

Susan Vanderplas

Curriculum Vitae

515-509-6613
srvanderplas@gmail.com
srvanderplas.github.io
srvanderplas
srvanderplas

Education

2009	Ph.D. , <i>Statistics</i> , Iowa State University
2009	MS , <i>Statistics</i> , Iowa State University
2005	BS , <i>Psychology & Applied Mathematical Sciences</i> , Texas A&M University

Professional Experience

Since 2024	Associate Professor , <i>Statistics</i> , University of Nebraska-Lincoln
2020	Assistant Professor , <i>Statistics</i> , University of Nebraska-Lincoln
2018	Research Assistant Professor , <i>Center for Statistics and Applications in Forensic Evidence</i> , Iowa State University
2015	Statistical Analyst , Nebraska Public Power District
Apr 2015 Oct	Postdoc , <i>Office of the Vice President for Research</i> , Iowa State University

Publications

Peer Reviewed Publications

Student advisees indicated with *.

2025

4. Fudolig, M. A., Robinson, E. A.*, and **Vanderplas, S.** (Apr. 1, 2025). "Can You See The Change? Visual Perception in Change Point Analysis". In: *Journal of Computational and Graphical Statistics* (ja), pp. 1–15. DOI: [10.1080/10618600.2025.2485278](https://doi.org/10.1080/10618600.2025.2485278).
3. Li, W., Cook, D., Tanaka, E., Vanderplas, S., and Ackermann, K. (Oct. 9, 2025). "Automated Residual Plot Assessment With the R Package autovi and the Shiny Application autovi.web". In: *Australian & New Zealand Journal of Statistics*. ISSN: 1467-842X. DOI: [10.1111/anzs.70027](https://doi.org/10.1111/anzs.70027). URL: <https://onlinelibrary.wiley.com/doi/abs/10.1111/anzs.70027>.
2. Robinson, E.*, Hofmann, H., and **Vanderplas, S.** (July 17, 2025). "A Guide to Designing Experiments to Test Statistical Graphics". In: *WIREs Computational Statistics* 17.2, e70032. ISSN: 1939-0068. DOI: [10.1002/wics.70032](https://doi.org/10.1002/wics.70032). URL: <https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.70032>.
1. Robinson, E. A.*, Howard, R., and **Vanderplas, S.** (Mar. 11, 2025). "Perception and Cognitive Implications of Logarithmic Scales for Exponentially Increasing Data: Perceptual Sensitivity Tested with Statistical Lineups". In: *Journal of Computational and Graphical Statistics* (ja), pp. 1–14. DOI: [10.1080/10618600.2025.2476097](https://doi.org/10.1080/10618600.2025.2476097).

2024

8. Cuellar, M., **Vanderplas, S.**, Luby, A., and Rosenblum, M. (Dec. 5, 2024). "Methodological problems in every black-box study of forensic firearm comparisons". In: *Law, Probability and Risk* 23.1, mgae015. ISSN: 1470-8396. DOI: <https://doi.org/10.1093/lpr/mgae015>.
7. Ju, W., **VanderPlas, S.**, and Hofmann, H. (Jan. 24, 2024). "One Model That Fits Them All: Psychometrics With Generalized Linear Mixed Effects Models". In: *Electronic Imaging* 36, pp. 1–8. DOI: <https://doi.org/10.2352/EI.2024.36.1.VDA-358>.
6. Li, W.*, Cook, D., Tanaka, E., and **VanderPlas, S.** (May 22, 2024). "A Plot Is Worth a Thousand Tests: Assessing Residual Diagnostics with the Lineup Protocol". In: *Journal of Computational and Graphical Statistics*, pp. 1497–1511. ISSN: 1061-8600. DOI: <https://doi.org/10.1080/10618600.2024.2344612>.
5. Rogers, R.* and **VanderPlas, S.** (May 2, 2024). "Demonstrative Evidence and the Use of Algorithms in Jury Trials". In: *Journal of Data Science* 22.2, pp. 314–332. DOI: <https://doi.org/10.6339/24-JDS1130>.
4. Rosenblum, M., Chin, E. T., Ogburn, E. L., Nishimura, A., Westreich, D., Datta, A., **Vanderplas, S.**, Cuellar, M., and Thompson, W. C. (Jan. 9, 2024a). "Misuse of statistical method results in highly biased interpretation of forensic evidence in Guyll et al. (2023)". In: *Law, Probability and Risk* 23.1, mgad010. DOI: <https://doi.org/10.1093/lpr/mgad010>.

3. **Vanderplas, S.**, Blankenship, E., and Wiederich, T.* (July 1, 2024). "Escaping Flatland: Graphics, Dimensionality, and Human Perception". In: *Human Interface and the Management of Information*. Ed. by H. Mori and Y. Asahi. Springer Nature Switzerland July 1, 2024, pp. 140–156. ISBN: 978-3-031-60114-9. DOI: https://doi.org/10.1007/978-3-031-60114-9_11.

2. **Vanderplas, S.**, Carriquiry, A., and Hofmann, H. (June 10, 2024). "Hidden Multiple Comparisons Increase Forensic Error Rates". In: *Proceedings of the National Academy of Sciences* 121.25, e2401326121. DOI: <https://doi.org/10.1073/pnas.2401326121>.

1. Wiederich, T.* and **Vanderplas, S.** (Apr. 24, 2024). "Evaluating Perceptual Judgements on 3D Printed Bar Charts". In: *Journal of Data Science* 22.2, pp. 176–190. ISSN: 1680743X. DOI: <https://doi.org/10.6339/24-JDS1131>.

2023

4. Robinson, E.*., Howard, R., and **VanderPlas, S.** (Jan. 12, 2023a). "You Draw It: Implementation of visually fitted trends with r2d3". In: *Journal of Data Science* 21 (2), pp. 281–294. ISSN: 1680-743X. DOI: <https://doi.org/10.6339/22-JDS1083>.

3. Robinson, E. A.*., Howard, R., and **VanderPlas, S.** (Oct. 2, 2023b). "Eye Fitting Straight Lines in the Modern Era". In: *Journal of Computational and Graphical Statistics* 32.4, pp. 1537–1544. ISSN: 1061-8600. DOI: <https://doi.org/10.1080/10618600.2022.2140668>.

2. **VanderPlas, S.**, Ge, Y.*., Unwin, A., and Hofmann, H. (Apr. 21, 2023). "Penguins Go Parallel: a grammar of graphics framework for generalized parallel coordinate plots". In: *Journal of Computational and Graphical Statistics* 32.4, pp. 1572–1587. DOI: <https://doi.org/10.1080/10618600.2023.2195462>.

1. Zemmels, J.*., **Vanderplas, S.**, and Hofmann, H. (Feb. 9, 2023). "A Study in Reproducibility: The Congruent Matching Cells Algorithm and cmcR package". In: *R Journal* 14 (4), pp. 79–102. DOI: <https://doi.org/10.32614/RJ-2023-014>.

2022

2. Bradford, D.* and **VanderPlas, S.** (Dec. 2022). "Exploring Rural Shrink Smart Through Guided Discovery Dashboards". In: *Journal of Data Science*, pp. 1–12. ISSN: 1680-743X. DOI: <https://doi.org/10.6339/22-JDS1080>.

1. Wilhelm, A. and **VanderPlas, S.** (Nov. 1, 2022). "Visual Narratives of the Covid-19 pandemic". In: *Journal of Data Science, Statistics, and Visualisation* 2.7, pp. 84–113. DOI: <https://doi.org/10.52933/jdssv.v2i7.64>.

2021

2. Hofmann, H., Carriquiry, A., and **Vanderplas, S.** (May 5, 2021). "Treatment of inconclusives in the AFTE range of conclusions". In: *Law, Probability and Risk* 19.3-4, pp. 317–364. ISSN: 1470-8396. DOI: <https://doi.org/10.1093/lpr/mgab002>.

1. **Vanderplas, S.**, Röttger, C., Cook, D., and Hofmann, H. (Dec. 1, 2021). "Statistical significance calculations for scenarios in visual inference". In: *Stat* 10.1, e337. DOI: <https://doi.org/10.1002/sta4.337>.

2020

2. **Vanderplas, S.**, Cook, D., and Hofmann, H. (Mar. 1, 2020). "Testing Statistical Charts: What Makes a Good Graph?" In: *Annual Review of Statistics and Its Application* 7.1, pp. 61–88. DOI: <https://doi.org/10.1146/annurev-statistics-031219-041252>.

pre 2020

1. **Vanderplas, S.**, Nally, M., Klep, T., Cadevall, C., and Hofmann, H. (Mar. 1, 2020). "Comparison of three similarity scores for bullet LEA matching". In: *Forensic Science International* 308, p. 110167. ISSN: 0379-0738. DOI: <https://doi.org/10.1016/j.forsciint.2020.110167>.
8. Rutter, L., **Vanderplas, S.**, Cook, D., and Graham, M. (May 29, 2019). "ggenealogy: An R Package for Visualizing Genealogical Data". In: *Journal of Statistical Software* 89.13, pp. 1–31. DOI: <https://doi.org/10.18637/jss.v089.i13>.
7. Sievert, C., **Vanderplas, S.**, Cai, J., Ferris, K., Khan, F. U. F., and Hocking, T. D. (Apr. 1, 2019). "Extending ggplot2 for Linked and Animated Web Graphics". In: *Journal of Computational and Graphical Statistics* 28.2, pp. 299–308. DOI: <https://doi.org/10.1080/10618600.2018.1513367>.
6. **Vanderplas, S.**, Goluch, R. C., and Hofmann, H. (Apr. 1, 2019). "Framed! Reproducing and Revisiting 150-Year-Old Charts". In: *Journal of Computational and Graphical Statistics* 28.3, pp. 620–634. DOI: <https://doi.org/10.1080/10618600.2018.1562937>.
5. **Vanderplas, S.** and Hofmann, H. (Apr. 24, 2017). "Clusters Beat Trend!? Testing Feature Hierarchy in Statistical Graphics". In: *Journal of Computational and Graphical Statistics* 26.2, pp. 231–242. DOI: <https://doi.org/10.1080/10618600.2016.1209116>.
4. **VanderPlas, S.** and Hofmann, H. (Dec. 31, 2016). "Spatial Reasoning and Data Displays". In: *IEEE Transactions on Visualization and Computer Graphics* 22.1, pp. 459–468. DOI: <https://doi.org/10.1109/TVCG.2015.2469125>.
3. **Vanderplas, S.** and Hofmann, H. (Dec. 10, 2015). "Signs of the Sine Illusion – why we need to care". In: *Journal of Computational and Graphical Statistics* 24.4, pp. 1170–1190. DOI: <https://doi.org/10.1080/10618600.2014.951547>.
2. Towfic, F., **Vanderplas, S.**, Oliver, C. A., Couture, O., Tuggle, C. K., Greenlee, M. H. W., and Honavar, V. (Apr. 29, 2010). "Detection of gene orthology from gene co-expression and protein interaction networks". In: *BMC bioinformatics* 11.Suppl 3, S7. DOI: <https://doi.org/10.1186/1471-2105-11-S3-S7>.
1. Hull, R., Bortfeld, H., and **Koops, S.** (Apr. 3, 2009). "Near-infrared spectroscopy and cortical responses to speech production". In: *The open neuroimaging journal* 3, p. 26. DOI: <https://doi.org/10.2174/1874440000903010026>.

Book Chapters

1. **Vanderplas, S.**, Carriquiry, A., Hofmann, H., Hamby, J., and Tai, X. H. (May 30, 2022). "An introduction to firearms examination for researchers in statistics". In: *Handbook of Forensic Statistics*. Ed. by Banks, D., Kafadar, K., Kaye, D., and Tackett, M. New York: Chapman and Hall/CRC May 30, 2022, pp. 365–390. DOI: <https://doi.org/10.1201/9780367527709>.

Letters

1. Rosenblum, M., Chin, E. T., Ogburn, E. L., Nishimura, A., Westreich, D., Datta, A., **Vanderplas, S.**, Cuellar, M., and Thompson, W. C. (Nov. 5, 2024b). "Incorrect statistical reasoning in Guyll et al. leads to biased claims about strength of forensic evidence". In: *Proceedings of the National Academy of Sciences* 121.45, e2315431121. DOI: <https://doi.org/10.1073/pnas.2315431121>.

Other Publications

6. Bilder, C. and **Vanderplas, S.** (Jan. 1, 2026). *University of Nebraska Regents Vote to Eliminate Statistics Department*. AMSTAT News Jan. 1, 2026. URL: <https://magazine.amstat.org/blog/2026/01/01/university-of-nebraska/> (visited on 01/16/2026).
5. **Vanderplas, S.** and Hofmann, H. (Oct. 10, 2025). *Statistics: An Essential Department for a Modern R1 University*. Academic Planning Committee Department Elimination Defense. Lincoln, NE: University of Nebraska Oct. 10, 2025. URL: <https://srvanderplas.github.io/2025-stat-apc-report/>.
4. *Submitted as an invited response to Hullman & Gelman's "Designing for Interactive Exploratory Data Analysis Requires Theories of Graphical Inference"*. **VanderPlas, S.** (July 30, 2021). "Designing Graphics Requires Useful Experimental Testing Frameworks and Graphics Derived From Empirical Results". In: *Harvard Data Science Review* 3.3. DOI: <https://doi.org/10.1162/99608f92.7d099fd0>.
3. Carriquiry, A., Hofmann, H., Tai, X. H., and **Vanderplas, S.** (Apr. 1, 2019). "Machine learning in forensic applications". In: *Significance* 16.2, pp. 29–35. DOI: <https://doi.org/10.1111/j.1740-9713.2019.01252.x>.
2. *Submitted as an invited response to Donoho's "50 years of Data Science"*. Hofmann, H. and **Vanderplas, S.** (Dec. 19, 2017). "All of This Has Happened Before. All of This Will Happen Again: Data Science". In: *Journal of Computational and Graphical Statistics* 26.4, pp. 775–778. DOI: <https://doi.org/10.1080/10618600.2017.1385474>.
1. Budrus, S., **Vanderplas, S.**, and Cook, D. (June 13, 2013). "In tennis, do smashes win matches?" In: *Significance* 10.3, pp. 35–38. DOI: <https://doi.org/10.1111/j.1740-9713.2013.00665.x>.

Software

Dates show initial involvement; only packages which are no longer maintained have end dates.

2024

courtr, *Tools to create visually appealing courtroom studies*
<https://github.com/rachelesrogers/courtr>

2023

highlightr, *Analysis of edited text data*
<https://github.com/rachelesrogers/highlightr>

2021

ggpcp, *Generalized parallel coordinate plots*
<https://github.com/heike/ggpcp>

2020

vinference, *Analysis of visual inference experiments*
<https://github.com/heike/vinference>

2019

21

groovefinder, *Identification of grooves in scans of bullet land engraved areas*
<https://github.com/heike/groovefinder>

2019

cmcR, *Automated matching of 3d cartridge case scans using the congruent matching cells algorithm*
<https://github.com/CSAFE-ISU/cmcR>

2018

bulletxtrctr, *Automated matching of 3d bullet scans*
<https://github.com/heike/bulletxtrctr>

2018

x3ptools, *Reading, manipulating, and visualizing x3p files*
<https://github.com/heike/x3ptools>

2018

bulletsamplr, *Resampling of bullet signatures*
<https://github.com/srvanderplas/bulletsamplr>

2018

20

ShoeScrapeR, *Acquisition of shoe images and metadata from online retailers*
<https://github.com/srvanderplas/shoescraper>

2018

21

ImageAlignR, *Image registration algorithms for forensics*
<https://github.com/srvanderplas/imagealignr>

2013

15

animint, *Animated, interactive web graphics for R using ggplot2 and d3.js*
<https://github.com/tdhock/animint>

Grants

2025

2030

NSF: CAREER, *What Do You See? Perception, Decisions, and Statistical Graphics*, PI, Total: \$550,000

2021

2023

NIJ: R&D In Forensic Science, *Automatic Acquisition and Identification of Footwear Class Characteristics*, PI, Total: \$380,650

2021

2022

USDA-NIFA: Agriculture and Food Research Initiative, *Corn Residue Adaptive Grazing Strategies*, Collaborator, Total: \$300,000

2020

2025

NIST: Center for Statistics and Applications in Forensic Evidence, *Footwear Class Characteristics and Human Factors*, PI, Total: \$20,000,000, Sub: \$456,930

2021

2023

USDA-NRCS: Conservation Innovation Grant On-Farm Trials, *Improving the Economic and Ecological Sustainability of US Crop Production through On-Farm Precision Experimentation*, PI, Total: \$4,000,000, Sub: \$400,000 (Split between 3 UNL co-PIs)

2020
2023

NSF: Smart and Connected Communities, *Overcoming the Rural Data Deficit to Improve Quality of Life and Community Services in Smart & Connected Small Communities*, PI, Total: \$1,500,000, Sub: \$123,445

2019
2020

NIJ: R&D In Forensic Science, *Statistical Infrastructure for the Use of Error Rate Studies in the Interpretation of Forensic Evidence*, Collaborator, Total: \$197,699, Sub: \$57,596

Awards

2012

2025
2030

CAREER Award, *National Science Foundation*

Student Paper Award, *Graphics Section, American Statistical Association*

Talks

█ provides a link to slides, where available

Invited

2025

Hidden Multiple Comparisons Increase Forensic Error Rates █, *ENAR Spring Meeting*, New Orleans, Louisiana

2024

Web Scraping Olympics: Python █, *Statistical Computing Section Mini-Symposium*, Online

2024

A Plot is Worth a Thousand Tests: Assessing Residual Diagnostics with the Lineup Protocol █, *JSM*, Section on Statistical Graphics, Portland, OR

2024

Escaping Flatland: Graphics, Dimensionality, and Human Perception █, *Human Computer Interaction International*, Washington DC

2024

Cultivating Insights: Harnessing the Power of Data Visualization in Agriculture █, *International Conference for On-Farm Precision Experimentation*, Corpus Christie, TX

2023

Multimodal User Testing: Producing comprehensive, task-focused guidelines for chart design █, *Australian Statistical Conference*, Wollongong, NSW, AUS

2023

How Do You Define a Circle? Perception and Computer Vision Diagnostics █, *International Association for Statistical Computing*, Asian Regional Section Meeting, Macquarie, NSW, AUS

2023

Multimodal User Testing: Producing comprehensive, task-focused guidelines for chart design █, *International Conference on Data Science*, Universidad Diego Portales, Chile

2023

Testing Statistical Graphics █, *JSM*, Section on Statistical Graphics, Toronto, ON, CA

2021

How do you define a circle? Perception and Computer Vision Diagnostics █, *JSM*, Section on Statistical Graphics, Seattle, WA

2021

Pandemics, Graphics, and Perception of Log Scales █, *R Ladies DC*, Washington, DC

2020	Perception and Visual Communication in a Global Pandemic <i>Data Science, Statistics, and Visualization</i> , SAMSI, Online
2020	One of these things is not like the others: Visual Statistics and Testing in Statistical Graphics <i>Data Science Symposium</i> , South Dakota State University, Brookings, SD
2020	Big Data, Big Experiments, and Big Problems <i>Plant and Animal Genome</i> , San Diego, CA
2019	Statistical Lineups for Bayesians <i>JSM</i> , Section on Statistical Graphics, Denver, CO
2018	Clusters Beat Trend!? Testing Feature Hierarchy in Statistical Graphics <i>SDSS</i> , Reston, VA
2015	Animint: Interactive Web-Based Animations using Ggplot2's Grammar of Graphics <i>JSM</i> , Section on Statistical Graphics, Seattle, WA
2014	The curse of three dimensions: Why your brain is lying to you <i>JSM</i> , Section on Statistical Graphics, Boston, MA
Contributed	
2025	Teaching Statistical Computing with R and Python <i>useR!</i> , Durham, NC
2025	Hidden Multiple Comparisons Increase Forensic Error Rates <i>Joint Statistical Meetings</i> , Forensics Interest Group, Nashville, TN
2022	Local Population Footwear Class Characteristics - An End-to-End Pipeline for Automatic Data Acquisition and Analysis <i>International Association for Identification Meeting</i> , Omaha, NE
2022	From Scans to Scores <i>International Association for Identification Meeting</i> , Omaha, NE
2022	How do you define a circle? Perception and Computer Vision Diagnostics <i>SDSU Data Science Symposium</i> , South Dakota State University, Brookings, SD
2021	Welcome to Forensic Statistics <i>Data Mishaps Night</i> , Online
2018	Framed Charts in the 1870 Statistical Atlas <i>JSM</i> , Section on Statistical Graphics, Vancouver, BC, CA
2017	A Bayesian Approach to Visual Inference <i>JSM</i> , Section on Statistical Graphics, Baltimore, MD
2016	Clusters Beat Trend!? Testing Feature Hierarchy in Statistical Graphics <i>JSM</i> , Section on Statistical Graphics, Chicago, IL
2015	Visual Aptitude and Statistical Graphics <i>InfoVis</i> , IEEE, Chicago, IL
2014	Do You See What I See? Using Shiny for User Testing <i>JSM</i> , Section on Statistical Graphics, Boston, MA
2014	Animint: Interactive, Web-Ready Graphics with R <i>Great Plains R User Group</i> , Sioux Center, IA

2013	Signs of the Sine Illusion – why we need to care , <i>JSM</i> , Section on Statistical Graphics, Montreal, ON, CA
	Seminars
2025	The Metrics 🔗 , <i>Budget Cuts</i> , University of Nebraska - Lincoln, Lincoln, NE
2024	Creating Effective Graphics 🔗 , <i>Undergraduate Creative Activities and Research Experience</i> , Lincoln, NE
2024	Creating Good Graphics 🔗 , <i>UNL REU seminar</i> , University of Nebraska - Lincoln, Lincoln, NE
2024	Graphical Perception in a Pandemic: Log Scales, Exponential Growth, and the Importance of User Testing , <i>University of Illinois Chicago School of Public Health</i> , Epidemiology and Biostatistics Seminar, Chicago, IL (Online)
2024	Building a CV/Blog Automatically 🔗 , <i>Graphics Group</i> , University of Nebraska, Online
2024	Building a CV with R and Google Sheets 🔗 , <i>Graphics Group</i> , University of Nebraska, Online
2024	Using Git Submodules 🔗 , <i>Graphics Group</i> , University of Nebraska, Online
2023	Graphics and Cognition: How Do We Perceive Charts? 🔗 , <i>Graphics Group</i> , University of Nebraska-Lincoln, Iowa State University, and other interested affiliates, Online
2023	What Makes a Good Graph? Graphical Testing and Principles for Graph Design 🔗 , <i>Center for Brain, Biology, and Behavior</i> , University of Nebraska, Lincoln, NE
2023	Inconclusive Conclusions: Biases and Consequences 🔗 , <i>Biostatistics</i> , Johns Hopkins University, Baltimore, MD
2022	Reproducible Science: Statistics, Forensics, and the Law 🔗 , <i>Statistics</i> , University of Nebraska - Lincoln, Lincoln, NE
2022	How to make good charts 🔗 , <i>Complex Biosystems</i> , University of Nebraska - Lincoln, Lincoln, NE
2022	Pandemics, Graphics, and Perception of Log Scales 🔗 , <i>Math</i> , University of Nebraska - Omaha, Omaha, NE
2022	Automatic Acquisition of Footwear Class Characteristics 🔗 , <i>Center for Statistical Applications in Forensic Evidence</i> , Online
2021	Pandemics, Graphics, and Perception of Log Scales 🔗 , <i>NUMBATS</i> , Monash University, Melbourne, Vic, AUS
2021	Exploring Rural Quality of Life Using Data Science and Public Data 🔗 , <i>QQPM</i> , University of Nebraska - Lincoln, Lincoln, NE
2021	Inconclusive Conclusions: Biases and Consequences 🔗 , <i>Law and Psychology Brown Bag</i> , University of Nebraska - Lincoln, Lincoln, NE
2021	Visual Statistics: Communication and Graphical Testing 🔗 , <i>Animal Science</i> , University of Nebraska - Lincoln, Lincoln, NE

2021	How to Make Good Charts <i>Biological and Systems Engineering GSA</i> , University of Nebraska - Lincoln, Lincoln, NE
2020	Statistical Evaluation of Firearms and Toolmark Evidence <i>Statistics</i> , University of Nebraska - Lincoln, Lincoln, NE
Teaching	
2026	STAT 349 , <i>Technical Skills for Statisticians</i> , University of Nebraska – Lincoln, In person synchronous
2025	STAT 151 , <i>Introduction to Statistical Computing</i> , University of Nebraska – Lincoln, Flipped synchronous. Evals: 3.90 (mean), 4 (median)
2025	STAT 349 , <i>Technical Skills for Statisticians</i> , University of Nebraska – Lincoln, In person synchronous. Evals: 4.00 (mean), 4 (median)
2025	STAT 351 , <i>Statistical Computing II - Data Management and Visualization</i> , University of Nebraska – Lincoln, In person synchronous
2025	STAT 850 , <i>Computing Tools for Statisticians</i> , University of Nebraska – Lincoln, Flipped synchronous
2024	STAT 151 , <i>Introduction to Statistical Computing</i> , University of Nebraska – Lincoln, Flipped synchronous. Evals: 4.50 (mean), 5 (median)
2024	STAT 251 , <i>Data Wrangling</i> , University of Nebraska – Lincoln, Flipped synchronous. Evals: 4.69 (mean), 5 (median)
2024	STAT 892 , <i>Writing in Statistics/TA Prep</i> , University of Nebraska – Lincoln, In person synchronous
2024	Stat 992 , <i>Special Topics in Data Visualization</i> , University of Nebraska – Lincoln, In person synchronous. Evals: 4.82 (mean), 5 (median)
2023	STAT 151 , <i>Introduction to Statistical Computing</i> , University of Nebraska – Lincoln, Flipped synchronous. Evals: 4.55 (mean), 5 (median)
2023	STAT 251 , <i>Data Wrangling</i> , University of Nebraska – Lincoln, Flipped synchronous. Evals: 4.30 (mean), 5 (median)
2023	STAT 892 , <i>Data Technologies for Statistical Analysis</i> , University of Nebraska – Lincoln, Co-taught with ISU Stat 585, Hybrid synchronous. Evals: 4.45 (mean), 4 (median)
2023	STAT 850 , <i>Computing Tools for Statisticians</i> , University of Nebraska – Lincoln, Flipped synchronous. Evals: 4.31 (mean), 5 (median)
2023	STAT 892 , <i>Writing in Statistics/TA Prep</i> , University of Nebraska – Lincoln, In person synchronous. Evals: 4.13 (mean), 4 (median)
2022	STAT 151 , <i>Introduction to Statistical Computing</i> , University of Nebraska – Lincoln, Flipped synchronous. Evals: 4.95 (mean), 5 (median)
2022	STAT 218 , <i>Introduction to Statistics</i> , University of Nebraska – Lincoln, Online asynchronous. Evals: 3.72 (mean), 4 (median)
2022	STAT 850 , <i>Computing Tools for Statisticians</i> , University of Nebraska – Lincoln, Flipped synchronous. Evals: 4.33 (mean), 5 (median)

2022	STAT 892 , <i>Writing in Statistics/TA Prep</i> , University of Nebraska – Lincoln, In person synchronous. Evals: 4.29 (mean), 5 (median)
2022	STAT 982 , <i>Advanced Inference</i> , University of Nebraska – Lincoln, Co-taught with Bertrand Clarke. Evals: 4.34 (mean), 5 (median)
2021	STAT 218 , <i>Introduction to Statistics</i> , University of Nebraska – Lincoln, Online asynchronous.. Evals: 4.01 (mean), 4 (median)
2021	STAT 850 , <i>Computing Tools for Statisticians</i> , University of Nebraska – Lincoln, Hybrid, flipped, synchronous. Evals: 4.79 (mean), 5 (median)
2020	STAT 218 , <i>Introduction to Statistics</i> , University of Nebraska – Lincoln, Initially in person synchronous, then online asynchronous. Evals: 4.20 (mean), 4 (median)
2020	STAT 850 , <i>Computing Tools for Statisticians</i> , University of Nebraska – Lincoln, Hybrid, flipped, synchronous. Evals: 4.76 (mean), 5 (median)
2019	STAT 585 , <i>Data Technologies for Statistical Analysis</i> , Iowa State, Co-taught with Heike Hofmann. Evals: 4.92 (mean), 5 (median)

Mentoring

Ph.D.

2023	Tyler Wiederich , <i>Perception of Three Dimensional Graphics</i> , University of Nebraska - Lincoln
2023	Muxin Ha , <i>Automatic Recognition of Shoe Class Characteristics</i> , University of Nebraska - Lincoln
2021	Denise Bradford , <i>Dashboards for Exploratory Multivariate Data Analysis</i> , University of Nebraska - Lincoln
2024	Harriet Mason , Monash University
2026	Weihao (Patrick) Li , <i>Advances in Artificial Intelligence for Data Visualization: Developing Computer Vision Models to Automate Reading of Data Plots, with Application to Predictive Model Diagnostics</i> , co-advised with Dianne Cook and Emi Tanaka, Monash University
2024	Rachel Rogers , <i>Explainable Machine Learning for Forensics in Courtooms</i> , University of Nebraska - Lincoln
2020	Alison Kleffner , <i>Spatial Statistics and Visualization in Ecology and Agriculture</i> , co-advised with Yawen Guan, University of Nebraska - Lincoln
2023	Joseph Zemmels , <i>Analysis and Matching of Cartridge Cases</i> , co-advised with Heike Hofmann, Iowa State University
2020	Emily Robinson , <i>Perception of Log Scales</i> , co-advised with Reka Howard, University of Nebraska - Lincoln

MS

2024	Dinuwanthi Lianage , University of Nebraska
2024	Nicole Harms , University of Nebraska
2026	
2024	Maksuda Aktar Toma , <i>An Historical Analysis of Pie and Bar Chart Experiments</i> , University of Nebraska - Lincoln
2025	
2022	Tyler Wiederich , <i>Perception of Three Dimensional Graphics</i> , University of Nebraska - Lincoln
2023	
2022	Muxin Ha , <i>Automatic Recognition of Shoe Class Characteristics</i> , University of Nebraska - Lincoln
2023	
2021	Jayden Stack , <i>Automatic Recognition of Shoe Class Characteristics</i> , University of Nebraska - Lincoln
2022	
2020	Ved Piyush , <i>Machine Learning and Computer Vision</i> , University of Nebraska - Lincoln
2019	
2020	Joseph Zemmels , <i>Analysis and Matching of Cartridge Cases</i> , co-advised with Heike Hofmann, Iowa State University
2019	
2020	Eryn Blagg , <i>Analysis of Wear Development in Three-Dimensional Shoe Scans</i> , co-advised with Heike Hofmann, Iowa State University
2018	
2019	Miranda Tilton , <i>Footwear Class Characteristics and Computer Vision</i> , Iowa State University
	Undergraduate
2025	Mason Chandler , <i>The Quantitative Display of Insanity</i> , UNL Undergraduate Research Program, University of Nebraska
2026	
2024	Mason Chandler , <i>An Historical Analysis of Pie and Bar Chart Experiments</i> , UNL FYRE Program, University of Nebraska
2025	
2024	Olivia Walker , <i>An Historical Analysis of Pie and Bar Chart Experiments</i> , UNL FYRE Program, University of Nebraska
2025	
2021	Xinyu Liu , <i>Machine Learning for Shoe Sole Images</i> , UNL FYRE Program, University of Nebraska - Lincoln
2019	
2019	Jason Seo , <i>R package for visualization of neural networks using the python library keras-vis</i> , Iowa State University
2018	
2019	Talen Fisher , <i>Database engineering and tools for working with x3p files</i> , Iowa State University
	Summer
2019	Molly McDermott and Andrew Maloney , <i>Bullet Scan Quality and Machine Learning</i> , Iowa State University
2019	
2019	Syema Ailia, Emmanuel Hernandez Morales, Tiger Ji , <i>Rapid quality control tools for confocal microscopy scans</i> , Iowa State University
2018	
2018	Ben Wonderlin, Jenny Kim , <i>Footwear Class Characteristics and Computer Vision</i> , Young Engineers and Scientists Program, Iowa State University

Service

Discipline

Institution

Department

Member, *MS Comprehensive Exam Committee*

Organizer, *Seminar*, Statistics Department

Member, *Undergraduate Program Committee*, Statistics Department, Design the undergraduate statistics program, propose new classes to support the program, and submit proposals to the university for new courses and programs.

Reviewing

I have provided peer reviews for Journal of Open Source Software, CRC/Chapman & Hall, Forensic Science International, Journal of Statistics and Data Science Education, R Journal, IEEE InfoVis, Journal of Computational and Graphical Statistics, Symmetry, Forensic Sciences Research, Law, Probability, and Risk, Harvard Data Science Review, Journal of the American Statistical Association, The American Statistician

References

Alicia Carriquiry

Professor

Department of Statistics

Iowa State University

✉ alicia@iastate.edu

☎ 515-451-3322

Dianne Cook

Professor

Department of Econometrics and

Business Statistics

Monash University

✉ dcook@monash.edu

☎ +61 (0)3990 52608

Kimberly Stanke

Assistant Professor of Practice

Science Literacy and Data Analytics

Extension Specialist

University of Nebraska Lincoln

✉ kstanke2@unl.edu

☎ 810-955-7625

Heike Hofmann

Professor

Department of Statistics

University of Nebraska Lincoln

✉ hhofmann4@unl.edu

☎ 515-294-8948