
VDBFuzz: Understanding and Detecting Crash Bugs in Vector
Database Management Systems

Shenao Wang∗†
shenaowang@hust.edu.cn

Huazhong University of Science and
Technology

Wuhan, China

Zhao Liu∗
r3pwnx@gmail.com
360 AI Security Lab

Beijing, China

Yanjie Zhao†
yanjie_zhao@hust.edu.cn

Huazhong University of Science and
Technology

Wuhan, China

Quanchen Zou‡
zouquanchen@gmail.com

360 AI Security Lab
Beijing, China

Haoyu Wang†‡
haoyuwang@hust.edu.cn

Huazhong University of Science and
Technology

Wuhan, China

ABSTRACT

Vector Database Management Systems (VDBMSs) have become
critical in LLM-integrated applications. However, their inherent
complexity, including high-dimensional data structures, diverse
indexing strategies, and heterogeneous implementations, makes
them prone to reliability issues. Among these, crash bugs caused
by boundary condition failures, such as invalid configurations and
mismatched data dimensions, are particularly severe. These bugs
can result in serious consequences like data loss, corrupted indexes,
and cascading failures. To address this gap, we propose VDBFuzz,
the first fuzzing framework specifically designed to detect VDBMS
crash bugs through boundary value testing. VDBFuzz systemati-
cally leverages techniques to collect high-quality seeds, generate
edge-case inputs, and explore complex API interactions. We eval-
uated VDBFuzz on 8 representative VDBMSs, including native
systems (e.g., Weaviate, Milvus), libraries (e.g., Faiss, hnswlib), and
extended systems (e.g., pgvector, sqlite-vec). VDBFuzz achieved up
to 3x higher code coverage compared to state-of-the-art tools such
as RESTler and Schemathesis, uncovering 19 previously unknown
bugs, including 13 crash vulnerabilities and 6 runtime exceptions.
These results highlight VDBFuzz’s effectiveness in improving the
robustness and reliability of VDBMSs.

CCS CONCEPTS

• Security andprivacy→ Software security engineering;Denial-
of-service attacks; • Software and its engineering→ Software

testing and debugging.

∗Both authors contributed equally to this research.
†Hubei Key Laboratory of Distributed System Security, Hubei Engineering Research
Center on Big Data Security, School of Cyber Science and Engineering, Huazhong
University of Science and Technology.
‡Haoyu Wang (haoyuwang@hust.edu.cn) and Quanchen Zou (zouquanchen@gmail
.com) are the corresponding authors.

Please use nonacm option or ACM Engage class to enable CC licenses
This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.
ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2025-3/26/04
https://doi.org/10.1145/3744916.3773139

ACM Reference Format:

ShenaoWang, Zhao Liu, Yanjie Zhao, Quanchen Zou, andHaoyuWang. 2026.
VDBFuzz: Understanding and Detecting Crash Bugs in Vector Database
Management Systems. In 2026 IEEE/ACM 48th International Conference on
Software Engineering (ICSE ’26), April 12–18, 2026, Rio de Janeiro, Brazil.ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3744916.3773139

1 INTRODUCTION

Vector Database Management Systems (VDBMSs) have emerged as
a crucial technology in the era of Large Language Models (LLMs).
Unlike traditional relational or NoSQL databases [22], which primar-
ily handle structured or semi-structured data, VDBMSs are specifi-
cally optimized for storing and querying vector embeddings, which
are numerical representations of multimodal data such as text, im-
ages, and audio [41, 53]. Popular frameworks such as Pinecone [43],
Milvus [35], and Weaviate [61] have become indispensable in pow-
ering various applications, including search engines [53], recom-
mendation systems [53, 56], and LLM-based workflows [26, 70]. In
particular, VDBMSs play a critical role in enabling advanced LLM ca-
pabilities, such as Retrieval-Augmented Generation (RAG) [26] and
long-term memory [24, 25]. As LLMs are increasingly integrated
into real-world applications, VDBMSs have become the backbone
for supporting their scalability and effectiveness.

Despite their growing adoption and importance, ensuring the
reliability and robustness of VDBMS remains a significant chal-
lenge [58, 64]. These systems are inherently complex due to their re-
liance on high-dimensional data structures, various indexing strate-
gies, and heterogeneous language implementations [35, 46, 61].
The complexity makes them particularly susceptible to reliability
issues [58, 64], such as crashes, unexpected errors, or degraded per-
formance. According to a recent empirical study [64], crash bugs
account for 15.1% of all observed defects in VDBMS, frequently
manifesting as abrupt process terminations, segmentation faults,
or unrecoverable runtime exceptions. For example, systems like
Qdrant [46] and txtai [39] exhibit high crash rates (up to 40.7% of
their total bugs). These failures can lead to severe consequences
such as data loss, corrupted vector indexes, or cascading failures in
downstream applications, emphasizing the urgent need for system-
atic methods to detect and mitigate crash bugs in VDBMSs.

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://doi.org/10.1145/3744916.3773139
https://doi.org/10.1145/3744916.3773139

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Shenao Wang et al.

However, existing works on VDBMS testing have largely focused
on performance evaluation [4, 38, 45, 71], with limited emphasis on
systematic reliability testing. Performance testing primarily mea-
sures efficiency under limited predefined scenarios, but it fails to
uncover deeper issues that require exploring diverse and unpre-
dictable inputs beyond predefined ones. The most relevant work
MeTMaP has introduced metamorphic testing for detecting false
vector matching problems in LLM augmented generation. Neverthe-
less, it focuses on algorithm-level inaccuracies in vector similarity
computations rather than addressing implementation-specific de-
fects in VDBMSs. While traditional testing approaches, such as
unit tests [15, 60] and integration tests [34], are commonly used to
ensure the functionality of VDBMSs, they primarily rely on man-
ually written test cases by developers and often fail to uncover
deeper reliability issues and edge-case vulnerabilities [17, 59]. Fuzz
testing has proven to be an effective approach for uncovering hid-
den bugs and vulnerabilities in other domains, such as traditional
DBMS [19, 23, 53, 67], operating systems [7, 10, 68], and other vari-
ous applications [8, 11, 65]. Despite these advancements, there is
still a significant gap in applying fuzz testing to VDBMSs, particu-
larly for detecting implementation-level reliability issues.

To address these gaps, we conducted a preliminary study to an-
alyze the characteristics of crash bugs and developed VDBFuzz,
the first fuzzing framework specifically designed for VDBMSs. Our
preliminary study of crash bugs across 15 state-of-the-art VDBMSs
revealed that 44.5% of these defects arise from improper handling
of boundary inputs (e.g., extreme parameter values, mismatched
data dimensions, or malformed structures) and 15.6% of them arise
from dependencies on specific API call sequences (e.g., incorrect
order, omission, or redundancy of operations). Based on these in-
sights, VDBFuzz systematically explores crash-inducing behaviors
through three key stages: 1) Seed Collection, which extracts rep-
resentative API usage patterns from unit tests, example scripts,
and documentation to form a structured test corpus; 2) Template-
based Input Mutation, which generates diverse inputs by applying
reusable mutation patterns targeting boundary values, invalid con-
figurations, and edge cases; and 3) API Sequence Mutation, which
evaluates the robustness of VDBMSs bymutating API call sequences
to uncover defects caused by logical inconsistencies or invalid state
transitions. By combining these components, VDBFuzz is capable of
systematically testing VDBMSs and detecting VDBMS crash bugs.

To evaluate the effectiveness of VDBFuzz, we conducted compre-
hensive experiments on 8 representative VDBMSs, including native
VDBMSs (e.g., Weaviate, Milvus, Qdrant), VDBMS libraries (e.g.,
Faiss, HNSWLib, Annoy), and extended VDBMSs (e.g., Pgvector,
Sqlite-vec). When compared to state-of-the-art fuzzing tools such
as RESTler and Schemathesis, VDBFuzz demonstrated superior
performance on native VDBMSs, achieving 3x higher coverage on
average. For example, inWeaviate, VDBFuzz covered 15,485 lines of
code, compared to RESTler’s 4,519 and Schemathesis’s 1,811, over
the same 120-minute testing period. An ablation study further con-
firmed the complementary nature of VDBFuzz’s mutation strate-
gies, with each component contributing meaningfully to the overall
coverage. Overall, VDBFuzz uncovered 19 previously unknown
bugs across all tested systems, including 13 crash vulnerabilities
and 6 runtime exceptions, with root causes linked to boundary

condition failures such as dimension mismatches, invalid configu-
rations, and malformed inputs. These results validate VDBFuzz’s
effectiveness in systematically detecting crash bugs, significantly
improving the robustness and reliability of VDBMSs.
Contributions. To summarize, this paper makes the following key
contributions:
• Investigation of Crash Bugs in VDBMSs.We conducted a
detailed analysis of crash bugs across 15 VDBMSs, revealing
that 44.5% of defects arise from improper handling of boundary
inputs, while 15.6% stem from invalid API call sequences. These
findings informed the design of VDBFuzz to systematically
address these critical vulnerabilities.

• Design and Implementation of VDBFuzz:We propose VDB-
Fuzz, the first fuzzing framework specifically designed for
VDBMSs. VDBFuzz systematically explores crash-inducing be-
haviors by analyzing real-world API usage, generating diverse
edge-case inputs, and testing complex API interactions to en-
sure robustness and reliability.

• Real-world Impact: We evaluated VDBFuzz on 8 represen-
tative VDBMSs. VDBFuzz achieved 3x higher code coverage
compared to state-of-the-art fuzzing tools, uncovering 19 pre-
viously unknown bugs, including 13 crash vulnerabilities and
6 runtime exceptions.

Artifact Availability. We have publicly released the full source
code of VDBFuzz at https://github.com/security-pride/VDBFuzz.

2 BACKGROUND AND MOTIVATION

Current VDBMS. VDBMSs are specialized databases designed to
handle high-dimensional vector embeddings. A typical VDBMS
architecture separates the server and client components to enable
scalability and flexibility [41, 58]. The server handles the core func-
tionalities, such as vector storage, index construction, and query
processing, while the client provides interfaces and wrappers for
interacting with the server. This separation allows VDBMSs to sup-
port multiple programming languages and frameworks, enabling
developers to integrate them easily into diverse applications. As
shown in Table 1, VDBMSs can be categorized into three main types
based on their design and functionality.

Table 1: Comparison of Popular VDBMS by Category.

Category VDBMS Star Fork Server Client

Library

Faiss [16] 37.3k 4.1k C++ Python
Hnswlib [40] 4.9k 731 C++ Python
Annoy [51] 14k 1.2k C++ Python

Native

Weaviate [61] 14.7k 1.1k Go Py/JS/Java/Go
Milvus [35] 37.7k 3.4k Go Py/JS/Java/Go
Qdrant [46] 26.2k 1.8k Rust Py/JS/Java/Rust/Go

Extended

pgvector [44] 17.7k 896 C Py/JS/Java/Go
sqlite-vec [52] 6.2k 233 C Python

(1) Vector Libraries: These libraries are typically foundational im-
plementations of indexing or search algorithms, designed to provide
high-performance vector operations. Examples include Faiss [16],

https://github.com/security-pride/VDBFuzz

VDBFuzz: Understanding and Detecting Crash Bugs in Vector Database Management Systems ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Indexing Strategy Quantization Strategy
Scalar Quantization

Vector Quantization

Product Quantization

Table (i.e. Flat, IVF)

Tree (i.e. ANNOY)

Graph (i.e. HNSW)

Query Strategy
Data Manipulation

Basic Search Query

Predicated Query

Multi-vector Query

VDBMS Client

RESTful/gRPC APIRequest

On-Premise Server

SaaS Server

Client
SDK

Metadata Raw Data

VDBMS Server
Vector Index Data

Figure 1: Typical architecture of VDBMSs.

Hnswlib [40], and Annoy [51]. They operate as lightweight libraries
embedded directly into applications and are implemented in high-
performance languages like C++, with bindings available for other
languages such as Python. While vector libraries excel in speed and
efficiency, they often lack the complete functionality of a VDBMS,
such as user access control and distributed deployment.

(2) Native VDBMS: These are purpose-built systems optimized
to handle vector workloads natively, providing a complete suite
of functionalities for vector similarity search, including dynamic
index updates, metadata filtering, and multi-vector queries [41, 53].
Examples of native VDBMS include Milvus [35], Qdrant [46], and
Weaviate [61]. These systems typically expose their functionalities
via network APIs, such as REST or gRPC, enabling distributed
deployment and large-scale production use cases.

(3) Extended Databases with Vector Support: Extended databases
are traditional databases, such as relational or NoSQL systems, that
incorporate additional functionality to support vector similarity
searches [9, 69]. These systems typically rely on plugins, extensions,
or external libraries to perform vector-related tasks. Examples in-
clude PostgreSQL [44] with the pgvector extension [42], Sqlite [52]
with vector similarity search [3], and MongoDB with integrated
vector search capabilities [36]. These systems allow organizations
to leverage existing database infrastructure while adding vector
similarity search functionality [66].
VDBMSWorkflow. The architecture of a VDBMS is designed to
efficiently handle the entire lifecycle of vector data, from storage to
indexing and query execution. A typical workflow within a VDBMS
involves three key steps, as illustrated in Figure 1. First, vector data,
typically represented as dense fixed-length floating-point arrays, is
stored alongside metadata such as labels and timestamps to enable
hybrid queries. Next, the system constructs indexes to accelerate
similarity searches [63]. Popular indexing techniques include table-
based indexes (e.g. LSH [6, 31] and IVF [18]), tree-based approaches
(e.g., ANNOY [51]), graph-based methods (e.g., HNSW [32]), and

quantization techniques (e.g., PQ [18, 28]). Finally, during query
execution, the system retrieves approximate nearest neighbors from
the index and applies metadata filters to refine results. VDBMSs
support various distance metrics, such as Euclidean distance and
cosine similarity, and some systems, like Milvus and Qdrant, allow
multi-vector queries to aggregate results dynamically.
VDBMS Bugs. While VDBMSs provide efficient solutions for man-
aging high-dimensional vector embeddings, they are not immune
to implementation flaws, which can lead to severe system vul-
nerabilities. VDBMS bugs refer to defects in the implementation
of vector storage, indexing, or query execution processes that
may cause system crashes or incorrect behaviors. For instance, a
notable example is a bug in the Faiss similarity search library’s
IndexIVFPQFastScan implementation1. As shown in Listing 1,
when the nlist parameter (number of Voronoi cells) is not byte-
aligned, attempting to reconstruct vectors via reconstruct or
reconstruct_batch triggers out-of-bounds memory access due to
invalid decoding of internal codes.

1 index = faiss.IndexIVFPQFastScan(
2 faiss.IndexFlatL2(dim),
3 dim ,
4 nlist =100,
5 dim // 2,
6 4,
7 faiss.METRIC_L2
8)
9 index.train(vec)

Listing 1: A crash bug in Faiss IndexIVFPQFastScan caused by

non-byte-aligned nlist values.

3 A PRELIMINARY STUDY

To gain a deeper understanding of crash bugs in VDBMSs, we
conducted a preliminary study to investigate the root cause of
these defects. This study aims to identify the functions where crash
bugs originate, the characteristics of crash-inducing inputs, and any
dependencies on specific function call sequences, thereby providing
actionable insights for the design of VDBFuzz.

3.1 Study Overview

To systematically investigate the root causes of crash bugs in VDBMS,
we design a methodology that includes data collection, filtering,
and classification of crash-related defects.
Data Collection and Scope.We based our analysis on the dataset
from Xie et al. [64], which includes 1,671 bug-fix pull requests (PRs)
from 15 widely used open-source VDBMSs, including Faiss [16],
Milvus [35], and Qdrant [46]. Using this dataset, we extracted and
analyzed 247 crash-related PRs, which account for 15.1% of all
recorded defects. To ensure the relevance of our study, we man-
ually reviewed these PRs to confirm their association with crash
symptoms, such as process termination, segmentation faults, or
unrecoverable runtime exceptions. To ensure the quality of our
dataset, we applied the following filtering criteria: 1) The PR must
document a root cause and include sufficient details, such as the
triggering input or the affected function; 2) The PR must address an

1https://github.com/facebookresearch/faiss/issues/4089

https://github.com/facebookresearch/faiss/issues/4089

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Shenao Wang et al.

Table 2: The number of collected VDBMS crash bugs.

VDBMS Ori. Filt. Storage Index Query Final

Chroma [12] 15 9 3 2 1 6
DeepLake [1] 18 11 1 – 6 7
Faiss [16] 1 - – 1 – 1

hnswlib [40] 2 - – 1 1 2
LanceDB [29] 13 7 2 1 3 6
Marqo [33] 8 2 1 – 5 6
Milvus [35] 62 17 9 3 33 45
pgvecto [42] 15 5 1 2 7 10
Qdrant [46] 11 4 5 1 1 7
txtai [39] 2 1 – – 1 1

Usearch [54] 8 4 – 1 3 4
Vespa [55] 23 12 – – 11 11
Voyager [2] 2 - – – 2 2
Weaviate [61] 26 6 10 2 8 20

Total 206 78 32 14 82 128

actual crash bug, confirmed by its resolution and subsequent merg-
ing into the main branch of the repository; 3) PRs with ambiguous
descriptions or bugs unrelated to core VDBMS functionalities (e.g.,
storage, indexing, or query execution) were excluded. After filtering
out ambiguous or irrelevant cases, we obtained a refined dataset
of 128 confirmed crash bugs. Our analysis focused on three key
aspects: the affected functions, the characteristics of their inputs,
and their dependency on specific function call sequences.
Threats to Validity. Similar to other empirical studies, our results
have the following limitations, which should be taken into account.
1) Potential Bias. Our analysis relies on the dataset from Xie et
al. [64], which is composed of bug-fix pull requests from 15 open-
source VDBMSs. This dataset may not fully represent all crash bugs
encountered in other proprietary or less widely adopted VDBMSs.
Additionally, the quality and completeness of the PR descriptions
vary across projects, potentially impacting the accuracy of our clas-
sification. 2) Filtering Criteria. The filtering criteria we applied to
identify crash-related bugs were designed to focus on core func-
tionalities (storage, indexing, and query execution). However, this
may have excluded other relevant crash bugs, such as those arising
from deployment, configuration, or build processes, which might
also impact system reliability in real-world scenarios. 3) Manual
Review and Labeling. Although we manually reviewed and labeled
the crash bugs, human error and subjectivity may have influenced
the classification. Despite these limitations, the preliminary study
provides a foundational understanding of crash bugs in VDBMSs
and highlights areas for further research and tool development.

3.2 General Findings

Our analysis of 128 crash bugs across 15 VDBMSs reveals three
complementary perspectives on their root causes: (1) where the
crashes occur (i.e., affected functional modules), (2) how improper
inputs trigger crashes, and (3) when specific operation sequences
lead to failures. Tomake these relations explicit, Table 3 summarizes
how the 128 crashes are partitioned by primary root cause category.
In particular, 56 crashes are mainly triggered by improper inputs,
and are further analyzed in Table 4; 20 crashes are mainly caused

Table 3: Overview of root causes for the 128 analyzed crash

bugs.

Root Cause Category # Bugs Percentage (%)

Input-related Crashes 56 43.8
Operation-sequence Dependencies 20 15.6
Data Races 11 8.6
High-concurrency Issues 6 4.7
Dependency Issues 4 3.1
Internal System Errors 31 24.2
Total 128 -

Table 4: Crash-inducing input categories with examples.

Input Examples Frequency (%)

Null/Zero Values Zero-length vectors 21 (37.5%)
Out-of-Bounds Values Negative indices 7 (12.5%)
Type Mismatches Mismatched data types 8 (14.3%)
Size Constraints Vector size beyond limits 3 (5.4%)
Index/Query Constraints Invalid search parameters 17 (30.4%)
Total – 56 (100.0%)

by operation-sequence dependencies, and are detailed in Table 5.
The remaining crashes are attributed to other causes, such as data
races, high-concurrency issues, dependency problems, and internal
system errors that are not directly exposed at the user-input level.
FunctionsAffected byCrashBugs.Our analysis shows that crash
bugs are primarily concentrated in three core functions: storage,
indexing, and query execution. Query execution functions are the
most affected, accounting for 64.1% of the total crash bugs. These
often involve complex logic for handling vector search queries,
ranking, and filtering, making them particularly prone to defects.
Storage-related functions, responsible for persisting and retriev-
ing vector data, account for 25% of the crashes. Indexing-related
functions, which manage the creation and maintenance of vector
indices, contribute to 10.9% of the crash bugs.
Crash-Inducing Inputs. As shown in Table 4, crash-inducing
inputs can be classified into five primary categories: null or zero
values, excessively large or negative values, type mismatches, viola-
tions of size constraints, and configuration constraints. Null or zero
values caused the most crashes (21 out of 56, 37.5%), often leading
to invalid states or unexpected behaviors in query execution or stor-
age operations. Out-of-bounds values, such as excessively large or
negative inputs (e.g., passing a vector of unsupported dimensions or
negative indices), accounted for 12.5% of crashes, frequently result-
ing in memory-related issues like buffer overflows or segmentation
faults. Type mismatches, where the input type did not match the
expected type (e.g., providing a string where a numeric vector ID
was required), contributed to 14.3% of crashes, exposing weaknesses
in type validation mechanisms. Violations of size constraints, such
as inputs exceeding the maximum allowed dimensions for vectors
or batch sizes, led to 5.4% of crashes. Configuration constraints,
specific to indexing or query API parameters (e.g., incorrectly con-
figuring the dimensionality of an index or the number of nearest
neighbors for a search query), accounted for 30.4% of crashes.

VDBFuzz: Understanding and Detecting Crash Bugs in Vector Database Management Systems ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Potential Bugs
Crash as Oracle

Initial Seeds

System Under Test

Seed Corpus

Pattern#1
General Data

§4.3 Template-based Input Mutation
Literature Value

Malformed Structure

Pattern#2 HNSW, IVF, LSH, PQ…

Composite StrategyIndexing Strategy

Vector Queries

Predicate Queries

Pattern#3
Query Strategy

§4.2 Seed Collection

Unit Test

class TestIndexFlatL2(unittest.TestCase):
def test_indexflat_l2_sync_norms_1(self):
(xt,xb,xq)

= get_dataset_2(32,0,10000,16)

index = faiss.IndexHNSWFlat(32, 32)
index.hnsw.efConstruction = 40

index.add(xb)
D1, I1 = index.search(xq, 10)

§4.4 API Sequence Mutation

Pattern#1: Order Violation

Pattern#2: Repetition

Pattern#3: Omission

Mismatched Types

Figure 2: The overall workflow of VDBFuzz.

Table 5: Crash bugs caused by operation dependencies.

Dependency Issue Frequency Percentage (%)

Missing Critical Operations 6 30.0
Incorrect Execution Order 7 35.0
Redundant Operations 5 25.0
Concurrent Operations 2 10.0
Total 20 100.0

Operation Sequence Dependencies. Our analysis identified 20
crash bugs caused by operation dependencies, as summarized in Ta-
ble 5. The most frequent issue is incorrect execution order, which
accounts for 35% of the cases. This issue arises when operations
are performed in an improper sequence, such as querying unini-
tialized resources or deleting active resources, leading to invalid
states or crashes. The second most common issue is missing critical
operations, observed in 30% of the cases. These bugs occur when es-
sential steps, such as resource initialization or cleanup, are skipped,
causing the system to transition into an incomplete or inconsistent
state. Redundant operations, responsible for 25% of the crashes,
result from repeated execution of the same operation, often lead-
ing to resource conflicts, system instability, or excessive resource
consumption. Finally, concurrent operations, observed in 10% of
the cases, highlight the challenges of managing shared resources
in a multi-threaded environment. These issues often manifest as
race conditions or deadlocks due to inadequate synchronization.
Insights for VDBFuzz Design. Taken together, these findings
directly motivate the design of VDBFuzz. First, the concentration
of crashes in storage, indexing, and especially query execution
functions suggests that a practical testing tool should prioritize
these core APIs when generating test workloads. Second, the preva-
lence of input-related crashes indicates that systematically mu-
tating user-provided parameters along common failure modes is
essential to reveal crash issues. Third, the presence of operation-
sequence–dependent crashes highlights the need to explore diverse
API invocation orders and state transitions, rather than treating
each API call in isolation.

4 WORKFLOW OF VDBFUZZ

The workflow of VDBFuzz is illustrated in Figure 2, which consists
of three main stages: 1) Seed Collection, 2) Template-based Input

Mutation, and 3) API Sequence Mutation. These stages are designed
to systematically explore crash-inducing behaviors in VDBMSs.

4.1 Preliminary and Definition

To better describe the thoughts behind VDBFuzz, we provide the
core definitions of concepts related to API constraints, input muta-
tion, and cross-VDBMS test case transfer.
VDBMS API Constraints. Let D denote the set of all possible
VDBMSs, and let A represent the set of all API functions exposed
by VDBMSs. For a specific VDBMS 𝐷 ∈ D, the subset of APIs
supported by 𝐷 is A𝐷 ⊆ A. Each API function 𝑎 ∈ A𝐷 accepts
input parameters P𝑎 and defines an input space I𝑎 . The valid input
space Ivalid

𝑎 is determined by a set of constraints C𝑎 , where each
constraint 𝑐 ∈ C𝑎 is a predicate:

𝑐 : I𝑎 → {true, false}.
The valid input space is then:

Ivalid
𝑎 = {x ∈ I𝑎 | ∀𝑐 ∈ C𝑎, 𝑐 (x) = true}.

In addition to exploring the valid input space, VDBFuzz also tests
invalid or boundary inputs in Ivariant

𝑎 = I𝑎 \ Ivalid
𝑎 to identify

crash-inducing behaviors.
Input Mutation. An input mutation is a transformation 𝜇 applied
to an input x ∈ I𝑎 , producing a new input x′ ∈ I𝑎 . Formally:

𝜇 : I𝑎 → I𝑎, x′ = 𝜇 (x).
The goal of mutation is to generate diverse inputs, including valid
inputs in Ivalid

𝑎 and boundary or invalid inputs in Ivariant
𝑎 .

API Sequence Mutation. API sequence mutation involves modi-
fying the order or structure of a sequence of API calls to uncover
crash-inducing behaviors. Let S = [𝑠1, 𝑠2, . . . , 𝑠𝑘] represent an or-
dered sequence of API calls, where each 𝑠𝑖 is a tuple (𝑎, x) consisting
of an API 𝑎 ∈ A𝐷 and its input x. A sequence mutation 𝜌 generates
a new sequence S′ as follows:

𝜌 : S → S′, S′ = 𝜌 (S).
Such mutations include operations such as reordering API calls,
omitting critical operations, or introducing redundant calls.

4.2 Seed Collection

The first step in VDBFuzz is the collection of initial seeds, which
serve as the foundation for input mutation and sequence mutation.

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Shenao Wang et al.

Table 6: Summary of indexing strategies and their mutation rules.

Index Key Parameters Constraints Mutation Examples

HNSW [40] 𝑀,𝑒𝑓cons, 𝑒 𝑓 𝑀, 𝑒 𝑓cons, 𝑒 𝑓 ∈ Z+, 𝑒 𝑓cons ≥ 𝑀 𝑀 < 0, 𝑒 𝑓cons < 𝑀 , 𝑒 𝑓 set to extreme values
IVF [18] 𝑛lists, 𝑛probe 𝑛lists, 𝑛probe ∈ Z+, 𝑛probe ≤ 𝑛lists 𝑛probe > 𝑛lists, 𝑛lists = −1
PQ [28] 𝑛subvectors, 𝑛bits 𝑛subvectors, 𝑛bits ∈ Z+, dim mod 𝑛subvectors = 0 𝑛subvectors = −1, 𝑛bits = 0, dim mod 𝑛subvectors ≠ 0
LSH [31] 𝐿, 𝑘, 𝑟 𝐿, 𝑘 ∈ Z+, 𝑟 ∈ R+, 𝑟 > 0 𝐿 = 0, 𝑟 = −1, extreme values for 𝐿, 𝑘, 𝑟
Flat [18] metric metric ∈ {L2, Inner Product, Cosine} Mutate metric to unsupported values (e.g., manhattan)

ANNOY [51] 𝑛trees, 𝑘 𝑛trees ∈ Z+, 1 ≤ 𝑘 ≤ |𝐷 | 𝑛trees = −1, 𝑘 > |𝐷 | , or extreme 𝑘 that degrade performance

These seeds are derived from the Python client libraries of the
target VDBMSs, leveraging their built-in unit tests and example
scripts [15, 60]. The purpose of this step is to capture representative
and valid API usages, ensuring that the seeds reflect real-world
interactions with the system under test (SUT). To construct the
initial seed corpus, VDBFuzz first analyzes the unit test suites
provided by the VDBMS. Each test case is parsed to extract API
calls, input parameters, and their dependencies. For example, a unit
test for vector indexingmight include API calls for creating an index,
adding vectors, and performing queries. These calls are recorded
in sequence, preserving their logical relationships. Additionally,
example scripts and usage documentation are processed in a similar
manner to supplement the seed corpuswith diverse API patterns not
covered by the unit tests. The resulting seed corpus is a structured
collection of valid API calls, each represented as a tuple (𝑎, x), where
𝑎 is the API function and x is the input parameter set.

4.3 Pattern-based Input Mutation

To systematically uncover boundary inputs to trigger bugs in VDBMSs,
we formalize input generation and mutation strategies into reusable
patterns. These patterns are specifically designed to construct bound-
ary inputs that expose vulnerabilities in the handling of edge cases,
invalid configurations, and unexpected parameter interactions. Be-
low, we describe the patterns for general data mutation, index
strategy mutation, and query strategy mutation.
Pattern 1: General Data Mutation. General data mutation sys-
tematically generates inputs in Ivariant

𝑎 , targeting common failure
modes such as type errors, boundary violations, and structural in-
consistencies. These mutations aim to test the robustness of the
database’s parsers, execution engines, and indexing mechanisms
when handling edge cases. Based on our analysis, approximately
12.3% of observed bugs result from extreme numerical values, 38.6%
from zero or null values, and 14.0% from malformed or crafted data
structures. To address these failure modes, we define the following
rules for generating boundary literal values, mismatched types,
malformed structures, and mismatched dimensions.

Sub-pattern 1.1: Boundary Literal Value. This sub-pattern focuses
on constructing boundary literal values. These include numerical
limits such as minimum, maximum, and zero, as well as structural
emptiness, such as NULL, empty strings, empty lists, and empty
dictionaries. For example, numerical boundaries like -99999 (min-
imum) and 99999 (maximum) can be used to test the behavior
under extreme conditions. Similarly, structural emptiness, such
as an empty list ([]) or an empty dictionary ({}), helps evaluate
how the system handles uninitialized or missing data. Formally,

boundary values can be defined as:

Iboundary
𝑎 → {±0.999...99,±999...99, 0, NULL, ‘’, [], {}}

Sub-pattern 1.2: Mismatched Types. This sub-pattern targets in-
puts in Ivariant

𝑎 where the type of a value does not match the ex-
pected type. Examples include providing a string where an integer
is expected, or passing a list ([1, 2, 3]) where a floating-point
value is required. Such mutations can expose flaws in type-checking
mechanisms or unexpected type coercion behaviors. Formally, in-
valid types are defined as:

Itype
𝑎 = {x ∈ I𝑎 | x ∉ ExpectedType}.

Sub-pattern 1.3: Malformed Structure. This sub-pattern generates
inputs with invalid structures to test the resilience of parsers and
execution engines. Such inputs include corrupted JSON objects,
incomplete filter definitions, or misaligned data structures. For
example, a malformed JSON object like {"key":} (missing value) or
an incomplete filter like filter = {"field":} (missing condition)
can reveal vulnerabilities in input validation. Formally, malformed
structures are defined as:

Imalformed
𝑎 = {x ∈ I𝑎 | 𝑀json (x) ∨𝑀filter (x) ∨𝑀schema (x)},

Pattern 2: Indexing Strategy Mutation. Indexing strategy muta-
tion focuses on systematically exploring invalid or boundary con-
figurations of key parameters used for creating vector indexes. In-
correct or extreme configurations, such as those in HNSW, IVF, PQ,
and LSH indexing methods, can lead to indexing failures, degraded
query performance, inaccurate results, or even system crashes. This
pattern evaluates how well the VDBMS handles misconfigurations,
extreme values, and invalid combinations. Based on the abstraction
of indexing methods, we define two overarching mutation patterns.

Sub-pattern 2.1: Single Indexing Strategy Mutation. This pattern
focuses on parameters of individual indexing methods (e.g., HNSW,
IVF, PQ, and LSH). Each method defines a unique set of key param-
eters, such as𝑀 , 𝑒 𝑓cons, and 𝑒 𝑓 in HNSW, or 𝑛lists and 𝑛probe in IVF.
These parameters have specific constraints (e.g., positivity, ranges,
interdependencies), violations of which can lead to indexing errors
or performance degradation. The general mutation space for single
indexing strategies is defined as:

Ivariant
index = {𝑝𝑖 | 𝑝𝑖 ∉ ValidRange(𝑝𝑖) ∨ Violation(𝑝1, 𝑝2, . . . , 𝑝𝑛)},

where𝑝𝑖 represents a parameter, and constraints aremethod-specific
(e.g., 𝑒 𝑓cons ≥ 𝑀 in HNSW, 𝑛probe ≤ 𝑛lists in IVF). Table 6 summa-
rizes the parameters, constraints, and mutation strategies for the
most commonly used indexing methods.

VDBFuzz: Understanding and Detecting Crash Bugs in Vector Database Management Systems ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Table 7: Constraints and mutations for vector queries.

Parameter Constraints and Mutations

𝑘 (number of results)

Valid: 𝑘 ∈ Z+, 1 ≤ 𝑘 ≤ |𝐷 |
Mutations:

• 𝑘 = 0 (empty results)
• 𝑘 < 0 (e.g., 𝑘 = −1)
• 𝑘 > |𝐷 | (exceeds dataset size)
• Non-integer types (e.g., 𝑘 = 3.5, 𝑘 = “ten”)

®𝑞 (query vector)

Valid: ®𝑞 ∈ R𝑑 , 𝑑 > 0
Mutations:

• Incorrect dimensionality (𝑑 ′ ≠ 𝑑)
•Malformed values (e.g., NaN, Inf)
• Extreme values (e.g., excessively large)

M (distance metric)
Valid: M ∈ Mvalid
Mutations:

• Unsupported metrics (e.g., cosine for L2)

𝑜 (offset for pagination)

Valid: 𝑜 ∈ Z, 𝑜 ≥ 0
Mutations:

• Negative values (e.g., 𝑜 = −1)
• Non-integer values (e.g., 𝑜 = 1.5)
• Excessively large offsets (e.g., 𝑜 > |𝐷 |)

Pattern 2.2: Composite Indexing Strategy Mutation. This pattern
targets combinations of multiple indexing methods, such as IVF-
PQ or HNSW-PQ, where parameters from different methods must
satisfy simultaneous constraints. The mutation space for composite
strategies is defined as:

Ivariant
composite = ∪𝑛𝑖=1I

variant
𝑖 ,

where Ivariant
𝑖

represents the invalid parameter space of the 𝑖-th
component indexing method. For example, in IVF-PQ, 𝑛subvectors
can be set to a non-divisible value while 𝑛probe > 𝑛lists, exposing
flaws in parameter validation across strategies.
Pattern 3: Query Parameter Mutation. Query parameter muta-
tion focuses on exploring the robustness of VDBMS query function-
alities by systematically testing various query parameters. Query-
ing is the core operation in vector databases, and the behavior of
queries is shaped by parameters such as the number of results to
return, query vectors, filtering conditions, distance metrics, and
pagination settings. Misconfigured parameters, overly complex fil-
ters, or invalid combinations can lead to logic errors, degraded
performance, or even system failures. This pattern is divided into
two sub-patterns: vector queries and predicate queries.

Sub-pattern 3.1: Vector Queries. Vector queries are defined by
parameters such as 𝑘 (the number of results to return), the query
vector ®𝑞, the distance metric M, and the pagination offset 𝑜 . These
parameters must satisfy specific constraints, as summarized in Ta-
ble 7. Mutation strategies explore invalid configurations, such as
setting 𝑘 to values outside its valid range, introducing malformed
query vectors, using unsupported distance metrics, or applying
invalid pagination offsets. Formally, the invalid parameter space for
vector queries is defined as: Formally, the invalid parameter space

for vector queries can be defined as:

Ivariant
vector = {(𝑘, ®𝑞,M, 𝑜) |


𝑘 ∉ Z+ or 𝑘 > |𝐷 |,
®𝑞 ∉ R𝑑 ,

M ∉ Mvalid,

𝑜 ∉ Z or 𝑜 < 0

}.

Sub-pattern 3.2: Predicate Queries. Predicate queries extend vec-
tor queries by introducing filtering conditions 𝐹 , which constrain
results based on metadata attributes or logical expressions. These
filters enable more complex query scenarios, such as combining
similarity search with metadata-based constraints.

Filters 𝐹 can fail due to syntax errors (e.g., mismatched parenthe-
ses, invalid operators) or semantic errors (e.g., referencing nonex-
istent fields, unsupported operations, or logically contradictory
conditions). For example, a filter might reference a non-existent
metadata field, apply a range query (gte/lte) on a string field, or
include logically contradictory constraints such as field > 10
AND field < 5. Geospatial filters may also fail due to malformed
coordinates or nonsensical ranges. Additionally, overly complex
filters with deeply nested AND/OR combinations can degrade query
performance, especially when combined with similarity search.
Formally, the invalid space for predicate queries is defined as:

Ivariant
predicate = {(𝑘, ®𝑞,M, 𝑜, 𝐹) |

{
(𝑘, ®𝑞,M, 𝑜) ∈ Ivariant

vector ,

𝐹 ∈ Finvalid
}.

Here, Finvalid represents the space of invalid filters, encompassing
syntax errors, semantic errors, and logical contradictions.

4.4 API Sequence Mutation.

API sequence mutation systematically evaluates the robustness and
correctness of VDBMSs by mutating sequences of API calls. Let
Σ = {𝑠1, 𝑠2, . . . , 𝑠𝑛} denote the set of all valid API operations, where
each 𝑠𝑖 represents an individual API call. A valid API sequence is
defined as an ordered list of calls:

Svalid = ⟨𝑠1, 𝑠2, . . . , 𝑠𝑘 ⟩,
where each 𝑠𝑖 must satisfy its precondition 𝑃 (𝑠𝑖), and the sequence
collectively ensures valid state transitions. For example, a nor-
mal API sequence might comprise operations such as connect,
create_collection, add_object, search, and close, executed
in the correct order. Deviations from this order or sequence can
lead to various invalid states. Mutation strategies systematically
violate one or more constraints of Svalid. These strategies can be
categorized into three primary types: Order Violation, Repetition,
and Omission, as summarized in Table 8.

Pattern 1: Order Violation. Order violation involves reordering
API operations in a way that disrupts the sequence’s logical flow
and violates the precondition constraints of one or more operations.
For instance, calling search before add_object would result in
a state where the search operation is executed on an empty or
uninitialized state, thereby violating the expected preconditions.

Pattern 2: Repetition. Repetition of operations focuses on testing
robustness when specific API calls are invoked multiple times, po-
tentially exceeding their intended usage. For example, repeatedly
invoking connect without corresponding close calls can lead to
resource exhaustion, such as the depletion of available connections.

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Shenao Wang et al.

Table 8: API sequence mutation strategies.

Mutation Strategy Mutation Description

Order Violation

Reorder operations in the sequence S
such that at least one 𝑠𝑖 violates its
precondition 𝑃 (𝑠𝑖) .
Example: search before add_object

Repetition of Operations

Repeat an operation 𝑠𝑟 ∈ S.
Example: connect → connect

Omission of Operations

Remove one or more critical operations
from S.
Example: Skipping add_object

Pattern 3: Omission. Omission of operations involves skipping
critical API calls required to maintain valid state transitions. For
example, omitting the add_object call that expects objects to be
added to a collection before a search operation can leave the system
in an incomplete state, leading to failed expectations or errors.

The three mutation strategies collectively aim to create scenar-
ios that stress the system’s ability to maintain correctness under
adverse conditions. Additionally, these strategies are invaluable for
testing concurrency and distributed VDBMSs, where interactions
between multiple API calls can lead to race conditions, deadlocks,
or inconsistencies in shared resources.

5 EVALUATION

5.1 Implementation

The implementation of VDBFuzz is designed to uncover boundary
and edge-case issues across different types of VDBMSs, including
native VDBMSs (e.g., Weaviate [61], Milvus [35], and Qdrant [46]),
VDBMS libraries (e.g., Faiss [16], HNSWLib [40], and Annoy [51]),
and extended VDBMSs (e.g., pgvector [42] and sqlite-vec [3]). Na-
tive VDBMSs typically expose their core functionalities via HTTP
or gRPC APIs, while VDBMS libraries and extended VDBMSs rely
on Python-based client interfaces for interaction. To ensure compre-
hensive testing across these diverse implementations, we tailored
VDBFuzz to the specific characteristics of each category.

For native VDBMS like Weaviate, Milvus, and Qdrant, we lever-
age the Python client libraries to construct a fuzz harness for gen-
erating and executing API sequences, while relying on hooks at
the HTTP and gRPC communication to perform seed mutation. By
intercepting the communication between the Python client and the
database server, we apply mutation strategies directly to the re-
quests being sent to the core implementation. For VDBMS libraries
such as Faiss, HNSWLib, and Annoy, which do not expose API
endpoints, and for extended VDBMS systems like PostgreSQL, we
implemented our fuzzing strategies directly at the Python layer.
This involved creating mutation strategies to test various input
parameters and configurations during indexing and querying.

Specifically, we have implemented a prototype of VDBFuzz using
over 4K lines of code (LoC) with Python, excluding any third-party
libraries or open-source tools. The HTTP and gRPC interceptors,
comprising around 1,300 lines of code, are responsible for captur-
ing and mutating communication payloads. The core fuzzer logic,

including modules for API sequence mutation, data mutation, and
template generation, takes up approximately 3,300 lines and is de-
signed to generate diverse and complex test cases. The template
generation module ensures that inputs adhere to the structural
requirements of the target APIs while systematically introducing
invalid or boundary values. Additionally, auxiliary modules handle
tasks such as parsing test outputs, managing mutation strategies,
and integrating with the fuzz harness.

5.2 Evaluation Setup

Running Environment. The evaluation of VDBFuzz was con-
ducted on a high-performance server running Ubuntu Linux 22.04,
equipped with two AMD EPYC Milan 7713 CPUs (2.0 GHz, 64
cores, 128 threads each), 512 GB of RAM, and four 7.68 TB NVMe
SSDs. To ensure comprehensive coverage analysis across the di-
verse implementations of VDBMSs written in C++, Rust, and Go,
we employed language-specific workflows. For Rust-based sys-
tems (Qdrant), the code was compiled with coverage instrumen-
tation enabled (-Cinstrument-coverage), and profiling data was
collected as .profraw files, which were merged using llvm-profdata
and analyzed with grcov [37] to generate branch-level HTML re-
ports. For Go-based implementations (Weaviate and Milvus), we
utilized goc [47], a coverage tool specifically designed for the Go
language, to instrument the code and generate detailed coverage
reports during test execution.
Research Questions. To evaluate the performance of VDBFuzz,
we aim to answer the following research questions (RQs):
• RQ1: Comparison with Existing Tools. How does VDBFuzz
compare to state-of-the-art fuzzers and testing tools in terms
of code coverage across different VDBMSs?

• RQ2: Ablation Study. How does each mutation strategy indi-
vidually contribute to the overall performance of VDBFuzz?

• RQ3: Real-World Bugs Discovered.What types of real-world
boundary and edge-case vulnerabilities were discovered by
VDBFuzz in tested VDBMSs?

5.3 Comparison with Existing Tools (RQ1)

To evaluate the effectiveness of VDBFuzz compared to existing
state-of-the-art API fuzzing tools, we conducted a series of exper-
iments using the three native VDBMSs in our evaluation: Weavi-
ate, Qdrant, and Milvus. The tools selected for comparison were
RESTler [13] and Schemathesis [14], as both are widely adopted for
OpenAPI testing and have demonstrated strong results in identify-
ing API vulnerabilities and achieving high code coverage.
Baseline Setup. For each VDBMS, we used its publicly available
OpenAPI schema to guide the fuzzing process. Each tool was run
for two hours (120 minutes) on each VDBMS to ensure fair resource
allocation and allow sufficient time to explore the API space.
• RESTler: RESTler was configured in its default fuzzing mode,
which performs stateful API fuzzing by generating API se-
quences based on dependencies inferred from the OpenAPI
schema. It prioritizes breadth-first exploration of the API space.

• Schemathesis: Schemathesis was executed in its default property-
based testing mode, which generates test cases by mutating
inputs to API endpoints based on the OpenAPI schema. It fo-
cuses on identifying schema violations and edge cases.

VDBFuzz: Understanding and Detecting Crash Bugs in Vector Database Management Systems ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

Table 9: VDBFuzz’s improvement in coverage compared to

baseline fuzzers across Weaviate, Qdrant, and Milvus.

VDBMS Baseline Cov. VDBFuzz

Weaviate

RESTler 4,519 (7.0%)
15,485 (24.0%)

+243.0%
Schemathesis 1,811 (2.8%) +755.1%

Qdrant

RESTler 8,402 (9.1%)
37,403 (40.3%)

+345.3%

Schemathesis 7,050 (7.6%) +430.6%

Milvus

RESTler 6,331 (11.0%)
22,109 (38.5%)

+249.2%

Schemathesis 4,849 (8.4%) +355.8%

2000

4000

6000

8000

10000

12000

14000

16000

Lin
e

Co
ve

ra
ge

Weaviate Testing Coverage

RESTler
Schemathesis
VDBFuzz

5000

10000

15000

20000

25000

30000

35000

Lin
e

Co
ve

ra
ge

Qdrant Testing Coverage

RESTler
Schemathesis
VDBFuzz

1m
in
5m

in
10

min
15

min
20

min
30

min
40

min
50

min
60

min
90

min

12
0m

in

Time (minutes)

5000

7500

10000

12500

15000

17500

20000

22500

Lin
e

Co
ve

ra
ge

Milvus Testing Coverage
RESTler
Schemathesis
VDBFuzz

Figure 3: Code coverage comparison of RESTler, Schemathe-

sis, and VDBFuzz on Weaviate, Qdrant, and Milvus.

• VDBFuzz: VDBFuzz was run in its full mutation mode, which
combines API sequence mutation, input data mutation, and
template-based indexing and query mutation strategies.

To measure the effectiveness of each tool, we recorded the total
line coverage achieved over time. We report the mean line coverage
over five runs of VDBFuzz and these baselines.
Comparison Results. Table 9 highlights the overall testing capa-
bilities of VDBFuzz compared to baseline fuzzing tools RESTler
and Schemathesis across Weaviate, Qdrant, and Milvus. The results
show that VDBFuzz consistently outperformed the baseline tools
by a substantial margin in both testing efficiency and effectiveness.
On average, VDBFuzz achieved more than 3x the total line coverage
of RESTler and over 4x the coverage of Schemathesis.

Specifically, we visualized the testing progress over time in Fig-
ure 3 to provide a detailed comparison of line coverage growth
across the three VDBMSs. Within the first 10 minutes, VDBFuzz
achieved significantly higher line coverage compared to the baseline
tools, demonstrating its superior efficiency in exploring API spaces.
For instance, on Weaviate, VDBFuzz reached 11,571 lines of code

Table 10: Ablation study on mutation strategies across Weav-

iate, Qdrant, and Milvus.

Strategy Weaviate Qdrant Milvus

VDBFuzz 15,485 37,403 22,109

VDBFuzz-seed-only 14,842 -643 36,342 -1,061 20,140 -1,969

VDBFuzz-w/o index 15,469 -16 36,493 -910 20,355 -1,754

VDBFuzz-w/o query 15,331 -154 36,550 -853 21,709 -400

coverage within 10 minutes, compared to 4,519 lines for RESTler
and 1,811 lines for Schemathesis. Over the entire 120-minute testing
period, VDBFuzz maintained its advantage, achieving total cover-
age of 15,485 lines on Weaviate, 37,403 lines on Qdrant, and 22,109
lines on Milvus. These results represent approximately 3.4x to 4.2x
higher coverage than RESTler and 4.5x to 8.5x higher coverage
than Schemathesis across the three VDBMSs. Notably, RESTler
and Schemathesis exhibited limited growth in coverage after the
early stages of testing, with RESTler plateauing after just a few
minutes and Schemathesis reaching its peak coverage at a signifi-
cantly lower level, highlighting their limitations when applied to
VDBMS fuzzing. In contrast, VDBFuzz demonstrated consistent im-
provement throughout the testing period, uncovering increasingly
complex API interactions and implementation logic.

5.4 Ablation Study (RQ2)

To evaluate the contribution of different mutation strategies in VDB-
Fuzz, we conducted an ablation study by systematically disabling
specific components and measuring their impact on line coverage
across Weaviate, Qdrant, and Milvus. Table 10 summarizes the re-
sults, showing the total line coverage achieved by the full version
of VDBFuzz compared to its ablated variants. The results indicate
that the full version of VDBFuzz achieved the highest line coverage
across all three VDBMSs, with 15,485 lines forWeaviate, 37,403 lines
for Qdrant, and 22,109 lines for Milvus. Disabling specific compo-
nents resulted in a consistent reduction in coverage, demonstrating
the complementary nature of the mutation strategies. Below, we
analyze the impact of each strategy:

• Seed-only. In this variant, VDBFuzz relied solely on the initial
seeds. This resulted in the largest reduction in coverage, with
decreases of 643 lines on Weaviate, 1,061 lines on Qdrant, and
1,969 lines on Milvus. These results highlight the importance
of edge case mutations in uncovering deeper implementation
logic that seed-only approaches fail to explore.

• Index-specific Mutation. When index-specific mutation was
disabled, the coverage dropped by 16 lines on Weaviate, 910
lines on Qdrant, and 1,754 lines on Milvus. This strategy had a
particularly significant impact on Milvus and Qdrant.

• Query-specific Mutation. Disabling the query-specific mu-
tation strategy slightly reduced coverage, with decreases of
154 lines on Weaviate, 853 lines on Qdrant, and 400 lines on
Milvus. While the impact of this strategy was smaller compared
to index-specific mutation, it played a crucial role in improving
the exploration of query-related API behaviors, especially on
Weaviate, where the reduction was more pronounced.

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Shenao Wang et al.

Table 11: VDBFuzz has discovered 19 undisclosed crash bugs

and exceptions.

VDBMS Crash Exception Types

Weaviate 2 2 OOBR, Type Assertion Errors
Qdrant 3 1 OOM, FPE, DoS
Milvus - 2 Query Inconsistencies
Faiss 3 - OOBR, FPE, NPE
Hnswlib 1 - DF, OOBR
Annoy 2 - OOBR
pgvector - 1 –
sqlite-vec 2 - OOBR
Total 13 6 –

Overall, the ablation study demonstrates that all components
of VDBFuzz contribute meaningfully to its effectiveness. While
initial seeds provide a strong baseline, the addition of query-specific
and index-specific strategies enables VDBFuzz to systematically
and comprehensively explore the API space, achieving significantly
higher coverage across diverse VDBMSs.

5.5 Real-world Bugs Discovered (RQ3)

To evaluate the effectiveness of VDBFuzz in uncovering real-world
vulnerabilities, we applied it to test 8 VDBMS implementations, in-
cluding native VDBMSs (Weaviate, Qdrant, and Milvus), VDBMS li-
braries (Faiss, Hnswlib, and Annoy), and extended VDBMSs (pgvec-
tor, sqlite-vec). For the evaluation, VDBFuzz generated and exe-
cuted more than 10 million valid test cases, which cover strings spe-
cific to VDBMSs and particular data fields. VDBFuzz demonstrates
the capability to uncover a wide range of security vulnerabilities,
such as Out-of-Bound Read (OOBR), Float Point Exception (FPE),
Double Free (DF). As illustrated in Table 11, it has successfully iden-
tified 13 crash bugs and 6 exception issues, which could potentially
result in critical consequences, including sensitive data breaches
and the malfunction of LLM services.

1 index := createEmptyHnswIndexForTests(t, testVectorForID)
2
3 for i, vec := range testVectors {
4 err := index.Add(uint64(i), vec)
5 require.Nil(t, err)
6 }
7
8 t.Run("searching within cluster 1", func(t *testing.T) {
9 position := 0
10 res , _, err := index.knnSearchByVector(testVectors[

position], -1, 36, nil)
11 require.Nil(t, err)
12 assert.ElementsMatch(t, [] uint64{0, 1, 2}, res)
13 })

Listing 2: Panic in knnSearchByVector with negative k.

Case Study#1 (Weaviate): Panic in knnSearchByVector. One
notable vulnerability uncovered by VDBFuzz was an index out-of-
bounds crash in Weaviate’s HNSW implementation during a vector
search operation, which is shown in Listing 2. The issue occurred
when a negative value (k=-1) was passed to the knnSearchByVector
function (line 10), which controls the number of nearest neighbors
to retrieve. The negative value violated the function’s implicit as-
sumption that k would always be positive. This caused a panic

due to an out-of-bounds access. This case highlights the impor-
tance of robust boundary checks for critical parameters to prevent
such crashes, which could otherwise compromise the reliability
and availability of the system.
Case Study#2 (Qdrant): Denial of Service. Another significant
vulnerability identified by VDBFuzz was a Denial of Service (DoS)
issue in Qdrant. This issue arises when an excessively large vec-
tor dimension (dim) is provided as input to the constructor, as
shown in Listing 3 (line 7). The function new performs calculations
based on the dimension size, such as determining vector_size and
chunk_capacity. However, when dim is extremely large (e.g., 263),
the multiplication dim * mem::size_of::<T>() can result in inte-
ger overflow, potential leading to divide-by-zero in chunk_capacity
= CHUNK_SIZE / vector_size. Such a panic results in the service
crashing, causing a DoS. For VDBMSs that serve as the components
of LLM-based applications, such DoS vulnerabilities are particularly
severe, as they can directly render downstream retrieval-augmented
generation or semantic search services unavailable.

1 // Vulnerable function in ChunkedVectors <T>
2 impl <T: Copy + Clone + Default > ChunkedVectors <T> {
3 pub fn new(dim: usize) -> Self {
4 assert_ne !(dim , 0, "Dimension cannot be 0");
5 let vector_size = dim * mem:: size_of::<T>();
6 let chunk_capacity = CHUNK_SIZE / vector_size;
7 assert_ne !(chunk_capacity , 0, "Size is too big");
8 }
9 }
10 // PoC:
11 c = QdrantClient(host="127.0.0.1", port =6333)
12 c.recreate_collection(
13 collection_name="test",
14 vectors_config=models.VectorParams(size =2**63 ,

distance=models.Distance.COSINE),
15)

Listing 3: Vulnerability in ChunkedVectors<T> of Qdrant.

6 DISCUSSION

Limitations. While we implemented VDBFuzz for 8 VDBMSs, our
analysis for RQ1 and RQ2 was conducted exclusively on native
VDBMS, including Weaviate, Milvus, and Qdrant. These systems
were chosen because they expose REST APIs, which provide a di-
rect baseline for comparisons. Additionally, VDBFuzz currently
only performs fuzzing for crash-related bugs in vector databases, as
crashes present the most direct and observable oracle for identify-
ing potential issues. This excludes deeper considerations of vector
search correctness or performance-related bugs, whichmay also sig-
nificantly impact real-world applications. Furthermore, VDBFuzz
relies on pattern-based mutation on collected seeds, which may not
comprehensively cover all API functionalities or edge cases.
Future Work. Future work should explore the development of an
oracle for evaluating the correctness of vector search results, as
the inherent fuzziness of vector similarity search makes traditional
differential testing unsuitable. Another promising direction is the
generation of more diverse and comprehensive seed inputs to ex-
pand API coverage. LLMs could play a significant role in generating
diverse API interactions, given their ability to understand and repli-
cate complex input structures. However, because VDBMS and its
APIs evolve rapidly, methods must be devised to ensure that LLMs
can stay updated with the latest syntax and functionalities.

VDBFuzz: Understanding and Detecting Crash Bugs in Vector Database Management Systems ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

7 RELATEDWORK

VDBMS Testing. VDBMSs have become more and more critical
in the LLM era, yet systematic reliability testing for these systems
remains underexplored [58]. Existing works on VDBMS testing
have primarily focused on evaluating performance metrics, such as
query latency, throughput, and scalability [4, 38, 45, 71]. These stud-
ies provide valuable insights but overlook reliability and robustness.
The most relevant work MeTMaP introduced metamorphic testing
to detect false vector matching problems [26]. However, its focus is
on algorithm-level inaccuracies in vector similarity computations
rather than implementation-specific defects within VDBMSs. Un-
like traditional databases, VDBMSs face distinct challenges due to
their reliance on fuzzy semantics in similarity search and hybrid
query processing [58, 64]. To bridge this gap, VDBFuzz introduces
boundary-specific mutations to discover crash bugs in VDBMS.
DBMS Fuzzing. Fuzz testing has been widely applied to traditional
DBMSs to uncover vulnerabilities [41], with existing techniques
primarily focusing on crash testing [21, 50], performance test-
ing [27, 30], and logical testing [5, 48, 49]. Additionally, tools tailored
for relational databases [5, 57] and NoSQL databases [20, 62, 67]
address their respective architectural challenges, such as query
correctness, sharding, and flexible schema handling. While these
fuzzing techniques have demonstrated effectiveness for traditional
databases, they cannot be directly applied to VDBMSs. To this end,
VDBFuzz introduces the first fuzz testing framework specifically
designed for VDBMSs.

8 CONCLUSION

In this paper, we presented VDBFuzz, the first fuzzing framework
specifically designed to detect crash bugs in VDBMSs. We began by
conducting an in-depth investigation of crash bugs across state-of-
the-art systems and identified boundary condition failures and API
sequence dependencies as primary root causes. Based on these in-
sights, VDBFuzz systematically explores crash-inducing behaviors
through seed collection, template-based input mutation, and API
sequence mutation. Our evaluation on 3 representative VDBMSs,
including Weaviate, Milvus, and Qdrant, demonstrated VDBFuzz’s
effectiveness, achieving up to 3x higher code coverage compared
to state-of-the-art fuzzing tools and uncovering 19 previously un-
known crash bugs. These findings highlight the potential of VDB-
Fuzz to improve the robustness and reliability of VDBMSs.

Acknowledgement

This work was supported in part by the National Natural Science
Foundation of China (grants No.62572209, 62502168) and the Hubei
Provincial Key Research and Development Program (grant No.
2025BAB057).

REFERENCES

[1] activeloopai. 2025. DeepLake: Database for AI. https://github.com/activeloopai/
deeplake. Accessed: 2025-07-15.

[2] adriecafe. 2025. Voyager. https://github.com/adrielcafe/voyager. Accessed:
2025-07-15.

[3] asg017. 2025. sqlite-vec: A vector search SQLite extension that runs anywhere!
https://github.com/asg017/sqlite-vec. Accessed: 2025-07-15.

[4] Martin Aumüller, Erik Bernhardsson, and Alexander John Faithfull. 2020. ANN-
Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.
Inf. Syst. 87 (2020). https://doi.org/10.1016/J.IS.2019.02.006

[5] Jinsheng Ba and Manuel Rigger. 2023. Testing Database Engines via Query Plan
Guidance. In 45th IEEE/ACM International Conference on Software Engineering,

ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE, 2060–2071. https://doi.
org/10.1109/ICSE48619.2023.00174

[6] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. 2005. LSH forest: self-
tuning indexes for similarity search. In Proceedings of the 14th International
Conference on World Wide Web (Chiba, Japan) (WWW ’05). Association for Com-
putingMachinery, New York, NY, USA, 651–660. https://doi.org/10.1145/1060745.
1060840

[7] Alexander Bulekov, Bandan Das, Stefan Hajnoczi, and Manuel Egele. 2023. No
Grammar, No Problem: Towards Fuzzing the Linux Kernel without System-Call
Descriptions. In 30th Annual Network and Distributed System Security Symposium,
NDSS 2023, San Diego, California, USA, February 27 - March 3, 2023. The Inter-
net Society. https://www.ndss-symposium.org/ndss-paper/no-grammar-no-
problem-towards-fuzzing-the-linux-kernel-without-system-call-descriptions/

[8] Shangtong Cao, Ningyu He, Xinyu She, Yixuan Zhang, Mu Zhang, and Haoyu
Wang. 2024. WASMaker: Differential Testing of WebAssembly Runtimes via
Semantic-Aware Binary Generation. In Proceedings of the 33rd ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2024, Vienna,
Austria, September 16-20, 2024, Maria Christakis and Michael Pradel (Eds.). ACM,
1262–1273. https://doi.org/10.1145/3650212.3680358

[9] Cheng Chen, Chenzhe Jin, Yunan Zhang, Sasha Podolsky, ChunWu, Szu-PoWang,
Eric Hanson, Zhou Sun, Robert Walzer, and Jianguo Wang. 2024. SingleStore-V:
An Integrated Vector Database System in SingleStore. Proc. VLDB Endow. 17, 12
(Aug. 2024), 3772–3785. https://doi.org/10.14778/3685800.3685805

[10] Libo Chen, Quanpu Cai, Zhenbang Ma, Yanhao Wang, Hong Hu, Minghang Shen,
Yue Liu, Shanqing Guo, Haixin Duan, Kaida Jiang, and Zhi Xue. 2022. SFuzz:
Slice-based Fuzzing for Real-Time Operating Systems. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, CCS 2022, Los
Angeles, CA, USA, November 7-11, 2022, Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi (Eds.). ACM, 485–498. https://doi.org/10.1145/3548606.3559367

[11] Weimin Chen, Xiapu Luo, Haipeng Cai, and Haoyu Wang. 2024. Towards Smart
Contract Fuzzing on GPUs. In IEEE Symposium on Security and Privacy, SP 2024,
San Francisco, CA, USA, May 19-23, 2024. IEEE, 2255–2272. https://doi.org/10.
1109/SP54263.2024.00229

[12] chroma-core. 2025. Chroma: The AI-native open-source embedding database.
https://github.com/chroma-core/chroma. Accessed: 2025-07-15.

[13] Microsoft RESTler Contributors. 2025. RESTler: Stateful REST API Fuzzing Tool.
https://github.com/microsoft/restler-fuzzer. Accessed: 2025-07-15.

[14] Schemathesis Contributors. 2025. Schemathesis: Catch API bugs before your
users do. https://github.com/schemathesis/schemathesis. Version 4.0.9, Accessed:
2025-07-15.

[15] Facebook Research. 2025. Unit Test of Faiss. https://github.com/facebookresearch/
faiss/tree/main/tests. Accessed: 2025-07-15.

[16] facebookresearch. 2025. Faiss: A library for efficient similarity search and clus-
tering of dense vectors. https://github.com/facebookresearch/faiss. Accessed:
2025-07-15.

[17] Faiss. 2024. IndexIVFPQFastScan crashes with certain nlist values. https://github.
com/facebookresearch/faiss/issues/4089. Accessed: 2025-07-15.

[18] Faiss. 2025. Faiss indexes. https://github.com/facebookresearch/faiss/wiki/Faiss-
indexes. Accessed: 2025-07-15.

[19] Jingzhou Fu, Jie Liang, Zhiyong Wu, and Yu Jiang. 2024. Sedar: Obtaining High-
Quality Seeds for DBMS Fuzzing via Cross-DBMS SQL Transfer. In Proceedings of
the 46th IEEE/ACM International Conference on Software Engineering, ICSE 2024,
Lisbon, Portugal, April 14-20, 2024. ACM, 146:1–146:12. https://doi.org/10.1145/
3597503.3639210

[20] Jingzhou Fu, Jie Liang, Zhiyong Wu, Mingzhe Wang, and Yu Jiang. 2022. Griffin
: Grammar-Free DBMS Fuzzing. In 37th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2022, Rochester, MI, USA, October 10-14,
2022. ACM, 49:1–49:12. https://doi.org/10.1145/3551349.3560431

[21] Jingzhou Fu, Jie Liang, Zhiyong Wu, Yanyang Zhao, Shanshan Li, and Yu
Jiang. 2025. Understanding and Detecting SQL Function Bugs: Using Sim-
ple Boundary Arguments to Trigger Hundreds of DBMS Bugs. In Proceed-
ings of the Twentieth European Conference on Computer Systems, EuroSys 2025,
Rotterdam, The Netherlands, 30 March 2025 - 3 April 2025. ACM, 1061–1076.
https://doi.org/10.1145/3689031.3696064

[22] Xiyue Gao, Zhuang Liu, Jiangtao Cui, Hui Li, Hui Zhang, Kewei Wei, and Kankan
Zhao. 2023. A Comprehensive Survey on Database Management System Fuzzing:
Techniques, Taxonomy and Experimental Comparison. CoRR abs/2311.06728
(2023). https://doi.org/10.48550/ARXIV.2311.06728 arXiv:2311.06728

[23] Zongyin Hao, Quanfeng Huang, Chengpeng Wang, Jianfeng Wang, Yushan
Zhang, Rongxin Wu, and Charles Zhang. 2023. Pinolo: Detecting Logical Bugs in
Database Management Systems with Approximate Query Synthesis. In Proceed-
ings of the 2023 USENIX Annual Technical Conference, USENIX ATC 2023, Boston,
MA, USA, July 10-12, 2023, Julia Lawall and Dan Williams (Eds.). USENIX Associ-
ation, 345–358. https://www.usenix.org/conference/atc23/presentation/hao

[24] Zihong He, Weizhe Lin, Hao Zheng, Fan Zhang, Matt W. Jones, Laurence Aitchi-
son, Xuhai Xu, Miao Liu, Per Ola Kristensson, and Junxiao Shen. 2024. Human-
inspired Perspectives: A Survey on AI Long-term Memory. CoRR abs/2411.00489

https://github.com/activeloopai/deeplake
https://github.com/activeloopai/deeplake
https://github.com/adrielcafe/voyager
https://github.com/asg017/sqlite-vec
https://doi.org/10.1016/J.IS.2019.02.006
https://doi.org/10.1109/ICSE48619.2023.00174
https://doi.org/10.1109/ICSE48619.2023.00174
https://doi.org/10.1145/1060745.1060840
https://doi.org/10.1145/1060745.1060840
https://www.ndss-symposium.org/ndss-paper/no-grammar-no-problem-towards-fuzzing-the-linux-kernel-without-system-call-descriptions/
https://www.ndss-symposium.org/ndss-paper/no-grammar-no-problem-towards-fuzzing-the-linux-kernel-without-system-call-descriptions/
https://doi.org/10.1145/3650212.3680358
https://doi.org/10.14778/3685800.3685805
https://doi.org/10.1145/3548606.3559367
https://doi.org/10.1109/SP54263.2024.00229
https://doi.org/10.1109/SP54263.2024.00229
https://github.com/chroma-core/chroma
https://github.com/microsoft/restler-fuzzer
https://github.com/schemathesis/schemathesis
https://github.com/facebookresearch/faiss/tree/main/tests
https://github.com/facebookresearch/faiss/tree/main/tests
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss/issues/4089
https://github.com/facebookresearch/faiss/issues/4089
https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
https://doi.org/10.1145/3597503.3639210
https://doi.org/10.1145/3597503.3639210
https://doi.org/10.1145/3551349.3560431
https://doi.org/10.1145/3689031.3696064
https://doi.org/10.48550/ARXIV.2311.06728
https://arxiv.org/abs/2311.06728
https://www.usenix.org/conference/atc23/presentation/hao

ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil Shenao Wang et al.

(2024). https://doi.org/10.48550/ARXIV.2411.00489 arXiv:2411.00489
[25] Xun Jiang, Feng Li, Han Zhao, Jiaying Wang, Jun Shao, Shihao Xu, Shu Zhang,

Weiling Chen, Xavier Tang, Yize Chen, Mengyue Wu, Weizhi Ma, Mengdi Wang,
and Tianqiao Chen. 2024. Long Term Memory: The Foundation of AI Self-
Evolution. CoRR abs/2410.15665 (2024). https://doi.org/10.48550/ARXIV.2410.
15665 arXiv:2410.15665

[26] Zhi Jing, Yongye Su, Yikun Han, Bo Yuan, Haiyun Xu, Chunjiang Liu, Kehai Chen,
and Min Zhang. 2024. When Large Language Models Meet Vector Databases: A
Survey. CoRR abs/2402.01763 (2024). https://doi.org/10.48550/ARXIV.2402.01763
arXiv:2402.01763

[27] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woon-Hak Kang. 2019.
APOLLO: Automatic Detection and Diagnosis of Performance Regressions in
Database Systems. Proc. VLDB Endow. 13, 1 (2019), 57–70. https://doi.org/10.
14778/3357377.3357382

[28] Herve Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33, 1 (2011), 117–128. https://doi.org/10.1109/TPAMI.2010.57

[29] lancedb. 2025. LanceDB: The Multimodal AI Lakehouse. https://github.com/
lancedb/lancedb. Accessed: 2025-07-15.

[30] Xinyu Liu, Qi Zhou, Joy Arulraj, and Alessandro Orso. 2022. Automatic De-
tection of Performance Bugs in Database Systems using Equivalent Queries. In
44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022. ACM, 225–236. https://doi.org/10.1145/
3510003.3510093

[31] Yingfan Liu, Jiangtao Cui, Zi Huang, Hui Li, and Heng Tao Shen. 2014. SK-LSH:
an efficient index structure for approximate nearest neighbor search. Proc. VLDB
Endow. 7, 9 (May 2014), 745–756. https://doi.org/10.14778/2732939.2732947

[32] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.
IEEE Transactions on Pattern Analysis and Machine Intelligence 42, 4 (2020), 824–
836. https://doi.org/10.1109/TPAMI.2018.2889473

[33] marqo ai. 2025. marqo: Unified embedding generation and search engine. https:
//github.com/marqo-ai/marqo. Accessed: 2025-07-15.

[34] Milvus. 2025. Integration Test of Milvus. https://github.com/milvus-io/milvus/
tree/master/tests/integration. Accessed: 2025-07-15.

[35] milvus-io. 2025. Milvus: High-performance, cloud-native vector database built
for scalable vector ANN search. https://github.com/milvus-io/milvus. Accessed:
2025-07-15.

[36] MongoDB. 2025. MongoDB Atlas Vector Search. https://www.mongodb.com/
products/platform/atlas-vector-search. Accessed: 2025-07-15.

[37] Mozilla. 2025. grcov: Rust tool to collect and aggregate code coverage data for
multiple source files. https://github.com/mozilla/grcov Version 0.10.0, Accessed:
2025-07-15.

[38] MyScale. 2023. MyScale Vector Database Benchmark. https://myscale.github.io/
benchmark/. Accessed: 2025-07-15.

[39] neuml. 2025. txtai: All-in-one open-source AI framework for semantic search,
LLM orchestration and language model workflows. https://github.com/neuml/
txtai. Accessed: 2025-07-15.

[40] nmslib. 2025. Hnswlib: Header-only C++/python library for fast approximate
nearest neighbors. https://github.com/nmslib/hnswlib. Accessed: 2025-07-15.

[41] James Jie Pan, Jianguo Wang, and Guoliang Li. 2024. Survey of vector database
management systems. VLDB J. 33, 5 (2024), 1591–1615. https://doi.org/10.1007/
S00778-024-00864-X

[42] pgvector. 2025. pgvector: Open-source vector similarity search for Postgres.
https://github.com/pgvector/pgvector. Accessed: 2025-07-15.

[43] Pinecone. 2025. Pinecone: The vector database to build knowledgeable AI. https:
//www.pinecone.io/. Accessed: 2025-07-15.

[44] PostgreSQL. 2025. PostgreSQL: The World’s Most Advanced Open Source Rela-
tional Database. https://www.postgresql.org/. Accessed: 2025-07-15.

[45] Qdrant. 2024. Vector Database Benchmarks. https://qdrant.tech/benchmarks/.
Accessed: 2025-07-15.

[46] Qdrant. 2025. Qdrant: High-performance, massive-scale vector database and
vector search engine for the next generation of AI. https://github.com/qdrant/
qdrant. Accessed: 2025-07-15.

[47] Qiniu. 2023. goc: A Comprehensive Coverage Testing System for The Go Pro-
gramming Language. https://github.com/qiniu/goc Version 1.4.5, Accessed:
2025-07-15.

[48] Manuel Rigger and Zhendong Su. 2020. Detecting optimization bugs in database
engines via non-optimizing reference engine construction. In ESEC/FSE ’20: 28th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020,
Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 1140–
1152. https://doi.org/10.1145/3368089.3409710

[49] Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted
Query Synthesis. In 14th USENIX Symposium on Operating Systems Design and Im-
plementation, OSDI 2020, Virtual Event, November 4-6, 2020. USENIX Association,
667–682. https://www.usenix.org/conference/osdi20/presentation/rigger

[50] Andreas Seltenreich, Bo Tang, and Sjoerd Mullender. 2022. SQLsmith: A random
SQL query generator. https://github.com/anse1/sqlsmith. https://github.com/
anse1/sqlsmith Version 1.4.

[51] spotify. 2024. annoy. https://github.com/spotify/annoy. Accessed: 2025-07-15.
[52] sqlite. 2025. sqlite: Official Git mirror of the SQLite source tree. https://github.

com/sqlite/sqlite. Accessed: 2025-07-15.
[53] Toni Taipalus. 2024. Vector database management systems: Fundamental con-

cepts, use-cases, and current challenges. Cogn. Syst. Res. 85 (2024), 101216.
https://doi.org/10.1016/J.COGSYS.2024.101216

[54] unum cloud. 2025. USearch. https://github.com/unum-cloud/usearch. Accessed:
2025-07-15.

[55] vespa engine. 2025. Vespa. https://github.com/vespa-engine/vespa. Accessed:
2025-07-15.

[56] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing
Yuan, Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang,
Yihua Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A
Purpose-Built Vector Data Management System. In Proceedings of the 2021 In-
ternational Conference on Management of Data (Virtual Event, China) (SIGMOD
’21). Association for Computing Machinery, New York, NY, USA, 2614–2627.
https://doi.org/10.1145/3448016.3457550

[57] Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou, Huafeng Zhang,
and Yu Jiang. 2021. Industry Practice of Coverage-Guided Enterprise-Level DBMS
Fuzzing. In 43rd IEEE/ACM International Conference on Software Engineering:
Software Engineering in Practice, ICSE (SEIP) 2021, Madrid, Spain, May 25-28, 2021.
IEEE, 328–337. https://doi.org/10.1109/ICSE-SEIP52600.2021.00042

[58] Shenao Wang, Yanjie Zhao, Yinglin Xie, Zhao Liu, Xinyi Hou, Quanchen Zou,
and Haoyu Wang. 2025. Towards Reliable Vector Database Management Systems:
A Software Testing Roadmap for 2030. CoRR abs/2502.20812 (2025). https:
//doi.org/10.48550/ARXIV.2502.20812 arXiv:2502.20812

[59] Weaviate. 2024. Uncontrolled concurrency in batch delete may crash server.
https://github.com/weaviate/weaviate/issues/5093. Accessed: 2025-07-15.

[60] Weaviate. 2025. Unit Test of Weaviate. https://github.com/weaviate/weaviate/
tree/main/test. Accessed: 2025-07-15.

[61] Weaviate. 2025. Weaviate: Open-source vector database that stores both objects
and vectors. https://github.com/weaviate/weaviate. Accessed: 2025-07-15.

[62] ZhiyongWu, Jie Liang, Mingzhe Wang, Chijin Zhou, and Yu Jiang. 2022. Unicorn:
detect runtime errors in time-series databases with hybrid input synthesis. In
ISSTA ’22: 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, Virtual Event, South Korea, July 18 - 22, 2022, Sukyoung Ryu and Yannis
Smaragdakis (Eds.). ACM, 251–262. https://doi.org/10.1145/3533767.3534364

[63] Xingrui Xie, Han Liu, Wenzhe Hou, and Hongbin Huang. 2023. A Brief Survey of
Vector Databases. In 2023 9th International Conference on Big Data and Information
Analytics (BigDIA). 364–371. https://doi.org/10.1109/BigDIA60676.2023.10429609

[64] Yinglin Xie, Xinyi Hou, Yanjie Zhao, Shenao Wang, Kai Chen, and Haoyu
Wang. 2025. Toward Understanding Bugs in Vector Database Management Sys-
tems. CoRR abs/2506.02617 (2025). https://doi.org/10.48550/ARXIV.2506.02617
arXiv:2506.02617

[65] Hanxiang Xu,WeiMa, Ting Zhou, Yanjie Zhao, Kai Chen, QiangHu, Yang Liu, and
HaoyuWang. 2025. CKGFuzzer: LLM-Based Fuzz Driver Generation Enhanced By
Code Knowledge Graph. In 47th IEEE/ACM International Conference on Software
Engineering, ICSE 2025 - Companion Proceedings, Ottawa, ON, Canada, April 27 -
May 3, 2025. IEEE, 243–254. https://doi.org/10.1109/ICSE-COMPANION66252.
2025.00079

[66] Wen Yang, Tao Li, Gai Fang, and Hong Wei. 2020. PASE: PostgreSQL Ultra-High-
Dimensional Approximate Nearest Neighbor Search Extension. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data (Portland,
OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY,
USA, 2241–2253. https://doi.org/10.1145/3318464.3386131

[67] Yupeng Yang, Yongheng Chen, Rui Zhong, Jizhou Chen, and Wenke Lee. 2024.
Towards Generic Database Management System Fuzzing. In 33rd USENIX Security
Symposium, USENIX Security 2024, Philadelphia, PA, USA, August 14-16, 2024,
Davide Balzarotti and Wenyuan Xu (Eds.). USENIX Association. https://www.
usenix.org/conference/usenixsecurity24/presentation/yang-yupeng

[68] Qiang Zhang, Yuheng Shen, Jianzhong Liu, Yiru Xu, Heyuan Shi, Yu Jiang, and
Wanli Chang. 2024. ECG: Augmenting Embedded Operating System Fuzzing via
LLM-Based Corpus Generation. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 43, 11 (2024), 4238–4249. https://doi.org/10.1109/TCAD.2024.3447220

[69] Yunan Zhang, Shige Liu, and Jianguo Wang. 2024. Are There Fundamental
Limitations in Supporting Vector Data Management in Relational Databases? A
Case Study of PostgreSQL. In 2024 IEEE 40th International Conference on Data
Engineering (ICDE). 3640–3653. https://doi.org/10.1109/ICDE60146.2024.00280

[70] Xinyang Zhao, Xuanhe Zhou, and Guoliang Li. 2024. Chat2Data: An Interactive
Data Analysis System with RAG, Vector Databases and LLMs. Proc. VLDB Endow.
17, 12 (Aug. 2024), 4481–4484. https://doi.org/10.14778/3685800.3685905

[71] zilliztech. 2025. VectorDBBench: A Vector Database Benchmark Tool. https:
//zilliz.com/benchmark. Accessed: 2025-07-15.

https://doi.org/10.48550/ARXIV.2411.00489
https://arxiv.org/abs/2411.00489
https://doi.org/10.48550/ARXIV.2410.15665
https://doi.org/10.48550/ARXIV.2410.15665
https://arxiv.org/abs/2410.15665
https://doi.org/10.48550/ARXIV.2402.01763
https://arxiv.org/abs/2402.01763
https://doi.org/10.14778/3357377.3357382
https://doi.org/10.14778/3357377.3357382
https://doi.org/10.1109/TPAMI.2010.57
https://github.com/lancedb/lancedb
https://github.com/lancedb/lancedb
https://doi.org/10.1145/3510003.3510093
https://doi.org/10.1145/3510003.3510093
https://doi.org/10.14778/2732939.2732947
https://doi.org/10.1109/TPAMI.2018.2889473
https://github.com/marqo-ai/marqo
https://github.com/marqo-ai/marqo
https://github.com/milvus-io/milvus/tree/master/tests/integration
https://github.com/milvus-io/milvus/tree/master/tests/integration
https://github.com/milvus-io/milvus
https://www.mongodb.com/products/platform/atlas-vector-search
https://www.mongodb.com/products/platform/atlas-vector-search
https://github.com/mozilla/grcov
https://myscale.github.io/benchmark/
https://myscale.github.io/benchmark/
https://github.com/neuml/txtai
https://github.com/neuml/txtai
https://github.com/nmslib/hnswlib
https://doi.org/10.1007/S00778-024-00864-X
https://doi.org/10.1007/S00778-024-00864-X
https://github.com/pgvector/pgvector
https://www.pinecone.io/
https://www.pinecone.io/
https://www.postgresql.org/
https://qdrant.tech/benchmarks/
https://github.com/qdrant/qdrant
https://github.com/qdrant/qdrant
https://github.com/qiniu/goc
https://doi.org/10.1145/3368089.3409710
https://www.usenix.org/conference/osdi20/presentation/rigger
https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith
https://github.com/spotify/annoy
https://github.com/sqlite/sqlite
https://github.com/sqlite/sqlite
https://doi.org/10.1016/J.COGSYS.2024.101216
https://github.com/unum-cloud/usearch
https://github.com/vespa-engine/vespa
https://doi.org/10.1145/3448016.3457550
https://doi.org/10.1109/ICSE-SEIP52600.2021.00042
https://doi.org/10.48550/ARXIV.2502.20812
https://doi.org/10.48550/ARXIV.2502.20812
https://arxiv.org/abs/2502.20812
https://github.com/weaviate/weaviate/issues/5093
https://github.com/weaviate/weaviate/tree/main/test
https://github.com/weaviate/weaviate/tree/main/test
https://github.com/weaviate/weaviate
https://doi.org/10.1145/3533767.3534364
https://doi.org/10.1109/BigDIA60676.2023.10429609
https://doi.org/10.48550/ARXIV.2506.02617
https://arxiv.org/abs/2506.02617
https://doi.org/10.1109/ICSE-COMPANION66252.2025.00079
https://doi.org/10.1109/ICSE-COMPANION66252.2025.00079
https://doi.org/10.1145/3318464.3386131
https://www.usenix.org/conference/usenixsecurity24/presentation/yang-yupeng
https://www.usenix.org/conference/usenixsecurity24/presentation/yang-yupeng
https://doi.org/10.1109/TCAD.2024.3447220
https://doi.org/10.1109/ICDE60146.2024.00280
https://doi.org/10.14778/3685800.3685905
https://zilliz.com/benchmark
https://zilliz.com/benchmark

	Abstract
	1 Introduction
	2 Background and Motivation
	3 A Preliminary Study
	3.1 Study Overview
	3.2 General Findings

	4 Workflow of VDBFuzz
	4.1 Preliminary and Definition
	4.2 Seed Collection
	4.3 Pattern-based Input Mutation
	4.4 API Sequence Mutation.

	5 Evaluation
	5.1 Implementation
	5.2 Evaluation Setup
	5.3 Comparison with Existing Tools (RQ1)
	5.4 Ablation Study (RQ2)
	5.5 Real-world Bugs Discovered (RQ3)

	6 Discussion
	7 Related Work
	8 Conclusion
	References

