SCons API Docs

version 4.8.0

SCons Project

July 07, 2024

Contents SCons.Scanner.Java 77

module
SCons APl Documentation 1 SCons.Scanner.LaTeX 77
module
SCons package 1
Modul SCons.Scanner.Prog 79
odule contents 1 module
Subpackages 1 SCons.Scanner.RC 79
SCons.Node package 1 module
Module contents 1 SCons.Scanner.SWIG 79
module
Submodules 9
SCons.Script package 79
SCons.Node.Alias module 9
Module contents 79
SCons.Node.FS module 15
Submodules 80
SCons.Node.Python 59
module SCons.Script.Interactive 80
module
SCons.Platform package 66
SCons.Script.Main 82
Module contents 66 module
Submodules 67 SCons.Script.SConsOptions 88
SCons.Platform.aix 67 module
module SCons.Script.SConscript 94
SCons.Platform.cygwin 67 module
module SCons.Taskmaster package 101
SCons.Platform.darwin 67 Module contents 101
module
Submodules 108
SCons.Platform.hpux 67
module SCons.Taskmaster.Job 108
module
SCons.Platform.irix 68
module SCons.Tool package 112
SCons.Platform.mingw 68 Module contents 112
module SCons.Util package 113
SCons.Platform.os2 68 Module contents 113
module
. Submodules 121
SCons.Platform.posix 68
module SCons.Util.envs module 121
SCons.Platform.sunos 68 SCons.Util.filelock module 122
| .
module SCons.Util.hashes 123
SCons.Platform.virtualenv 68 module
| .
module SCons.Util.sctypes 125
SCons.Platform.win32 69 module
| .
module SCons.Util.stats module 126
S .)
Cons.Scanner package 69 SCons.Variables package 127
Modul t
odule contents 69 Module contents 127
Submodul
ubmoduies 2 Submodules 129
. . | . .
SCons.Scanner.C module 2 SCons.Variables.BoolVariable 129
SCons.Scanner.D module 75 module
SCons.Scanner.Dir 76 SCons.Variables.EnumVariable 130
module module
SCons.Scanner.Fortran 76 SCons.Variables.ListVariable 131
module module
SCons.Scanner.IDL 77 SCons.Variables.PackageVariable 132

module module

SCons.Variables.PathVariable

module
SCons.compat package
Module contents
Submodules
SCons.Action module
SCons.Builder module
SCons.CacheDir module
SCons.Conftest module
SCons.Debug module
SCons.Defaults module
SCons.Environment module
SCons.Errors module
SCons.Executor module
SCons.Memoize module
SCons.PathList module
SCons.SConf module
SCons.SConsign module
SCons.Subst module
SCons.Warnings module
SCons.cpp module
SCons.dblite module
SCons.exitfuncs module
SCons.compat package
Module contents
SCons.Node package
Module contents
Submodules
SCons.Node.Alias module
SCons.Node.FS module
SCons.Node.Python module
SCons.Platform package
Module contents
Submodules
SCons.Platform.aix module
SCons.Platform.cygwin module
SCons.Platform.darwin module
SCons.Platform.hpux module
SCons.Platform.irix module
SCons.Platform.mingw module
SCons.Platform.os2 module
SCons.Platform.posix module

SCons.Platform.sunos module

133

134
134
135
135
142
147
147
151
151
153
167
168
172
174
174
179
181
185
188
191
194
194
194
195
195
202
202
209
253
259
259
261
261
261
261
261
261
261
261
262
262

SCons.Platform.virtualenv module

SCons.Platform.win32 module
SCons.Scanner package

Module contents

Submodules

SCons.Scanner.C module

SCons.Scanner.D module

SCons.Scanner.Dir module

SCons.Scanner.Fortran module

SCons.Scanner.IDL module

SCons.Scanner.Java module

SCons.Scanner.LaTeX module

SCons.Scanner.Prog module

SCons.Scanner.RC module

SCons.Scanner.SWIG module
SCons.Script package

Module contents

Submodules

SCons.Script.Interactive module

SCons.Script.Main module

SCons.Script.SConsOptions module

SCons.Script.SConscript module
SCons.Taskmaster package

Module contents

Submodules

SCons.Taskmaster.Job module
SCons.Tool package

Module contents
SCons.Util package

Module contents

Submodules

SCons.Util.envs module

SCons.Util.filelock module

SCons.Util.hashes module

SCons.Util.sctypes module

SCons.Util.stats module
SCons.Variables package

Module contents

Submodules

SCons.Variables.BoolVariable
module

SCons.Variables.EnumVariable
module

262
262
263
263
266
266
269
270
270
271
271
271
273
273
273
273
273
274
274
275
282
288
295
295
301
301
306
306
307
307
314
314
316
317
319
320
321
321
323
323

323

SCons.Variables.ListVariable
module

SCons.Variables.PackageVariable
module

SCons.Variables.PathVariable
module

Indices and Tables
Index

Python Module Index

324

326

327

328
329
391

SCons API Documentation

SCons APl Documentation

Attention!

This is the internal API Documentation for SCons (aka “everything”). It is generated automatically from code
docstrings using the Sphinx documentation generator.

Any missing/incomplete information is due to shortcomings in the docstrings in the code. To not be too flippant
about it, filling in all the docstrings has not always been a priority across the two-plus decades SCons has been
in existence (contributions on this front are welcomed). Additionally, for SCons classes which inherit from
Python standard library classes (such as User Li st, User Di ct, User St ri ng), the generated pages will show
methods that are inherited, sometimes with no information at all, sometimes with a signature/description that
seems mangled: Python upstream has similar limitations as to the quality of dosctrings vs the current standards
Sphinx expects. Inherited interfaces from outside SCons code can be identified by the lack of a [sour ce]
button to the right of the method signature.

If you are looking for the Public API - the interfaces that have long-term consistency guarantees, which you can
reliably use when writing a build system for a project - see the SCons Reference Manual. Note that what is
Public APl and what is not is not clearly delineated in these API Docs.

The target audience is both developers contributing to SCons itself, and those writing external Tools, Builders,
and other related functionality for their project, who may need to reach beyond the Public APl to accomplish
their tasks. Reaching into internals is fine, but comes with the usual risks of “things here could change, it's up to
you to keep your code working”.

SCons package
Module contents
Subpackages
SCons.Node package

Module contents
The Node package for the SCons software construction utility.
This is, in many ways, the heart of SCons.

A Node is where we encapsulate all of the dependency information about any thing that SCons can build, or about any
thing which SCons can use to build some other thing. The canonical “thing,” of course, is a file, but a Node can also
represent something remote (like a web page) or something completely abstract (like an Alias).

Each specific type of “thing” is specifically represented by a subclass of the Node base class: Node.FS.File for files,
Node.Alias for aliases, etc. Dependency information is kept here in the base class, and information specific to
files/aliases/etc. is in the subclass. The goal, if we've done this correctly, is that any type of “thing” should be able to
depend on any other type of “thing.”
SCons.Node.Annotate (node) — None
class SCons.Node.BuildInfoBase
Bases: object
The generic base class for build information for a Node.
This is what gets stored in a .sconsign file for each target file. It contains a Nodelnfo instance for this node (signature
information that's specific to the type of Node) and direct attributes for the generic build stuff we have to track:
sources, explicit dependencies, implicit dependencies, and action information.

https://www.sphinx-doc.org
https://scons.org/doc/production/HTML/scons-man.html

SCons API Documentation

__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (st ate) -~ None
Restore the attributes from a pickled state.
bact
bactsig
bdepends
bdependsigs
bimplicit
bimplicitsigs
bsources
bsourcesigs
current_version_id = 2
merge (ot her) — None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
class SCons.Node.Node
Bases: object
The base Node class, for entities that we know how to build, or use to build other Nodes.
class Attrs
Bases: object
shared
BuildInfo
alias of BuildInfoBase
Decider (f uncti on) -~ None
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of NodelnfoBase
Tag (key, val ue) - None
Add a user-defined tag.
_add_child (col | ection, set, child) - None
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get ()
_children_reset () - None
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_target_from_source
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_memo
_specific_sources
_tags
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si t e) — None
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps) — None
add_to_waiting_parents (node) - int

SCons API Documentation

Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)

add_to_waiting_s_e (node) — None

add_wkid (wki d) - None
Add a node to the list of kids waiting to be evaluated

all_children (scan: int = 1)
Return a list of all the node’s direct children.

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

binfo

build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

builder

builder_set (bui | der) - None

built () - None
Called just after this node is successfully built.

cached

changed (node=None, al | omcache: bool = False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan: int = 1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date () — bool
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear () - None
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values () - None

del_binfo () - None
Delete the build info from this node.

depends

depends_set

disambiguate (must _exi st =None)

env

env_set (env, saf e: bool = False) -~ None

executor

SCons API Documentation

executor_cleanup () - None
Let the executor clean up any cached information.
exists () - bool
Reports whether node exists.
explain ()
for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.
get_abspath ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.
get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’'s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_csig ()
get_contents ()
Fetch the contents of the entry.
get_csig ()
get_env ()
get_env_scanner (env, kw={})
get_executor (create: int = 1) - Executor
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_ninfo ()
get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.
get_state ()
get_stored_implicit ()
Fetch the stored implicit dependencies
get_stored_info ()
get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature

SCons API Documentation

argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix () — str

get_target_scanner ()

has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder () —» bool
Return whether this Node has an explicit builder.
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest () - bool
Returns true if this node is an conftest node

is_derived () - bool
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal () - bool
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript () - bool
Returns true if this node is an sconscript

is_up_to_date () - bool
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will always
get built.

linked

make_ready () - None
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing () — bool

multiple_side_effect_has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

new_binfo ()

SCons API Documentation

new_ninfo ()
ninfo
nocache
noclean
postprocess () - None
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the Buildinfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache () - bool
Try to push a node into a cache
ref _count
release_target_info () — None
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
reset_executor () - None
Remove cached executor; forces recompute when needed.
retrieve_from_cache () - bool
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
scan () — None
Scan this node’s dependents for implicit dependencies.
scanner_key ()
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_buil d: int = 1) » None
Set the Node’s always_build value.
set_executor (execut or: Execut or) — None
Set the action executor for this node.
set_explicit (i s_explicit) - None
set_nocache (nocache: int = 1) - None
Set the Node’s nocache value.

SCons API Documentation

set_noclean (nocl ean: int = 1) - None
Set the Node’s noclean value.
set_precious (preci ous: int = 1) » None
Set the Node’s precious value.
set_pseudo (pseudo: bool = True) —» None
Set the Node’s pseudo value.
set_specific_source (sour ce) — None
set_state (st at e) — None
side_effect
side_effects
sources
sources_set
state
store_info
target_peers
visited () - None
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
wkids
class SCons.Node.NodelnfoBase
Bases: object
The generic base class for signature information for a Node.
Node subclasses should subclass NodelnfoBase to provide their own logic for dealing with their own Node-specific
signature information.
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (st ate) -~ None
Restore the attributes from a pickled state. The version is discarded.
convert (node, val) -~ None
current_version_id = 2
format (fi el d_| i st =None, nanes: int = 0)
merge (ot her) — None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
update (node) — None
class SCons.Node.NodelList (i ni t1i st =None)
Bases: UserList
_abc_impl = <_abc._abc_data object>
append (i tem
S.append(value) — append value to the end of the sequence
clear () - None -- remove all items from S
copy ()
count (val ue) - integer -- return number of occurrences of value
extend (ot her)
S.extend(iterable) — extend sequence by appending elements from the iterable
index (val ue[, start[, st op]]) - integer -- return first index of value.
Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
insert (i ,item
S.insert(index, value) — insert value before index
pop ([, i ndex]) - item -- remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.
remove (i t en)

SCons API Documentation

S.remove(value) — remove first occurrence of value. Raise ValueError if the value is not present.
reverse ()
S.reverse() — reverse IN PLACE
sort (*ar gs, * * kwds)
class SCons.Node.Walker (node, ki ds_f unc=<functi on get_chil dren>, cycl e_func=<function
i gnore_cycl e>, eval _func=<functi on do_not hi ng>)
Bases: object
An iterator for walking a Node tree.
This is depth-first, children are visited before the parent. The Walker object can be initialized with any node, and
returns the next node on the descent with each get_next() call. get the children of a node instead of calling ‘children’.
‘cycle_func’ is an optional function that will be called when a cycle is detected.
This class does not get caught in node cycles caused, for example, by C header file include loops.
get_next ()
Return the next node for this walk of the tree.
This function is intentionally iterative, not recursive, to sidestep any issues of stack size limitations.
is_done () - bool
SCons.Node.changed_since_last _build_alias (node, t ar get , prev_ni, repo_node=None) - bool
SCons.Node.changed_since_last _build_entry (node, t ar get, prev_ni, repo_node=None) - bool
SCons.Node.changed_since_last build_node (node, t ar get, prev_ni, repo_node=None) - bool
Must be overridden in a specific subclass to return True if this Node (a dependency) has changed since the last time
it was used to build the specified target. prev_ni is this Node’s state (for example, its file timestamp, length, maybe
content signature) as of the last time the target was built.
Note that this method is called through the dependency, not the target, because a dependency Node must be able to
use its own logic to decide if it changed. For example, File Nodes need to obey if we're configured to use timestamps,
but Python Value Nodes never use timestamps and always use the content. If this method were called through the
target, then each Node’s implementation of this method would have to have more complicated logic to handle all the
different Node types on which it might depend.
SCons.Node.changed_since_last _build_python (node, t ar get , prev_ni , repo_node=None) - bool
SCons.Node.changed_since_last build_state_changed (node, t ar get , prev_ni , r epo_node=None) - bool
SCons.Node.classname (obj)
SCons.Node.decide_source (node, t ar get, prev_ni , repo_node=None) - bool
SCons.Node.decide_target (node, t ar get , prev_ni , repo_node=None) - bool
SCons.Node.do_nothing (node, par ent) — None
SCons.Node.do_nothing_node (node) —» None
SCons.Node.exists_always (node) - bool
SCons.Node.exists_base (node) - bool
SCons.Node.exists_entry (node) — bool
Return if the Entry exists. Check the file system to see what we should turn into first. Assume a file if there’s no
directory.
SCons.Node.exists_file (node) - bool
SCons.Node.exists_none (hode) — bool
SCons.Node.get_children (node, par ent)
SCons.Node.get_contents_dir (node)
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.
SCons.Node.get_contents_entry (node)
Fetch the contents of the entry. Returns the exact binary contents of the file.
SCons.Node.get_contents_file (node)
SCons.Node.get_contents_none (node)
SCons.Node.ignore_cycle (node, st ack) - None
SCons.Node.is_derived_node (node) - bool
Returns true if this node is derived (i.e. built).
SCons.Node.is_derived_none (node)
SCons.Node.rexists_base (node)
SCons.Node.rexists_node (node)
SCons.Node.rexists_none (node)
SCons.Node.store_info_file (node) — None

SCons API Documentation

SCons.Node.store_info_pass (node) — None
SCons.Node.target_from_source_base (node, prefi x, suf fi x, splitext)
SCons.Node.target_from_source_none (node, prefi x, suffi x, splitext)

Submodules

SCons.Node.Alias module
Alias nodes.

This creates a hash of global Aliases (dummy targets).
class SCons.Node.Alias.Alias (nane)
Bases: Node
class Attrs
Bases: object
shared
BuildInfo
alias of AliasBuildInfo
Decider (f uncti on) - None
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of AliasNodelnfo
Tag (key, val ue) » None
Add a user-defined tag.
_add_child (col | ection, set, child) - None
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get ()
_children_reset () - None
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_target_from_source
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_memo
_specific_sources
_tags
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si t e) — None
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps) — None
add_to_waiting_parents (node) - int
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node) —» None
add_wkid (wki d) - None
Add a node to the list of kids waiting to be evaluated
all_children (scan: int = 1)
Return a list of all the node’s direct children.
alter_targets ()

SCons API Documentation

10

Return a list of alternate targets for this Node.

always_build

attributes

binfo

build () - None
A “builder” for aliases.

builder

builder_set (bui | der) - None

built () - None
Called just after this node is successfully built.

cached

changed (node=None, al | omcache: bool = False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan: int = 1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date () — bool
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear () - None
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values () - None

convert () - None

del_binfo () - None
Delete the build info from this node.

depends

depends_set

disambiguate (must _exi st =None)

env

env_set (env, saf e: bool = False) -~ None

executor

executor_cleanup () - None
Let the executor clean up any cached information.

exists () - bool
Reports whether node exists.

explain ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

SCons API Documentation

11

get_abspath ()
Return an absolute path to the Node. This will return simply str(Node) by default, but for Node types that have a
concept of relative path, this might return something different.
get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_csig ()
get_contents ()
The contents of an alias is the concatenation of the content signatures of all its sources.
get_csig ()
Generate a node’s content signature, the digested signature of its content.
node - the node cache - alternate node to use for the signature cache returns - the content signature
get_env ()
get_env_scanner (env, kw={})
get_executor (create: int = 1) - Executor
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_ninfo ()
get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.
get_state ()
get_stored_implicit ()
Fetch the stored implicit dependencies
get_stored_info ()
get_string (f or _si gnat ure)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.
get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a

SCons API Documentation

12

tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix () — str

get_target_scanner ()

has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder () —» bool
Return whether this Node has an explicit builder.
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest () - bool
Returns true if this node is an conftest node

is_derived () - bool
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal () - bool
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript () - bool
Returns true if this node is an sconscript

is_under (di r) - bool

is_up_to_date () — bool
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

linked

make_ready () - None
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing () — bool

multiple_side_effect_has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

postprocess () - None
Clean up anything we don’t need to hang onto after we've been built.

precious

SCons API Documentation

13

prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the Buildinfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache () - bool
Try to push a node into a cache
really_build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
ref _count
release_target_info () — None
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
reset_executor () - None
Remove cached executor; forces recompute when needed.
retrieve_from_cache () - bool
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
scan () — None
Scan this node’s dependents for implicit dependencies.
scanner_key ()
sconsign () - None
An Alias is not recorded in .sconsign files
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_buil d: int = 1) » None
Set the Node’s always_build value.
set_executor (execut or: Execut or) — None
Set the action executor for this node.
set_explicit (i s_explicit) - None
set_nocache (nocache: int = 1) - None

SCons API Documentation

Set the Node’s nocache value.
set_noclean (nocl ean: int = 1) - None
Set the Node’s noclean value.
set_precious (preci ous: int = 1) » None
Set the Node’s precious value.
set_pseudo (pseudo: bool = True) —» None
Set the Node’s pseudo value.
set_specific_source (sour ce) — None
set_state (st at e) — None
side_effect
side_effects
sources
sources_set
state
store_info
str_for_display ()
target_peers
visited () - None
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
wkids
class SCons.Node.Alias.AliasBuildinfo
Bases: BuildinfoBase
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (st ate) -~ None
Restore the attributes from a pickled state.
bact
bactsig
bdepends
bdependsigs
bimplicit
bimplicitsigs
bsources
bsourcesigs
current_version_id = 2
merge (ot her) — None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.
class SCons.Node.Alias.AliasNameSpace (di ct =None, / , ** kwar gs)
Bases: UserDict
Alias (nane, ** kw)
_abc_impl = <_abc._abc_data object>
clear () - None. Remove all items from D.
copy ()
classmethod fromkeys (i t er abl e, val ue=None)
get (k[, d]) - D[K] if kin D, else d. d defaults to None.
items () —» a set-like object providing a view on D's items
keys () — a set-like object providing a view on D's keys
lookup (name, ** kw)
pop (k[, d]) - v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised.
popitem () - (k, v), remove and return some (key, value) pair

14

SCons API Documentation

as a 2-tuple; but raise KeyError if D is empty.

setdefault (k[, d]) - D.get(k,d), also set D[k]=d if k not in D

update ([, E], **F) - None. Update D from mapping/iterable E and F.
If E present and has a .keys() method, does: for k in E: D[K] = E[K] If E present and lacks .keys() method, does: for
(k, v) in E: D[K] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values () - an object providing a view on D's values

class SCons.Node.Alias.AliasNodelnfo

Bases: NodelnfoBase

__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (st ate) -~ None
Restore the attributes from a pickled state. The version is discarded.

convert (node, val) -~ None

csig

current_version_id = 2

field_list = ['csig']

format (fi el d_| i st =None, nanes: int = 0)

merge (ot her) — None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

update (node) — None

SCons.Node.FS module

File system nodes.

These Nodes represent the canonical external objects that people think of when they think of building software: files
and directories.

This holds a “default_fs” variable that should be initialized with an FS that can be used by scripts or modules looking for
the canonical default.
class SCons.Node.FS.Base (nanme, di rectory, fs)

15

Bases: Node
A generic class for file system entries. This class is for when we don’t know yet whether the entry being looked up is
a file or a directory. Instances of this class can morph into either Dir or File objects by a later, more precise lookup.
Note: this class does not define __cmp__ and __hash__ for efficiency reasons. SCons does a lot of comparing of
Node.FS.{Base,Entry,File,Dir} objects, so those operations must be as fast as possible, which means we want to use
Python’s built-in object identity comparisons.
class Attrs
Bases: object
shared
BuildInfo
alias of BuildInfoBase
Decider (f uncti on) - None
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of NodelnfoBase
RDirs (pat hl i st)
Search for a list of directories in the Repository list.
Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.
Tag (key, val ue) — None

SCons API Documentation

Add a user-defined tag.

_Rfindalldirs_key (pat hl i st)

__Qetattr__ (attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr __is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)
less than operator used by sorting on py3

str () - str
A Node.FS.Base object’s string representation is its path name.

_abspath

_add_child (col | ecti on, set, child) -~ None
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.

_children_get ()

_children_reset () - None

_func_exists

_func_get_contents

_func_is_derived

_func_rexists

_func_sconsign

_func_target_from_source

_get_scanner (env, i nitial _scanner,root_node_scanner, kw)

_get_str ()

_globl (patt ern, ondi sk: bool = True, source: bool = False,strings: bool = False)

_labspath

_local

_memo

_path

_path_elements

_proxy

_save_str ()

_specific_sources

_tags

_tpath

add_dependency (depend)
Adds dependencies.

add_ignore (depend)
Adds dependencies to ignore.

add_prerequisite (pr er equi si t e) — None
Adds prerequisites

add_source (sour ce)
Adds sources.

add_to_implicit (deps) — None

add_to_waiting_parents (node) - int
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)

add_to_waiting_s_e (node) —» None

add_wkid (wki d) - None
Add a node to the list of kids waiting to be evaluated

all_children (scan: int = 1)
Return a list of all the node’s direct children.

16

SCons API Documentation

17

alter_targets ()
Return a list of alternate targets for this Node.

always_build

attributes

binfo

build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

builder

builder_set (bui | der) — None

built () - None
Called just after this node is successfully built.

cached

changed (node=None, al | omcache: bool = False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan: int = 1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date () — bool
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear () - None
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values () - None

cwd

del_binfo () - None
Delete the build info from this node.

depends

depends_set

dir

disambiguate (must _exi st =None)

duplicate

env

env_set (env, saf e: bool = False) -~ None

executor

executor_cleanup () - None
Let the executor clean up any cached information.

exists ()
Reports whether node exists.

explain ()

SCons API Documentation

18

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.
fs
Reference to parent Node.FS object
get_abspath ()
Get the absolute path of the file.
get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_csig ()
get_contents ()
Fetch the contents of the entry.
get_csig ()
get_dir ()
get_env ()
get_env_scanner (env, kw={})
get_executor (create: int = 1) - Executor
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath ()
Get the absolute path of the file.
get_ninfo ()
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.
get_path_elements ()
get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.
get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.
get_state ()
get_stored_implicit ()

SCons API Documentation

19

Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_tpath ()

getmtime ()

getsize ()

has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder () —» bool
Return whether this Node has an explicit builder.
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest () — bool
Returns true if this node is an conftest node

is_derived () - bool
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal () - bool
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript () - bool
Returns true if this node is an sconscript

is_under (di r) - bool

is_up_to_date () - bool
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will always
get built.

isdir () - bool

isfile () - bool

islink () - bool

linked

SCons API Documentation

20

Istat ()
make_ready () - None
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.
missing () — bool
multiple_side_effect_has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
must_be_same (kl ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.
name
new_binfo ()
new_ninfo ()
ninfo
nocache
noclean
postprocess () - None
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the Buildinfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache () - bool
Try to push a node into a cache
ref _count
release_target_info () — None
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
reset_executor () - None
Remove cached executor; forces recompute when needed.
retrieve_from_cache () - bool
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

SCons API Documentation

21

Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
rstr () - str
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan () — None
Scan this node’s dependents for implicit dependencies.
scanner_key ()
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_buil d: int = 1) » None
Set the Node’s always_build value.
set_executor (execut or: Execut or) — None
Set the action executor for this node.
set_explicit (i s_explicit) - None
set_local () - None
set_nocache (nocache: int = 1) - None
Set the Node’s nocache value.
set_noclean (nocl ean: int = 1) - None
Set the Node’s noclean value.
set_precious (preci ous: int = 1) » None
Set the Node’s precious value.
set_pseudo (pseudo: bool = True) —» None
Set the Node’s pseudo value.
set_specific_source (sour ce) — None
set_src_builder (bui | der) — None
Set the source code builder for this node.
set_state (st at e) —» None
side_effect
side_effects
sources
sources_set
src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.
stat ()
state
store_info
str_for_display ()
target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.
target_peers
visited () - None
Called just after this node has been visited (with or without a build).
waiting_parents
waiting_s_e
wkids

SCons API Documentation

class SCons.Node.FS.Dir (hane, di rectory, fs)

22

Bases: Base
A class for directories in a file system.
class Attrs
Bases: object
shared
BuildInfo
alias of DirBuildinfo
Decider (f uncti on) » None
Dir (nane, creat e: bool = True)
Looks up or creates a directory node named ‘name’ relative to this directory.
Entry (nane)
Looks up or creates an entry node named ‘name’ relative to this directory.
File (nane)
Looks up or creates a file node named ‘name’ relative to this directory.
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of DirNodelnfo
RDirs (pat hl i st)
Search for a list of directories in the Repository list.
Rfindalldirs (pat hl i st)

Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up

the same path for each target in a given directory.
Tag (key, val ue) - None

Add a user-defined tag.
_Rfindalldirs_key (pat hl i st)
__clearRepositoryCache (dupl i cat e=None) —» None

Called when we change the repository(ies) for a directory. This clears any cached information that is invalidated by

changing the repository.
__Qetattr__(attr)

Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr __is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance

penalty involved for standard builds.
_ It (ot her)
less than operator used by sorting on py3
__resetDuplicate (node) — None
str () - str
A Node.FS.Base object’s string representation is its path name.
_abspath
_add_child (col | ection, set, child) - None
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get ()
_children_reset () - None
_create ()

Create this directory, silently and without worrying about whether the builder is the default or not.

_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_sconsign

SCons API Documentation

23

_func_target_from_source
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_get_str ()
_globl (patt ern, ondi sk: bool = True, source: bool = False,strings: bool = False)
Globs for and returns a list of entry names matching a single pattern in this directory.
This searches any repositories and source directories for corresponding entries and returns a Node (or string)
relative to the current directory if an entry is found anywhere.
TODO: handle pattern with no wildcard. Python’s glob.glob uses a separate _glob0 function to do this.
_labspath
_local
_memo
_morph () - None
Turn a file system Node (either a freshly initialized directory object or a separate Entry object) into a proper
directory object.
Set up this directory’s entries and hook it into the file system tree. Specify that directories (this Node) don’t use
signatures for calculating whether they’re current.
_path
_path_elements
_proxy
_rel_path_key (ot her)
_save_str ()
_sconsign
_specific_sources
_srcdir_find_file_key (fi | enane)
_tags
_tpath
addRepository (di r) — None
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si t e) — None
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps) — None
add_to_waiting_parents (node) - int
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node) — None
add_wkid (wki d) - None
Add a node to the list of kids waiting to be evaluated
all_children (scan: int = 1)
Return a list of all the node’s direct children.
alter_targets ()
Return any corresponding targets in a variant directory.
always_build
attributes
binfo
build (* *kw) — None
A null “builder” for directories.
builder
builder_set (bui | der) - None
built () - None
Called just after this node is successfully built.

SCons API Documentation

cached

cachedir_csig

cachesig

changed (node=None, al | omcache: bool = False)
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.
Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.
The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().
@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan: int = 1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date () — bool
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear () - None
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values () - None

contentsig

cwd

del_binfo () - None
Delete the build info from this node.

depends

depends_set

dir

dir_on_disk (nane)

dirname

disambiguate (must _exi st =None)

diskcheck_match () — None

do_duplicate (src) — None

duplicate

entries

entry_abspath (nane)

entry_exists_on_disk (nane)
Searches through the file/dir entries of the current directory, and returns True if a physical entry with the given
name could be found.
@see rentry_exists_on_disk

entry_labspath (nane)

entry_path (nane)

entry_tpath (nane)

env

env_set (env, saf e: bool = False) -~ None

executor

executor_cleanup () - None
Let the executor clean up any cached information.

exists ()
Reports whether node exists.

24

SCons API Documentation

25

explain ()

file_on_disk (namne)

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

fs
Reference to parent Node.FS object

getRepositories ()
Returns a list of repositories for this directory.

get_abspath () - str
Get the absolute path of the file.

get_all_rdirs ()

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’'s wanted.

get_build_env ()
Fetch the appropriate Environment to build this node.

get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.

get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value

get_cachedir_csig ()

get_contents ()
Return content signatures and names of all our children separated by new-lines. Ensure that the nodes are sorted.

get_csig ()
Compute the content signature for Directory nodes. In general, this is not needed and the content signature is not
stored in the DirNodelnfo. However, if get_contents on a Dir node is called which has a child directory, the child
directory should return the hash of its contents.

get_dir ()

get_env ()

get_env_scanner (env, kw={})

get_executor (create: int = 1) - Executor
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.

get_found_includes (env, scanner, pat h)
Return this directory’s implicit dependencies.
We don't bother caching the results because the scan typically shouldn’t be requested more than once (as
opposed to scanning .h file contents, which can be requested as many times as the files is #included by other
files).

get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.

get_internal_path ()

get_labspath () - str
Get the absolute path of the file.

get_ninfo ()

get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.

get_path_elements ()

SCons API Documentation

26

get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.

get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text _contents ()
We already emit things in text, so just return the binary version.

get_timestamp () - int
Return the latest timestamp from among our children

get_tpath ()

getmtime ()

getsize ()

glob (pat hnane, ondi sk: bool = True, source: bool = False,strings: bool = False, excl ude=None)

- list
Returns a list of Nodes (or strings) matching a pathname pattern.
Pathname patterns follow POSIX shell syntax:

* mat ches everyt hi ng

? mat ches any singl e character

[seq] matches any character in seq (ranges all owed)
[!seq] matches any char not in seq

The wildcard characters can be escaped by enclosing in brackets. A leading dot is not matched by a wildcard, and
needs to be explicitly included in the pattern to be matched. Matches also do not span directory separators.

The matches take into account Repositories, returning a local Node if a corresponding entry exists in a Repository
(either an in-memory Node or something on disk).

The underlying algorithm is adapted from a rather old version of glob.glob() function in the Python standard library
(heavily modified), and uses fnmatch.fnmatch() under the covers.

This is the internal implementation of the external Glob API.

SCons API Documentation

Parameters:
e pattern — pathname pattern to match.

» ondisk — if false, restricts matches to in-memory Nodes. By defafult, matches entries
that exist on-disk in addition to in-memory Nodes.

e source — if true, corresponding source Nodes are returned if globbing in a variant
directory. The default behavior is to return Nodes local to the variant directory.

 strings — if true, returns the matches as strings instead of Nodes. The strings are path
names relative to this directory.

» exclude — if not None, must be a pattern or a list of patterns following the same POSIX
shell semantics. Elements matching at least one pattern from exclude will be excluded
from the result.

has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr _ for both the
__len__and _ bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder () —» bool
Return whether this Node has an explicit builder.
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest () — bool
Returns true if this node is an conftest node

is_derived () —» bool
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build signatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal () - bool
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript () —» bool
Returns true if this node is an sconscript

is_under (di r) - bool

is_up_to_date () - bool
If any child is not up-to-date, then this directory isn't, either.

isdir () - bool

isfile () — bool

islink () - bool

link (srcdi r, dupl i cate) - None
Set this directory as the variant directory for the supplied source directory.

linked

Istat ()

make_ready () - None
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing () — bool

multiple_side_effect_has_builder ()

27

SCons API Documentation

28

Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
must_be_same (kl ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.
name
new_binfo ()
new_ninfo ()
ninfo
nocache
noclean
on_disk_entries
postprocess () - None
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare () - None
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache () - bool
Try to push a node into a cache
rdir ()
ref _count
rel_path (ot her)
Return a path to “other” relative to this directory.
release_target_info () — None
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
released_target_info
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
rentry_exists_on_disk (namne)
Searches through the file/dir entries of the current and all its remote directories (repos), and returns True if a
physical entry with the given name could be found. The local directory (self) gets searched first, so repositories
take a lower precedence regarding the searching order.
@see entry_exists_on_disk
repositories
reset_executor () - None
Remove cached executor; forces recompute when needed.

SCons API Documentation

retrieve_from_cache () - bool
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
root
rstr () - str
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan () — None
Scan this node’s dependents for implicit dependencies.
scanner_key ()
A directory does not get scanned.
scanner_paths
sconsign ()
Return the .sconsign file info for this directory.
searched
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_buil d: int = 1) » None
Set the Node’s always_build value.
set_executor (execut or: Execut or) — None
Set the action executor for this node.
set_explicit (i s_explicit) - None
set_local () - None
set_nocache (nocache: int = 1) - None
Set the Node’s nocache value.
set_noclean (nocl ean: int = 1) - None
Set the Node’s noclean value.
set_precious (preci ous: int = 1) » None
Set the Node’s precious value.
set_pseudo (pseudo: bool = True) —» None
Set the Node’s pseudo value.
set_specific_source (sour ce) — None
set_src_builder (bui | der) — None
Set the source code builder for this node.
set_state (st at e) — None
side_effect
side_effects
sources
sources_set
src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcdir
srcdir_duplicate (namne)
srcdir_find_file (fi | enane)
sredir_list ()
srcnode ()
Dir has a special need for srcnode()...if we have a srcdir attribute set, then that is our srcnode.

29

SCons API Documentation

stat ()

state

store_info

str_for_display ()

target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

up ()

variant_dirs

visited () - None
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

walk (f unc, ar g) - None
Walk this directory tree by calling the specified function for each directory in the tree.
This behaves like the os.path.walk() function, but for in-memory Node.FS.Dir objects. The function takes the same
arguments as the functions passed to os.path.walk():

func(arg, dirname, fnames)
Except that “dirname” will actually be the directory Node, not the string. The ‘" and ‘..’ entries are excluded from
fnames. The fnames list may be modified in-place to filter the subdirectories visited or otherwise impose a specific
order. The “arg” argument is always passed to func() and may be used in any way (or ignored, passing None is
common).
wkids

class SCons.Node.FS.DirBuildinfo

Bases: BuildinfoBase

__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (st ate) — None
Restore the attributes from a pickled state.

bact

bactsig

bdepends

bdependsigs

bimplicit

bimplicitsigs

bsources

bsourcesigs

current_version_id = 2

merge (ot her) — None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

class SCons.Node.FS.DirNodelnfo

30

Bases: NodelnfoBase

__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict__’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.

__setstate (st ate) -~ None
Restore the attributes from a pickled state. The version is discarded.

convert (node, val) -~ None

current_version_id = 2

format (fi el d_| i st =None, nanes: int = 0)

SCons API Documentation

fs = None

merge (ot her) — None
Merge the fields of another object into this object. Already existing information is overwritten by the other instance’s
data. WARNING: If a‘__dict__’ slot is added, it should be updated instead of replaced.

str_to_node (s)

update (node) — None

class SCons.Node.FS.DiskChecker (di sk_check_t ype, do_check_function,ignore_check_function)

Bases: object
Implement disk check variation.
This Class will hold functions to determine what this particular disk checking implementation should do when enabled
or disabled.
enable (di sk_check_type_list) - None
If the current object’s disk_check_type matches any in the list passed :param disk_check_type_list: List of disk
checks to enable :return:

class SCons.Node.FS.Entry (nane, directory, fs)

31

Bases: Base
This is the class for generic Node.FS entries—that is, things that could be a File or a Dir, but we're just not sure yet.
Consequently, the methods in this class really exist just to transform their associated object into the right class when
the time comes, and then call the same-named method in the transformed class.
class Attrs
Bases: object
shared
BuildInfo
alias of BuildInfoBase
Decider (f uncti on) -~ None
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of NodelnfoBase
RDirs (pat hl i st)
Search for a list of directories in the Repository list.
Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.
Tag (key, val ue) » None
Add a user-defined tag.
_Rfindalldirs_key (pat hl i st)
__Qetattr__(attr)
Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr __is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.
_ It (ot her)
less than operator used by sorting on py3
str () - str
A Node.FS.Base object’s string representation is its path name.
_abspath
_add_child (col | ecti on, set, child) -~ None
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_children_get ()
_children_reset () - None
_func_exists

SCons API Documentation

_func_get_contents
_func_is_derived
_func_rexists
_func_sconsign
_func_target_from_source
_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_get_str ()
_globl (patt ern, ondi sk: bool = True, source: bool = False,strings: bool = False)
_labspath
_local
_memo
_path
_path_elements
_proxy
_save_str ()
_sconsign
_specific_sources
_tags
_tpath
add_dependency (depend)
Adds dependencies.
add_ignore (depend)
Adds dependencies to ignore.
add_prerequisite (pr er equi si t e) — None
Adds prerequisites
add_source (sour ce)
Adds sources.
add_to_implicit (deps) — None
add_to_waiting_parents (node) - int
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)
add_to_waiting_s_e (node) — None
add_wkid (wki d) - None
Add a node to the list of kids waiting to be evaluated
all_children (scan: int = 1)
Return a list of all the node’s direct children.
alter_targets ()
Return a list of alternate targets for this Node.
always_build
attributes
binfo
build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
builder
builder_set (bui | der) - None
built () - None
Called just after this node is successfully built.
cached
cachedir_csig
cachesig
changed (node=None, al | omcache: bool = False)

32

SCons API Documentation

33

Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built. The default behavior is to
compare it against our own previously stored BuildInfo, but the stored Buildinfo from another Node (typically one in
a Repository) can be used instead.

Note that we now always check every dependency. We used to short-circuit the check by returning as soon as we
detected any difference, but we now rely on checking every dependency to make sure that any necessary Node
information (for example, the content signature of an #included .h file) is updated.

The allowcache option was added for supporting the early release of the executor/builder structures, right after a
File target was built. When set to true, the return value of this changed method gets cached for File nodes. Like
this, the executor isn’'t needed any longer for subsequent calls to changed().

@see: FS.File.changed(), FS.File.release_target_info()

changed_since_last_build
check_attributes (nane)

Simple API to check if the node.attributes for name has been set

children (scan: int = 1)

Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date () — bool

Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear () - None

Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values () - None
contentsig

cwd

del_binfo () - None

Delete the build info from this node.

depends

depends_set

dir

dirname

disambiguate (must _exi st =None)
diskcheck_match () - None
duplicate

entries

env

env_set (env, saf e: bool = False) -~ None
executor

executor_cleanup () - None

Let the executor clean up any cached information.

exists ()

Reports whether node exists.

explain ()
for_signature ()

fs

Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

Reference to parent Node.FS object

get_abspath ()

Get the absolute path of the file.

get_binfo ()

Fetch a node’s build information.

SCons API Documentation

34

node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature
This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’'s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_csig ()
get_contents ()
Fetch the contents of the entry. Returns the exact binary contents of the file.
get_csig ()
get_dir ()
get_env ()
get_env_scanner (env, kw={})
get_executor (create: int = 1) - Executor
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return the scanned include lines (implicit dependencies) found in this node.
The default is no implicit dependencies. We expect this method to be overridden by any subclass that can be
scanned for implicit dependencies.
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath ()
Get the absolute path of the file.
get_ninfo ()
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.
get_path_elements ()
get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.
get_source_scanner (node)
Fetch the source scanner for the specified node
NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.
get_state ()
get_stored_implicit ()
Fetch the stored implicit dependencies
get_stored_info ()
get_string (f or _si gnat ure)
This is a convenience function designed primarily to be wused in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.
get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use

SCons API Documentation

35

is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text contents () — str
Fetch the decoded text contents of a Unicode encoded Entry.
Since this should return the text contents from the file system, we check to see into what sort of subclass we
should morph this Entry.

get_tpath ()

getmtime ()

getsize ()

has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder () —» bool
Return whether this Node has an explicit builder.
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

ignore

ignore_set

implicit

implicit_set

includes

is_conftest () - bool
Returns true if this node is an conftest node

is_derived () - bool
Returns true if this node is derived (i.e. built).
This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal () - bool
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript () - bool
Returns true if this node is an sconscript

is_under (di r) - bool

is_up_to_date () - bool
Default check for whether the Node is current: unknown Node subtypes are always out of date, so they will always
get built.

isdir () - bool

isfile () - bool

islink () - bool

linked

Istat ()

make_ready () - None
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing () — bool

multiple_side_effect_has_builder () - bool
Return whether this Node has a builder or not.

SCons API Documentation

36

In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.
must_be_same (kl ass) - None
Called to make sure a Node is a Dir. Since we’re an Entry, we can morph into one.
name
new_binfo ()
new_ninfo ()
ninfo
nocache
noclean
on_disk_entries
postprocess () - None
Clean up anything we don’t need to hang onto after we've been built.
precious
prepare ()
Prepare for this Node to be built.
This is called after the Taskmaster has decided that the Node is out-of-date and must be rebuilt, but before actually
calling the method to build the Node.
This default implementation checks that explicit or implicit dependencies either exist or are derived, and initializes
the BuildInfo structure that will hold the information about how this node is, uh, built.
(The existence of source files is checked separately by the Executor, which aggregates checks for all of the targets
built by a specific action.)
Overriding this method allows for for a Node subclass to remove the underlying file from the file system. Note that
subclass methods should call this base class method to get the child check and the Buildinfo structure.
prerequisites
pseudo
push_to_cache () - bool
Try to push a node into a cache
ref _count
rel_path (ot her)
release_target_info () — None
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
By purging attributes that aren’t needed any longer after a Node (=File) got built, we don’t have to care that much
how many KBytes a Node actually requires...as long as we free the memory shortly afterwards.
@see: built() and File.release_target_info()
released_target_info
remove ()
Remove this Node: no-op by default.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
repositories
reset_executor () - None
Remove cached executor; forces recompute when needed.
retrieve_from_cache () — bool
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns true if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()

SCons API Documentation

37

We’'re a generic Entry, but the caller is actually looking for a File at this point, so morph into one.
root
rstr () - str
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan () — None
Scan this node’s dependents for implicit dependencies.
scanner_key ()
scanner_paths
searched
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_buil d: int = 1) » None
Set the Node’s always_build value.
set_executor (execut or: Execut or) — None
Set the action executor for this node.
set_explicit (i s_explicit) - None
set_local () - None
set_nocache (nocache: int = 1) - None
Set the Node’s nocache value.
set_noclean (nocl ean: int = 1) - None
Set the Node’s noclean value.
set_precious (preci ous: int = 1) » None
Set the Node’s precious value.
set_pseudo (pseudo: bool = True) —» None
Set the Node’s pseudo value.
set_specific_source (sour ce) — None
set_src_builder (bui | der) — None
Set the source code builder for this node.
set_state (st at e) —» None
side_effect
side_effects
sources
sources_set
src_builder ()
Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).
srcdir
srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.
stat ()
state
store_info
str_for_display ()
target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.
target_peers
variant_dirs
visited () - None
Called just after this node has been visited (with or without a build).
waiting_parents

SCons API Documentation

waiting_s_e
wkids
class SCons.Node.FS.EntryProxy (subj ect)
Bases: Proxy
__get_abspath ()
__get_base_path ()
Return the file’s directory and file name, with the suffix stripped.
__get dir ()
__get file ()
__get filebase ()
__get_posix_path ()
Return the path with / as the path separator, regardless of platform.
__get_relpath ()
__get_rsrcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node if
not linked.
__get_rsrcnode ()
__get_srcdir ()
Returns the directory containing the source node linked to this node via VariantDir(), or the directory of this node if
not linked.
__get_srcnode ()
__get_suffix ()
__get_windows_path ()
Return the path with as the path separator, regardless of platform.
dictSpecialAttrs = {'abspath’: <function EntryProxy.__get_abspath>, 'base’: <function
EntryProxy.__get base_path>, 'dir': <function EntryProxy.__get_dir>, file": <function EntryProxy. _get file>,
'filebase": <function EntryProxy.__get_filebase>, 'posix’: <function EntryProxy.__get posix_path>, 'relpath': <function
EntryProxy.__get_relpath>, 'rsrcdir': <function EntryProxy.__get_rsrcdir>, 'rsrcpath': <function
EntryProxy.__get_rsrcnode>, 'srcdir': <function EntryProxy.__get_srcdir>, 'srcpath’: <function
EntryProxy.__get_srcnode>, 'suffix': <function EntryProxy.__get_suffix>, 'win32": <function
EntryProxy.__get windows_path>, 'windows': <function EntryProxy. _get_windows_path>}
get ()
Retrieve the entire wrapped object
exception SCons.Node.FS.EntryProxyAttributeError (entry_proxy, attri bute)
Bases: AttributeError
An AttributeError subclass for recording and displaying the name of the underlying Entry involved in an AttributeError
exception.
add_note ()
Exception.add_note(note) — add a note to the exception
args
name
attribute name
obj
object
with_traceback ()
Exception.with_traceback(tb) — set self.__traceback__ to tb and return self.
class SCons.Node.FS.FS (pat h=None)
Bases: LocalFS
Dir (nan®e, di r ect or y=None, creat e: bool = True)
Look up or create a Dir node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied at
construction time) if no directory is supplied.
This method will raise TypeError if a normal file is found at the specified path.
Entry (name, di rect or y=None, create: bool = True)

38

SCons API Documentation

39

Look up or create a generic Entry node with the specified name. If the name is a relative path (begins with ./, ../, or
a file name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS
(supplied at construction time) if no directory is supplied.

File (name, di r ect or y=None, creat e: bool = True)
Look up or create a File node with the specified name. If the name is a relative path (begins with ./, ../, or a file
name), then it is looked up relative to the supplied directory node, or to the top level directory of the FS (supplied at
construction time) if no directory is supplied.
This method will raise TypeError if a directory is found at the specified path.

Glob (pat hnane, ondi sk: bool = True, source: bool = True,strings: bool = False, excl ude=None,

cwd=None)
Globs
This is mainly a shim layer

PyPackageDir (nmodul enane) — Dir | None
Locate the directory of Python module modulename.
For example ‘SCons’ might resolve to Windows: C:Python311Libsite-packagesSCons Linux:
{usr/lib64/python3.11/site-packages/SCons
Can be used to determine a toolpath based on a Python module name.
This is the backend called by the public API function PyPackageDir().

Repository (*di rs) - None
Specify Repository directories to search.

VariantDir (vari ant _dir,src_dir,duplicate: int = 1)
Link the supplied variant directory to the source directory for purposes of building files.

_lookup (p,directory, fscl ass, create: bool = True)
The generic entry point for Node lookup with user-supplied data.
This translates arbitrary input into a canonical Node.FS object of the specified fsclass. The general approach for
strings is to turn it into a fully normalized absolute path and then call the root directory’s lookup_abs() method for
the heavy lifting.
If the path name begins with ‘#, it is unconditionally interpreted relative to the top-level directory of this FS. ‘#' is
treated as a synonym for the top-level SConstruct directory, much like ‘~’ is treated as a synonym for the user’s
home directory in a UNIX shell. So both ‘#foo’ and ‘#/foo’ refer to the ‘foo’ subdirectory underneath the top-level
SConstruct directory.
If the path name is relative, then the path is looked up relative to the specified directory, or the current directory
(self._cwd, typically the SConscript directory) if the specified directory is None.

chdir (di r, change_os_dir: bool = False)
Change the current working directory for lookups. If change_os_dir is true, we will also change the “real” cwd to
match.

chmod (pat h, node)

copy (src, dst)

copy2 (src, dst)

exists (pat h)

get_max_drift ()

get_root (dri ve)
Returns the root directory for the specified drive, creating it if necessary.

getcwd ()

getmtime (pat h)

getsize (pat h)

isdir (pat h) - bool

isfile (pat h) - bool

islink (pat h) - bool

link (src, dst)

listdir (pat h)

Istat (pat h)

makedirs (pat h, rode: int = 511, exi st_ok: bool = False)

mkdir (pat h, node: int = 511)

open (pat h)

readlink (fi |l e) - str

SCons API Documentation

rename (ol d, new)
scandir (pat h)
set_SConstruct_dir (di r) — None
set_max_drift (max_dri ft) - None
stat (pat h)
symlink (src, dst)
unlink (pat h)
variant_dir_target_climb (orig,dir,tail)
Create targets in corresponding variant directories
Climb the directory tree, and look up path names relative to any linked variant directories we find.

Even though this loops and walks up the tree, we don’'t memoize the return value because this is really only used

to process the command-line targets.

class SCons.Node.FS.File (nane, di rectory, fs)

40

Bases: Base
A class for files in a file system.
class Attrs
Bases: object
shared
BuildInfo
alias of FileBuildInfo
Decider (f uncti on) » None
Dir (nane, creat e: bool = True)
Create a directory node named ‘name’ relative to the directory of this file.
Dirs (pat hl i st)
Create a list of directories relative to the SConscript directory of this file.
Entry (nane)
Create an entry node named ‘name’ relative to the directory of this file.
File (nane)
Create a file node named ‘name’ relative to the directory of this file.
GetTag (key)
Return a user-defined tag.
Nodelnfo
alias of FileNodelnfo
RDirs (pat hl i st)
Search for a list of directories in the Repository list.
Rfindalldirs (pat hl i st)
Return all of the directories for a given path list, including corresponding “backing” directories in any repositories.
The Node lookups are relative to this Node (typically a directory), so memoizing result saves cycles from looking up
the same path for each target in a given directory.
Tag (key, val ue) » None
Add a user-defined tag.
_Rfindalldirs_key (pat hl i st)
__dmap_cache = {}
__dmap_sig_cache = {}
__Qetattr__ (attr)

Together with the node_bwcomp dict defined below, this method provides a simple backward compatibility layer for
the Node attributes ‘abspath’, ‘labspath’, ‘path’, ‘tpath’, ‘suffix’ and ‘path_elements’. These Node attributes used to
be directly available in v2.3 and earlier, but have been replaced by getter methods that initialize the single
variables lazily when required, in order to save memory. The redirection to the getters lets older Tools and
SConstruct continue to work without any additional changes, fully transparent to the user. Note, that __getattr __is
only called as fallback when the requested attribute can’'t be found, so there should be no speed performance
penalty involved for standard builds.

_ It (ot her)

less than operator used by sorting on py3
str () - str
A Node.FS.Base object’s string representation is its path name.

SCons API Documentation

_abspath
_add_child (col | ection, set, child) - None
Adds ‘child’ to ‘collection’, first checking ‘set’ to see if it's already present.
_add_strings_to_dependency_map (dmap)
In the case comparing node objects isn't sufficient, we’ll add the strings for the nodes to the dependency map
‘return:
_build_dependency_map (bi nf 0)
Build mapping from file -> signature

Parameters:
* self (self-) —

» considered (binfo - buildinfo from node being) —
Returns: dictionary of file->signature mappings

_children_get ()
_children_reset () - None
_createDir () — None
_func_exists
_func_get_contents
_func_is_derived
_func_rexists
_func_sconsign
_func_target_from_source
_get_found_includes_key (env, scanner, pat h)
_get_previous_signatures (dmap)
Return a list of corresponding csigs from previous build in order of the node/files in children.

Parameters:
* self (self-) —

 csig (dmap - Dictionary of file ->) —
Returns: List of csigs for provided list of children

_get_scanner (env, i nitial _scanner,root_node_scanner, kw)
_get_str ()
_globl (patt ern, ondi sk: bool = True, source: bool = False,strings: bool = False)
_labspath
_local
_memo
_morph () - None

Turn a file system node into a File object.
_path
_path_elements
_proxy
_rmv_existing ()
_save_str ()
_sconsign
_specific_sources
_tags
_tpath
add_dependency (depend)

Adds dependencies.
add_ignore (depend)

Adds dependencies to ignore.
add_prerequisite (pr er equi si t e) — None

Adds prerequisites
add_source (sour ce)

Adds sources.
add_to_implicit (deps) — None

41

SCons API Documentation

add_to_waiting_parents (node) - int
Returns the number of nodes added to our waiting parents list: 1 if we add a unique waiting parent, O if not. (Note
that the returned values are intended to be used to increment a reference count, so don’t think you can “clean up”
this function by using True and False instead...)

add_to_waiting_s_e (node) — None

add_wkid (wki d) - None
Add a node to the list of kids waiting to be evaluated

all_children (scan: int = 1)
Return a list of all the node’s direct children.

alter_targets ()
Return any corresponding targets in a variant directory.

always_build

attributes

binfo

build (* * kw)
Actually build the node.
This is called by the Taskmaster after it's decided that the Node is out-of-date and must be rebuilt, and after the
prepare() method has gotten everything, uh, prepared.
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().

builder

builder_set (bui | der) - None

built () - None
Called just after this File node is successfully built.
Just like for ‘release_target_info’ we try to release some more target node attributes in order to minimize the overall
memory consumption.
@see: release_target_info

cached

cachedir_csig

cachesig

changed (node=None, al | omcache: bool = False) - bool
Returns if the node is up-to-date with respect to the Buildinfo stored last time it was built.
For File nodes this is basically a wrapper around Node.changed(), but we allow the return value to get cached after
the reference to the Executor got released in release_target_info().
@see: Node.changed()

changed_content (t ar get , prev_ni , repo_node=None) - bool

changed_since_last_build

changed_state (t ar get, prev_ni, repo_node=None) - bool

changed_timestamp_match (t ar get , prev_ni , r epo_node=None) - bool
Return True if the timestamps don’'t match or if there is no previous timestamp :param target: :param prev_ni:
Information about the node from the previous build :return:

changed_timestamp_newer (t ar get , prev_ni , r epo_node=None) - bool

changed_timestamp_then_content (t ar get, prev_ni , node=None) - bool
Used when decider for file is Timestamp-MD5

NOTE: If the timestamp hasn’t changed this will skip md5’ing the

file and just copy the prev_ni provided. If the prev_ni is wrong. It will propagate it. See:
https://github.com/SCons/scons/issues/2980

Parameters:
» dependency (self -) —

* target (target -) —
» .sconsign (prev_ni - The Nodelnfo object loaded from previous builds) —

» existence/timestamp (node - Node instance. Check this node for file) — if specified.
Returns: Boolean - Indicates if node(File) has changed.

42

https://github.com/SCons/scons/issues/2980

SCons API Documentation

43

check_attributes (nane)
Simple API to check if the node.attributes for name has been set

children (scan: int = 1)
Return a list of the node’s direct children, minus those that are ignored by this node.

children_are_up_to_date () — bool
Alternate check for whether the Node is current: If all of our children were up-to-date, then this Node was
up-to-date, too.
The SCons.Node.Alias and SCons.Node.Python.Value subclasses rebind their current() method to this method.

clear () - None
Completely clear a Node of all its cached state (so that it can be re-evaluated by interfaces that do continuous
integration builds).

clear_memoized_values () - None

contentsig

convert_copy_attrs = [‘bsources', 'bimplicit', 'bdepends’, 'bact’, 'bactsig’, 'ninfo’]

convert_old_entry (ol d_entry)

convert_sig_attrs = ['bsourcesigs', 'bimplicitsigs’, 'bdependsigs’]

cwd

del_binfo () - None
Delete the build info from this node.

depends

depends_set

dir

dirname

disambiguate (must _exi st =None)

diskcheck_match () - None

do_duplicate (sr c)
Create a duplicate of this file from the specified source.

duplicate

entries

env

env_set (env, saf e: bool = False) -~ None

executor

executor_cleanup () - None
Let the executor clean up any cached information.

exists ()
Reports whether node exists.

explain ()

find_repo_file ()
For this node, find if there exists a corresponding file in one or more repositories :return: list of corresponding files
in repositories

find_src_builder ()

for_signature ()
Return a string representation of the Node that will always be the same for this particular Node, no matter what.
This is by contrast to the __str__ () method, which might, for instance, return a relative path for a file Node. The
purpose of this method is to generate a value to be used in signature calculation for the command line used to
build a target, and we use this method instead of str() to avoid unnecessary rebuilds. This method does not need to
return something that would actually work in a command line; it can return any kind of nonsense, so long as it does
not change.

fs
Reference to parent Node.FS object

get_abspath ()
Get the absolute path of the file.

get_binfo ()
Fetch a node’s build information.
node - the node whose sources will be collected cache - alternate node to use for the signature cache returns - the
build signature

SCons API Documentation

44

This no longer handles the recursive descent of the node’s children’s signatures. We expect that they're already
built and updated by someone else, if that's what’'s wanted.
get_build_env ()
Fetch the appropriate Environment to build this node.
get_build_scanner_path (scanner)
Fetch the appropriate scanner path for this node.
get_builder (def aul t _bui | der =None)
Return the set builder, or a specified default value
get_cachedir_bsig ()
Return the signature for a cached file, including its children.
It adds the path of the cached file to the cache signature, because multiple targets built by the same action will all
have the same build signature, and we have to differentiate them somehow.
Signature should normally be string of hex digits.
get_cachedir_csig ()
Fetch a Node’s content signature for purposes of computing another Node’s cachesig.
This is a wrapper around the normal get_csig() method that handles the somewhat obscure case of using
CacheDir with the -n option. Any files that don’t exist would normally be “built” by fetching them from the cache, but
the normal get_csig() method will try to open up the local file, which doesn’t exist because the -n option meant we
didn’'t actually pull the file from cachedir. But since the file does actually exist in the cachedir, we can use its
contents for the csig.
get_content_hash () - str
Compute and return the hash for this file.
get_contents () - bytes
Return the contents of the file as bytes.
get_contents_sig ()
A helper method for get_cachedir_bsig.
It computes and returns the signature for this node’s contents.
get_csig () — str
Generate a node’s content signature.
get_dir ()
get_env ()
get_env_scanner (env, kw={})
get_executor (create: int = 1) - Executor
Fetch the action executor for this node. Create one if there isn’t already one, and requested to do so.
get_found_includes (env, scanner, pat h)
Return the included implicit dependencies in this file. Cache results so we only scan the file once per path
regardless of how many times this information is requested.
get_implicit_deps (env, i niti al _scanner, pat h_f unc, kw={})
Return a list of implicit dependencies for this node.
This method exists to handle recursive invocation of the scanner on the implicit dependencies returned by the
scanner, if the scanner’s recursive flag says that we should.
get_internal_path ()
get_labspath ()
Get the absolute path of the file.
get_max_drift_csig () - str | None
Returns the content signature currently stored for this node if it's been unmodified longer than the max_drift value,
or the max_drift value is 0. Returns None otherwise.
get_ninfo ()
get_path (di r =None)
Return path relative to the current working directory of the Node.FS.Base object that owns us.
get_path_elements ()
get_relpath ()
Get the path of the file relative to the root SConstruct file’s directory.
get_size () - int
get_source_scanner (node)
Fetch the source scanner for the specified node

SCons API Documentation

45

NOTE: “self” is the target being built, “node” is the source file for which we want to fetch the scanner.
Implies self.has_builder() is true; again, expect to only be called from locations where this is already verified.
This function may be called very often; it attempts to cache the scanner found to improve performance.

get_state ()

get_stored_implicit ()
Fetch the stored implicit dependencies

get_stored_info ()

get_string (f or _si gnat ure)
This is a convenience function designed primarily to be used in command generators (i.e.,
CommandGeneratorActions or Environment variables that are callable), which are called with a for_signature
argument that is nonzero if the command generator is being called to generate a signature for the command line,
which determines if we should rebuild or not.
Such command generators should use this method in preference to str(Node) when converting a Node to a string,
passing in the for_signature parameter, such that we will call Node.for_signature() or str(Node) properly,
depending on whether we are calculating a signature or actually constructing a command line.

get_subst_proxy ()
This method is expected to return an object that will function exactly like this Node, except that it implements any
additional special features that we would like to be in effect for Environment variable substitution. The principle use
is that some Nodes would like to implement a __getattr () method, but putting that in the Node type itself has a
tendency to kill performance. We instead put it in a proxy and return it from this method. It is legal for this method to
return self if no new functionality is needed for Environment substitution.

get_suffix ()

get_target_scanner ()

get_text contents () — str
Return the contents of the file as text.

get_timestamp () - int

get_tpath ()

getmtime ()

getsize ()

has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

has_explicit_builder () —» bool
Return whether this Node has an explicit builder.
This allows an internal Builder created by SCons to be marked non-explicit, so that it can be overridden by an
explicit builder that the user supplies (the canonical example being directories).

has_src_builder () - bool
Return whether this Node has a source builder or not.
If this Node doesn’t have an explicit source code builder, this is where we figure out, on the fly, if there’'s a
transparent source code builder for it.
Note that if we found a source builder, we also set the self.builder attribute, so that all of the methods that actually
build this file don’t have to do anything different.

hash_chunksize = 65536

ignore

ignore_set

implicit

implicit_set

includes

is_conftest () - bool
Returns true if this node is an conftest node

is_derived () —» bool
Returns true if this node is derived (i.e. built).

SCons API Documentation

46

This should return true only for nodes whose path should be in the variant directory when duplicate=0 and should
contribute their build sighatures when they are used as source files to other derived files. For example: source with
source builders are not derived in this sense, and hence should not return true.

is_explicit

is_literal () - bool
Always pass the string representation of a Node to the command interpreter literally.

is_sconscript () - bool
Returns true if this node is an sconscript

is_under (di r) - bool

is_up_to_date () - bool
Check for whether the Node is current.
In all cases self is the target we're checking to see if it's up to date

isdir () - bool

isfile () - bool

islink () - bool

linked

Istat ()

make_ready () - None
Get a Node ready for evaluation.
This is called before the Taskmaster decides if the Node is up-to-date or not. Overriding this method allows for a
Node subclass to be disambiguated if necessary, or for an implicit source builder to be attached.

missing () — bool

multiple_side_effect_has_builder () - bool
Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a lot more efficient than simply examining the builder attribute directly (“if
node.builder: ..."). When the builder attribute is examined directly, it ends up calling __ getattr__ for both the
__len__and __bool__ attributes on instances of our Builder Proxy class(es), generating a bazillion extra calls and
slowing things down immensely.

must_be_same (kl ass)
This node, which already existed, is being looked up as the specified klass. Raise an exception if it isn't.

name

new_binfo ()

new_ninfo ()

ninfo

nocache

noclean

on_disk_entries

postprocess () - None
Clean up anything we don’t need to hang onto after we've been built.

precious

prepare ()
Prepare for this file to be created.

prerequisites

pseudo

push_to_cache () - bool
Try to push the node into a cache

ref _count

rel_path (ot her)

release_target_info () — None
Called just after this node has been marked up-to-date or was built completely.
This is where we try to release as many target node infos as possible for clean builds and update runs, in order to
minimize the overall memory consumption.
We'd like to remove a lot more attributes like self.sources and self.sources_set, but they might get used in a next
build step. For example, during configuration the source files for a built E{*}.o file are used to figure out which linker
to use for the resulting Program (gcc vs. g++)! That's why we check for the ‘keep_targetinfo’ attribute, config Nodes
and the Interactive mode just don't allow an early release of most variables.

SCons API Documentation

47

In the same manner, we can’'t simply remove the self.attributes here. The smart linking relies on the shared flag,
and some parts of the java Tool use it to transport information about nodes...
@see: built() and Node.release_target_info()
released_target_info
remove ()
Remove this file.
render_include_tree ()
Return a text representation, suitable for displaying to the user, of the include tree for the sources of this node.
rentry ()
repositories
reset_executor () - None
Remove cached executor; forces recompute when needed.
retrieve_from_cache () — bool
Try to retrieve the node’s content from a cache
This method is called from multiple threads in a parallel build, so only do thread safe stuff here. Do thread unsafe
stuff in built().
Returns True if the node was successfully retrieved.
rexists ()
Does this node exist locally or in a repository?
rfile ()
root
rstr ()
A Node.FS.Base object’s string representation is its path name.
sbuilder
scan () —» None
Scan this node’s dependents for implicit dependencies.
scanner_key ()
scanner_paths
searched
select_scanner (scanner)
Selects a scanner for this Node.
This is a separate method so it can be overridden by Node subclasses (specifically, Node.FS.Dir) that must use
their own Scanner and don't select one the Scanner.Selector that’s configured for the target.
set_always_build (al ways_buil d: int = 1) » None
Set the Node’s always_build value.
set_executor (execut or: Execut or) — None
Set the action executor for this node.
set_explicit (i s_explicit) - None
set_local () - None
set_nocache (nocache: int = 1) - None
Set the Node’s nocache value.
set_noclean (nocl ean: int = 1) - None
Set the Node’s noclean value.
set_precious (preci ous: int = 1) -~ None
Set the Node’s precious value.
set_pseudo (pseudo: bool = True) —» None
Set the Node’s pseudo value.
set_specific_source (sour ce) — None
set_src_builder (bui | der) — None
Set the source code builder for this node.
set_state (st at e) —» None
side_effect
side_effects
sources
sources_set
src_builder ()

SCons API Documentation

Fetch the source code builder for this node.
If there isn’t one, we cache the source code builder specified for the directory (which in turn will cache the value
from its parent directory, and so on up to the file system root).

srcdir

srcnode ()
If this node is in a build path, return the node corresponding to its source file. Otherwise, return ourself.

stat ()

state

store_info

str_for_display ()

target_from_source (prefi x, suffi x, splitext=<function splitext>)
Generates a target entry that corresponds to this entry (usually a source file) with the specified prefix and suffix.
Note that this method can be overridden dynamically for generated files that need different behavior. See
Tool/swig.py for an example.

target_peers

variant_dirs

visited () - None
Called just after this node has been visited (with or without a build).

waiting_parents

waiting_s_e

wkids

class SCons.Node.FS.FileBuildinfo

48

Bases: BuildinfoBase
This is info loaded from sconsign.

Attributes unique to FileBuildInfo:
dependency_map : Caches file->csig mapping

for all dependencies. Currently this is only used when using MD5-timestamp decider. It's used to ensure that
we copy the correct csig from the previous build to be written to .sconsign when current build is done.
Previously the matching of csig to file was strictly by order they appeared in bdepends, bsources, or
bimplicit, and so a change in order or count of any of these could yield writing wrong csig, and then false
positive rebuilds
__getstate__ ()
Return all fields that shall be pickled. Walk the slots in the class hierarchy and add those to the state dictionary. If a
‘ _dict_’ slot is available, copy all entries to the dictionary. Also include the version id, which is fixed for all
instances of a class.
__setstate (st ate) - None
Restore the attributes from a pickled state.
bact
bactsig
bdepends
bdependsigs
bimplicit
bimplicitsigs
bsources
bsourcesigs
convert_from_sconsign (di r, nane) - None
Con