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Fig. 1: Fine-Grained Class-Agnostic 3D Point Cloud Segmentation. Seg-
ment3D predicts highly accurate segmentation masks (right), improves over state-of-
the-art 3D segmentation methods (e.g., Mask3D [46], left), and does not require man-
ually labeled 3D training data. This is achieved through the automatic generation of
high-quality training masks using foundation models for image segmentation [28].

Abstract. Current 3D scene segmentation methods are heavily depen-
dent on manually annotated 3D training datasets. Such manual anno-
tations are labor-intensive, and often lack fine-grained details. Further-
more, models trained on this data typically struggle to recognize object
classes beyond the annotated training classes, i.e., they do not general-
ize well to unseen domains and require additional domain-specific an-
notations. In contrast, recent 2D foundation models have demonstrated
strong generalization and impressive zero-shot abilities, inspiring us to
incorporate these characteristics from 2D models into 3D models. There-
fore, we explore the use of image segmentation foundation models to
automatically generate high-quality training labels for 3D segmentation
models. The resulting model, Segment3D, generalizes significantly better
than the models trained on costly manual 3D labels and enables easily
adding new training data to further boost the segmentation performance.
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1 Introduction

In this work, we propose Segment3D, a method for fine-grained class-agnostic 3D
segmentation. In particular, dividing the space into coherent segments aligned
with both the scene geometry and its semantics is a key challenge. This ability
to accurately segment and interpret 3D scenes is fundamental for numerous
downstream tasks [52,61], intelligent assistants and autonomous robots [30,64].

Current methods for 3D indoor-scene understanding mostly focus on seman-
tic [35, 39, 40, 47, 53] and instance segmentation [9, 17, 31, 32, 46, 54]. These ap-
proaches, while effective on popular benchmarks [13,15,44,50], have limitations
stemming from their training. Primarily, they depend on extensive manually
labeled 3D training sets that are both time-consuming and challenging to anno-
tate. Importantly, their performance often deteriorates when applied to scenarios
beyond their training data, limiting their effectiveness in diverse, real-world sce-
narios. This becomes particularly apparent under the recently emerging task
of open-vocabulary 3D scene understanding [18, 27, 33, 38, 51] that aims to seg-
ment arbitrary user queries, which naturally go beyond the pre-defined set of
training-set classes. Concurrently, the recent surge in foundation models, espe-
cially 2D vision-language models [25,28,41,60], demonstrates remarkable poten-
tial. Trained on internet-scale data, these models exhibit an extraordinary ability
to generalize, even in a zero-shot setting, to new and different input distribu-
tions. However, their application has been predominantly confined to 2D data.
For instance, SAM [28] has shown impressive results in 2D image segmentation,
but its applicability to 3D scene understanding remains largely under-explored.
All these factors give rise to the research question:

How to leverage 2D foundation models for class-agnostic 3D scene
segmentation without requiring manually labeled 3D data?

Recently, SAM3D [57] has proposed a straightforward method that uses
posed RGB-D images corresponding to a 3D scene. They predict segmentation
masks for all input RGB-D images with SAM [28], and projected them into the
3D space. Next, through an iterative bottom-up process, the 3D masks of par-
tial scenes are merged to derive the final 3D segmentation (see Fig. 2). However,
variations in perspectives across frames can lead to conflicting segmentations,
which introduces inconsistency during the merging process. Besides, the infer-
ence speed of SAM3D is slow, due to running SAM on the fly for a large number
of RGB images and the cumbersome non-learned merging process. In this paper,
we seek to circumvent both the slow speed and the issue of merging inconsistent
segmentation across frames.

Towards this goal, we introduce Segment3D, a clean and efficient approach
that utilizes a 3D model to achieve class-agnostic, fine-grained 3D segmentation
at speed. Segment3D employs a two-stage training approach that requires no
hand-annotated labels. We first train our class-agnostic 3D segmentation model
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with RGB-D data, which are transformed into partial RGB-D point clouds. The
supervision is provided by the segmentation masks produced by SAM and pro-
jected into 3D. While SAM can automatically generate masks for entire images,
sometimes the results may suffer from over-segmentation (see Fig. 4), which is
not desired in our context. Therefore, we propose a Mask Generation Module
to generate high-quality, complete masks of objects for a given RGB image.
Since there is readily available large-scale RGB-D data, additional data can be
effortlessly integrated to further enhance segmentation performance. This pre-
training stage lays the groundwork for understanding the 3D structure from 2D
annotations. However, as our ultimate objective is the segmentation of full 3D
scenes, we must bridge the domain gap between partial point clouds and the
more comprehensive 3D point clouds obtained from 3D scanners or reconstruc-
tion techniques [14,24]. To this end, in the second stage, we fine-tune the model
on full 3D point clouds in a self-supervised manner, utilizing high-confidence
mask predictions from the pre-trained model as training signal.

We demonstrate strong performance in class-agnostic segmentation on Scan-
Net [13, 44] and the newly released ScanNet++ [58]. Though Segment3D is
trained on the indoor dataset, transferring it directly to the outdoor nuScenes
dataset [4] also yields surprisingly good results. Finally, we show the use of Seg-
ment3D for improving open-vocabulary 3D instance segmentation [51]. Overall,
the contributions of this paper are as follows:
– We introduce Segment3D, a novel approach and training strategy for fine-

grained class-agnostic 3D point cloud segmentation without manually anno-
tated labels.

– We propose a Mask Generation Module that utilizes the 2D foundation model
to automatically generate high-quality, complete training masks.

– We show that Segment3D demonstrates strong generalization compared to a
wide range of baselines, including fully supervised methods trained on care-
fully annotated datasets.

2 Related Work

3D Instance Segmentation. Current models have seen a significant develop-
ment over the last years, from proposal-based [56, 59], over grouping-based [9,
26,31,54], to recent Transformer-based [32,46] methods. In this work, we follow
the currently best-performing Transformer-based paradigm. Despite impressive
advancements, a shared limitation is the dependence on costly manual ground-
truth annotations. Recently, there have been efforts to automate the annota-
tion process by bundling state-of-the-art segmentation models [55], but they are
still limited to pre-defined object classes. However, in the context of open-world
3D scene understanding, the importance of semantic classification for closed-
set categories has diminished. Instead, in this work, we propose a general 3D
segmentation method trained on automatically generated labels.
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Foundation Models. Foundation models, particularly those that are multi-
modal [25,41], have revolutionized the field of AI by leveraging extensive image-
text pre-training. These models can derive rich image representations guided by
natural language descriptions, enabling a variety of downstream tasks [21,37,42].
Another line of work [6, 36], based on self-supervised learning, employs image
training and yields high-performance features directly applicable as inputs for
linear classifiers. Segment Anything Model (SAM) [28] has recently advanced
the performance of foundation models for image segmentation. SAM has under-
gone training on a diverse, high-quality dataset comprising more than 1 billion
masks. This training equips SAM with the ability to generalize to novel object
types and images, surpassing the scope of its observations during the training
process. Additionally, SAM can generate high-quality, fine-grained masks. Our
work leverages the power of SAM for pre-training a 3D segmentation model,
which is later also used for generating supervision signals for fine-tuning on
scene-level point clouds.

Open-Vocabulary 3D Scene Understanding. Recently, there has been an
increased interest in 3D open-vocabulary scene understanding. This new field
utilizes the zero-shot recognition abilities of 2D vision-language models [25, 41],
enabling a more comprehensive understanding of diverse and previously unseen
3D environments [8,16,22,23,27,29,33,38,51,62,63]. PLA [16] aligns point cloud
features with captions extracted from multi-view images of a scene to enable
open-vocabulary recognition. OpenScene [38] distills per-pixel image features to
3D point clouds, generating point-wise scene representations co-embedded with
text and image pixels in CLIP feature space. However, it mainly focuses on se-
mantic segmentation and exhibits a limited understanding of object instances.
To this end, OpenMask3D [51] predicts class-agnostic 3D instance masks and
aggregates per-mask features via multi-view fusion of CLIP-based image em-
beddings. Nevertheless, the segmentation model it uses is trained on closed-set
labels, lacking generalization to the open world. Our method contributes to this
area by providing open-set class-agnostic masks, which can serve as foundational
inputs for models such as OpenMask3D.

3 Method

We aim to develop a method capable of segmenting any object within a given 3D
scene. Relying on existing 3D training datasets cannot accomplish this goal, as
their mask annotations are limited to a predefined set of object classes [1,2,13,48].
Consequently, models trained on such datasets fail to generalize effectively to
new, unseen classes. Recently, with SAM [28] showing extraordinary generaliza-
tion ability in 2D segmentation, SAM3D [57] has proposed to simply project and
merge SAM predictions in 3D from posed RGB-D images, as illustrated in Fig. 2.
However, it suffers from inconsistent results and slow inference speed, limiting
its practical applicability.

To fully exploit SAM for consistent 3D segmentation at speed, we introduce
a clean and efficient method which utilizes a 3D model to directly segment the
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Fig. 2: SAM3D vs. Segment3D. SAM3D [57] (left) merges 2D segmentation masks
of RGB-D images generated by SAM to obtain 3D segmentation of entire scenes. How-
ever, conflicting segmentations across frames introduce inconsistency during the merg-
ing process. Moreover, it is slow because of extensive image inference and the cum-
bersome merging procedure. Instead, our Segment3D (right) utilizes a 3D model to
directly segment entire 3D scenes which is clean and efficient.

entire scene. First, we propose a Mask Generation Module to generate high-
quality, complete object masks from SAM predictions (Sec. 3.1). Next, we train
our 3D segmentation model with RGB-D data and the generated object masks,
which are transformed into partial point clouds (Sec. 3.2). Since the final goal
is to segment 3D scenes, we need to bridge the inevitable domain gap between
partial RGB-D point clouds and full 3D point clouds from 3D scanners or re-
construction methods. We therefore fine-tune our model on full 3D point clouds
using high-confident mask predictions from our pre-trained model (Sec. 3.3). The
overall framework is illustrated in Fig. 3.

3.1 Generating Pseudo Ground-Truth Masks

Review on SAM. We first review the automatic mask generation pipeline of
SAM [28]. SAM is prompted with a regular grid of 32×32 points on the RGB im-
age. Each point predicts masks at three different granularities: whole, part, and
subpart. Next, all three masks for all points are filtered by the model’s predicted
IoU score as well as the stability of the masks with respect to the binariza-
tion threshold. Then, the remaining masks undergo Non-Maximum Suppression
(NMS). Finally, if a pixel is encompassed by multiple masks, the mask ID with
the highest predicted IoU is assigned to the pixel.

However, as shown in Fig. 4, the results obtained in this way could suffer
from over-segmentation. A naive idea is to only use the masks generated by the
“whole” branch. Nevertheless, we find that the “whole” branch typically generates
high-quality masks for large objects while overlooking small objects in the image.
In contrast, the “part” and “subpart” branches not only generate masks for parts
of large objects but also predict masks for small and tiny objects. Thus, to enable
our 3D model to achieve fine-grained segmentation capabilities for details and
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Fig. 3: Method Overview. Training Segment3D involves two stages: The first stage
(left) relies on largely available RGB-D image sequences and SAM ■□, a pre-trained
foundation model for 2D image segmentation [28]. Segment3D ■□ is pre-trained on
partial RGB-D point clouds and supervised with pseudo ground-truth masks generated
by Mask Generation Module (MGM) ■□. Due to the domain gap between partial and
full point clouds, in the second stage (right), Segment3D ■□ is fine-tuned with confident
masks predicted by the pre-trained Segment3D ■□.

small objects, we must retain the outputs from the “part” and “subpart” branches.
The problem is how to preserve their segmentation for small and tiny objects
while removing their segmentation for parts of large objects.

Mask Generation Module (MGM). Here we introduce our Mask Generation
Module (MGM). Since SAM’s automatic mask generation pipeline can provide
reasonably high-quality masks for a given image, we start based on it. Next, we
compare the result with the output of the “whole” branch to determine which
masks are parts of large objects and remove them. Specifically, for each mask in
the automatic output mauto

i , we iterate through the masks of the entire branch,
calculating the intersection minter

ij between mauto
i and mwhole

j . If minter
ij /mauto

i ≥ t,
then we consider mauto

i to be a part of mwhole
j . Our preliminary results show that

the process of extracting valid masks is highly robust to the hyper-parameter
t and we set it as 0.9 by default. We remove the part masks and combine the
remaining masks with the output of the “whole” branch, which will serve as our
training supervision. With MGM, we observe notable improvements at all object
mask sizes, especially on medium-sized and large objects (see Table 6).

3.2 Stage 1: Pre-Training on RGB-D Point Clouds

In contrast to the relatively scarce availability of 3D data, there is an abundance
of 2D data, particularly RGB-D images, which are readily accessible. For exam-
ple, ScanNet [13] comprises merely 1513 3D scans, compared to the substantially
larger collection of 2.5 million RGB-D images. Therefore, we first pre-train our
3D segmentation model on partial RGB-D point clouds.

Training-Set Preparation. Starting from a collection of RGB-D frames, we
create partial 3D point clouds and their corresponding pseudo ground-truth 3D
masks. Note that the labels can be automatically obtained without manual effort.
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Fig. 5: Partial (center) vs. Full (right)
Point Clouds from ScanNet [13]. Full
point clouds are more complete and ex-
hibit fewer occlusions due to reconstruc-
tion over multiple viewpoints.

For each frame in a large RGB-D dataset, we first transform the 2D depth
map to a partial 3D point cloud. To do so, we need to know the intrinsic matrix
K ∈ R3×3 and extrinsic matrix T =

[
R t

]
∈ R3×4. For each pixel p = (u, v), we

can transform it with its depth value Dp into a 3D point P in world coordinates
as follows:

P = R⊤ · (Dp ·K−1 · p̃)−R⊤t, (1)

where p̃ is the homogeneous coordinate of p. By applying Eq. (1) to all pixels
in the depth map D and associating their per-pixel RGB value, we obtain the
input partial 3D point cloud. Next, we obtain the pseudo ground-truth 3D seg-
mentation masks for this point cloud with the 2D masks generated by MGM in
the same way. Since we know the one-to-one mapping between 2D pixel and 3D
points from Eq. (1), we directly obtain the per-point 3D mask labels.

Model Architecture. We use a model inspired by Mask3D [46] to train a class-
agnostic 3D segmentation model. The model comprises a sparse convolutional
backbone derived from MinkowskiUNet [12] and a transformer decoder, as in
MaskFormer [10, 11]. We adopt a set of queries to represent the masks, each
of which is initialized with a positional embedding. Specifically, we select query
positions with furthest point sampling (FPS) and use their Fourier positional
encodings as the query embeddings. Leveraging the transformer decoder, all the
mask queries are refined by progressively attending to point cloud features across
multiple scales in parallel. Each mask query is subsequently decoded into both a
mask feature and a binary label to predict whether the given query corresponds
to a valid object or not. By computing cosine similarity scores between a mask
feature and all point features within the point cloud, a heatmap is generated over
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the point cloud. This heatmap is input to a sigmoid function, and thresholded
at 0.5, resulting in the final binary mask.

Training with SAM Generated Masks. We supervise the model with two
losses: the per-point supervision loss Lmask and a per-query supervision loss Lobj.
The loss Lmask enables learning a foreground-background segmentation for each
mask, and is composed of a dice loss Ldice [34] and a binary cross-entropy loss
Lce for each point. The Lobj is a binary classification loss that indicates whether
a query represents a valid “object” or “no object”. This mechanism allows for the
prediction of a variable number of masks, depending on the underlying scene
content and geometry. Following prior work [5, 10, 46], we first adopt bipartite
graph matching to establish correspondences between the set of predicted masks
and the set of target masks provided by MGM as described before. If the pre-
dicted instance finds a matching target mask, then we assign it an “object” label;
conversely, if there is no match, we assign “no object”. In summary, we optimize
the following losses:

L = Lmask + λobjLobj, (2)
Lmask = λdiceLdice + λceLce, (3)

where λ∗ are hyperparameters that balance the contribution of each component
in the loss. The binary classification loss Lobj is applied to all queries, while the
mask loss Lmask is specifically applied to masks labeled as “object”.

3.3 Stage 2: Self-Supervised Scene Fine-Tuning

After Stage 1, we obtain a class-agnostic 3D segmentation model by pre-training
solely on RGB-D images and automatically generated labels from MGM. How-
ever, a fundamental domain gap persists between partial point clouds derived
from RGB-D data and full point clouds acquired through 3D scanners or recon-
struction methods [14,24] (See Fig. 5). This gap exists mostly because of object
occlusions, but also due to challenges of depth cameras to capture dark or re-
flective surfaces from a single viewpoint. Hence, depending solely on RGB-D
frames for training a 3D segmentation model intended for full 3D scans proves
inadequate. Therefore, we propose to further fine-tune our model on scene-level
full 3D point clouds. The key idea to obtain 3D mask annotations for training
on full point clouds is to use selected, high-confidence masks generated by the
pre-trained model itself. Note that this stage requires no manual labels on full
3D scenes and proves essential for the performance of Segment3D (see Tab. 5).

Confidence-Based Mask Generation. Next, we outline the process of gener-
ating the supervision signal for the fine-tuning stage. The pre-trained model pro-
cesses point clouds independently of their nature, be it partial or full. Therefore,
when presented with a full 3D point cloud, the pre-trained 3D model produces a
set of masks, each with a binary classification (valid or not) and a heatmap over
all points, just as in Sec. 3.2. To assess the quality of the predicted masks, we
compute a confidence score based on the confidence map σ(h), where h is the
predicted heatmap and σ is the sigmoid function. We then compute the average
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confidence of those points for which σ(h) > 0.5 as the confidence score of the
predicted mask, denoted as cmask. We also consider the classification as a valid
object and use the probability from the binary classification assigned to the “ob-
ject” category as the confidence score, denoted as cobj. The final confidence score
for each predicted mask is then the product of the two scores, c = cmask ·cobj. For
fine-tuning our 3D segmentation model in Stage 2, we select the most confidently
predicted masks above a threshold τc.

Training with the High-Confidence Generated Masks. For fine-tuning,
we follow the same procedure as before and use Lmask as defined in Eq. 3. In
contrast to the pre-training stage, the binary classification loss Lobj, responsible
for categorizing queries into valid or invalid, is omitted. Since we only select
masks with high confidence for supervision, it can happen that some objects in
the scene have no assigned ground truth mask. In such instances, deeming a cor-
rectly predicted mask for those objects as invalid would be detrimental. Table 5
illustrates the efficacy of the self-supervised fine-tuning process in comparison
to pre-training alone.

4 Experiments

We firstly evaluate Segment3D on indoor ScanNet++ [58], ScanNet200 [13, 44]
and outdoor nuScenes [4] in a class-agnostic segmentation setting (Sec. 4.1). We
then show the advantage of our method in segmenting small objects, and provide
analysis to understand the importance of fine-tuning, the effectiveness of Mask
Generation Module and the potential of training on more data (Sec. 4.2). Finally,
we demonstrate its application for the task of open-set 3D instance segmentation
as proposed in OpenMask3D [51] (Sec. 4.3).

4.1 Comparing with State-of-the-Art Methods

Datasets. We first evaluate on the recently released ScanNet++ [58] which
includes high-resolution 3D scans captured at sub-millimeter precision, and fine-
grained annotations covering objects of varying sizes. Due to its comprehensive
data annotation, all of our analytical experiments in Sec. 4.2 are also based
on it. Next, we adopt the ScanNet200 [13, 44], which builds upon the classic
ScanNet [13] dataset and extends the semantic annotations to 200 classes. Then,
we test our model on the nuScenes [4] outdoor dataset. For training our model,
we employ ScanNet [13, 44], which is collected through a lightweight RGB-D
scanning process. See the appendix for the implementation details of our method.

Methods in Comparison. We compare with a wide range of prior art meth-
ods from different categories. Mask3D [46] is a state-of-the-art fully-supervised
method trained on manually annotated 3D segmentation masks. Segment3D has
the same backbone as Mask3D but instead of training on manually annotated
3D masks, it learns from automatically generated masks. Felzenszwalb et al. [20]
proposed a graph-based method for segmentation which operates directly on
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Table 1: Segmentation Scores on ScanNet++ [58]. The metric is average preci-
sion (AP) on the validation split. We report scores with and without post-processing
(more details in Sec. 4.1). For reference, we show results on Mask3D trained on manual
ScanNet200 labels.

Avg. Inference without post-processing with post-processing

Model Time/s AP AP50 AP25 AP AP50 AP25

Mask3D [46] 0.7 8.7 15.5 27.2 14.3 21.3 29.9

SAM3D [57] 386.7 3.9 9.3 22.1 8.4 16.1 30.0
Felzenszwalb et al. [20] 12.6 5.8 11.6 27.2 – – –
Segment3D (Ours) 0.7 13.0 23.8 38.3 20.2 30.9 42.7

the 3D geometry. UnScene3D [45] leverages self-supervised color and geome-
try features to obtain coarse segmentation and refines it through self-training.
SAM3D [57] merges the segmentation masks of RGB-D images generated by
SAM [28] to obtain the 3D segmentation result.

Metrics. We report average precision (AP) scores at IoU thresholds of 25%,
50%, and averaged over the range [0.5:0.95:05] between predicted and ground
truth masks. Consistent with common practices in the field [47, 49, 54], we also
report scores after post-processing. This involves smoothing the predicted masks
through graph-based oversegmentation [20], and splitting distant parts of the
same mask via connected component clustering DBSCAN [19]. We also report
the average inference time for these methods on ScanNet++ tested on A100.

Results on ScanNet++. Scores are reported in Table 1. Segment3D out-
performs all previous methods by at least +4.3 AP and up to +12.7 AP25.
Notably, we achieve such improvements without any ground-truth mask anno-
tation contrary to Mask3D trained on ScanNet200. In general, the performance
of Mask3D (and other fully-supervised methods) depends on the quality of the
annotated training dataset; often the manual annotation of small objects (pens,
cellphones) or other fine-details is challenging. Instead, Segment3D relies on au-
tomatically generated high-quality masks from MGM using the 2D foundation
model, which can capture fine-grained details without human annotation effort.
Table 4 highlights that Segment3D excels particularly in predicting the more
challenging small object masks. Furthermore, our method significantly outper-
forms SAM3D, indicating that Segment3D can circumvent the noise that arises
during the merging process of SAM3D. Additionally, As shown in Table 1, Seg-
ment3D is three-order-of-magnitude faster than SAM3D in inference speed.

Fig. 6 shows segmentation results of several representative examples on Scan-
Net++. As can be seen, the scenes are quite diverse, presenting multiple chal-
lenges such as clutter and a wide range of mask sizes. Despite these challenges,
our model predicts quite accurate and well-localized segmentation masks. For
example, compared to Mask3D, our method is able to segment the finer-grained
objects on top of the bed and the shelf. The masks of the computer screen and
the chair in front of it are also less fragmented than predictions of the baselines.
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Table 2: Segmentation Scores on
ScanNet200 [13, 44]. The evaluation
metric is average precision on the val split.

Model AP AP50

Mask3D [46] 34.1 43.1

Felzenszwalb et al. [20] 6.1 12.1
UnScene3D [45] 15.9 32.2
SAM3D [57] 19.0 32.5
Segment3D (Ours) 27.7 39.8

Table 3: Segmentation Scores on
nuScenes [4]. The evaluation metric is
average precision on the val split.

Model GT Labels AP50 AP25

zero-shot test
Mask3D × 15.3 25.5
Segment3D × 37.8 48.0

fine-tuned on nuScenes
Mask3D ✓ 46.5 57.8
Segment3D × 42.5 55.5

Results on ScanNet200. As illustrated in Table 2, Segment3D outperforms
all baselines that require no manual 3D labels, and even shows competitive re-
sults with Mask3D, which is trained on ScanNet200. Compared to Unscene3D,
which leverages self-supervised color and geometry features to obtain coarse seg-
mentation, we achieve superior results by using the Mask Generation Module to
generate high-quality complete masks.

Results on Outdoor Data. The performance on nuScenes is demonstrated
in Table 3. We observe that even though Segment3D is trained using purely
indoor data, applying it directly to outdoor data produces surprisingly good
results. This indicates the stronger generalizability of Segment3D over the fully-
supervised method Mask3D when transferring from indoor to outdoor scenes.
Furthermore, we report scores with fine-tuning on nuScenes which leads to over-
all improved results. Similar to Table 2, Mask3D performs best, however, Seg-
ment3D achieves very competitive performance without any hand-labeled training
data. Refer to the appendix for additional results on STPLS3D [7] and Paris-
Lille-3D [43] datasets.

4.2 Analysis Experiments

Performance on Different Mask Sizes. We proceed with an analysis of the
performance of our Segment3D and Mask3D (the best-performing baseline) on
object masks of various sizes. We categorize the size of masks based on the
number of points they contain (small: [0, 2k], medium: [2k, 15k] large: [15k, ∞]).
The results are reported in Table 4. Our method yields significantly improved

Table 4: Segmentation Scores on Different Mask Sizes. Segmented3D improves
over Mask3D, especially on small object masks. Details are in Sec. 4.2.

Mask Size Large Medium Small

ScanNet++ AP AP50 AP AP50 AP AP50

Mask3D 13.8 25.1 13.6 23.3 1.8 4.3
Segment3D 18.3 31.9 16.6 29.8 8.4 17.3

(+ 4.5) (+ 6.8) (+ 3.0) (+ 6.5) (+ 6.6) (+ 13.0)
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Fig. 6: Qualitative Results on ScanNet++. From top to bottom, we show the col-
ored input 3D scenes, the segmentation masks predicted by SAM3D [57], Mask3D [46],
our Segment3D and the ground truth 3D mask annotations.

segmentation results on objects of various sizes, especially on small objects. This
confirms our intuition that Mask3D performs poorly on small-sized object masks
as those are typically harder to manually annotate. In contrast, Segment3D
utilizes masks generated by MGM with the foundation model as supervision,
capturing fine-grained scene details. This showcases the usefulness of foundation
models and raises the question if manually labeled large-scale 3D datasets are
necessary for training 3D point cloud segmentation models.

The Importance of Two-Stage Training. Next, we compare the performance
of Segment3D pre-trained solely on partial RGB-D point clouds (Stage 1) and
with additional fine-tuning on full point clouds (Stage 2). Scores are reported
in Table 5. The additional fine-tuning stage almost doubles the segmentation
performance of our model on the most challenging AP metric. By training with
the predicted high-confidence masks, Segment3D effectively reduces the inherent
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Table 5: The Importance of Two-Stage Training. Fine-tuning on full point clouds
supervised by confident predicted 3D masks significantly surpasses pre-training on
projected 2D SAM masks alone.

Training Stages AP AP50 AP25

Pre-Training (Stage 1) 6.8 14.2 30.6
+ Fine-Tuning (Stage 2) 13.0 (+ 6.2) 23.8 (+ 9.6) 38.3 (+ 7.7)

Table 6: Effectiveness of Mask Generation Module. Compared to the model
trained with masks generated by Automatic-SAM, our model shows improvement
across all object mask sizes, particularly for medium-sized and large objects.

Mask Size Large Medium Small

Masks Generated by AP AP50 AP AP50 AP AP50

Automatic-SAM 16.8 30.6 14.2 27.2 7.5 16.2
MGM 18.3 31.9 16.6 29.8 8.4 17.3

(+ 1.5) (+ 1.3) (+ 2.4) (+ 2.6) (+ 0.9) (+ 1.1)

domain gap between the partial point clouds derived from RGB-D images and
full 3D point clouds.

The Effectiveness of Mask Generation Module. To verify whether the
MGM enhances the model’s performance by reducing the over-segmentation is-
sue and providing more complete masks, we conducted evaluations on objects
of different sizes. As shown in Table 6, we can see that compared to the model
trained with masks generated by Automatic-SAM, our model notably improves
the performance of large and medium-sized objects which demonstrates the ef-
fectiveness of MGM.

Pre-Training with Additional Data. Since RGB-D data is available in abun-
dance and masks can be automatically generated, it is natural to ask if pre-
training on additional masks will further improve the overall performance. To
that end, we perform a first experiment where we select additional frames from
the training set of the ScanNet++ dataset (to increase the variety of training
data). Table 7 shows an impressive performance boost of +4.1 AP. For future
work, considering that this improvement is obtained simply by adding more au-
tomatically generated masks to the pre-training, our approach seems promising
to train on even more data. It could even be plausible to train on internet images
combined with monocular depth estimation, such as ZoeDepth [3], to compute
the partial point clouds.

4.3 Application: Open-Set Scene Understanding

A real-world application of our class-agnostic 3D segmentation method is open-
vocabulary 3D scene understanding, as implemented recently by OpenMask3D
[51]. Given a 3D scene, a user can search for arbitrary objects via text prompts
(see Fig. 7). A core component of OpenMask3D is Mask3D, which segments the
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Table 7: Results with Additional
Training Data. The performance is fur-
ther boosted with more training data.

Pre-Training Data AP AP50

ScanNet 13.0 23.8
ScanNet, ScanNet++ 17.1 (+ 4.1) 26.7 (+ 2.9)

Table 8: Open-Set 3D Scene Under-
standing. The evaluation metric is average
precision with an IoU threshold of 50%.

Segmentor ScanNet++ Replica

Mask3D [46] 15.0 18.0
Segment3D (Ours) 18.5 (+ 3.5) 18.4 (+ 0.4)

“a black eraser” “paper on the laptop” “scissors”

Fig. 7: Open-Set 3D Object Retrieval Results. Given a text prompt (bottom),
OpenMask3D [51] finds the corresponding object masks ■ in a given 3D scene (top).
We adapt OpenMask3D and use fine-grained masks from our Segment3D method. We
show 3D reconstructions and RGB images for better visualization (top left corner).

scene into a set of object masks. Since Mask3D is trained on the closed-set of
labeled annotations from ScanNet, its masks are not truly class-agnostic or open-
vocabulary. We therefore replace Mask3D with our class-agnostic Segment3D.
We evaluate on the closed-set labels of ScanNet++ and Replica in Table 8 and
report an improvement of up to +3.5 AP50. Since Segment3D can accurately
generate fine-grained masks in a class-agnostic manner, we are able to retrieve
objects such as “eraser”, “paper” and “scissors”, which are small in scale.

5 Conclusion
We have presented Segment3D, a simple, yet powerful class-agnostic 3D segmen-
tation model. Segment3D employs a two-stage training framework that requires
no manually annotated labels. We propose a Mask Generation Module to auto-
matically generate high-quality, complete training masks with the 2D foundation
model. The model is first pre-trained on RGB-D data with predicted 2D masks,
then fine-tuned on full point clouds. Segment3D shows strong generalization and
even outperforms existing 3D segmentation models that rely on hand-labeled
3D training scenes. Indeed, this raises the question of whether hand-labeled 3D
training datasets are as essential as they were once thought to be.

Acknowledgement. Gao Huang is supported in part by the National Natural
Science Foundation of China under grants (62321005 and 42327901). Francis
Engelmann is partially supported by an ETH AI Center postdoctoral research
fellowship and an ETH Zurich Career Seed Award. Songyou Peng is supported
by an Innosuisse funding (100.567 IP-ICT), and Ayça Takmaz is supported by
an Innosuisse grant (48727.1 IP-ICT).



Segment3D 15

References

1. Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese,
S.: 3D Semantic Parsing of Large-Scale Indoor Spaces. In: CVPR (2016) 4

2. Baruch, G., Chen, Z., Dehghan, A., Dimry, T., Feigin, Y., Fu, P., Gebauer, T., Joffe,
B., Kurz, D., Schwartz, A., et al.: ARKitScenes: A Diverse Real-World Dataset
for 3D Indoor Scene Understanding using Mobile RGB-D Data. arXiv preprint
arXiv:2111.08897 (2021) 4

3. Bhat, S.F., Birkl, R., Wofk, D., Wonka, P., Müller, M.: ZoeDepth: Zero-Shot Trans-
fer by Combining Relative and Metric Depth. arXiv preprint arXiv:2302.12288
(2023) 13

4. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan,
A., Pan, Y., Baldan, G., Beijbom, O.: nuScenes: A Multimodal Dataset for Au-
tonomous Driving. In: CVPR (2020) 3, 9, 11, 19

5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
to-End Object Detection with Transformers. In: ECCV (2020) 8

6. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging Properties in Self-Supervised Vision Transformers. In: ICCV (2021)
4

7. Chen, M., Hu, Q., Yu, Z., Thomas, H., Feng, A., Hou, Y., McCullough, K., Ren,
F., Soibelman, L.: STPLS3D: A Large-Scale Synthetic and Real Aerial Photogram-
metry 3D Point Cloud Dataset. arXiv preprint arXiv:2203.09065 (2022) 11, 19,
20

8. Chen, R., Liu, Y., Kong, L., Zhu, X., Ma, Y., Li, Y., Hou, Y., Qiao, Y., Wang,
W.: CLIP2Scene: Towards Label-Efficient 3D Scene Understanding by CLIP. In:
CVPR (2023) 4

9. Chen, S., Fang, J., Zhang, Q., Liu, W., Wang, X.: Hierarchical Aggregation for 3D
Instance Segmentation. In: ICCV (2021) 2, 3

10. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-Attention
Mask Transformer for Universal Image Segmentation. In: CVPR (2022) 7, 8

11. Cheng, B., Schwing, A., Kirillov, A.: Per-Pixel Classification is Not All You Need
for Semantic Segmentation. In: NeurIPS (2021) 7

12. Choy, C., Gwak, J., Savarese, S.: 4D Spatio-Temporal ConvNets: Minkowski Con-
volutional Neural Networks. In: CVPR (2019) 7, 19

13. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scan-
Net: Richly-Annotated 3D Reconstructions of Indoor Scenes. In: CVPR (2017) 2,
3, 4, 6, 7, 9, 11, 19

14. Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: BundleFusion:
Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-
integration. TOG (2017) 3, 8

15. Delitzas, A., Takmaz, A., Tombari, F., Sumner, R., Pollefeys, M., Engelmann,
F.: SceneFun3D: Fine-Grained Functionality and Affordance Understanding in 3D
Scenes. In: CVPR (2024) 2

16. Ding, R., Yang, J., Xue, C., Zhang, W., Bai, S., Qi, X.: PLA: Language-Driven
Open-Vocabulary 3D Scene Understanding. In: CVPR (2023) 4

17. Engelmann, F., Bokeloh, M., Fathi, A., Leibe, B., Nießner, M.: 3D-MPA: Multi-
Proposal Aggregation for 3D Semantic Instance Segmentation. In: CVPR (2020)
2

18. Engelmann, F., Manhardt, F., Niemeyer, M., Tateno, K., Tombari, F.: OpenNeRF:
Open Set 3D Neural Scene Segmentation with Pixel-Wise Features and Rendered
Novel Views. In: ICLR (2024) 2



16 Huang et al.

19. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In: KDD (1996) 10,
19

20. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient Graph-Based Image Segmenta-
tion. IJCV (2004) 9, 10, 11

21. Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Open-Vocabulary Object Detection via Vision
and Language Knowledge Distillation. In: ICLR (2022) 4

22. Ha, H., Song, S.: Semantic Abstraction: Open-World 3D Scene Understanding from
2D Vision-Language Models. In: CoRL (2022) 4

23. Huang, T., Dong, B., Yang, Y., Huang, X., Lau, R.W., Ouyang, W., Zuo, W.:
CLIP2Point: Transfer CLIP to Point Cloud Classification with Image-Depth Pre-
Training. In: ICCV (2023) 4

24. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton,
J., Hodges, S., Freeman, D., Davison, A., et al.: KinectFusion: Real-time 3D Re-
construction and Interaction using a Moving Depth Camera. In: UIST (2011) 3,
8

25. Jia, C., Yang, Y., Xia, Y., Chen, Y.T., Parekh, Z., Pham, H., Le, Q., Sung, Y.H.,
Li, Z., Duerig, T.: Scaling up Visual and Vision-Language Representation Learning
with Noisy Text Supervision. In: ICML (2021) 2, 4

26. Jiang, L., Zhao, H., Shi, S., Liu, S., Fu, C.W., Jia, J.: PointGroup: Dual-Set Point
Grouping for 3D Instance Segmentation. In: CVPR (2020) 3

27. Kerr, J., Kim, C.M., Goldberg, K., Kanazawa, A., Tancik, M.: LERF: Language
Embedded Radiance Fields. In: ICCV (2023) 2, 4

28. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment Anything. In: ICCV (2023)
1, 2, 4, 5, 6, 10

29. Kobayashi, S., Matsumoto, E., Sitzmann, V.: Decomposing Nerf for Editing via
Feature Field Distillation. In: NeurIPS (2022) 4

30. Lemke, O., Bauer, Z., Zurbrügg, R., Pollefeys, M., Engelmann, F., Blum, H.: Spot-
compose: A framework for open-vocabulary object retrieval and drawer manipu-
lation in point clouds. In: 2nd Workshop on Mobile Manipulation and Embodied
Intelligence at ICRA 2024 (2024) 2

31. Liang, Z., Li, Z., Xu, S., Tan, M., Jia, K.: Instance Segmentation in 3D Scenes
using Semantic Superpoint Tree Networks. In: CVPR (2021) 2, 3

32. Lu, J., Deng, J., Wang, C., He, J., Zhang, T.: Query Refinement Transformer for
3D Instance Segmentation. In: ICCV (2023) 2, 3

33. Lu, Y., Xu, C., Wei, X., Xie, X., Tomizuka, M., Keutzer, K., Zhang, S.: Open-
Vocabulary Point-Cloud Object Detection without 3D Annotation. In: CVPR
(2023) 2, 4

34. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: Fully Convolutional Neural Net-
works for Volumetric Medical Image Segmentation. In: 3DV (2016) 8

35. Nekrasov, A., Schult, J., Litany, O., Leibe, B., Engelmann, F.: Mix3D: Out-of-
context data augmentation for 3D scenes. In: 3DV (2021) 2

36. Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., Fer-
nandez, P., Haziza, D., Massa, F., El-Nouby, A., et al.: DINOv2: Learning Robust
Visual Features without Supervision. arXiv preprint arXiv:2304.07193 (2023) 4

37. Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D., Lischinski, D.: StyleCLIP:
Text-Driven Manipulation of StyleGAN Imagery. In: ICCV (2021) 4

38. Peng, S., Genova, K., Jiang, C., Tagliasacchi, A., Pollefeys, M., Funkhouser, T.,
et al.: OpenScene: 3D Scene Understanding with Open Vocabularies. In: CVPR
(2023) 2, 4



Segment3D 17

39. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep Learning on Point Sets for
3D Classification and Segmentation. In: CVPR (2017) 2

40. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: NeurIPS (2017) 2

41. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning Transferable Visual Models
from Natural Language Supervision. In: ICML (2021) 2, 4

42. Rao, Y., Zhao, W., Chen, G., Tang, Y., Zhu, Z., Huang, G., Zhou, J., Lu, J.:
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting.
In: CVPR (2022) 4

43. Roynard, X., Deschaud, J.E., Goulette, F.: Paris-Lille-3D: A Large and High-
Quality Ground-Truth Urban Point Cloud Dataset for Automatic Segmentation
and Classification. IJRR (2018) 11, 19, 20

44. Rozenberszki, D., Litany, O., Dai, A.: Language-Grounded Indoor 3D Semantic
Segmentation in the Wild. In: ECCV (2022) 2, 3, 9, 11, 19

45. Rozenberszki, D., Litany, O., Dai, A.: UnScene3D: Unsupervised 3D Instance Seg-
mentation for Indoor Scenes. In: CVPR (2024) 10, 11

46. Schult, J., Engelmann, F., Hermans, A., Litany, O., Tang, S., Leibe, B.: Mask3D:
Mask Transformer for 3D Semantic Instance Segmentation. In: ICRA (2023) 1, 2,
3, 7, 8, 9, 10, 11, 12, 14, 20, 21, 22

47. Schult, J., Engelmann, F., Kontogianni, T., Leibe, B.: DualConvMesh-Net: Joint
Geodesic and Euclidean Convolutions on 3D Meshes. In: CVPR (2020) 2, 10

48. Straub, J., Whelan, T., Ma, L., Chen, Y., Wijmans, E., Green, S., Engel, J.J.,
Mur-Artal, R., Ren, C., Verma, S., et al.: The Replica Dataset: A Digital Replica
of Indoor Spaces. arXiv preprint arXiv:1906.05797 (2019) 4, 19

49. Sun, J., Qing, C., Tan, J., Xu, X.: Superpoint Transformer for 3D Scene Instance
Segmentation. In: AAAI (2023) 10

50. Sun, T., Hao, Y., Huang, S., Savarese, S., Schindler, K., Pollefeys, M., Armeni,
I.: Nothing stands still: A spatiotemporal benchmark on 3d point cloud registra-
tion under large geometric and temporal change. arXiv preprint arXiv:2311.09346
(2023) 2

51. Takmaz, A., Fedele, E., Sumner, R.W., Pollefeys, M., Tombari, F., Engelmann, F.:
OpenMask3D: Open-Vocabulary 3D Instance Segmentation. In: NeurIPS (2023) 2,
3, 4, 9, 13, 14, 19, 22

52. Takmaz, A., Schult, J., Kaftan, I., Akçay, M., Leibe, B., Sumner, R., Engelmann,
F., Tang, S.: 3D Segmentation of Humans in Point Clouds with Synthetic Data.
In: ICCV (2023) 2

53. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.:
KPConv: Flexible and Deformable Convolution for Point Clouds. In: ICCV (2019)
2

54. Vu, T., Kim, K., Luu, T.M., Nguyen, T., Yoo, C.D.: SoftGroup for 3D Instance
Segmentation on Point Clouds. In: CVPR (2022) 2, 3, 10

55. Weder, S., Blum, H., Engelmann, F., Pollefeys, M.: LabelMaker: Automatic Se-
mantic Label Generation from RGB-D Trajectories. In: 3DV (2024) 3

56. Yang, B., Wang, J., Clark, R., Hu, Q., Wang, S., Markham, A., Trigoni, N.: Learn-
ing Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. In:
NeurIPS (2019) 3

57. Yang, Y., Wu, X., He, T., Zhao, H., Liu, X.: SAM3D: Segment Anything in 3D
Scenes. In: ICCVW (2023) 2, 4, 5, 10, 11, 12, 21

58. Yeshwanth, C., Liu, Y.C., Nießner, M., Dai, A.: ScanNet++: A High-Fidelity
Dataset of 3D Indoor Scenes. In: ICCV (2023) 3, 9, 10, 19, 20, 21



18 Huang et al.

59. Yi, L., Zhao, W., Wang, H., Sung, M., Guibas, L.J.: GSPN: Generative Shape
Proposal Network for 3D Instance Segmentation in Point Cloud. In: CVPR (2019)
3

60. Yue, Y., Das, A., Engelmann, F., Tang, S., Lenssen, J.: Improving 2D Feature
Representations by 3D-Aware Fine-Tuning. In: ECCV (2024) 2

61. Yue, Y., Kontogianni, T., Schindler, K., Engelmann, F.: Connecting the Dots:
Floorplan Reconstruction Using Two-Level Queries. In: CVPR (2023) 2

62. Zeng, Y., Jiang, C., Mao, J., Han, J., Ye, C., Huang, Q., Yeung, D.Y., Yang, Z.,
Liang, X., Xu, H.: CLIP2: Contrastive Language-Image-Point Pretraining from
Real-World Point Cloud Data. In: CVPR (2023) 4

63. Zhang, R., Guo, Z., Zhang, W., Li, K., Miao, X., Cui, B., Qiao, Y., Gao, P., Li,
H.: PointCLIP: Point Cloud Understanding by CLIP. In: CVPR (2022) 4

64. Zurbrügg, R., Liu, Y., Engelmann, F., Kumar, S., Hutter, M., Patil, V., Yu, F.:
ICGNet: A Unified Approach for Instance-Centric Grasping. In: ICRA (2024) 2



Segment3D 19

Appendix

A Implementation Details

Setup. ScanNet [13, 44] comprises 1513 indoor scenes, encompassing ∼2 · 106
views, along with 3D camera poses and surface reconstruction. We train our
model with the training set of ScanNet. For Stage 1, we sample every 25th

frame of the RGB-D sequences (∼ 1 FPS) and obtain approximately 76 · 103
training frames. For Stage 2, we use the ∼1.2 · 103 reconstructed 3D scans of
indoor spaces as full point clouds. Note that in both stages, we do not use any
annotations of ScanNet. For the experiment with pre-training using more data,
we select additional frames from the training set of ScanNet++ [58] (to increase
the variety of training data). We sample frames at roughly 1 FPS resulting in
34k frames, in addition to the previous 76k frames of ScanNet.

For the class-agnostic segmentation, we evaluate on popular datasets includ-
ing ScanNet++ [58], ScanNet200 [13,44] and nuScenes [4], STPLS3D [7], Paris-
Lille-3D [43] (PL3D) urban outdoor datasets. To apply the models trained on
room-sized indoor scenes to the outdoor data, we split the large outdoor scenes
into multiple smaller crops due to GPU memory limitations, and the point cloud
coordinates are scaled down to be better aligned with the room-sized training
data. Since the test set labels of PL3D are not publicly available, we use its train-
ing set to perform the zero-shot evaluation. For the open-set scene understand-
ing, we adapt our model to OpenMask3D [51], and evaluate on the validation
set of ScanNet++ [58]. We further test on the office0, office1, office2, office3,
office4, room0, room1, room2 scenes of Replica [48] following OpenMask3D [51].

0.3 0.4 0.5 0.6 0.7
Threshold c

23.0

23.4

23.8

AP
50

Fig.A: Performance for
varying values of τc.

Masks Generation. In Stage 1, after adopting the au-
tomatic mask generation pipeline of SAM, we utilize the
proposed Mask Generation Module (MGM) to select
high-quality, complete masks. The masks generated by
MGM are then projected into 3D to serve as the super-
vision signal. In Stage 2, we first apply DBSCAN [19]
to split erroneously merged instances within the pre-
dicted masks and then select the masks with a confi-
dence threshold τc. Fig. A shows segmentation perfor-
mance for varying values of τc. In our experiments, we set τc = 0.6.

Model Training. The backbone of Segment3D is a Minkowski Res16UNet34C [12].
We perform standard data augmentations, including horizontal flipping, ran-
dom rotations, elastic distortion and random scaling. In addition, we use color
augmentations including jittering, brightness and contrast augmentation. For
Stage 1, we use AdamW optimizer and a one-cycle learning rate schedule with
a peak learning rate of 2 × 10−4. The model is trained for 20 epochs with a
batch size of 16 partial RGB-D point clouds. Training on 2 cm voxelization takes
approximately 60 hours with 2 RTX3090 GPUs. For Stage 2, the initial learning
rate is set to 2 × 10−4. We train the model for 50 epochs with a batch size of
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(a) Performance with increasing 
ScanNet data

(b) Performance with increasing 
additional ScanNet++ data

Fig. B: Performance with Increasing Training Data. Scaling up the training
data can lead to consistent performance improvements.

Table A: Segmentation Scores on
STPLS3D [7] dataset.

Model AP50 AP25

Mask3D 29.4 40.0
Segment3D (Ours) 37.7 47.6

Table B: Segmentation Scores on
Paris-Lille-3D [43] dataset.

Model AP50 AP25

Mask3D 1.5 3.3
Segment3D (Ours) 4.2 6.3

8 full 3D point clouds. Training takes ∼ 10 hours with 2 cm voxels on 4 A100
GPUs. We set the number of queries as 100 for Stage 1 and 150 for Stage 2 during
training. For Stage 1, following Mask3D [46], the values of λobj, λdice, and λce
are set to 2, 2, and 5, respectively. For Stage 2, the values of λdice and λce are
set to 2 and 5, respectively.

B Performance with Increasing Training Data
We plot the change in performance as the training data from ScanNet or Scan-
Net++ increases in Fig. B. In both scenarios, a performance increase is observed,
confirming that additional automatic labels can further enhance results.

C Additional Results on Outdoor Data
We report the zero-shot segmentation results on STPLS3D [7] and Paris-Lille-
3D [43] datasets in Table A and Table B respectively. Segment3D exhibits greater
generalization capabilities compared to the fully-supervised Mask3D when trans-
ferring from indoor to outdoor scenes.

D Additional Qualitative Results
We show more qualitative results on ScanNet++ [58] dataset in Fig. C. Seg-
ment3D demonstrates superior results in segmenting fine-grained details and
can even identify small object masks not annotated in the ground truth. Conse-
quently, the full performance of Segment3D might not be accurately reflected in
the scores. We also provide an example of open-set 3D object retrieval within a
scene in Fig. D. Furthermore, we present the qualitative results on Paris-Lille-
3D [43] dataset in Fig. E.
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Fig. C: Additional qualitative results on ScanNet++ [58]. From left to right, we
show the colored input 3D scenes, the segmentation masks predicted by SAM3D [57],
Mask3D [46], our Segment3D and the ground truth 3D mask annotations. Segment3D
shows superior results in segmenting fine-grained details and can even identify small
object masks not annotated in the ground truth.
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“model building”

“cow”

“porcelain”

“spray”

“orange”

Fig.D: An example of open-set 3D object retrieval in a scene. Given a
text prompt, OpenMask3D [51] based on Segment3D finds the corresponding object
masks ■ in a given 3D scene. Since Segment3D can accurately generate fine-grained
masks in a class-agnostic manner, we are able to retrieve small-scale objects of interest.
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Fig. E: Qualitative Results on Paris-Lille-3D. We show segmentations predicted
by Mask3D [46] (top) and our Segment3D (bottom). Segment3D performs impressively
well even on the outdoor scenes it has never seen during training.
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