
Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Collec>ons	
  Refueled	
  
Collec&ons	
  Framework	
  Enhancements	
  in	
  Java	
  9	
  

Stuart	
  Marks	
  
Core	
  Libraries	
  
Java	
  PlaIorm	
  Group,	
  Oracle	
  
	
  
@stuartmarks	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Collec>ons	
  Refueled	
  
• Brief	
  History	
  of	
  Collec>ons	
  
•  Java	
  8	
  Collec>ons	
  Enhancements	
  
•  Java	
  9	
  Collec>ons	
  Enhancements	
  

2	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

(Almost)	
  Twenty	
  Years	
  of	
  Java	
  Collec>ons	
  
•  JDK	
  1.0	
  –	
  1996	
  
– “Legacy	
  Collec>ons”	
  
– Vector,	
  Hashtable,	
  Enumera>on,	
  Dic>onary,	
  Stack	
  

•  JDK	
  1.2	
  –	
  1998	
  
– Collec>ons	
  Framework	
  introduced	
  
– interfaces:	
  Collec>on,	
  List,	
  Set,	
  Map,	
  Iterator,	
  Comparable,	
  Comparator,	
  
SortedSet,	
  SortedMap	
  

– concrete	
  classes:	
  ArrayList,	
  HashSet,	
  HashMap,	
  TreeSet,	
  TreeMap,	
  WeakHashMap	
  

•  JDK	
  1.4	
  –	
  2002	
  
– Iden>tyHashMap,	
  LinkedHashSet,	
  LinkedHashMap	
  

3	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

(Almost)	
  Twenty	
  Years	
  of	
  Java	
  Collec>ons	
  
•  Java	
  SE	
  5.0	
  –	
  2004	
  
– generics	
  introduced,	
  collec>ons	
  generified	
  
– Iterable,	
  Queue,	
  PriorityQueue,	
  EnumSet,	
  EnumMap	
  
– java.u>l.concurrent	
  
•  ConcurrentHashMap,	
  CopyOnWriteArrayList,	
  BlockingQueue,	
  etc.	
  

•  Java	
  SE	
  6	
  –	
  2006	
  
– Deque,	
  ArrayDeque,	
  NavigableSet,	
  NavigableMap	
  (enhanced	
  TreeSet,	
  TreeMap)	
  

•  Java	
  SE	
  7	
  –	
  2011	
  
– TimSort,	
  Collec>ons.emptyIterator	
  ...	
  hardly	
  anything!	
  

4	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Java	
  8	
  (2014)	
  
•  Lambda/Streams	
  
– Collec>ons	
  are	
  most	
  common	
  stream	
  source	
  and	
  des>na>on	
  

•  Interfaces:	
  Default	
  Methods,	
  Sta>c	
  Methods	
  
–  Java	
  8	
  language	
  features	
  
– allows	
  interfaces	
  to	
  be	
  extended	
  compa>bly	
  

•  Collec>on	
  interface	
  enhancements	
  
– first	
  changes	
  in	
  >	
  15	
  years!	
  
–  Iterable,	
  Collec>on,	
  List	
  got	
  a	
  few	
  new	
  methods	
  
– Map,	
  Comparator	
  got	
  a	
  lot	
  of	
  new	
  methods	
  
– Most	
  new	
  methods	
  leverage	
  lambdas	
  and	
  method	
  references	
  
– Default	
  methods	
  enhanced	
  all	
  exis,ng	
  collec,ons	
  

5	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Java	
  8	
  (2014)	
  
•  Iterable.forEach	
  
•  Iterator.remove	
  
•  Iterator.forEachRemaining	
  
• Collec>on.stream	
  
• Collec>on.removeIf	
  
•  List.replaceAll	
  
•  List.sort	
  
• Map.forEach	
  

• Map.replaceAll	
  
• Map.compute	
  
• Map.computeIfAbsent	
  
• Map.computeIfPresent	
  
• Map.getOrDefault	
  
• Comparator.comparing	
  
• Comparator.thenComparing	
  

6	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Java	
  9	
  (2017)	
  
•  JEP	
  269	
  Collec>ons	
  Convenience	
  Factories	
  
– JEP	
  =	
  “JDK	
  Enhancement	
  Proposal”	
  
– Sta>c	
  factory	
  methods	
  for	
  crea>ng	
  collec>ons	
  conveniently	
  
– First	
  new	
  collec>on	
  implementa>ons	
  since	
  7,	
  first	
  in	
  java.u>l	
  since	
  1.6	
  

• Other	
  enhancements	
  to	
  collec>ons-­‐related	
  classes	
  

7	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

JEP	
  269	
  –	
  Convenience	
  Factory	
  Methods	
  for	
  Collec>ons	
  
•  Library-­‐only	
  alterna>ve	
  to	
  collec>on	
  literals	
  
– no	
  language	
  changes	
  
– gets	
  ~80%	
  of	
  the	
  benefit	
  of	
  language	
  changes	
  at	
  a	
  >ny	
  frac>on	
  of	
  the	
  cost	
  
• Main	
  goals	
  
– convenience	
  and	
  brevity	
  
– space	
  efficiency	
  
– immutability	
  

• Uncovered	
  a	
  surprising	
  number	
  of	
  API	
  and	
  implementa>on	
  issues	
  

8	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

JEP	
  269	
  –	
  Convenience	
  Factory	
  Methods	
  for	
  Collec>ons	
  
• History	
  &	
  Background	
  
– Java	
  7	
  Project	
  Coin	
  –	
  Collec>on	
  Literals	
  proposal	
  
– Post	
  Java	
  8	
  –	
  JEP	
  186	
  Collec>on	
  Literals	
  “research	
  JEP”	
  
– both	
  were	
  proposals	
  to	
  enhance	
  the	
  Java	
  language	
  
• Collec>ons	
  are	
  at	
  “arm’s	
  length”	
  from	
  the	
  Java	
  language	
  
– many	
  other	
  languages	
  have	
  collec>ons	
  built-­‐in	
  
– Java’s	
  only	
  built-­‐in	
  aggrega>on	
  constructs	
  are	
  arrays	
  and	
  classes	
  
– higher-­‐level	
  collec>on	
  features	
  are	
  delegated	
  to	
  libraries	
  
– binding	
  language	
  and	
  collec>on	
  libraries	
  too	
  >ghtly	
  created	
  design	
  discomfort	
  
	
  

9	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
   10	
  

List.of()	
  
List.of(e1)	
  
List.of(e1,	
  e2)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  fixed-­‐arg	
  overloads	
  up	
  to	
  ten	
  elements	
  
List.of(elements...)	
  	
  	
  	
  	
  //	
  varargs	
  supports	
  arbitrary	
  number	
  of	
  elements	
  
	
  
Set.of()	
  
Set.of(e1)	
  
Set.of(e1,	
  e2)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  fixed-­‐arg	
  overloads	
  up	
  to	
  ten	
  elements	
  
Set.of(elements...)	
  	
  	
  	
  	
  	
  //	
  varargs	
  supports	
  arbitrary	
  number	
  of	
  elements	
  
	
  
Map.of()	
  
Map.of(k1,	
  v1)	
  
Map.of(k1,	
  v1,	
  k2,	
  v2)	
  	
  	
  //	
  fixed-­‐arg	
  overloads	
  up	
  to	
  ten	
  key-­‐value	
  pairs	
  
	
  
Map.ofEntries(entry(k1,	
  v1),	
  entry(k2,	
  v2),	
  ...)	
  	
  	
  	
  	
  //	
  varargs	
  
	
  
Map.entry(k,	
  v)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  creates	
  a	
  Map.Entry	
  instance	
  

JEP	
  269	
  API:	
  Sta>c	
  Methods	
  on	
  Interfaces	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
   11	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
   12	
  

//	
  Java	
  8	
  
	
  
	
  	
  	
  	
  List<String>	
  stringList	
  =	
  Arrays.asList("a",	
  "b",	
  "c");	
  
	
  	
  	
  	
  Set<String>	
  stringSet	
  =	
  new	
  HashSet<>(Arrays.asList("a",	
  "b",	
  "c"));	
  
	
  	
  	
  	
  Map<String,Integer>	
  stringMap	
  =	
  new	
  HashMap<>();	
  
	
  	
  	
  	
  stringMap.put("a",	
  1);	
  
	
  	
  	
  	
  stringMap.put("b",	
  2);	
  
	
  	
  	
  	
  stringMap.put("c",	
  3);	
  
	
  
//	
  Java	
  9	
  
	
  
	
  	
  	
  	
  List<String>	
  stringList	
  =	
  List.of("a",	
  "b",	
  "c");	
  
	
  	
  	
  	
  Set<String>	
  stringSet	
  =	
  Set.of("a",	
  "b",	
  "c");	
  
	
  	
  	
  	
  Map<String,Integer>	
  stringMap	
  =	
  Map.of("a",	
  1,	
  "b",	
  2,	
  "c",	
  3);	
  
	
  

Examples	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
   13	
  

Map<String,	
  TokenType>	
  tokens	
  =	
  Map.ofEntries(	
  
	
  	
  	
  	
  entry("@",	
  	
  	
  	
  	
  AT),	
  
	
  	
  	
  	
  entry("|",	
  	
  	
  	
  	
  VERTICAL_BAR),	
  
	
  	
  	
  	
  entry("#",	
  	
  	
  	
  	
  HASH),	
  
	
  	
  	
  	
  entry("%",	
  	
  	
  	
  	
  PERCENT),	
  
	
  	
  	
  	
  entry(":",	
  	
  	
  	
  	
  COLON),	
  
	
  	
  	
  	
  entry("^",	
  	
  	
  	
  	
  CARET),	
  
	
  	
  	
  	
  entry("&",	
  	
  	
  	
  	
  AMPERSAND),	
  
	
  	
  	
  	
  entry("!",	
  	
  	
  	
  	
  EXCLAM),	
  
	
  	
  	
  	
  entry("?",	
  	
  	
  	
  	
  QUESTION),	
  
	
  	
  	
  	
  entry("$",	
  	
  	
  	
  	
  DOLLAR),	
  
	
  	
  	
  	
  entry("::",	
  	
  	
  	
  PAAMAYIM_NEKUDOTAYIM),	
  
	
  	
  	
  	
  entry("=",	
  	
  	
  	
  	
  EQUALS),	
  
	
  	
  	
  	
  entry(";",	
  	
  	
  	
  	
  SEMICOLON)	
  
);	
  
	
  

Example:	
  Map	
  With	
  Arbitrary	
  Number	
  of	
  Pairs	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Design	
  and	
  Implementa>on	
  Issues	
  
• Handling	
  arbitrary	
  number	
  of	
  mappings	
  
•  Immutability,	
  contrast	
  with	
  Unmodifiability	
  
•  Itera>on	
  Order	
  
• Nulls	
  Disallowed	
  
• Duplicate	
  Handling	
  
•  Space	
  Efficiency	
  
•  Serializability	
  
• Other	
  Behavior	
  Differences	
  

14	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

API	
  Design:	
  Handling	
  Arbitrary	
  Number	
  of	
  Mappings	
  
•  List	
  and	
  Set	
  have	
  obvious	
  varargs	
  extensions,	
  not	
  so	
  for	
  Map	
  
•  Inves>gated	
  about	
  15	
  different	
  approaches	
  
– technical	
  evalua>on:	
  “they	
  all	
  suck”	
  
– this	
  is	
  the	
  case	
  where	
  language	
  syntax	
  support	
  would	
  be	
  most	
  helpful	
  

• Criteria	
  
– simple,	
  livle	
  boilerplate	
  
– compile-­‐>me	
  type-­‐safe	
  
– number	
  of	
  elements	
  known	
  at	
  compile	
  >me	
  (avoid	
  resizing/rehashing)	
  
– each	
  key	
  and	
  value	
  should	
  be	
  adjacent	
  in	
  source	
  code	
  
– avoid	
  boxing	
  

15	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

API	
  Design:	
  Handling	
  Arbitrary	
  Number	
  of	
  Mappings	
  
•  Solu>on:	
  Map.ofEntries(Map.Entry...	
  entries)	
  
• Add	
  Map.entry()	
  sta>c	
  factory	
  method	
  returning	
  Map.Entry	
  
– suitable	
  for	
  sta>c	
  import;	
  can	
  use	
  

entry(key,	
  value)	
  

– instead	
  of	
  
new	
  AbstractMap.SimpleImmutableEntry<>(key,	
  value)	
  

•  Sa>sfies	
  all	
  criteria	
  except	
  for	
  boxing	
  
– maybe...	
  the	
  Map.Entry	
  can	
  be	
  turned	
  into	
  a	
  value	
  type	
  in	
  the	
  future	
  

• Overall	
  a	
  reasonable	
  compromise	
  

16	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Immutability	
  
• Collec>ons	
  returned	
  by	
  the	
  new	
  sta>c	
  factory	
  methods	
  are	
  immutable	
  
•  “Conven>onal”	
  immutability,	
  not	
  “immutable	
  persistent”	
  
– avempts	
  to	
  add,	
  set,	
  or	
  remove	
  throw	
  UnsupportedOpera>onExcep>on	
  

•  Immutability	
  is	
  good!	
  
– common	
  case:	
  collec>on	
  ini>alized	
  from	
  known	
  values,	
  never	
  changed	
  
– automa>cally	
  thread-­‐safe	
  
– provides	
  opportuni>es	
  for	
  efficiency,	
  especially	
  space	
  

• No	
  general-­‐purpose	
  immutable	
  collec>ons	
  exist	
  in	
  the	
  JDK	
  
– unmodifiable	
  wrappers	
  are	
  a	
  poor	
  subs>tute	
  

17	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Immutability	
  vs.	
  Unmodifiability	
  
• What’s	
  the	
  difference	
  between	
  list1	
  and	
  list2?	
  

List<Integer>	
  temp	
  =	
  Arrays.asList(1,	
  2,	
  3);	
  
List<Integer>	
  list1	
  =	
  Collections.unmodifiableList(temp);	
  
List<Integer>	
  list2	
  =	
  List.of(1,	
  2,	
  3);	
  

•  Similari>es	
  
–  Mutator	
  methods	
  add(),	
  remove(),	
  set()	
  etc.	
  throw	
  UnsupportedOpera>onExcep>on	
  

•  Differences	
  
–  list1	
  is	
  an	
  unmodifiable	
  view	
  of	
  the	
  underlying	
  list	
  temp	
  
–  modifica>ons	
  to	
  temp	
  are	
  visible	
  to	
  list1	
  
–  list2	
  cannot	
  be	
  modified	
  at	
  all	
  
•  except	
  via	
  reflec>on,	
  but	
  that’s	
  chea>ng	
  

18	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Randomized	
  Itera>on	
  Order	
  
•  Itera>on	
  order	
  for	
  Set	
  elements	
  and	
  Map	
  keys	
  
– HashSet,	
  HashMap:	
  order	
  is	
  officially	
  unspecified	
  
– however,	
  usually	
  consistent	
  for	
  long	
  periods	
  of	
  >me	
  (>	
  1	
  JDK	
  release	
  cycle)	
  
– inadvertent	
  order	
  dependencies	
  can	
  creep	
  into	
  code	
  
•  Lots	
  of	
  code	
  breaks	
  when	
  itera>on	
  order	
  is	
  changed	
  
– occasionally	
  necessary	
  to	
  improve	
  performance	
  or	
  fix	
  security	
  holes	
  
– lots	
  of	
  code	
  probably	
  has	
  latent	
  itera>on	
  order	
  dependencies	
  (i.e.,	
  bugs!)	
  
– “just	
  change	
  this	
  HashMap	
  to	
  a	
  LinkedHashMap”	
  –	
  random	
  bugs	
  disappear	
  

19	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Randomized	
  Itera>on	
  Order	
  
•  Solu>on:	
  randomized	
  itera>on	
  order	
  for	
  JEP	
  269	
  collec>ons	
  
– make	
  itera>on	
  order	
  predictably	
  unpredictable!	
  
– itera>on	
  order	
  will	
  be	
  stable	
  within	
  a	
  JVM	
  instance	
  
– but	
  will	
  change	
  from	
  one	
  run	
  to	
  the	
  next	
  

• Precedents:	
  Go	
  language;	
  Python	
  3.0	
  –	
  3.5	
  
• Goal:	
  “toughen	
  up”	
  user	
  code	
  to	
  prevent	
  itera>on	
  order	
  dependencies	
  
– bugs	
  flushed	
  out	
  in	
  development	
  and	
  test,	
  before	
  produc>on	
  (we	
  hope)	
  

• Applies	
  only	
  to	
  new	
  collec>ons	
  implementa>ons	
  
– by	
  defini>on,	
  no	
  exis>ng	
  code	
  depends	
  on	
  their	
  itera>on	
  order	
  
– exis>ng	
  collec>ons	
  will	
  remain	
  the	
  same	
  

20	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Nulls	
  Disallowed	
  
• Nulls	
  disallowed	
  as	
  List	
  or	
  Set	
  members,	
  Map	
  keys	
  or	
  values	
  
– NullPointerExcep>on	
  thrown	
  at	
  crea>on	
  >me	
  

• Allowing	
  nulls	
  in	
  collec>ons	
  back	
  in	
  1.2	
  was	
  a	
  mistake	
  
– no	
  collec>on	
  in	
  Java	
  5	
  or	
  later	
  has	
  permived	
  nulls	
  
– par>cularly	
  the	
  java.u>l.concurrent	
  collec>ons	
  
• Why	
  not?	
  
– nulls	
  are	
  bad!	
  source	
  of	
  NPEs	
  
– nulls	
  useful	
  as	
  sen>nel	
  values	
  in	
  APIs,	
  e.g.,	
  Map.get(),	
  Map.compute()	
  
– nulls	
  useful	
  as	
  sen>nel	
  values	
  for	
  op>mizing	
  implementa>ons	
  

21	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Throw	
  Excep>ons	
  on	
  Duplicates	
  
• Duplicate	
  set	
  elements	
  or	
  map	
  keys	
  throw	
  IllegalArgumentExcep>on	
  
• Duplicates	
  in	
  a	
  “collec>on	
  literal”	
  are	
  most	
  likely	
  a	
  programming	
  error	
  
•  Ideally	
  this	
  would	
  be	
  detected	
  at	
  compile	
  >me	
  
– values	
  aren’t	
  compile-­‐>me	
  constants	
  
– next	
  best	
  thing:	
  fail-­‐fast	
  on	
  crea>on	
  at	
  run>me	
  

• Very	
  few	
  other	
  systems	
  do	
  this	
  
– most	
  are	
  “last	
  one	
  wins”	
  
– Clojure	
  and	
  ECMAScript	
  (strict)	
  are	
  notable	
  outliers	
  

22	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
   23	
  

Map<String,	
  TokenType>	
  tokens	
  =	
  Map.ofEntries(	
  
	
  	
  	
  	
  entry("@",	
  	
  	
  	
  	
  AT),	
  
	
  	
  	
  	
  entry("|",	
  	
  	
  	
  	
  VERTICAL_BAR),	
  
	
  	
  	
  	
  entry("#",	
  	
  	
  	
  	
  HASH),	
  
	
  	
  	
  	
  entry("%",	
  	
  	
  	
  	
  PERCENT),	
  
	
  	
  	
  	
  entry(":",	
  	
  	
  	
  	
  COLON),	
  
	
  	
  	
  	
  entry("^",	
  	
  	
  	
  	
  CARET),	
  
	
  	
  	
  	
  entry("&",	
  	
  	
  	
  	
  AMPERSAND),	
  
	
  	
  	
  	
  entry("|",	
  	
  	
  	
  	
  EXCLAM),	
  
	
  	
  	
  	
  entry("?",	
  	
  	
  	
  	
  QUESTION),	
  
	
  	
  	
  	
  entry("$",	
  	
  	
  	
  	
  DOLLAR),	
  
	
  	
  	
  	
  entry("::",	
  	
  	
  	
  PAAMAYIM_NEKUDOTAYIM),	
  
	
  	
  	
  	
  entry("=",	
  	
  	
  	
  	
  EQUALS),	
  
	
  	
  	
  	
  entry(";",	
  	
  	
  	
  	
  SEMICOLON)	
  
);	
  
	
  

Example:	
  Map	
  With	
  Duplicate	
  Keys	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Space	
  Efficiency	
  
• Consider	
  an	
  unmodifiable	
  set	
  containing	
  two	
  strings	
  

Set<String>	
  set	
  =	
  new	
  HashSet<>(3);	
  	
  //	
  3	
  is	
  the	
  number	
  of	
  buckets	
  
set.add("foo");	
  
set.add("bar");	
  
set	
  =	
  Collections.unmodifiableSet(set);	
  

• How	
  much	
  space	
  does	
  this	
  take?	
  Count	
  objects.	
  
– 1	
  unmodifiable	
  wrapper	
  
– 1	
  HashSet	
  
– 1	
  HashMap	
  
– 1	
  Object[]	
  table	
  of	
  length	
  3	
  
– 2	
  Node	
  objects,	
  one	
  for	
  each	
  element	
  

24	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Space	
  Efficiency	
  

25	
  

set	
  

unmod	
  wrapper	
  

HashSet	
  

HashMap	
   table	
  

Node	
  

Node	
  

"foo"	
  
PRESENT	
  

"bar"	
  
PRESENT	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Space	
  Efficiency	
  
•  Size	
  es>mate	
  
– 12	
  byte	
  header	
  per	
  object	
  
– (assume	
  64-­‐bit	
  JVM	
  with	
  compressed	
  OOPS)	
  
– plus	
  4	
  bytes	
  per	
  int,	
  float,	
  or	
  reference	
  field	
  
• Object	
  sizes	
  
– unmod	
  wrapper:	
  header	
  +	
  1	
  field	
  =	
  16	
  bytes	
  
– HashSet:	
  header	
  +	
  1	
  field	
  =	
  16	
  bytes	
  
– HashMap:	
  header	
  +	
  6	
  fields	
  =	
  36	
  bytes	
  
– table:	
  header	
  +	
  4	
  fields	
  =	
  28	
  bytes	
  
– Node:	
  header	
  +	
  4	
  fields	
  =	
  28	
  bytes	
  x	
  2	
  =	
  56	
  bytes	
  

26	
  

Total	
  152	
  bytes	
  to	
  store	
  
two	
  object	
  references!	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Space	
  Efficiency	
  
•  Field-­‐based	
  set	
  implementa>on	
  

Set<String>	
  set	
  =	
  Set.of("foo",	
  "bar");	
  

• One	
  object,	
  two	
  fields	
  
– 20	
  bytes,	
  compared	
  to	
  152	
  bytes	
  for	
  conven>onal	
  structure	
  

•  Efficiency	
  gains	
  
– lower	
  fixed	
  cost:	
  fewer	
  objects	
  created	
  for	
  a	
  collec>on	
  of	
  any	
  size	
  
– lower	
  variable	
  cost:	
  fewer	
  bytes	
  overhead	
  per	
  collec>on	
  element	
  

27	
  

Set2	
   "foo"	
  
"bar"	
  set	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Mul>ple	
  Implementa>ons	
  
• All	
  implementa>ons	
  are	
  private	
  classes	
  hidden	
  behind	
  sta>c	
  factory	
  
– sta>c	
  factory	
  method	
  chooses	
  the	
  implementa>on	
  class	
  based	
  on	
  size	
  

• Different	
  data	
  organiza>ons	
  
– field-­‐based	
  implementa>ons	
  
•  specialized	
  implementa>ons	
  for	
  0,	
  1,	
  2,	
  ...	
  elements	
  

– array-­‐based	
  with	
  closed	
  hashing	
  
– can	
  be	
  changed	
  compa>bly	
  even	
  in	
  minor	
  releases	
  

• Benefits	
  
– less	
  space	
  overall	
  
– fewer	
  objects	
  result	
  in	
  improved	
  locality	
  of	
  reference	
  

28	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Serializa>on	
  
• All	
  collec>ons	
  will	
  be	
  serializable	
  
– yes,	
  people	
  really	
  use	
  serializa>on	
  
– default	
  serialized	
  form	
  would	
  “leak”	
  informa>on	
  about	
  internal	
  implementa>on	
  
•  this	
  can	
  be	
  a	
  compa>bility	
  issue	
  if	
  you’re	
  not	
  careful	
  

• New	
  collec>ons	
  implementa>ons	
  will	
  have	
  custom	
  serial	
  form	
  
– serializa>on	
  emits	
  serial	
  proxy	
  to	
  keep	
  implementa>ons	
  opaque	
  
– deserializa>on	
  chooses	
  implementa>on	
  based	
  on	
  current	
  criteria	
  in	
  effect	
  
– single,	
  common	
  serial	
  proxy	
  shared	
  by	
  all	
  implementa>ons	
  

29	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Other	
  Behavior	
  Differences	
  
• What’s	
  the	
  difference	
  between	
  list3	
  and	
  list4?	
  

List<Integer>	
  list3	
  =	
  Collections.singletonList(1);	
  //	
  immutable	
  
List<Integer>	
  list4	
  =	
  List.of(1);	
  

•  Similari>es	
  
–  Mutator	
  methods	
  add(),	
  remove(),	
  set()	
  etc.	
  throw	
  UnsupportedOpera>onExcep>on	
  

•  Differences	
  
list3.addAll(Collections.emptyList());	
  	
  //	
  returns	
  false	
  
list4.addAll(Collections.emptyList());	
  	
  //	
  throws	
  UOE	
  

30	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Other	
  Vaguely	
  Collec>ons-­‐Related	
  Java	
  9	
  Enhancements	
  
•  Arrays.equals	
  
•  Arrays.compare	
  
•  Arrays.compareUnsigned	
  
•  Arrays.mismatch	
  
•  Enumera>on.asIterator	
  
•  Op>onal.ifPresentOrElse	
  
•  Op>onal.or	
  
•  Op>onal.stream	
  
•  Scanner.tokens	
  
•  Scanner.findAll	
  

• Matcher.replaceAll	
  
• Matcher.replaceFirst	
  
• Matcher.results	
  
•  Collectors.flatMapping	
  
•  Collectors.filtering	
  
•  Stream.takeWhile	
  
•  Stream.dropWhile	
  
•  Stream.ofNullable	
  
•  Stream.iterate(3-­‐arg)	
  

31	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Summary	
  
• Collec>ons	
  framework	
  is	
  19	
  years	
  old,	
  s>ll	
  useful	
  and	
  extensible!	
  
• Primary	
  Java	
  9	
  Collec>on	
  Enhancement:	
  Convenience	
  Factory	
  Methods	
  
– convenient,	
  space-­‐efficient,	
  immutable	
  
– promising	
  space	
  &	
  performance	
  improvements	
  from	
  use	
  in	
  JDK	
  9	
  itself	
  
– JEP	
  269:	
  hvp://openjdk.java.net/jeps/269	
  
•  Try	
  out	
  JDK	
  9	
  builds:	
  hvp://jdk.java.net/9/	
  
• Me:	
  
– blog: 	
  stuartmarks.wordpress.com	
  
– Twiver: 	
  @stuartmarks	
  

32	
  



Copyright	
  ©	
  2017,	
  Oracle	
  and/or	
  its	
  affiliates.	
  All	
  rights	
  reserved.	
  

Safe	
  Harbor	
  Statement	
  
The	
  preceding	
  is	
  intended	
  to	
  outline	
  our	
  general	
  product	
  direc>on.	
  It	
  is	
  intended	
  for	
  
informa>on	
  purposes	
  only,	
  and	
  may	
  not	
  be	
  incorporated	
  into	
  any	
  contract.	
  It	
  is	
  not	
  a	
  
commitment	
  to	
  deliver	
  any	
  material,	
  code,	
  or	
  func>onality,	
  and	
  should	
  not	
  be	
  relied	
  upon	
  
in	
  making	
  purchasing	
  decisions.	
  The	
  development,	
  release,	
  and	
  >ming	
  of	
  any	
  features	
  or	
  
func>onality	
  described	
  for	
  Oracle’s	
  products	
  remains	
  at	
  the	
  sole	
  discre>on	
  of	
  Oracle.	
  

33	
  






