

Mutation testing
How good your tests really are?

Marcin Zajączkowski

Brno, 2014-02-08

About me

Java architect TDD practitioner

Team mentor Clean code developer

Software Craftsmanship
Evangelist

Fedora packager FOSS developer Linux enthusiast

IT Trainer Code quality freak Blogger

Presentation plan

● What is and how works mutation testing?
● Why is almost not known and rarery used?
● PIT – tool which works
● Mutants in action – live coding
● Benefits of using
● Adaptation in real life project

http://www.erniemort.com/

http://www.townofdarienny.com/

http://www.censusfinder.com/nebraska-historical-museums.htm

http://muratordom.pl/

http://www.oldwestlawmansforgottenmemoir.com/memoir_bringsV13.html

https://weshouldnamethissoon.wordpress.com/

http://www.rustyaccents.com/

http://www.nps.gov/fosm/historyculture/executions-at-fort-smith-1873-to-1896.htm

https://secure.flickr.com/photos/kingdafy/500117608/

Sfingowane przestępstwo

https://secure.flickr.com/photos/7402220@N02/491093210/

2 - http://goo.gl/C8yFe

http://publish.illinois.edu/libraryitnews/2012/06/

Analogies

Project

Bugs in code

Automated tests

Code coverage

Mutants in code

Town

Crimes

Sheriffs

Patrol paths

Provocations

The idea with an analogy to criminality and law enforcement taken from Chris Rimmer

Mutation testing
What's it about?

● Intentionally break selected line of production
code (introduce a mutation)

● Check if any test detects a modification
(if it fails)

● Survived mutation (which were not detected)
are a potential bugs which would not be
detected by automated tests

Common issues

● Small number of tools for Java (many not
maintained anymore)

● Long execution time
● Required production code

modification
● Infinite loops
● Stack overflow

http://bestclipartblog.com/27-tools-clip-art.html/tools-clip-art-2

PIT – mutations fast

● Bytecode manipulation
● Mutation of the lines with standard coverage

only
● Execution of related test only
● Parallel execution
● Incremental analysis

http://carhumor.net/blast-from-the-past/

PIT – various mutations

● Conditionals Boundary Mutator
● Negate Conditionals Mutator
● Math Mutator
● Increments Mutator
● Invert Negatives Mutator
● Return Values Mutator
● (Non) Void Method Calls Mutator
● And more...

1 - http://blog.spoongraphics.co.uk/tutorials/create-a-cute-furry-vector-monster-in-illustrator
2 - http://blog.spoongraphics.co.uk/tutorials/create-a-cute-vector-monster-from-a-pencil-sketch

PIT – rich ecosystem

TestNG

Spock
Logos – home pages of mentioned projects

PIT – pros

● Fast
● Powerful
● Widely supported

Some Java alternatives

● Javalanche – small ecosystem,
 last commit in 2012

● µJava – limited access to source code
● Jester – no longer maintained
● Jumple – no longer maintained
● Judy – no longer maintained

Other languages
Selected tools

● MutPy – Python – actively developed
● Mutagenesis – PHP – actively developed

(judgedim fork)
● Mutant – Ruby – actively developed
● NinjaTurtles - .NET – last commit in 2012

Mutants in action

http://www.adolescentadulthood.com/2013/01/23/how-did-the-teenage-mutant-ninja-turtles-get-their-names/

What can you get?

● Better code quality
● Less bugs in production
● Job satisfaction
● ... (other benefits from writing testable code)

● Information how good your tests really are
● Places in code that are not properly tested

– Better than with „normal” code coverage

When to use?

● Greenfield project developed with high quality
in mind

● High coverage, but still bugs in production
which could (and should) be detected by tests

● Doubts about test suite quality
– HLD requirement – 95% minimal code

coverage level with the development team
with no experience in automated testing

● Improve legacy system with low code quality
and/or without tests

Prepare your project

● Write automatic tests
● Write fast automatic unit tests (not only slow

integration ones)
● Separate fast unit tests from slow integration

tests
– Be able to run only selected group of tests

Does anyone use it
in the real life project?

● Yes :-)

● British Sky

Broadcasting
● TheLadders
● Jumi
● Maybe you?

http://www.mysciencework.com/fr/MyScienceNews/10027/de-l-in-opportunite-des-open-spaces-dans-les-labos

Summary of benefits

Verification of effectiveness of automatic test

More reliable code

Less troubles at work

More time for interesting things

Increased job satisfaction

This presentation is available under the terms of Creative Commons Attribution-NonCommercial-ShareAlike 3.0
(with exclusion of the parts created by other people – including photos). Version 1.0.5-dc.

Questions?

Online feedback: http://devconf.cz/f/86

Thank you for your attention

Marcin Zajączkowski
m.zajaczkowski@gmail.com

http://blog.solidsoft.info/

@SolidSoftBlog

	Slide 1
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 34
	Slide 36
	Slide 38
	Slide 40
	Slide 41
	Slide 43
	Slide 44

