey)
Add a skey to the list of skeys
find_include (i ncl ude, source_di r, pat h)
find_include_names (node)
get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
scan (node, pat h=())
select (node)
static sort_key (i ncl ude)
SCons.Scanner.D.DScanner ()
Return a prototype Scanner instance for scanning D source files

SCons.Scanner.Dir module

SCons.Scanner.Dir.DirEntryScanner (* * kwar gs)
Return a prototype Scanner instance for “scanning” directory Nodes for their in-memory entries
SCons.Scanner.Dir.DirScanner (* * kwar gs)
Return a prototype Scanner instance for scanning directories for on-disk files
SCons.Scanner.Dir.do_not_scan (k)
SCons.Scanner.Dir.only_dirs (nodes)
SCons.Scanner.Dir.scan_in_memory (node, env, pat h=())
“Scans” a Node.FS.Dir for its in-memory entries.
SCons.Scanner.Dir.scan_on_disk (node, env, pat h=())
Scans a directory for on-disk files and directories therein.
Looking up the entries will add these to the in-memory Node tree representation of the file system, so all we have to
do is just that and then call the in-memory scanning function.

SCons.Scanner.Fortran module

Dependency scanner for Fortran code.

class SCons.Scanner.Fortran.F90Scanner (nane, suf fi xes, pat h_vari abl e, use_r egex, i ncl _r egex,

def _regex, *args, **kwar gs)
Bases: SCons.Scanner.Classic
A Classic Scanner subclass for Fortran source files which takes into account both USE and INCLUDE statements.
This scanner will work for both F77 and F90 (and beyond) compilers.
Currently, this scanner assumes that the include files do not contain USE statements. To enable the ability to deal
with USE statements in include files, add logic right after the module names are found to loop over each include file,
search for and locate each USE statement, and append each module name to the list of dependencies. Caching the
search results in a common dictionary somewhere so that the same include file is not searched multiple times would
be a smart thing to do.
__call__ (node, env, pat h=()) - list

Scans a single object.

Parameters:)]
» node — the node that will be passed to the scanner function

» env —the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function

251

SCons.Scanner package

Returns: A list of direct dependency nodes for the specified node.

static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner)
add_skey (skey)
Add a skey to the list of skeys
static find_include (i ncl ude, source_di r, pat h)
find_include_names (node)
get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
scan (node, env, pat h=())
select (node)
static sort_key (i ncl ude)
SCons.Scanner.Fortran.FortranScan (pat h_vari abl e='FORTRANPATH")
Return a prototype Scanner instance for scanning source files for Fortran USE & INCLUDE statements

SCons.Scanner.IDL module

Dependency scanner for IDL (Interface Definition Language) files.
SCons.Scanner.IDL.IDLScan ()
Return a prototype Scanner instance for scanning IDL source files

SCons.Scanner.Java module

SCons.Scanner.Java.JavaScanner ()
Scanner for .java files.
New in version 4.4.

SCons.Scanner.Java._collect_classes (cl assl i st, di rnane, fil es)

SCons.Scanner.Java._subst_paths (env, pat hs) - list
Return a list of substituted path elements.
If paths is a string, it is split on the search-path separator. Otherwise, substitution is done on string-valued list
elements but they are not split.
Note helps support behavior like pulling in the external CLASSPATH and setting it directly into JAVACLASSPATH,
however splitting on os. pat hsep makes the interpretation system-specific (this is warned about in the manpage
entry for JAVACLASSPATH).

SCons.Scanner.Java.scan (node, env, | i bpat h=()) - list
Scan for files both on JAVACLASSPATH and JAVAPROCESSORPATH.

JAVACLASSPATH/JAVAPROCESSORPATH path can contain:

 Explicit paths to JAR/Zip files

« Wildcards (*)

« Directories which contain classes in an unnamed package

« Parent directories of the root package for classes in a named Igackage

Class path entries that are neither directories nor archives (.zip or JAR files) nor the asterisk (*) wildcard character
are ignored.

SCons.Scanner.LaTexX module

Dependency scanner for LaTeX code.
class SCons.Scanner.LaTeX.FindENVPathDirs (vari abl e)
Bases: object
A class to bind a specific E{*}PATH variable name to a function that will return all of the E{*}path directories.
class SCons.Scanner.LaTeX.LaTeX (nane, suf fi xes, graphi cs_ext ensi ons, *ar gs, * *kwar gs)
Bases: SCons.Scanner.ScannerBase
Class for scanning LaTeX files for included files.

252

SCons.Scanner package

Unlike most scanners, which use regular expressions that just return the included file name, this returns a tuple
consisting of the keyword for the inclusion (“include”, “includegraphics”, “input”, or “bibliography”), and then the file
name itself. Based on a quick look at LaTeX documentation, it seems that we should append .tex suffix for the
“include” keywords, append .tex if there is no extension for the “input” keyword, and need to add .bib for the
“bibliography” keyword that does not accept extensions by itself.

Finally, if there is no extension for an “includegraphics” keyword latex will append .ps or .eps to find the file, while
pdftex may use .pdf, .jpg, .tif, .mps, or .png.

The actual subset and search order may be altered by DeclareGraphicsExtensions command. This complication is
ignored. The default order corresponds to experimentation with teTeX:

$ latex --version
pdf eTeX 3.141592-1.21a-2.2 (Wb2C 7.5. 4)
kpat hsea version 3.5.4

The order is:
[.eps’, ‘.ps’] for latex ['.png’, “.pdf, “.jpg’, ‘tif].

Another difference is that the search path is determined by the type of the file being searched: env[TEXINPUTS’] for
“input” and “include” keywords env['TEXINPUTS'] for “includegraphics” keyword env[TEXINPUTS’] for
“Istinputlisting” keyword env['‘BIBINPUTS’] for “bibliography” keyword env['BSTINPUTS’] for “bibliographystyle”
keyword env['INDEXSTYLE'] for “makeindex” keyword, no scanning support needed just allows user to set it if
needed.
FIXME: also look for the class or style in document[class|style{} FIXME: also look for the argument of
bibliographystyle{}
__call__ (node, env, pat h=()) - list

Scans a single object.

Parameters:))
» node — the node that will be passed to the scanner function

» env — the environment that will be passed to the scanner function.

e path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

_latex_names (i ncl ude_t ype, fil enane)
static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner)
add_skey (skey)

Add a skey to the list of skeys
canonical_text (t ext)

Standardize an input TeX-file contents.

Currently:

_ * removes comments, unwr?\F ing comment-wrapped lines.
env_variables = [TEXINPUTS', 'BIBINPUTS', 'BSTINPUTS', 'INDEXSTYLE']

find_include (i ncl ude, source_di r, pat h)
get_skeys (env=None)
keyword_paths = {'addbibresource": 'BIBINPUTS', 'addglobalbib’: 'BIBINPUTS', 'addsectionbib": 'BIBINPUTS',
‘bibliography': 'BIBINPUTS', 'bibliographystyle': 'BSTINPUTS', 'include: "TEXINPUTS', 'includegraphics":
TEXINPUTS', 'input’: 'TEXINPUTS', 'Istinputlisting”: ' TEXINPUTS', 'makeindex’: 'INDEXSTYLE', 'usepackage":
"TEXINPUTS'}
path (env, di r =None, t ar get =None, sour ce=None)
scan (node, subdi r ="")
scan_recurse (node, pat h=())
do a recursive scan of the top level target file This lets us search for included files based on the directory of the
main file just as latex does
select (node)

253

SCons.Scanner package

sort_key (i ncl ude)

two_arg_commands = [import’, 'subimport’, ‘includefrom’, 'subincludefrom’, ‘inputfrom’, 'subinputfrom’]
SCons.Scanner.LaTeX.LaTeXScanner ()

Return a prototype Scanner instance for scanning LaTeX source files when built with latex.
SCons.Scanner.LaTeX.PDFLaTeXScanner ()

Return a prototype Scanner instance for scanning LaTeX source files when built with pdflatex.
class SCons.Scanner.LaTeX._Null

Bases: object
SCons.Scanner.LaTeX._null

alias of SCons.Scanner.LaTeX._Null
SCons.Scanner.LaTeX.modify_env_var (env, var, abspat h)

SCons.Scanner.Prog module

Dependency scanner for program files.
SCons.Scanner.Prog.ProgramScanner (* * kwar gs)
Return a prototype Scanner instance for scanning executable files for static-lib dependencies
SCons.Scanner.Prog._subst_libs (env, | i bs)
Substitute environment variables and split into list.
SCons.Scanner.Prog.scan (node, env, | i bpat h=())
Scans program files for static-library dependencies.
It will search the LIBPATH environment variable for libraries specified in the LIBS variable, returning any files it finds
as dependencies.

SCons.Scanner.RC module

Dependency scanner for RC (Interface Definition Language) files.
SCons.Scanner.RC.RCScan ()

Return a prototype Scanner instance for scanning RC source files
SCons.Scanner.RC.no_tlb (nodes)

Filter out .tlb files as they are binary and shouldn’t be scanned.

SCons.Scanner.SWIG module

Dependency scanner for SWIG code.
SCons.Scanner.SWIG.SWIGScanner ()

Modul e contents

The Scanner package for the SCons software construction utility.
SCons.Scanner.Base
alias of SCons.Scanner.ScannerBase
class SCons.Scanner.Classic (nane, suf f i xes, pat h_vari abl e, regex, *ar gs, **kwar gs)
Bases: SCons.Scanner.Current
A Scanner subclass to contain the common logic for classic CPP-style include scanning, but which can be
customized to use different regular expressions to find the includes.
Note that in order for this to work “out of the box” (without overriding the find_include() and sort_key1() methods), the
regular expression passed to the constructor must return the name of the include file in group 0.
__call__ (node, env, pat h=()) - list
Scans a single object.

Parameters:)]
» node — the node that will be passed to the scanner function

» env — the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

static _recurse_all_nodes (nodes)

254

SCons.Scanner package

static _recurse_no_nodes (nodes)
add_scanner (skey, scanner)
add_skey (skey)
Add a skey to the list of skeys
static find_include (i ncl ude, source_di r, pat h)
find_include_names (node)
get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
scan (node, pat h=())
select (node)
static sort_key (i ncl ude)
class SCons.Scanner.ClassicCPP (nane, suf fi xes, pat h_vari abl e, regex, *ar gs, **kwar gs)
Bases: SCons.Scanner.Classic
A Classic Scanner subclass which takes into account the type of bracketing used to include the file, and uses classic
CPP rules for searching for the files based on the bracketing.
Note that in order for this to work, the regular expression passed to the constructor must return the leading bracket in
group 0, and the contained filename in group 1.
__call__ (node, env, pat h=()) - list
Scans a single object.

Parameters:)]
» node — the node that will be passed to the scanner function

» env —the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner)
add_skey (skey)
Add a skey to the list of skeys
find_include (i ncl ude, source_di r, pat h)
find_include_names (node)
get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
scan (node, pat h=())
select (node)
sort_key (i ncl ude)
class SCons.Scanner.Current (*ar gs, ** kwar gs)
Bases: SCons.Scanner.ScannerBase
A class for scanning files that are source files (have no builder) or are derived files and are current (which implies that
they exist, either locally or in a repository).
__call__ (node, env, pat h=()) - list
Scans a single object.

Parameters:)]
» node — the node that will be passed to the scanner function

» env — the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner)
add_skey (skey)

Add a skey to the list of skeys
get_skeys (env=None)

255

SCons.Scanner package

path (env, di r =None, t ar get =None, sour ce=None)
select (node)
class SCons.Scanner.FindPathDirs (vari abl e)
Bases: object
Class to bind a specific E{*}PATH variable name to a function that will return all of the E{*}path directories.
SCons.Scanner.Scanner (f unct i on, *ar gs, * * kwar gs)
Factory function to create a Scanner Object.
Creates the appropriate Scanner based on the type of “function”.
TODO: Deprecate this some day. We've moved the functionality inside the ScannerBase class and really don’t need
this factory function any more. It was, however, used by some of our Tool modules, so the call probably ended up in
various people’s custom modules patterned on SCons code.
class SCons.Scanner.ScannerBase (f uncti on, name=' NONE' , ar gunent =<cl ass ' SCons. Scanner. _Nul | ' >,
skeys=<cl ass ' SCons. Scanner._Nul | ' >, pat h_functi on=None, node_cl ass=<cl ass
' SCons. Node. FS. Base' >, node_f act or y=None, scan_check=None, r ecur si ve=None)
Bases: object
Base class for dependency scanners.
Implements straightforward, single-pass scanning of a single file.
A Scanner is usually set up with a scanner function (and optionally a path function), but can also be a kind of
dispatcher which passes control to other Scanners.
A scanner function takes three arguments: a Node to scan for dependecies, the construction environment to use, and
an optional tuple of paths (as generated by the optional path function). It must return a list containing the Nodes for all
the direct dependencies of the file.
The optional path function is called to return paths that can be searched for implicit dependency files. It takes five
arguments: a construction environment, a Node for the directory containing the SConscript file that defined the
primary target, a list of target nodes, a list of source nodes, and the optional argument for this instance.
Examples:

s = Scanner (ny_scanner _functi on)
s = Scanner (function=ny_scanner _functi on)
s = Scanner (function=ny_scanner_functi on, argunent="foo0')

256

SCons.Scanner package

Parameters: .]] .]]
 function — either a scanner function taking two or three arguments and returning a list of

File Nodes; or a mapping of keys to other Scanner objects.
« name — an optional name for identifying this scanner object (defaults to “NONE").
e argument — an optional argument that will be passed to both function and path_function.

« skeys — an optional list argument that can be used to determine if this scanner can be
used for a given Node. In the case of File nodes, for example, the skeys would be file
suffixes.

e path_function — an optional function which returns a tuple of the directories that can be
searched for implicit dependency files. May also return a callable which is called with no
args and returns the tuple (supporting Bindable class).

« node_class — optional class of Nodes which this scan will return. If not specified, defaults
to SCons.Node.FS.Base. If node_class is None, then this scanner will not enforce any
Node conversion and will return the raw results from function.

« node_factory — optional factory function to be called to translate the raw results returned
by function into the expected node_class objects.

« scan_check — optional function to be called to first check whether this node really needs
to be scanned.

 recursive — optional specifier of whether this scanner should be invoked recursively on all
of the implicit dependencies it returns (for example #include lines in C source files, which
may refer to header files which should themselves be scanned). May be a callable, which
will be called to filter the list of nodes found to select a subset for recursive scanning (the
canonical example being only recursively scanning subdirectories within a directory). The
default is to not do recursive scanning.

__call__ (node, env, pat h=()) - list
Scans a single object.

Parameters:))
» node — the node that will be passed to the scanner function

» env —the environment that will be passed to the scanner function.

» path — tuple of paths from the path_function
Returns: A list of direct dependency nodes for the specified node.

static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner)
add_skey (skey)
Add a skey to the list of skeys
get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
select (node)
class SCons.Scanner.Selector (mappi ng, *ar gs, **kwar gs)
Bases: SCons.Scanner.ScannerBase
A class for selecting a more specific scanner based on the scanner_key() (suffix) for a specific Node.
TODO: This functionality has been moved into the inner workings of the ScannerBase class, and this class will be
deprecated at some point. (It was never exposed directly as part of the public interface, although it is used by the
Scanner() factory function that was used by various Tool modules and therefore was likely a template for custom
modules that may be out there.)
static _recurse_all_nodes (nodes)
static _recurse_no_nodes (nodes)
add_scanner (skey, scanner)
add_skey (skey)
Add a skey to the list of skeys

257

SCons.Script package

get_skeys (env=None)
path (env, di r =None, t ar get =None, sour ce=None)
select (node)
class SCons.Scanner. Null
Bases: object
SCons.Scanner._null
alias of SCons.Scanner._Null

SCons.Script package
Submodules

SCons.Script.Interactive module

SCons interactive mode.
class SCons.Script.Interactive.SConsinteractiveCmd (* * kw)
Bases: cmd.Cmd
build [TARGETS] Build the specified TARGETS and their dependencies. ‘b’ is a synonym. clean [TARGETS] Clean
(remove) the specified TARGETS and their dependencies. ‘c’ is a synonym. exit Exit SCons interactive mode. help
[COMMAND] Prints help for the specified COMMAND. ‘h’ and ‘?’ are synonyms. shell [COMMANDLINE] Execute
COMMANDLINE in a subshell. ‘sh’ and ‘I" are synonyms. version Prints SCons version information.
_do_one_help (ar g)
_doc_to_help (obj)
_strip_initial_spaces (s)
cmdloop (i nt r o=None)
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.
columnize (li st, di spl ayw dt h=80)
Display a list of strings as a compact set of columns.
Each column is only as wide as necessary. Columns are separated by two spaces (one was not legible enough).
complete (t ext, st ate)
Return the next possible completion for ‘text’.
If a command has not been entered, then complete against command list. Otherwise try to call
complete_<command> to get list of completions.
complete_help (*ar gs)
completedefault (*i gnor ed)
Method called to complete an input line when no command-specific complete_*() method is available.
By default, it returns an empty list.
completenames (t ext, *i gnor ed)
default (ar gv)
Called on an input line when the command prefix is not recognized.
If this method is not overridden, it prints an error message and returns.
do_EOF (ar gv)
do_build (ar gv)
build [TARGETS] Build the specified TARGETS and their dependencies. ‘b’ is a synonym.
do_clean (ar gv)
clean [TARGETS] Clean (remove) the specified TARGETS and their dependencies. ‘c’ is a synonym.
do_exit (ar gv)
exit Exit SCons interactive mode.
do_help (ar gv)
help [COMMAND] Prints help for the specified COMMAND. ‘h’ and ?’ are synonyms.
do_shell (ar gv)
shell [COMMANDLINE] Execute COMMANDLINE in a subshell. ‘sh’ and ‘I" are synonyms.
do_version (ar gv)
version Prints SCons version information.
doc_header = 'Documented commands (type help <topic>):'

258

SCons.Script package

doc_leader =

emptyline ()
Called when an empty line is entered in response to the prompt.
If this method is not overridden, it repeats the last nonempty command entered.

get_names ()

identchars = 'abcdefghijkimnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_'

intro = None

lastemd = "

misc_header = 'Miscellaneous help topics:'

nohelp = "*** No help on %s'

onecmd (I i ne)
Interpret the argument as though it had been typed in response to the prompt.
This may be overridden, but should not normally need to be; see the precmd() and postcmd() methods for useful
execution hooks. The return value is a flag indicating whether interpretation of commands by the interpreter should
stop.

parseline (I i ne)
Parse the line into a command name and a string containing the arguments. Returns a tuple containing (command,
args, line). ‘command’ and ‘args’ may be None if the line couldn’t be parsed.

postcmd (st op, | i ne)
Hook method executed just after a command dispatch is finished.

postloop ()
Hook method executed once when the cmdloop() method is about to return.

precmd (I i ne)
Hook method executed just before the command line is interpreted, but after the input prompt is generated and
issued.

preloop ()
Hook method executed once when the cmdloop() method is called.

print_topics (header, cnds, cndl en, maxcol)

prompt = '(Cmd) "’

ruler = '='

synonyms = {'b": 'build’, 'c": 'clean’, 'h": 'help’, 'scons": 'build’, 'sh': 'shell’}

undoc_header = 'Undocumented commands:'

use_rawinput = 1

SCons.Script.Interactive.interact (f s, par ser, opti ons,targets,target _top)

SCons.Script.Main module
The main() function used by the scons script.

Architecturally, this is the scons script, and will likely only be called from the external “scons” wrapper. Consequently,
anything here should not be, or be considered, part of the build engine. If it's something that we expect other software
to want to use, it should go in some other module. If it's specific to the “scons” script invocation, it goes here.
SCons.Script.Main.AddOption (*ar gs, * * kw)
class SCons.Script.Main.BuildTask (t m t ar get s, t op, node)
Bases: SCons.Taskmaster.OutOfDateTask
An SCons build task.
LOGGER = None
_abc_impl = <_abc._abc_data object>
_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.
_Nno_exception_to_raise ()
display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

259

SCons.Script package

do_failed (st at us=2)

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (except i on=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Make a task ready for execution

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute ()

260

SCons.Script package

Returns True (indicating this Task should be executed) if this Task’s target state indicates it needs executing,
which has already been determined by an earlier up-to-date check.

postprocess ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (hode, descri pt i on="node’)

class SCons.Script.Main.CleanTask (t m t ar get s, t op, node)

Bases: SCons.Taskmaster.AlwaysTask

An SCons clean task.

LOGGER = None

_abc_impl = <_abc._abc_data object>

_clean_targets (r enove=True)

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_get_files_to_clean ()

_ho_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (except i on=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.

261

SCons.Script package

Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().
fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().
failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().
fs_delete (pat h, pat hstr, remove=True)
get_target ()
Fetch the target being built or updated by this task.
make_ready ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.
make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.
make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.
needs_execute ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute
postprocess ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.
prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.
remove ()
show ()
trace_message (hode, descri pti on="node")
class SCons.Script.Main.CountStats
Bases: SCons.Script.Main.Stats
do_append (I abel)
do_nothing (*ar gs, **kw)
do_print ()
enable (out f p)
class SCons.Script.Main.FakeOptionParser
Bases: object
A do-nothing option parser, used for the initial OptionsParser variable.
During normal SCons operation, the OptionsParser is created right away by the main() function. Certain tests scripts
however, can introspect on different Tool modules, the initialization of which can try to add a new, local option to an
otherwise uninitialized OptionsParser object. This allows that introspection to happen without blowing up.

262

SCons.Script package

class FakeOptionValues
Bases: object
add_local_option (*ar gs, **kw)
values = <SCons.Script.Main.FakeOptionParser.FakeOptionValues object>
SCons.Script.Main.GetBuildFailures ()
SCons.Script.Main.GetOption (namne)
class SCons.Script.Main.MemStats
Bases: SCons.Script.Main.Stats
do_append (I abel)
do_nothing (*ar gs, * * kw)
do_print ()
enable (out f p)
SCons.Script.Main.PrintHelp (f i | e=None)
SCons.Script.Main.Progress (* ar gs, * * kw)
class SCons.Script.Main.Progressor (obj , i nt erval =1, fi | e=None, over wr i t e=False)
Bases: object

count = 0
erase_previous ()
prev = "

replace_string (node)

spinner (node)

string (node)

target_string = '$TARGET

write (S)

class SCons.Script.Main.QuestionTask (t m t ar get s, t op, node)

Bases: SCons.Taskmaster.AlwaysTask

An SCons task for the -q (question) option.

LOGGER = None

_abc_impl = <_abc._abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_ho_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (except i on=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call

263

SCons.Script package

“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute

postprocess ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (hode, descri pt i on="node")

exception SCons.Script.Main.SConsPrintHelpException

264

SCons.Script package

Bases: Exception
args
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
SCons.Script.Main.SetOption (nane, val ue)
class SCons.Script.Main.Stats
Bases: object
do_nothing (*ar gs, * * kw)
enable (out f p)
class SCons.Script.Main.TreePrinter (der i ved=False, pr une=False, st at us=False, sLi neDr aw=False)
Bases: object
display (t)
get_all_children (node)
get_derived_children (node)
SCons.Script.Main.ValidateOptions (t hr ow_except i on=False) - None
Validate options passed to SCons on the command line.
If you call this after you set all your command line options with AddOption(), it will verify that all command line options
are valid. So if you added an option —xyz and you call SCons with —xyy you can cause SCons to issue an error
message and exit by calling this function.

Parameters: throw_exception (bool) — (Optional) Should this function raise an error if there’s an invalid
option on the command line, or issue a message and exit with error status.

Raises: SConsBadOptionError — If throw_exception is True and there are invalid options on
command line.

New in version 4.5.0.
SCons.Script.Main._SConstruct_exists (di r name=",reposi tori es=[],fil el i st =None)
This function checks that an SConstruct file exists in a directory. If so, it returns the path of the file. By default, it
checks the current directory.
SCons.Script.Main._build_targets (f s, opti ons, target s, target _t op)
SCons.Script.Main._create_path (pl i st)
SCons.Script.Main._exec_main (par ser, val ues)
SCons.Script.Main._load_all_site_scons_dirs (t opdi r, ver bose=False)
Load all of the predefined site_scons dir. Order is significant; we load them in order from most generic
(machine-wide) to most specific (topdir). The verbose argument is only for testing.
SCons.Script.Main._load_site_scons_dir (t opdi r, si t e_di r _name=None)
Load the site directory under topdir.
If a site dir name is supplied use it, else use default “site_scons” Prepend site dir to sys.path. If a “site_tools” subdir
exists, prepend to toolpath. Import “site_init.py” from site dir if it exists.
SCons.Script.Main._main (par ser)
SCons.Script.Main._scons_internal_error ()
Handle all errors but user errors. Print out a message telling the user what to do in this case and print a normal trace.
SCons.Script.Main._scons_internal_warning (e)
Slightly different from _scons_user_warning in that we use the current call stack rather than sys.exc_info() to get our
stack trace. This is used by the warnings framework to print warnings.
SCons.Script.Main._scons_syntax_error (e)
Handle syntax errors. Print out a message and show where the error occurred.
SCons.Script.Main._scons_user_error (e)
Handle user errors. Print out a message and a description of the error, along with the line number and routine where
it occured. The file and line number will be the deepest stack frame that is not part of SCons itself.
SCons.Script.Main._scons_user_warning (€)
Handle user warnings. Print out a message and a description of the warning, along with the line number and routine
where it occured. The file and line number will be the deepest stack frame that is not part of SCons itself.
SCons.Script.Main._set_debug_values (opt i ons)
SCons.Script.Main.find_deepest_user_frame (t b)
Find the deepest stack frame that is not part of SCons.
Input is a “pre-processed” stack trace in the form returned by traceback.extract_tb() or traceback.extract_stack()

265

SCons.Script package

SCons.Script.Main.main ()

SCons.Script.Main.path_string (I abel , rodul e)

SCons.Script.Main.python_version_deprecated (ver si on=sys.version_info(major=3, minor=10, micro=10,
releaselevel="final', serial=0))

SCons.Script.Main.python_version_string ()

SCons.Script.Main.python_version_unsupported (ver si on=sys.version_info(major=3, minor=10, micro=10,
releaselevel="final', serial=0))

SCons.Script.Main.revert_io ()

SCons.Script.Main.test_load_all_site_scons_dirs (d)

SCons.Script.Main.version_string (I abel , nodul e)

SCons.Script.SConsOptions module

SCons.Script.SConsOptions.Parser (ver si on)
Returns a parser object initialized with the standard SCons options.
Add options in the order we want them to show up in the -H help text, basically alphabetical. Each
op. add_opti on() call should have a consistent format:

op.add_option("-L", "--1ong-option-nane",
nargs=1, type="string",
dest="1 ong_opti on_nane", default='foo',
action="cal | back", call back=opt | ong_option,
hel p="hel p text goes here",
net avar =" VAR")

Even though the optparse module constructs reasonable default destination names from the long option names,
we’re going to be explicit about each one for easier readability and so this code will at least show up when grepping
the source for option attribute names, or otherwise browsing the source code.

exception SCons.Script.SConsOptions.SConsBadOptionError (opt _st r, par ser =None)
Bases: optparse.BadOptionError
Exception used to indicate that invalid command line options were specified

Variables:
e opt_str (str) — The offending option specified on command line which is not recognized

« parser (OptionParser) — The active argument parser
args
with_traceback ()
Exception.with_traceback(tb) — set self. _traceback__ to tb and return self.
class SCons.Script.SConsOptions.SConslIndentedHelpFormatter (i ndent _i ncr enent =2,
max_hel p_posi ti on=24, wi dt h=None, short first=1)
Bases: optparse.IndentedHelpFormatter
NO_DEFAULT_VALUE = 'none'
_format_text (t ext)
Format a paragraph of free-form text for inclusion in the help output at the current indentation level.
dedent ()
expand_default (opti on)
format_description (descri pti on)
format_epilog (epi | og)
format_heading (headi ng)
Translates heading to “SCons Options”
Heading of “Options” changed to “SCons Options.” Unfortunately, we have to do this here, because those titles are
hard-coded in the optparse calls.
format_option (opt i on)
Customized option formatter.
A copy of the normal opt parse. | ndent edHel pFormatter. fornat_option() method. This has been
snarfed so we can modify text wrapping to our liking:

266

SCons.Script package

« add our own regular expression that doesn’'t break on hyphens (so things like - -no-print-directory
don't get broken).

< wrap the list of options themselves when it's too long (the wr apper . fil | (opts) call below).

* set the subsequent_indent when wrapping the help_text.
The help for each option consists of two parts:

« the opt strings and metavars e.g. (“-x”, or “-fFILENAME, —file=FILENAME")

« the user-supplied help string e.g. (“turn on expert mode”, “read data from FILENAME”)
If possible, we write both of these on the same line:

- X turn on expert node

But if the opt string list is too long, we put the help string on a second line, indented to the same column it would
start in if it fit on the first line:

-f FI LENAME, --fil e=FI LENAME
read data from FI LENAMVE

format_option_strings (opt i on)

Return a comma-separated list of option strings & metavariables.
format_usage (usage)

Formats the usage message.
indent ()
set_long_opt_delimiter (del i m
set_parser (par ser)
set_short_opt_delimiter (del i m)
store_option_strings (par ser)

class SCons.Script.SConsOptions.SConsOption (*opt s, **attrs)

Bases: optparse.Option
ACTIONS = ('store', 'store_const', 'store_true', 'store_false', '‘append’, 'append_const', ‘count’, 'callback’, 'help',
‘version’)
ALWAYS_TYPED_ACTIONS = ('store', ‘append’)
ATTRS = ['action’, 'type', 'dest’, 'default’, 'nargs’, ‘const’, 'choices', 'callback’, 'callback_args', 'callback_kwargs',
‘help’, 'metavar
CHECK_METHODS = [<function Option._check_action>, <function Option._check_type>, <function
Option._check_choice>, <function Option._check_dest>, <function Option._check_const>, <function
Option._check_nargs>, <function Option._check_callback>, <function SConsOption._check_nargs_optional>]
CONST_ACTIONS = ('store_const', 'append_const', 'store', ‘append', ‘callback’)
STORE_ACTIONS (‘'store’, 'store_const', 'store_true', 'store_false', '‘append’, ‘append_const', 'count’)
TYPED_ACTIONS = (‘store’, 'append', ‘callback’)
TYPES = (‘string, 'int’, 'long’, 'float’, ‘complex’, ‘choice’)
TYPE_CHECKER = {'choice" <function check_choice>, '‘complex': <function check_builtin>, 'float": <function
check_builtin>, 'int": <function check_builtin>, 'long': <function check_builtin>}
_check_action ()
_check_callback ()
_check_choice ()
_check_const ()
_check_dest ()
_check_nargs ()
_check_nargs_optional ()
_check_opt_strings (opt s)
_check_type ()
_set _attrs (attrs)
_set_opt_strings (opt s)

267

SCons.Script package

check_value (opt , val ue)
convert_value (opt, val ue)
get_opt_string ()
process (opt, val ue, val ues, par ser)
take_action (acti on, dest, opt, val ue, val ues, par ser)
takes_value ()
class SCons.Script.SConsOptions.SConsOptionGroup (par ser,titl e, descri pti on=None)
Bases: optparse.OptionGroup
A subclass for SCons-specific option groups.
The only difference between this and the base class is that we print the group’s help text flush left, underneath their
own title but lined up with the normal “SCons Options”.
_check_conflict (opt i on)
_create_option_list ()
_create_option_mappings ()
_share_option_mappings (par ser)
add_option (Opt i on)

add_option (opt _str, ..., kwarg=val,...) - None
add_options (opti on_li st)
destroy ()

see OptionParser.destroy().
format_description (f or mat t er)
format_help (f or mat t er)
Format an option group’s help text.
The title is dedented so it's flush with the “SCons Options” title we print at the top.
format_option_help (f or mat t er)
get_description ()
get_option (opt _str)
has_option (opt _str)
remove_option (opt _str)
set_conflict_handler (handl er)
set_description (descri pti on)
set title (title)
class SCons.Script.SConsOptions.SConsOptionParser (usage=None, opti on_I i st =None,
option_cl ass=<cl ass ' opt parse. Opti on' >, ver si on=None, conflict_handl er="error',
descri pti on=None, f or mat t er =None, add_hel p_opti on=Tr ue, pr og=None, epi | og=None)
Bases: optparse.OptionParser
_add_help_option ()
_add_version_option ()
_check_conflict (opt i on)
_create_option_list ()
_create_option_mappings ()
_get_all_options ()
_get_args (ar gs)
_init_parsing_state ()
_match_long_opt (opt: string) - string
Determine which long option string ‘opt’ matches, ie. which one it is an unambiguous abbreviation for. Raises
BadOptionError if ‘opt’ doesn’t unambiguously match any long option string.
_populate_option_list (opti on_l i st, add_hel p=True)
_process_args (I ar gs, r ar gs, val ues)

_process_args(largs : [string],

rargs : [string], values : Values)
Process command-line arguments and populate ‘values’, consuming options and arguments from ‘rargs’. If
‘allow_interspersed_args’ is false, stop at the first non-option argument. If true, accumulate any interspersed
non-option arguments in ‘largs’.
_process_long_opt (r ar gs, val ues)

268

SCons.Script package

SCons-specific processing of long options.
This is copied directly from the normal opt par se. _process_I| ong_opt () method, except that, if configured to
do so, we catch the exception thrown when an unknown option is encountered and just stick it back on the
“leftover” arguments for later (re-)processing. This is because we may see the option definition later, while
processing SConscript files.

_process_short_opts (r ar gs, val ues)

_share_option_mappings (par ser)

add_local_option (*ar gs, **kw)
Adds a local option to the parser.
This is initiated by an AddOption() call to add a user-defined command-line option. We add the option to a separate
option group for the local options, creating the group if necessary.

add_option (Opt i on)

add_option (opt _str, ..., kwarg=val,...) -~ None

add_option_group (* ar gs, * *kwar gs)

add_options (opti on_Ili st)

check_values (val ues: Val ues,args: [string])
-> (values : Values, args : [string])
Check that the supplied option values and leftover arguments are valid. Returns the option values and leftover
arguments (possibly adjusted, possibly completely new — whatever you like). Default implementation just returns
the passed-in values; subclasses may override as desired.

destroy ()
Declare that you are done with this OptionParser. This cleans up reference cycles so the OptionParser (and all
objects referenced by it) can be garbage-collected promptly. After calling destroy(), the OptionParser is unusable.

disable_interspersed_args ()
Set parsing to stop on the first non-option. Use this if you have a command processor which runs another
command that has options of its own and you want to make sure these options don't get confused.

enable_interspersed_args ()
Set parsing to not stop on the first non-option, allowing interspersing switches with command arguments. This is
the default behavior. See also disable_interspersed_args() and the class documentation description of the attribute
allow_interspersed_args.

error (M Q)
overridden OptionValueError exception handler

exit (st at us=0, nsg=None)

expand_prog_name (S)

format_description (f or mat t er)

format_epilog (f or mat t er)

format_help (f or mat t er =None)

format_option_help (f or mat t er =None)

get_default_values ()

get_description ()

get_option (opt _str)

get_option_group (opt _str)

get_prog_name ()

get_usage ()

get_version ()

has_option (opt _str)

parse_args (ar gs=None, val ues=None)
parse_args(args : [string] = sys.argv[11],

values : Values = None)

-> (values : Values, args : [string])
Parse the command-line options found in ‘args’ (default: sys.argv[1:]). Any errors result in a call to ‘error()’, which
by default prints the usage message to stderr and calls sys.exit() with an error message. On success returns a pair
(values, args) where ‘values’ is a Values instance (with all your option values) and ‘args’ is the list of arguments left
over after parsing options.

preserve_unknown_options = False

269

SCons.Script package

print_help (file: file = stdout)
Print an extended help message, listing all options and any help text provided with them, to ‘file’ (default stdout).

print_usage (file: file = stdout)
Print the usage message for the current program (self.usage) to ‘file’ (default stdout). Any occurrence of the string
“%%prog” in self.usage is replaced with the name of the current program (basename of sys.argv[0]). Does nothing if
self.usage is empty or not defined.

print_version (fil e: file = stdout)
Print the version message for this program (self.version) to ‘file’ (default stdout). As with print_usage(), any
occurrence of “%prog” in self.version is replaced by the current program’s name. Does nothing if self.version is
empty or undefined.

raise_exception_on_error = False

remove_option (opt _str)

reparse_local_options ()
Re-parse the leftover command-line options.
Parse options stored in self.largs, so that any value overridden on the command line is immediately available if the
user turns around and does a GetOption() right away.
We mimic the processing of the single args in the original OptionParser _process_args(), but here we allow exact
matches for long-opts only (no partial argument names!). Otherwise there could be problems in add_local_option()
below. When called from there, we try to reparse the command-line arguments that

1. haven't been processed so far (self.largs), but

2. are possibly not added to the list of options yet.) _
So, when we only have a value for “—myargument” so far, a command-line argument of “—myarg=test” would set it,

per the behaviour of _match_long_opt(), which allows for partial matches of the option name, as long as the
common prefix appears to be unique. This would lead to further confusion, because we might want to add another
option “—myarg” later on (see issue #2929).

set_conflict_handler (handl er)

set_default (dest , val ue)

set_defaults (* * kwar gs)

set_description (descri pti on)

set_process_default_values (pr ocess)

set_usage (usage)

standard_option_list = []

class SCons.Script.SConsOptions.SConsValues (def aul t s)

Bases: optparse.Values

Holder class for uniform access to SCons options, regardless of whether they can be set on the command line or in

the SConscript files (using the SetOption() function).

A SCons option value can originate three different ways:

1. set on the command line;
2. setin an SConscript file;

3. the default setting (from the the op.add_option() calls in the Parser() function, below).)
The command line always overrides a value set'in a SConscript file, which in turn always overrides default settings.

Because we want to support user-specified options in the SConscript file itself, though, we may not know about all of
the options when the command line is first parsed, so we can’t make all the necessary precedence decisions at the
time the option is configured.
The solution implemented in this class is to keep these different sets of settings separate (command line, SConscript
file, and default) and to override the __ getattr () method to check them in turn. This should allow the rest of the
code to just fetch values as attributes of an instance of this class, without having to worry about where they came
from.
Note that not all command line options are settable from SConscript files, and the ones that are must be explicitly
added to the “settable” list in this class, and optionally validated and coerced in the set_option() method.
__Qetattr__ (attr)
Fetches an options value, checking first for explicit settings from the command line (which are direct attributes),
then the SConscript file settings, then the default values.

270

SCons.Script package

_update (di ct, node)
_update_careful (di ct)
Update the option values from an arbitrary dictionary, but only use keys from dict that already have a
corresponding attribute in self. Any keys in dict without a corresponding attribute are silently ignored.
_update_loose (di ct)
Update the option values from an arbitrary dictionary, using all keys from the dictionary regardless of whether they
have a corresponding attribute in self or not.
ensure_value (attr, val ue)
read_file (fi | enanme, node="careful’)
read_module (modnane, node="careful’)
set_option (nane, val ue)
Sets an option from an SConscript file.

Raises: UserError —invalid or malformed option (“error in your script”)
settable = ['clean’, 'diskcheck’, 'duplicate’, 'experimental’, 'hash_chunksize', 'hash_format', 'help’, ‘implicit_cache’,
'implicit_deps_changed', 'implicit_deps_unchanged’, 'max_drift', 'md5_chunksize', 'no_exec', 'no_progress',
'num_jobs', 'random’, 'silent’, 'stack_size', 'warn’, 'disable_execute_ninja’, 'disable_ninja’, 'skip_ninja_regen']
SCons.Script.SConsOptions.diskcheck convert (val ue)

SCons.Script.SConscript module

This module defines the Python API provided to SConscript files.
SCons.Script.SConscript.BuildDefaultGlobals ()
Create a dictionary containing all the default globals for SConstruct and SConscript files.
SCons.Script.SConscript.Configure (* ar gs, * * kw)
class SCons.Script.SConscript.DefaultEnvironmentCall (met hod_nane, subst =0)
Bases: object
A class that implements “global function” calls of Environment methods by fetching the specified method from the
DefaultEnvironment’s class. Note that this uses an intermediate proxy class instead of calling the DefaultEnvironment
method directly so that the proxy can override the subst() method and thereby prevent expansion of construction
variables (since from the user’s point of view this was called as a global function, with no associated construction
environment).
class SCons.Script.SConscript.Frame (f s, export s, sconscri pt)
Bases: object
A frame on the SConstruct/SConscript call stack
SCons.Script.SConscript.Return (*var s, * * kw)
class SCons.Script.SConscript.SConsEnvironment (pl at f or m=None, t ool s=None, t ool pat h=None,
vari abl es=None, par se_f | ags=None, **kw)
Bases: SCons.Environment.Base
An Environment subclass that contains all of the methods that are particular to the wrapper SCons interface and
which aren’t (or shouldn’t be) part of the build engine itself.
Note that not all of the methods of this class have corresponding global functions, there are some private methods.
Action (*ar gs, ** kw)
AddMethod (f unct i on, name=None)
Adds the specified function as a method of this construction environment with the specified name. If the name is
omitted, the default name is the name of the function itself.
AddPostAction (fi | es, acti on)
AddPreAction (fi | es, acti on)
Alias (t ar get , sour ce=[], act i on=None, ** kw)
AlwaysBuild (*t ar get s)
Append (* * kw)
Append values to construction variables in an Environment.
The variable is created if it is not already present.
AppendENVPath (nane, newpat h, envhame="ENV’, sep="", del et e_exi sti ng=False)
Append path elements to the path name in the envname dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the case
where the env variable is a list instead of a string.

271

SCons.Script package

272

If delete_existing is False, a newpath element already in the path will not be moved to the end (it will be left where
it is).

AppendUnique (del et e_exi st i ng=False, ** kw)
Append values to existing construction variables in an Environment, if they’re not already there. If delete_existing is
True, removes existing values first, so values move to end.

Builder (* * kw)

CacheDir (pat h, cust om _cl ass=None)

Clean (targets,files)

Clone (t ool s=[], t ool pat h=None, par se_f | ags=None, * * kw)
Return a copy of a construction Environment.
The copy is like a Python “deep copy”-that is, independent copies are made recursively of each objects—except
that a reference is copied when an object is not deep-copyable (like a function). There are no references to any
mutable objects in the original Environment.

Command (t ar get , sour ce, acti on, **kw)
Builds the supplied target files from the supplied source files using the supplied action. Action may be any type that
the Builder constructor will accept for an action.

Configure (*ar gs, * * kw)

Decider (f uncti on)

Default (*t ar get s)

Depends (t ar get , dependency)
Explicity specify that ‘target’s depend on ‘dependency’.

Detect (pr ogs)
Return the first available program from one or more possibilities.

Parameters: progs (str or list) — one or more command names to check for

Dictionary (*ar gs)
Return construction variables from an environment.

Parameters: *args (optional) — variable names to look up

Returns: If args omitted, the dictionary of all construction variables. If one arg, the corresponding
value is returned. If more than one arg, a list of values is returned.

Raises: KeyError —if any of args is not in the construction environment.
Dir (nane, *ar gs, **kw)
Dump (key=None, f or mat ='pretty’)
Return construction variables serialized to a string.

Parameters: .)] }
» key (optional) — if None, format the whole dict of variables. Else format the value of key

(Default value = None)

- format (str, optional) — specify the format to serialize to. “pretty” generates a
pretty-printed string, “json” a JSON-formatted string. (Default value = “pretty”)

static EnsurePythonVersion (maj or, nmi nor)

Exit abnormally if the Python version is not late enough.
static EnsureSConsVersion (maj or, m nor, revi si on=0)

Exit abnormally if the SCons version is not late enough.
Entry (name, *ar gs, ** kw)
Environment (* * kw)
Execute (acti on, *ar gs, **kw)

Directly execute an action through an Environment
static Exit (val ue=0)
Export (*var s, **kw)
File (nane, *ar gs, **kw)
FindFile (fi l e, di rs)
FindInstalledFiles ()

returns the list of all targets of the Install and InstallAs Builder.
FindIxes (pat hs, prefi x, suf fi x)

SCons.Script package

Search a list of paths for something that matches the prefix and suffix.

Parameters: .
» paths — the list of paths or nodes.

 prefix — construction variable for the prefix.

« suffix — construction variable for the suffix.
Returns: the matched path or None
FindSourceFiles (node="") - list
Return a list of all source files.
Flatten (sequence)
GetBuildPath (fi | es)
static GetLaunchDir ()
GetOption (nane)
Glob (pat t er n, ondi sk=True, sour ce=False, st ri ngs=False, excl ude=None)
Help (t ext , append=False)
Ignore (t ar get , dependency)
Ignore a dependency.
Import (*vars)
Literal (st ri ng)
Local (*t ar get s)
MergeFlags (ar gs, uni que=True) - None
Merge flags into construction variables.
Merges the flags from args into this construction environent. If args is not a dict, it is first converted to one with
flags distributed into appropriate construction variables. See ParseFlags().

Parameters:
» args — flags to merge
* unique — merge flags rather than appending (default: True). When merging, path
variables are retained from the front, other construction variables from the end.
NoCache (*t ar get s)
Tags a target so that it will not be cached
NoClean (*t ar get s)
Tags a target so that it will not be cleaned by -c
Override (overri des)
Produce a modified environment whose variables are overridden by the overrides dictionaries. “overrides” is a
dictionary that will override the variables of this environment.
This function is much more efficient than Clone() or creating a new Environment because it doesn’'t copy the
construction environment dictionary, it just wraps the underlying construction environment, and doesn’t even create
a wrapper object if there are no overrides.
ParseConfig (command, f unct i on=None, uni que=True)
Parse the result of running a command to update construction vars.
Use f unct i on to parse the output of running command in order to modify the current environment.

Parameters: .]]] .
» command — a string or a list of strings representing a command and its arguments.

 function — called to process the result of conmand, which will be passed as ar gs. If
function is omitted or None, MergeFlags() is used. Takes 3 args
(env, args, unique)

» unique — whether no duplicate values are allowed (default true)

ParseDepends (fi | enane, nust _exi st =None, onl y_one=False)
Parse a mkdep-style file for explicit dependencies. This is completely abusable, and should be unnecessary in the
“normal” case of proper SCons configuration, but it may help make the transition from a Make hierarchy easier for
some people to swallow. It can also be genuinely useful when using a tool that can write a .d file, but for which
writing a scanner would be too complicated.

ParseFlags (*f | ags) — dict
Return a dict of parsed flags.

273

SCons.Script package

Parse f | ags and return a dict with the flags distributed into the appropriate construction variable names. The flags
are treated as a typical set of command-line flags for a GNU-style toolchain, such as might have been generated
by one of the {foo}-config scripts, and used to populate the entries based on knowledge embedded in this method -
the choices are not expected to be portable to other toolchains.
If one of the f | ags strings begins with a bang (exclamation mark), it is assumed to be a command and the rest of
the string is executed; the result of that evaluation is then added to the dict.

Platform (pl at f orm)

Precious (*t ar get s)

Prepend (* * kw)
Prepend values to construction variables in an Environment.
The variable is created if it is not already present.

PrependENVPath (name, newpat h, envnane='ENV', sep="', del et e_exi st i nhg=True)
Prepend path elements to the path name in the envname dictionary for this environment. Will only add any
particular path once, and will normpath and normcase all paths to help assure this. This can also handle the case
where the env variable is a list instead of a string.
If delete_existing is False, a newpath component already in the path will not be moved to the front (it will be left
where it is).

PrependUnique (del et e_exi st i ng=False, * * kw)
Prepend values to existing construction variables in an Environment, if they’re not already there. If delete_existing
is True, removes existing values first, so values move to front.

Pseudo (*t ar get s)

PyPackageDir (nodul enane)

RemoveMethod (f unct i on)
Removes the specified function’s MethodWrapper from the added_methods list, so we don’t re-bind it when
making a clone.

Replace (* * kw)
Replace existing construction variables in an Environment with new construction variables and/or values.

Replacelxes (pat h, ol d_prefix, ol d_suffix, new_prefix, new_suffix)
Replace old_prefix with new_prefix and old_suffix with new_suffix.
env - Environment used to interpolate variables. path - the path that will be modified. old_prefix - construction
variable for the old prefix. old_suffix - construction variable for the old suffix. new_prefix - construction variable for
the new prefix. new_suffix - construction variable for the new suffix.

Repository (*di r s, **kw)

Requires (t ar get , prerequi site)
Specify that ‘prerequisite’ must be built before ‘target’, (but ‘target’ does not actually depend on ‘prerequisite’ and
need not be rebuilt if it changes).

SConscript (*1 s, ** kw)
Execute SCons configuration files.

Parameters: *Is (str or list) — configuration file(s) to execute.

Keyword o . _ _
Arguments: « dirs (list) — execute SConscript in each listed directory.

* name (str) — execute script ‘name’ (used only with ‘dirs’).

» exports (list or dict) — locally export variables the called script(s) can import.

 variant_dir (str) — mirror sources needed for the build in a variant directory to allow
building in it.

» duplicate (bool) — physically duplicate sources instead of just adjusting paths of
derived files (used only with ‘variant_dir’) (default is True).

» must_exist (bool) — fail if a requested script is missing (default is False, default is
deprecated).
Returns: list of variables returned by the called script

Raises: UserError — a script is not found and such exceptions are enabled.

static SConscriptChdir (f| ag: bool) -~ None
SConsignFile (nane=".sconsign’, dom nodul e=None)

274

SCons.Script package

Scanner (*ar gs, **kw)

SetDefault (* * kw)

SetOption (nane, val ue)

SideEffect (si de_ef fect, target)
Tell scons that side_effects are built as side effects of building targets.

Split (ar g)
This function converts a string or list into a list of strings or Nodes. This makes things easier for users by allowing
files to be specified as a white-space separated list to be split.

The input rules are:

A single string containing names separated by spaces. These will be split apart at the spaces.
» A single Node instance

+ Alist containing either strings or Node instances. Any strings in the list are not split at spaces.
In all cases, the function returns a list of Nodes and strings.

Tool (t ool , t ool pat h=None, **kwar gs) — SCons.Tool.Tool
Find and run tool module tool.
Changed in version 4.2: returns the tool module rather than None.
Value (val ue, bui I t _val ue=None, nane=None)
Return a Value (Python expression) node.
Changed in version 4.0: the name parameter was added.
VariantDir (vari ant _dir,src_dir,duplicate=1)
Wherels (pr og, pat h=None, pat hext =None, r ej ect =None)
Find prog in the path.
_canonicalize (pat h)
Allow Dirs and strings beginning with # for top-relative.
Note this uses the current env’s fs (in self).
_changed_build (dependency, t arget, prev_ni, repo_node=None)
_changed_content (dependency, t arget, prev_ni , repo_node=None)
_changed_source (dependency, t arget, prev_ni ,repo_node=None)
_changed_timestamp_match (dependency, t ar get, prev_ni ,repo_node=None)
_changed_timestamp_newer (dependency, t ar get, prev_ni , repo_node=None)
_changed_timestamp_then_content (dependency, t ar get, prev_ni, repo_node=None)
_find_toolpath_dir (t p)
_get_SConscript_filenames (I s, kw)
Convert the parameters passed to SConscript() calls into a list of files and export variables. If the parameters are
invalid, throws SCons.Errors.UserError. Returns a tuple (I, €) where | is a list of SConscript filenames and e is a list
of exports.
static _get_major_minor_revision (ver si on_st ri ng)
Split a version string into major, minor and (optionally) revision parts.
This is complicated by the fact that a version string can be something like 3.2b1.
_gsm ()
_init_special ()
Initial the dispatch tables for special handling of special construction variables.
_update (ot her)
Private method to update an environment’s consvar dict directly.
Bypasses the normal checks that occur when users try to set items.
_update_onlynew (ot her)
Private method to add new items to an environment’s consvar dict.
Only adds items from other whose keys do not already appear in the existing dict; values from other are not used
for replacement. Bypasses the normal checks that occur when users try to set items.
arg2nodes (ar gs, node_f act ory=<cl ass ' SCons. Envi ronnment. _Nul | ' >, | ookup_li st =<cl ass
' SCons. Envi ronment . _Nul | ' >, **kw)
backtick (cormand) - str
Emulate command substitution.

275

SCons.Script package

Provides behavior conceptually like POSIX Shell notation for running a command in backquotes (backticks) by
running command and returning the resulting output string.

This is not really a public API any longer, it is provided for the use of ParseFlags() (which supports it using a syntax
of lcommand) and ParseConfig().

Raises: OSError — if the external command returned non-zero exit status.

get (key, def aul t =None)
Emulates the get() method of dictionaries.
get_CacheDir ()
get_builder (nane)
Fetch the builder with the specified name from the environment.
get _factory (f act ory, def aul t ='File")
Return a factory function for creating Nodes for this construction environment.
get_scanner (skey)
Find the appropriate scanner given a key (usually a file suffix).
get_src_sig_type ()
get _tgt_sig_type ()
gvars ()
items ()
Emulates the items() method of dictionaries.
keys ()
Emulates the keys() method of dictionaries.
Ivars ()
scanner_map_delete (kw=None)
Delete the cached scanner map (if we need to).
setdefault (key, def aul t =None)
Emulates the setdefault() method of dictionaries.
subst (st ri ng, raw=0, t ar get =None, sour ce=None, conv=None, execut or =None, over ri des=False)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.
subst_kw (kw, r aw=0, t ar get =None, sour ce=None)
subst_list (st ri ng, raw=0, t ar get =None, sour ce=None, conv=None, execut or =None, over ri des=False)
Calls through to SCons.Subst.scons_subst_list(). See the documentation for that function.
subst_path (pat h, t ar get =None, sour ce=None)
Substitute a path list, turning EntryProxies into Nodes and leaving Nodes (and other objects) as-is.
subst_target_source (st ri ng, raw=0, t ar get =None, sour ce=None, conv=None, execut or =None,
overri des=False)
Recursively interpolates construction variables from the Environment into the specified string, returning the
expanded result. Construction variables are specified by a $ prefix in the string and begin with an initial underscore
or alphabetic character followed by any number of underscores or alphanumeric characters. The construction
variable names may be surrounded by curly braces to separate the name from trailing characters.
validate_CacheDir_class (cust om cl ass=None)
Validate the passed custom CacheDir class, or if no args are passed, validate the custom CacheDir class from the
environment.
values ()
Emulates the values() method of dictionaries.
exception SCons.Script.SConscript.SConscriptReturn
Bases: Exception
args
with_traceback ()
Exception.with_traceback(tb) — set self. _traceback _ to tb and return self.
SCons.Script.SConscript.SConscript_exception (fi | e=<_i 0. Text | ON apper name=' <stderr>' node="w
encodi ng=" utf-8'>)

276

SCons.Script package

Print an exception stack trace just for the SConscript file(s). This will show users who have Python errors where the
problem is, without cluttering the output with all of the internal calls leading up to where we exec the SConscript.
SCons.Script.SConscript._SConscript (f s, *fi | es, **kw)
SCons.Script.SConscript.annotate (node)
Annotate a node with the stack frame describing the SConscript file and line number that created it.
SCons.Script.SConscript.compute_exports (export s)
Compute a dictionary of exports given one of the parameters to the Export() function or the exports argument to
SConscript().
SCons.Script.SConscript.get_DefaultEnvironmentProxy ()
SCons.Script.SConscript.get_calling_namespaces ()
Return the locals and globals for the function that called into this module in the current call stack.
SCons.Script.SConscript.handle_missing_SConscript (f , nust _exi st =None)
Take appropriate action on missing file in SConscript() call.
Print a warning or raise an exception on missing file, unless missing is explicitly allowed by the must_exist value. On
first warning, print a deprecation message.

Parameters: o] o
« f (str) — path of missing configuration file

e must_exist (bool) — if true, fail. If false, but not None, allow the file to be missing. The
default is None, which means issue the warning. The default is deprecated.
Raises: UserError —if must_exist is true or if global SCons.Script._no_missing_sconscript is true.

Module contents
The main() function used by the scons script.

Architecturally, this is the scons script, and will likely only be called from the external “scons” wrapper. Consequently,
anything here should not be, or be considered, part of the build engine. If it's something that we expect other software
to want to use, it should go in some other module. If it's specific to the “scons” script invocation, it goes here.
SCons.Script.HelpFunction (t ext , append=False)
class SCons.Script.TargetList (i ni t1i st =None)
Bases: collections.UserList
_abc_impl = <_abc._abc_data object>
_add_Default (i st)
_clear ()
_do_nothing (*ar gs, **kw)
append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) — integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, st art[, st op]]) — integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,itemn
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t en)
S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, ** kwds)
SCons.Script.Variables (f i | es=None, ar gs={})
SCons.Script._Add_Arguments (al i st)

277

SCons.Taskmaster package

SCons.Script._Add_Targets (t I i st)
SCons.Script._Get_Default_Targets (d, f s)
SCons.Script._Set_Default_Targets (env, t1i st)
SCons.Script._Set_Default_Targets_Has_Been_Called (d, f s)
SCons.Script._Set_Default_Targets_Has_Not Been_Called (d, f s)
SCons.Script.set_missing_sconscript_error (f | ag=1)

Set behavior on missing file in SConscript() call.

Returns: previous value

SCons.Taskmaster package
Submodules

SCons.Taskmaster.Job module
Serial and Parallel classes to execute build tasks.

The Jobs class provides a higher level interface to start, stop, and wait on jobs.
class SCons.Taskmaster.Job.InterruptState
Bases: object
set ()
class SCons.Taskmaster.Job.Jobs (num t asknmast er)
Bases: object
An instance of this class initializes N jobs, and provides methods for starting, stopping, and waiting on all N jobs.
_reset_sig_handler ()
Restore the signal handlers to their previous state (before the call to _setup_sig_handler().
_setup_sig_handler ()
Setup an interrupt handler so that SCons can shutdown cleanly in various conditions:

a. SIGINT: Keyboard interrupt
b. SIGTERM: kill or system shutdown

c. SIGHUP: Controlling shell exiting) -]
We handle all of these cases by stopping the taskmaster. It turns out that it's very difficult to stop the build process

by throwing asynchronously an exception such as KeyboardInterrupt. For example, the python Condition variables
(threading.Condition) and queues do not seem to be asynchronous-exception-safe. It would require adding a
whole bunch of try/finally block and except Keyboardinterrupt all over the place.
Note also that we have to be careful to handle the case when SCons forks before executing another process. In
that case, we want the child to exit immediately.

run (post f unc=<f uncti on Jobs. <l anbda>>)
Run the jobs.
postfunc() will be invoked after the jobs has run. It will be invoked even if the jobs are interrupted by a keyboard
interrupt (well, in fact by a signal such as either SIGINT, SIGTERM or SIGHUP). The execution of postfunc() is
protected against keyboard interrupts and is guaranteed to run to completion.

were_interrupted ()
Returns whether the jobs were interrupted by a signal.

class SCons.Taskmaster.Job.LegacyParallel (t askmast er, num st ack_si ze)

Bases: object

This class is used to execute tasks in parallel, and is somewhat less efficient than Serial, but is appropriate for

parallel builds.

This class is thread safe.

start ()
Start the job. This will begin pulling tasks from the taskmaster and executing them, and return when there are no
more tasks. If a task fails to execute (i.e. execute() raises an exception), then the job will stop.

class SCons.Taskmaster.Job.NewParallel (t asknmast er, num st ack_si ze)

278

SCons.Taskmaster package

279

Bases: object
class State (val ue)

Bases: enum.Enum
An enumeration.
COMPLETED = 3

READY = 0
SEARCHING =1
STALLED = 2

class Worker (owner)

Bases: threading.Thread
_bootstrap ()
_bootstrap_inner ()
_delete ()
Remove current thread from the dict of currently running threads.
_initialized = False
_reset_internal_locks (i s_al i ve)
_set_ident ()
_set_native_id ()
_set_tstate_lock ()
Set a lock object which will be released by the interpreter when the underlying thread state (see pystate.h) gets
deleted.
_stop ()
_wait_for_tstate_lock (bl ock=True, ti meout =- 1)
property daemon
A boolean value indicating whether this thread is a daemon thread.
This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from the
creating thread; the main thread is not a daemon thread and therefore all threads created in the main thread
default to daemon = False.
The entire Python program exits when only daemon threads are left.
getName ()
Return a string used for identification purposes only.
This method is deprecated, use the name attribute instead.
property ident
Thread identifier of this thread or None if it has not been started.
This is a nonzero integer. See the get_ident() function. Thread identifiers may be recycled when a thread exits
and another thread is created. The identifier is available even after the thread has exited.
isDaemon ()
Return whether this thread is a daemon.
This method is deprecated, use the daemon attribute instead.
is_alive ()
Return whether the thread is alive.
This method returns True just before the run() method starts until just after the run() method terminates. See also
the module function enumerate().
join (t i meout =None)
Wait until the thread terminates.
This blocks the calling thread until the thread whose join() method is called terminates — either normally or
through an unhandled exception or until the optional timeout occurs.
When the timeout argument is present and not None, it should be a floating point number specifying a timeout for
the operation in seconds (or fractions thereof). As join() always returns None, you must call is_alive() after join()
to decide whether a timeout happened — if the thread is still alive, the join() call timed out.
When the timeout argument is not present or None, the operation will block until the thread terminates.
A thread can be join()ed many times.
join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock. It is
also an error to join() a thread before it has been started and attempts to do so raises the same exception.
property name
A string used for identification purposes only.

SCons.Taskmaster package

It has no semantics. Multiple threads may be given the same name. The initial name is set by the constructor.
property native_id
Native integral thread ID of this thread, or None if it has not been started.
This is a non-negative integer. See the get_native_id() function. This represents the Thread ID as reported by
the kernel.
run ()
Method representing the thread’s activity.
You may override this method in a subclass. The standard run() method invokes the callable object passed to
the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from the
args and kwargs arguments, respectively.
setDaemon (daenoni c)
Set whether this thread is a daemon.
This method is deprecated, use the .daemon property instead.
setName (nane)
Set the name string for this thread.
This method is deprecated, use the name attribute instead.
start ()
Start the thread’s activity.
It must be called at most once per thread object. It arranges for the object’'s run() method to be invoked in a
separate thread of control.
This method will raise a RuntimeError if called more than once on the same thread object.
_adjust_stack_size ()
_restore_stack_size (prev_si ze)
_setup_logging ()
_start_workers ()
_work ()
start ()
trace_message (nessage)
class SCons.Taskmaster.Job.Serial (t askmast er)
Bases: object
This class is used to execute tasks in series, and is more efficient than Parallel, but is only appropriate for
non-parallel builds. Only one instance of this class should be in existence at a time.
This class is not thread safe.
start ()
Start the job. This will begin pulling tasks from the taskmaster and executing them, and return when there are no
more tasks. If a task fails to execute (i.e. execute() raises an exception), then the job will stop.
class SCons.Taskmaster.Job.ThreadPool (hum st ack_si ze, i nt er r upt ed)
Bases: object
This class is responsible for spawning and managing worker threads.
cleanup ()
Shuts down the thread pool, giving each worker thread a chance to shut down gracefully.
get ()
Remove and return a result tuple from the results queue.
preparation_failed (t ask)
put (t ask)
Put task into request queue.
class SCons.Taskmaster.Job.Worker (r equest Queue, r esul t sQueue, i nt er r upt ed)
Bases: threading.Thread
A worker thread waits on a task to be posted to its request queue, dequeues the task, executes it, and posts a tuple
including the task and a boolean indicating whether the task executed successfully.
_bootstrap ()
_bootstrap_inner ()
_delete ()
Remove current thread from the dict of currently running threads.
_initialized = False
_reset_internal_locks (i s_al i ve)

280

SCons.Taskmaster package

_set_ident ()
_set_native_id ()
_set_tstate lock ()
Set a lock object which will be released by the interpreter when the underlying thread state (see pystate.h) gets
deleted.
_stop ()
_wait_for_tstate lock (bl ock=True, ti meout =- 1)
property daemon
A boolean value indicating whether this thread is a daemon thread.
This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from the
creating thread; the main thread is not a daemon thread and therefore all threads created in the main thread
default to daemon = False.
The entire Python program exits when only daemon threads are left.
getName ()
Return a string used for identification purposes only.
This method is deprecated, use the name attribute instead.
property ident
Thread identifier of this thread or None if it has not been started.
This is a nonzero integer. See the get_ident() function. Thread identifiers may be recycled when a thread exits and
another thread is created. The identifier is available even after the thread has exited.
isDaemon ()
Return whether this thread is a daemon.
This method is deprecated, use the daemon attribute instead.
is_alive ()
Return whether the thread is alive.
This method returns True just before the run() method starts until just after the run() method terminates. See also
the module function enumerate().
join (t i meout =None)
Wait until the thread terminates.
This blocks the calling thread until the thread whose join() method is called terminates — either normally or through
an unhandled exception or until the optional timeout occurs.
When the timeout argument is present and not None, it should be a floating point number specifying a timeout for
the operation in seconds (or fractions thereof). As join() always returns None, you must call is_alive() after join() to
decide whether a timeout happened — if the thread is still alive, the join() call timed out.
When the timeout argument is not present or None, the operation will block until the thread terminates.
A thread can be join()ed many times.
join() raises a RuntimeError if an attempt is made to join the current thread as that would cause a deadlock. It is
also an error to join() a thread before it has been started and attempts to do so raises the same exception.
property name
A string used for identification purposes only.
It has no semantics. Multiple threads may be given the same name. The initial name is set by the constructor.
property native_id
Native integral thread ID of this thread, or None if it has not been started.
This is a non-negative integer. See the get_native_id() function. This represents the Thread ID as reported by the
kernel.
run ()
Method representing the thread’s activity.
You may override this method in a subclass. The standard run() method invokes the callable object passed to the
object’s constructor as the target argument, if any, with sequential and keyword arguments taken from the args and
kwargs arguments, respectively.
setDaemon (daenoni c)
Set whether this thread is a daemon.
This method is deprecated, use the .daemon property instead.
setName (namne)
Set the name string for this thread.
This method is deprecated, use the name attribute instead.

281

SCons.Taskmaster package

start ()
Start the thread’s activity.
It must be called at most once per thread object. It arranges for the object’s run() method to be invoked in a
separate thread of control.
This method will raise a RuntimeError if called more than once on the same thread object.

Module contents
Generic Taskmaster module for the SCons build engine.

This module contains the primary interface(s) between a wrapping user interface and the SCons build engine. There
are two key classes here:

Taskmaster

This is the main engine for walking the dependency graph and calling things to decide what does or doesn’t need
to be built.

Task

This is the base class for allowing a wrapping interface to decide what does or doesn’t actually need to be done.
The intention is for a wrapping interface to subclass this as appropriate for different types of behavior it may need.

The canonical example is the SCons native Python interface, which has Task subclasses that handle its specific
behavior, like printing “foo’ is up to date” when a top-level target doesn’t need to be built, and handling the -c
option by removing targets as its “build” action. There is also a separate subclass for suppressing this output when
the -g option is used.

The Taskmaster instantiates a Task object for each (set of) target(s) that it decides need to be evaluated and/or
built.
class SCons.Taskmaster.AlwaysTask (t m t ar get s, t op, node)

Bases: SCons.Taskmaster.Task

LOGGER = None

_abc_impl = <_abc._abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

__Nno_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (except i on=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call

282

SCons.Taskmaster package

“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

needs_execute ()
Always returns True (indicating this Task should always be executed).
Subclasses that need this behavior (as opposed to the default of only executing Nodes that are out of date w.r.t.
their dependencies) can use this as follows:

class MyTaskSubclass(SCons.Taskmaster.Task):

needs_execute = SCons.Taskmaster.AlwaysTask.needs_execute

postprocess ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (nhode, descri pt i on="node")

class SCons.Taskmaster.OutOfDateTask (t mt ar get s, t op, node)

283

SCons.Taskmaster package

Bases: SCons.Taskmaster.Task

LOGGER = None

_abc_impl = <_abc._abc_data object>

_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.

_ho_exception_to_raise ()

display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.

exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.

exc_info ()
Returns info about a recorded exception.

exception_set (except i on=None)
Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()

284

SCons.Taskmaster package

Fetch the target being built or updated by this task.
make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.
make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.
make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.
needs_execute ()
Returns True (indicating this Task should be executed) if this Task’s target state indicates it needs executing,
which has already been determined by an earlier up-to-date check.
postprocess ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.
prepare ()
Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.
trace_message (hode, descri pt i on="node’)
class SCons.Taskmaster.Stats
Bases: object
A simple class for holding statistics about the disposition of a Node by the Taskmaster. If we're collecting statistics,
each Node processed by the Taskmaster gets one of these attached, in which case the Taskmaster records its
decision each time it processes the Node. (Ideally, that’s just once per Node.)
class SCons.Taskmaster.Task (t mt argets, t op, node)
Bases: abc.ABC
SCons build engine abstract task class.
This controls the interaction of the actual building of node and the rest of the engine.
This is expected to handle all of the normally-customizable aspects of controlling a build, so any given application
should be able to do what it wants by sub-classing this class and overriding methods as appropriate. If an application
needs to customize something by sub-classing Taskmaster (or some other build engine class), we should first try to
migrate that functionality into this class.
Note that it's generally a good idea for sub-classes to call these methods explicitly to update state, etc., rather than
roll their own interaction with Taskmaster from scratch.
LOGGER = None
_abc_impl = <_abc._abc_data object>
_exception_raise ()
Raises a pending exception that was recorded while getting a Task ready for execution.
_ho_exception_to_raise ()
display (message)
Hook to allow the calling interface to display a message.
This hook gets called as part of preparing a task for execution (that is, a Node to be built). As part of figuring out
what Node should be built next, the actual target list may be altered, along with a message describing the
alteration. The calling interface can subclass Task and provide a concrete implementation of this method to see
those messages.
exc_clear ()
Clears any recorded exception.
This also changes the “exception_raise” attribute to point to the appropriate do-nothing method.
exc_info ()
Returns info about a recorded exception.
exception_set (except i on=None)

285

SCons.Taskmaster package

Records an exception to be raised at the appropriate time.
This also changes the “exception_raise” attribute to point to the method that will, in fact

execute ()
Called to execute the task.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in prepare(), executed() or failed().

executed ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_with_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance wants to call the Node’s
callback methods.
This may have been a do-nothing operation (to preserve build order), so we must check the node’s state before
deciding whether it was “built”, in which case we call the appropriate Node method. In any event, we always call
“visited()”, which will handle any post-visit actions that must take place regardless of whether or not the target was
an actual built target or a source Node.

executed_without_callbacks ()
Called when the task has been successfully executed and the Taskmaster instance doesn’t want to call the Node’s
callback methods.

fail_continue ()
Explicit continue-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

fail_stop ()
Explicit stop-the-build failure.
This sets failure status on the target nodes and all of their dependent parent nodes.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

failed ()
Default action when a task fails: stop the build.
Note: Although this function is normally invoked on nodes in the executing state, it might also be invoked on
up-to-date nodes when using Configure().

get_target ()
Fetch the target being built or updated by this task.

make_ready ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

make_ready_all ()
Marks all targets in a task ready for execution.
This is used when the interface needs every target Node to be visited—the canonical example being the “scons -c”
option.

make_ready_current ()
Marks all targets in a task ready for execution if any target is not current.
This is the default behavior for building only what’s necessary.

abstract needs_execute ()

postprocess ()
Post-processes a task after it's been executed.
This examines all the targets just built (or not, we don't care if the build was successful, or even if there was no
build because everything was up-to-date) to see if they have any waiting parent Nodes, or Nodes waiting on a
common side effect, that can be put back on the candidates list.

prepare ()

286

SCons.Taskmaster package

Called just before the task is executed.
This is mainly intended to give the target Nodes a chance to unlink underlying files and make all necessary
directories before the Action is actually called to build the targets.

trace_message (nhode, descri pt i on="node’)

class SCons.Taskmaster.Taskmaster (t ar get s=[], t asker =None, or der =None, t r ace=None)

287

Bases: object
The Taskmaster for walking the dependency DAG.
_find_next_ready_node ()

Finds the next node that is ready to be built.

This is the main guts of the DAG walk. We loop through the list of candidates, looking for something that has no
un-built children (i.e., that is a leaf Node or has dependencies that are all leaf Nodes or up-to-date). Candidate
Nodes are re-scanned (both the target Node itself and its sources, which are always scanned in the context of a
given target) to discover implicit dependencies. A Node that must wait for some children to be built will be put back
on the candidates list after the children have finished building. A Node that has been put back on the candidates
list in this way may have itself (or its sources) re-scanned, in order to handle generated header files (e.g.) and the
implicit dependencies therein.

Note that this method does not do any signature calculation or up-to-date check itself. All of that is handled by the
Task class. This is purely concerned with the dependency graph walk.

_validate_pending_children ()

Validate the content of the pending_children set. Assert if an internal error is found.

This function is used strictly for debugging the taskmaster by checking that no invariants are violated. It is not used
in normal operation.

The pending_children set is used to detect cycles in the dependency graph. We call a “pending child” a child that is
found in the “pending” state when checking the dependencies of its parent node.

A pending child can occur when the Taskmaster completes a loop through a cycle. For example, let's imagine a
graph made of three nodes (A, B and C) making a cycle. The evaluation starts at node A. The Taskmaster first
considers whether node A’s child B is up-to-date. Then, recursively, node B needs to check whether node C is
up-to-date. This leaves us with a dependency graph looking like:

Next candi date

Now, when the Taskmaster examines the Node C’s child Node A, it finds that Node A is in the “pending” state.
Therefore, Node A is a pending child of node C.

Pending children indicate that the Taskmaster has potentially loop back through a cycle. We say potentially
because it could also occur when a DAG is evaluated in parallel. For example, consider the following graph:

Node A (Pending) --> Node B(Pending) --> Node C (Pending) --> ...
N

e > Node D (NoState) -------- i
/
Next candi date /

The Taskmaster first evaluates the nodes A, B, and C and starts building some children of node C. Assuming, that
the maximum parallel level has not been reached, the Taskmaster will examine Node D. It will find that Node C is a
pending child of Node D.

In summary, evaluating a graph with a cycle will always involve a pending child at one point. A pending child might
indicate either a cycle or a diamond-shaped DAG. Only a fraction of the nodes ends-up being a “pending child” of
another node. This keeps the pending_children set small in practice.

We can differentiate between the two cases if we wait until the end of the build. At this point, all the pending
children nodes due to a diamond-shaped DAG will have been properly built (or will have failed to build). But, the
pending children involved in a cycle will still be in the pending state.

SCons.Tool package

The taskmaster removes nodes from the pending_children set as soon as a pending_children node moves out of
the pending state. This also helps to keep the pending_children set small.

cleanup ()
Check for dependency cycles.

configure_trace (t r ace=None)
This handles the command line option —taskmastertrace= It can be: - : output to stdout <filename> : output to a file
False/None : Do not trace

find_next_candidate ()
Returns the next candidate Node for (potential) evaluation.
The candidate list (really a stack) initially consists of all of the top-level (command line) targets provided when the
Taskmaster was initialized. While we walk the DAG, visiting Nodes, all the children that haven't finished processing
get pushed on to the candidate list. Each child can then be popped and examined in turn for whether their children
are all up-to-date, in which case a Task will be created for their actual evaluation and potential building.
Here is where we also allow candidate Nodes to alter the list of Nodes that should be examined. This is used, for
example, when invoking SCons in a source directory. A source directory Node can return its corresponding build
directory Node, essentially saying, “Hey, you really need to build this thing over here instead.”

next_task ()
Returns the next task to be executed.
This simply asks for the next Node to be evaluated, and then wraps it in the specific Task subclass with which we
were initialized.

no_next_candidate ()
Stops Taskmaster processing by not returning a next candidate.
Note that we have to clean-up the Taskmaster candidate list because the cycle detection depends on the fact all
nodes have been processed somehow.

stop ()
Stops the current build completely.

tm_trace_node (node)

will_not_build (nodes, node_f unc=<functi on Taskmast er. <l anbda>>)
Perform clean-up about nodes that will never be built. Invokes a user defined function on all of these nodes
(including all of their parents).

SCons.Taskmaster.dump_stats ()
SCons.Taskmaster.find_cycle (st ack, vi si t ed)

SCons.Tool package

Module contents
SCons tool selection.

Looks for modules that define a callable object that can modify a construction environment as appropriate for a given
tool (or tool chain).

Note that because this subsystem just selects a callable that can modify a construction environment, it's possible for
people to define their own “tool specification” in an arbitrary callable function. No one needs to use or tie in to this
subsystem in order to roll their own tool specifications.
SCons.Tool.CreateJarBuilder (env)
The Jar builder expects a list of class files which it can package into a jar file.
The jar tool provides an interface for passing other types of java files such as .java, directories or swig interfaces and
will build them to class files in which it can package into the jar.
SCons.Tool.CreateJavaClassDirBuilder (env)
SCons.Tool.CreateJavaClassFileBuilder (env)
SCons.Tool.CreateJavaFileBuilder (env)
SCons.Tool.CreateJavaHBuilder (env)
SCons.Tool.FindAllTools (t ool s, env)
SCons.Tool.FindTool (t ool s, env)
SCons.Tool.Initializers (env)
class SCons.Tool.Tool (nane, t ool pat h=None, **kwar gs)

288

SCons.Tool package

Bases: object
_tool_module ()
Try to load a tool module.
This will hunt in the toolpath for both a Python file (toolname.py) and a Python module (toolname directory), then
try the regular import machinery, then fallback to try a zipfile.
class SCons.Tool.Toollnitializer (env, t ool s, nanes)
Bases: object
A class for delayed initialization of Tools modules.
Instances of this class associate a list of Tool modules with a list of Builder method names that will be added by those
Tool modules. As part of instantiating this object for a particular construction environment, we also add the
appropriate ToollnitializerMethod objects for the various Builder methods that we want to use to delay Tool searches
until necessary.
apply_tools (env)
Searches the list of associated Tool modules for one that exists, and applies that to the construction environment.
remove_methods (env)
Removes the methods that were added by the tool initialization so we no longer copy and re-bind them when the
construction environment gets cloned.
class SCons.Tool.ToollnitializerMethod (nane, i niti ali zer)
Bases: object
This is added to a construction environment in place of a method(s) normally called for a Builder (env.Object,
env.StaticObject, etc.). When called, it has its associated Toollnitializer object search the specified list of tools and
apply the first one that exists to the construction environment. It then calls whatever builder was (presumably) added
to the construction environment in place of this particular instance.
__call__ (env, *args, **kw)
get_builder (env)
Returns the appropriate real Builder for this method name after having the associated Toollnitializer object apply
the appropriate Tool module.
SCons.Tool.createCFileBuilders (env)
This is a utility function that creates the CFile/CXXFile Builders in an Environment if they are not there already.
If they are there already, we return the existing ones.
This is a separate function because soooo many Tools use this functionality.
The return is a 2-tuple of (CFile, CXXFile)
SCons.Tool.createLoadableModuleBuilder (env, | oadabl e_nmodul e_suf fi x='$_LDMODULESUFFIX')
This is a utility function that creates the LoadableModule Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

Parameters: loadable_module_suffix — The suffix specified for the loadable module builder

SCons.Tool.createObjBuilders (env)

This is a utility function that creates the StaticObject and SharedObject Builders in an Environment if they are not
there already.

If they are there already, we return the existing ones.

This is a separate function because soooo many Tools use this functionality.

The return is a 2-tuple of (StaticObject, SharedObject)

SCons.Tool.createProgBuilder (env)

This is a utility function that creates the Program Builder in an Environment if it is not there already.

If it is already there, we return the existing one.

SCons.Tool.createSharedLibBuilder (env, shl i b_suf fi x="$_SHLIBSUFFIX")

This is a utility function that creates the SharedLibrary Builder in an Environment if it is not there already.
If it is already there, we return the existing one.

Parameters: shlib_suffix — The suffix specified for the shared library builder

SCons.Tool.createStaticLibBuilder (env)

This is a utility function that creates the StaticLibrary Builder in an Environment if it is not there already.

If it is already there, we return the existing one.

SCons.Tool.find_program_path (env, key _pr ogr am def aul t _pat hs=None, add_pat h=False) - Optional[str]
Find the location of a tool using various means.

Mainly for windows where tools aren’t all installed in /usr/bin, etc.

289

SCons.Variables package

Parameters: . .
 env — Current Construction Environment.

e key_program — Tool to locate.
« default_paths — List of additional paths this tool might be found in.

e add_path — If true, add path found if it was from default_paths.
SCons.Tool.tool_list (pl at f or m env)

SCons.Variables package
Submodules

SCons.Variables.BoolVariable module
Variable type for true/false Variables.

Usage example:

opts = Vari abl es()
opt s. Add(Bool Vari abl e(' enbedded', 'build for an enbedded systeni, Fal se))

i f env['enbedded']:

SCons.Variables.BoolVariable.BoolVariable (key, hel p, def aul t) - Tuple[str, str, str, Callable, Callable]
Return a tuple describing a boolean SCons Variable.
The input parameters describe a boolean option. Returns a tuple including the correct converter and validator. The
help text will have (yes| no) automatically appended to show the valid values. The result is usable as input to Add().
SCons.Variables.BoolVariable._text2bool (val : str) — bool
Convert boolean-like string to boolean.
If val looks like it expresses a bool-like value, based on the TRUE_STRINGS and FALSE_STRINGS tuples, return
the appropriate value.
This is usable as a converter function for SCons Variables.

Raises: ValueError — if val cannot be converted to boolean.

SCons.Variables.BoolVariable._validator (key, val , env) — None
Val