

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

Thinking	
 in	
 Parallel	

Stuart	
 Marks	

Brian	
 Goetz	

Java	
 PlaHorm	
 Group,	
 Oracle	

	

QuesKons/comments:	
 #DevoxxParallel	

	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 3	

Thinking	
 in	
 Parallel	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 4	

Thinking	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

The	
 First	
 Trivial	
 Example	

• Convert	
 an	
 array	
 of	
 strings	
 to	
 upper	
 case	

– ConvenKonal	
 (iteraKve)	
 approach	

– Streams	
 (aggregate)	
 approach	

5	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

6	

String[]	
 upcase(String[]	
 input)	
 {	

	
 	
 	
 	
 String[]	
 result	
 =	
 new	
 String[input.length];	

	

	
 	
 	
 	
 for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 input.length;	
 i++)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 result[i]	
 =	
 input[i].toUpperCase();	

	
 	
 	
 	
 }	

	

	
 	
 	
 	
 return	
 result;	

}	

Convert	
 Array	
 of	
 Strings	
 to	
 Upper	
 Case	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 7	

Convert	
 Array	
 of	
 Strings	
 to	
 Upper	
 Case	

a 	
 b 	
 c 	
 d 	
 e	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 8	

Convert	
 Array	
 of	
 Strings	
 to	
 Upper	
 Case	

a 	
 b 	
 c 	
 d 	
 e	

A	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 9	

Convert	
 Array	
 of	
 Strings	
 to	
 Upper	
 Case	

a 	
 b 	
 c 	
 d 	
 e	

A 	
 B	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 10	

Convert	
 Array	
 of	
 Strings	
 to	
 Upper	
 Case	

a 	
 b 	
 c 	
 d 	
 e	

A 	
 B 	
 C	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 11	

Convert	
 Array	
 of	
 Strings	
 to	
 Upper	
 Case	

a 	
 b 	
 c 	
 d 	
 e	

A 	
 B 	
 C 	
 D	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 12	

Convert	
 Array	
 of	
 Strings	
 to	
 Upper	
 Case	

a 	
 b 	
 c 	
 d 	
 e	

A 	
 B 	
 C 	
 D 	
 E	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

13	

String[]	
 upcase(String[]	
 input)	
 {	

	
 	
 	
 	
 String[]	
 result	
 =	
 new	
 String[input.length];	

	

	
 	
 	
 	
 for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 input.length;	
 i++)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 result[i]	
 =	
 input[i].toUpperCase();	

	
 	
 	
 	
 }	

	

	
 	
 	
 	
 return	
 result;	

}	

What	
 Parts	
 Are	
 EssenKal?	

the	
 actual	
 computa,on	
 no,on:	
 same	
 computa,on	
 applied	

to	
 every	
 element,	
 par,ally	

obscured	
 by	
 indexing	
 and	
 bounds	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

ObservaKons	

•  For-­‐loop	
 processing	

– SequenKal	

– Leb-­‐to-­‐right	
 ordering	

• Most	
 of	
 this	
 is	
 accidental,	
 not	
 essenKal	

– Key:	
 each	
 upper-­‐case	
 computaKon	
 is	
 independent	
 of	
 all	
 others	

•  (this	
 is	
 important,	
 stay	
 tuned)	

– But	
 why	
 are	
 they	
 done	
 sequenKally,	
 in	
 order?	

– With	
 a	
 for	
 loop,	
 that’s	
 all	
 we’ve	
 got!	

•  you	
 have	
 to	
 do	
 extra	
 work	
 to	
 do	
 anything	
 else	

•  enhanced-­‐for	
 (“for-­‐each”)	
 loop	
 helps,	
 but	
 only	
 a	
 liile	

14	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

15	

String[]	
 upcase(String[]	
 input)	
 {	

	
 	
 	
 	
 return	
 Arrays.stream(input)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .map(String::toUpperCase)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .toArray(String[]::new);	

}	

Convert	
 Array	
 of	
 Strings	
 to	
 Upper	
 Case	
 –	
 Streams	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 16	

Can	
 be	
 done	
 in	
 any	
 order,	
 or	
 all	
 at	
 once!	

a 	
 b 	
 c 	
 d 	
 e	

A 	
 B 	
 C 	
 D 	
 E	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 17	

Consider	
 as	
 aggregate	
 operaKon,	
 not	
 individual	
 operaKons	

a 	
 b 	
 c 	
 d 	
 e	

A 	
 B 	
 C 	
 D 	
 E	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Which	
 is	
 Beier?	

•  Streams	
 version	
 is	
 beier	

– more	
 compact	

– new	
 and	
 cool	

– more	
 funcKonal	

•  For-­‐loop	
 is	
 beier	

– more	
 efficient	

– more	
 familiar	

– more	
 straighHorward	

18	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Which	
 is	
 Beier?	

•  Streams	
 version	
 is	
 beier	

– more	
 compact	

– new	
 and	
 cool	

– more	
 funcKonal	

•  For-­‐loop	
 is	
 beier	

– more	
 efficient	

– more	
 familiar	

– more	
 straighHorward	

19	

WRONG!	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Verdict:	
 Streams	
 Version	
 is	
 Beier	

• Why?	
 Higher	
 level	
 of	
 abstracKon	

– Expresses	
 independence	
 of	
 each	
 computaKon	

– Less	
 accidental	
 complexity,	
 e.g.,	
 index	
 computaKons	

– Implicitly	
 operates	
 on	
 all	
 elements,	
 not	
 individual	
 elements	

– Focus	
 on	
 desired	
 results	
 than	
 mechanics	
 of	
 compuKng	
 it	

• Why	
 hasn’t	
 he	
 said	
 anything	
 about	
 parallelism	
 yet?	

– Making	
 it	
 parallelizable	
 isn’t	
 what	
 makes	
 it	
 beier	

•  you	
 might	
 never	
 want	
 to	
 run	
 this	
 code	
 in	
 parallel	
 (see	
 Brian’s	
 part)	

•  but	
 this	
 code	
 is	
 sKll	
 beier	

– Making	
 the	
 code	
 beier	
 makes	
 it	
 parallelizable,	
 as	
 a	
 bonus	

20	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

A	
 Less	
 Trivial	
 Example	

•  Splinng	
 a	
 list	

– Split	
 at	
 elements	
 selected	
 by	
 a	
 predicate	

– Result	
 list	
 should	
 be	
 sublists	
 of	
 original	
 list	
 (using	
 List.subList	
 method)	

•  Example	

– Split	
 the	
 list: 	
 [a,	
 b,	
 #,	
 c,	
 #,	
 d,	
 e]	

– At	
 elements	
 that	
 equal	
 "#"	

– Expected	
 result: 	
 [[a,	
 b],	
 [c],	
 [d,	
 e]]	

21	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Shameless	
 Plug	

•  Spli:ng	
 List	
 into	
 sublists	
 along	

elements	

– link	
 to	
 my	
 answer:	

hip://stackoverflow.com/a/29111023/1441122	

– please	
 upvote!	

•  There	
 are	
 several	
 other	
 answers	

worth	
 reading	

– some	
 of	
 them	
 are	
 ...	
 interesKng	

22	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 23	

Thinking	
 Through	
 the	
 Problem	

a 	
 b 	
 # 	
 c 	
 # 	
 d 	
 e	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 24	

Thinking	
 Through	
 the	
 Problem	

List.subList()	
 wants	
 indexes,	

so	
 conceptually,	
 number	
 all	

the	
 elements	

a 	
 b 	
 # 	
 c 	
 # 	
 d 	
 e	

0 	
 1 	
 2 	
 3 	
 4 	
 5 	
 6	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 25	

Thinking	
 Through	
 the	
 Problem	

split	
 points	
 are	
 the	

edges	
 of	
 the	
 sublists	

a 	
 b 	
 	
 c 	
 	
 d 	
 e	

0 	
 1 	
 2 	
 3 	
 4 	
 5 	
 6	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 26	

Thinking	
 Through	
 the	
 Problem	

a 	
 b 	
 	
 c 	
 	
 d 	
 e	

-­‐1 	
 0 	
 1 	
 2 	
 3 	
 4 	
 5 	
 6 	
 7	

we	
 also	
 need	
 to	
 “synthesize”	
 split	

points	
 at	
 each	
 end	
 to	
 create	

bounds	
 for	
 exterior	
 sublists	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 27	

Thinking	
 Through	
 the	
 Problem	

a 	
 b 	
 	
 c 	
 	
 d 	
 e	

-­‐1 	
 0 	
 1 	
 2 	
 3 	
 4 	
 5 	
 6 	
 7	

each	
 subList	
 starts	
 at	
 this	
 split	
 point	
 +1	

and	
 runs	
 un,l	
 the	
 next	
 split	
 point	

(since	
 subList	
 is	
 half-­‐open	
 on	
 the	
 right)	

implicitly	
 handles	
 corner	
 cases	
 correctly	

subList(0,	
 2)	
 subList(3,	
 4)	
 subList(5,	
 7)	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

28	

	
 	
 	
 	
 <T>	
 List<List<T>>	
 split(List<T>	
 input,	
 Predicate<T>	
 pred)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 }	

	

Start	
 with	
 this	
 method	
 signature	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

29	

	
 	
 	
 	
 <T>	
 List<List<T>>	
 split(List<T>	
 input,	
 Predicate<T>	
 pred)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 List<List<T>>	
 result	
 =	
 new	
 ArrayList<>();	

	
 	
 	
 	
 	
 	
 	
 	
 int	
 start	
 =	
 0;	

	

	
 	
 	
 	
 	
 	
 	
 	
 for	
 (int	
 cur	
 =	
 0;	
 cur	
 <	
 input.size();	
 cur++)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (pred.test(input.get(cur)))	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 result.add(input.subList(start,	
 cur));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 start	
 =	
 cur	
 +	
 1;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 result.add(input.subList(start,	
 input.size()));	

	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 result;	

	
 	
 	
 	
 }	

	

ConvenKonal	
 Approach	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

30	

	
 	
 	
 	
 <T>	
 List<List<T>>	
 split(List<T>	
 input,	
 Predicate<T>	
 pred)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 List<List<T>>	
 result	
 =	
 new	
 ArrayList<>();	

	
 	
 	
 	
 	
 	
 	
 	
 int	
 start	
 =	
 0;	

	

	
 	
 	
 	
 	
 	
 	
 	
 for	
 (int	
 cur	
 =	
 0;	
 cur	
 <	
 input.size();	
 cur++)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (pred.test(input.get(cur)))	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 result.add(input.subList(start,	
 cur));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 start	
 =	
 cur	
 +	
 1;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 result.add(input.subList(start,	
 input.size()));	

	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 result;	

	
 	
 	
 	
 }	

	

ConvenKonal	
 Approach	

apply	
 predicate	
 to	

each	
 element	

sublist	
 crea,on	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

31	

	
 	
 	
 	
 <T>	
 List<List<T>>	
 split(List<T>	
 input,	
 Predicate<T>	
 pred)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 List<List<T>>	
 result	
 =	
 new	
 ArrayList<>();	

	
 	
 	
 	
 	
 	
 	
 	
 int	
 start	
 =	
 0;	

	

	
 	
 	
 	
 	
 	
 	
 	
 for	
 (int	
 cur	
 =	
 0;	
 cur	
 <	
 input.size();	
 cur++)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (pred.test(input.get(cur)))	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 result.add(input.subList(start,	
 cur));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 start	
 =	
 cur	
 +	
 1;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 result.add(input.subList(start,	
 input.size()));	

	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 result;	

	
 	
 	
 	
 }	

	

ConvenKonal	
 Approach	

ini,aliza,on	
 of	

result	
 and	
 state	

exposed	
 loop	

mechanics	

extra	
 addi,on	
 to	

result	
 list??	

why	
 do	
 we	
 have	

to	
 add	
 one	
 here?	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

ConvenKonal	
 Approach	
 –	
 ObservaKons	

• How	
 do	
 we	
 know	
 this	
 is	
 correct?	

– Does	
 this	
 handle	
 all	
 the	
 corner	
 cases?	

– Handling	
 of	
 trailing	
 sublist	
 is	
 treated	
 non-­‐uniformly	
 (edge	
 cases)	

– Reasoning	
 about	
 loop	
 invariants	
 is	
 subtle	

• Hard	
 to	
 see	
 relaKonship	
 between	
 this	
 code	
 and	
 the	
 model	
 we	
 developed	

– Can	
 you	
 reverse-­‐engineer	
 the	
 diagram	
 from	
 the	
 code?	

• Accidental	
 data	
 dependency	

– Each	
 loop	
 iteraKon	
 depends	
 on	
 state	
 from	
 the	
 previous	
 iteraKon	

– Even	
 though	
 computa8ons	
 of	
 split	
 points	
 are	
 all	
 independent!	

32	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Streams	
 Approach	

• Rethink	
 the	
 problem,	
 avoiding	
 iteraKon	

• We	
 are	
 interested	
 in	
 indexes	
 (because	
 of	
 List.subList)	

– Stream	
 over	
 indexes	
 instead,	
 e.g.,	
 IntStream.range(0,	
 last)	

– Instead	
 of	
 typical	
 stream	
 over	
 values,	
 e.g.,	
 input.stream()	

• ComputaKon	
 of	
 an	
 edge	
 is	
 independent	
 of	
 all	
 other	
 computaKons	

– Apply	
 the	
 predicate	
 to	
 each	
 element	

– No	
 dependencies	
 on	
 result	
 of	
 predicate	
 on	
 any	
 other	
 result	

– Contrast	
 with	
 the	
 preceding	
 looping	
 approach	

33	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	
 34	

Streams	
 Approach	

a 	
 b 	
 	
 c 	
 	
 d 	
 e	

-­‐1 	
 0 	
 1 	
 2 	
 3 	
 4 	
 5 	
 6 	
 7	

each	
 subList	
 starts	
 at	
 this	
 split	
 point	
 +1	

and	
 runs	
 un,l	
 the	
 next	
 split	
 point	

(since	
 subList	
 is	
 half-­‐open	
 on	
 the	
 right)	

implicitly	
 handles	
 corner	
 cases	
 correctly	

subList(0,	
 2)	
 subList(3,	
 4)	
 subList(5,	
 7)	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Streams	
 Approach	
 –	
 Outline	

1.  Filter	
 indexes	
 to	
 find	
 interior	
 sublist	
 edges	

2.  Synthesize	
 exterior	
 edges	
 at	
 each	
 end	

3.  Compute	
 sublist	
 from	
 this	
 edge	
 and	
 the	
 next	
 one	

35	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

36	

	
 	
 	
 	
 <T>	
 List<List<T>>	
 split(List<T>	
 input,	
 Predicate<T>	
 pred)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 int[]	
 temp	
 	
 =	
 IntStream.range(0,	
 input.size())	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .filter(i	
 -­‐>	
 pred.test(input.get(i)))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .toArray();	

	

Streams	
 Approach	

compute	
 interior	
 edges	

by	
 applying	
 the	
 predicate	

to	
 every	
 element	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

37	

	
 	
 	
 	
 <T>	
 List<List<T>>	
 split(List<T>	
 input,	
 Predicate<T>	
 pred)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 int[]	
 temp	
 	
 =	
 IntStream.range(0,	
 input.size())	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .filter(i	
 -­‐>	
 pred.test(input.get(i)))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .toArray();	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 int[]	
 edges	
 =	
 new	
 int[temp.length+2];	

	
 	
 	
 	
 	
 	
 	
 	
 System.arraycopy(temp,	
 0,	
 edges,	
 1,	
 temp.length);	

	
 	
 	
 	
 	
 	
 	
 	
 edges[0]	
 =	
 -­‐1;	

	
 	
 	
 	
 	
 	
 	
 	
 edges[edges.length-­‐1]	
 =	
 input.size();	

Streams	
 Approach	

Synthesize	
 exterior	
 edges.	

OK,	
 we	
 admit	
 it,	
 these	
 array	

opera,ons	
 are	
 ugly.	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

38	

	
 	
 	
 	
 <T>	
 List<List<T>>	
 split(List<T>	
 input,	
 Predicate<T>	
 pred)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 int[]	
 temp	
 	
 =	
 IntStream.range(0,	
 input.size())	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .filter(i	
 -­‐>	
 pred.test(input.get(i)))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .toArray();	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 int[]	
 edges	
 =	
 new	
 int[temp.length+2];	

	
 	
 	
 	
 	
 	
 	
 	
 System.arraycopy(temp,	
 0,	
 edges,	
 1,	
 temp.length);	

	
 	
 	
 	
 	
 	
 	
 	
 edges[0]	
 =	
 -­‐1;	

	
 	
 	
 	
 	
 	
 	
 	
 edges[edges.length-­‐1]	
 =	
 input.size();	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 IntStream.range(0,	
 edges.length-­‐1)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .mapToObj(k	
 -­‐>	
 input.subList(edges[k]+1,	
 edges[k+1]))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .collect(toList());	

	
 	
 	
 	
 }	

	

Streams	
 Approach	

compute	
 sublists	
 from	
 each	

edge	
 and	
 the	
 one	
 to	
 its	
 right	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

39	

	
 	
 	
 	
 <T>	
 List<List<T>>	
 split(List<T>	
 input,	
 Predicate<T>	
 pred)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 int[]	
 edges	
 =	
 IntStream.range(-­‐1,	
 input.size()+1)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .filter(i	
 -­‐>	
 i	
 ==	
 -­‐1	
 ||	
 i	
 ==	
 input.size()	
 ||	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 pred.test(input.get(i)))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .toArray();	

	

	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 IntStream.range(0,	
 edges.length-­‐1)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .mapToObj(k	
 -­‐>	
 input.subList(edges[k]+1,	
 edges[k+1]))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .collect(toList());	

	
 	
 	
 	
 }	

	

Quick	
 Aside:	
 Adjust	
 Bounds	
 to	
 Synthesize	
 Exterior	
 Edges	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Streams	
 Approach	
 –	
 ObservaKons	

• Which	
 is	
 beier?	

•  Streams	
 code	
 is	
 beier	

– Not	
 because	
 it’s	
 new,	
 cool,	
 shorter,	
 more	
 funcKonal	

– But	
 because	
 it’s	
 at	
 a	
 higher	
 level	
 of	
 abstracKon	

• CharacterisKcs	

– Independent	
 computaKons	
 are	
 independent	

•  No	
 accidental	
 dependencies	
 are	
 introduced	

– Problem	
 setup	
 treats	
 all	
 cases	
 uniformly	

– OperaKons	
 on	
 aggregates,	
 not	
 element-­‐at-­‐a-­‐Kme	

– No	
 loop	
 mechanics	
 to	
 worry	
 about	

40	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Streams	
 Approach	
 –	
 ObservaKons	

• Useful	
 technique:	
 stream	
 over	
 indexes,	
 not	
 over	
 elements	

– Many,	
 but	
 not	
 all,	
 problems	
 can	
 be	
 solved	
 by	
 streaming	
 over	
 elements	

– If	
 you're	
 fighKng	
 the	
 Streams	
 API,	
 try	
 this,	
 it	
 might	
 work	

– Broadly,	
 but	
 not	
 universally	
 applicable	

• By	
 the	
 way,	
 you	
 can	
 also	
 run	
 this	
 in	
 parallel!	

• But,	
 should	
 you	
 run	
 it	
 in	
 parallel?	

41	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

Now,	
 over	
 to	
 Brian...	

42	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Parallelism	

•  Parallelism	
 is	
 about	
 using	
 more	
 resources	
 to	
 get	
 the	
 answer	
 faster	

– Strictly	
 an	
 op8miza8on!	

–  If	
 addiKonal	
 resources	
 are	
 not	
 available,	
 can	
 sKll	
 compute	
 sequenKally	

•  Corollary:	
 Only	
 useful	
 if	
 it	
 really	
 does	
 get	
 the	
 answer	
 faster!	

•  Just	
 because	
 we	
 use	
 more	
 resources	
 …	

– Doesn’t	
 mean	
 the	
 computaKon	
 is	
 always	
 faster	
 than	
 a	
 sequenKal	
 one	

– Or	
 even	
 as	
 fast…	

•  Analyze	
 →	
 implement	
 →	
 measure	
 →	
 repeat...	

– Prefer	
 sequenKal	
 implementaKon	
 unKl	
 parallel	
 is	
 proven	
 effecKve	

• Measure	
 of	
 parallel	
 effecKveness	
 is	
 speedup	

– How	
 much	
 faster	
 (or	
 slower)	
 compared	
 to	
 sequenKal?	
 	
 	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Parallelism	

•  A	
 parallel	
 computaKon	
 always	
 involves	
 more	
 work	
 than	
 the	
 best	
 sequenKal	

alternaKve	

– How	
 could	
 it	
 not?	
 	
 It	
 sKll	
 has	
 to	
 solve	
 the	
 problem!	

– And	
 also:	
 	

•  Decompose	
 the	
 problem	

•  Launch	
 tasks,	
 manage	
 tasks,	
 wait	
 for	
 tasks	
 to	
 complete	

•  Combine	
 results	

•  Parallel	
 version	
 always	
 starts	
 out	
 “behind”	
 	

– We	
 hope	
 to	
 make	
 up	
 for	
 this	
 iniKal	
 deficit	
 by	
 burning	
 more	
 resources	

– To	
 succeed,	
 we	
 need	

•  A	
 parallelizable	
 problem	

•  A	
 good	
 implementaKon	

•  Good	
 runKme	
 support	
 for	
 execuKon	

•  Enough	
 data	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Towards	
 Parallel	
 ComputaKon	

•  Simple	
 problem:	
 add	
 numbers	
 from	
 1..n	

• What	
 kind	
 of	
 dataflow	
 graph	
 do	
 we	
 get?	

• What	
 kind	
 of	
 dataflow	
 graph	
 do	
 we	
 want?	

• Problem	
 #1	
 –	
 Accumulator	
 paiern	

– Need	
 to	
 unlearn	
 this!	

– Impediment	
 to	
 parallelism	

int	
 sumSeq(int[]	
 array)	
 {	

	
 	
 	
 	
 int	
 sum	
 =	
 0;	

	
 	
 	
 	
 for	
 (int	
 i	
 :	
 array)	

	
 	
 	
 	
 	
 	
 	
 	
 sum	
 =	
 sum	
 +	
 i;	

	
 	
 	
 	
 return	
 sum;	

}

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Divide	
 And	
 Conquer	

•  Standard	
 tool	
 for	
 parallel	
 execuKon	
 is	
 divide-­‐and-­‐conquer	

– ParKKon	
 the	
 input	
 into	
 chunks	
 that	
 can	
 be	
 independently	
 operated	
 on	

– Recursively	
 decompose	
 problem	
 unKl	
 it	
 is	
 small	
 enough	
 for	
 sequenKal	

R	
 solve(Problem<R>	
 problem)	
 {	

	
 	
 	
 	
 if	
 (problem.isSmall())	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 problem.solveSequentially();	

	
 	
 	
 	
 R	
 leftResult,	
 rightResult;	

	
 	
 	
 	
 CONCURRENT	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 leftResult	
 =	
 solve(problem.left());	

	
 	
 	
 	
 	
 	
 	
 	
 rightResult	
 =	
 solve(problem.right());	

	
 	
 	
 	
 }	

	
 	
 	
 	
 return	
 problem.combine(leftResult,	
 rightResult);	

}

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Divide	
 And	
 Conquer	

• Recursive	
 decomposiKon	
 is	
 simple	

– Especially	
 with	
 recursively-­‐defined	
 data	
 structures,	
 like	
 trees	

– No	
 shared	
 mutable	
 state	
 –	
 just	
 parKKoned	
 reading	

– Intermediate	
 results	
 live	
 on	
 the	
 stack	

•  Starts	
 forking	
 work	
 early!	
 	
 	

– Beware	
 Amdahl’s	
 Law	

• DecomposiKon	
 is	
 dynamic	

– Can	
 incorporate	
 runKme	
 knowledge	
 of	
 core	
 count	
 and	
 load	

– Portable	
 expression	
 of	
 parallel	
 computaKon	
 	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

Summing	
 an	
 array	
 in	
 parallel	

(((1 + 2) + (2 + 3)) + ((5 + 6) + (7 + 8)))

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

3	
 4	
 5	
 6	
 8	
 7	
 1	
 2	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

Summing	
 an	
 array	
 in	
 parallel	

5	
 6	
 3	
 4	
 8	
 7	
 1	
 2	
 7	
 3	
 11	
 15	

10	

36	

26	

36	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Performance	
 ConsideraKons	

•  Splinng	
 /	
 decomposiKon	
 costs	

– SomeKmes	
 splinng	
 is	
 more	
 expensive	
 than	
 just	
 doing	
 the	
 work!	

•  Task	
 dispatch	
 /	
 management	
 costs	

– Can	
 do	
 a	
 lot	
 of	
 work	
 in	
 the	
 Kme	
 it	
 takes	
 to	
 hand	
 work	
 to	
 another	
 thread	

• Result	
 combinaKon	
 costs	

– SomeKmes	
 combinaKon	
 involves	
 copying	
 lots	
 of	
 data	

•  Locality	

– The	
 elephant	
 in	
 the	
 room	

•  Each	
 can	
 steal	
 away	
 potenKal	
 speedup!	

– In	
 general,	
 need	
 a	
 lot	
 of	
 data	
 to	
 make	
 up	
 for	
 decomposiKon	
 startup	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Parallel	
 Stream	
 Performance	

•  Streams	
 is	
 about	
 possibly-­‐parallel,	
 aggregate	
 opera,ons	
 on	
 datasets	

– Streams	
 are	
 efficient,	
 and	
 (usually)	
 merge	
 computaKon	
 into	
 a	
 single	
 pass	

– But	
 they	
 are	
 NOT	
 magic	
 parallelism	
 dust!	

•  SKll	
 have	
 to	
 ensure	
 that	
 our	
 problem	
 is	
 amenable	
 to	
 parallel	
 soluKon	

– How	
 easily	
 spliiable	
 is	
 the	
 source?	
 	
 	

– How	
 expensive	
 is	
 result	
 combinaKon?	
 	
 	

•  Adding	
 numbers	
 is	
 cheap;	
 merging	
 sets	
 is	
 expensive	

– What	
 kind	
 of	
 locality	
 does	
 our	
 computaKon	
 get?	

•  Array-­‐based	
 sources	
 are	
 best	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

The	
 NQ	
 Model	

•  Simple	
 model	
 for	
 parallel	
 performance	

– N	
 =	
 number	
 of	
 data	
 items	

– Q	
 =	
 amount	
 of	
 work	
 per	
 item	

• Rule	
 of	
 thumb	

– Need	
 NQ	
 >	
 10,000	
 to	
 have	
 a	
 chance	
 for	
 parallel	
 speedup	

• Most	
 simple	
 stream	
 examples	
 have	
 very	
 low	
 Q	

– Meaning	
 everything	
 else	
 has	
 to	
 go	
 well	
 to	
 get	
 a	
 speedup	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Source	
 Splinng	

•  Some	
 sources	
 split	
 beier	
 than	
 others	

– Cost	
 of	
 compuKng	
 split	

– Evenness	
 of	
 split	

– Predictability	
 of	
 split	

• Arrays	
 split	
 cheaply,	
 evenly,	
 and	
 with	
 perfect	
 knowledge	
 of	
 split	
 sizes	

– Linked	
 lists	
 have	
 none	
 of	
 these	
 properKes	

– IteraKve	
 generators	
 behave	
 like	
 linked	
 lists,	
 stateless	
 generators	
 behave	
 like	
 arrays	

• Compare	

– IntStream.iterate(0, i -> i+1).limit(n).sum()
– vs	
 IntStream.range(0, n).sum()	
 	

	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Locality	

•  Locality	
 is	
 the	
 elephant	
 in	
 the	
 room	

• Parallelism	
 wins	
 when	
 we	
 can	
 keep	
 the	
 CPUs	
 busy	
 doing	
 useful	
 work	

– WaiKng	
 for	
 cache	
 misses	
 is	
 not	
 useful	
 work	

• Memory	
 bandwidth	
 oben	
 the	
 limiKng	
 factor	
 on	
 many	
 systems	

• Array-­‐based,	
 numeric	
 problems	
 parallelize	
 best	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Locality	

array	

Integer	

9	
 Integer	

27	
 Integer	

81	

Integer	

3	

Integer[] ints

array	

3	

9	

27	

81	

int[] ints

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Encounter	
 Order	

•  Some	
 operaKons	
 have	
 semanKcs	
 Ked	
 to	
 encounter	
 order	

– Encounter	
 order	
 is	
 the	
 order	
 implied	
 by	
 the	
 source	

– Some	
 sources	
 have	
 no	
 defined	
 encounter	
 order	
 (e.g.,	
 HashSet)	

– OperaKons	
 like	
 limit(),	
 skip(),	
 and	
 findFirst()	
 are	
 Ked	
 to	
 encounter	
 order	

– Less	
 exploitable	
 parallelism	

•  SomeKmes	
 the	
 encounter	
 order	
 is	
 meaningful,	
 someKmes	
 not	

– Call	
 .unordered()	
 to	
 indicate	
 encounter	
 order	
 is	
 not	
 meaningful	
 to	
 you	

– Ops	
 like	
 limit(),	
 skip(),	
 and	
 findFirst()	
 will	
 opKmize	
 in	
 the	
 presence	
 of	
 unordered	

sources	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Merging	

•  For	
 some	
 operaKons	
 (sum,	
 max)	
 the	
 merge	
 operaKon	
 is	
 really	
 cheap	

•  For	
 others	
 (groupingBy	
 to	
 a	
 HashMap)	
 it	
 is	
 insanely	
 expensive!	

– Involves	
 a	
 lot	
 of	
 copying	

– And	
 repeatedly,	
 up	
 the	
 tree	

– Cost	
 of	
 merging	
 overwhelms	
 the	
 parallelism	
 advantage	

• Measuring	
 IntStream.range(0,	
 n).collect(toSet())…	

– For	
 n=10K,	
 approximately	
 4x	
 slowdown	
 going	
 parallel	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Merging	
 a	
 set	
 in	
 parallel	

5	
 6	
 3	
 4	
 8	
 7	
 1	
 2	
 {	
 3,	
 4	
 }	
 {	
 1,	
 2	
 }	
 {	
 5,	
 6	
 }	
 {	
 7,	
 8	
 }	

{	
 1,	
 2,	
 3,	
 4	
 }	

{	
 1,	
 2,	
 3,	
 4,	
 5,	
 6,	
 7,	
 8	
 }	

{	
 5,	
 6,	
 7,	
 8	
 }	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Parallel	
 Streams	

• Any	
 of	
 the	
 following	
 factors	
 can	
 conspire	
 to	
 undermine	
 speedup	

– NQ	
 is	
 insufficiently	
 high	

– Cache-­‐miss	
 raKo	
 is	
 too	
 high	
 (too	
 many	
 indirecKons)	

– Source	
 is	
 expensive	
 to	
 split	

– Result	
 combinaKon	
 cost	
 is	
 too	
 high	

– Pipeline	
 uses	
 encounter-­‐order-­‐sensiKve	
 operaKons	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

#DevoxxParallel	

Summary	

•  Streams	
 are	
 cool!	

• Parallelism	
 is	
 cool!	

• But…	
 parallelism	
 is	
 an	
 opKmizaKon	

– And	
 parallel	
 streams	
 are	
 not	
 magic	
 performance	
 dust	

• Before	
 opKmizing,	
 always	
 …	

– Have	
 actual	
 performance	
 requirements	

– Have	
 reliable	
 performance	
 measurements	
 (not	
 easy!)	

– Ensure	
 that	
 your	
 performance	
 doesn’t	
 meet	
 requirements	

Copyright	
 ©	
 2016,	
 Oracle	
 and/or	
 its	
 affiliates.	
 All	
 rights	
 reserved.	

Safe	
 Harbor	
 Statement	

The	
 preceding	
 is	
 intended	
 to	
 outline	
 our	
 general	
 product	
 direcKon.	
 It	
 is	
 intended	
 for	

informaKon	
 purposes	
 only,	
 and	
 may	
 not	
 be	
 incorporated	
 into	
 any	
 contract.	
 It	
 is	
 not	
 a	

commitment	
 to	
 deliver	
 any	
 material,	
 code,	
 or	
 funcKonality,	
 and	
 should	
 not	
 be	
 relied	
 upon	

in	
 making	
 purchasing	
 decisions.	
 The	
 development,	
 release,	
 and	
 Kming	
 of	
 any	
 features	
 or	

funcKonality	
 described	
 for	
 Oracle’s	
 products	
 remains	
 at	
 the	
 sole	
 discreKon	
 of	
 Oracle.	

61	

